WorldWideScience

Sample records for stable sn ge

  1. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  2. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  3. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures

    Science.gov (United States)

    Timofeev, V. A.; Nikiforov, A. I.; Tuktamyshev, A. R.; Mashanov, V. I.; Loshkarev, I. D.; Bloshkin, A. A.; Gutakovskii, A. K.

    2018-04-01

    The GeSiSn, SiSn layer growth mechanisms on Si(100) were investigated and the kinetic diagrams of the morphological GeSiSn, SiSn film states in the temperature range of 150 °C-450 °C at the tin content from 0% to 35% were built. The phase diagram of the superstructural change on the surface of Sn grown on Si(100) in the annealing temperature range of 0 °C-850 °C was established. The specular beam oscillations were first obtained during the SiSn film growth from 150 °C to 300 °C at the Sn content up to 35%. The transmission electron microscopy and x-ray diffractometry data confirm the crystal perfection and the pseudomorphic GeSiSn, SiSn film state, and also the presence of smooth heterointerfaces between GeSiSn or SiSn and Si. The photoluminescence for the multilayer periodic GeSiSn/Si structures in the range of 0.6-0.8 eV was detected. The blue shift with the excitation power increase is observed suggesting the presence of a type II heterostructure. The creation of tensile strained Ge films, which are pseudomorphic to the underlying GeSn layer, is confirmed by the results of the formation and analysis of the reciprocal space map in the x-ray diffractometry. The tensile strain in the Ge films reached the value in the range of 0.86%-1.5%. The GeSn buffer layer growth in the Sn content range from 8% to 12% was studied. The band structure of heterosystems based on pseudomorphic GeSiSn, SiSn and Ge layers was calculated and the valence and conduction band subband position dependences on the Sn content were built. Based on the calculation, the Sn content range in the GeSiSn, SiSn, and GeSn layers, which corresponds to the direct bandgap GeSiSn, SiSn, and Ge material, was obtained.

  4. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Yi; Chang, Chih-Chiang [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chih-Hsiung; Huang, Shih-Hsien [Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); National Nano Device Labs, Hsinchu 30077, Taiwan (China); Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping [Applied Materials Inc., Sunnyvale, California 94085 (United States)

    2016-08-29

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al{sub 2}O{sub 3}/SiO{sub 2} passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al{sub 2}O{sub 3}/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al{sub 2}O{sub 3} and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  5. 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Oya, N.; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-02-23

    Polycrystalline GeSn thin films are fabricated on insulating substrates at low temperatures by using Sn-induced crystallization of amorphous Ge (a-Ge). The Sn layer stacked on the a-Ge layer (100-nm thickness each) had two roles: lowering the crystallization temperature of a-Ge and composing GeSn. Slow annealing at an extremely low temperature of 70 °C allowed for a large-grained (350 nm) GeSn layer with a lattice constant of 0.590 nm, corresponding to a Sn composition exceeding 25%. The present investigation paves the way for advanced electronic optical devices integrated on a flexible plastic substrate as well as on a Si platform.

  6. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  7. Strain relaxation of germanium-tin (GeSn) fins

    Science.gov (United States)

    Kang, Yuye; Huang, Yi-Chiau; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Lei, Dian; Masudy-Panah, Saeid; Dong, Yuan; Wu, Ying; Xu, Shengqiang; Tan, Chuan Seng; Gong, Xiao; Yeo, Yee-Chia

    2018-02-01

    Strain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results.

  8. The effect of Ge precursor on the heteroepitaxy of Ge1-x Sn x epilayers on a Si (001) substrate

    Science.gov (United States)

    Jahandar, Pedram; Weisshaupt, David; Colston, Gerard; Allred, Phil; Schulze, Jorg; Myronov, Maksym

    2018-03-01

    The heteroepitaxial growth of Ge1-x Sn x on a Si (001) substrate, via a relaxed Ge buffer, has been studied using two commonly available commercial Ge precursors, Germane (GeH4) and Digermane (Ge2H6), by means of chemical vapour deposition at reduced pressures (RP-CVD). Both precursors demonstrate growth of strained and relaxed Ge1-x Sn x epilayers, however Sn incorporation is significantly higher when using the more reactive Ge2H6 precursor. As Ge2H6 is significantly more expensive, difficult to handle or store than GeH4, developing high Sn content epilayers using the latter precursor is of great interest. This study demonstrates the key differences between the two precursors and offers routes to process optimisation which will enable high Sn content alloys at relatively low cost.

  9. Novel Sn-Based Contact Structure for GeTe Phase Change Materials.

    Science.gov (United States)

    Simchi, Hamed; Cooley, Kayla A; Ding, Zelong; Molina, Alex; Mohney, Suzanne E

    2018-05-16

    Germanium telluride (GeTe) is a phase change material (PCM) that has gained recent attention because of its incorporation as an active material for radio frequency (RF) switches, as well as memory and novel optoelectronic devices. Considering PCM-based RF switches, parasitic resistances from Ohmic contacts can be a limiting factor in device performance. Reduction of the contact resistance ( R c ) is therefore critical for reducing the on-state resistance to meet the requirements of high-frequency RF applications. To engineer the Schottky barrier between the metal contact and GeTe, Sn was tested as an interesting candidate to alter the composition of the semiconductor near its surface, potentially forming a narrow band gap (0.2 eV) SnTe or a graded alloy with SnTe in GeTe. For this purpose, a novel contact stack of Sn/Fe/Au was employed and compared to a conventional Ti/Pt/Au stack. Two different premetallization surface treatments of HCl and deionized (DI) H 2 O were employed to make a Te-rich and Ge-rich interface, respectively. Contact resistance values were extracted using the refined transfer length method. The best results were obtained with DI H 2 O for the Sn-based contacts but HCl treatment for the Ti/Pt/Au contacts. The as-deposited contacts had the R c (ρ c ) of 0.006 Ω·mm (8 × 10 -9 Ω·cm 2 ) for Sn/Fe/Au and 0.010 Ω·mm (3 × 10 -8 Ω·cm 2 ) for Ti/Pt/Au. However, the Sn/Fe/Au contacts were thermally stable, and their resistance decreased further to 0.004 Ω·mm (4 × 10 -9 Ω·cm 2 ) after annealing at 200 °C. In contrast, the contact resistance of the Ti/Pt/Au stack increased to 0.012 Ω·mm (4 × 10 -8 Ω·cm 2 ). Transmission electron microscopy was used to characterize the interfacial reactions between the metals and GeTe. It was found that formation of SnTe at the interface, in addition to Fe diffusion (doping) into GeTe, is likely responsible for the superior performance of Sn/Fe/Au contacts, resulting in one of the lowest reported

  10. Effect of Sn Composition in Ge1- x Sn x Layers Grown by Using Rapid Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kil, Yeon-Ho; Kang, Sukill; Jeong, Tae Soo; Shim, Kyu-Hwan; Kim, Dae-Jung; Choi, Yong-Dae; Kim, Mi Joung; Kim, Taek Sung

    2018-05-01

    The Ge1- x Sn x layers were grown by using rapid thermal chemical-vapor deposition (RTCVD) on boron-doped p-type Si (100) substrates with Sn compositions up to x = 0.83%. In order to obtain effect of the Sn composition on the structural and the optical characteristics, we utilized highresolution X-ray diffraction (HR-XRD), etch pit density (EPD), atomic force microscopy (AFM), Raman spectroscopy, and photocurrent (PC) spectra. The Sn compositions in the Ge1- x Sn x layers were found to be of x = 0.00%, 0.51%, 0.65%, and 0.83%. The root-mean-square (RMS) of the surface roughness of the Ge1- x Sn x layer increased from 2.02 nm to 3.40 nm as the Sn composition was increased from 0.51% to 0.83%, and EPD was on the order of 108 cm-2. The Raman spectra consist of only one strong peak near 300 cm-1, which is assigned to the Ge-Ge LO peaks and the Raman peaks shift to the wave number with increasing Sn composition. Photocurrent spectra show near energy band gap peaks and their peak energies decrease with increasing Sn composition due to band-gap bowing in the Ge1- x Sn x layer. An increase in the band gap bowing parameter was observed with increasing Sn composition.

  11. The Low Temperature Epitaxy of Strained GeSn Layers Using RTCVD System

    Science.gov (United States)

    Kil, Yeon-Ho; Yuk, Sim-Hoon; Jang, Han-Soo; Lee, Sang-Geul; Choi, Chel-Jong; Shim, Kyu-Hwan

    2018-03-01

    We have investigated the low temperature (LT) growth of GeSn-Ge-Si structures using rapid thermal chemical vapor deposition system utilizing Ge2H6 and SnCl4 as the reactive precursors. Due to inappropriate phenomena, such as, Ge etch and Sn segregation, it was hard to achieve high quality GeSn epitaxy at the temperature > 350 °C. On the contrary, we found that the SnCl4 promoted the reaction of Ge2H6 precursors in a certain process condition of LT, 240-360 °C. In return, we could perform the growth of GeSn epi layer with 7.7% of Sn and its remaining compressive strain of 71.7%. The surface propagated defects were increased with increasing the Sn content in the GeSn layer confirmed by TEM analysis. And we could calculate the activation energies at lower GeSn growth temperature regime using by Ge2H6 and SnCl4 precursors about 0.43 eV.

  12. GeSn-on-insulator substrate formed by direct wafer bonding

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Lee, Kwang Hong; Wang, Bing [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); Bao, Shuyu [Low Energy Electronic Systems (LEES), Singapore MIT Alliance for Research and Technology (SMART), 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tan, Chuan Seng [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2016-07-11

    GeSn-on-insulator (GeSnOI) on Silicon (Si) substrate was realized using direct wafer bonding technique. This process involves the growth of Ge{sub 1-x}Sn{sub x} layer on a first Si (001) substrate (donor wafer) followed by the deposition of SiO{sub 2} on Ge{sub 1-x}Sn{sub x}, the bonding of the donor wafer to a second Si (001) substrate (handle wafer), and removal of the Si donor wafer. The GeSnOI material quality is investigated using high-resolution transmission electron microscopy, high-resolution X-ray diffraction (HRXRD), atomic-force microscopy, Raman spectroscopy, and spectroscopic ellipsometry. The Ge{sub 1-x}Sn{sub x} layer on GeSnOI substrate has a surface roughness of 1.90 nm, which is higher than that of the original Ge{sub 1-x}Sn{sub x} epilayer before transfer (surface roughness is 0.528 nm). The compressive strain of the Ge{sub 1-x}Sn{sub x} film in the GeSnOI is as low as 0.10% as confirmed using HRXRD and Raman spectroscopy.

  13. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    Science.gov (United States)

    2016-05-16

    AFRL-AFOSR-JP-TR-2016-0054 Silicon based mid infrared SiGeSn heterostrcture emitters and detectors Greg Sun UNIVERSITY OF MASSACHUSETTS Final Report... Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors ” February 10, 2016 Principal Investigator: Greg Sun Engineering...diodes are incompatible with the CMOS process and therefore cannot be easily integrated with Si electronics . The GeSn mid IR detectors developed in

  14. Sn-based Ge/Ge{sub 0.975}Sn{sub 0.025}/Ge p-i-n photodetector operated with back-side illumination

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Li, H.; Huang, S. H.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw [Center for Condensed Matter Sciences and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan (China); Sun, G.; Soref, R. A. [Department of Engineering, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States)

    2016-04-11

    We report an investigation of a GeSn-based p-i-n photodetector grown on a Ge wafer that collects light signal from the back of the wafer. Temperature dependent absorption measurements performed over a wide temperature range (300 K down to 25 K) show that (a) absorption starts at the indirect bandgap of the active GeSn layer and continues up to the direct bandgap of the Ge wafer, and (b) the peak responsivity increases rapidly at first with decreasing temperature, then increases more slowly, followed by a decrease at the lower temperatures. The maximum responsivity happens at 125 K, which can easily be achieved with the use of liquid nitrogen. The temperature dependence of the photocurrent is analyzed by taking into consideration of the temperature dependence of the electron and hole mobility in the active layer, and the analysis result is in reasonable agreement with the data in the temperature regime where the rapid increase occurs. This investigation demonstrates the feasibility of a GeSn-based photodiode that can be operated with back-side illumination for applications in image sensing systems.

  15. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  16. Next Generation, Si-Compatible Materials and Devices in the Si-Ge-Sn System

    Science.gov (United States)

    2015-10-09

    and conclusions The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8...Abstract The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8, SnD4. The...AFRL-AFOSR-VA-TR-2016-0044 Next generation, Si -compatible materials and devices in the Si - Ge -Sn system John Kouvetakis ARIZONA STATE UNIVERSITY Final

  17. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  18. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Science.gov (United States)

    Hart, John; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James

    2016-03-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  19. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    National Research Council Canada - National Science Library

    Soret, R. A; Sun, G; Cheng, H; Menendez, J; Khurgin, J

    2007-01-01

    The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band which has a clean offset of 150 meV situated below other energy valleys Gamma and X...

  20. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  1. Ex situ n+ doping of GeSn alloys via non-equilibrium processing

    Science.gov (United States)

    Prucnal, S.; Berencén, Y.; Wang, M.; Rebohle, L.; Böttger, R.; Fischer, I. A.; Augel, L.; Oehme, M.; Schulze, J.; Voelskow, M.; Helm, M.; Skorupa, W.; Zhou, S.

    2018-06-01

    Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p- and n-type doped regions for both planar and tri-dimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1 × 1019 cm‑3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3 × 1015 cm‑2 and electron concentration of about 4 × 1019 cm‑3. The optical and structural properties of ion-implanted GeSn layers are comparable with the in situ doped MBE grown layers.

  2. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  3. Study of GeSn Alloy for Low Cost Monolithic Mid Infrared Quantum Well Sensor

    Directory of Open Access Journals (Sweden)

    Prakash PAREEK

    2017-02-01

    Full Text Available This paper focuses on theoretical study of Tin incorporated group IV alloys particularly GeSn and design of quantum well sensor for mid infrared sensing applications. Initially, the physics behind the selection of material for midinfrared sensor is explained. The importance of controlling strain in GeSn alloy is also explained. The physical background and motivation for incorporation of Tin(Sn in Germanium is briefly narrated. Eigen energy states for different Sn concentrations are obtained for strain compensated quantum well in G valley conduction band (GCB, heavy hole (HH band and light hole (LH band by solving coupled Schrödinger and Poisson equations simultaneously. Sn concentration dependent absorption spectra for HH- GCB transition reveals that significant absorption observed in mid infrared range (3-5 µm. So, Ge1-x Snx quantum well can be used for mid infrared sensing applications.

  4. Effects of Ge- and Sb-doping and annealing on the tunable bandgaps of SnS films

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsuan-Tai; Chiang, Ming-Hung; Huang, Chen-Hao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Wen-Tai, E-mail: wtlin@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Fu, Yaw-Shyan [Department of Greenergy, National University of Tainan, Tainan 700, Taiwan (China); Guo, Tzung-Fang [Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-06-01

    SnS, Ge- and Sb-doped SnS films with single orthorhombic SnS phase were fabricated via solvothermal routes and subsequent spin-coating, respectively. The substitution solubilities of Ge and Sb in SnS are about 6 and 5 at.%, respectively. The bandgaps of Ge- and Sb-doped SnS films can be tuned in the ranges of 1.25–1.35 and 1.30–1.39 eV, respectively. The possible mechanisms for the tunable bandgaps of Ge- and Sb-doped SnS films are discussed. For the Ge- and Sb-doped SnS films subjected to annealing at 200–350 °C in N{sub 2}, the bandgaps of 200 °C-annealed films remain unchanged, while those of 300 °C- and 350 °C-annealed films decrease with the annealing temperature because of the evaporation of Ge and Sb respectively. - Highlights: • Ge- and Sb-doped SnS films were fabricated via spin-coating. • The solubilities of Ge and Sb in SnS are about 6 and 5 at.%, respectively. • The bandgaps of SnS films can be tuned by Ge and Sb doping respectively. • Annealing above 300 °C reduces the bandgaps of Ge- and Sb-doped SnS films.

  5. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    Energy Technology Data Exchange (ETDEWEB)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, Delaware 19716 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, Albany, New York 12203 (United States); Kim, Yihwan; Huang, Yi-Chiau [Applied Materials, Sunnyvale, California 94085 (United States); Reznicek, Alexander [IBM Research at Albany Nanotech, Albany, New York 12203 (United States)

    2016-03-07

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl{sub 4} precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  6. Temperature varying photoconductivity of GeSn alloys grown by chemical vapor deposition with Sn concentrations from 4% to 11%

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Gupta, Jay; Kolodzey, James; Adam, Thomas; Kim, Yihwan; Huang, Yi-Chiau; Reznicek, Alexander

    2016-01-01

    Pseudomorphic GeSn layers with Sn atomic percentages between 4.5% and 11.3% were grown by chemical vapor deposition using digermane and SnCl 4 precursors on Ge virtual substrates grown on Si. The layers were characterized by x-ray diffraction rocking curves and reciprocal space maps. Photoconductive devices were fabricated, and the dark current was found to increase with Sn concentration. The responsivity of the photoconductors was measured at a wavelength of 1.55 μm using calibrated laser illumination at room temperature and a maximum value of 2.7 mA/W was measured for a 4.5% Sn device. Moreover, the responsivity for higher Sn concentration was found to increase with decreasing temperature. Spectral photoconductivity was measured using Fourier transform infrared spectroscopy. The photoconductive absorption edge continually increased in wavelength with increasing tin percentage, out to approximately 2.4 μm for an 11.3% Sn device. The direct band gap was extracted using Tauc plots and was fit to a bandgap model accounting for layer strain and Sn concentration. This direct bandgap was attributed to absorption from the heavy-hole band to the conduction band. Higher energy absorption was also observed, which was thought to be likely from absorption in the light-hole band. The band gaps for these alloys were plotted as a function of temperature. These experiments show the promise of GeSn alloys for CMOS compatible short wave infrared detectors.

  7. Structural, elastic, electronic, bonding, and optical properties of BeAZ2 (A = Si, Ge, Sn; Z = P, As) chalcopyrites

    International Nuclear Information System (INIS)

    Fahad, Shah; Murtaza, G.; Ouahrani, T.; Khenata, R.; Yousaf, Masood; Omran, S.Bin; Mohammad, Saleh

    2015-01-01

    A first principles density functional theory (DFT) technique is used to study the structural, chemical bonding, electronic and optical properties of BeAZ 2 (A = Si, Ge, Sn; Z = P, As) chalcopyrite materials. The calculated parameters are in good agreement with the available experimental results. The lattice constants and the equilibrium volume increased as we moved from Si to Ge to Sn, whereas the c/a and internal parameters u decreased by shifting the cation from P to As. These compounds are elastically stable. An investigation of the band gap using the WC-GGA, EV-GGA, PBE-GGA and mBJ-metaGGA potentials suggested that BeSiP 2 and BeSiAs 2 are direct band gap compounds, whereas BeGeP 2, BeGeAs 2, BeSnP 2, BeSnAs 2 are indirect band gap compounds. The energy band gaps decreased by changing B from Si to Sn and increased by changing the anion C from P to As. The bonding among the cations and anions is primarily ionic. In the optical properties, the real and imaginary parts of the dielectric functions, reflectivity and optical conductivity have been studied over a wide energy range. - Highlights: • The compounds are studied by FP-LAPW method within mBJ approximation. • All of the studied materials show isotropic behaviour. • All the compounds show direct band gap nature. • Bonding nature is mostly covalent among the studied compounds. • High absorption peaks and reflectivity ensures there utility in optoelectronic devices

  8. Enhanced B doping in CVD-grown GeSn:B using B δ-doping layers

    Science.gov (United States)

    Kohen, David; Vohra, Anurag; Loo, Roger; Vandervorst, Wilfried; Bhargava, Nupur; Margetis, Joe; Tolle, John

    2018-02-01

    Highly doped GeSn material is interesting for both electronic and optical applications. GeSn:B is a candidate for source-drain material in future Ge pMOS device because Sn adds compressive strain with respect to pure Ge, and therefore can boost the Ge channel performances. A high B concentration is required to obtain low contact resistivity between the source-drain material and the metal contact. To achieve high performance, it is therefore highly desirable to maximize both the Sn content and the B concentration. However, it has been shown than CVD-grown GeSn:B shows a trade-off between the Sn incorporation and the B concentration (increasing B doping reduces Sn incorporation). Furthermore, the highest B concentration of CVD-grown GeSn:B process reported in the literature has been limited to below 1 × 1020 cm-3. Here, we demonstrate a CVD process where B δ-doping layers are inserted in the GeSn layer. We studied the influence of the thickness between each δ-doping layers and the δ-doping layers process conditions on the crystalline quality and the doping density of the GeSn:B layers. For the same Sn content, the δ-doping process results in a 4-times higher B doping than the co-flow process. In addition, a B doping concentration of 2 × 1021 cm-3 with an active concentration of 5 × 1020 cm-3 is achieved.

  9. Structure and stability of M6N8 clusters (M = Si, Ge, Sn, Ti).

    Science.gov (United States)

    Davydova, Elena I; Timoshkin, Alexey Y; Frenking, Gernot

    2010-06-10

    The structures and stabilities of the M(6)N(8) clusters (M = Si, Ge, Sn, Ti) have been theoretically studied at DFT and ab initio levels of theory. Two new isomers have been considered: cage-like molecules and propeller-like molecules. It is shown that only for M = Si are both isomers true minima on the potential energy surface. The thermodynamics of the dissociation process (1/6)M(6)N(8) --> (1/3)M(3)N(4) is discussed. For each M(3)N(4) molecule, four structures with different multiplicity are considered. The thermodynamic analysis shows that independently of the multiplicity of M(3)N(4) nitrides all M(6)N(8) clusters are stable in the gas phase in a wide temperature range and could be potential intermediates in chemical vapor deposition of the nitride materials.

  10. Impact of thickness on the structural properties of high tin content GeSn layers

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.; Gassenq, A.; Milord, L.; Pauc, N.; Reboud, V.; Calvo, V.

    2017-09-01

    We have grown various thicknesses of GeSn layers in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition cluster tool using digermane (Ge2H6) and tin tetrachloride (SnCl4). The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio were kept constant, and incorporation of tin in the range of 10-15% was achieved with a reduction in temperature: 325 °C for 10% to 301 °C for 15% of Sn. The layers were grown on 2.5 μm thick Ge Strain Relaxed Buffers, themselves on Si(0 0 1) substrates. We used X-ray Diffraction, Atomic Force Microscopy, Raman spectroscopy and Scanning Electron Microscopy to measure the Sn concentration, the strain state, the surface roughness and thickness as a function of growth duration. A dramatic degradation of the film was seen when the Sn concentration and layer thickness were too high resulting in rough/milky surfaces and significant Sn segregation.

  11. Behavior of Sn atoms in GeSn thin films during thermal annealing: Ex-situ and in-situ observations

    Science.gov (United States)

    Takase, Ryohei; Ishimaru, Manabu; Uchida, Noriyuki; Maeda, Tatsuro; Sato, Kazuhisa; Lieten, Ruben R.; Locquet, Jean-Pierre

    2016-12-01

    Thermally induced crystallization processes for amorphous GeSn thin films with Sn concentrations beyond the solubility limit of the bulk crystal Ge-Sn binary system have been examined by X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, and (scanning) transmission electron microscopy. We paid special attention to the behavior of Sn before and after recrystallization. In the as-deposited specimens, Sn atoms were homogeneously distributed in an amorphous matrix. Prior to crystallization, an amorphous-to-amorphous phase transformation associated with the rearrangement of Sn atoms was observed during heat treatment; this transformation is reversible with respect to temperature. Remarkable recrystallization occurred at temperatures above 400 °C, and Sn atoms were ejected from the crystallized GeSn matrix. The segregation of Sn became more pronounced with increasing annealing temperature, and the ejected Sn existed as a liquid phase. It was found that the molten Sn remains as a supercooled liquid below the eutectic temperature of the Ge-Sn binary system during the cooling process, and finally, β-Sn precipitates were formed at ambient temperature.

  12. Optoelectronic and transport properties of LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) semiconductors

    Science.gov (United States)

    Shah, Syed Hatim; Khan, Shah Haider; Laref, A.; Murtaza, G.

    2018-02-01

    Half-Heusler compounds LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) are comprehensively investigated using state of the art full potential linearized augmented plane wave (FP-LAPW) method. Stable geometry of the compounds obtained through energy minimization procedure. Lattice constant increased while bulk modulus decreased in replacing the ions of size increasing from top to bottom of the periodic table. Band structure calculations show LiInGe and LiInSn as direct bandgap while LiAlSi, LiInGe and LiGaSn indirect bandgap semiconductors. Density of states demonstrates mixed s, p, d states of cations and anions in the valence and conduction bands. These compounds have mixed ionic and covalent bonding. Compounds show dominant optical response in the visible and low frequency ultraviolet energy region. The transport properties of the compounds are described in terms of Seebeck coefficient, electrical and thermal conductivities. The calculated figure of merit of LiAlSi is in good agreement with the recent experimental results.

  13. Determination of a new structure type in the Sc-Fe-Ge-Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Brgoch, Jakoah [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ran, Sheng [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Thimmaiah, Srinivasa [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Canfield, Paul C. [Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Miller, Gordon J., E-mail: gmiller@iastate.edu [Department of Chemistry, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer A new structure type with the composition Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)}. Black-Right-Pointing-Pointer Crystallizes in the space group Immm (No. 71, oI144). Black-Right-Pointing-Pointer Sample obtained using a reactive Sn flux. Black-Right-Pointing-Pointer Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc-Fe-Ge-Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc{sub 4}Fe{sub 5}Ge{sub 6.10(3)}Sn{sub 1.47(2)} and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) A, b = 13.467(3) A, and c = 30.003(6) A. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc-Ge as well as Fe-Sn and Fe-Ge contacts can be assigned to this new structure type.

  14. Extreme IR absorption in group IV-SiGeSn core-shell nanowires

    Science.gov (United States)

    Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama

    2018-06-01

    Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.

  15. Defect properties of Sn- and Ge-doped ZnTe: suitability for intermediate-band solar cells

    Science.gov (United States)

    Flores, Mauricio A.

    2018-01-01

    We investigate the electronic structure and defect properties of Sn- and Ge- doped ZnTe by first-principles calculations within the DFT+GW formalism. We find that ({{{Sn}}}{{Zn}}) and ({{{Ge}}}{{Zn}}) introduce isolated energy levels deep in the band gap of ZnTe, derived from Sn-5s and Ge-4s states, respectively. Moreover, the incorporation of Sn and Ge on the Zn site is favored in p-type ZnTe, in both Zn-rich and Te-rich environments. The optical absorption spectra obtained by solving the Bethe-Salpeter equation reveals that sub-bandgap absorptance is greatly enhanced due to the formation of the intermediate band. Our results suggest that Sn- and Ge-doped ZnTe would be a suitable material for the development of intermediate-band solar cells, which have the potential to achieve efficiencies beyond the single-junction limit.

  16. Phase transitions in two dimensions: The case of Sn adsorbed on Ge (111) surfaces

    DEFF Research Database (Denmark)

    Bunk, O.; Zeysing, J.H.; Falkenberg, G.

    1999-01-01

    . In the low-temperature phase one of the three Sn atoms per ( 3×3) unit cell is displaced outwards by 0.26±0.04Å relative to the other two. This displacement is accompanied by an increase in the first to second double-layer spacing in the Ge substrate. © 1999 The American Physical Society...

  17. Continuous, flexible, and high-strength superconducting Nb3Ge and Nb3Sn filaments

    International Nuclear Information System (INIS)

    Ahmad, I.; Heffernan, W.J.

    1976-01-01

    Fabrication of continuous, flexible, and high-strength (1600 MN/m 2 ) composite filaments of Nb 3 Ge (T/subc/ 18 0 K) and Nb 3 Sn is reported, involving chemical vapor deposition of these compounds on Nb-coated high-strength W--1% ThO 2 filaments

  18. Syntheses, structural variants and characterization of AInM′S4 (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds

    International Nuclear Information System (INIS)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru

    2016-01-01

    Ten AInM′S 4 (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS 4 (1-β), RbInGeS 4 (2), CsInGeS 4 (3-β), TlInGeS 4 (4-β), RbInSnS 4 (8-β) and CsInSnS 4 (9) compounds with three-dimensional BaGa 2 S 4 structure and CsInGeS 4 (3-α) and TlInGeS 4 (4-α) compounds with a layered TlInSiS 4 structure have tetrahedral [InM′S 4 ] − frameworks. On the other hand, LiInSnS 4 (5) with spinel structure and NaInSnS 4 (6), KInSnS 4 (7), RbInSnS 4 (8-α) and TlInSnS 4 (10) compounds with layered structure have octahedral [InM′S 4 ] − frameworks. NaInSnS 4 (6) and KInSnS 4 (7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS 4 and KInSnS 4 compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S 4 compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS 4 and KInSnS 4 compounds undergo facile topotactic ion-exchange at room temperature.

  19. Stable and metastable equilibria in PbSe + SnI2=SnSe + PbI2

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Demidova, E.D.

    2003-01-01

    T-x-y phase diagrams of the PbSe + SnI 2 =SnSe + PbI 2 mutual system (stable states) are plotted for the first time. It is shown that melt, solid solutions on the base of components of the mutual system and phase on the base of Sn 2 SeI 4 take part in phase equilibria. Transformations in the PbSe + SnI 2 =SnSe + PbI 2 mutual system leading to crystallization of metastable polytype modifications of lead iodides and metastable ternary compound forming in PbSe-PbI 2 system are investigated for the first time [ru

  20. Magnetic and transport behaviour in Pr3X(X=In,Sn,Ga,Ge,Ni,Co,Ru,Ir) systems

    International Nuclear Information System (INIS)

    Garde, C.S.; Ray, J.

    1998-01-01

    Magnetic and transport studies on Pr 3 X (X=In, Sn, Ga, Ge, Ni, Co, Ru, Ir) systems gave evidence for complex magnetic behaviour. All the systems, except X=Sn, exhibit ferromagnetic ordering. The X=Sn system exhibits antiferromagnetic ordering. For X=Ga and Sn, metamagnetic behaviour has been observed. Crystal field effects are found to play an important role in influencing magnetic behaviour. The strength of the crystal field term has also been estimated. (orig.)

  1. GeSn Based Near and Mid Infrared Heterostructure Detectors

    Science.gov (United States)

    2018-02-07

    prestigious journals. 15.  SUBJECT TERMS Plasmonic Enhancement, Metal Nanostructures, CMOS, Photodetectors, Germanium-Tin Diode, IR Focal Plane Array...following features: (1) ease of manufacture in a foundry via a simple epitaxial structure, (2) end- fire coupling into on-chip transparent Ge or Si

  2. Natural SnGeS3 from Radvanice near Trutnov (Czech Republic): its description, crystal structure refinement and solid solution with PbGeS3

    DEFF Research Database (Denmark)

    Sejkora, Jiri; Berlepsch, Peter; Makovicky, Emil

    2001-01-01

    geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure......geologi, SnGeS3-PbGeS3, Radvanice, Czech Republic, chemical analysis, XRD data, crystal structure...

  3. The effects of Sn addition on properties and structure in Ge-Se chalcogenide glass

    Science.gov (United States)

    Fayek, S. A.

    2005-01-01

    Far infrared transmission spectra of homogeneous compositions in the glassy alloy system Ge 1- xSn xSe 2.5 0⩽ x⩽0.6 have been observed in the spectral range 200-500 cm -1 at room temperature. The infrared absorption spectra show strong bands around 231, 284 and 311 cm -1 which were assigned to GeSe, SeSn, Se-Se. Tin atoms appear to substitute for the germanium atoms in the outrigger sites of Ge(Se 1/2) 4 tetrahedra up to 0.4. For x>0.5, the glasses show a new vibrational band of an isolated F 2 mode of the Ge-centered tetrahedra outside the clusters. A pronounced peculiarity (maximum or minimum) appeared at around the same value of the average coordination number at Z=2.65 for all composition dependence topological phase transition from two-dimensional (2D) layer type to three- dimensional (3D) cross-linked network structures in the glass. It is clear that the theoretical ν-values for Se-Se bond is less than the experimental one and that for Se-Ge is greater than the experimental one. This difference may be due to the existence of more close lying modes which tends to broaden the absorption bands. Quantitative justification of the absorption bands shows that theoretical wave numbers agree with its experimental values for Ge-Se stretching vibration bond.

  4. Alleviation of Fermi level pinning at metal/n-Ge interface with lattice-matched Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer on Ge

    Science.gov (United States)

    Suzuki, Akihiro; Nakatsuka, Osamu; Sakashita, Mitsuo; Zaima, Shigeaki

    2018-06-01

    The impact of a silicon germanium tin (Si x Ge1‑ x ‑ y Sn y ) ternary alloy interlayer on the Schottky barrier height (SBH) of metal/Ge contacts with various metal work functions has been investigated. Lattice matching at the Si x Ge1‑ x ‑ y Sn y /Ge heterointerface is a key factor for controlling Fermi level pinning (FLP) at the metal/Ge interface. The Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer having a small lattice mismatch with the Ge substrate can alleviate FLP at the metal/Ge interface significantly. A Si0.11Ge0.86Sn0.03 interlayer increases the slope parameter for the work function dependence of the SBH to 0.4. An ohmic behavior with an SBH below 0.15 eV can be obtained with Zr and Al/Si0.11Ge0.86Sn0.03/n-Ge contacts at room temperature.

  5. First-principles study of new series of quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Bouabça, A. [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Rozale, H., E-mail: hrozale@yahoo.fr [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Amar, A. [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria); Wang, X.T. [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400044 (China); Sayade, A. [UCCS, CNRS-UMR 8181, Université d’Artois, Faculté des Sciences Jean Perrin, Rue Jean Souvraz, SP 18, 62307 Lens Cedex (France); Chahed, A. [Condensed Matter and Sustainable Development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000 (Algeria)

    2016-12-01

    The structural, electronic, magnetic, and thermal properties of new quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb) were investigated using the full-potential linearized augmented plane wave (FPLAPW) within the generalized gradient approximation (GGA) and GGA plus modified Becke and Johnson as the exchange correlation. The results showed that all Heusler compounds were stable in Type (I) structure. The CsSrCZ (Z=Si, Ge, Sn) compounds had a nearly HM characteristic, and CsSrCZ (Z=P, As, Sb) compounds were true half-metallic (HM) ferromagnets. The strong spin polarization of p orbital for C, Si, Ge, Sn, P, As, and Sb atoms is found to be the origin of ferromagnetic. The half-metallicity is preserved up to a lattice contraction of 3.45%, 1.69%, 1.69%, 7.16%, 7.16%, and 11.2% for all six quaternary Heusler compounds. We also investigated the thermal effects using the quasi-harmonic Debye model. - Highlights: • Electronic, magnetic, and thermodynamic properties of CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb) are investigated. • Until now, there have been no reports theoretical and experimental studies on d{sup 0} half-metals with quaternary structures. • The strong spin polarization of p orbital for C, Si, Ge, Sn, P, As, and Sb atoms is found to be the origin of ferromagnetic. • The half-metallicity is preserved up to a lattice contraction.

  6. GeSn/Si Avalanche Photodetectors on Si substrates

    Science.gov (United States)

    2016-09-16

    National Academy Member Shui-Qing Yu 0.00 Hameed Naseem 0.00 0.00 2 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of...second step is a high temperature ( HT ) growth above 500-650 °C. The two-step (LT:HT) growth method adopted for the growth of Ge and the role of pressure...a) (b) Fig. 16. (a) Raman spectroscopy measurements of the two-step (LT:HT) at 400:600 °C and the single-step ( HT ) at 600 °C growth shows

  7. Molecular beam deposition of Al2O3 on p-Ge(001)/Ge0.95Sn0.05 heterostructure and impact of a Ge-cap interfacial layer

    International Nuclear Information System (INIS)

    Merckling, C.; Franquet, A.; Vincent, B.; Vandervorst, W.; Loo, R.; Caymax, M.; Sun, X.; Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Zaima, S.

    2011-01-01

    We investigated the molecular beam deposition of Al 2 O 3 on Ge 0.95 Sn 0.05 surface with and without an ultra thin Ge cap layer in between. We first studied the atomic configuration of both Ge 1-x Sn x and Ge/Ge 1-x Sn x surfaces after deoxidation by reflection high-energy electron diffraction and resulted, respectively, in a c(4x2) and (2x1) surface reconstructions. After in situ deposition of an Al 2 O 3 high-κ gate dielectric we evidenced using time-of-flight secondary ion mass spectroscopy analyses that Sn diffusion was at the origin of high leakage current densities in the Ge 1-x Sn x /Al 2 O 3 gate stack. This damage could be avoided by inserting a thin 5-nm-thick Ge cap between the oxide and the Ge 1-x Sn x layer. Finally, metal-oxide-semiconductor capacitors on the Ge capped sample showed well-behaved capacitance-voltage (C-V) characteristics with interface trap density (D it ) in the range of 10 12 eV -1 cm -2 in mid gap and higher close to the valence band edge.

  8. Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    D' Costa, Vijay Richard, E-mail: vdcosta@asu.edu; Wang, Wei; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

    2016-08-14

    We investigated the compositional dependence of the near-bandgap dielectric function and the E{sub 0} critical point in pseudomorphic Ge{sub 1-x}Sn{sub x} alloys grown on Ge (100) substrate by molecular beam epitaxy. The complex dielectric functions were obtained using spectroscopic ellipsometry from 0.5 to 4.5 eV at room temperature. Analogous to the E{sub 1} and E{sub 1}+Δ{sub 1} transitions, a model consisting of the compositional dependence of relaxed alloys along with the strain contribution predicted by the deformation potential theory fully accounts for the observed compositional dependence in pseudomorphic alloys.

  9. Characterization of crystallinity of Ge{sub 1−x}Sn{sub x} epitaxial layers grown using metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Inuzuka, Yuki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ike, Shinichi; Asano, Takanori [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8472 (Japan); Takeuchi, Wakana [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Nakatsuka, Osamu, E-mail: nakatuka@alice.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-03-01

    The epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer was examined using metal-organic chemical vapor deposition (MOCVD) with two types of Ge precursors; tetra-ethyl-germane (TEGe) and tertiary-butyl-germane (TBGe); and the Sn precursor tri-butyl-vinyl-tin (TBVSn). Though the growth of a Ge{sub 1−x}Sn{sub x} layer on a Ge(001) substrate by MOCVD has been reported, a high-Sn-content Ge{sub 1−x}Sn{sub x} layer and the exploration of MO material combinations for Ge{sub 1−x}Sn{sub x} growth have not been reported. Therefore, the epitaxial growth of a Ge{sub 1−x}Sn{sub x} layer on Ge(001) and Si(001) substrates was examined using these precursors. The Ge{sub 1−x}Sn{sub x} layers were pseudomorphically grown on a Ge(001) substrate, while the Ge{sub 1−x}Sn{sub x} layer with a high degree of strain relaxation was obtained on a Si(001) substrate. Additionally, it was found that the two Ge precursors have different growth temperature ranges, where the TBGe could realize a higher growth rate at a lower growth temperature than the TEGe. The Ge{sub 1−x}Sn{sub x} layers grown using a combination of TBGe and TBVSn exhibited a higher crystalline quality and a smoother surface compared with the Ge{sub 1−x}Sn{sub x} layer prepared by low-temperature molecular beam epitaxy. In this study, a Ge{sub 1−x}Sn{sub x} epitaxial layer with a Sn content as high as 5.1% on a Ge(001) substrate was achieved by MOCVD at 300 °C. - Highlights: • Tertiary-butyl-germane and tri-butyl-vinyl-tin are suitable for Ge{sub 1−x}Sn{sub x} MOCVD growth. • We achieved a Sn content of 5.1% in Ge{sub 1−x}Sn{sub x} epitaxial layer on Ge(001). • The Ge{sub 1−x}Sn{sub x} layers grown on Ge and Si by MOCVD have high crystalline quality.

  10. Tuning direct bandgap GeSn/Ge quantum dots' interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices

    Science.gov (United States)

    Baira, Mourad; Salem, Bassem; Madhar, Niyaz Ahamad; Ilahi, Bouraoui

    2018-05-01

    In this work, interband and intraband optical transitions from direct bandgap strained GeSn/Ge quantum dots are numerically tuned by evaluating the confined energies for heavy holes and electrons in D- and L-valley. The practically exploitable emission wavelength ranges for efficient use in light emission and sensing should fulfill specific criteria imposing the electrons confined states in D-valley to be sufficiently below those in L-valley. This study shows that GeSn quantum dots offer promising opportunity towards high efficient group IV based infrared optical devices operating in the mid-IR and far-IR wavelength regions.

  11. Structural, elastic, electronic, bonding, and optical properties of BeAZ{sub 2} (A = Si, Ge, Sn; Z = P, As) chalcopyrites

    Energy Technology Data Exchange (ETDEWEB)

    Fahad, Shah [Department of Physics, Hazara University Mansehra, KPK, Mansehra (Pakistan); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); Ecole Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Yousaf, Masood [Center for Multidimensional Carbon Materials, Institute for Basic Science, Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Omran, S.Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Mohammad, Saleh [Department of Physics, Hazara University Mansehra, KPK, Mansehra (Pakistan)

    2015-10-15

    A first principles density functional theory (DFT) technique is used to study the structural, chemical bonding, electronic and optical properties of BeAZ{sub 2} (A = Si, Ge, Sn; Z = P, As) chalcopyrite materials. The calculated parameters are in good agreement with the available experimental results. The lattice constants and the equilibrium volume increased as we moved from Si to Ge to Sn, whereas the c/a and internal parameters u decreased by shifting the cation from P to As. These compounds are elastically stable. An investigation of the band gap using the WC-GGA, EV-GGA, PBE-GGA and mBJ-metaGGA potentials suggested that BeSiP{sub 2} and BeSiAs{sub 2} are direct band gap compounds, whereas BeGeP{sub 2,} BeGeAs{sub 2,} BeSnP{sub 2,} BeSnAs{sub 2} are indirect band gap compounds. The energy band gaps decreased by changing B from Si to Sn and increased by changing the anion C from P to As. The bonding among the cations and anions is primarily ionic. In the optical properties, the real and imaginary parts of the dielectric functions, reflectivity and optical conductivity have been studied over a wide energy range. - Highlights: • The compounds are studied by FP-LAPW method within mBJ approximation. • All of the studied materials show isotropic behaviour. • All the compounds show direct band gap nature. • Bonding nature is mostly covalent among the studied compounds. • High absorption peaks and reflectivity ensures there utility in optoelectronic devices.

  12. Comprehensive thermodynamic description of the quasiternary system PbTe-GeTe-SnTe

    International Nuclear Information System (INIS)

    Yashina, Lada V.; Leute, Volkmar; Shtanov, Vladimir I.; Schmidtke, Heinrich M.; Neudachina, Vera S.

    2006-01-01

    The equilibrium phase diagram of the quasiternary system PbTe-GeTe-SnTe was studied experimentally in the ranges of spinodal demixing and (solid + liquid) equilibrium by means of X-ray diffraction (XRD), electron microprobe analysis (EMA) and differential thermal analysis (DTA). A model description of the phase diagram was done on the base of composition dependent interaction parameters, which were determined for the solid and the liquid phases. The interaction parameters for the quasibinary systems were recalculated in order to reach better correlation between all experimental data. It was shown that the quasiternary phase diagram can be principally described using the interaction parameters for the quasibinary subsystems, but an additional ternary interaction parameter has also to be considered. The local structure of the quasiternary solid solution is described by a four-particle cluster model. Due to the tendency of the solid solution to demix, the probability of the (GeGeGe)Te cluster was found to be higher and that of the (PbGeGe)Te cluster to be lower than it is expected for the purely statistical distribution of the clusters

  13. Raman scattering from Ge{sub 1-x}Sn{sub x} (x ≤ 0.14) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Navarro C, H.; Rodriguez, A. G.; Vidal, M. A. [Universidad Autonoma de San Luis Potosi, Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Alvaro Obregon No. 64, 78000 San Luis Potosi, S. L. P. (Mexico); Perez Ladron de G, H. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon No. 1144, Col. Paseos de la Montana, 47460 Lagos de Moreno, Jalisco (Mexico)

    2015-07-01

    Ge{sub 1-x}Sn{sub x} alloys with x concentration up to 0.14 were grown on Ge(001) and GaAs(001) substrates in a conventional R. F. Magnetron Sputtering system at low substrate temperatures. The structural characteristics of these alloys were studied for different Sn concentrations between 1 to 14% by high resolution X-ray diffraction, and Raman spectroscopy. Contrasting characteristics of the grown layers are observed if the Sn concentration is larger or smaller than 6% as revealed by X-ray diffraction and Raman spectroscopy. (Author)

  14. Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yiyin; Dou, Wei; Pham, Thach; Ghetmiri, Seyed Amir; Mosleh, Aboozar; Alher, Murtadha; Naseem, Hameed; Yu, Shui-Qing [Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Du, Wei, E-mail: weidu@uark.edu [Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas 71601 (United States); Al-Kabi, Sattar [Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Physics, Wasit University, Kut 52001 (Iraq); Margetis, Joe; Tolle, John [ASM, 3440 East University Drive, Phoenix, Arizona 85034 (United States); Sun, Greg; Soref, Richard [Department of Engineering, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States); Li, Baohua [Arktonics, LLC, 1339 South Pinnacle Drive, Fayetteville, Arkansas 72701 (United States); Mortazavi, Mansour [Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas 71601 (United States)

    2016-07-14

    Temperature-dependent characteristics of GeSn light-emitting diodes with Sn composition up to 9.2% have been systematically studied. Such diodes were based on Ge/GeSn/Ge double heterostructures (DHS) that were grown directly on a Si substrate via a chemical vapor deposition system. Both photoluminescence and electroluminescence spectra have been characterized at temperatures from 300 to 77 K. Based on our theoretical calculation, all GeSn alloys in this study are indirect bandgap materials. However, due to the small energy separation between direct and indirect bandgap, and the fact that radiative recombination rate greater than non-radiative, the emissions are mainly from the direct Γ-valley to valence band transitions. The electroluminescence emissions under current injection levels from 102 to 357 A/cm{sup 2} were investigated at 300 K. The monotonic increase of the integrated electroluminescence intensity was observed for each sample. Moreover, the electronic band structures of the DHS were discussed. Despite the indirect GeSn bandgap owing to the compressive strain, type-I band alignment was achieved with the barrier heights ranging from 11 to 47 meV.

  15. Phonon dynamics of the Sn/Ge(111)-(3 x 3) surface

    International Nuclear Information System (INIS)

    Farias, D.; Kaminski, W.; Lobo, J.; Ortega, J.; Hulpke, E.; Perez, R.; Flores, F.; Michel, E.G.

    2004-01-01

    We present a theoretical and experimental study on the phonon dynamics of the low-temperature Sn/Ge(111)-(3 x 3) structure. High-resolution helium atom scattering (HAS) data show that, besides the Rayleigh wave, there are three surface phonon branches with low dispersion related to the (3 x 3) surface phase. Their energies are approximately 6.5, 4, and 3meV at the Γ-bar point. In addition, we detect phonon peaks in the Q range 0.4-0.5A -1 at ∼2meV, which correspond to (3 x 3) folding of the Rayleigh wave. Ab initio DFT-GGA total energy calculations have been performed to determine the frequencies associated with the vertical displacements of the three Sn atoms in the unit cell. The values obtained are in good agreement with the experiment

  16. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  17. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.

    Science.gov (United States)

    Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin

    2018-05-30

    Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

  18. Study of Sn and Mg doping effects on TiO2/Ge stack structure by combinatorial synthesis

    Science.gov (United States)

    Nagata, Takahiro; Suzuki, Yoshihisa; Yamashita, Yoshiyuki; Ogura, Atsushi; Chikyow, Toyohiro

    2018-04-01

    The effects of Sn and Mg doping of a TiO2 film on a Ge substrate were investigated to improve leakage current properties and Ge diffusion into the TiO2 film. For systematic analysis, dopant-composition-spread TiO2 samples with dopant concentrations of up to 20.0 at. % were fabricated by RF sputtering and a combinatorial method. X-ray photoelectron spectroscopy revealed that the instability of Mg doping of TiO2 at dopant concentrations above 10.5 at. %. Both Sn and Mg dopants reduced Ge diffusion into TiO2. Sn doping enhanced the crystallization of the rutile phase, which is a high-dielectric-constant phase, although the Mg-doped TiO2 film indicated an amorphous structure. Sn-doping indicated systematic leakage current reduction with increasing dopant concentration. Doping at Sn concentrations higher than 16.8 at. % improved the leakage properties (˜10-7 A/cm2 at -3.0 V) and capacitance-voltage properties of metal-insulator-semiconductor (MIS) operation. The Sn doping of TiO2 may be useful for interface control and as a dielectric material for Ge-based MIS capacitors.

  19. Energies, wavelengths, and transition probabilities for Ge-like Kr, Mo, Sn, and Xe ions

    International Nuclear Information System (INIS)

    Nagy, O.; El Sayed, Fatma

    2012-01-01

    Energy levels, wavelengths, transition probabilities, and oscillator strengths have been calculated for Ge-like Kr, Mo, Sn, and Xe ions among the fine-structure levels of terms belonging to the ([Ar] 3d 10 )4s 2 4p 2 , ([Ar] 3d 10 )4s 4p 3 , ([Ar] 3d 10 )4s 2 4p 4d, and ([Ar] 3d 10 )4p 4 configurations. The fully relativistic multiconfiguration Dirac–Fock method, taking both correlations within the n=4 complex and the quantum electrodynamic effects into account, have been used in the calculations. The results are compared with the available experimental and other theoretical results.

  20. Above-bandgap optical properties of biaxially strained GeSn alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Richard D’Costa, Vijay, E-mail: elevrd@nus.edu.sg; Wang, Wei; Zhou, Qian; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Soon Tok, Eng [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2014-01-13

    The complex dielectric function of biaxially strained Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.17) alloys grown on Ge (100) has been determined by spectroscopic ellipsometry from 1.2 to 4.7 eV. The effect of substitutional Sn incorporation and the epitaxial strain on the energy transitions E{sub 1}, E{sub 1} + Δ{sub 1}, E{sub 0}′, and E{sub 2} of GeSn alloys is investigated. Our results indicate that the strained GeSn alloys show Ge-like electronic bandstructure with all the transitions shifted downward due to the alloying of Sn. The strain dependence of E{sub 1} and E{sub 1} + Δ{sub 1} transitions is explained using the deformation potential theory, and values of −5.4 ± 0.4 eV and 3.8 ± 0.5 eV are obtained for the hydrostatic and shear deformation potentials, respectively.

  1. Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge{sub 1−x}Sn{sub x} layer on Ge(0 0 1) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Lingzi; Zhou, Qian [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Pan, Jisheng; Zhang, Zheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore); Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-12-01

    Highlights: • Ge{sub 0.915}Sn{sub 0.085} was grown on Ge (0 0 1) by molecular beam epitaxy (MBE). • The impact of annealing on surface morphology and Sn composition was studied. • Sn is found to preferentially segregate towards the surface at 200 °C. • A Sn-rich layer would form on the Ge{sub 1−x}Sn{sub x} surface after annealing at 300 °C. • Sn desorption and formation of Sn-rich islands were found when T > 300 °C. - Abstract: Annealing of strained Ge{sub 1−x}Sn{sub x} epitaxial layers grown on Ge(0 0 1) substrate results in two distinctive regimes marked by changes in composition and morphology. Annealing at low temperatures (200–300 °C or Regime-I) leads to surface enrichment of Sn due to Sn segregation, as indicated by X-ray photoelectron spectroscopy (XPS) results, while the bulk Sn composition (from X-ray diffraction (XRD)) and the surface morphology (from atomic force microscopy (AFM)) do not show discernible changes as compared to the as-grown sample. Annealing at temperatures ranging from 300 °C to 500 °C (Regime-II) leads to a decrease in the surface Sn composition. While the Ge{sub 1−x}Sn{sub x} layer remains fully strained, a reduction in the bulk Sn composition is observed when the annealing temperature reaches 500 °C. At this stage, surface roughening also occurs with formation of 3D islands. The island size increases as the annealing temperature is raised to 600 °C. The decrease in the Sn composition at the surface and in the bulk in Regime-II is attributed to additional thermally activated kinetic processes associated with Sn desorption and formation of Sn-rich 3D islands on the surface.

  2. N-MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility.

    Science.gov (United States)

    Fang, Yung-Chin; Chen, Kuen-Yi; Hsieh, Ching-Heng; Su, Chang-Chia; Wu, Yung-Hsien

    2015-12-09

    Solid phase epitaxially grown GeSn was employed as the platform to assess the eligibility of direct O2 plasma treatment on GeSn surface for passivation of GeSn N-MOSFETs. It has been confirmed that O2 plasma treatment forms a GeSnO(x) film on the surface and the GeSnO(x) topped by in situ Al2O3 constitutes the gate stack of GeSn MOS devices. The capability of the surface passivation was evidenced by the low interface trap density (D(it)) of 1.62 × 10(11) cm(-2) eV(-1), which is primarily due to the formation of Ge-O and Sn-O bonds at the surface by high density/reactivity oxygen radicals that effectively suppress dangling bonds and decrease gap states. The good D(it) not only makes tiny frequency dispersion in the characterization of GeSn MOS capacitors, but results in GeSn N-MOSFETs with outstanding peak electron mobility as high as 518 cm(2)/(V s) which outperforms other devices reported in the literature due to reduced undesirable carrier scattering. In addition, the GeSn N-MOSFETs also exhibit promising characteristics in terms of acceptable subthreshold swing of 156 mV/dec and relatively large I(ON)/I(OFF) ratio more than 4 orders. Moreover, the robust reliability in terms small V(t) variation against high field stress attests the feasibility of using the O2 plasma-treated passivation to advanced GeSn technology.

  3. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    International Nuclear Information System (INIS)

    Mitrovic, B.; Schachinger, E.; Carbotte, J.P.

    1984-01-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon--coupling spectra α 2 F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α 2 F = CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ 0 /k/sub B/T/sub c/approx. =4.6, ΔC/γT/sub c/approx. =2.5--2.6, -T/sub c/[dH/sub c/(T)/dT]c/ H/sub c/(0)approx. =2.1, γ[T/sub c//H/sub c/(0)] 2 approx. =0.134, and positive D(t)'s with the maximum value around 0.02. For Nb 3 Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γapprox. =52 mJ/mol K 2 ). The same applies to V 3 Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔC/γT/sub c/, -T/sub c/[dH/sub c/(T)/dT]c/H/sub c/(0), γ[T/sub c//H/sub c/(0)] 2 , and experimental values for Nb 3 Al and Nb 3 Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α 2 F

  4. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    Science.gov (United States)

    Mitrović, B.; Schachinger, E.; Carbotte, J. P.

    1984-06-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon-coupling spectra α2F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α2F=CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ0κBTc≅4.6, ΔCγTc≅2.5-2.6,-Tc[dHc(T)dT]TcHc(0)≅2.1, γ[TcHc(0)]2≅0.134, and positive D(t)'s with the maximum value around 0.02. For Nb3Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γ≅52 mJ/mol K2). The same applies to V3Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔCγTc, - Tc[dHc(T)dT]TcHc(0), γ[TcHc(0)]2, and experimental values for Nb3Al and Nb3Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α2F.

  5. Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Li, H.; Chang, C.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2016-01-01

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same order of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.

  6. Critical thickness for strain relaxation of Ge{sub 1−x}Sn{sub x} (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhou, Qian; Dong, Yuan; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-06-08

    We investigated the critical thickness (h{sub c}) for plastic relaxation of Ge{sub 1−x}Sn{sub x} grown by molecular beam epitaxy. Ge{sub 1−x}Sn{sub x} films with various Sn mole fraction x (x ≤ 0.17) and different thicknesses were grown on Ge(001). The strain relaxation of Ge{sub 1−x}Sn{sub x} films and the h{sub c} were investigated by high-resolution x-ray diffraction and reciprocal space mapping. It demonstrates that the measured h{sub c} values of Ge{sub 1−x}Sn{sub x} layers are as much as an order of magnitude larger than that predicted by the Matthews and Blakeslee (M-B) model. The People and Bean (P-B) model was also used to predict the h{sub c} values in Ge{sub 1−x}Sn{sub x}/Ge system. The measured h{sub c} values for various Sn content follow the trend, but slightly larger than that predicted by the P-B model.

  7. Synthesis of compositionally controllable Cu{sub 2}(Sn{sub 1−x}Ge{sub x})S{sub 3} nanocrystals with tunable band gaps

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qingshuang, E-mail: lqs671@163.com [Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry (China)

    2016-06-15

    In this work, we show that compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals can be successfully synthesized by the hot-injection method through careful tuning the Ge/(Sn+Ge) precursor ratio. The band gaps of the resultant nanocrystals are demonstrated to be linearly tuned from 1.45 to 2.33 eV by adjusting the composition parameter x of the Ge/(Sn+Ge) ratio from 0.0 to 1.0. The crystalline structures of the resultant NCs have been studied by the X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), select area electron diffraction (SAED), and Raman spectroscopy. A ligand exchange procedure is further performed to replace the native ligands on the surface of the NCs with sulfur ions. The photoresponsive behavior indicates the potential use of as-prepared Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals in solar energy conversion systems. The synthesis of compositionally controlled Cu{sub 2}(Sn{sub 1–x}Ge{sub x})S{sub 3} nanocrystals reported herein provides a way for probing the effect of Ge inclusion in the Cu-Sn-S system thin films.

  8. First principles study of structural, electronic and magnetic properties of SnGe n (0, ±1) ( n = 1–17) clusters

    Science.gov (United States)

    Djaadi, Soumaia; Eddine Aiadi, Kamal; Mahtout, Sofiane

    2018-04-01

    The structures, relative stability and magnetic properties of pure Ge n +1, neutral cationic and anionic SnGe n (n = 1–17) clusters have been investigated by using the first principles density functional theory implemented in SIESTA packages. We find that with the increasing of cluster size, the Ge n +1 and SnGe n (0, ±1) clusters tend to adopt compact structures. It has been also found that the Sn atom occupied a peripheral position for SnGe n clusters when n 12. The structural and electronic properties such as optimized geometries, fragmentation energy, binding energy per atom, HOMO–LUMO gaps and second-order differences in energy of the pure Ge n +1 and SnGe n clusters in their ground state are calculated and analyzed. All isomers of neutral SnGe n clusters are generally nonmagnetic except for n = 1 and 4, where the total spin magnetic moments is 2μ b. The total (DOS) and partial density of states of these clusters have been calculated to understand the origin of peculiar magnetic properties. The cluster size dependence of vertical ionization potentials, vertical electronic affinities, chemical hardness, adiabatic electron affinities and adiabatic ionization potentials have been calculated and discussed.

  9. All-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayers fabricated by Sn-induced low-temperature epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, M.; Ikawa, M.; Arima, K.; Yamada, S.; Kanashima, T.; Hamaya, K., E-mail: hamaya@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531 (Japan)

    2016-01-28

    We demonstrate low-temperature growth of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures by developing Sn-induced surfactant-mediated molecular beam epitaxy (SMBE) of Ge on Co{sub 2}FeSi. Despite the growth of a semiconductor on a metal, we verify that the inserted Sn monolayers between Ge and Co{sub 2}FeSi enable to promote the 2D epitaxial growth of Ge up to 5 nm at a T{sub G} of 250 °C. An understanding of the mechanism of the Sn-induced SMBE leads to the achievement of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures with spin-valve-like magnetization reversals. This study will open a way for vertical-type and high-performance Ge-based spintronics devices.

  10. The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb

    Directory of Open Access Journals (Sweden)

    E. Vessally

    2009-08-01

    Full Text Available Total energy gaps, ∆Et–s, enthalpy gaps, ∆Ht–s, and Gibbs free energy gaps, ∆Gt–s, between singlet (s and triplet (t states were calculated for three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn and Pb at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆Gt–s, for C2H2M (M = C, Si, Ge, Sn and Pb are found to be increased in the order: C2H2Si > C2H2C > C2H2Ge > C2H2Sn > C2H2Pb. The ∆Gt–s of C4H4M are found to be increased in the order: C4H4Pb > C4H4Sn > C4H4Ge > C4H4Si > C4H4C. Also, the ∆Gt–s of C6H6M are determined in the order: C6H6Pb > C6H6Ge ≥ C6H6Sn > C6H6Si > C6H6C. The most stable conformers of C2H2M, C4H4M and C6H6M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  11. Coordination Chemistry of [E(Idipp)]2+ Ligands (E = Ge, Sn): Metal Germylidyne [Cp*(CO)2W≡Ge(Idipp)]+ and Metallotetrylene [Cp*(CO)3W–E(Idipp)]+ Cations

    KAUST Repository

    Lebedev, Yury

    2017-04-12

    The synthesis and full characterization of the NHC-stabilized tungstenochlorostannylene [Cp*(CO)3W–SnCl(Idipp)] (1Sn), the NHC-stabilized chlorogermylidyne complex [Cp*(CO)2W═GeCl(Idipp)] (2), the tungsten germylidyne complex salt [Cp*(CO)2W≡Ge(Idipp)][B(C6H3-3,5-(CF3)2)4] (3), and the cationic metallostannylene [Cp*(CO)3W–Sn(Idipp)][Al(OC(CF3)3)4] (4Sn) are reported (Idipp = 2,3-dihydro-1,3-bis(2,6-diisopropylphenyl)-1H-imidazol-2-ylidene, Cp* = η5-C5Me5). Metathetical exchange of SnCl2(Idipp) with Li[Cp*W(CO)3] afforded selectively 1Sn. Photolytic decarbonylation of the Ge analogue [Cp*(CO)3W–GeCl(Idipp)] (1Ge) afforded the NHC-stabilized chlorogermylidyne complex (2), featuring a trigonal-planar coordinated germanium center and a W–Ge double bond (W–Ge 2.3496(5) Å). Chloride abstraction from 2 with Na[B(C6H3-3,5-(CF3)2)4] yielded the germylidyne complex salt 3, which contains an almost linear W–Ge–C1 linkage (angle at Ge = 168.7(1)°) and a W–Ge triple bond (2.2813(4) Å). Chloride elimination from 1Ge afforded the tungstenogermylene salt [Cp*(CO)3W–Ge(Idipp)][B(C6H3-3,5-(CF3)2)4] (4Ge), which in contrast to 1Ge could not be decarbonylated to form 3 despite the less strongly bound carbonyl ligands. The tin compounds 1Sn and 4Sn did not afford products bearing multiple W–Sn bonds. Treatment of 4Ge with Me2NC≡CNMe2 yielded unexpectedly the neutral germyl complex 5 containing a pendant 1-germabicyclo-[3,2,0]-hepta-2,5-diene ligand instead of the anticipated [2 + 1]-cycloaddition product at the Ge-center.

  12. Layered Halide Double Perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for Photovoltaic Applications.

    Science.gov (United States)

    Tang, Gang; Xiao, Zewen; Hosono, Hideo; Kamiya, Toshio; Fang, Daining; Hong, Jiawang

    2018-01-04

    Over the past few years, the development of lead-free and stable perovskite absorbers with excellent performance has attracted extensive attention. Much effort has been devoted to screening and synthesizing this type of solar cell absorbers. Here, we present a general design strategy for designing the layered halide double perovskites Cs 3+n M(II) n Sb 2 X 9+3n (M = Sn, Ge) with desired photovoltaic-relevant properties by inserting [MX 6 ] octahedral layers, based on the principles of increased electronic dimensionality. Compared to Cs 3 Sb 2 I 9 , more suitable band gaps, smaller carrier effective masses, larger dielectric constants, lower exciton binding energies, and higher optical absorption can be achieved by inserting variable [SnI 6 ] or [GeI 6 ] octahedral layers into the [Sb 2 I 9 ] bilayers. Moreover, our results show that adjusting the thickness of inserted octahedral layers is an effective approach to tune the band gaps and carrier effective masses in a large range. Our work provides useful guidance for designing the promising layered antimony halide double perovskite absorbers for photovoltaic applications.

  13. Computational assessment of promising mid-infrared nonlinear optical materials Mg–IV–V2 (IV = Si, Ge, Sn; V = P, As): a first-principles study

    Science.gov (United States)

    Xiao, Jianping; Zhu, Shifu; Zhao, Beijun; Chen, Baojun; Liu, Hui; He, Zhiyu

    2018-03-01

    The mid-infrared (mid-IR) nonlinear optical (NLO) capabilities of Mg–IV–V2 (IV = Si, Ge, Sn; V = P, As) are systematically assessed by the first-principles calculation. The results show that the compounds in this group except MgSiP2 and MgSnP2 have moderate birefringence values to fulfill the phase-matching conditions. In particular, MgGeP2 and MgSiAs2 possess relatively large band gaps and almost three to four times larger static SHG coefficients than the benchmark material AgGaSe2, exhibiting good potential for mid-IR NLO application. According to the detailed analysis of the electronic structures, it is found that the dominant SHG contributions are from the orbitals of the asymmetry anionic unit [IV–V2]2‑. Moreover, the further evaluation reveals that MgSiAs2, MgGeAs2, MgSnP2 and MgSnAs2 are not thermodynamically stable and the new synthesis strategy (i.e. synthesis under non-equilibrium conditions) should be considered.

  14. The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)

    Science.gov (United States)

    Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.

    2018-04-01

    The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.

  15. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  16. Electromodulation spectroscopy of direct optical transitions in Ge{sub 1−x}Sn{sub x} layers under hydrostatic pressure and built-in strain

    Energy Technology Data Exchange (ETDEWEB)

    Dybała, F.; Żelazna, K.; Maczko, H.; Gladysiewicz, M.; Misiewicz, J.; Kudrawiec, R., E-mail: robert.kudrawiec@pwr.wroc.pl [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław (Poland); Lin, H.; Chen, R.; Shang, C.; Huo, Y.; Kamins, T. I.; Harris, J. S. [Solid State and Photonics Laboratory, Stanford University, Stanford, California 94305-4075 (United States)

    2016-06-07

    Unstrained Ge{sub 1−x}Sn{sub x} layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge{sub 0.97}Sn{sub 0.03} layers with built-in compressive (ε = −0.5%) and tensile (ε = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge{sub 1−x}Sn{sub x} layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, which is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge{sub 1−x}Sn{sub x} alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge{sub 0.97}Sn{sub 0.03} with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge{sub 1−x}Sn{sub x} layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.

  17. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    Science.gov (United States)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  18. Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine.

    Science.gov (United States)

    Lee, Seojun; Kang, Dong-Won

    2017-07-12

    Compositional engineering of recently arising methylammonium (MA) lead (Pb) halide based perovskites is an essential approach for finding better perovskite compositions to resolve still remaining issues of toxic Pb, long-term instability, etc. In this work, we carried out crystallographic, morphological, optical, and photovoltaic characterization of compositional MASn 0.6 Pb 0.4 I 3-x Br x by gradually introducing bromine (Br) into parental Pb-Sn binary perovskite (MASn 0.6 Pb 0.4 I 3 ) to elucidate its function in Sn-rich (Sn:Pb = 6:4) perovskites. We found significant advances in crystallinity and dense coverage of the perovskite films by inserting the Br into Sn-rich perovskite lattice. Furthermore, light-intensity-dependent open circuit voltage (V oc ) measurement revealed much suppressed trap-assisted recombination for a proper Br-added (x = 0.4) device. These contributed to attaining the unprecedented power conversion efficiency of 12.1% and V oc of 0.78 V, which are, to the best of our knowledge, the highest performance in the Sn-rich (≥60%) perovskite solar cells reported so far. In addition, impressive enhancement of photocurrent-output stability and little hysteresis were found, which paves the way for the development of environmentally benign (Pb reduction), stable monolithic tandem cells using the developed low band gap (1.24-1.26 eV) MASn 0.6 Pb 0.4 I 3-x Br x with suggested composition (x = 0.2-0.4).

  19. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system

    International Nuclear Information System (INIS)

    Li, Xiaowei; Wang, Aiying; Lee, Kwang-Ryeol

    2012-01-01

    The interaction between impurity atom (Si, Ge, and Sn) and carbon atom in diamond-like carbon (DLC) system was investigated by the first principles simulation method based on the density functional theory. The tetrahedral configuration was selected as the calculation model for simplicity. When the bond angle varied in a range of 90°–130° from the equivalent state of 109.471°, the distortion energy and the electronic structures including charge density of the highest occupied molecular orbital (HOMO) and partial density of state (PDOS) in the different systems were calculated. The results showed that the addition of Si, Ge and Sn atom into amorphous carbon matrix significantly decreased the distortion energy of the system as the bond angles deviated from the equilibrium one. Further studies of the HOMO and PDOS indicated that the weak covalent bond between Si(Ge, Sn) and C atoms was formed with the decreased strength and directionality, which were influenced by the electronegative difference. These results implied that the electron transfer behavior at the junction of carbon nano-devices could be tailored by the impurity element, and the compressive stress in DLC films could be reduced by the incorporation of Si, Ge and Sn because of the formation of weaker covalent bonds. - Highlights: ►Distortion energy after bond angle distortion was decreased comparing with C-C unit. ►The weak covalent bond was formed between impurity atoms and corner carbon atoms. ►Observed electron transfer behavior affected the strength and directionality of bond. ►Reduction of strength and directionality of bond contributed to small energy change.

  20. Coordination Chemistry of [E(Idipp)]2+ Ligands (E = Ge, Sn): Metal Germylidyne [Cp*(CO)2W≡Ge(Idipp)]+ and Metallotetrylene [Cp*(CO)3W–E(Idipp)]+ Cations

    KAUST Repository

    Lebedev, Yury; Das, Ujjal; Schnakenburg, Gregor; Filippou, Alexander C.

    2017-01-01

    The synthesis and full characterization of the NHC-stabilized tungstenochlorostannylene [Cp*(CO)3W–SnCl(Idipp)] (1Sn), the NHC-stabilized chlorogermylidyne complex [Cp*(CO)2W═GeCl(Idipp)] (2), the tungsten germylidyne complex salt [Cp*(CO)2W

  1. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.

    Science.gov (United States)

    Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying

    2014-12-21

    The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

  2. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.

    Science.gov (United States)

    Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun

    2013-09-01

    Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection.

    Science.gov (United States)

    Pham, Thach; Du, Wei; Tran, Huong; Margetis, Joe; Tolle, John; Sun, Greg; Soref, Richard A; Naseem, Hameed A; Li, Baohua; Yu, Shui-Qing

    2016-03-07

    Normal-incidence Ge 1-x Sn x photodiode detectors with Sn compositions of 7 and 10% have been demonstrated. Such detectors were based on Ge/Ge 1-x Sn x /Ge double heterostructures grown directly on a Si substrate via a chemical vapor deposition system. A temperature-dependence study of these detectors was conducted using both electrical and optical characterizations from 300 to 77 K. Spectral response up to 2.6 µm was achieved for a 10% Sn device at room temperature. The peak responsivity and specific detectivity (D*) were measured to be 0.3 A/W and 4 × 10 9 cmHz 1/2 W -1 at 1.55 µm, respectively. The spectral D* of a 7% Sn device at 77 K was only one order-of-magnitude lower than that of an extended-InGaAs photodiode operating in the same wavelength range, indicating the promising future of GeSn-based photodetectors.

  4. Compositional dependence of the band-gap of Ge{sub 1−x−y}Si{sub x}Sn{sub y} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wendav, Torsten, E-mail: wendav@physik.hu-berlin.de [AG Theoretische Optik & Photonik, Humboldt Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Fischer, Inga A.; Oehme, Michael; Schulze, Jörg [Institut für Halbleitertechnik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart (Germany); Montanari, Michele; Zoellner, Marvin Hartwig; Klesse, Wolfgang [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Capellini, Giovanni [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma (Italy); Driesch, Nils von den; Buca, Dan [Peter Grünberg Institute 9 (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich, 52428 Jülich (Germany); Busch, Kurt [AG Theoretische Optik & Photonik, Humboldt Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Max-Born-Institut, Max-Born-Str. 2 A, 12489 Berlin (Germany)

    2016-06-13

    The group-IV semiconductor alloy Ge{sub 1−x−y}Si{sub x}Sn{sub y} has recently attracted great interest due to its prospective potential for use in optoelectronics, electronics, and photovoltaics. Here, we investigate molecular beam epitaxy grown Ge{sub 1−x−y}Si{sub x}Sn{sub y} alloys lattice-matched to Ge with large Si and Sn concentrations of up to 42% and 10%, respectively. The samples were characterized in detail by Rutherford backscattering/channeling spectroscopy for composition and crystal quality, x-ray diffraction for strain determination, and photoluminescence spectroscopy for the assessment of band-gap energies. Moreover, the experimentally extracted material parameters were used to determine the SiSn bowing and to make predictions about the optical transition energy.

  5. 73Ge, 119Sn and 207Pb: general cooperative effects of single atom ligands on the NMR signals observed in tetrahedral [MXnY4-n] (M = Ge, Sn, Pb; 1 ≤ n ≤ 4; X, Y = Cl, Br, I) coordination compounds of heavier XIV group elements.

    Science.gov (United States)

    Benedetti, M; De Castro, F; Fanizzi, F P

    2017-02-28

    An inverse linear relationship between 73 Ge, 119 Sn and 207 Pb NMR chemical shifts and the overall sum of ionic radii of coordinated halido ligands has been discovered in tetrahedral [MX n Y 4-n ] (M = Ge, Sn, Pb; 1 ≤ n ≤ 4; X, Y = Cl, Br, I) coordination compounds. This finding is consistent with a previously reported correlation found in octahedral, pentacoordinate and square planar platinum complexes. The effect of the coordinated halido ligands acting on the metal as shielding conducting rings is therefore confirmed also by 73 Ge, 119 Sn and 207 Pb NMR spectroscopy.

  6. Effect of impurities in niobium on the growth of superconducting Nb/sub 3//Sn. [Al, Cu, Ge, Si, Sn, Zr impurities

    Energy Technology Data Exchange (ETDEWEB)

    Sekizawa, T

    1974-01-01

    In order to examine the possibility of reducing the heat treatment temperature in the manufacturing process of the superconducting intermetallic compounds wire or ribbon by the metallurgical bond method, tin cored specimens of niobium including a small amount of impurity (Al, Cu, Ge, Si, Sn and Zr) have been prepared, and the critical currents measured as a function of the heat treatment temperature and time. Experimental results are summarized as follows. (1) The effect of the impurity added into niobium is to stabilize the dislocation network cell structure in niobium, caused by the cold working, up to the forming temperature of Nb/sub 3/Sn. The stabilized dislocation network structure is considered to serve as diffusion pipes of the tin atom. As this diffusion (microscopic) is predominant over bulk diffusion (macroscopic), the cored specimen made of niobium including impurities has lower forming temperature of Nb/sub 3/Sn compared with the specimen made of pure niobium. (2) The critical current vs. heat treatment temperature characteristics show that the critical current peaks at 900/sup 0/C in the case of niobium including Si, while at 950/sup 0/C in the case of pure niobium. 6 references.

  7. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  8. New members of the A2 M ‧ M2″ structure family (A=Ca, Sr, Yb, La; M ‧ = In , Sn , Pb; M ″ = Si , Ge)

    Science.gov (United States)

    Jehle, Michael; Dürr, Ines; Fink, Saskia; Lang, Britta; Langenmaier, Michael; Steckhan, Julia; Röhr, Caroline

    2015-01-01

    The new mixed tetrelides Sr2PbGe2 and Yb2SnGe2, several mixed Ca/Sr (AII) germanides A2II (Sn, Pb)Ge2 and two polymorphs of La2 InSi2 represent new members of the general structure family of ternary alkaline-earth/lanthanoid main group silicides/germanides A2 M ‧ M2″ (M ‧ = In , Sn , Pb ; M ″ = Si , Ge). All compounds were synthesized from melts of the elements and their crystal structures have been determined by means of single crystal X-ray diffraction. Sr2PbGe2 (Cmmm, a=402.36(11), b=1542.3(4), c=463.27(10) pm) crystallizes with the Mn2AlB2 -type structure. In exhibiting infinite planar Ge zig-zag chains, it represents one border of the compound series. The other borderline case, where only [Ge2 ] dumbbells are left as Ge building units, is represented by the Ca/Yb tin germanides Ca2SnGe2 and Yb2SnGe2 (Mo2FeB2 -type; P4/mbm, a=748.58(13)/740.27(7), c=445.59(8)/435.26(5) pm). In between these two border structures compounds with variable Si/Ge chain lengths could be obtained by varying the averaged size of the AII cations: Ca0.45Sr1.55PbGe2 (new structure type; Pbam, a=791.64(5), b=2311.2(2), c=458.53(3) pm) contains planar six-membered chain segments [Ge6 ]. Tetrameric pieces [Ge4 ] are the conspicuous structure elements in Ca1.16Sr0.84SnGe2 and La2 InSi2 (La2InNi2 -type; Pbam, a=781.01(2)/762.01(13), b=1477.95(3)/1494.38(6), c=457.004(9)/442.1(3) pm). The tetragonal form of 'La2 In Si2‧ (exact composition: La2In1.07Si1.93, P4/mbm, a=1309.11(12), c=443.32(4) pm) also crystallizes in a new structure type, containing only [Si3 ] trimers as cutouts of the planar chains. In all structures the Si/Ge zig-zag chains/chain segments are connected by In/Sn/Pb atoms to form planar M layers, which are separated by pure A layers. Band structure calculations within the FP-LAPW DFT approach together with the Zintl formalism, extended by the presence of hypervalent bonding of the heavier M ‧ elements, give insight into the chemical bonding of this series of p

  9. Synthesis, structure, and luminescence properties of In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghoon; An, Soyeon; Jin, Changhyun; Lee, Chongmu [Inha University, Incheon (Korea, Republic of)

    2012-09-15

    In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires were synthesized by using a two-step process: thermal evaporation of a mixture of In and Ge powders and atomic layer deposition of SnO{sub 2}. The core-shell nanowires were characterized using by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. The In{sub 2}Ge{sub 2}O{sub 7} cores in these core-shell nanowires varied from 50 to 100 nanometers in diameter and up to a few hundreds of micrometers in length, and the SnO{sub 2} shell layer thickness ranged from 5 to 15 nm. Photoluminescence measurements showed that the In{sub 2}Ge{sub 2}O{sub 7} nanowires had a weak broad violet emission band centered at approximately 405 nm. In contrast, the In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires had a taller blue-violet emission peak at approximately 440 nm. The optimum shell layer thickness of the In{sub 2}Ge{sub 2}O{sub 7}/SnO{sub 2} core-shell nanowires for the highest PL intensity was found to be 15 nm. Our results also showed that the intensity of the blue-violet emission was increased further by thermal annealing in an Ar atmosphere. The origins of the change on and the enhancement of the luminescence of the In{sub 2}Ge{sub 2}O{sub 7} nanowires by SnO{sub 2} coating and annealing are discussed.

  10. Development of nanotopography during SIMS characterization of thin films of Ge{sub 1−x}Sn{sub x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, M., E-mail: secchi@fbk.eu [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy); Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento (Italy); Demenev, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy); Department of Molecular Science and Nanosystems, Ca’Foscari University, Dorsoduro 2137, 30123 Venice (Italy); Colaux, J.L. [Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, Surrey, England (United Kingdom); Giubertoni, D.; Dell’Anna, R.; Iacob, E. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy); Gwilliam, R.M.; Jeynes, C. [Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, Surrey, England (United Kingdom); Bersani, M. [Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN (Italy)

    2015-11-30

    Highlights: • SIMS protocol to measure high Sn concentration in GeSn alloy is proposed. • Cs{sup +} as incidence beam, collecting positive ions MCs{sup +} was the chosen configuration. • Applied sputtering conditions induced an early formation of surface topography. • Unusual dot and ripple evolution at oblique incidence angle on Ge were studied. • Two different mechanisms seem to be involved: ripple formation and nanovoids in Ge. - Abstract: This work presents a study of application of secondary ion mass spectrometry (SIMS) to measure tin concentration in Ge{sub 1−x}Sn{sub x} alloy with x higher than solid solubility ∼1%, i.e. well above the diluted regime where SIMS measurements usually provide the most reliable quantitative results. SIMS analysis was performed on Sn{sup +} ion implanted Ge films, epitaxially deposited on Si, and on chemical vapor deposition deposited Ge{sub 0.93}Sn{sub 0.07} alloy. Three SIMS conditions were investigated, varying primary beam ion species and secondary ion polarity keeping 1 keV impact energy. Best depth profile accuracy, best agreement with the fluences measured by Rutherford backscattering spectrometry, good detection limit (∼1 × 10{sup 17} at/cm{sup 3}) and depth resolution (∼2 nm/decade) are achieved in Cs{sup +}/SnCs{sup +} configuration. However, applied sputtering conditions (Cs{sup +} 1 keV, 64° incidence vs. normal) induced an early formation of surface topography on the crater bottom resulting in significant variation of sputtering yield. Atomic force microscopy shows a peculiar topography developed on Ge: for oblique incidence, a topography consisting in a sequence of dots and ripples was observed on the crater bottom. This behavior is unusual for grazing incidence and has been observed to increase with the Cs{sup +} fluence. Rotating sample during sputtering prevents this ripple formation and consequently improves the depth accuracy.

  11. Three new chalcohalides, Ba4Ge2PbS8Br2, Ba4Ge2PbSe8Br2 and Ba4Ge2SnS8Br2: Syntheses, crystal structures, band gaps, and electronic structures

    International Nuclear Information System (INIS)

    Lin, Zuohong; Feng, Kai; Tu, Heng; Kang, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng

    2014-01-01

    Highlights: • Three new chalcohalides: Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have been synthesized. • The MQ 5 Br octahedra and GeQ 4 tetrahedra form a three-dimensional framework with Ba 2+ in the channels. • Band Gaps and electronic structures of the three compounds were studied. - Abstract: Single crystals of three new chalcohalides: Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have been synthesized for the first time. These isostructural compounds crystallize in the orthorhombic space group Pnma. In the structure, the tetra-valent Ge atom is tetrahedrally coordinated with four Q (Q = S, Se) atoms, while the bi-valent M atom (M = Pb, Sn) is coordinated with an obviously distorted octahedron of five Q (Q = S, Se) atoms and one Br atom, showing the stereochemical activity of the ns 2 lone pair electron. The MQ 5 Br (M = Sn, Pb; Q = S, Se) distorted octahedra and the GeQ 4 (Q = S, Se) tetrahedra are connected to each other to form a three-dimensional framework with channels occupied by Ba 2+ cations. Based on UV–vis–NIR spectroscopy measurements and the electronic structure calculations, Ba 4 Ge 2 PbS 8 Br 2 , Ba 4 Ge 2 PbSe 8 Br 2 and Ba 4 Ge 2 SnS 8 Br 2 have indirect band gaps of 2.054, 1.952, and 2.066 eV respectively, which are mainly determined by the orbitals from the Ge, M and Q atoms (M = Pb, Sn; Q = S, Se)

  12. Magnetocaloric effect and transport properties of Gd5Ge2(Si1-x Sn x )2 (x=0.23 and 0.40) compounds

    International Nuclear Information System (INIS)

    Campoy, J.C.P.; Plaza, E.J.R.; Nascimento, F.C.; Coelho, A.A.; Pereira, M.C.; Fabris, J.D.; Raposo, M.T.; Cardoso, L.P.; Persiano, A.I.C.; Gama, S.

    2007-01-01

    We report a study about the structural properties of polycrystalline samples of nominal composition Gd 5 Ge 2 (Si 1- x Sn x ) 2 (x=0.23, 0.40) that closely influence their physical behavior particularly related to electric resistivity and magnetocaloric (MCE) effect. The samples were characterized by X-ray diffraction (XRD) using the Rietveld refinement method, metallographic analyses, 119 Sn Moessbauer spectroscopy, DC magnetization and electrical transport measurements. It was identified a Gd 5 Si 2 Ge 2 -monoclinic phase for x=0.23 and a Sm 5 Sn 4 -orthorhombic phase (type II) for x=0.40, both with two non-equivalent crystallographic sites for the Sn ions. We were able to infer on the role of tin on the magnetic and transport properties in these compounds

  13. Theoretical study on photon-phonon coupling at (001)-(2 x 1) surfaces of Ge and {alpha}-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F.L. [Escuela de Ciencias, Universidad Autonoma ' ' Benito Juarez' ' de Oaxaca, Av. Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oax., 68120 (Mexico); Perez-Rodriguez, F. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apdo. Post. J-48, Puebla, Pue. 72570 (Mexico)

    2011-06-15

    We present a study of the far-infrared reflectance anisotropy spectra for (001) surfaces of Ge and {alpha}-Sn in the (2 x 1) asymmetric dimer geometry, which exhibit a resonance structure associated with the excitation of surface phonon modes. We have employed a theoretical formalism, based on the adiabatic bond-charge model (ABCM), for computing the far-infrared reflectance anisotropy spectra. In comparison with previous theoretical results for silicon and diamond surfaces, the resonance structure in the reflectance anisotropy spectrum for Ge(001)-(2 x 1) turns out to be similar to that observed in the spectrum for the Si(001)-(2 x 1) surface, whereas the spectrum for {alpha}-Sn(001)-(2 x 1) surface is noticeably different from the others. We have established a trend of far-infrared reflectance anisotropy spectra for IV(001) surfaces: the weaker dimer strength, the stronger resonances of low-frequency surface phonons. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Tuning Bandgap of p-Type Cu2Zn(Sn, Ge)(S, Se)4 Semiconductor Thin Films via Aqueous Polymer-Assisted Deposition.

    Science.gov (United States)

    Yi, Qinghua; Wu, Jiang; Zhao, Jie; Wang, Hao; Hu, Jiapeng; Dai, Xiao; Zou, Guifu

    2017-01-18

    Bandgap engineering of kesterite Cu 2 Zn(Sn, Ge)(S, Se) 4 with well-controlled stoichiometric composition plays a critical role in sustainable inorganic photovoltaics. Herein, a cost-effective and reproducible aqueous solution-based polymer-assisted deposition approach is developed to grow p-type Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films with tunable bandgap. The bandgap of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films can be tuned within the range 1.05-1.95 eV using the aqueous polymer-assisted deposition by accurately controlling the elemental compositions. One of the as-grown Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films exhibits a hall coefficient of +137 cm 3 /C. The resistivity, concentration and carrier mobility of the Cu 2 ZnSn(S, Se) 4 thin film are 3.17 ohm·cm, 4.5 × 10 16 cm -3 , and 43 cm 2 /(V·S) at room temperature, respectively. Moreover, the Cu 2 ZnSn(S, Se) 4 thin film when used as an active layer in a solar cell leads to a power conversion efficiency of 3.55%. The facile growth of Cu 2 Zn(Sn, Ge)(S, Se) 4 thin films in an aqueous system, instead of organic solvents, provides great promise as an environmental-friendly platform to fabricate a variety of single/multi metal chalcogenides for the thin film industry and solution-processed photovoltaic devices.

  15. Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases

    Science.gov (United States)

    Christopoulos, S.-R. G.; Filippatos, P. P.; Hadi, M. A.; Kelaidis, N.; Fitzpatrick, M. E.; Chroneos, A.

    2018-01-01

    Mn+1AXn phases (M = early transition metal; A = group 13-16 element and X = C or N) have a combination of advantageous metallic and ceramic properties, and are being considered for structural applications particularly where high thermal conductivity and operating temperature are the primary drivers: for example in nuclear fuel cladding. Here, we employ density functional theory calculations to investigate the intrinsic defect processes and mechanical behaviour of a range of Ti3AC2 phases (A = Al, Si, Ga, Ge, In, Sn). Based on the intrinsic defect reaction, it is calculated that Ti3SnC2 is the more radiation-tolerant 312 MAX phase considered herein. In this material, the C Frenkel reaction is the lowest energy intrinsic defect mechanism with 5.50 eV. When considering the elastic properties of the aforementioned MAX phases, Ti3SiC2 is the hardest and Ti3SnC2 is the softest. All the MAX phases considered here are non-central force solids and brittle in nature. Ti3SiC2 is elastically more anisotropic and Ti3AlC2 is nearly isotropic.

  16. Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X =Sn ,Ge ,Ga )

    Science.gov (United States)

    Guo, Guang-Yu; Wang, Tzu-Cheng

    2017-12-01

    Noncollinear antiferromagnets have recently been attracting considerable interest partly due to recent surprising discoveries of the anomalous Hall effect (AHE) in them and partly because they have promising applications in antiferromagnetic spintronics. Here we study the anomalous Nernst effect (ANE), a phenomenon having the same origin as the AHE, and also the spin Nernst effect (SNE) as well as AHE and the spin Hall effect (SHE) in noncollinear antiferromagnetic Mn3X (X =Sn , Ge, Ga) within the Berry phase formalism based on ab initio relativistic band structure calculations. For comparison, we also calculate the anomalous Nernst conductivity (ANC) and anomalous Hall conductivity (AHC) of ferromagnetic iron as well as the spin Nernst conductivity (SNC) of platinum metal. Remarkably, the calculated ANC at room temperature (300 K) for all three alloys is huge, being 10-40 times larger than that of iron. Moreover, the calculated SNC for Mn3Sn and Mn3Ga is also larger, being about five times larger than that of platinum. This suggests that these antiferromagnets would be useful materials for thermoelectronic devices and spin caloritronic devices. The calculated ANC of Mn3Sn and iron are in reasonably good agreement with the very recent experiments. The calculated SNC of platinum also agrees with the very recent experiments in both sign and magnitude. The calculated thermoelectric and thermomagnetic properties are analyzed in terms of the band structures as well as the energy-dependent AHC, ANC, SNC, and spin Hall conductivity via the Mott relations.

  17. Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO{sub 3} (B = Ti, Hf, Zr, Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.A.P. [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Camilo, A. [Department of Physics, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Lazaro, S.R. de, E-mail: srlazaro@uepg.br [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil)

    2015-11-15

    First-principles calculations were performed in the framework of Density Functional Theory (DFT) within hybrid functional (B3LYP) to study the electronic structure and magnetic properties of new ilmenite FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) materials. In particular, the magnetic exchange interaction between Fe{sup 2+} layers is dependent on the interlayer distance and it can be controlled by ionic radius of B-site cation. Thus, Fe(Ti, Si, Ge)O{sub 3} are antiferromagnetic materials, while Fe(Zr, Hf, Sn)O{sub 3} are ferromagnetic. We also argue that antiferromagnetic materials and FeZrO{sub 3} are convectional semiconductors, whereas FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior, making them promising candidates for spintronic devices. - Highlights: • We study electronic structure and magnetism of new FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) ilmenite materials. • We found that magnetic ordering of Fe-based ilmenite materials can be controlled by size of B-site cation. • Fe(Ti, Zr, Si, Ge)O{sub 3} are convectional semiconductors. • FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior with potential application for spintronic devices.

  18. Structural complexity and thermoelectric properties of quaternary and quinary tellurides (Ge{sub x}Sn{sub 1-x}){sub 0.8}(In{sub y}Sb{sub 1-y}){sub 0.13}Te with 0 ≤ x,y ≤ 1

    Energy Technology Data Exchange (ETDEWEB)

    Neudert, Lukas; Scheel, Manuel [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany); Schwarzmueller, Stefan; Welzmiller, Simon; Oeckler, Oliver [Institut fuer Mineralogie, Kristallographie und Materialwissenschaft, Fakultaet fuer Chemie und Mineralogie, Universitaet Leipzig (Germany)

    2017-12-13

    Starting from stoichiometric mixtures of the elements, quaternary and quinary solid solutions (Ge{sub x}Sn{sub 1-x}){sub 0.8}(In{sub y}Sb{sub 1-y}){sub 0.13}Te were obtained. Concerning the ratio Ge/Sn and Sb/In, respectively, lattice parameters of the metastable phases with rocksalt-type average structures approximately obey Vegard's law. Stable phases correspond to a disordered rocksalt type at high temperature and to trigonal layered structures with van der Waal gaps at lower temperature as shown by temperature-dependent powder X-ray diffraction combined with TEM, which reveals layer-like vacancy ordering, whose extent depends on composition and thermal treatment. In the long-periodically ordered model compounds 21R-Ge{sub 0.5}Sn{sub 0.5}InSbTe{sub 4} and 9P-GeSnInSbTe{sub 5} studied by resonant scattering data at K-absorption edges, Sb and Sn concentrate near the van der Waals gaps. Compared to Ge{sub 0.8}Sb{sub 0.13}Te and Sn{sub 0.8}Sb{sub 0.13}Te, the simultaneous presence of In and Sn combines increased electrical conductivity with low thermal conductivity and enhanced thermoelectric properties in certain temperature ranges. Phase transitions correlate with changes of the thermoelectric properties. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM

    International Nuclear Information System (INIS)

    Lorenz, Harald; Zhao Qian; Turner, Stuart; Lebedev, Oleg I.; Van Tendeloo, Gustaaf; Kloetzer, Bernhard; Rameshan, Christoph; Penner, Simon

    2010-01-01

    Structure, morphology and composition of different tin oxide and germanium oxide thin film catalysts for the methanol steam reforming (MSR) reaction have been studied by a combination of (high-resolution) transmission electron microscopy, selected area electron diffraction, dark-field imaging and electron energy-loss spectroscopy. Deposition of the thin films on NaCl(0 0 1) cleavage faces has been carried out by thermal evaporation of the respective SnO 2 and GeO 2 powders in varying oxygen partial pressures and at different substrate temperatures. Preparation of tin oxide films in high oxygen pressures (10 -1 Pa) exclusively resulted in SnO phases, at and above 473 K substrate temperature epitaxial growth of SnO on NaCl(0 0 1) leads to well-ordered films. For lower oxygen partial pressures (10 -3 to 10 -2 Pa), mixtures of SnO and β-Sn are obtained. Well-ordered SnO 2 films, as verified by electron diffraction patterns and energy-loss spectra, are only obtained after post-oxidation of SnO films at temperatures T ≥ 673 K in 10 5 Pa O 2 . Preparation of GeO x films inevitably results in amorphous films with a composition close to GeO 2 , which cannot be crystallized by annealing treatments in oxygen or hydrogen at temperatures comparable to SnO/SnO 2 . Similarities and differences to neighbouring oxides relevant for selective MSR in the third group of the periodic system (In 2 O 3 and Ga 2 O 3 ) are also discussed with the aim of cross-correlation in formation of nanomaterials, and ultimately, also catalytic properties.

  20. Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Dian; Wang, Wei; Gong, Xiao, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: elegong@nus.edu.sg, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Tok, Eng-Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2016-01-14

    The effect of room temperature sulfur passivation of the surface of Ge{sub 0.83}Sn{sub 0.17} prior to high-k dielectric (HfO{sub 2}) deposition is investigated. X-ray photoelectron spectroscopy (XPS) was used to examine the chemical bonding at the interface of HfO{sub 2} and Ge{sub 0.83}Sn{sub 0.17}. Sulfur passivation is found to be effective in suppressing the formation of both Ge oxides and Sn oxides. A comparison of XPS results for sulfur-passivated and non-passivated Ge{sub 0.83}Sn{sub 0.17} samples shows that sulfur passivation of the GeSn surface could also suppress the surface segregation of Sn atoms. In addition, sulfur passivation reduces the interface trap density D{sub it} at the high-k dielectric/Ge{sub 0.83}Sn{sub 0.17} interface from the valence band edge to the midgap of Ge{sub 0.83}Sn{sub 0.17}, as compared with a non-passivated control. The impact of the improved D{sub it} is demonstrated in Ge{sub 0.83}Sn{sub 0.17} p-channel metal-oxide-semiconductor field-effect transistors (p-MOSFETs). Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs with sulfur passivation show improved subthreshold swing S, intrinsic transconductance G{sub m,int}, and effective hole mobility μ{sub eff} as compared with the non-passivated control. At a high inversion carrier density N{sub inv} of 1 × 10{sup 13 }cm{sup −2}, sulfur passivation increases μ{sub eff} by 25% in Ge{sub 0.83}Sn{sub 0.17} p-MOSFETs.

  1. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides.

    Science.gov (United States)

    de Blois, Erik; Sze Chan, Ho; Naidoo, Clive; Prince, Deidre; Krenning, Eric P; Breeman, Wouter A P

    2011-02-01

    PET scintigraphy with (68)Ga-labelled analogs is of increasing interest in Nuclear Medicine and performed all over the world. Here we report the characteristics of the eluate of SnO(2)-based (68)Ge/(68)Ga generators prepared by iThemba LABS (Somerset West, South Africa). Three purification and concentration techniques of the eluate for labelling DOTA-TATE and concordant SPE purifications were investigated. Characteristics of 4 SnO(2)-based generators (range 0.4-1 GBq (68)Ga in the eluate) and several concentration techniques of the eluate (HCl) were evaluated. The elution profiles of SnO(2)-based (68)Ge/(68)Ga generators were monitored, while [HCl] of the eluens was varied from 0.3-1.0 M. Metal ions and sterility of the eluate were determined by ICP. Fractionated elution and concentration of the (68)Ga eluate were performed using anion and cation exchange. Concentrated (68)Ga eluate, using all three concentration techniques, was used for labelling of DOTA-TATE. (68)Ga-DOTA-TATE-containing solution was purified and RNP increased by SPE, therefore also 11 commercially available SPE columns were investigated. The amount of elutable (68)Ga activity varies when the concentration of the eluens, HCl, was varied, while (68)Ge activity remains virtually constant. SnO(2)-based (68)Ge/(68)Ga generator elutes at 0.6 M HCl >100% of the (68)Ga activity at calibration time and ±75% after 300 days. Eluate at discharge was sterile and Endotoxins were 80%). Highest desorption for cation purification was obtained using a solution containing 90% acetone at increasing molarity of HCl, resulted in a (68)Ga desorption of 68±8%. With all (68)Ge/(68)Ga generators and for all 3 purification methods a SA up to 50 MBq/nmol with >95% incorporation (ITLC) and RCP (radiochemical purity) by HPLC ±90% could be achieved. Purification and concentration of the eluate with anion exchange has the benefit of more elutable (68)Ga with 1 M HCl as eluens. The additional washing step of the anion column

  2. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  3. Syntheses, structural variants and characterization of AInM′S{sub 4} (A=alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS{sub 4} and KInSnS{sub 4} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2016-06-15

    Ten AInM′S{sub 4} (A=alkali metals, Tl; M′= Ge, Sn) compounds with diverse structure types have been synthesized and characterized by single crystal and powder X-ray diffraction and a variety of spectroscopic methods. They are wide band gap semiconductors. KInGeS{sub 4}(1-β), RbInGeS{sub 4}(2), CsInGeS{sub 4}(3-β), TlInGeS{sub 4}(4-β), RbInSnS{sub 4}(8-β) and CsInSnS{sub 4}(9) compounds with three-dimensional BaGa{sub 2}S{sub 4} structure and CsInGeS{sub 4}(3-α) and TlInGeS{sub 4}(4-α) compounds with a layered TlInSiS{sub 4} structure have tetrahedral [InM′S{sub 4}]{sup −} frameworks. On the other hand, LiInSnS{sub 4}(5) with spinel structure and NaInSnS{sub 4}(6), KInSnS{sub 4}(7), RbInSnS{sub 4}(8-α) and TlInSnS{sub 4}(10) compounds with layered structure have octahedral [InM′S{sub 4}]{sup −} frameworks. NaInSnS{sub 4}(6) and KInSnS{sub 4}(7) compounds undergo facile topotactic ion-exchange, at room temperature, with various mono-, di- and tri-valent cations in aqueous medium to give rise to metastable layered phases. - Graphical abstract: NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo, in aqueous medium at room temperature, facile topotactic ion-exchange with mono, di and trivalent cations. Display Omitted - Highlights: • Ten AInM′S{sub 4} compounds with diverse structure types were synthesized. • They are wide band gap semiconductors. • NaInSnS{sub 4} and KInSnS{sub 4} compounds undergo facile topotactic ion-exchange at room temperature.

  4. Performance enhancement in uniaxially tensile stressed GeSn n-channel fin tunneling field-effect transistor: Impact of stress direction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-04-01

    In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.

  5. The synthesis and properties of some organometallic compounds containing group IV (Ge, Sn)-group II (Zn, Cd) metal---metal bonds

    NARCIS (Netherlands)

    Des Tombe, F.J.A.; Kerk, G.J.M. van der; Creemers, H.M.J.C.; Carey, N.A.D.; Noltes, J.G.

    1972-01-01

    The reactions of triphenylgermane and triphenyltin hydride with coordinatively saturated organozinc or organocadmium compounds give organometallic complexes containing Group IV (Ge, Sn)-Group II(Zn, Cd) metal---metal bonds. The 2,2′-bipyridine complexes show solvent-dependent charge-transfer

  6. Relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn: Consistent parameterization and prediction of Seebeck coefficients

    Science.gov (United States)

    Shi, Guangsha; Kioupakis, Emmanouil

    2018-02-01

    We apply density functional and many-body perturbation theory calculations to consistently determine and parameterize the relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn, and predict the Seebeck coefficient as a function of doping and temperature. The quasiparticle band gaps, including spin-orbit coupling effects, are determined to be 0.728 eV, 0.555 eV, and 0.142 eV for Mg2Si, Mg2Ge, and Mg2Sn, respectively. The inclusion of the semicore electrons of Mg, Ge, and Sn in the valence is found to be important for the accurate determination of the band gaps of Mg2Ge and Mg2Sn. We also developed a Luttinger-Kohn Hamiltonian and determined a set of band parameters to model the near-edge relativistic quasiparticle band structure consistently for all three compounds that can be applied for thermoelectric device simulations. Our calculated values for the Seebeck coefficient of all three compounds are in good agreement with the available experimental data for a broad range of temperatures and carrier concentrations. Our results indicate that quasiparticle corrections are necessary for the accurate determination of Seebeck coefficients at high temperatures at which bipolar transport becomes important.

  7. Does a network structure exist in molecular liquid SnI4 and GeI4?

    Science.gov (United States)

    Sakagami, Takahiro; Fuchizaki, Kazuhiro

    2017-04-01

    The existence of a network structure consisting of electrically neutral tetrahedral molecules in liquid SnI4 and GeI4 at ambient pressure was examined. The liquid structures employed for the examination were obtained from a reverse Monte Carlo analysis. The structures were physically interpreted by introducing an appropriate intermolecular interaction. A ‘bond’ was then defined as an intermolecular connection that minimizes the energy of intermolecular interaction. However, their ‘bond’ energy is too weak for the ‘bond’ and the resulting network structure to be defined statically. The vertex-to-edge orientation between the nearest molecules is so ubiquitous that almost all of the molecules in the system can take part in the network, which is reflected in the appearance of a prepeak in the structure factor.

  8. Effect of Ge, Sn, Sb on the resistance to swelling of austenitic alloys irradiated by 1 MeV electrons

    International Nuclear Information System (INIS)

    Dubuisson, P.; Levy, V.; Seran, J.L.

    1987-01-01

    The effect of new solute elements namely Ge, Sn and Sb on the void swelling resistance of austenitic alloys irradiated with 1 MeV electrons has been studied. Except for tin in Ti-modified 316, all solute improve the swelling resistance of base alloys. Tin addition shifts the swelling peak of 316 S.S. to high temperature. In fact, these solute additions have the same qualitative effect on the swelling components: they enhance the void density and decrease strongly void growth rate. This effect is opposite to the one of usual swelling inhibitors such as Si or Ti which decrease the void density. We have explained this influence on the void nucleation and void growth by introducing a strong interaction between vacancies and solute atoms in a void growth model

  9. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4.

    Directory of Open Access Journals (Sweden)

    Sonica Sondhi

    Full Text Available A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.

  10. Pt-Richcore/Sn-Richsubsurface/Ptskin Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction.

    Science.gov (United States)

    Rizo, Rubén; Arán-Ais, Rosa M; Padgett, Elliot; Muller, David A; Lázaro, Ma Jesús; Solla-Gullón, José; Feliu, Juan M; Pastor, Elena; Abruña, Héctor D

    2018-03-14

    Direct ethanol fuel cells are one of the most promising electrochemical energy conversion devices for portable, mobile and stationary power applications. However, more efficient and stable and less expensive electrocatalysts are still required. Interestingly, the electrochemical performance of the electrocatalysts toward the ethanol oxidation reaction can be remarkably enhanced by exploiting the benefits of structural and compositional sensitivity and control. Here, we describe the synthesis, characterization, and electrochemical behavior of cubic Pt-Sn nanoparticles. The electrochemical activity of the cubic Pt-Sn nanoparticles was found to be about three times higher than that obtained with unshaped Pt-Sn nanoparticles and six times higher than that of Pt nanocubes. In addition, stability tests indicated the electrocatalyst preserves its morphology and remains well-dispersed on the carbon support after 5000 potential cycles, while a cubic (pure) Pt catalyst exhibited severe agglomeration of the nanoparticles after a similar stability testing protocol. A detailed analysis of the elemental distribution in the nanoparticles by STEM-EELS indicated that Sn dissolves from the outer part of the shell after potential cycling, forming a ∼0.5 nm Pt skin. This particular atomic composition profile having a Pt-rich core, a Sn-rich subsurface layer, and a Pt-skin surface structure is responsible for the high activity and stability.

  11. Design and theoretical calculation of novel GeSn fully-depleted n-tunneling FET with quantum confinement model for suppression on GIDL effect

    Science.gov (United States)

    Liu, Xiangyu; Hu, Huiyong; Wang, Meng; Miao, Yuanhao; Han, Genquan; Wang, Bin

    2018-06-01

    In this paper, a novel fully-depleted Ge1-xSnx n-Tunneling FET (FD Ge1-xSnx nTFET) with field plate is investigated theoretically based on the experiment previously published. The energy band structures of Ge1-xSnx are calculated by EMP and the band-to-band tunneling (BTBT) parameters of Ge1-xSnx are calculated by Kane's model. The electrical characteristics of FD Ge1-xSnx nTFET and FD Ge1-xSnx nTFET with field plate (FD-FP Ge1-xSnx nTFET) having various Sn compositions are investigated and simulated with quantum confinement model. The results indicated that the GIDL effect is serious in FD Ge1-xSnx nTFET. By employing the field plate structure, the GIDL effect of FD-FP Ge1-xSnx nTFET is suppressed and the off-state current Ioff is decreased more than 2 orders of magnitude having Sn compositions from 0 to 0.06 compared with FD Ge1-xSnx nTFET. The impact of the difference of work function between field plate metal and channel Φfps is also studied. With the optimized Φfps = 0.0 eV, the on-state current Ion = 4.6 × 10-5 A/μm, the off-state current Ioff = 1.6 × 10-13 A/μm and the maximum on/off ration Ion/Ioff = 2.9 × 108 are achieved.

  12. Stable and selective self-assembly of α-lipoic acid on Ge(001) for biomolecule immobilization

    Science.gov (United States)

    Kazmierczak, M.; Flesch, J.; Mitzloff, J.; Capellini, G.; Klesse, W. M.; Skibitzki, O.; You, C.; Bettenhausen, M.; Witzigmann, B.; Piehler, J.; Schroeder, T.; Guha, S.

    2018-05-01

    We demonstrate a novel method for the stable and selective surface functionalization of germanium (Ge) embedded in silicon dioxide. The Ge(001) surface is functionalized using α-lipoic acid (ALA), which can potentially be utilized for the immobilization of a wide range of biomolecules. We present a detailed pH-dependence study to establish the effect of the incubation pH value on the adsorption layer of the ALA molecules. A threshold pH value for functionalization is identified, dividing the examined pH range into two regions. Below a pH value of 7, the formation of a disordered ALA multilayer is observed, whereas a stable well-ordered ALA mono- to bi-layer on Ge(001) is achieved at higher pH values. Furthermore, we analyze the stability of the ALA layer under ambient conditions, revealing the most stable functionalized Ge(001) surface to effectively resist oxidation for up to one week. Our established functionalization method paves the way towards the successful immobilization of biomolecules in future Ge-based biosensors.

  13. Stable isotope studies of the Glen Eden Mo-W-Sn deposit, New England Batholith - Australia

    International Nuclear Information System (INIS)

    Somarin, A.K.

    2000-01-01

    The Glen Eden Mo-W-Sn deposit is located 17 km northeast of Glen Innes in northeastern New South Wales. This deposit is located in the Late-Permian Emmaville Volcanics and mineralisation is related to the intrusion of the Glen Eden Granite (GEG). Glen Eden Granite is a highly-fractionated, most probably, I-type granite and it occurs as dykes at depths of more than 80 m and is not exposed at the surface. Mineralogical studies and field evidence indicate that the observed dykes have intruded after initiation of the hydrothermal activity. The Glen Eden orebody is composed of a pipe-like breccia body, veins and stockworks including moderately to steeply dipping, mainly NW- and NE- striking ore-bearing veinlets. Also, there are some ores in altered felsic volcanic wall rock, especially the greisen zone. The ore minerals include molybdenite, wolframite, cassiterite, Bi-bearing minerals and base metal sulfides. Two main mineralisation stages can be recognised: 1) before main brecciation (pre-breccia stage). 2) after main brecciation (post-breccia stage). The isotopic composition of the hydrothermal fluid at the pre-breccia stage is different from that at the post-breccia stage (see below). The main stage of ore mineralisation, based on fluid inclusion studies, has occurred at 280 to 360 deg C. Hydrothermal alteration at Glen Eden is similar to porphyry-type ore deposits and has been developed largely in the felsic volcanic host rocks. However, sericitic alteration has developed pervasively and formed the greisen zone. Various alteration styles include biotitic, greisen, potassic, argillic and propylitic types. Muscovite from greisen has given an early Triassic age of 240 Ma (Plimer,l.R., pers. comm., 2000). This paper summaries the stable isotope studies of this deposit

  14. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas

    Science.gov (United States)

    Margetis, J.; Mosleh, A.; Al-Kabi, S.; Ghetmiri, S. A.; Du, W.; Dou, W.; Benamara, M.; Li, B.; Mortazavi, M.; Naseem, H. A.; Yu, S.-Q.; Tolle, J.

    2017-04-01

    High quality, thick (up to 1.1 μm), strain relaxed GeSn alloys were grown on Ge-buffered Si (1 0 0) in an ASM Epsilon® chemical vapor deposition system using SnCl4 and low-cost commercial GeH4 precursors. The significance of surface chemistry in regards to growth rate and Sn-incorporation is discussed by comparing growth kinetics data in H2 and N2 carrier gas. The role of carrier gas is also explored in the suppression of Sn surface segregation and evolution of layer composition and strain profiles via secondary ion mass spectrometry and X-ray diffraction. Transmission electron microscopy revealed the spontaneous compositional splitting and formation of a thin intermediate layer in which dislocations are pinned. This intermediate layer enables the growth of a thick, strain relaxed, and defect-free epitaxial layer on its top. Last, we present photoluminescence results which indicate that both N2 and H2 growth methods produce optoelectronic device quality material.

  15. Sup(99m)Tc-Sn-pyrophosphate complex. A stable, lyophilized radiopharmaceutical for skeletal scanning

    Energy Technology Data Exchange (ETDEWEB)

    Cvoric, J; Jovanovic, V; Bzenic, J [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Stefanovic, Lj; Selir, Z [Institute for Tuberculosis and Pectoral Diseases, Radioisotope Applications, Sremska Kamenica (Yugoslavia)

    1978-01-01

    After a systematic investigation of the different phosphate polymers, viz. hexametaphosphate, tripolyphosphate, meta- and diphosphonate, pyrophosphate (Na/sub 4/P/sub 2/O/sub 7/) was selected for sceletal scintigraphy. A procedure has been developed for obtaining a sup(99m)Tc-labelled Sn(II): PyP complex by addition of a sterile, apyrogenic pertechnetate solution from a sup(99m)Tc-generator to a lyophilized solution of Sn(II)-tetrasodium phosphate. ''Kit'' composition was determined on the basis of biodynamic data obtained when the Sn/pyrophosphate ratio, pH and other parameters were varied. In vivo distribution of different sup(99m)Tc-Sn-pyrophosphate complexes permitted the selection of the most suitable complex for sceletal scanning. The investigated complex is being successfully applied in human scintigraphy of bones in the Laboratory for Radioisotope Applications of the Institute for Tubercolosis and Pectoral Diseases in Sremska Kamenica.

  16. Phase stabilities of pyrite-related MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te): A systematic DFT study

    International Nuclear Information System (INIS)

    Bachhuber, Frederik; Krach, Alexander; Furtner, Andrea; Söhnel, Tilo; Peter, Philipp; Rothballer, Jan; Weihrich, Richard

    2015-01-01

    Pyrite-type and related systems appear for a wide range of binary and ternary combinations of transition metals and main group elements that form Zintl type dumbbell anion units. Those representatives with 20 valence electrons exhibit an extraordinary structural flexibility and interesting properties as low-gap semiconductors or thermoelectric and electrode materials. This work is devoted to the systematic exploration of novel compounds within the class of MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te) by means of density functional calculations. Their preferred structures are predicted from an extended scheme of colored pyrites and marcasites. To determine their stabilities, competing binary MT 2 and MCh 2 boundary phases are taken into account as well as ternary M 3 T 2 Ch 2 and M 2 T 3 Ch 3 systems. Recently established stability diagrams are presented to account for MTCh ordering phenomena with a focus on a not-yet-reported ordering variant of the NiAs 2 type. Due to the good agreement with experimental data available for several PtTCh systems, the predictions for the residual systems are considered sufficiently accurate. - Graphical abstract: Compositional and structural stability of MTCh compounds is investigated from first principle calculations. A conceptional approach is presented to study and predict novel stable and metastable compounds and structures of low gap semiconductors with TCh dumbbell units that are isoelectronic and structurally related to pyrite (FeS 2 ). - Highlights: • Study of compositional stability of MTCh vs. M 3 T 2 Ch 2 and M 2 T 3 Ch 3 compounds. • Study of structural stability of known and novel MTCh compounds. • Prediction of novel stable and metastable structures and compounds isoelectronic to pyrite, FeS 2

  17. The effect of charge carrier and doping site on thermoelectric properties of Mg2Sn0.75Ge0.25

    International Nuclear Information System (INIS)

    Saparamadu, Udara; Mao, Jun; Dahal, Keshab; Zhang, Hao; Tian, Fei; Song, Shaowei; Liu, Weishu; Ren, Zhifeng

    2017-01-01

    Mg 2 Sn 0.75 Ge 0.25 has been recently demonstrated to be a promising thermoelectric material for power generation in the temperature range from room temperature to 723 K because of the high power factor of ∼54 μW cm −1  K −2 upon Sb doping to the Sn site. The enhanced density of states effective mass and weak electron scattering from the alloying effect are believed to be the main reasons for the high power factor (PF) and hence high figure of merit (ZT). In this study, it is shown that the right choice of carrier donor also plays an important role in obtaining high power factor. The effect of carrier donors Y and La at Mg-site and Bi and P at Sn-site in Mg 2 Sn 0.75 Ge 0.25 is systematically investigated. It is found that charge donors at the Sn-site are much more effective than at the Mg-site in enhancing PF and ZT. Bi doped Mg 2 Sn 0.73 Bi 0.02 Ge 0.25 shows a peak ZT of ∼1.4 at 673 K, a peak PF of ∼54 μW cm −1  K −2 at 577 K, which resulted in an engineering figure of merit (ZT) eng of ∼0.76 and (PF) eng of ∼2.05 W m −1  K −1 for cold side fixed at 323 K and hot side at 723 K.

  18. Stable and low contact resistance electrical contacts for high temperature SiGe thermoelectric generators

    KAUST Repository

    Zhang, Bo; Zheng, Tao; Wang, Qingxiao; Guo, Zaibing; Kim, Moon J.; Alshareef, Husam N.; Gnade, Bruce E.

    2018-01-01

    that no interdiffusion takes place between TaAlN and SiGe. A specific contact resistivity of (2.1±1.3)×10−6Ω-cm2 for p-type SiGe and (2.8±1.6)×10−5 Ω-cm2 for n-type SiGe is demonstrated after the high temperature annealing. These results show that TaAlN is a promising

  19. Estimation of critical thickness of Stranski-Krastanow transition in GeSi/Sn/Si system

    Science.gov (United States)

    Lozovoy, K. A.; Pishchagin, A. A.; Kokhanenko, A. P.; Voitsekhovskii, A. V.

    2017-11-01

    In this paper Stranski-Krastanow growth of Ge x Si1-x epitaxial layers on the Si(001) surface with pre-deposited tin layer with the thickness less than 1 ML is considered. For the calculations of critical thickness of transition from 2D to 3D growth in this paper a theoretical model based on general nucleation theory is used. This model is specified by taking into account dependencies of elastic modulus, lattices mismatch and surface energy of side facet on the composition x, as well as change in the adatoms diffusion coefficient and surface energy of the substrate in the presence of tin. As a result, dependencies of critical thickness of Stranski-Krastanow transition on compositon x and temperature are obtained. The simulated results are in a good agreement with experimentally observed results.

  20. Towards from indirect to direct band gap and optical properties of XYP{sub 2} (X=Zn, Cd; Y=Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sibghat [Department of Physics, Hazara University Mansehra, KPK (Pakistan); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College, Peshawar (Pakistan); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Reshak, A.H. [New Technologies—Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Hayat, S.S. [Department of Physics, Hazara University Mansehra, KPK (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-05-15

    First principle calculations are performed to predict the electronic and optical properties of XYP{sub 2} (X=Zn, Cd; Y=Si, Ge, Sn) compounds. The calculations show an excellent agreement with the available experimental results as compared to previous calculations. The band gap value decreases by changing the cations X from Zn to Cd as well as Y from Si to Ge to Sn in XYP{sub 2}. The d-states of the Zn and Cd contribute majorly in the density of states. Bonding nature in these compounds is analyzed from the electron density plots. Optical response of these compounds is noted from the complex refractive index and reflectivity spectra. The wide direct band gap and the high reflectivity in the visible and ultraviolet regions for these compounds make them potential candidates for optoelectronic and photonic applications.

  1. First-principle investigations of the magnetic properties and possible martensitic transformation in Ni2MnX (X=Al, Ga, In, Si, Ge and Sn)

    International Nuclear Information System (INIS)

    Wang, Wei; Gao, She-Sheng; Meng, Yang

    2014-01-01

    The magnetic and electronic properties of Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys have been studied by using the first-principle projector augmented wave potential within the generalized gradient approximation. The possible non-modulated martensitic transformation in these six alloys has been investigated. Both austenitic and martensitic Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys are found to be ferromagnets. In martensitic phase, the energies minimum occurs at c/a=0.99 for Ni 2 MnX (X=Al, In, Ge and Sn), and the energy minimum occurs at c/a=1.02 for Ni 2 MnSi. But there is a negligible energy difference ΔE (<6 meV/cell) between the austenitic and martensitic phases for each alloy. Meanwhile, around c/a=1, an anomaly is observed in the E-c/a curve, which is related to a very slightly tetragonal distortion trend in Ni 2 MnX (X=Al, In, Si, Ge and Sn). The energy difference ΔE between the austenitic and martensitic phases for Ni 2 MnGa is as large as 99 meV/cell, so it is more likely to realize martensitic transformation in it. - Highlights: • Both austenitic and martensitic Ni 2 MnX alloys are found to be ferromagnets. • The energy difference between the martensitic and austenitic phases is negligible. • The total moment in martensitic phase is close to corresponding to austenitic phase

  2. Electronic structure and magnetism of Ge(Sn)TM.sub.x./sub.Te.sub.1-x./sub. (TM = V,Cr,Mn): a first principles study

    Czech Academy of Sciences Publication Activity Database

    Liu, Y.; Bose, S. K.; Kudrnovský, Josef

    2016-01-01

    Roč. 6, č. 12 (2016), 1-12, č. článku 125005. ISSN 2158-3226 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : SnTe and GeTe * doping with 3d metals * lattice structure * exchange integrals * Curie temperature * first-priciples study Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.568, year: 2016

  3. Effect of B, N, Ge, Sn, K doping on electronic-transport properties of (5, 0) zigzag carbon nanotube

    Science.gov (United States)

    Kamalian, Monir; Seyed Jalili, Yousef; Abbasi, Afshin

    2018-04-01

    In this paper the effect of impurity on the electronic properties and quantum conductance of zigzag (5, 0) carbon nanotube have been studied by using the Density Functional Theory (DFT) combined with Non-Equilibrium Green’s Function (NEGF) formalism with TranSIESTA software. The effect of Boron (B), Nitrogen (N), Germanium (Ge), Tin (Sn) and Potassium (K) impurities on the CNT conduction behavior and physical characteristics, like density of states (DOS), band structure, transmission coefficients and quantum conductance was considered and discussed simultaneously. The current‑voltage (I‑V) curves of all the proposed models were studied for comparative study under low-bias conditions. The distinct changes in conductance reported as the positions, number and type of dopants was varied in central region of the CNT between two electrodes at different bias voltages. This suggested conductance enhancement mechanism for the charge transport in the doped CNT at different positions is important for the design of CNT based nanoelectronic devices. The results show that Germanium, Tin and Potassium dopant atoms has increased the conductance of the model manifold than other doping atoms furthermore 10 Boron and 10 Nitrogen dopant atoms showed the amazing property of Negative Differential Resistance (NDR).

  4. Stable and low contact resistance electrical contacts for high temperature SiGe thermoelectric generators

    KAUST Repository

    Zhang, Bo

    2018-04-14

    The thermal stability and contact resistance of TaAlN thin films as electrical contacts to SiGe thermoelectric elements are reported. We demonstrate that a sharp interface is maintained after the device annealed at 800°C for over 100h, indicating that no interdiffusion takes place between TaAlN and SiGe. A specific contact resistivity of (2.1±1.3)×10−6Ω-cm2 for p-type SiGe and (2.8±1.6)×10−5 Ω-cm2 for n-type SiGe is demonstrated after the high temperature annealing. These results show that TaAlN is a promising contact material for high temperature thermoelectrics such as SiGe.

  5. First-principles study on the structural, electronic and magnetic properties of the Ti{sub 2}VZ (Z = Si, Ge, Sn) full-Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Santao; Shen, Jiang [Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-08-15

    In the present work, we have investigated the structural, electronic and magnetic properties of Ti{sub 2}VZ (Z = Si, Ge, Sn) alloys with Hg{sub 2}CuTi-type structure in the framework of density functional theory with generalized gradient approximation (GGA). The calculated results show that Ti{sub 2}VSi and Ti{sub 2}VGe alloys belong to half-metallic compounds with a perfect 100% spin polarization at the Fermi level while Ti{sub 2}VSn alloy is just a conventional ferrimagnetism compound. And the total magnetic moment of Ti{sub 2}VSi and Ti{sub 2}VGe obey the Slater–Pauling (SP) rule. In a moderate variation range of lattice distortion, Ti{sub 2}VSi and Ti{sub 2}VGe remain half-metallicity. We expect that our calculated results may trigger Ti{sub 2}VZ (Z = Si, Ge, Sn) applying in the future spintronics field. - Highlights: • Structural properties of Ti{sub 2}VZ (Z = Si, Ge, Sn) have been achieved by ab initio. • The calculations proved Ti{sub 2}VSi and Ti{sub 2}VGe to be half-metallic compounds. • The total magnetic moments of Ti{sub 2}VSi and Ti{sub 2}VGe followed the SP rule M{sub t} = Z{sub t} − 18. • Their magnetic and half-metallic properties changed with lattice distortion.

  6. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  7. Synthesis and first-principle calculations of the structural and electronic properties of Ge-substituted type-VIII Ba{sub 8}Ga{sub 16}Sn{sub 30} clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lanxian [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Li, Decong [College of Optoelectronic Engineering, Yunnan Open University, Kunming 650500 (China); Liu, Hongxia; Liu, Zuming [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China); Deng, Shukang, E-mail: skdeng@126.com [Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Provincial Renewable Energy Engineering Key Lab, Solar Energy Research Institution, Yunnan Normal University, Kunming 650500 (China)

    2016-12-01

    In this study, the structural and electronic structural properties of Ba{sub 8}Ga{sub 16}Sn{sub 30−x}Ge{sub x} (0≤x≤30) are determined by the first-principle method on the basis of density functional theory. Consistent with experimental findings, calculated results reveal that Ge atoms preferentially occupy the 2a and 24g sites in these compounds. As the content of Ge in Ge-substituted clathrate is increased, the lattice parameter is decreased, and the structural stability is enhanced. The bandgaps of the compound at 1≤x≤10 are smaller than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. By contrast, the bandgaps of the compound at x>10 are larger than those of Ba{sub 8}Ga{sub 16}Sn{sub 30}. The substitution of Ge for Sn affects p-type conductivity but not n-type conductivity. As Ge content increases, the whole conduction band moves to the direction of high energy, and the density of states of valence-band top decreases. The calculated potential energy versus displacement of Ba indicates that the vibration energy of this atom increases as cage size decreases. Because Ge substitution also affects clathrate structural symmetry, the distance of Ba atom deviation from the center of the cage initially increases and subsequently decreases as the Ge content increases.

  8. Designing novel Sn-Bi, Si-C and Ge-C nanostructures, using simple theoretical chemical similarities

    Directory of Open Access Journals (Sweden)

    Zdetsis Aristides

    2011-01-01

    Full Text Available Abstract A framework of simple, transparent and powerful concepts is presented which is based on isoelectronic (or isovalent principles, analogies, regularities and similarities. These analogies could be considered as conceptual extensions of the periodical table of the elements, assuming that two atoms or molecules having the same number of valence electrons would be expected to have similar or homologous properties. In addition, such similar moieties should be able, in principle, to replace each other in more complex structures and nanocomposites. This is only partly true and only occurs under certain conditions which are investigated and reviewed here. When successful, these concepts are very powerful and transparent, leading to a large variety of nanomaterials based on Si and other group 14 elements, similar to well known and well studied analogous materials based on boron and carbon. Such nanomaterias designed in silico include, among many others, Si-C, Sn-Bi, Si-C and Ge-C clusters, rings, nanowheels, nanorodes, nanocages and multidecker sandwiches, as well as silicon planar rings and fullerenes similar to the analogous sp2 bonding carbon structures. It is shown that this pedagogically simple and transparent framework can lead to an endless variety of novel and functional nanomaterials with important potential applications in nanotechnology, nanomedicine and nanobiology. Some of the so called predicted structures have been already synthesized, not necessarily with the same rational and motivation. Finally, it is anticipated that such powerful and transparent rules and analogies, in addition to their predictive power, could also lead to far-reaching interpretations and a deeper understanding of already known results and information.

  9. Amorphous Ultrathin SnO2 Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Xie, Ming; Sun, Xiang; George, Steven M; Zhou, Changgong; Lian, Jie; Zhou, Yun

    2015-12-23

    Amorphous SnO2 (a-SnO2) thin films were conformally coated onto the surface of reduced graphene oxide (G) using atomic layer deposition (ALD). The electrochemical characteristics of the a-SnO2/G nanocomposites were then determined using cyclic voltammetry and galvanostatic charge/discharge curves. Because the SnO2 ALD films were ultrathin and amorphous, the impact of the large volume expansion of SnO2 upon cycling was greatly reduced. With as few as five formation cycles best reported in the literature, a-SnO2/G nanocomposites reached stable capacities of 800 mAh g(-1) at 100 mA g(-1) and 450 mAh g(-1) at 1000 mA g(-1). The capacity from a-SnO2 is higher than the bulk theoretical values. The extra capacity is attributed to additional interfacial charge storage resulting from the high surface area of the a-SnO2/G nanocomposites. These results demonstrate that metal oxide ALD on high surface area conducting carbon substrates can be used to fabricate high power and high capacity electrode materials for lithium-ion batteries.

  10. Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States)

    2016-03-07

    We demonstrate highly effective strain-induced band-engineering of (111) oriented direct-gap Ge{sub 1−x}Sn{sub x} thin films (0.074 < x < 0.085) crystallized on amorphous SiO{sub 2} towards 3D photonic integration. Due to a much smaller Poisson's ratio for (111) vs. (100) orientation, 0.44% thermally induced biaxial tensile strain reduces the direct-gap by 0.125 eV towards enhanced direct-gap semiconductor properties, twice as effective as the tensile strain in Ge(100) films. Correspondingly, the optical response is extended to λ = 2.8 μm. A dilatational deformation potential of a = −12.8 ± 0.8 eV is derived. These GeSn films also demonstrate high thermal stability, offering both excellent direct-gap optoelectronic properties and fabrication/operation robustness for integrated photonics.

  11. Search for anomalously interacting stable particles in the mass range from 1.0 to 1.8 GeV/c2

    International Nuclear Information System (INIS)

    Abramov, V.V.; Arbuzov, V.A.; Baldin, B.Yu.

    1986-01-01

    A search for stable (r > 10 -8 s) anomalously interacting particles with the charge Z=±1 has been performed in the mass range from 1.0 to 1.8 GeV/c 2 . Secondary positive and negative particles with mean transverse momentum of 3 GeV/c produced in the collision of 70 GeV protons with the lead target have been investigated. Upper limits for invariant differential production cross-sections of anomalously interacting particles (1.8x10 -33 -9.5x10 -32 cm 2 xGeV -2 ) per lead nucleus have been obtained at the 90 % considence level

  12. Study of 4f hybridization in CeNiX with X=SnδGe1-δ, 0≤δ≤1

    International Nuclear Information System (INIS)

    Fuente, C. de la; Moral, A. del; Adroja, D.T.; Fraile, A.; Arnaudas, J.I.

    2010-01-01

    We report inelastic neutron scattering and core-level X-ray photoemission spectroscopy experiments for studying the Kondo problem in the CeNiX, X=Sn δ Ge 1-δ 0≤δ≤1 series. The neutron results confirm that they behave like a Kondo lattice for δ≥0.85, showing broad maxima at around 30 meV, typical of a crystal field magnetic scattering. So, the Ge doping could produce the suppression of the cerium magnetism observed for δ≤0.25. To open a more deep sight on this point, we have analyzed the 3d core-level XPS spectra by using the well-known Gunnarsson-Schoenhammer model. From this analysis, we have obtained the 'on-site' Coulomb bare repulsion for f states, U, and hybridization parameter, Δ, related with the hopping from the f states to the conduction ones. These U values are very similar for all compounds, about 7 eV, but the hybridization parameter slightly changes from 0.2 to 0.16 eV on increasing the Sn concentration. In Sn-rich compounds, the 4f occupation is close to spin limit fluctuation, which allows us to obtain an estimation of the Kondo temperatures, ∼1200 K, and the static 0 K susceptibility, ∼1.1x10 -3 emu/mol. Finally, we have done 'ab-initio' calculations based on the LDA+U+SO which confirm the existence of a small electronic gap opening in the DOS of Ge-rich compounds for U values lower than 7 eV.

  13. Study of 4f hybridization in CeNiX with X=Sn{sub d}eltaGe{sub 1-d}elta, 0<=delta<=1

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, C. de la, E-mail: cesar@unizar.e [Depto. Fisica de la Materia Condensada, Laboratorio de Magnetismo, Universidad de Zaragoza and ICMA-CSIC (Spain); Moral, A. del [Depto. Fisica de la Materia Condensada, Laboratorio de Magnetismo, Universidad de Zaragoza and ICMA-CSIC (Spain); Adroja, D.T. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fraile, A. [Depto. Fisica de la Materia Condensada, Laboratorio de Magnetismo, Universidad de Zaragoza and ICMA-CSIC (Spain); Arnaudas, J.I. [Instituto de Nanociencia de Aragon, Universidad de Zaragoza (Spain)

    2010-05-15

    We report inelastic neutron scattering and core-level X-ray photoemission spectroscopy experiments for studying the Kondo problem in the CeNiX, X=Sn{sub d}eltaGe{sub 1-d}elta 0<=delta<=1 series. The neutron results confirm that they behave like a Kondo lattice for delta>=0.85, showing broad maxima at around 30 meV, typical of a crystal field magnetic scattering. So, the Ge doping could produce the suppression of the cerium magnetism observed for delta<=0.25. To open a more deep sight on this point, we have analyzed the 3d core-level XPS spectra by using the well-known Gunnarsson-Schoenhammer model. From this analysis, we have obtained the 'on-site' Coulomb bare repulsion for f states, U, and hybridization parameter, DELTA, related with the hopping from the f states to the conduction ones. These U values are very similar for all compounds, about 7 eV, but the hybridization parameter slightly changes from 0.2 to 0.16 eV on increasing the Sn concentration. In Sn-rich compounds, the 4f occupation is close to spin limit fluctuation, which allows us to obtain an estimation of the Kondo temperatures, approx1200 K, and the static 0 K susceptibility, approx1.1x10{sup -3} emu/mol. Finally, we have done 'ab-initio' calculations based on the LDA+U+SO which confirm the existence of a small electronic gap opening in the DOS of Ge-rich compounds for U values lower than 7 eV.

  14. Type II band alignment in Ge1-x-ySixSny/Ge1-α-βSiαSnβ heterojunctions

    Science.gov (United States)

    Dey, Swagata; Mukhopadhyay, Bratati; Sen, Gopa; Basu, P. K.

    2018-02-01

    We have examined type II band alignment in Ge1-x-ySixSny/Ge1-α-βSiαSβ heterojunctions grown on virtual substrates in Si platform. It is found that, for different values of x, y, α and β, direct band gap type II band line up can be achieved for both tensile and compressive strains. The calculated band gap energy corresponds to the mid infrared to far infrared regions in the electromagnetic spectrum.

  15. Characteristics of SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generator and aspects of radiolabelling DOTA-peptides

    Energy Technology Data Exchange (ETDEWEB)

    Blois, Erik de; Chan, Ho Sze [Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands); Naidoo, Clive; Prince, Deidre [iThemba Labs, Somerset West, Republic of South Africa (South Africa); Krenning, Eric P. [Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands); Department of Internal Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands); Breeman, Wouter A.P., E-mail: w.a.p.breeman@erasmusmc.n [Department of Nuclear Medicine, Erasmus MC Rotterdam, Rotterdam (Netherlands)

    2011-02-15

    Objectives: PET scintigraphy with {sup 68}Ga-labelled analogs is of increasing interest in Nuclear Medicine and performed all over the world. Here we report the characteristics of the eluate of SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generators prepared by iThemba LABS (Somerset West, South Africa). Three purification and concentration techniques of the eluate for labelling DOTA-TATE and concordant SPE purifications were investigated. Methods: Characteristics of 4 SnO{sub 2}-based generators (range 0.4-1 GBq {sup 68}Ga in the eluate) and several concentration techniques of the eluate (HCl) were evaluated. The elution profiles of SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generators were monitored, while [HCl] of the eluens was varied from 0.3-1.0 M. Metal ions and sterility of the eluate were determined by ICP. Fractionated elution and concentration of the {sup 68}Ga eluate were performed using anion and cation exchange. Concentrated {sup 68}Ga eluate, using all three concentration techniques, was used for labelling of DOTA-TATE. {sup 68}Ga-DOTA-TATE-containing solution was purified and RNP increased by SPE, therefore also 11 commercially available SPE columns were investigated. Results: The amount of elutable {sup 68}Ga activity varies when the concentration of the eluens, HCl, was varied, while {sup 68}Ge activity remains virtually constant. SnO{sub 2}-based {sup 68}Ge/{sup 68}Ga generator elutes at 0.6 M HCl >100% of the {sup 68}Ga activity at calibration time and {+-}75% after 300 days. Eluate at discharge was sterile and Endotoxins were <0.5 EU/mL, RNP was always <0.01%. Metal ions in the eluate were <10 ppm (in total). Highest desorption for anion purification was obtained with the 30 mg Oasis WAX column (>80%). Highest desorption for cation purification was obtained using a solution containing 90% acetone at increasing molarity of HCl, resulted in a {sup 68}Ga desorption of 68{+-}8%. With all {sup 68}Ge/{sup 68}Ga generators and for all 3 purification methods a

  16. Two-dimensional n -InSe/p -GeSe(SnS) van der Waals heterojunctions: High carrier mobility and broadband performance

    Science.gov (United States)

    Xia, Cong-xin; Du, Juan; Huang, Xiao-wei; Xiao, Wen-bo; Xiong, Wen-qi; Wang, Tian-xing; Wei, Zhong-ming; Jia, Yu; Shi, Jun-jie; Li, Jing-bo

    2018-03-01

    Recently, constructing van der Waals (vdW) heterojunctions by stacking different two-dimensional (2D) materials has been considered to be effective strategy to obtain the desired properties. Here, through first-principles calculations, we find theoretically that the 2D n -InSe/p -GeSe(SnS) vdW heterojunctions are the direct-band-gap semiconductor with typical type-II band alignment, facilitating the effective separation of photogenerated electron and hole pairs. Moreover, they possess the high optical absorption strength (˜105 ), broad spectrum width, and excellent carrier mobility (˜103c m2V-1s-1 ). Interestingly, under the influences of the interlayer coupling and external electric field, the characteristics of type-II band alignment is robust, while the band-gap values and band offset are tunable. These results indicate that 2D n -InSe/p -GeSe(SnS) heterojunctions possess excellent optoelectronic and transport properties, and thus can become good candidates for next-generation optoelectronic nanodevices.

  17. Multielemental Determination of As, Bi, Ge, Sb, and Sn in Agricultural Samples Using Hydride Generation Coupled to Microwave-Induced Plasma Optical Emission Spectrometry.

    Science.gov (United States)

    Machado, Raquel C; Amaral, Clarice D B; Nóbrega, Joaquim A; Araujo Nogueira, Ana Rita

    2017-06-14

    A microwave-induced plasma optical emission spectrometer with N 2 -based plasma was combined with a multimode sample introduction system (MSIS) for hydride generation (HG) and multielemental determination of As, Bi, Ge, Sb, and Sn in samples of forage, bovine liver, powdered milk, agricultural gypsum, rice, and mineral fertilizer, using a single condition of prereduction and reduction. The accuracy of the developed analytical method was evaluated using certified reference materials of water and mineral fertilizer, and recoveries ranged from 95 to 106%. Addition and recovery experiments were carried out, and the recoveries varied from 85 to 117% for all samples evaluated. The limits of detection for As, Bi, Ge, Sb, and Sn were 0.46, 0.09, 0.19, 0.46, and 5.2 μg/L, respectively, for liquid samples, and 0.18, 0.04, 0.08, 0.19, and 2.1 mg/kg, respectively, for solid samples. The method proposed offers a simple, fast, multielemental, and robust alternative for successful determination of all five analytes in agricultural samples with low operational cost without compromising analytical performance.

  18. L2₁ and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb).

    Science.gov (United States)

    Wang, Xiaotian; Cheng, Zhenxiang; Wang, Wenhong

    2017-10-20

    For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X₂YZ, i.e., Hf₂VAl, Hf₂CoZ (Z = Ga, In) and Hf₂CrZ (Z = Al, Ga, In). In this work, a series of Hf₂-based Heusler alloys, Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb), were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L2₁-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb) alloys have dropped dramatically when they form the L2₁-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L2₁-type or XA-type structures.

  19. Growth and characterization of highly tensile strained Ge{sub 1−x}Sn{sub x} formed on relaxed In{sub y}Ga{sub 1−y}P buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; D' Costa, Vijay Richard; Dong, Yuan; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Loke, Wan Khai; Yoon, Soon Fatt [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yin, Tingting; Shen, Zexiang [School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2016-03-28

    Ge{sub 0.94}Sn{sub 0.06} films with high tensile strain were grown on strain-relaxed In{sub y}Ga{sub 1−y}P virtual substrates using solid-source molecular beam epitaxy. The in-plane tensile strain in the Ge{sub 0.94}Sn{sub 0.06} film was varied by changing the In mole fraction in In{sub x}Ga{sub 1−x}P buffer layer. The tensile strained Ge{sub 0.94}Sn{sub 0.06} films were investigated by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. An in-plane tensile strain of up to 1% in the Ge{sub 0.94}Sn{sub 0.06} was measured, which is much higher than that achieved using other buffer systems. Controlled thermal anneal experiment demonstrated that the strain was not relaxed for temperatures up to 500 °C. The band alignment of the tensile strained Ge{sub 0.94}Sn{sub 0.06} on In{sub 0.77}Ga{sub 0.23}P was obtained by high resolution x-ray photoelectron spectroscopy. The Ge{sub 0.94}Sn{sub 0.06}/In{sub 0.77}Ga{sub 0.23}P interface was found to be of the type I band alignment, with a valence band offset of 0.31 ± 0.12 eV and a conduction band offset of 0.74 ± 0.12 eV.

  20. Singlet-triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I)

    Science.gov (United States)

    Vessally, Esmail; Dehbandi, Behnam; Ahmadi, Elaheh

    2016-09-01

    Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (Δ G(t-s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as-F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as-F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N-M-N angle, and the Δ(LUMO-HOMO) of XC2HN2M.

  1. Critical thickness of transition from 2D to 3D growth and peculiarities of quantum dots formation in GexSi1-x/Sn/Si and Ge1-ySny/Si systems

    Science.gov (United States)

    Lozovoy, Kirill A.; Kokhanenko, Andrey P.; Voitsekhovskii, Alexander V.

    2018-03-01

    Nowadays using of tin as one of the deposited materials in GeSi/Sn/Si, GeSn/Si and GeSiSn/Si material systems is one of the most topical problems. These materials are very promising for various applications in nanoelectronics and optoelectronics due to possibility of band gap management and synthesis of direct band semiconductors within these systems. However, there is a lack of theoretical investigations devoted to the peculiarities of germanium on silicon growth in the presence of tin. In this paper a new theoretical approach for modeling growth processes of binary and ternary semiconductor compounds during the molecular beam epitaxy in these systems is presented. The established kinetic model based on the general nucleation theory takes into account the change in physical and mechanical parameters, diffusion coefficient and surface energies in the presence of tin. With the help of the developed model the experimentally observed significant decrease in the 2D-3D transition temperatures for GeSiSn/Si system compared to GeSi/Si system is theoretically explained for the first time in the literature. Besides that, the derived expressions allow one to explain the experimentally observed temperature dependencies of the critical thickness, as well as to predict the average size and surface density of quantum dots for different contents and temperatures in growth experiment, that confirms applicability of the model proposed. Moreover, the established model can be easily applied to other material systems in which the Stranski-Krastanow growth mode occurs.

  2. Synthesis and some coordination chemistry of the PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4, attempts to prepare the PSiP analogue, and the effect of the E atom on the molecular structures of E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn).

    Science.gov (United States)

    Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego

    2018-03-26

    The non-donor-stabilized PSnP pincer-type stannylene Sn(NCH2PtBu2)2C6H4 (1) has been prepared by treating SnCl2 with Li2(NCH2PtBu2)2C6H4. All attempts to synthesize the analogous PSiP silylene by reduction of the (previously unknown) silanes SiCl2(NCH2PtBu2)2C6H4 (2), SiHCl(NCH2PtBu2)2C6H4 (3) and SiH(HMDS)(NCH2PtBu2)2C6H4 (4; HMDS = N(SiMe3)2) have been unsuccessful. The almost planar (excluding the tert-butyl groups) molecular structure of stannylene 1 (determined by X-ray crystallography) has been rationalized with the help of DFT calculations, which have shown that, in the series of diphosphanetetrylenes E(NCH2PtBu2)2C6H4 (E = C, Si, Ge, Sn), the most stable conformation of the compounds with E = Ge and Sn has both P atoms very close to the EN2C6H4 plane, near (interacting with) the E atom, whereas for the compounds with E = C and Si, both phosphane groups are located at one side of the EN2C6H4 plane and far away from the E atom. The size of the E atom and the strength of stabilizing donor-acceptor PE interactions (both increase on going down in group 14) are key factors in determining the molecular structures of these diphosphanetetrylenes. The syntheses of the chloridostannyl complexes [Rh{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η4-cod)] (5), [RuCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η6-cym)] (6) and [IrCl{κ2Sn,P-SnCl(NCH2PtBu2)2C6H4}(η5-C5Me5)] (7) have demonstrated the tendency of stannylene 1 to insert its Sn atom into M-Cl bonds of transition metal complexes and the preference of the resulting PSnP chloridostannyl group to act as a κ2Sn,P-chelating ligand, maintaining an uncoordinated phosphane fragment. X-ray diffraction data (of 6), 31P{1H} NMR data (of 5-7) and DFT calculations (on 6) are consistent with the existence of a weak PSn interaction involving the non-coordinated P atom of complexes 5-7, similar to that found in stannylene 1.

  3. Influence of dopant segregation on the work function and electrical properties of Ge-doped in comparison to Sn-doped In{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Karoline L.; Hubmann, Andreas H.; Klein, Andreas [Surface Science Division, Institute of Materials Science, Technische Universitaet Darmstadt (Germany)

    2017-02-15

    Ge-doped In{sub 2}O{sub 3} thin films prepared by magnetron sputtering are studied using photoelectron spectroscopy and Hall effect measurements. Carrier conductivities of up to 8.35 x 10{sup 3} S cm{sup -1} and carrier mobilities of up to 57 cm{sup 2} V{sup -1}s{sup -1} are observed. The surface Ge concentration is enhanced by a factor of 2-3 compared to the concentration in the interior of the films. The surface Ge concentration increases with more oxidizing deposition conditions, in opposite to what has been reported for Sn-doped In{sub 2}O{sub 3}. Ge-doped In{sub 2}O{sub 3} films exhibit higher work functions as compared to Sn-doped films, in particular at oxidizing conditions. This is attributed to the formation of a GeO{sub 2} surface phase. While segregation of Sn reduces the carrier mobility due to grain boundary scattering, Ge segregation does not show such an effect. The differences are attributed to the different oxidation states of the segregated dopants, in agreement with the observed dependence of segregation on oxygen activity. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Syntheses and structural characterization of non-centrosymmetric Na{sub 2}M{sub 2}M'S{sub 6} (M, M′=Ga, In, Si, Ge, Sn, Zn, Cd) sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Yohannan, Jinu P.; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2016-06-15

    Seven new non-centrosymmetric Na{sub 2}M{sub 2}M’S{sub 6} sulfides, namely, Na{sub 2}Sn{sub 2}ZnS{sub 6}(1){sub ,} Na{sub 2}Ga{sub 2}GeS{sub 6}(2), Na{sub 2}Ga{sub 2}SnS{sub 6}(3-α), Na{sub 2}Ga{sub 2}SnS{sub 6}(3-β){sub ,} Na{sub 2}Ge{sub 2}ZnS{sub 6}(4){sub ,} Na{sub 2}Ge{sub 2}CdS{sub 6}(5){sub ,} Na{sub 2}In{sub 2}SiS{sub 6}(6) and Na{sub 2}In{sub 2}GeS{sub 6}(7), were synthesized by high temperature solid state reactions and structurally characterized by single crystal X-ray diffraction. They crystallize in non-centrosymmetric Fdd2 and Cc space groups and their three-dimensional [M{sub 2}M′S{sub 6}]{sup 2-}framework structures consist of MS{sub 4} and M′S{sub 4} tetrahedra corner-connected to one another in either orderly or disordered fashion. Sodium ions reside in the tunnels of the anionic framework. Compounds 1, 2 and 3-α have the structure of known Li{sub 2}Ga{sub 2}GeS{sub 6}, whereas compounds 6 and 7 are isostructural with known Li{sub 2}In{sub 2}GeS{sub 6} compound. Isostructural compounds 4 and 5 represent a new structural variant. Compounds 3-α and its new monoclinic structural variant 3-β have disordered structural framework. All of them are wide band gap semiconductors. Na{sub 2}Ga{sub 2}GeS{sub 6}(2), Na{sub 2}Ga{sub 2}SnS{sub 6}(3), Na{sub 2}Ge{sub 2}ZnS{sub 6}(4) and Na{sub 2}In{sub 2}GeS{sub 6}(7) compounds are found to be second-harmonic generation (SHG) active. Compounds 1, 2 and 3-α melt congruently. - Graphical abstract: Na{sub 2}Ga{sub 2}GeS{sub 6}, Na{sub 2}Ga{sub 2}SnS{sub 6}, Na{sub 2}Ge{sub 2}ZnS{sub 6}, Na{sub 2}In{sub 2}GeS{sub 6}, Na{sub 2}Sn{sub 2}ZnS{sub 6}, Na{sub 2}Ge{sub 2}CdS{sub 6} and Na{sub 2}In{sub 2}SiS{sub 6} have non-centrosymmetric structures and the first four compounds are SHG active. Display Omitted - Highlights: • Seven new Na{sub 2}M{sub 2}M′S{sub 6} compounds with non-centrosymmetric structures were synthesized. • They are wide band gap semiconductors. • Na{sub 2}Ga{sub 2}GeS{sub 6}, Na{sub 2

  5. First principles-based adsorption comparison of group IV elements (C, Si, Ge, and Sn) on Au(111)/Ag(111) surface

    International Nuclear Information System (INIS)

    Chakraborty, Sudip; Rajesh, Ch.

    2012-01-01

    We have reported a first-principle investigation of the structural properties of monomer and dimer for group IV elements (C, Si, Ge, and Sn) adsorbed on the Au(111) and Ag(111) surfaces. The calculations were performed by means of a plane wave based pseudopotential method under the framework of density functional theory. The results reveal the preference of adatom to be adsorbed on the hexagonal closed packed site of the metal (111) surfaces with strong binding energy. The structures introduce interlayer forces in the adsorbate. The strong bonding with the surface atoms is a result of p–d hybridization. The adsorption energy follows a sequence as one goes down in the group IV elements which imply that the interaction of the group IV elements with Au/Ag is decreasing as the atomic number increases.

  6. The role of specific features of the electronic structure in electrical resistivity of band ferromagnets Co2Fe Z ( Z = Al, Si, Ga, Ge, In, Sn, Sb)

    Science.gov (United States)

    Kourov, N. I.; Marchenkov, V. V.; Perevozchikova, Yu. A.; Weber, H. W.

    2017-05-01

    The electrical resistivity ρ( T) of the band ferromagnets Co2FeZ (where Z = Al, Si, Ga, Ge, In, Sn, and Sb are s- and p-elements of Mendeleev's Periodic Table) has been investigated in the temperature range 4.2 K < T < 1100 K. It has been shown that the dependences ρ( T) of these alloys in a magnetically ordered state at temperatures T < T C are predominantly determined by the specific features of the electronic spectrum in the vicinity of the Fermi level. The processes of charge carrier scattering affect the behavior of the electrical resistivity ρ( T) only in the vicinity of the Curie temperature T C and above, as well as in the low-temperature range (at T ≪ T C).

  7. Systematic study of the elastic properties of Mn3AC antiperovskite with A = Zn, Al, Ga, In, Tl, Ge and Sn

    International Nuclear Information System (INIS)

    Medkour, Y.; Roumili, A.; Maouche, D.; Saoudi, A.; Louail, L.

    2012-01-01

    Highlights: ► Single crystal elastic constants C 11 , C 12 and C 44 were calculated. ► Elastic moduli for polycrystalline aggregate were obtained. ► Increasing the atomic number of A element reduces B, G′, Y and v. ► Mn 3 AlC has a high melting point and light weight. - Abstract: First principle calculations were made to investigate the elastic properties of Mn 3 AC antiperovskites, A = Zn, Al, Ga, In, Tl, Ge and Sn. The estimated equilibrium lattice parameters are in agreement with the experimental ones. From the single crystal elastic constants we have calculated the polycrystalline elastic moduli: the bulk modulus B, shear modulus G, tetragonal shear modulus G′, Young’s modulus Y, Cauchy’s pressure CP, Poisson’s ratio v, elastic anisotropy factor and Pugh’s criterion G/B. Using Debye’s approximation we have deduced the elastic wave velocities and Debye’s temperature.

  8. Crystallographic and 119Sn and 155Gd Moessbauer analyses of Gd5Ge2(Si1-xSnx)2 (x = 0.23 and x = 0.40)

    International Nuclear Information System (INIS)

    Campoy, J. C. P.; Santos, A. O. dos; Cardoso, L. P.; Paesano, A.; Raposo, M. T.; Fabris, J. D.

    2010-01-01

    We report the structural characterization of Gd 5 Ge 2 (Si 1-x Sn x ) 2 (x = 0.23 and x = 0.40) compounds by means of 100 and 298 K-X-ray diffractometry (XRD) and 4 K- 155 Gd and 298 K- 119 Sn Moessbauer spectroscopy. These compounds order ferromagnetically at 218.4 and 172.7 K, respectively. At ∼100 K, it was identified the Gd 5 Si 4 -orthorhombic phase (type I) for both samples. At ∼298 K, it was identified a Gd 5 Si 2 Ge 2 -monoclinic phase, for x = 0.23 and a Sm 5 Sn 4 -orthorhombic phase (type II), for x 0.40. The Rietveld analysis of XRD data suggests a first order magneto-structural transition at Curie temperature for both compositions. Moessbauer results are well consistent with the proposed crystallographic models for these systems.

  9. Mechanisms for the reactions of group 10 transition metal complexes with metal-group 14 element bonds, Bbt(Br)E═M(PCy3)2 (E = C, Si, Ge, Sn, Pb; M = Pd and Pt).

    Science.gov (United States)

    Liao, Wei-Hung; Ho, Pei-Yun; Su, Ming-Der

    2013-02-04

    The electronic structures of the Bbt(Br)E═M(PCy(3))(2) (E = C, Si, Ge, Sn, Pb and M = Pt, Pd) complexes and their potential energy surfaces for the formation and water addition reactions were studied using density functional theory (B3LYP/LANL2DZ). The theoretical evidence suggests that the bonding character of the E═M double bond between the six valence-electron Bbt(Br)E: species and the 14 valence-electron (PCy(3))(2)M complexes has a predominantly high s-character. That is, on the basis of the NBO, this theoretical study indicates that the σ-donation from the E element to the M atom prevails. Also, theoretical computations suggest that the relative reactivity decreases in the order: Bbt(Br)C═M(PCy(3))(2) > Bbt(Br)Si═M(PCy(3))(2) > Bbt(Br)Ge═M(PCy(3))(2) > Bbt(Br)Sn═M(PCy(3))(2) > Bbt(Br)Pb═M(PCy(3))(2), irrespective of whether M = Pt or M = Pd is chosen. Namely, the greater the atomic weight of the group 14 atom (E), the larger is the atomic radius of E and the more stable is its Bbt(Br)E═M(PCy(3))(2) doubly bonded species toward chemical reactions. The computational results show good agreement with the available experimental observations. The theoretical results obtained in this work allow a number of predictions to be made.

  10. Ga2O for target, solvent extraction for radiochemical separation and SnO2 for the preparation of a 68Ge/68Ga generator

    International Nuclear Information System (INIS)

    Aardaneh, K.; Walt, T.N. van der

    2006-01-01

    The target for the production of 68 Ge consists of a disc of gallium suboxide, Ga 2 O, with a 19 mm diameter. The suboxide was primarily prepared by repeatedly mixing metallic Ga and Ga 2 O 3 at 700 deg C. The target (2.4 g) was quite stable under a long-time irradiation with a 34 MeV proton beam at a current of ∼80 μA. The dissolution of the target was performed using 12M sulphuric acid solution, assisted with the dropwise addition of 30% H 2 O 2 solution, and took less than 4 hours. A solvent extraction method, using a 9M H 2 SO 4 - 0.3M HCl/CCl 4 system, was employed for the radiochemical separation of 68 Ge from Ga and Zn radionuclides, while 0.05M HCl was used for the back extraction of 68 Ge from the organic phase. The 68 Ge obtained in the dilute HCl was directly loaded onto a column containing either a hydrous tin dioxide or a crystalline tin dioxide, obtained by calcinations of the hydrous oxide at 450, 700, and 900 deg C. The calcinated hydrous tin dioxide at 900 deg C showed the highest crystallinity and highest 68 Ga elution yield and was selected for use in the generator. The 68 Ga elution from the column generator packed with 2 g of tin dioxide, using 3 ml of 1M HCl, and yielded an average of 65%. The breakthrough of 68 Ge was 6.1 x 10 -4 %. (author)

  11. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    DEFF Research Database (Denmark)

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin

    2012-01-01

    . By taking advantage of the chemical differences between the two crystallographically inequivalent Sn sites in the structure, we observe ordered ternary phases, nominally Co3SnGe2 and Co3Sn2Ge. The electron count and unit cell configuration remain unchanged from CoSn; these observations thus help to clarify...

  12. A search for heavy stable and long-lived squarks and sleptons in $e^+ e^-$ collisions at energies from 130 to 183 GeV

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertini, D.; Bertrand, D.; Besancon, M.; Bianchi, F.; Bigi, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Bonivento, W.; Boonekamp, M.; Booth, P.S.L.; Borgland, A.W.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Branchini, P.; Brenke, T.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Burgsmuller, T.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camacho Rozas, A.J.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Chapkin, M.; Charpentier, P.; Chaussard, L.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Collins, P.; Colomer, M.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Cowell, J.H.; Crawley, H.B.; Crennell, D.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Damgaard, G.; Davenport, M.; Da Silva, W.; Deghorain, A.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Brabandere, S.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J.D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J.P.; Erzen, B.; Espirito Santo, M.C.; Harris, Elisabeth Falk; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Fenyuk, A.; Ferrari, P.; Ferrer, A.; Ferrer-Ribas, E.; Fichet, S.; Firestone, A.; Fischer, P.A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Garcia, J.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gorski, M.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Green, C.; Grimm, H.J.; Gris, P.; Grzelak, K.; Gunther, M.; Guy, J.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Harris, F.J.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Holthuizen, D.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huet, K.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kersevan, B.P.; Khomenko, B.A.; Khovansky, N.N.; Kiiskinen, A.; King, B.; Kjaer, N.J.; Klapp, O.; Klein, Hansjorg; Kluit, P.; Kokkinias, P.; Koratzinos, M.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krammer, M.; Kreuter, C.; Kriznic, E.; Krstic, J.; Krumshtein, Z.; Kubinec, P.; Kucewicz, W.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Langefeld, P.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liko, D.; Lipniacka, A.; Lippi, I.; Lorstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti i Garcia, S.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazik, J.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjoernmark, U.; Moa, T.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moreau, X.; Morettini, P.; Morton, G.; Muller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Navarria, F.L.; Navas, Sergio; Nawrocki, K.; Negri, P.; Neufeld, N.; Neumeister, N.; Nicolaidou, R.; Nielsen, B.S.; Nikolenko, M.; Nomokonov, V.; Normand, A.; Nygren, A.; Obraztsov, V.; Olshevski, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Papageorgiou, K.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passon, O.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rakoczy, D.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schneider, H.; Schwemling, P.; Schwickerath, U.; Schyns, M.A.E.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Segar, A.M.; Sekulin, R.; Shellard, R.C.; Sheridan, A.; Siebel, M.; Silvestre, R.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Skaali, T.B.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G.R.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Spiriti, E.; Sponholz, P.; Squarcia, S.; Stampfer, D.; Stanescu, C.; Stanic, S.; Stapnes, S.; Stevenson, K.; Stocchi, A.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Tilquin, A.; Timmermans, Jan; Tkachev, L.G.; Todorova, S.; Toet, D.Z.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortora, L.; Transtromer, G.; Treille, D.; Tristram, G.; Troncon, C.; Tsirou, A.; Turluer, M.L.; Tyapkin, I.A.; Tzamarias, S.; Uberschar, B.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Vander Velde, C.; Van Apeldoorn, G.W.; Van Dam, Piet; Van Doninck, Walter; Van Eldik, J.; Van Lysebetten, A.; Van Vulpen, I.; Vassilopoulos, N.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Vollmer, C.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zaitsev, A.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zucchelli, G.C.; Zumerle, G.

    1998-01-01

    A search for stable and long-lived heavy charged particles used the data taken by the DELPHI experiment at energies from 130 to 183 GeV. The Cherenkov light detected in the Ring Imaging Cherenkov Detector and the ionization loss measured in the Time Projection Chamber identify heavy particles from masses of 2 to nearly 89 GeV/c$^2$. Upper limits are given on the production cross-section and masses of sleptons, free squarks with a charge of $q = \\pm 2/3e$ and hadronizing squarks.

  13. Search for Stable Heavy Charged Particles in $e^+ e^-$ Collisions at $\\sqrt{s}$ = 130-136, 161 and 172 GeV

    CERN Document Server

    Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Novák, M; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chernyaev, E; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G

    1997-01-01

    A search for stable or long-lived heavy charged particles in $e^+e^-$ interactions at energies of 130-136, 161 and 172 GeV has been performed using the data taken by the DELPHI experiment at LEP. The search is based on particle identification provided by the Time Projection Chamber and the Ring Imaging Cherenkov detector. Upper limits at 95\\% confidence level are derived on the cross-section for heavy long-lived pair-produced charge $\\pm e$ and $\\pm 2/3e$ particles in the range of 0.4-2.3 pb for masses from 45 to 84 GeV/$c^2$. Within supersymmetric extensions of the Standard Model, long-lived charginos with masses from 45 to 84 (80)~GeV/$c^2$ for high (low) sneutrino masses can be excluded at 95\\% confidence level. %Mass limits for long-lived sleptons are obtained. %For selectrons no general mass limits can be given. Left-handed (right-handed) long-lived or stable smuons and staus with masses between 45 and 68 (65)~GeV/$c^2$ can be excluded at 95\\% confidence level.

  14. Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery.

    Science.gov (United States)

    Wang, Lei; Wang, Dong; Dong, Zhihui; Zhang, Fengxing; Jin, Jian

    2013-04-10

    From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO2 composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO2-based electrode materials. RGO/SnO2 composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO2 composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.

  15. Atomic structure of a stable high-index Ge surface: G2(103)-(4x1)

    DEFF Research Database (Denmark)

    Seehofer, L.; Bunk, O.; Falkenberg, G.

    1997-01-01

    Based on scanning tunneling microscopy and surface X-ray diffraction, we propose a complex structural model for the Ge(103)-(4 x 1) reconstruction. Each unit cell contains two (103) double steps, which gives rise to the formation of stripes of Ge atoms oriented in the [] direction....... The stripes and the spaces between them are covered with threefold-coordinated Ge adatoms. Charge is transferred from the bulk-like edge atoms of the double steps to the adatoms. The formation of the reconstruction can be explained in terms of stress relief, charge transfer, and minimization of the dangling...

  16. Large and stable reversible lithium-ion storages from mesoporous SnO2 nanosheets with ultralong lifespan over 1000 cycles

    Science.gov (United States)

    Zhang, Xiao; Jiang, Bin; Guo, Jinxue; Xie, Yaping; Tang, Lin

    2014-12-01

    The major challenge to promote the commercialization of SnO2 anode materials is to construct unique structures and/or composites that could alleviate the volume effect and extend the lifespan. This study develops an efficient synthetic solution for the preparation of mesoporous SnO2 nanosheets, which involves an evaporation-induced selfassembly process and the following thermal treatment. Surfactant F127 is used as the soft template to form abundant cores. The as-prepared sample intrinsically inherits flexible sheet-like structure and porous features, as characterized with XRD, SEM, TEM and BET techniques. Based on these combining structural benefits, the sample is utilized as anode materials for lithium-ion batteries and exhibits excellent Li+ storage performance such as large and stable reversible capacity, good rate capability, and especially the outstanding durable cycling life of over 1000 cycles, which meets the demands of practical applications. The structural changes of SnO2 nanosheets are observed from the decomposed electrodes after different electrochemical cycles. Moreover, this synthesis strategy may offer an alternative and universal approach for synthesis of other transitional metal oxides or their binary composites as high-performance anode materials for lithium-ion batteries.

  17. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Dequan; Liu, Zheng Jiao; Li, Xiuwan; Xie, Wenhe; Wang, Qi; Liu, Qiming; Fu, Yujun; He, Deyan

    2017-12-01

    To satisfy the increasing energy demands of portable electronics, electric vehicles, and miniaturized energy storage devices, improvements to lithium-ion batteries (LIBs) are required to provide higher energy/power densities and longer cycle lives. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes are promising candidates for use as electrodes in next-generation LIBs owing to their extremely high gravimetric and volumetric capacities, low working voltages, and natural abundances. However, due to the violent volume changes that occur during lithium-ion insertion/extraction and the formation of an unstable solid electrolyte interface, the use of Group IVA element-based anodes in commercial LIBs is still a great challenge. Evaluating the electrochemical performance of an anode in a full-cell configuration is a key step in investigating the possible application of the active material in LIBs. In this regard, the recent progress and important approaches to overcoming and alleviating the drawbacks of Group IVA element-based anode materials are reviewed, such as the severe volume variations during cycling and the relatively brittle electrode/electrolyte interface in full-cell LIBs. Finally, perspectives and future challenges in achieving the practical application of Group IVA element-based anodes in high-energy and high-power-density LIB systems are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-field magnetostriction in CeNiSn{sub 1-x}Ge{sub x} (0<=x<=1) strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Moral, A. del, E-mail: delmoral@unizar.e [Laboratorio de Magnetismo de Solidos, Departamento de Fisica de Materia Condensada and ICMA, Universidad de Zaragoza and CSIC, 50009 Zaragoza (Spain); Fuente, C. de la [Laboratorio de Magnetismo de Solidos, Departamento de Fisica de Materia Condensada and ICMA, Universidad de Zaragoza and CSIC, 50009 Zaragoza (Spain)

    2010-05-15

    Magnetization (down to 1.8 K and up to 9 T) and magnetostriction (down to 4.2 K and up to 30 T) measurements have been performed in the series of polycrystalline intermetallics CeNiSn{sub 1-x}Ge{sub x} (0<=x<=1), which show a crossover from Kondo-lattice to fluctuating valence behaviors with x increase. Magnetostriction observed can be denominated as 'colossal' for a paramagnet (up to 0.68% at 150 K and 30 T), with no sign of saturation. Field, H, induced metamagnetic transitions associated to a change in Ce valence are observed. Three kinds of analysis of magnetostriction have been performed to ascertain the magnetostriction origin. At relatively low field and low temperatures these systems follow well the standard theory of magnetostriction (STM), revealing single-ion crystal field and exchange origins, and a determination of the alpha-symmetry microscopic magnetoelastic parameters have been performed. The valence transition is well explained in terms of the interconfigurational model, which needs an extension up to power H{sup 4}. Application of the scaling (thermodynamics corresponding low states) allows the obtainment of the Grueneisen constant, which increases with x. Needed elastic constants measurements are also reported.

  19. Effect of Sn additive on the structure and crystallization kinetics in Ge–Se alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrahman, M.I., E-mail: mostafaia11@yahoo.com; Hafiz, M.M.; Abdelraheem, A.M.; Abu-Sehly, A.A.

    2016-08-05

    The structure of Ge{sub 20}Se{sub 80−x}Snx glassy alloys and crystallization phases are identified using the X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). The glass transition kinetics and the crystallization mechanism of the system are studied using Differential Scanning Calorimeter (DSC) under non-isothermal condition. The results reveal that glass transition temperature (Tg) increases with increasing Sn content which is attributed to the increase in the coordination number. The increase of the glass transition activation energy (Eg) with increasing Sn content is attributed to the decrease in the internal energy of the system as Sn increases. The compositional dependence of both glass forming ability and thermal stability are studied. From the experimental data, the thermal stability parameter (S) is found to be maximum for Ge{sub 20}Se{sub 78}Sn{sub 2} alloy, which indicates that this alloy is thermally more stable in the composition range under investigation. The effect of composition on the crystallization mechanism is discussed using different kinetic models. The crystallization activation energy (Ec) decreases with increasing Sn. This is attributed to the addition of Sn increases the tendency of crystallization. The calculated values of Avrami exponent (n) indicates the crystallization process occurs in one-and two dimensions for Sn is less than or equals 12 at%, respectively. - Highlights: • Glass and crystallization transitions in Ge{sub 20}Se{sub 80−x}Sn{sub x} candidate for devices. • The addition of Sn increases the tendency of Ge-Se alloy to crystallization. • The glass forming ability and thermal stability increase as Sn decreases. • The dimension of the crystals growth is one or two depending on the Sn content.

  20. Search for stable and long-lived massive charged particles in $e^{+} e^{-}$ collisions at $\\sqrt{s}$ = 130-183 GeV

    CERN Document Server

    Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Clarke, P.E.L.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Foucher, M.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hart, P.A.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; List, B.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Oldershaw, N.J.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Rossi, A.M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Springer, Robert Wayne; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, David M.; Strohmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Utzat, P.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Vokurka, E.H.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-01-01

    A search for stable and long-lived massive particles of electric charge |Q/e| = 1 or 2/3, pair-produced in e+e- collisions at centre-of-mass energies from 130 to 183 GeV, is reported by the OPAL collaboration at LEP. No evidence for production of these particles was observed in a mass range between 45 and 89.5 GeV. Model-independent upper limits on the production cross-section between 0.05 and 0.19 pb have been derived for scalar and spin-1/2 particles with charge +/-1. Within the framework of the minimal supersymmetric model (MSSM), this implies a lower limit of 82.5 (83.5) GeV on the mass of long-lived right- (left-)handed scalar muons and scalar taus. Long-lived charged leptons and charginos are excluded for masses below 89.5 GeV. For particles with charge +/-2/3 the upper limits on the production cross-section vary between 0.05 and 0.2 pb. All limits, on masses and on cross-sections, are valid at the 95% confidence level for particles with lifetimes longer than 10^{-6} s.

  1. Ground state properties and thermoelectric behavior of Ru{sub 2}VZ (Z=Si, ge, sn) half-metallic ferromagnetic full-Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, Battal Gazi

    2016-06-15

    The ground state properties namely structural, mechanical, electronic and magnetic properties and thermoelectric behavior of Ru{sub 2}VZ (Z=Si, Ge and Sn) half-metallic ferromagnetic full-Heusler compounds are systematically investigated. These compounds are ferromagnetic and crystallize in the Heusler type L2{sub 1} structure (prototype: Cu{sub 2}MnAl, Fm-3m 225). This result is confirmed for Ru{sub 2}VSi and Ru{sub 2}VSn by experimental work reported by Yin and Nash using high temperature direct reaction calorimetry. The studied materials are half-metallic ferromagnets with a narrow direct band gap in the minority spin channel that amounts to 31 meV, 66 meV and 14 meV for Ru{sub 2}VSi, Ru{sub 2}VGe, and Ru{sub 2}VSn, respectively. The total spin magnetic moment (M{sub tot}) of the considered compounds satisfies a Slater–Pauling type rule for localized magnetic moment systems (M{sub tot}=(N{sub V}−24)µ{sub B}), where N{sub V}=25 is the number of valence electrons in the primitive cell. The Curie temperature within the random phase approximation (RPA) is found to be 23 K, 126 K and 447 K for Ru{sub 2}VSi, Ru{sub 2}VGe and Ru{sub 2}VSn, respectively. Semi-classical Boltzmann transport theories have been used to obtain thermoelectric constants, such as Seebeck coefficient (S), electrical (σ/τ) and thermal conductivity (κ/τ), power factor (PF) and the Pauli magnetic susceptibility (χ). ZT{sub MAX} values of 0.016 (350 K), 0.033 (380 K) and 0.063 (315 K) are achieved for Ru{sub 2}VSi, Ru{sub 2}VGe and Ru{sub 2}VSn, respectively. It is expected that the obtained results might be a trigger in future experimentally interest in this type of full-Heusler compounds. - Graphical abstract: Temperature dependence of figure of merit for Ru{sub 2}VZ (Z=Si, Ge, and Sn) compounds. - Highlights: • The ground state and thermoelectric properties are reported for the first time. • Ru{sub 2}VZ are found to be a half-metallic ferromagnetic full Heusler compound. • The

  2. Vacancy-induced brittle to ductile transition of W-M co-doped Al3Ti (M=Si, Ge, Sn and Pb).

    Science.gov (United States)

    Zhu, Mingke; Wu, Ping; Li, Qiulin; Xu, Ben

    2017-10-25

    We investigated the effect of vacancy formation on brittle (D0 22 ) to ductile (L1 2 -like) transition in Al 3 Ti using DFT calculations. The well-known pseudogap on the density of states of Al 3 Ti migrates towards its Fermi level from far above, via a W - M co-doping strategy, where M is Si, Ge, Sn or Pb respectively. In particular, by a W - M co-doping the underline electronic structure of the pseudogap approaches an octahedral (L1 2 : t 2g , e g ) from the tetragonal (D0 22 : e g , b 2g , a 1g , b 1g ) crystal field. Our calculations demonstrated that (1) a W-doping is responsible for the close up of the energy gap between a 1g and b 1g so that they tend to merge into an e g symmetry, and (2) all M-doping lead to a narrower gap between e g and b 2g (moving towards a t 2g symmetry). Thus, a brittle to ductile transition in Al 3 Ti is possible by adopting this W - M co-doping strategy. We further recommend the use of W-Pb co-doped Al 3 Ti to replace the less anodic Al electrode in Al-battery, due to its improved ductility and high Al diffusivity. Finally this study opens a new field in physics to tailor mechanical properties by manipulating electron energy level(s) towards higher symmetry via vacancy optimization.

  3. 0(gs)+ -->2(1)+ transition strengths in 106Sn and 108Sn.

    Science.gov (United States)

    Ekström, A; Cederkäll, J; Fahlander, C; Hjorth-Jensen, M; Ames, F; Butler, P A; Davinson, T; Eberth, J; Fincke, F; Görgen, A; Górska, M; Habs, D; Hurst, A M; Huyse, M; Ivanov, O; Iwanicki, J; Kester, O; Köster, U; Marsh, B A; Mierzejewski, J; Reiter, P; Scheit, H; Schwalm, D; Siem, S; Sletten, G; Stefanescu, I; Tveten, G M; Van de Walle, J; Van Duppen, P; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Zielińska, M

    2008-07-04

    The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.222(19)e2b2 for 108Sn and B(E2; 0(gs)+-->2(1)+)=0.195(39)e2b2 for 106Sn were determined relative to a stable 58Ni target. The resulting B(E2) values are approximately 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N=Z=50 shell closure.

  4. Search for Heavy Stable and Long-Lived Particles in $e^{+}e^{-}$ Collisions at $\\sqrt{s}$=189 GeV

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, Dmitri Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Bigi, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borgland, A.W.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Crawley, H.B.; Crennell, D.; Crepe-Renaudin, Sabine; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J.D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Fichet, S.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Huet, K.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanski, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Klein, Hansjorg; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krammer, M.; Kriznic, E.; Krumstein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Meroni, C.; Meyer, W.T.; Miagkov, A.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjoernmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Moreau, X.; Morettini, P.; Morton, G.; Mueller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Navas, Sergio; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.; Olshevski, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Royon, C.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Y.; Segar, A.M.; Seibert, N.; Sekulin, R.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Solovianov, O.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanic, S.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Van den Boeck, W.; Van Doninck, Walter; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zucchelli, G.C.; Zumerle, G.

    2000-01-01

    A search for stable and long-lived heavy charged particles was performed using the data taken by the DELPHI experiment at an energy of 189 GeV. The Cherenkov light detected in the Ring Imaging Cherenkov Detectorand the ionisation loss measured in the Time Projection Chamber were used to identify heavy particles passing through the detector. No evidence for the production of such particles has been found, therefore exclusion limits at 95% confidence level were derived on the masses of left and right handed smuons and staus. The results were combined with previous DELPHI searches in this channel.Including previous DELPHI re-020

  5. Formation of stable and metastable phases in reciprocal systems PbSe + MI2 = MSe + PbI2 (M = Hg, Mn, Sn)

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.; Gapanovich, M.V.

    2004-01-01

    Using data of differential thermal, X-ray phase and microstructural analyses, phase diagrams of reciprocal systems PbSe + MI 2 = MSe + PbI 2 (M=Hg (1), Mn (2), Sn (3)) were constructed. It was ascertained that the HgSe-PbI 2 diagonal in system 1 is stable. Transformations leading to crystallization of metastable ternary compound formed in the system PbSe-PbI 2 and metastable polytypes of lead iodide in systems 1 and 2 in the range of temperatures from 620 to 685 K were studied. New intermediate metastable phases in systems 1, 2 and 3 were prepared by melt quenching. Crystal lattice parameters of the phases crystallizing in the CdCl 2 structural type were defined [ru

  6. Search for Stable and Long-Lived Massive Charged Particles in $e^{+}e^{-}$ Collisions at $\\sqrt{s}$ = 130-209 GeV

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    A search for stable and long-lived massive particles of electric charge |Q/e|=1 or fractional charges of 2/3, 4/3, and 5/3 is reported using data collected by the OPAL detector at LEP, at centre-of-mass energies from 130 to 209 GeV. These particles are assumed to be pair-produced in e+e- collisions and not to interact strongly. No evidence for the production of these particles was observed. Model-independent upper limits on the production cross-section between 0.005 and 0.028 pb have been derived for scalar and spin-1/2 particles with charge +-1. Within the framework of the Constrained Minimal Supersymmetric Standard Model (CMSSM), this implies a lower limit of 98.0 (98.5) GeV on the mass of long-lived right (left)- handed scalar muons and scalar taus. Long-lived charged heavy leptons and charginos are excluded for masses below 102.0 GeV. For particles with fractional charge +-2/3, +-4/3, and +-5/3, the upper limit on the production cross-section varies between 0.005 and 0.020 pb. All mass and cross-section l...

  7. Mixing of fluids in hydrothermal ore-forming (Sn,W) systems: stable isotope and rare earth elements data

    Science.gov (United States)

    Sushchevskaya, T. M.; Popova, J. A.; Velivetskaya, T. A.; Ignatiev, A. V.; Matveeva, S. S.; Limantseva, O. A.

    2012-04-01

    Experimental and physico-chemical modeling data witness to important role of mixing of different type of fluids during tin and tungsten ore formation in hydrothermal systems. Mixing of magmatogeneous fluids, exsolved from granite melts, with exogenic, initially meteoric waters in hydrothermal ore-forming systems may change chemical composition of ore-forming fluid, causing cassiterite and/or wolframite precipitation (Heinrich, 1990; Sushchevskaya, Ryzhenko, 2002). We studied the process of genetically different fluids mixing for two economic Sn-W deposits, situated in the Iultin ore region (North-East of Russia, Chukotka Penninsula). The Iultin and Svetloe deposits are located in the apical parts of close situated leucogranite stocks, formed at the final stage of the Iultin complex emplacement. Both deposits are composed of a series of quartz veins among the flyschoid rocks (T 1-2), cut by the dikes (K1) of lamprophyre, granodiorite porphyre and alpite. The veins of the deposits are dominated by the productive quartz-wolframite-cassiterite-arsenopyrite-muscovite mineral assemblage. Topaz, beryl, fluorite, and albite occur sporadically. The later sulfide (loellingite-stannite-chalcopyrite) and quartz-fluorite-calcite assemblages show insignificant development. The preore quartz veinlets in host hornfels contain disseminated iron sulfides, chalcopyrite, muscovite. Isotopic (H, O, Ar) study of minerals, supplemented by oxygen isotope data of host granites and metamorphic rocks gave us possibility to conclude, that at the Iultin and the Svetloye deposits fluid mixing was fixed on the early stages of deposit formation and could be regarded as probable cause of metal (W, Sn) precipitation. During postore time the intensive involvement of isotopically light exogenic waters have changed: a) the initial character of oxygen isotope zonality; b) the initial hydrogen isotope composition of muscovites, up to meteoric calculated values for productive fluid (while the δ18O

  8. Ab initio CASSCF study of the electronic structure of the transition-metal alkylidene-like complexes Mo-M[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, A.; Sanz, J.F. (Universidad de Sevilla (Spain))

    1992-12-02

    Experimental and theoretical research on the electronic and geometric structure of transition-metal-carbenes and -alkylidenes is an active area in chemistry nowadays due to their potential activity in catalysis and in organic and organometallic synthesis. A theoretical investigation of the electronic structure of the high-valent, transition-metal, alkylidene-like complexes MoM[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn) is reported. Based on ab initio calculations carried out at the complete active space multiconfiguration self-consistent field (CASSCF) level, the molecular structure of the ground state and some low-lying excited states have been determined. For M[prime] = C, Si, and Ge, the ground state has C[sub 2v] symmetry (state [sup 5]B[sub 1]) and corresponds to pairing each electron of the M[prime]H[sub 2] triplet [sup 3]B[sub 1] with an electron of Mo ([sup 7]S). In the case of MoSnH[sub 2], the lowest state is bent (C[sub s] symmetry, state [sup 7]A[prime]), the out-of-plane angle being 68[degrees], and dissociates into SnH[sub 2] ([sup 1]A[sub 1]) + Mo ([sup 7]S). Dissociation energies, potential energy profiles for the dissociation, harmonic force constants in terms of internal symmetry coordinates, and vibrational frequencies are reported. The comparison of these properties with those of their pentacarbonylated homologous (CO)[sub 5]M[double bond]M[prime]H[sub 2] shows that the carbene-like (Fischer) type of complexation is stronger than the alkylidene-like one (Schrock). 28 refs., 4 figs., 6 tabs.

  9. Core-dependent and ligand-dependent relativistic corrections to the nuclear magnetic shieldings in MH4-n Y n (n = 0-4; M = Si, Ge, Sn, and Y = H, F, Cl, Br, I) model compounds.

    Science.gov (United States)

    Maldonado, Alejandro F; Aucar, Gustavo A; Melo, Juan I

    2014-09-01

    The nuclear magnetic shieldings of Si, Ge, and Sn in MH(4-n) Y(n) (M = Si, Ge, Sn; Y = F, Cl, Br, I and n = 1-4) molecular systems are highly influenced by the substitution of one or more hydrogens by heavy-halogen atoms. We applied the linear response elimination of small components (LRESC) formalism to calculate those shieldings and learn whether including only a few of the leading relativistic correction terms is sufficient to be able to quantitatively reproduce the full relativistic value. It was observed that the nuclear magnetic shieldings change as the number of heavy halogen substituents and their weights vary, and the pattern of σ(M) generally does not exhibit the normal halogen dependence (NHD) behavior that can be seen in similar molecular systems containing carbon atoms. We also analyzed each relativistic correction afforded by the LRESC method and split them in two: core-dependent and ligand-dependent contributions; we then looked for the electronic mechanisms involved in the different relativistic effects and in the total relativistic value. Based on this analysis, we were able to study the electronic mechanism involved in a recently proposed relativistic effect, the "heavy atom effect on vicinal heavy atom" (HAVHA), in more detail. We found that the main electronic mechanism is the spin-orbit or σ p (T(3)) correction, although other corrections such as σ p (S(1)) and σ p (S(3)) are also important. Finally, we analyzed proton magnetic shieldings and found that, for molecules containing Sn as the central atom, σ(H) decreases as the number of heavy halogen substituents (of the same type: either F, Cl, or Br) increases, albeit at different rates for different halogens. σ(H) only increase as the number of halogen substituents increases if the halogen is iodine.

  10. The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy

    Czech Academy of Sciences Publication Activity Database

    Shull, R. D.; Provenzano, V.; Shapiro, A. J.; Fu, A.; Lufaso, M. W.; Karapetrova, J.; Kletetschka, Günther; Mikula, V.

    2006-01-01

    Roč. 99, č. 8 (2006), s. 8-8 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetocaloric * (Co, Cu, Ga, Mn, Al, Bi, Sn) additions * Cryogenic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.316, year: 2006

  11. In-beam studies of {sup 98}Cd and {sup 102}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Lipoglavsek, M. [Uppsala Univ. (Sweden)]|[J. Stefan Institute, Ljubljana (Slovenia); Gorska, M.; Schubart, R. [GSI, Darmstadt (Germany)] [and others

    1996-12-31

    For the first time excited states of the neutron deficient nuclei {sup 98}Cd and {sup 102}Sn were identified using in-beam spectroscopy following fusion evaporation reactions. Half lives of long lived isomeric states in both nuclei were also measured. Due to very low cross sections for producing {sup 98}Cd and {sup 102}Sn with stable beams and targets, a special detector setup utilizing NORDBALL ancillary detectors and a recoil catcher device was used. High {gamma}-ray detection efficiency was achieved with two EUROBALL Ge cluster detectors.

  12. MAX phase – Alumina composites via elemental and exchange reactions in the Ti{sub n+1}AC{sub n} systems (A=Al, Si, Ga, Ge, In and Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Cuskelly, Dylan, E-mail: dylan.cuskelly@uon.edu.au; Richards, Erin; Kisi, Erich, E-mail: Erich.Kisi@newcastle.edu.au

    2016-05-15

    Extension of the aluminothermal exchange reaction synthesis of M{sub n+1}AX{sub n} phases to systems where the element ‘A’ is not the reducing agent was investigated in systems TiO{sub 2}–A–Al–C for A=Al, Si, Ga, Ge, In and Sn as well as Cr{sub 2}O{sub 3}–Ga–Al–C. MAX phase-Al{sub 2}O{sub 3} composites were made in all systems except those with A=Ga or In. The effectiveness of conversion to MAX phases was generally in the range 63–96% without optimisation of starting ratios. Optimisation in the Ti–Si–C system gave a MAX phase component with >98% Ti{sub 3}SiC{sub 2}. - Graphical abstract: A range of Ti{sub n+1}AX{sub n} phases with different A elements were synthesised directly from the M oxide via exchange reactions. The process has now been shown to be general in all the systems marked in green in the table. - Highlights: • Ti{sub n+1}AC{sub n} phases were produced via a single step exchange reaction. • 3 MAX phase systems were successful via this method for the first time. • Cr{sub 2}GeC was also able to be produced via an exchange reaction. • The interconversion reaction in MAX phases is more general than previously thought.

  13. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    International Nuclear Information System (INIS)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.; Vincent, B.; Gencarelli, F.; Clarysse, T.; Vandervorst, W.; Caymax, M.; Loo, R.; Jensen, A.; Petersen, D.H.; Zaima, S.

    2012-01-01

    We have investigated the Ga and Sn content dependence of the crystallinity and electrical properties of Ga-doped Ge 1-x Sn x layers that are heteroepitaxially grown on Ge(001) substrates. The doping of Ga to levels as high as the solubility limit of Ga at the growth temperature leads to the introduction of dislocations, due to the increase in the strain of the Ge 1-x Sn x layers. We achieved the growth of a fully strained Ge 0.922 Sn 0.078 layer on Ge with a Ga concentration of 5.5 × 10 19 /cm 3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge 1-x Sn x layer decreased as the Sn content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge 1-x Sn x epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge 0.950 Sn 0.050 layer annealed at 600°C for 1 min is 3.6 times less than that of the Ga-doped Ge/Ge sample. - Highlights: ► Heavy Ga-doping into fully strained GeSn layers without the introduction of dislocations ► The uniform Ga depth profile allowed the introduction of Sn ► The decrease in resistivity with an increase in the activation level of Ga was caused by the introduction of Sn

  14. New compounds bearing [M(S_2O_7)_3]"2"- anions (M = Si, Ge, Sn): Syntheses and characterization of A_2[Si(S_2O_7)_3] (A = Na, K, Rb), A_2[Ge(S_2O_7)_3] (A = Li, Na, K, Rb, Cs), A_2[Sn(S_2O_7)_3] (A = Na, K), and the unique germanate Hg_2[Ge(S_2O_7)_3]Cl_2 with cationic "1_∞[HgCl_2_/_2]"+ chains

    International Nuclear Information System (INIS)

    Logemann, Christian; Witt, Julia; Wickleder, Mathias S.; Gunzelmann, Daniel; Senker, Juergen

    2012-01-01

    The reaction of the group 14 tetrachlorides MCl_4 (M = Si, Ge, Sn) with oleum (65 % SO_3) at elevated temperatures led to the unique anionic complexes [M(S_2O_7)_3]"2"- that show the central M atoms in coordination of three chelating S_2O_7"2"- groups. The mean distances M-O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S_2O_7)_3]"2"- anions is achieved by alkaline metal ions A"+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A"+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S_2O_7)_3]"2"- anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg_2[Ge(S_2O_7)_3]Cl_2 which forms when HgCl_2 is added as a source for the counter cation. The Hg"2"+ and the Cl"- ions form infinite cationic chains according to "1_∞[HgCl_2_/_2]"+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A_2SO_4 and the dioxides MO_2, whereas Hg_2[Ge(S_2O_7)_3]Cl_2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na_2[Si(S_2O_7)_3] has additionally been examined by solid state "2"9Si and "2"3Na NMR spectroscopic measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Bonding Properties of a Novel Inorganometallic Complex, Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) (iPr-DAB = N,N'-Diisopropyl-1,4-diaza-1,3-butadiene), and its Stable Radical-Anion, Studied by UV-Vis, IR, and EPR Spectroscopy, (Spectro-) Electrochemistry, and Density Functional Calculations.

    Science.gov (United States)

    Aarnts, Maxim P.; Wilms, Maikel P.; Peelen, Karin; Fraanje, Jan; Goubitz, Kees; Hartl, Frantisek; Stufkens, Derk J.; Baerends, Evert Jan; Vlcek, Antonín

    1996-09-11

    Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) Å, b = 13.902(3) Å, c = 19.643(2) Å, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) Å(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.

  16. The effect of low platinum loading on the efficiency of PEMFC’s electrocatalysts supported on TiO2–Nb, and SnO2–Nb: An experimental comparison between active and stable conditions

    International Nuclear Information System (INIS)

    Shahgaldi, Samaneh; Hamelin, Jean

    2015-01-01

    Highlights: • SnO 2 –Nb, and TiO 2 –Nb thin films synthesized via sputtering. • SnO 2 –Nb, and TiO 2 –Nb thin films applied as a Pt support in PEMFC. • Low amount of Pt sputtered on supports as catalyst in cathode side. • Fabricate a single cell and plot I–V curves. - Abstract: Electrocatalyst supports have been demonstrated to strongly influence the cost, performance and durability of PEMFC systems, which have been among the heated research topics in the course of the past decades. However, the present support materials used in fuel cell stack are not adequately durable for commercialization. Development of active electrocatalyst with cost effectiveness and high durability is one of the main challenges. In this paper, titania and tin oxide nanoparticles doped nobidium were selected as thermo chemically stable and carbonless electrocatalyst supports. Low Pt loading (0.05 mg/cm 2 ) is deposited on supports through sputtering method, and the structure, the distribution of nanoparticles, and the electrical resistivity were systematically analyzed. To make the studies of oxygen reduction reaction activity, catalytic stability and performance of PEMFC more precise, rotation disk electrode (RDE), cyclic voltammetry (CV), and single cell test were utilized. The data analysis of this study highlighted that SnO 2 –Nb–Pt depicted higher stability and better fuel cell performance in comparison with TiO 2 –Nb–Pt

  17. Production of the J/psi and psi' (3.7) by 225-GeV/c π+- and proton beams on C and Sn targets

    International Nuclear Information System (INIS)

    Branson, J.G.; Sanders, G.H.; Smith, A.J.S.; Thaler, J.J.; Anderson, K.J.; Henry, G.G.; McDonald, K.T.; Pilcher, J.E.; Rosenberg, E.I.

    1977-01-01

    We present results of a large-acceptance experiment in which muon pairs were observed in the mass range 0.6 to 6.0 GeV/c 2 . Emphasis is given to features of the production of J/psi and psi' (3.7) particles. We find [Bsigma]/sub psi prime//sub(/ 3 /sub ./ 7 )/[Bsigma]/sub J/ psi/ to be 0.007 +- 0.004 for p-C and 0.018 +- 0.007 for π + -C interactions. Comparison with results from e + e - storage rings indicates that both the J/psi and the psi' (3.7) are produced strongly rather than electromagnetically in our experiment

  18. Color stable manganese-doped phosphors

    Science.gov (United States)

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  19. Electric field gradient at the Nb3M(M = Al, In, Si, Ge, Sn) and T3Al (T = Ti, Zr, Hf, V, Nb, Ta) alloys by perturbed angular correlation method

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    1999-01-01

    The electric field gradient (efg) at the Nb site in the intermetallic compounds Nb 3 M (M = Al, Si, Ge, Sn) and at the T site in the intermetallic compounds T 3 Al (T = Ti, Zr, Hf, V, Nb, Ta) was measured by Perturbed Angular Correlation (PAC) method using the well known gamma-gamma cascade of 133-482 keV in 181 Ta from the β - decay of 181 Hf. The compounds were prepared by arc melting the constituent elements under argon atmosphere along with radioactive 181 Hf substituting approximately 0.1 atomic percent of Nb and T elements. The PAC measurements were carried out at 295 K for all compounds and the efg was obtained for each alloy. The results for the efg in the T 3 Al compounds showed a strong correlation with the number of conduction electrons, while for the Nbs M compounds the efg behavior is influenced mainly by the p electrons of the M elements. The so-called universal correlation between the electronic and lattice contribution for the efg in metals was not verified in this work for all studied compounds. Measurements of the quadrupole frequency in the range of 100 to 1210 K for the Nb 3 Al compound showed a linear behaviour with the temperature. Superconducting properties of this alloys may probably be related with this observed behaviour. The efg results are compared to those reported for other binary alloys and discussed with the help of ab-initio methods. (author)

  20. Why are SiX5(-) and GeX5(-) (X = F, Cl) stable but not CF5(-) and CCl5(-)?

    Science.gov (United States)

    Marchaj, Marzena; Freza, Sylwia; Skurski, Piotr

    2012-03-01

    The possible existence of the CF(5)(-), CCl(5)(-), SiF(5)(-), SiCl(5)(-), GeF(5)(-), and GeCl(5)(-) anions has been investigated using ab initio methods. The species containing Si and Ge as central atoms were found to adopt the D(3h)-symmetry trigonal bipyramidal equilibrium structures whose thermodynamic stabilities were confirmed by examining the most probable fragmentation channels. The ab initio re-examination of the electronic stabilities of the SiF(5)(-), SiCl(5)(-), GeF(5)(-), and GeCl(5)(-) anions [using the OVGF(full) method with the 6-311+G(3df) basis set] led to the very large vertical electron detachment (VDE) energies of 9.316 eV (SiF(5)(-)) and 9.742 eV (GeF(5)(-)), whereas smaller VDEs of 6.196 and 6.452 eV were predicted for the SiCl(5)(-) and GeCl(5)(-) species, respectively. By contrast, the high-symmetry and structurally compact anionic CF(5)(-) and CCl(5)(-) systems cannot exist due to the strongly repulsive potential predicted for the X(-) (F(-) or Cl(-)) approaching the CX(4) (CF(4) or CCl(4)). The formation of weakly bound CX(4)···X(-) (CF(4)···F(-) and CCl(4)···Cl(-)) anionic complexes (consisting of pseudotetrahedral neutral CX(4) with the weakly tethered X(-)) might be expected at low temperatures (approaching 0 K), whereas neither CX(5)(-) (CF(5)(-), CCl(5)(-)) systems nor CX(4)···X(-) (CF(4)···F(-) and CCl(4)···Cl(-)) complexes can exist in the elevated temperatures (above 0K) due to their susceptibility to the fragmentation (leading to the X(-) loss). © 2012 American Chemical Society

  1. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  2. Stable isotope and geochronological study of the Mawchi Sn-W deposit, Myanmar : implications for timing of mineralization and ore genesis.

    OpenAIRE

    Myint, A.Z.; Yonezu, K.; Boyce, A.; Selby, D.; Scherstén, A.; Tindell, T.; Watanabe, K.; Swe, Y.

    2018-01-01

    Myanmar is endowed with abundant Sn-W mineralization, pre-eminent amongst which is the world-class Mawchi deposit. In the Mawchi area, N-S trending vertical or steeply dipping quartz veins are hosted by both Eocene granite and Carboniferous to Early Permian metasediments. Three stages of ore formation are recognized; (i) tourmaline-cassiterite stage (ii) main ore stage and (iii) sulfide stage. Tourmaline, cassiterite and pyrite-I are early-formed minerals and are representative of the first s...

  3. In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substrates

    DEFF Research Database (Denmark)

    Shimura, Y.; Takeuchi, S.; Nakatsuka, O.

    2012-01-01

    to the introduction of dislocations, due to the increase in the strain of the Ge1-xSnx layers. We achieved the growth of a fully strained Ge0.922Sn0.078 layer on Ge with a Ga concentration of 5.5×1019 /cm3 without any dislocations and stacking faults. The resistivity of the Ga-doped Ge1-xSnx layer decreased as the Sn...... content was increased. This decrease was due to an increase in the carrier concentration, with an increase in the activation level of Ga atoms in the Ge1-xSnx epitaxial layers being induced by the introduction of Sn. As a result, we found that the resistivity for the Ge0.950Sn0.050 layer annealed at 600°C...

  4. Stable isotope and fluid inclusion evidence for the origin of the Brandberg West area Sn-W vein deposits, NW Namibia

    Science.gov (United States)

    Macey, Paul; Harris, Chris

    2006-10-01

    The Brandberg West region of NW Namibia is dominated by poly-deformed turbidites and carbonate rocks of the Neoproterozoic Damara Supergoup, which have been regionally metamorphosed to greenschist facies and thermally metamorphosed up to mid-amphibolite facies by Neoproterozoic granite plutons. The meta-sedimentary rocks host Damaran-age hydrothermal quartz vein-hosted Sn-W mineralization at Brandberg West and numerous nearby smaller deposits. Fluid inclusion microthermometric studies of the vein quartz suggests that the ore-forming fluids at the Brandberg West mine were CO2-bearing aqueous fluids represented by the NaCl-CaCl2-H2O-CO2 system with moderate salinity (mean=8.6 wt% NaClequivalent).Temperatures determined using oxygen isotope thermometry are 415-521°C (quartz-muscovite), 392-447°C (quartz-cassiterite), and 444-490°C (quartz-hematite). At Brandberg West, the oxygen isotope ratios of quartz veins and siliciclastic host rocks in the mineralized area are lower than those in the rocks and veins of the surrounding areas suggesting that pervasive fluid-rock interaction occurred during mineralization. The O- and H-isotope data of quartz-muscovite veins and fluid inclusions indicate that the ore fluids were dominantly of magmatic origin, implying that mineralization occurred above a shallow granite pluton. Simple mass balance calculations suggest water/rock ratios of 1.88 (closed system) and 1.01 (open system). The CO2 component of the fluid inclusions had similar δ 13C to the carbonate rocks intercalated with the turbidites. It is most likely that mineralization at Brandberg West was caused by a combination of an impermeable marble barrier and interaction of the fluids with the marble. The minor deposits in the area have quartz veins with higher δ 18O values, which is consistent with these deposits being similar geological environments exposed at higher erosion levels.

  5. The evolution of pegmatite-hosted Sn-W mineralization at Nong Sua, Thailand: Evidence from fluid inclusions and stable isotopes

    Science.gov (United States)

    Linnen, Robert L.; Williams-Jones, Anthony E.

    1994-01-01

    The Nong Sua aplite-pergmatite complex contains two dominant styles of Sn-W-Ta-Nb mineralization. Cassiterite ± Nb-Ta-Ti oxide minerals are disseminated in the pegmatite, and cassiterite and wolframite are hosted by quartz-tourmaline veins which are contained solely within aplite. The orthomagmatic fluid at Nong Sua is preserved as primary fluid inclusions in the cores of magmatic garnet crystals that have high tin concentrations (garnet cores without fluid inclusions do not contain elevated tin concentrations). These fluid inclusions have a composition of 3 wt% NaCl eq. The low salinity suggests that, at vapor saturation, tin was partitioned in favour of the melt, which allowed cassiterite to initially crystallize directly from the melt. Primary, pseudosecondary, and secondary fluid inclusions in cassiterite, tourmaline, and quartz record three-component mixing of the orthomagmatic fluid with high salinity aqueous and with CO 2-rich fluids. The orthomagmatic water is interpreted to have had δ 18O value of +8.7 to +9.9 per mil and a δD value of -72 to -78 per mil from δ18O analyses of muscovite and quartz, and δD of muscovite. The δ18O composition of muscovite decreased from 10.1 to 8.0 per mil and δD increased from - 106 to - 85 per mil, from the magmatic to the hydrothermal stages of pegmatite evolution. These changes are consistent with an influx of metamorphic fluids or evolved meteoric waters. We consider that the saturation of the melt with vapor caused the pressure in the pegmatite to rise to approximately 3.8 kbar, at a temperature of 650°C. Fluid overpressure caused the aplite to fracture, and veins to form from fluids which migrated into the fracture-induced low pressure zones. This event can be modeled by an isothermal decompression to 2.7 kbar. Cassiterite deposition was probably controlled by increasing fO 2, whereas wolframite deposition resulted from the mixing of W-rich with Fe-Mn-rich fluids. In both cases decompression, cooling, and

  6. The RMgSn{sub 2} series of compounds (R = rare earth metal). Synthesis, crystal structure, and magnetic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Solokha, Pavlo; Minetti, Riccardo; De Negri, Serena; Saccone, Adriana [Dipartimento di Chimica e Chimica Industriale, Universita di Genova (Italy); Pereira, Laura Cristina J.; Goncalves, Antonio P. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, EN 10, Universidade de Lisboa, Bobadela (Portugal)

    2017-06-30

    The novel isostructural series of phases RMgSn{sub 2} (R = Y, La-Nd, Sm, Gd-Tm, Lu) is presented. They were prepared by direct synthesis in an induction furnace and subsequently annealed at 500 C. Their crystal structures were determined through single-crystal X-ray diffraction analysis of the Ce representative [I anti 42m, tI32-LaMgSn{sub 2}, Z = 8, a = 0.82863(3) nm, c = 1.23129(5) nm] and confirmed by powder X-ray diffraction analysis of the other members of the series. Rietveld refinements were also performed on the homologues with R = Pr, Tm, and Y. The title phases show a unique space distribution of atoms, characterized by the presence of a Sn-Sn dumbbell distanced at around 0.29 nm. Their structures are related to those of a few binary AeTt{sub 3} (Ae = alkaline earth; Tt = Si, Ge; I4/mmm, tI32-YbSi{sub 3}) compounds that are stable at high pressure, characterized by a more complex 3D covalently bonded Tt network. Compounds CeMgSn{sub 2} and TbMgSn{sub 2} were magnetically characterized; they show paramagnetic behavior with the presence of ferromagnetic interactions, more pronounced in the case of TbMgSn{sub 2}, as suggested by the Curie-Weiss temperatures, determined in the high-temperature range, of 0.96 and 27.6 K for CeMgSn{sub 2} and TbMgSn{sub 2}, respectively. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2010-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The changes in microstructure and microhardness associated with the addition of low melting point metals namely In, Sb and Sn to the Au......-Ge-In and Au-Ge-Sn combinations was determined to be the classic solid solution strengthening. The Au-Ge-Sb combination was primarily strengthened by the refined (Ge) dispersed phase. The aging temperature had a significant influence on the microhardness in the case of the Au-Ge-Sn candidate alloy...

  8. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  9. Synthesis and characterization of BaTi1−xSnxO3–0.5 mol%GeO2

    International Nuclear Information System (INIS)

    Bucur, Raul Alin; Bucur, Alexandra Ioana; Novaconi, Stefan; Nicoara, Irina

    2012-01-01

    Highlights: ► BaTi 1−x Sn x O 3 –0.5 mol%GeO 2 (x = 0, 0.1, 0.3, 0.5) ceramics were prepared at 1190 °C. ► GeO 2 improves crystallization and densification. ► Anomalies are noted for the rhombohedral–orthorhombic transition of BT–0.5Ge. ► For x = 0.3 and 0.5, ε′ r exhibit nearly constant variation between 200 and 400 K. - Abstract: Microcrystalline BaTi 1−x Sn x O 3 –0.5 mol%GeO 2 x = 0, 0.1, 0.3, 0.5 (BTSx–0.5Ge) and BaTiO 3 (BT) ceramics (1–0.5 μm) were prepared by a conventional solid-state reaction method. The crystalline structure of the samples was examined using XRD, the microstructure was analyzed by means of electron microscope and the density was measured by the Archimede’s method. The sintered ceramic disks have a tetragonal symmetry for BT, pseudo cubic for BTS1–0.5Ge and cubic symmetry for the other studied materials, with a gradual increase of unit cell dimensions. Small addition of GeO 2 can improve the density of BT ceramics: 97.9% for BT–0.5Ge, and 96.21% for pure BT. The highest degree of densification in the case of tin doping is achieved for BTS1–0.5Ge (96.93%). The formation of a liquid phase can lead to an anomalous grain growth, and in the case of BT–0.5Ge the grains are completely surrounded by a frozen eutectic melt. For the dielectric constant, while increasing the Sn concentration, the T C gradually shifts towards lower temperatures, and the peak of this transition becomes broader. The lowering of T C is mostly due to the concentration of tin ions and in a much delicate way to Ge ions. Anomalies are noticed for the orthorhombic transition, where the permittivity is higher than the same transition of the matrix (BT), with a shift towards higher temperatures. The BTS3–0.5Ge and BTS5–0.5Ge are the most stable compositions in terms of dielectric behavior, since in the temperature range 200–400 K, ε′ r is almost constant. Therefore, these compositions can be used for devices that operate over a

  10. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander; Bracht, H.; Grimes, R. W.; Jiang, C.; Schwingenschlö gl, Udo

    2009-01-01

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  11. Defect interactions in Sn1−xGex random alloys

    KAUST Repository

    Chroneos, Alexander

    2009-06-23

    Sn1−xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1−xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard’s Law are consistent with experimental results.

  12. Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Mitra [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Kazemeini, Mohammad [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Hamedanian, Mahboobeh [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Pahlavanzadeh, Hassan [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Gharibi, Hussein, E-mail: h.gharibi@utah.edu [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Department of Material Science & Engineering, 122 S Campus Drive, University of Utah, Salt Lake City, UT 84112 (United States)

    2015-08-15

    Highlights: • PtSn/C-PANI performed superior in the MOR compared with a commercial PtRu/C. • Catalytic activity of PtRu/C was highly reduced during the accelerated durability test. • Anode of the PtSn/C-PANI in a passive DMFC lowered methanol crossover by 30%. - Abstract: Polyaniline fiber (PANI) was synthesized and utilized to fabricate a vulcan–polyaniline (C-PANI) composite. Pt/C-PANI and PtSn/C-PANI electro-catalysts with different Pt:Sn atomic ratios were prepared by the impregnation method. These electro-catalysts, along with commercial PtRu/C (Electrochem), were characterized with respect to their structural and electrochemical properties in methanol oxidation reaction (MOR). PtSn(70:30)/C-PANI showed excellent performance in MOR, the obtained maximum current density being about 40% and 50% higher than that for PtRu/C and Pt/C-PANI, respectively. It was also found that the CO tolerance and stability of PtSn(70:30)/C-PANI was considerably higher than that of PtRu/C. Finally, the performance of these two materials was compared in a passive direct methanol fuel cell (DMFC). The DMFC test results demonstrated that the membrane electrode assembly (MEA) prepared using PtSn(70:30)/C-PANI anode catalyst performed more satisfactorily in terms of maximum power density and lower methanol crossover.

  13. Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: new evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions

    Science.gov (United States)

    Polya, D. A.; Foxford, K. A.; Stuart, F.; Boyce, A.; Fallick, A. E.

    2000-10-01

    The evolution, paragenetic context and origin of remarkably low δD hydrothermal fluids from the Hercynian Panasqueira W-Sn-Cu(Ag) deposit have been investigated through a combined microthermometric, stable isotope, halogen and noble gas fluid inclusion study. Large variations in δD between -60 ‰ and -134‰ have been observed in primary fluid inclusions from growth zones in a quartz crystal (Pa66) paragenetically constrained to the main sulfide stage (MSS) of ore formation. The same fluids exhibited relatively constant fluid inclusion homogenisation temperatures (254 to 260°C), salinities (7.4 to 8.7 wt.% NaCl equivalent) and calculated fluid δ 18O (3.8 to 4.4‰). All the fluids exhibited 40Ar excesses. Mean molar Br/Cl and I/Cl ratios varied from 2.3 × 10 -3-4.2 × 10 -3 and 8 × 10 -4-10 × 10 -4 respectively, with the more Br-rich fluids being associated with the more deuterium-depleted fluids. The low palaeolatitude of Panasqueira throughout the main stages of ore formation and the overwhelming predominance of meteoric fluids in the main, late and post-ore mineralising fluids with δD of -40 to -65‰ lends little support for any models involving low δD palaeometeoric water. The limited range of 40Ar∗/Cl ratios (1.1 × 10 -5-1.6 × 10 -5) also precludes boiling during the MSS or mixing of meteoric water with highly fractionated deuterium-depleted magmatic waters as viable mechanisms for producing the low δD fluids. The high Br/Cl and I/Cl of the MSS fluids indicate significant fluid interactions with organic rich sediments or metasediments, in particular regionally abundant Carboniferous coals or coaly sediments that are inferred to be depleted in deuterium by around 85‰ compared to palaeometeoric water. The large range of δD observed in the MSS fluids may be explained by isotopic exchange of palaeometeoric water with these coals at varying water/rock (wt./wt.) ratios between 0.02 and 0.002 with fluid oxygen isotopic compositions controlled by

  14. New compounds bearing [M(S{sub 2}O{sub 7}){sub 3}]{sup 2-} anions (M = Si, Ge, Sn): Syntheses and characterization of A{sub 2}[Si(S{sub 2}O{sub 7}){sub 3}] (A = Na, K, Rb), A{sub 2}[Ge(S{sub 2}O{sub 7}){sub 3}] (A = Li, Na, K, Rb, Cs), A{sub 2}[Sn(S{sub 2}O{sub 7}){sub 3}] (A = Na, K), and the unique germanate Hg{sub 2}[Ge(S{sub 2}O{sub 7}){sub 3}]Cl{sub 2} with cationic {sup 1}{sub ∞}[HgCl{sub 2/2}]{sup +} chains

    Energy Technology Data Exchange (ETDEWEB)

    Logemann, Christian; Witt, Julia; Wickleder, Mathias S. [Universitaet Oldenburg, Institut fuer Reine und Angewandte Chemie (Germany); Gunzelmann, Daniel; Senker, Juergen [Universitaet Bayreuth, Lehrstuhl fuer Anorganische Chemie III (Germany)

    2012-10-15

    The reaction of the group 14 tetrachlorides MCl{sub 4} (M = Si, Ge, Sn) with oleum (65 % SO{sub 3}) at elevated temperatures led to the unique anionic complexes [M(S{sub 2}O{sub 7}){sub 3}]{sup 2-} that show the central M atoms in coordination of three chelating S{sub 2}O{sub 7}{sup 2-} groups. The mean distances M-O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S{sub 2}O{sub 7}){sub 3}]{sup 2-} anions is achieved by alkaline metal ions A{sup +} (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A{sup +} ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S{sub 2}O{sub 7}){sub 3}]{sup 2-} anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg{sub 2}[Ge(S{sub 2}O{sub 7}){sub 3}]Cl{sub 2} which forms when HgCl{sub 2} is added as a source for the counter cation. The Hg{sup 2+} and the Cl{sup -} ions form infinite cationic chains according to {sup 1}{sub ∞}[HgCl{sub 2/2}]{sup +} which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A{sub 2}SO{sub 4} and the dioxides MO{sub 2}, whereas Hg{sub 2}[Ge(S{sub 2}O{sub 7}){sub 3}]Cl{sub 2} shows a more complicated decomposition. The tris-(disulfato)-silicate Na{sub 2}[Si(S{sub 2}O{sub 7}){sub 3}] has additionally been examined by solid state {sup 29}Si and {sup 23}Na NMR spectroscopic measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. The tin-rich copper lithium stannides: Li3Cu6Sn4 and Li2CuSn2

    International Nuclear Information System (INIS)

    Fuertauer, Siegfried; Flandorfer, Hans; Effenberger, Herta S.

    2015-01-01

    The Sn rich ternary intermetallic compounds Li 3 Cu 6 Sn 4 (CSD-427097) and Li 2 CuSn 2 (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li 3 Cu 6 Sn 4 crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe 6 Ge 6 (a = 5.095(2) Aa, c = 9.524(3) Aa; wR 2 = 0.059; 239 unique F 2 -values, 17 free variables). Li 3 Cu 6 Sn 4 is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li 2 CuSn 2 (space group I4 1 /amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR 2 = 0.033; 213 unique F 2 -values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  16. Systematic study of hyperfine fields in Rh2 Y Z type Heusler alloys with 119 Sn impurity using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ramos, S.M.M.

    1985-01-01

    The magnetic hyperfine fields in the Heusler alloys Rh 2 Mn .98 Ge Sn 02 , Rh 2 Mn Ge .98 Sn .02 , Rh 2 Mn Pb .98 Sn .02 and Rh 2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X 2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)

  17. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    International Nuclear Information System (INIS)

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  18. Dipole Resonances of 76Ge

    Science.gov (United States)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  19. Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures

    Science.gov (United States)

    Fukuda, Masahiro; Watanabe, Kazuhiro; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-10-01

    The energy band alignment of Ge1-xSnx/Ge1-x-ySixSny heterostructures was investigated, and control of the valence band offset at the Ge1-xSnx/Ge1-x-ySixSny heterointerface was achieved by controlling the Si and Sn contents in the Ge1-x-ySixSny layer. The valence band offset in the Ge0.902Sn0.098/Ge0.41Si0.50Sn0.09 heterostructure was evaluated to be as high as 330 meV, and its conduction band offset was estimated to be 150 meV by considering the energy bandgap calculated from the theoretical prediction. In addition, the formation of the strain-relaxed Ge1-x-ySixSny layer was examined and the crystalline structure was characterized. The epitaxial growth of a strain-relaxed Ge0.64Si0.21Sn0.15 layer with the degree of strain relaxation of 55% was examined using a virtual Ge substrate. Moreover, enhancement of the strain relaxation was demonstrated by post-deposition annealing, where a degree of strain relaxation of 70% was achieved after annealing at 400 °C. These results indicate the possibility for enhancing the indirect-direct crossover with a strained and high-Sn-content Ge1-xSnx layer on a strain-relaxed Ge1-x-ySixSny layer, realizing preferable carrier confinement by type-I energy band alignment with high conduction and valence band offsets.

  20. Dimorphism in La{sub 5}Ge{sub 3} and Ce{sub 5}Ge{sub 3}? How exploratory syntheses led to surprising new finds in the La-Ge and Ce-Ge binary phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Nian-Tzu; Bobev, Svilen [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE (United States)

    2014-04-15

    Reported are the synthesis, the crystal structures, and the electronic structures of two new tetragonal phases, La{sub 5}Ge{sub 3} and Ce{sub 5}Ge{sub 3}. Both title compounds crystallize in the Pu{sub 5}Rh{sub 3} (P4/ncc) structure type, which has close structural relationship with the W{sub 5}Si{sub 3} (I4/mcm) structure type. The synthetic results, supported by thermal analysis suggest that this tetragonal phase is only stable at relatively low temperature and it transforms to the hexagonal form (Mn{sub 5}Si{sub 3} structure type, P6{sub 3}/mcm) at above 850 C. The structural relationship between La{sub 5}Ge{sub 3} (Pu{sub 5}Rh{sub 3} type) and La{sub 5}Sn{sub 3} (W{sub 5}Si{sub 3} type) is discussed as well. Temperature dependent DC magnetization and resistivity measurements indicate that the tetragonal phase La{sub 5}Ge{sub 3} exhibits Pauli-like paramagnetism and is a good metallic conductor. For the tetragonal phase Ce{sub 5}Ge{sub 3}, the magnetic behavior obeys the Curie-Weiss law in the high-temperature regime, while it deviates from the Curie-Weiss law at low temperature. No long-range magnetic ordering was observed down to 5 K, although short-range correlations can be inferred below ca. 50 K. The resistivity measurements of Ce{sub 5}Ge{sub 3} also show metallic-like temperature dependence, although the low-temperature behavior resembling a T{sup 2} law could signify anomalous electron-scattering (e.g., Kondo-like effect). The electronic structures of multiple phases with the same nominal compositions, computed by the TB-LMTO-ASA method, are compared and discussed. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca3SnO

    Science.gov (United States)

    Batool, Javaria; Alay-e-Abbas, Syed Muhammad; Amin, Nasir

    2018-04-01

    The density functional theory based total energy calculations are performed to examine the effect of charge neutral and fully charged intrinsic vacancy defects on the thermodynamic, electronic, and magnetic properties of Ca3SnO antiperovskite. The chemical stability of Ca3SnO is evaluated with respect to binary compounds CaO, CaSn, and Ca2Sn, and the limits of atomic chemical potentials of Ca, Sn, and O atoms for stable synthesis of Ca3SnO are determined within the generalized gradient approximation parametrization scheme. The electronic properties of the pristine and the non-stoichiometric forms of this compound have been explored and the influence of isolated intrinsic vacancy defects (Ca, Sn, and O) on the structural, bonding, and electronic properties of non-stoichiometric Ca3SnO are analyzed. We also predict the possibility of achieving stable ferromagnetism in non-stoichiometric Ca3SnO by means of charge neutral tin vacancies. From the calculated total energies and the valid ranges of atomic chemical potentials, the formation energetics of intrinsic vacancy defects in Ca3SnO are evaluated for various growth conditions. Our results indicate that the fully charged calcium vacancies are thermodynamically stable under the permissible Sn-rich condition of stable synthesis of Ca3SnO, while tin and oxygen vacancies are found to be stable under the extreme Ca-rich condition.

  2. II-I2-IV-VI4 (II = Sr,Ba; I = Cu,Ag; IV = Ge,Sn; VI = S,Se): Earth-Abundant Chalcogenides for Thin Film Photovoltaics

    Science.gov (United States)

    Zhu, Tong; Huhn, William P.; Shin, Donghyeop; Mitzi, David B.; Blum, Volker; Saparov, Bayrammurad

    Chalcogenides such as CdTe, CIGSSe, and CZTSSe are successful for thin film photovoltaics (PV) but contain elements that are rare, toxic, or prone to the formation of detrimental antisite disorder. Recently, the BaCu2SnS4-xSex system has been shown to offer a prospective path to circumvent these problems. While early prototypes show efficiencies of a few percent, many avenues remain to optimize the materials, including the underlying chemical composition. In this work, we explore 16 compounds II-I2-IV-VI4 to help identify new candidate materials for PV, with predictions based on both known experimental and computationally derived structures that belong to five different space groups. We employ hybrid density functional theory (HSE06) to explore the band gap tunability by substituting different elements, and other characteristics such as the effective mass and the absorption coefficient. Compounds containing Cu (rather than Ag) are found to have direct or nearly direct band gaps. Depending on the compound, replacing S with Se leads to a decrease of the predicted band gaps by 0.2-0.8 eV and to somewhat decreasing hole effective masses.

  3. Determination of a new structure type in the Sc–Fe–Ge–Sn system

    International Nuclear Information System (INIS)

    Brgoch, Jakoah; Ran, Sheng; Thimmaiah, Srinivasa; Canfield, Paul C.; Miller, Gordon J.

    2013-01-01

    Highlights: ► A new structure type with the composition Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) . ► Crystallizes in the space group Immm (No. 71, oI144). ► Sample obtained using a reactive Sn flux. ► Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc–Fe–Ge–Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) Å, b = 13.467(3) Å, and c = 30.003(6) Å. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc–Ge as well as Fe–Sn and Fe–Ge contacts can be assigned to this new structure type.

  4. Natural bond orbital analysis of molecular interactions: Theoretical study of W(CO)5 complexes with E(PH3)2 and NHEMe ligands (E=C, Si, Ge, Sn, Pb)

    International Nuclear Information System (INIS)

    Nguyen Thi Ai Nhung; Huynh Thi Phuong Loan; Duong Tuan Quang; Pham Van Tat

    2014-01-01

    The complexes with ligands carbodiphosphorane-analogues (called tetrylones) [(CO) 5 W-{E(PH 3 ) 2 }] (W5-EP 2 ) and N-heterocyclic carbene-analogues (called tetrylenes) [(CO) 5 W-{NHE Me }] (W5-NHE Me ) when E=C-Pb have been studied using natural bond orbital (NBO) method. The NBO analysis provides a consistent picture of the chemical bonding is two entire families of transition metal complexes of tetrylone and tetrylene ligands in term of donor-acceptor interactions, showing the correlation of these interactions with Wiberg bond indies (WBI), natural partial charges, and the energetically highest lying occupied molecular orbitals for σ and π orbitals of free ligands E(PH 3 ) 2 and NHE Me . Analysis of the bonding situation reveals that in E(PH 3 ) 2 and NHE Me ligands, the energy level of the π orbital rises, whereas that of the σ orbital decreases as atom E becomes heavier. The complexes with head-on-bonded ligands have (CO) 5 W←E donation which comes from the σ-lone-pair orbital of E(PH 3 ) 2 and NHE Me where E=C for tetrylones and E=C, Si, Ge for tetrylenes, whereas the (CO) 5 W←E donation in the side-on bonded complexes when E becomes heavier arises from the π-lone-pair orbital of E(PH 3 ) 2 and NHE Me ligands which is the HOMO of the free ligands. This makes the heavier adducts of tetrylones and tetrylenes become stronger donors than the lighter systems. The NBO analysis suggests that the E(PH 3 ) 2 ligands are strong σ-donors and strong π-acceptors while the NHE Me ligands are strong σ-donors and weak π-acceptors. This is possible for tetrylones that have two lone-pair orbitals available for donation, whereas the tetrylenes have only one lone-pair orbital available for donation. (author)

  5. Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes.

    Science.gov (United States)

    Kast, Matthew G; Enman, Lisa J; Gurnon, Nicholas J; Nadarajah, Athavan; Boettcher, Shannon W

    2014-12-24

    Protecting Si photocathodes from corrosion is important for developing tandem water-splitting devices operating in basic media. We show that textured commercial Si-pn(+) photovoltaics protected by solution-processed semiconducting/conducting oxides (plausibly suitable for scalable manufacturing) and coupled to thin layers of Ir yield high-performance H2-evolving photocathodes in base. They also serve as excellent test structures to understand corrosion mechanisms and optimize interfacial electrical contacts between various functional layers. Solution-deposited TiO2 protects Si-pn(+) junctions from corrosion for ∼24 h in base, whereas junctions protected by F:SnO2 fail after only 1 h of electrochemical cycling. Interface layers consisting of Ti metal and/or the highly doped F:SnO2 between the Si and TiO2 reduce Si-emitter/oxide/catalyst contact resistance and thus increase fill factor and efficiency. Controlling the oxide thickness led to record photocurrents near 35 mA cm(-2) at 0 V vs RHE and photocathode efficiencies up to 10.9% in the best cells. Degradation, however, was not completely suppressed. We demonstrate that performance degrades by two mechanisms, (1) deposition of impurities onto the thin catalyst layers, even from high-purity base, and (2) catastrophic failure via pinholes in the oxide layers after several days of operation. These results provide insight into the design of hydrogen-evolving photoelectrodes in basic conditions, and highlight challenges.

  6. First Principles Investigation of the Mechanical, Thermodynamic and Electronic Properties of FeSn{sub 5} and CoSn{sub 5} Intermetallic Phases under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenming; Liu, Jing; Wang, Hong [China Building Materials Academy, Beijing (China); Zhang, Zhenwei [Linyi Academy of Technology Cooperation and Application, Linyi (China); Zhang, Liang [NeoTrident Technology Ltd., Shanghai (China); Bu, Yuxiang [Shandong University, Jinan (China)

    2017-02-15

    For guidance for developing Fe/Co-Sn-based anode materials for lithium-ion batteries, the mechanical, thermodynamic and electronic properties of FeSn{sub 5} and CoSn{sub 5} intermetallic phases under pressures ranging from 0 to 30 GPa have been investigated systematically using first-principles total-energy calculations within the framework of the generalized gradient approximation. The pressure was found to have significant effects on the mechanical, thermodynamic and electronic properties of these compounds. In the selected pressure range, CoSn{sub 5} has a more negative formation enthalpy than FeSn{sub 5}. Based on the calculated elastic constants, the bulk modulus, shear modulus, and Young's modulus were determined via the Viogt-Reuss-Hill averaging scheme. The variations of specific heats at constant volume for FeSn{sub 5} and CoSn{sub 5} in a wide pressure (0 - 30 GPa) and temperature (0 - 1000 K) range are also predicted from phonon density of states calculation. The calculated results suggested that both FeSn{sub 5} and CoSn{sub 5} are mechanically stable at pressure from 0 to 30 GPa. FeSn{sub 5} is dynamically stable at pressure up to, 30 GPa, at least, however, CoSn{sub 5} is dynamically stable no higher than 15 GPa.

  7. The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation

    Science.gov (United States)

    Němec, Matěj; Zachariáš, Jiří

    2018-02-01

    The Krásná Hora-Milešov and Příčovy districts (Czech Republic) are the unique examples of Sb-Au subtype orogenic gold deposits in the Bohemian Massif. They are represented by quartz-stibnite veins and massive stibnite lenses grading into low-grade, disseminated ores in altered host rocks. Gold postdates the stibnite and is often replaced by aurostibite. The ore zones are hosted by hydrothermally altered dikes of lamprophyres (Krásná Hora-Milešov) or are associated with local strike-slip faults (Příčovy). Formation of Sb-Au deposits probably occurred shortly after the main gold-bearing event (348-338 Ma; Au-only deposits) in the central part of the Bohemian Massif. Fluid inclusion analyses suggest that stibnite precipitated at 250 to 130 °C and gold at 200 to 130 °C from low-salinity aqueous fluids. The main quartz gangue hosting the ore precipitated from the same type of fluid at about 300 °C. Early quartz-arsenopyrite veins are not associated with the Sb-Au deposition and formed from low-salinity, aqueous-carbonic fluid at higher pressure and temperature ( 250 MPa, 400 °C). The estimated oxygen isotope composition of the ore-bearing fluid (4 ± 1‰ SMOW; based on post-ore calcite) suggests its metamorphic or mixed magmatic-metamorphic origin and excludes the involvement of meteoric water. Rapid cooling of warm hydrothermal fluids reacting with "cold" host rock was probably the most important factor in the formation of both stibnite and gold.

  8. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  9. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  10. Mineralogy, stable isotopes (δ18O and δ34S and 40Ar-39Ar geochronology studies on the hydrothermal carapace of the Igarapé Manteiga W-Sn Deposit, Rondônia

    Directory of Open Access Journals (Sweden)

    Thais Marcela Fernandes do Nascimento

    Full Text Available ABSTRACT: The Igarapé Manteiga W-Sn deposit is formed by a granite stock that intrudes in the Paleoproterozoic basement. The mineralization is encapsulated in an alumino-siliceous hydrothermal carapace formed by greisen, vein-veinlets and breccia, developed in the apex zone of a granite stock. At this site, wolframite, cassiterite and sulfides-minerals, as well as siderite, monazite, xenotime, hematite and others, are spread out or in massive clusters associated with quartz, topaz, zinnwaldite and fluorite. Wolframite is not zoned and relatively rich in Fe, and poor in Nb and Ta. Cassiterite exhibits growth-zones with light-yellow to dark-orange colors, and is rich in Ta, and poor in Ti, W, Mn and U. Oxygen and sulfur (δ18O and δ34S isotope data on the ore- and sulfide-minerals indicates that it is a magmatic source, with closing temperatures from 230°C to 480°C. The hydrothermal phase was cyclical and protractedly active, promoting greisenization and hydrofracturing. The lowering of temperature and the change in the composition of fluids (from oxidized to reduced controlled the precipitation of the hydrothermal mineral assemblage. The 40Ar-39Ar analyses reveal a plateau age of 988 Ma, interpreted as the closure time for the hydrothermal processes responsible for mineralization, which is linked to the final magmatic evolution of the Rondônia Intrusive Suite (995-991 Ma.

  11. Mineralogy, stable isotopes (δ18O and δ34S) and 40Ar-39Ar geochronology studies on the hydrothermal carapace of the Igarapé Manteiga W-Sn Deposit, Rondônia

    International Nuclear Information System (INIS)

    Nascimento, Thais Marcela Fernandes do; Souza, Valmir da Silva

    2017-01-01

    The Igarapé Manteiga W-Sn deposit is formed by a granite stock that intrudes in the Paleoproterozoic basement. The mineralization is encapsulated in an alumino-siliceous hydrothermal carapace formed by greisen, vein-veinlets and breccia, developed in the apex zone of a granite stock. At this site, wolframite, cassiterite and sulfides-minerals, as well as siderite, monazite, xenotime, hematite and others, are spread out or in massive clusters associated with quartz, topaz, zinnwaldite and fluorite. Wolframite is not zoned and relatively rich in Fe, and poor in Nb and Ta. Cassiterite exhibits growth-zones with light-yellow to dark-orange colors, and is rich in Ta, and poor in Ti, W, Mn and U. Oxygen and sulfur (δ 18 O and δ 34 S) isotope data on the ore- and sulfide-minerals indicates that it is a magmatic source, with closing temperatures from 230° C to 480° C. The hydrothermal phase was cyclical and protractedly active, promoting greisenization and hydrofracturing. The lowering of temperature and the change in the composition of fluids (from oxidized to reduced) controlled the precipitation of the hydrothermal mineral assemblage. The 40 Ar- 39 Ar analyses reveal a plateau age of 988 Ma, interpreted as the closure time for the hydrothermal processes responsible for mineralization, which is linked to the final magmatic evolution of the Rondônia Intrusive Suite (995-991Ma). (author)

  12. First evidence of low energy enhancement in Ge isotopes

    Directory of Open Access Journals (Sweden)

    Renstrøm T.

    2015-01-01

    Full Text Available The γ-strength functions and level densities of 73,74Ge have been extracted from particle-γ coincidence data using the Oslo method. In addition the γ-strength function of 74Ge above the neutron separation threshold, Sn = 10.196 MeV has been extracted from photoneutron measurements. When combined, these two experiments give a γ-strength function covering the energy range of ∼1-13 MeV for 74Ge. This thorough investigation of 74Ge is a part of an international campaign to study the previously reported low energy enhancement in this mass region in the γ-strength function from ∼3MeV towards lower γ energies. The obtained data show that both 73,74Ge display an increase in strength at low γ energies.

  13. GeP and (Ge1−xSnx)(P1−yGey) (x≈0.12, y≈0.05): Synthesis, structure, and properties of two-dimensional layered tetrel phosphides

    International Nuclear Information System (INIS)

    Lee, Kathleen; Synnestvedt, Sarah; Bellard, Maverick; Kovnir, Kirill

    2015-01-01

    GeP and Sn-doped GeP were synthesized from elements in bismuth and tin flux, respectively. The layered crystal structures of these compounds were characterized by single crystal X-ray diffraction. Both phosphides crystallize in a GaTe structure type in the monoclinic space group C2/m (No. 12) with GeP: a=15.1948(7) Å, b=3.6337(2) Å, c=9.1941(4) Å, β=101.239(2)°; Ge 0.93(3) P 0.95(1) Sn 0.12(3) : a=15.284(9) Å, b=3.622(2) Å, c=9.207(5) Å, β=101.79(1)°. The crystal structure of GeP consists of 2-dimensional GeP layers held together by weak electron lone pair interactions between the phosphorus atoms that confine the layer. Each layer is built of Ge–Ge dumbbells surrounded by a distorted antiprism of phosphorus atoms. Sn-doped GeP has a similar structural motif, but with a significant degree of disorder emphasized by the splitting of all atomic positions. Resistivity measurements together with quantum-chemical calculations reveal semiconducting behavior for the investigated phosphides. - Graphical abstract: Layered phosphides GeP and Sn-doped GeP were synthesized from elements in bismuth and tin flux, respectively. The crystal structure of GeP consists of 2-dimensional GeP layers held together by weak electron lone pair interactions between the phosphorus atoms that confine the layer. Sn-doped GeP has a similar structural motif with a significant degree of disorder emphasized by the splitting of all atomic positions. Resistivity measurements together with quantum-chemical calculations reveal semiconducting behavior for the investigated phosphides. - Highlights: • GeP crystallizes in a layered crystal structure. • Doping of Sn into GeP causes large structural distortions. • GeP is narrow bandgap semiconductor. • Sn-doped GeP exhibits an order of magnitude higher resistivity due to disorder

  14. Transmutation of 126Sn in spallation targets of accelerator-driven systems

    International Nuclear Information System (INIS)

    Han, Chi Young; Saito, Masaki; Sagara, Hiroshi

    2009-01-01

    The practical feasibility of 126 Sn transmutation in spallation targets of accelerator-driven systems was evaluated from the viewpoints of accumulation of radioactive spallation products and neutron production as well as transmutation amount of 126 Sn. A cylindrical liquid 126 Sn target whose length depends on proton beam energy was described, based on a Pb-Bi target design of accelerator-driven system being developed in JAEA. A proton beam of 1.5 GeV-20 mA was estimated to give the transmutation rate of 126 Sn 6.4 kg/yr, which corresponds to the amount of 126 Sn annually discharged in 27 LWRs of 1 GWt and 33 GWd/THM. The equilibrium radioactivity of spallation products would reach 9% of that of 126 Sn transmuted in the spallation target, and the equilibrium toxicity would be just 3%. Some parametric analyses showed that the effective half-life of 126 Sn could be reduced through a proper reduction of the target size. The 126 Sn target was calculated to produce 40 neutrons per proton of 1.5 GeV and give a neutron spectrum very similar to that of the reference Pb-Bi target. As a result, the transmutation of 126 Sn in the spallation target has a high feasibility in terms of better transmutation performance and comparable target performance. (author)

  15. Melting point of high-purity germanium stable isotopes

    Science.gov (United States)

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  16. Ge interactions on HfO2 surfaces and kinetically driven patterning of Ge nanocrystals on HfO2

    International Nuclear Information System (INIS)

    Stanley, Scott K.; Joshi, Sachin V.; Banerjee, Sanjay K.; Ekerdt, John G.

    2006-01-01

    Germanium interactions are studied on HfO 2 surfaces, which are prepared through physical vapor deposition (PVD) and by atomic layer deposition. X-ray photoelectron spectroscopy and temperature-programed desorption are used to follow the reactions of germanium on HfO 2 . Germanium chemical vapor deposition at 870 K on HfO 2 produces a GeO x adhesion layer, followed by growth of semiconducting Ge 0 . PVD of 0.7 ML Ge (accomplished by thermally cracking GeH 4 over a hot filament) also produces an initial GeO x layer, which is stable up to 800 K. PVD above 2.0 ML deposits semiconducting Ge 0 . Temperature programed desorption experiments of ∼1.0 ML Ge from HfO 2 at 400-1100 K show GeH 4 desorption below 600 K and GeO desorption above 850 K. These results are compared to Ge on SiO 2 where GeO desorption is seen at 550 K. Exploiting the different reactivity of Ge on HfO 2 and SiO 2 allows a kinetically driven patterning scheme for high-density Ge nanoparticle growth on HfO 2 surfaces that is demonstrated

  17. Dimensional stability of Ti--6Al--6V--2Sn

    International Nuclear Information System (INIS)

    Rack, H.J.

    1978-08-01

    The dimensional stability of Ti-6Al-6V-2Sn has been examined. It is shown that in the duplex annealed condition Ti-6Al-6V-2Sn is dimensionally stable at temperatures up to 448 0 K for 512 hrs. Solution treated Ti-6Al-6V-2Sn undergoes large dimensional changes during both initial aging between 673 and 973 0 K and subsequent exposure to low temperatures ( 0 K). These results indicate that if close dimensional tolerances must be maintained, duplex annealed Ti-6Al-6V-2Sn should be selected. Selection of treated and aged Ti-6Al-6V-2Sn should only be considered if accompanied by full scale environmental testing

  18. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  19. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  20. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  1. Whisker and Hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits

    International Nuclear Information System (INIS)

    Boettinger, W.J.; Johnson, C.E.; Bendersky, L.A.; Moon, K.-W.; Williams, M.E.; Stafford, G.R.

    2005-01-01

    High purity bright Sn, Sn-Cu and Sn-Pb layers, 3, 7 and 16 μm thick were electrodeposited on phosphor bronze cantilever beams in a rotating disk apparatus. Beam deflection measurements within 15 min of plating proved that all electrodeposits had in-plane compressive stress. In several days, the surfaces of the Sn-Cu deposits, which have the highest compressive stress, develop 50 μm contorted hillocks and 200 μm whiskers, pure Sn deposits develop 20 μm compact conical hillocks, and Sn-Pb deposits, which have the lowest compressive stress, remain unchanged. The differences between the initial compressive stresses for each alloy and pure Sn is due to the rapid precipitation of Cu 6 Sn 5 or Pb particles, respectively, within supersaturated Sn grains produced by electrodeposition. Over longer time, analysis of beam deflection measurements indicates that the compressive stress is augmented by the formation of Cu 6 Sn 5 on the bronze/Sn interface, while creep of the electrodeposit tends to decrease the compressive stress. Uniform creep occurs for Sn-Pb because it has an equi-axed grain structure. Localized creep in the form of hillocks and whiskers occurs for Sn and Sn-Cu because both have columnar structures. Compact hillocks form for the Sn deposits because the columnar grain boundaries are mobile. Contorted hillocks and whiskers form for the Sn-Cu deposits because the columnar grain boundary motion is impeded

  2. Cytoplasmic assembly of snRNP particles from stored proteins and newly transcribed snRNA's in L929 mouse fibroblasts

    International Nuclear Information System (INIS)

    Sauterer, R.A.; Feeney, R.J.; Zieve, G.W.

    1988-01-01

    Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs

  3. `Pd20Sn13' revisited: crystal structure of Pd6.69Sn4.31

    Directory of Open Access Journals (Sweden)

    Wilhelm Klein

    2015-07-01

    Full Text Available The crystal structure of the title compound was previously reported with composition `Pd20Sn13' [Sarah et al. (1981. Z. Metallkd, 72, 517–520]. For the original structure model, as determined from powder X-ray data, atomic coordinates from the isostructural compound Ni13Ga3Ge6 were transferred. The present structure determination, resulting in a composition Pd6.69Sn4.31, is based on single crystal X-ray data and includes anisotropic displacement parameters for all atoms as well as standard uncertainties for the atomic coordinates, leading to higher precision and accuracy for the structure model. Single crystals of the title compound were obtained via a solid-state reaction route, starting from the elements. The crystal structure can be derived from the AlB2 type of structure after removing one eighth of the atoms at the boron positions and shifting adjacent atoms in the same layer in the direction of the voids. One atomic site is partially occupied by both elements with a Pd:Sn ratio of 0.38 (3:0.62 (3. One Sn and three Pd atoms are located on special positions with site symmetry 2. (Wyckoff letter 3a and 3b.

  4. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.

    Science.gov (United States)

    Park, Ah-Ram; Park, Cheol-Min

    2017-06-27

    A cubic crystal-structured Sn-based compound, SnTe, was easily synthesized using a solid-state synthetic process to produce a better rechargeable battery, and its possible application as a Sn-based high-capacity anode material for Li-ion batteries (LIBs) and Na-ion batteries (NIBs) was investigated. The electrochemically driven phase change mechanisms of the SnTe electrodes during Li and Na insertion/extraction were thoroughly examined utilizing various ex situ analytical techniques. During Li insertion, SnTe was converted to Li 4.25 Sn and Li 2 Te; meanwhile, during Na insertion, SnTe experienced a sequential topotactic transition to Na x SnTe (x ≤ 1.5) and conversion to Na 3.75 Sn and Na 2 Te, which recombined into the original SnTe phase after full Li and Na extraction. The distinctive phase change mechanisms provided remarkable electrochemical Li- and Na-ion storage performances, such as large reversible capacities with high Coulombic efficiencies and stable cyclabilities with fast C-rate characteristics, by preparing amorphous-C-decorated nanostructured SnTe-based composites. Therefore, SnTe, with its interesting phase change mechanisms, will be a promising alternative for the oncoming generation of anode materials for LIBs and NIBs.

  5. Reduction of 68Ge activity containing liquid waste from 68Ga PET chemistry in nuclear medicine and radiopharmacy by solidification

    NARCIS (Netherlands)

    E. de Blois (Erik); H.S. Chan (Ho Sze); K. Roy (Kamalika); E.P. Krenning (Eric); W.A.P. Breeman (Wouter)

    2011-01-01

    textabstractPET with68Ga from the TiO2- or SnO2- based68Ge/68Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity (68Ge vs.68Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts

  6. Direct gap Ge1-ySny alloys: Fabrication and design of mid-IR photodiodes

    Science.gov (United States)

    Senaratne, C. L.; Wallace, P. M.; Gallagher, J. D.; Sims, P. E.; Kouvetakis, J.; Menéndez, J.

    2016-07-01

    Chemical vapor deposition methods were developed, using stoichiometric reactions of specialty Ge3H8 and SnD4 hydrides, to fabricate Ge1-ySny photodiodes with very high Sn concentrations in the 12%-16% range. A unique aspect of this approach is the compatible reactivity of the compounds at ultra-low temperatures, allowing efficient control and systematic tuning of the alloy composition beyond the direct gap threshold. This crucial property allows the formation of thick supersaturated layers with device-quality material properties. Diodes with composition up to 14% Sn were initially produced on Ge-buffered Si(100) featuring previously optimized n-Ge/i-Ge1-ySny/p-Ge1-zSnz type structures with a single defected interface. The devices exhibited sizable electroluminescence and good rectifying behavior as evidenced by the low dark currents in the I-V measurements. The formation of working diodes with higher Sn content up to 16% Sn was implemented by using more advanced n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architectures incorporating Ge1-xSnx intermediate layers (x ˜ 12% Sn) that served to mitigate the lattice mismatch with the Ge platform. This yielded fully coherent diode interfaces devoid of strain relaxation defects. The electrical measurements in this case revealed a sharp increase in reverse-bias dark currents by almost two orders of magnitude, in spite of the comparable crystallinity of the active layers. This observation is attributed to the enhancement of band-to-band tunneling when all the diode layers consist of direct gap materials and thus has implications for the design of light emitting diodes and lasers operating at desirable mid-IR wavelengths. Possible ways to engineer these diode characteristics and improve carrier confinement involve the incorporation of new barrier materials, in particular, ternary Ge1-x-ySixSny alloys. The possibility of achieving type-I structures using binary and ternary alloy combinations is discussed in detail, taking into account

  7. Intermixing between HfO2 and GeO2 films deposited on Ge(001) and Si(001): Role of the substrate

    International Nuclear Information System (INIS)

    Soares, G. V.; Krug, C.; Miotti, L.; Bastos, K. P.; Lucovsky, G.; Baumvol, I. J. R.; Radtke, C.

    2011-01-01

    Thermally driven atomic transport in HfO 2 /GeO 2 /substrate structures on Ge(001) and Si(001) was investigated in N 2 ambient as function of annealing temperature and time. As-deposited stacks showed no detectable intermixing and no instabilities were observed on Si. On Ge, loss of O and Ge was detected in all annealed samples, presumably due to evolution of GeO from the GeO 2 /Ge interface. In addition, hafnium germanate is formed at 600 deg. C. Our data indicate that at 500 deg. C and above HfO 2 /GeO 2 stacks are stable only if isolated from the Ge substrate.

  8. Ab initio study of native defects in SnO under strain

    KAUST Repository

    Bianchi Granato, Danilo

    2014-04-01

    Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behaviour of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are less stable under tension and more stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge states. It turns out that the most stable defect under compression is the +1 charged O vacancy in an Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from a p-type into either an n-type or an undoped semiconductor. Copyright © EPLA, 2014.

  9. Electrochemical properties of SnO2/carbon composite materials as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Jie; Zhao Hailei; Liu Xiaotong; Wang Jing; Wang Chunmei

    2011-01-01

    Highlights: → SnO 2 /carbon powders with a cauliflower-like particle structure were synthesized. → Post-annealing can improve the electrochemical properties of SnO 2 /C composite. → The 500 deg. C-annealed SnO 2 /C shows the best electrochemical performance. → The lithium ion diffusion coefficients of the SnO 2 /C electrodes were calculated. - Abstract: SnO 2 /carbon composite anode materials were synthesized from SnCl 4 .5H 2 O and sucrose via a hydrothermal route and a post heat-treatment. The synthesized spherical SnO 2 /carbon powders show a cauliflower-like micro-sized structure. High annealing temperature results in partial reduction of SnO 2 . Metallic Sn starts to emerge at 500 deg. C. High Sn content in SnO 2 /carbon composite is favorable for the increase of initial coulombic efficiency but not for the cycling stability. The SnO 2 /carbon annealed at 500 deg. C exhibits high specific capacity (∼400 mAh g -1 ), stable cycling performance and good rate capability. The generation of Li 2 O in the first lithiation process can prevent the aggregation of active Sn, while the carbon component can buffer the big volume change caused by lithiation/delithiation of active Sn. Both of them make contribution to the better cycle stability.

  10. Electrochemical properties of SnO{sub 2}/carbon composite materials as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jie [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao Hailei, E-mail: hlzhao@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Lab of New Energy Materials and Technologies, Beijing 100083 (China); Liu Xiaotong; Wang Jing; Wang Chunmei [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-07-15

    Highlights: > SnO{sub 2}/carbon powders with a cauliflower-like particle structure were synthesized. > Post-annealing can improve the electrochemical properties of SnO{sub 2}/C composite. > The 500 deg. C-annealed SnO{sub 2}/C shows the best electrochemical performance. > The lithium ion diffusion coefficients of the SnO{sub 2}/C electrodes were calculated. - Abstract: SnO{sub 2}/carbon composite anode materials were synthesized from SnCl{sub 4}.5H{sub 2}O and sucrose via a hydrothermal route and a post heat-treatment. The synthesized spherical SnO{sub 2}/carbon powders show a cauliflower-like micro-sized structure. High annealing temperature results in partial reduction of SnO{sub 2}. Metallic Sn starts to emerge at 500 deg. C. High Sn content in SnO{sub 2}/carbon composite is favorable for the increase of initial coulombic efficiency but not for the cycling stability. The SnO{sub 2}/carbon annealed at 500 deg. C exhibits high specific capacity ({approx}400 mAh g{sup -1}), stable cycling performance and good rate capability. The generation of Li{sub 2}O in the first lithiation process can prevent the aggregation of active Sn, while the carbon component can buffer the big volume change caused by lithiation/delithiation of active Sn. Both of them make contribution to the better cycle stability.

  11. SN 2009E

    DEFF Research Database (Denmark)

    Pastorello...[], A.; Pumo, M.L.; Navasardyan, H.

    2012-01-01

    . In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present...... observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates...... 2009E ejected about 0.04 M⊙ of 56Ni, which is the smallest 56Ni mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of ~7 × 1012 cm and an ejected mass of ~19 M...

  12. SnSe2 2D Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan; Xia, Chuan; Zhu, Jiajie; Ahmed, Bilal; Liang, Hanfeng; Velusamy, Dhinesh Babu; Schwingenschlö gl, Udo; Alshareef, Husam N.

    2016-01-01

    A simple synthesis method to prepare pure SnSe2 nanosheet anodes for Na ion batteries is reported. The SnSe2 2D sheets achieve a stable and reversible specific capacity of 515 mA h g-1 after 100 cycles, with excellent rate performance. The sodiation

  13. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    Science.gov (United States)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  14. Peculiarity of component interaction in {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Pavlyuk, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Jan Dlugosz University, Institute of Chemistry, Environmental Protection and Biotechnology, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Tkachuk, A. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine)

    2011-07-14

    Highlights: > {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems at 770 K are characterized by formation of stannides with general compositions RMn{sub 6}Sn{sub 6} and R{sub 4}Mn{sub 4}Sn{sub 7}. > The crystal structure of YMn{sub 6}Sn{sub 6} was determined by single crystal and powder diffraction methods. > Structural analysis showed that Dy{sub 4}Mn{sub 4}Sn{sub 7} compound is disordered. > Isostructural R{sub 4}Mn{sub 4}Sn{sub 7} compounds were also found with Gd, Tb, Ho, Er, Tm(confirmed), Yb, and Lu. - Abstract: The phase equilibria in the Y-Mn-Sn and Dy-Mn-Sn ternary systems were studied at 770 K by means of X-ray and metallographic analyses in the whole concentration range. Both Y-Mn-Sn and Dy-Mn-Sn systems are characterized by formation of two ternary compounds RMn{sub 6}Sn{sub 6} (MgFe{sub 6}Ge{sub 6}-type, space group P6/mmm) and R{sub 4}Mn{sub 4}Sn{sub 7} (Zr{sub 4}Co{sub 4}Ge{sub 7}-type, space group I4/mmm). The disorder in Dy{sub 4}Mn{sub 4}Sn{sub 7} compound was found by single crystal method. Compounds with the same type of structure were also found with Gd, Tb, Ho, Er, Tm (confirmed), Yb, and Lu and their lattice parameters were determined.

  15. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  16. Development of Nb3Sn AC superconducting wire. Pt. 2

    International Nuclear Information System (INIS)

    Kasahara, Hobun; Torii, Shinji; Akita, Shirabe; Ueda, Kiyotaka; Kubota, Yoji; Yasohama, Kazuhiko; Kobayashi, Hisayasu; Ogasawara, Takeshi.

    1993-01-01

    For the realization of superconducting power apparatus, it is important that the development of highly stable superconducting cables. Nb 3 Sn wire has higher critical temperature than NbTi wire. Therefore, it is possible to make highly stable superconducting wires. In this report, we examine a manufacturing process of Ac Nb 3 Sn wire. This manufacturing process has four times higher critical current density than conventional processes. We have made a 400 kVA class AC coil with React and Wind method. The loss density of this coil was 20MW/m 3 at just before the quench. In this case, the temperature of cable increased about 3.8 K. This means that the Nb 3 Sn coil has a very high stability. (author)

  17. Study of Ge loss during Ge condensation process

    International Nuclear Information System (INIS)

    Xue, Z.Y.; Di, Z.F.; Ye, L.; Mu, Z.Q.; Chen, D.; Wei, X.; Zhang, M.; Wang, X.

    2014-01-01

    Ge loss during Ge condensation process was investigated by transmission electron microscopy, Raman spectroscopy, secondary ion mass spectrometry and Rutherford backscattering spectrometry. This work reveals that Ge loss can be attributed to the Ge oxidation at SiO 2 /SiGe interface, Ge diffusion in SiO 2 layers and Ge trapped at buried SiO 2 /Si interface. During Ge condensation process, with the increase of the Ge content, the Si atoms become insufficient for selective oxidation at the oxide/SiGe interface. Consequently, the Si and Ge are oxidized simultaneously. When the Ge composition in SiGe layer increases further and approaches 100%, the Ge atoms begin to diffuse into the top SiO 2 layer and buried SiO 2 layer. However, the X-ray photoelectron spectrometry analysis manifests that the chemical states of the Ge in top SiO 2 layer are different from those in buried SiO 2 layer, as the Ge atoms diffused into top SiO 2 layer are oxidized to form GeO 2 in the subsequent oxidation step. With the increase of the diffusion time, a quantity of Ge atoms diffuse through buried SiO 2 layer and pile up at buried SiO 2 /Si interface due to the interfacial trapping. The SiO 2 /Si interface acts like a pump, absorbing Ge from a Ge layer continuously through a pipe-buried SiO 2 layer. With the progress of Ge condensation process, the quantity of Ge accumulated at SiO 2 /Si interface increases remarkably. - Highlights: • Ge loss during Ge condensation process is attributed to the Ge oxidation at SiO 2 /SiGe interface. • Ge diffusion in SiO 2 layers and Ge trapped at buried SiO 2 /Si interface • When Ge content in SiGe layer approaches 100%, Ge diffusion into the SiO 2 layer is observed. • Ge then gradually diffuses through buried SiO 2 layer and pile up at SiO 2 /Si interface

  18. The ‘sub’ metallide oxide hydrides Sr{sub 21}Si{sub 2}O{sub 5}H{sub 12+x} and Ba{sub 21}M{sub 2}O{sub 5}H{sub 12+x} (M = Zn, Cd, Hg, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Jehle, Michael; Hoffmann, Anke [Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg (Germany); Kohlmann, Holger [Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig (Germany); Scherer, Harald [Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg (Germany); Röhr, Caroline, E-mail: caroline@ruby.chemie.uni-freiburg.de [Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104 Freiburg (Germany)

    2015-02-25

    Highlights: • The sub metallide oxide hydrides (Sr/Ba){sub 21}M{sub 2}O{sub 5}H{sub 12+x} were prepared for 14 M elements. • M covers a wide range of elements, from the Zn group to the pentels. • The ionic partial structure contains isolated M anions and suboxide clusters [O{sub 5}A{sub 18}]. • The H-content was determined by neutron diffraction and {sup 1}H/{sup 2}D MAS-NMR spectroscopy. • Band structure calculations support the H/D content and distribution. - Abstract: The title compounds sporting a great variety of anions M of different formal charges have been synthesized from melts of the composition A:M:O:H/D = 21:2:5:24, using BaH{sub 2}/SrH{sub 2} as hydrogen sources. All phases were characterized by means of single crystal X-ray data [cubic, space group Fd3{sup ¯}m; Sr{sub 21}Si{sub 2}O{sub 5}H{sub 12+x}: a = 1911.90(1) pm, R1 = 0.0201; for the barium phases with Zn (a = 2041.7(3) pm, R1 = 0.077), Cd (a = 2063.3(1) pm, R1 = 0.051), Hg (a = 2050.7(1) pm, R1 = 0.059), In (a = 2060.7(1) pm, R1 = 0.101), Tl (a = 2068.1(10) pm, R1 = 0.0485), Si (a = 2033.6(1) pm, R1 = 0.045), Ge (a = 2035.6(1) pm, R1 = 0.037), Sn (a = 2053.2(2) pm, R1 = 0.054), Pb (a = 2059.7(1) pm, R1 = 0.056), As (a = 2023.0(3) pm, R1 = 0.087), Sb (a = 2041.9(1) pm, R1 = 0.067) and Bi (a = 2045.9(1) pm, R1 = 0.075)]. Neutron powder diffraction data collected for the Ba silicide (both H and D compound) were refined by the Rietveld method (a = 2037.0(1), R{sub p} = 0.0173; wR{sub p} = 0.0304, R(F{sup 2}) = 0.086). The statistically occupied (H/D)(1) site 96g, which corresponds to the carbon position inSr{sub 21}Si{sub 2}O{sub 5}C{sub 6}, together with two further sparsely occupied sites (H/D)(2,3), yields the overall composition Ba{sub 21}Si{sub 2}O{sub 5}D{sub 14}. The hydrogen content, its chemical character and the distribution among the three H/D positions was evaluated by {sup 1}H/{sup 2}H MAS NMR spectroscopy for the Si, Ge and Sb compound. The crystal structure exhibits two

  19. Radiation-modified structure of Ge25Sb15S60 and Ge35Sb5S60 glasses

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Shpotyuk, O.; Kaban, I.; Hoyer, W.

    2008-01-01

    Atomic structures of Ge 25 Sb 15 S 60 and Ge 35 Sb 5 S 60 glasses are investigated in the γ-irradiated and annealed after γ-irradiation states by means of high-energy synchrotron x-ray diffraction technique. The first sharp diffraction peak (FSDP) is detected at around 1.1 A -1 in the structure factors of both alloys studied. The FSDP position is found to be stable for radiation/annealing treatment of the samples, while the FSDP intensity shows some changes between γ-irradiated and annealed states. The peaks in the pair distribution functions observed between 2 and 4 A are related to the Ge-S, Ge-Sb, and Sb-Sb first neighbor correlations and Ge-Ge second neighbor correlations in the edge-shared GeS 4/2 tetrahedra, and S-S and/or Ge-Ge second neighbor correlations in the corner-shared GeS 4/2 tetrahedra. Three mechanisms of the radiation-/annealing-induced changes are discussed in the framework of coordination topological defect formation and bond-free solid angle concepts

  20. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Zhou, Xiaosi; Wan, Li-Jun; Guo, Yu-Guo

    2013-04-18

    Hybrid anode materials for Li-ion batteries are fabricated by binding SnO2 nanocrystals (NCs) in nitrogen-doped reduced graphene oxide (N-RGO) sheets by means of an in situ hydrazine monohydrate vapor reduction method. The SnO2NCs in the obtained SnO2NC@N-RGO hybrid material exhibit exceptionally high specific capacity and high rate capability. Bonds formed between graphene and SnO2 nanocrystals limit the aggregation of in situ formed Sn nanoparticles, leading to a stable hybrid anode material with long cycle life. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of 68Ge/68Ga Generator using 30 MeV Cyclotron

    International Nuclear Information System (INIS)

    Goo, Hur Min; Dae, Yang Seung; Hoon, Park Jeong; Dae, Park Yong; Je, Lee Eun; Bae, Kong Young; Kim, In Jong; Lee, Jin Woo; Hyun, Yu Kook

    2012-05-01

    The purpose of this research is to develop the 68 Ge/ 68 Ga generator where daughter nuclide 68 Ga can be eluted according to the designated periods from the resin which holds mother nuclide 68 Ge absorbed and to develop the 68 Ga utilization technology. 1. Target development for 68 Ge target and production of 68 Ge - Target designed for 68 Ge production with 30 MeV cyclotron - Target body material evaluation and proton beam irradiation 2. Separation of 68 Ge and development of column material and extraction system for 68 Ge/ 68 Ga separation - Development of 68 Ge separation method from nat Ga target - Development of absorbents for generator using stable isotope 3. Development of 68 Ga labelled radiopharmaceutical - Development of 68 Ga labelled benzamide derivative for diagnosis of melanoma - Development of 68 Ga dendrimer complex using nano-technology 4. Development of shield case for 68 Ge/ 68 Ga generator

  2. SN 2012fr

    DEFF Research Database (Denmark)

    Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.

    2018-01-01

    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epo...

  3. Spectroscopy of the doubly magic nucleus {sup 100}Sn and its decay

    Energy Technology Data Exchange (ETDEWEB)

    Hinke, Christoph B.

    2010-07-23

    The nucleus {sup 100}Sn has been the aim of a number of experimental approaches. It is of great interest for various reasons. It is presumably the heaviest particle-stable N=Z nucleus and at the same time doubly magic. Its beta decay is of particular importance because it is expected to be the purest Gamow-Teller decay in the nuclear chart and thus allows to study the question of the missing Gamow-Teller strength/the Gamow-Teller quenching due to core polarisation effects. From the beta-coincident decay spectroscopy of the daughter nucleus {sup 100}In information about the proton-neutron interaction in this region of the nuclear chart can be obtained. Simultaneously with the implantation of the nucleus in the detector setup after production the search for delayed gamma radiation from a predicted isomeric state in {sup 100}Sn could yield first insight into the structure of excited states in this exotic nucleus. This work presents investigation results concerning the spectroscopy of the doubly magic nucleus {sup 100}Sn and its decay. The experiment was performed in March 2008 at the accelerator facilities of the GSI Helmholtz Zentrum Darmstadt. The neutron deficient nucleus was produced in a projectile fragmentation reaction of a {sup 124}Xe primary beam impinging on a Beryllium target with an energy of 1 GeV x A. After a separation from other fragmentation products and a unique identification {sup 100}Sn was stopped in an implantation detector consisting of highly segmented silicon strip detectors for decay spectroscopy. Beside the determination of the half life it was possible to detect the total energy of the emitted particle radiation in the implantation detector as well as the emitted gamma radiation with a surrounding array of Germanium detectors. With a number of approximately 70 successfully observed decays of {sup 100}Sn a half life of T{sub 1/2}=1.16{+-}0.20s was obtained. The beta endpoint energy of the single channel decay yielded a value of E{sub {beta

  4. Spectroscopy of the doubly magic nucleus 100Sn and its decay

    International Nuclear Information System (INIS)

    Hinke, Christoph B.

    2010-01-01

    The nucleus 100 Sn has been the aim of a number of experimental approaches. It is of great interest for various reasons. It is presumably the heaviest particle-stable N=Z nucleus and at the same time doubly magic. Its beta decay is of particular importance because it is expected to be the purest Gamow-Teller decay in the nuclear chart and thus allows to study the question of the missing Gamow-Teller strength/the Gamow-Teller quenching due to core polarisation effects. From the beta-coincident decay spectroscopy of the daughter nucleus 100 In information about the proton-neutron interaction in this region of the nuclear chart can be obtained. Simultaneously with the implantation of the nucleus in the detector setup after production the search for delayed gamma radiation from a predicted isomeric state in 100 Sn could yield first insight into the structure of excited states in this exotic nucleus. This work presents investigation results concerning the spectroscopy of the doubly magic nucleus 100 Sn and its decay. The experiment was performed in March 2008 at the accelerator facilities of the GSI Helmholtz Zentrum Darmstadt. The neutron deficient nucleus was produced in a projectile fragmentation reaction of a 124 Xe primary beam impinging on a Beryllium target with an energy of 1 GeV x A. After a separation from other fragmentation products and a unique identification 100 Sn was stopped in an implantation detector consisting of highly segmented silicon strip detectors for decay spectroscopy. Beside the determination of the half life it was possible to detect the total energy of the emitted particle radiation in the implantation detector as well as the emitted gamma radiation with a surrounding array of Germanium detectors. With a number of approximately 70 successfully observed decays of 100 Sn a half life of T 1/2 =1.16±0.20s was obtained. The beta endpoint energy of the single channel decay yielded a value of E β 0 =3.29±0.20 MeV. The resultant Gamow

  5. Nuclear structure near the doubly-magic 100Sn

    International Nuclear Information System (INIS)

    Grawe, H.; Hu, Z.; Roeckl, E.; Gorska, M.; Nyberg, J.; Gadea, A.; Angelis, G. de

    1998-09-01

    The single particle (hole) energies in 100 Sn, as extrapolated by a shell model analysis of the neighbouring nuclei, show a remarkable similarity to those in 36 Ni, one major shell lower. This is borne out in nearly identical I π =2 + excitation energies, implying E(2 + )≅3 MeV in 100 Sn, and a large neutron effective E2 charge ε≥1.6ε. In contrast a small proton polarisation charge δε≤0.3ε is found, pointing to a large isovector charge. Mean field predictions for single particle energies show substantial deviations from the experimental extrapolation. From the experimental two-proton hole spectrum in 98 Cd an improved empirical interaction is extracted for the π(p 1/2 ,g 9/2 ) model space yielding a good description of the N=50 isotones 95 Rh to 98 Cd. In 104 Sn, for the first time in this region, strong E3 transitions with B(E3)≥17 W.u. were identified, indicating E(3 - )≅3 MeV in 100 Sn. New experimental devices, as the Ge-cluster cube and total absorption spectrometers, applied in a pioneering experiment to the β + /EC decay of 97 Ag, have led to a consistent picture of the Gamow-Teller quenching around 100 Sn. The experimental results are discussed in the framework of various shell model approaches by using both empirical and realistic interactions. (orig.)

  6. Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders

    International Nuclear Information System (INIS)

    Zhang Ge; Huang Kelong; Liu Suqin; Zhang Wei; Gong Benli

    2006-01-01

    Cu 2 Sb, SnSb and Sn/SnSb mesoscopic alloy powders were prepared by chemical reduction, respectively. The crystal structures and particle morphology of Cu 2 Sb, SnSb and Sn/SnSb were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrochemical performances of the Cu 2 Sb, SnSb and Sn/SnSb electrodes were investigated by galvanostatic charge and discharge cycling and electrochemical impedance spectroscopy (EIS). The results showed the first charge and discharge capacities of SnSb and Sn/SnSb were higher than Cu 2 Sb, but after 15 cycles, the charge capacity fading rates of Cu 2 Sb, Sn/SnSb and Sn/SnSb were 26.16%, 55.33% and 47.39%, respectively. Cu 2 Sb had a better cycle performance, and Sn/SnSb multiphase alloy was prior to pure SnSb due to the existence of excessive Sn in Sn/SnSb system

  7. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  8. Ab-initio calculations of semiconductor MgGeP{sub 2} and MgGeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, B.; Ciftci, Y.O., E-mail: yasemin@gazi.edu.tr

    2016-05-15

    Highlights: • MgGeP{sub 2} and MgGeAs{sub 2} are semiconductor compounds. • MgGeP{sub 2} and MgGeAs{sub 2} are energetically, mechanically and dynamically stable. • The electronic charge density contour plot shows that the nature of bonding is a mixture of ionic-covalent. - Abstract: In this study, we focus on structural, electronic, elastic, lattice dynamic and optic properties of MgGeP{sub 2} and MgGeAs{sub 2} using ab-initio density-functional theory (DFT) within Armiento-Mattson 2005 (AM05) scheme of the generalized gradient approximation (GGA) for the exchange-correlation potential. Our computed structural results are in reasonable agreement with the literature. The band gap of these compounds is predicted to be direct. Our elastic results prove that these compounds are mechanically stable. The obtained phonon spectra of MgGeP{sub 2} and MgGeAs{sub 2} do not exhibit any significant imaginary branches using GGA-AM05 for the exchange-correlation approximation. Further analysis of the optical response of the dielectric functions, optical reflectivity, refractive index, extinction coefficient and electron energy loss delves into for the energy range of 0–22.5 eV. It motivated that there exists an optical polarization anisotropy of these compounds for optoelectronic device applications.

  9. Study of neutron-deficient Sn isotopes

    International Nuclear Information System (INIS)

    Auger, G.

    1982-05-01

    The formation of neutron deficient nuclei by heavy ion reactions is investigated. The experimental technique is presented, and the results obtained concerning Sn et In isotopes reported: first excited states of 106 Sn, high spin states in 107 Sn and 107 In; Yrast levels of 106 Sn, 107 Sn, 108 Sn; study of neutron deficient Sn and In isotopes formed by the desintegration of the compound nucleus 112 Xe. All these results are discussed [fr

  10. First-principles study of defect formation in a photovoltaic semiconductor Cu2ZnGeSe4

    Science.gov (United States)

    Nishihara, Hironori; Maeda, Tsuyoshi; Wada, Takahiro

    2018-02-01

    The formation energies of neutral Cu, Zn, Ge, and Se vacancies in kesterite-type Cu2ZnGeSe4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in Cu-(Zn1/2Ge1/2)-Se and Cu3Se2-ZnSe-GeSe2 pseudoternary phase diagrams for Cu2ZnGeSe4. The results were compared with those for Cu2ZnSnSe4, Cu2ZnGeS4, and Cu2ZnSnS4 calculated using the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2ZnGeSe4 under the Cu-poor condition as in the above compounds and CuInSe2, suggesting that Cu2ZnGeSe4 is also a preferable p-type absorber material for thin-film solar cells. The formation energies of possible antisite defects, such as CuZn and CuGe, and of possible complex defects, such as CuZn+ZnCu, were also calculated and compared within the above materials. The antisite defect of CuZn, which has the smallest formation energy within the possible defects, is concluded to be the most hardly formed in Cu2ZnGeSe4 among the compounds.

  11. Porous SnO2-CuO nanotubes for highly reversible lithium storage

    Science.gov (United States)

    Cheong, Jun Young; Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Kim, Il-Doo

    2018-01-01

    Facile synthesis of rationally designed structures is critical to realize a high performance electrode for lithium-ion batteries (LIBs). Among different candidates, tin(IV) oxide (SnO2) is one of the most actively researched electrode materials due to its high theoretical capacity (1493 mAh g-1), abundance, inexpensive costs, and environmental friendliness. However, severe capacity decay from the volume expansion and low conductivity of SnO2 have hampered its use as a feasible electrode for LIBs. Rationally designed SnO2-based nanostructures with conductive materials can be an ideal solution to resolve such limitations. In this work, we have successfully fabricated porous SnO2-CuO composite nanotubes (SnO2-CuO p-NTs) by electrospinning and subsequent calcination step. The porous nanotubular structure is expected to mitigate the volume expansion of SnO2, while the as-formed Cu from CuO upon lithiation allows faster electron transport by improving the low conductivity of SnO2. With a synergistic effect of both Sn and Cu-based oxides, SnO2-CuO p-NTs deliver stable cycling performance (91.3% of capacity retention, ∼538 mAh g-1) even after 350 cycles at a current density of 500 mA g-1, along with enhanced rate capabilities compared with SnO2.

  12. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  13. Stable Tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris [Fermilab

    2018-04-13

    For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  14. Peculiarities of component interaction in {l_brace}Gd, Er{r_brace}-V-Sn Ternary systems at 870 K and crystal structure of RV{sub 6}Sn{sub 6} stannides

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Stadnyk, Yu. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Demchenko, P.; Stadnyshyn, M.; Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine)

    2011-09-08

    Highlights: > {l_brace}Gd, Er{r_brace}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV{sub 6}Sn{sub 6}. > Isostructural RV{sub 6}Sn{sub 6} compounds were also found with Y, Dy, Ho, Tm, and Lu. > The crystal structure of RV{sub 6}Sn{sub 6} compounds was determined by powder diffraction method. > Structural analysis showed that RV{sub 6}Sn{sub 6} compounds (R = Gd, Dy-Tm, Lu) are disordered; YV{sub 6}Sn{sub 6} is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV{sub 6}Sn{sub 6} (SmMn{sub 6}Sn{sub 6}-type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn{sub 6}Sn{sub 6}-type were also found with Dy, Ho, Tm, and Lu, while YV{sub 6}Sn{sub 6} compound crystallizes in HfFe{sub 6}Ge{sub 6} structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  15. SN 1987A. Theory

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-03-01

    SN 1987A was unique in many aspects. The most striking, undoubtedly, is its low luminosity, nearly two orders of magnitude below the expectations based on supernovae currently observed in external galaxies. The rise time of the optical emission, usually a few days, was for SN 1987A, of the order of a few hours. Also its surface temperature is surprisingly low, 5000K. The neutrino burst has been detected. It was observed twice, with a time difference of 5 hours, the second burst occurring within 3 hours of the onset of the optical signal. In this talk, I will discuss how these strange events fit with the theoretical models of supernova explosions, how they differ in some cases, and try to evaluate the degree of certainty -or uncertainty- of our present knowledge on how these extremely powerful star explosions occur

  16. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  17. SN 2006oz

    DEFF Research Database (Denmark)

    Leloudas, Georgios; Chatzopoulos, E.; Dilday, B.

    2012-01-01

    to contribute to a better understanding of these objects by studying SN 2006oz, a newly-recognized member of this class. Methods. We present multi-color light curves of SN 2006oz from the SDSS-II SN Survey that cover its rise time, as well as an optical spectrum that shows that the explosion occurred at z ~ 0.......376. We fitted black-body functions to estimate the temperature and radius evolution of the photosphere and used the parametrized code SYNOW to model the spectrum. We constructed a bolometric light curve and compared it with explosion models. In addition, we conducted a deep search for the host galaxy...... to a recombination wave in a circumstellar medium (CSM) and discuss whether this is a common property of all similar explosions. The subsequent rise can be equally well described by input from a magnetar or by ejecta-CSM interaction, but the models are not well constrained owing to the lack of post...

  18. Surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy

    Science.gov (United States)

    Yang, Yan; Feng, Zhong-Ying; Zhang, Jian-Min

    2018-05-01

    The spin-polarized first-principles are used to study the surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy, and the bulk Zr2CoSn Heusler alloy are also discussed to make comparison. The conduction band minimum (CBM) of half-metallic (HM) bulk Zr2CoSn alloy is contributed by ZrA, ZrB and Co atoms, while the valence band maximum (VBM) is contributed by ZrB and Co atoms. The SnSn termination is the most stable surface with the highest spin polarizations P = 77.1% among the CoCo, ZrCo, ZrZr, ZrSn and SnSn terminations of the Zr2CoSn (001) surface. In the SnSn termination of the Zr2CoSn (001) surface, the atomic partial density of states (APDOS) of atoms in the surface, subsurface and third layers are much influenced by the surface effect and the total magnetic moment (TMM) is mainly contributed by the atomic magnetic moments of atoms in fourth to ninth layers.

  19. Stellar Laboratories: New GeV and Ge VI Oscillator Strengths and their Validation in the Hot White Dwarf RE0503-289

    Science.gov (United States)

    Rauch, T.; Werner, K.; Biemont, E.; Quinet, P.; Kruk, J. W.

    2013-01-01

    State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. Aims. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We calculated Ge V and Ge VI oscillator strengths in order to reproduce the observed spectrum. Methods. We newly calculated Ge V and Ge VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our non-LTE stellar-atmosphere models for the analysis of the Ge IV-VI spectrum exhibited in high-resolution and high-S/N FUV (FUSE) and UV (ORFEUS/BEFS, IUE) observations of RE 0503-289. Results. In the UV spectrum of RE 0503-289, we identify four Ge IV, 37 Ge V, and seven Ge VI lines. Most of these lines are identified for the first time in any star. We can reproduce almost all Ge IV, GeV, and Ge VI lines in the observed spectrum of RE 0503-289 (T(sub eff) = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass fraction, about 650 times solar). The Ge IV/V/VI ionization equilibrium, that is a very sensitive T(sub eff) indicator, is reproduced well. Conclusions. Reliable measurements and calculations of atomic data are a

  20. Properties of Si{sub n}, Ge{sub n}, and Si{sub n}Ge{sub n} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yi; Rehman, Habib ur; Springborg, Michael [Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken (Germany)

    2015-01-22

    The structures of Si{sub n}, Ge{sub n}, and Si{sub n}Ge{sub n} clusters with up to 44 atoms have been determined theoretically using an unbiased structure-optimization method in combination with a parametrized, density-functional description of the total energy for a given structure. By analyzing the total energy in detail, particularly stable clusters are identified. Moreover, general trends in the structures are identified with the help of specifically constructed descriptors.

  1. Antiproton-nucleus interactions at 5 to 9 GeV/c

    International Nuclear Information System (INIS)

    Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chan, C.S.; Clement, J.M.; Eiseman, S.E.; Empl, A.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Hallman, T.J.; Kramer, M.A.; Kruk, J.; Lindenbaum, S.J.; Longacre, R.S.; Love, W.A.; Madansky, L.; Morris, W.; Mutchler, G.S.; Peaslee, D.C.; Platner, E.D.; Saulys, A.C.; Toshkov, S.

    1993-01-01

    Antiproton beams of 5, 7 and 9 GeV/c were used to interact with C, Al, Cu, Sn and Pb nuclear targets. Charged particle multiplicity distributions, strange particle production cross sections and rapidity distributions were measured. The charged particle multiplicities are reported in this paper. (orig.)

  2. Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers

    Science.gov (United States)

    Bonfanti, M.; Grilli, E.; Guzzi, M.; Virgilio, M.; Grosso, G.; Chrastina, D.; Isella, G.; von Känel, H.; Neels, A.

    2008-07-01

    Direct-gap and indirect-gap transitions in strain-compensated Ge/SiGe multiple quantum wells with Ge-rich SiGe barriers have been studied by optical transmission spectroscopy and photoluminescence experiments. An sp3d5s∗ tight-binding model has been adopted to interpret the experimental results. Photoluminescence spectra and their comparison with theoretical calculations prove the existence of type-I band alignment in compressively strained Ge quantum wells grown on relaxed Ge-rich SiGe buffers. The high quality of the transmission spectra opens up other perspectives for application of these structures in near-infrared optical modulators.

  3. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  4. Atomic Layer Deposition of SnO2 on MXene for Li-Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2017-02-24

    In this report, we show that oxide battery anodes can be grown on two-dimensional titanium carbide sheets (MXenes) by atomic layer deposition. Using this approach, we have fabricated a composite SnO2/MXene anode for Li-ion battery applications. The SnO2/MXene anode exploits the high Li-ion capacity offered by SnO2, while maintaining the structural and mechanical integrity by the conductive MXene platform. The atomic layer deposition (ALD) conditions used to deposit SnO2 on MXene terminated with oxygen, fluorine, and hydroxyl-groups were found to be critical for preventing MXene degradation during ALD. We demonstrate that SnO2/MXene electrodes exhibit excellent electrochemical performance as Li-ion battery anodes, where conductive MXene sheets act to buffer the volume changes associated with lithiation and delithiation of SnO2. The cyclic performance of the anodes is further improved by depositing a very thin passivation layer of HfO2, in the same ALD reactor, on the SnO2/MXene anode. This is shown by high-resolution transmission electron microscopy to also improve the structural integrity of SnO2 anode during cycling. The HfO2 coated SnO2/MXene electrodes demonstrate a stable specific capacity of 843 mAh/g when used as Li-ion battery anodes.

  5. Isomer shifts and chemical bonding in crystalline Sn(II) and Sn(IV) compounds

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1991-01-01

    First-principles self-consistent Local Density calculations of the electronic structure of clusters representing Sn(II) (SnO, SnF 2 , SnS, SnSe) and Sn(IV) (SnO 2 , SnF 4 ) crystalline compounds were performed. Values of the electron density at the Sn nucleus were obtained and related to measured values of the Moessbauer Isomer Shifts reported in the literature. The nuclear parameter of 119 Sn derived was ΔR/R=(1.58±0.14)x10 -4 . The chemical bonding in the solids was analysed and related to the electron densities obtained. (author)

  6. TbNb6Sn6: the first ternary compound from the rare earth–niobium–tin system

    Directory of Open Access Journals (Sweden)

    Viktor Hlukhyy

    2010-12-01

    Full Text Available The title compound, terbium hexaniobium hexastannide, TbNb6Sn6, is the first ternary compound from the rare earth–niobium–tin system. It has the HfFe6Ge6 structure type, which can be analysed as an intergrowth of the Zr4Al3 and CaCu5 structures. All the atoms lie on special positions; their coordination geometries and site symmetries are: Tb (dodecahedron 6/mmm; Nb (distorted icosahedron 2mm; Sn (Frank–Caspar polyhedron, CN = 14–15 6mm and overline{6}m2; Sn (distorted icosahedron overline{6}m2. The structure contains a graphite-type Sn network, Kagome nets of Nb atoms, and Tb atoms alternating with Sn2 dumbbells in the channels.

  7. G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity.

    Science.gov (United States)

    Goldberg, Deborah S; Vijayalakshmi, Nirmalkumar; Swaan, Peter W; Ghandehari, Hamidreza

    2011-03-30

    Poly(amido amine) (PAMAM) dendrimers have shown promise in oral drug delivery. Conjugation of SN38 to PAMAM dendrimers has the potential to improve its oral absorption while minimizing gastrointestinal toxicity. In this work we evaluated G3.5 PAMAM dendrimer-SN38 conjugates with ester-linked glycine and β-alanine spacers for their suitability in oral therapy of hepatic colorectal cancer metastases. G3.5-βAlanine-SN38 was mostly stable while G3.5-Glycine-SN38 showed 10%, 20%, and 56% SN38 release in simulated gastric, intestinal and liver environments for up to 6, 24 and 48 hours, respectively. Short-term treatment of Caco-2 cells with G3.5-SN38 conjugates did not reduce cell viability, while comparable concentrations of SN38 caused significant cytotoxicity. G3.5-Glycine-SN38 and G3.5-βAlanine-SN38 showed IC₅₀ values of 0.60 and 3.59 μM, respectively, in HT-29 cells treated for 48 h, indicating the efficacy of the drug delivery system in colorectal cancer cells with longer incubation time. Both conjugates increased SN38 transepithelial transport compared to the free drug. Transport of G3.5-Glycine-SN38 was highly concentration-dependent whereas transport of G3.5-βAlanine-SN38 was concentration-independent, highlighting the influence of drug loading and spacer chemistry on transport mechanism. Together these results show that PAMAM dendrimers have the potential to improve the oral bioavailability of potent anti-cancer drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C. [Department of Solid-State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium); Van Stiphout, K.; Santos, N. M.; Vantomme, A. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Bladt, E.; Bals, S. [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Comrie, C. M. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa)

    2016-04-07

    We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide with a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.

  9. Energy levels of germanium, Ge I through Ge XXXII

    International Nuclear Information System (INIS)

    Sugar, J.; Musgrove, A.

    1993-01-01

    Atomic energy levels of germanium have been compiled for all stages of ionization for which experimental data are available. No data have yet been published for Ge VIII through Ge XIII and Ge XXXII. Very accurate calculated values are compiled for Ge XXXI and XXXII. Experimental g-factors and leading percentages from calculated eigenvectors of levels are given. A value for the ionization energy, either experimental when available or theoretical, is included for the neutral atom and each ion. section

  10. Ab-initio study of the stability of the D8{sub m}-Nb{sub 5}Sn{sub 2}Ga and D8{sub m}-Ta{sub 5}SnGa{sub 2} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Colinet, Catherine, E-mail: ccolinet@simap.grenoble-inp.fr [Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS, 38402 Saint Martin d’Hères Cedex (France); Tedenac, Jean-Claude [Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2015-03-15

    Graphical abstract: Thermodynamic data along the sections Ta{sub 5}Sn{sub 3}–Ta{sub 5}Ga{sub 3} at low and high temperature. - Highlights: • First principles calculations were performed along sections V{sub 5}Sn{sub 3}–V{sub 5}Ga{sub 3}, Nb{sub 5}Sn{sub 3}–Nb{sub 5}Ga{sub 3}, and Ta{sub 5}Sn{sub 3}–Ta{sub 5}Ga{sub 3}. • The ternary compound D8{sub m}-Nb{sub 5}Sn{sub 2}Ga is stable. • The phase D8{sub m}-Ta{sub 5}SnGa{sub 2} is stable in the D8{sub m} structure. • In this phase, the Sn and Ga atoms share the 8h sites. - Abstract: First principles calculations have been performed in the T–Sn–Ga (T = V, Nb, Ta) systems along the section x{sub T} = 0.625. The enthalpies of formation of the binary and ternary D8{sub m}, D8{sub 1}, and D8{sub 8} structures have been calculated. In the V–Sn–Ga system, no ternary structure is stable in the section. In the Nb–Sn–Ga system, the ternary compound D8{sub m}-Nb{sub 5}Sn{sub 2}Ga is stable. In the Ta–Sn–Ga system, a combination of the ab-initio calculations and Gibbs energy calculations using the sublattice model allows the show that the phase D8{sub m}-Ta{sub 5}(Sn,Ga){sub 2}Ga with a mixed occupancy of the 8h sites of the structure by Ga and Sn atoms is stable at high temperature due to the configurational entropy. These results are in agreement with the experimental determinations previously published in the literature.

  11. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  12. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  13. The effect of simultaneous substitution on the electronic band structure and thermoelectric properties of Se-doped Co3SnInS2 with the Kagome lattice

    Science.gov (United States)

    Fujioka, Masaya; Shibuya, Taizo; Nakai, Junya; Yoshiyasu, Keigo; Sakai, Yuki; Takano, Yoshihiko; Kamihara, Yoichi; Matoba, Masanori

    2014-12-01

    The thermoelectric properties and electronic band structures for Se-doped Co3SnInS2 were examined. The parent compound of this material (Co3Sn2S2) has two kinds of Sn sites (Sn1 and Sn2 sites). The density functional theory (DFT) calculations show that the indium substitution at the Sn2 site induces a metallic band structure, on the other hand, a semiconducting band structure is obtained from substitution at the Sn1 site. However, according to the previous reports, since the indium atom prefers to replace the tin atom at the Sn1 site rather than the Sn2 site, the resistivity of Co3SnInS2 shows semiconducting-like behavior. In this study we have demonstrated that metallic behavior and a decrease in resistivity for Se-doped Co3SnInS2 occurs without suppression of the Seebeck coefficient. From the DFT calculations, when the selenium content is above 0.5, the total crystallographic energy shows that a higher indium occupancy at Sn2 site is more stable. Therefore, it is suggested that the selenium doping suppress the site preference for indium substitution. This is one of the possible explanations for the metallic conductivity observed in Se-doped Co3SnInS2

  14. The Influence of Aluminum on the Microstructure and Hardness of Mg-5Si-7Sn Alloy

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2016-03-01

    Full Text Available Magnesium alloys due the low density and good mechanical properties are mainly used in the automotive and aerospace industry. In recent years, magnesium alloys are extensively developed for use in high temperatures (above 120°C. Among these alloys, magnesium alloys containing tin and silicon have large possibilities of application due to the formation of thermally stable intermetallic Mg2Sn and Mg2Si. In this paper the influence of aluminum and heat treatment on the on the microstructure and hardness of Mg-7Sn-5Si alloy is reported. It was found that the microstructure of Mg-7Sn-5Si alloy consist of α-Mg solid solution, Mg2Sn and Mg2Si compounds. Addition of 2 wt% of Al to Mg-7Sn-5Si alloy causes the formation of Al2Sn phase. Moreover, Al dissolves in the α-Mg solid solution. The solution heat-treatment of tested alloys at 500°C for 24 h causes the dissolve the Mg2Sn phase in the α-Mg matrix and spheroidization of Mg2Si compound. The Mg2Si primary crystals are stable at solution temperature. After ageing treatment the precipitation process of equilibrium Mg2Sn phase was found in both alloys. The addition of aluminum has a positive effect on the hardness of Mg-7Sn-5Si alloy. In case of Mg-5Si-7Sn-2Al alloy the highest hardness was obtained for sample aged for 148 h at 250°C (88 HV2, while in case of Al-free alloy the highest hardness is 70 HV for material aged for 148 h at 250°C.

  15. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Yunyong; Zhang, Haiyan; Chen, Yiming; Shi, Zhicong; Cao, Xiaoguo; Guo, Zaiping; Shen, Pei Kang

    2016-01-13

    A peculiar nanostructure consisting of nitrogen-doped, carbon-encapsulated (N-C) SnO2@Sn nanoparticles grafted on three-dimensional (3D) graphene-like networks (designated as N-C@SnO2@Sn/3D-GNs) has been fabricated via a low-cost and scalable method, namely an in situ hydrolysis of Sn salts and immobilization of SnO2 nanoparticles on the surface of 3D-GNs, followed by an in situ polymerization of dopamine on the surface of the SnO2/3D-GNs, and finally a carbonization. In the composites, three-layer core-shell N-C@SnO2@Sn nanoparticles were uniformly grafted onto the surfaces of 3D-GNs, which promotes highly efficient insertion/extraction of Li(+). In addition, the outermost N-C layer with graphene-like structure of the N-C@SnO2@Sn nanoparticles can effectively buffer the large volume changes, enhance electronic conductivity, and prevent SnO2/Sn aggregation and pulverization during discharge/charge. The middle SnO2 layer can be changed into active Sn and nano-Li2O during discharge, as described by SnO2 + Li(+) → Sn + Li2O, whereas the thus-formed nano-Li2O can provide a facile environment for the alloying process and facilitate good cycling behavior, so as to further improve the cycling performance of the composite. The inner Sn layer with large theoretical capacity can guarantee high lithium storage in the composite. The 3D-GNs, with high electrical conductivity (1.50 × 10(3) S m(-1)), large surface area (1143 m(2) g(-1)), and high mechanical flexibility, tightly pin the core-shell structure of the N-C@SnO2@Sn nanoparticles and thus lead to remarkably enhanced electrical conductivity and structural integrity of the overall electrode. Consequently, this novel hybrid anode exhibits highly stable capacity of up to 901 mAh g(-1), with ∼89.3% capacity retention after 200 cycles at 0.1 A g(-1) and superior high rate performance, as well as a long lifetime of 500 cycles with 84.0% retention at 1.0 A g(-1). Importantly, this unique hybrid design is expected to be

  16. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  17. Selective epitaxial growth of Ge1-xSnx on Si by using metal-organic chemical vapor deposition

    Science.gov (United States)

    Washizu, Tomoya; Ike, Shinichi; Inuzuka, Yuki; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-06-01

    Selective epitaxial growth of Ge and Ge1-xSnx layers on Si substrates was performed by using metal-organic chemical vapor deposition (MOCVD) with precursors of tertiary-butyl-germane (t-BGe) and tri-butyl-vinyl-tin (TBVSn). We investigated the effects of growth temperature and total pressure during growth on the selectivity and the crystallinity of the Ge and Ge1-xSnx epitaxial layers. Under low total pressure growth conditions, the dominant mechanism of the selective growth of Ge epitaxial layers is the desorption of the Ge precursors. At a high total pressure case, it is needed to control the surface migration of precursors to realize the selectivity because the desorption of Ge precursors was suppressed. The selectivity of Ge growth was improved by diffusion of the Ge precursors on the SiO2 surfaces when patterned substrates were used at a high total pressure. The selective epitaxial growth of Ge1-xSnx layer was also realized using MOCVD. We found that the Sn precursors less likely to desorb from the SiO2 surfaces than the Ge precursors.

  18. Si/Ge intermixing during Ge Stranski–Krastanov growth

    Directory of Open Access Journals (Sweden)

    Alain Portavoce

    2014-12-01

    Full Text Available The Stranski–Krastanov growth of Ge islands on Si(001 has been widely studied. The morphology changes of Ge islands during growth, from nucleation to hut/island formation and growth, followed by hut-to-dome island transformation and dislocation nucleation of domes, have been well described, even at the atomic scale, using techniques such as scanning tunneling microscopy and transmission electron microscopy. Although it is known that these islands do not consist of pure Ge (due to Si/Ge intermixing, the composition of the Ge islands is not precisely known. In the present work, atom probe tomography was used to study the composition of buried dome islands at the atomic scale, in the three-dimensional space. The core of the island was shown to contain about 55 atom % Ge, while the Ge composition surrounding this core decreases rapidly in all directions in the islands to reach a Ge concentration of about 15 atom %. The Ge distribution in the islands follows a cylindrical symmetry and Ge segregation is observed only in the {113} facets of the islands. The Ge composition of the wetting layer is not homogeneous, varying from 5 to 30 atom %.

  19. Fabrication and testing of the Nb3Sn superconductor for High-Field Test Facility (HFTF)

    International Nuclear Information System (INIS)

    Spencer, C.; Adam, E.; Gregory, E.; Marancik, W.; Sanger, P.; Scanlan, R.; Cornish, D.

    1979-01-01

    A 5000 A-12 T fully stable Nb 3 Sn superconductor has to be produced for the insert magnet of the high-field test facility being built at Lawrence Livermore Laboratory. A process is described which permits the fabrication of long lengths of large fully transposed monolithic superconductors containing in excess of 100,000 filaments of Nb 3 Sn. Measurements of critical current as a function of magnetic field and longitudinal strain on prototype samples are reported

  20. SnSe2 2D Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2016-08-22

    A simple synthesis method to prepare pure SnSe2 nanosheet anodes for Na ion batteries is reported. The SnSe2 2D sheets achieve a stable and reversible specific capacity of 515 mA h g-1 after 100 cycles, with excellent rate performance. The sodiation and desodiation process in this anode material is shown to occur via a combination of conversion and alloying reactions.

  1. Stable functionalization of germanium surface and its application in biomolecules immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Ye, Lin [Sate Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Tang, Teng; Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A, Yuquan Road, Beijing 100049 (China); Bian, Xiaojun; Zhang, Jishen [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn [Sate Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No.865, Changning Road, Shanghai 200050 (China)

    2014-10-15

    Highlights: • An effective method to immobilize biomolecules on the functionalized Ge surface. • The surface of Ge was functionalized with 11-Mercaptoundecanoic acid (11-MUA). • Stable and uniform SAMs was obtained on Ge surface after 11-MUA treatment. • The functionalized Ge was employed as substrate for protein immobilization. • Paving the way of Ge for further applications in bioelectronics field. - Abstract: As a typical semiconductor material, germanium (Ge) has the potential to be utilized in microelectronics and bioelectronics. Herein, we present a simple and effective method to immobilize biomolecules on the surface of functionalized Ge. The surface oxide of Ge was removed with the pretreatment of hydrochloric acid and the Cl-terminated Ge reacted with 11-Mercaptoundecanoic acid (11-MUA). The surface of Ge was coated with 11-MUA self-assembled monolayers (SAMs) due to the bonding reaction between the sulfhydryl group of 11-MUA and Cl-terminated Ge. Furthermore, typical biomolecule, a green fluorescent protein was chosen to be immobilized on the surface of the functionalized Ge. Contact angle analysis, atomic force microscopy and X-ray photoelectron spectroscopy were used to study the characteristics including wettability, stability, roughness and component of the functionalized Ge, respectively. Fluorescence microscopy was utilized to indicate the efficiency of protein immobilization on the surface of the functionalized Ge. With these studies, stable and uniform functionalized monolayer was obtained on the surface of Ge after 11-MUA treatment and the functionalized Ge was effectively applied in protein immobilization. Furthermore, this study may pave the way for further applications such as the integration of bioelectronics and biosensors with the attractive semiconductor material-Ge in future work.

  2. Magnetic properties and Hall effect of single-crystalline YMn6Sn6

    International Nuclear Information System (INIS)

    Uhlirova, K.; Sechovsky, V.; Boer, F.R. de; Yoshii, S.; Yamamoto, T.; Hagiwara, M.; Lefevre, C.; Venturini, G.

    2007-01-01

    Magnetization behavior and Hall resistivity of YMn 6 Sn 6 , which crystallizes in the hexagonal HfFe 6 Ge 6 -type of structure, have been investigated on single crystals at various temperatures in the ordered magnetic state. The field dependence of the Hall resistivity shows anomalies, which are related to the field-induced spin reorientations occurring in YMn 6 Sn 6 . It is also found that the Hall resistivity cannot simply be described by the anomalous contribution proportional to the magnetization, but that an additional field-dependent contribution is present

  3. The influence of Ni additions on the relative stability of η and η′ Cu6Sn5

    KAUST Repository

    Schwingenschlögl, Udo

    2010-02-09

    We investigate how 5 at. % Ni influences the relative stability of η and η′ Cu6Sn5. Synchrotron x-ray diffraction shows that, while Cu6Sn5 exists as η′ at 25 and 150 °C and transforms to η on heating to 200 °C, Cu5.5Ni0.5Sn5 is best fit to η throughout 25–200 °C. Our first principles calculations predict that η′ is stable at T=0 K in both Cu6Sn5 and Cu5.5Ni0.5Sn5, but that the energy difference is substantially reduced from 1.21 to 0.90 eV per 22 atom cell by the Ni addition. This effect is attributed to Ni developing distinct bonding to both Cu and Sn in the η phase.

  4. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2

    Science.gov (United States)

    Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.

    2015-07-01

    A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.

  5. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  6. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries

    Science.gov (United States)

    Park, Jae-Wan; Park, Cheol-Min

    2016-10-01

    The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7-2.0 V) and a conversion (0.0-2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7-2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm-3) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm-3 over 100 cycles), and fast rate capability (550 mA h cm-3 at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs.

  7. Electronic Structure of the Metastable Epitaxial Rock-Salt SnSe {111} Topological Crystalline Insulator

    Directory of Open Access Journals (Sweden)

    Wencan Jin

    2017-10-01

    Full Text Available Topological crystalline insulators have been recently predicted and observed in rock-salt structure SnSe {111} thin films. Previous studies have suggested that the Se-terminated surface of this thin film with hydrogen passivation has a reduced surface energy and is thus a preferred configuration. In this paper, synchrotron-based angle-resolved photoemission spectroscopy, along with density functional theory calculations, is used to demonstrate that a rock-salt SnSe {111} thin film epitaxially grown on Bi_{2}Se_{3} has a stable Sn-terminated surface. These observations are supported by low-energy electron diffraction (LEED intensity-voltage measurements and dynamical LEED calculations, which further show that the Sn-terminated SnSe {111} thin film has undergone a surface structural relaxation of the interlayer spacing between the Sn and Se atomic planes. In sharp contrast to the Se-terminated counterpart, the observed Dirac surface state in the Sn-terminated SnSe {111} thin film is shown to yield a high Fermi velocity, 0.50×10^{6}  m/s, which suggests a potential mechanism of engineering the Dirac surface state of topological materials by tuning the surface configuration.

  8. Ni doping effect on the electronic and sensing properties of 2D SnO2

    Science.gov (United States)

    Patel, Anjali; Roondhe, Basant; Jha, Prafulla K.

    2018-05-01

    In the present work using state of art first principles calculations under the frame work of density functional theory the effect of Nickel (Ni) doping on electronic as well as sensing properties of most stable two dimensional (2D) T-SnO2 phase towards ethanol (C2H5OH) has been observed. It has been found that Ni atom when dope on T-SnO2 causes prominent decrement in the band gap from 2.26 eV to 1.48 eV and improves the sensing phenomena of pristine T-SnO2 towards C2H5OH by increasing the binding energy from -0.18eV to -0.93eV. The comparative analysis of binding energy shows that Ni improves the binding of C2H5OH by 5.16 times the values for pristine T-SnO2. The doping of Ni into 2D T-SnO2 reduces the band gap through lowering of the conduction band minimum, thereby increasing the electron affinity which increases the sensing performance of T-SnO2. The variation in the electronic properties after and before the exposure of ethanol reinforced to use Ni:SnO2 nano structure for sensing applications. The results indicate that the Ni doped T-SnO2 can be utilized in improved optoelectronic as well as sensor devices in the future.

  9. Simple eco-friendly synthesis of the surfactant free SnS nanocrystal toward the photoelectrochemical cell application.

    Science.gov (United States)

    Huang, Xiaoguang; Woo, Heechul; Wu, Peinian; Hong, Hyo Jin; Jung, Wan Gil; Kim, Bong-Joong; Vanel, Jean-Charles; Choi, Jin Woo

    2017-11-28

    A simple, low cost, non-toxic and eco-friendly pathway for synthesizing efficient sunlight-driven tin sulfide photocatalyst was studied. SnS nanocrystals were prepared by using mechanical method. The bulk SnS was obtained by evaporation of SnS nanocrystal solution. The synthesized samples were characterized by using XRD, SEM, TEM, UV-vis, and Raman analyses. Well crystallized SnS nanocrystals were verified and the electrochemical characterization was also performed under visible light irradiation. The SnS nanocrystals have shown remarkable photocurrent density of 7.6 mA cm -2 under 100 mW cm -2 which is about 10 times larger than that of the bulk SnS under notably stable operation conditions. Furthermore, the SnS nanocrystals presented higher stability than the bulk form. The IPCE(Incident photon to current conversion efficiency) of 9.3% at 420 nm was obtained for SnS nanocrystal photoanode which is strikingly higher than that of bulk SnS, 0.78%. This work suggests that the enhancement of reacting area by using SnS nanocrystal absorbers could give rise to the improvement of photoelectrochemical cell efficiency.

  10. Study of interfacial reactions in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate

    International Nuclear Information System (INIS)

    Sun, Peng; Andersson, Cristina; Wei, Xicheng; Cheng, Zhaonian; Shangguan, Dongkai; Liu, Johan

    2007-01-01

    In this paper, the coupling effect in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi solder joint with sandwich structure by long time reflow soldering was studied. It was found that the interfacial compound at the Cu substrate was binary Cu-Sn compound in Sn-Ag-Bi solder joint and Cu 5 Zn 8 phase in Sn-Zn-Bi solder joint. The thickness of the Cu-Zn compound layer formed at the Cu substrate was greater than or equal to that of Cu-Sn compound layer, although the reflow soldering temperature of Sn-Zn-Bi (240 o C) was lower than that of Sn-Ag-Bi (250 o C). The stable Cu-Zn compound was the absolute preferential phase in the interfacial layer between Sn-Zn-Bi and the Cu substrate. The ternary (Cu, Ni) 6 Sn 5 compound was formed at the Sn-Ag-Bi/Ni(P)-Cu metallization interface, and a complex alloy Sn-Ni-Cu-Zn was formed at the Sn-Zn-Bi/Ni(P)-Cu metallization interface. It was noted that Cu atoms could diffuse from the Cu substrate through the solder matrix to the Ni(P)-Cu metallization within 1 min reflow soldering time for both solder systems, indicating that just 30 s was long enough for Cu to go through 250 μm diffusion length in the Sn-Ag-Bi solder joint at 250 o C. The coupling effect between Ni(P)/Cu metallization and Cu substrate was confirmed as the type of IMCs at Ni(P) layer had been changed from Ni-Sn system to Cu-Sn system apparently by the diffusion effect of Cu atoms. The (Cu, Ni) 6 Sn 5 layer at the Ni(P)/Cu metallization grew significantly and its thickness was even greater than that of the Cu-Sn compound on the opposite side, however the growth of the complex alloy including Sn, Ni, Cu and Zn on the Ni(P)/Cu metallization was suppressed

  11. The tin-rich copper lithium stannides: Li{sub 3}Cu{sub 6}Sn{sub 4} and Li{sub 2}CuSn{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Flandorfer, Hans [Vienna Univ. (Austria). Inst. of Inorganic Chemistry (Materials Chemisrty); Effenberger, Herta S. [Vienna Univ. (Austria). Inst. of Mineralogy and Crystallography

    2015-05-01

    The Sn rich ternary intermetallic compounds Li{sub 3}Cu{sub 6}Sn{sub 4} (CSD-427097) and Li{sub 2}CuSn{sub 2} (CSD-427098) were synthesized from the pure elements by induction melting and annealing at 400 C. Structural investigations were performed by powder- and single-crystal XRD. Li{sub 3}Cu{sub 6}Sn{sub 4} crystallizes in space group P6/mmm; it is structurally related to but not isotypic with MgFe{sub 6}Ge{sub 6} (a = 5.095(2) Aa, c = 9.524(3) Aa; wR{sub 2} = 0.059; 239 unique F{sup 2}-values, 17 free variables). Li{sub 3}Cu{sub 6}Sn{sub 4} is characterized by two sites with a mixed Cu:Sn occupation. In contrast to all other Cu-Li-Sn compounds known so far, any mixed occupation was found for Cu-Li pairs only. In addition, one Li site is only half occupied. The second Sn rich phase is Li{sub 2}CuSn{sub 2} (space group I4{sub 1}/amd, a = 4.4281(15) Aa, c = 19.416(4) Aa; wR{sub 2} = 0.033; 213 unique F{sup 2}-values, 12 atom free variables); it is the only phase in the Cu-Li-Sn system which is noted for full ordering. Both crystal structures exhibit 3D-networks which host Li atoms in channels. They are important for understanding the lithiation mechanism in Cu-Sn electrodes for Li-ion batteries.

  12. Ab initio calculation of the electronic structure and spectroscopic properties of spinel γ-Sn3N4

    International Nuclear Information System (INIS)

    Ching, W. Y.; Rulis, Paul

    2006-01-01

    The electronic structure and physical properties of γ-Sn 3 N 4 in the spinel structure are investigated by first-principles calculations. The calculated band structure, electronic bonding, and optical properties are compared with two well-studied spinel nitrides γ-Si 3 N 4 and γ-Ge 3 N 4 . γ-Sn 3 N 4 is a semiconductor with a direct band gap of 1.40 eV and an attractive small electron effective mass of 0.17. Its optical properties are different from that of γ-Si 3 N 4 and γ-Ge 3 N 4 because of the difference in the conduction band minimum. The Sn K, Sn L 3 , Sn M 5 , and N K edges of the x-ray-absorption near-edge structure spectra in γ-Sn 3 N 4 are calculated using a supercell approach and are found to be rich in structures. These spectra are discussed in the context of the electronic structure of the unoccupied conduction band in the presence of the electron core-hole interaction. These calculated spectra can be used for the characterization of this novel compound

  13. Synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yang; Zhuang, Yan; Guo, Sheng-Ping [Yangzhou Univ., Jiangsu (China). College of Chemistry and Chemical Engineering

    2017-03-01

    The synthesis and crystal structure of the rare earth borogermanate EuGeBO{sub 5} are reported. It is synthesized by high-temperature solid-state reaction and crystallizes in the monoclinic space group P2{sub 1}/c (no. 14) with the unit cell parameters a=4.8860(5), b=7.5229(8), c=9.9587(10) Aa, and β=91.709(3) . Its crystal structure features a polyanion-type layer (GeBO{sub 5}){sup 3-} constructed by BO{sub 4} and GeO{sub 4} tetrahedra connected alternatingly. Eu{sup 3+} ions are located in cavities and are coordinated by eight O atoms. Various structures of the related compounds REMM'O{sub 5} (RE=rare earth metal; M=Si, Ge, and Sn; M'=B, Al, and Ga) are also discussed.

  14. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    International Nuclear Information System (INIS)

    Schulze, J.; Oehme, M.; Werner, J.

    2012-01-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that – depending on the chosen operating point and device design – the diode serves as a broadband high speed photo detector, Franz–Keldysh effect modulator or light emitting diode.

  15. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, J., E-mail: schulze@iht.uni-stuttgart.de; Oehme, M.; Werner, J.

    2012-02-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that - depending on the chosen operating point and device design - the diode serves as a broadband high speed photo detector, Franz-Keldysh effect modulator or light emitting diode.

  16. Thio-, selenido-, and telluridogermanates(III): K/sub 6/Ge/sub 2/S/sub 6/, K/sub 6/Ge/sub 2/Se/sub 6/, and Na/sub 6/Ge/sub 2/Te/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, B; Kieselbach, E; Schaefer, H; Schrod, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1984-09-01

    The new compounds K/sub 6/Ge/sub 2/S/sub 6/ and K/sub 6/Ge/sub 2/Se/sub 6/ crystallize in the monoclinic system, space group C2/m (No 12). The compounds are isotypic and form the K/sub 6/Si/sub 2/Te/sub 6/ structure. Na/sub 6/Ge/sub 2/Te/sub 6/ crystallizes in the K/sub 6/Sn/sub 2/Te/sub 6/ structure, monoclinic, space group P2/sub 1//c (No 14). The lattice constants are given.

  17. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  18. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  19. Coulomb excitation of $^{110}$Sn using REX-ISOLDE

    CERN Document Server

    Ekström, A; Hurst, A; Fahlander, C; Banu, A; Butler, P; Eberth, J; Górska, M; Habs, D; Huyse, M; Kester, O; Niedermayer, O; Nilsson, T; Pantea, M; Scheit, H; Schwalm, D; Sletten, G; Ushasi, D P; Van Duppen, P; Warr, N; Weisshaar, D

    2006-01-01

    In this paper, we report the preliminary result from the first Coulomb excitation experiment at REX-ISOLDE (Habs et al 1998 Nucl. Instrum. Methods B 139 128) using neutron-deficient Sn-beams. The motivation of the experiment is to deduce the reduced transition probability, B(E2 ; 2$^+\\rightarrow$ 0$^+$) , for the sequence of neutron deficient, unstable, even-even Sn-isotopes from using a radioactive beam opens up a new path to study the lifetime of the first excited 2$^+$ state in these isotopes. The de-excitation path following fusion-evaporation reactions will for the even-even Sn isotopes pass via an isomeric 6$^+$ state, located at higher energy, which thus hampers measurements of the lifetime of the first excited state using, e.g., recoil-distance methods. For this reason the reduced transition probability of the first excited 2$^+$ state has remained unknown in this chain of isotopes although the B(E2) value of the stable isotope $^{112}$Sn was measured approximately 30 years ago (see, e.g., Stelson et...

  20. High blocking temperature in SnO{sub 2} based super-paramagnetic diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Salmani, E. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); El Moussaoui, H. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi (Morocco); Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); Ez-Zahraouy, H. [LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE, associé au CNRST (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-11-25

    Highlights: • Simple doping, (Sn,Fe)O{sub 2} exhibits a soft ferromagnetism at low temperature. • High blocking temperature was observed for Cu doped (Sn,Fe)O{sub 2} nanocrystalline. • Experimental results are confirmed by ab initio calculations. - Abstract: (Fe,Cu)-doped SnO{sub 2} nanocrystals was synthesized using the co-precipitation method. Magnetic Properties Measurement System (MPMS) revealed that for simple doping, Fe-doped SnO{sub 2} soft ferromagnetism at low temperature appears, while the ferromagnetic phase is stable at temperature higher than room temperature for Cu co-doping element. The ferromagnetism is significantly enhanced by the Cu addition to Fe-doped SnO{sub 2}, according to the ZFC and FC magnetizations and the hysteresis loops. The evidences for the existence of superparamagnetism are characterized and high blocking temperature super-paramagnetism in (Fe,Cu)-doped SnO{sub 2} nanocrystals was observed. Based on first-principles calculations, we have investigated electronic structures and magnetic properties of Fe-doped SnO{sub 2} and (Fe,Cu)-doped SnO{sub 2} with and without defect with LDA and LDA-SIC approximations. The results suggest that the oxygen vacancies (V{sub O}) play a critical role in the activation of ferromagnetism in Fe doped SnO{sub 2}. For (Fe,Cu)-doped SnO{sub 2} the results exhibit that Cu strongly influences on the magnetic properties of these doped systems which are in good agreement with the experimental observations. Electronic structure show that the presence of Cu promote the ferromagnetic bound magnetic polaron interaction through the carriers introduce by d (Cu)

  1. Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells

    International Nuclear Information System (INIS)

    Avellaneda, David; Delgado, Guadalupe; Nair, M.T.S.; Nair, P.K.

    2007-01-01

    Chemically deposited SnS thin films possess p-type electrical conductivity. We report a photovoltaic structure: SnO 2 :F-CdS-SnS-(CuS)-silver print, with V oc > 300 mV and J sc up to 5 mA/cm 2 under 850 W/m 2 tungsten halogen illumination. Here, SnO 2 :F is a commercial spray-CVD (Pilkington TEC-8) coating, and the rest deposited from different chemical baths: CdS (80 nm) at 333 K, SnS (450 nm) and CuS (80 nm) at 293-303 K. The structure may be heated in nitrogen at 573 K, before applying the silver print. The photovoltaic behavior of the structure varies with heating: V oc ∼ 400 mV and J sc 2 , when heated at 423 K in air, but V oc decreases and J sc increases when heated at higher temperatures. These photovoltaic structures have been found to be stable over a period extending over one year by now. The overall cost of materials, simplicity of the deposition process, and possibility of easily varying the parameters to improve the cell characteristics inspire further work. Here we report two different baths for the deposition of SnS thin films of about 500 nm by chemical deposition. There is a considerable difference in the nature of growth, crystalline structure and chemical stability of these films under air-heating at 623-823 K or while heating SnS-CuS layers, evidenced in XRF and grazing incidence angle XRD studies. Heating of SnS-CuS films results in the formation of SnS-Cu x SnS y . 'All-chemically deposited photovoltaic structures' involving these materials are presented

  2. Decay spectroscopy with EURICA in the region of {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Faestermann, Thomas; Gernhaeuser, Roman; Lubos, Daniel; Steiger, Konrad [Technische Universitaet Muenchen (Germany); Collaboration: EURICA RIBF09-Collaboration

    2015-07-01

    The most recent experiment on properties of nuclei in the region of {sup 100}Sn has been performed at the radioisotope beam factory (RIBF) at the RIKEN Nishina Center. For the decay spectroscopy, we used the detector arrays EURICA and WASABI which consist of Ge- and LaBr- as well as Si-detectors, respectively. The experiment has revealed new nuclei along the N=Z-2 line and an increase of statistics by a factor of ∝10 for N=Z-1 nuclei and {sup 100}Sn compared to previous experiments. The presentation gives an overview on the dedicated high efficiency setup and the experimental program. A status of the on-going analysis with regard to {sup 100}Sn and selected results for several nuclei and isomers in this region will be discussed.

  3. Antiferromagnetism in EuPdGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Albedah, Mohammed A. [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Al-Qadi, Khalid [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Department of Mathematics, Statistics and Physics, Qatar University, P.O. Box 2713, Doha (Qatar); Stadnik, Zbigniew M., E-mail: stadnik@uottawa.ca [Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Przewoźnik, Janusz [Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków (Poland)

    2014-11-15

    Highlights: • We show that EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type structure with the lattice constants a = 4.4457(1) Å and c = 10.1703(2). • We demonstrate that EuPdGe{sub 3} is an antiferromagnet with the Néel temperature T{sub N} = 12.16(1) K. • The temperature dependence of the hyperfine magnetic field follows a S = 7/2 Brillouin function. • We find that the Debye temperature of the studied compound is 199(2) K. - Abstract: The results of X-ray diffraction, magnetic susceptibility and magnetization, and {sup 151}Eu Mössbauer spectroscopy measurements of polycrystalline EuPdGe{sub 3} are reported. EuPdGe{sub 3} crystallizes in the BaNiSn{sub 3}-type tetragonal structure (space group I4mm) with the lattice constants a=4.4457(1)Å and c=10.1703(2)Å. The results are consistent with EuPdGe{sub 3} being an antiferromagnet with the Néel temperature T{sub N}=12.16(1)K and with the Eu spins S=7/2 in the ab plane. The temperature dependence of the magnetic susceptibility above T{sub N} follows the modified Curie-Weiss law with the effective magnetic moment of 7.82(1) μ{sub B} per Eu atom and the paramagnetic Curie temperature of -5.3(1)K indicative of dominant antiferromagnetic interactions. The M(H) isotherms for temperatures approaching T{sub N} from above are indicative of dynamical short-range antiferromagnetic ordering in the sample. The temperature dependence of the hyperfine magnetic field follows a S=7/2 Brillouin function. The principal component of the electric field gradient tensor is shown to increase with decreasing temperature and is well described by a T{sup 3/2} power-law relation. The Debye temperature of EuPdGe{sub 3} determined from the Mössbauer data is 199(2) K.

  4. PROTEUS-SN User Manual

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Changho [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundreds of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and

  5. Ge/SiGe superlattices for nanostructured thermoelectric modules

    International Nuclear Information System (INIS)

    Chrastina, D.; Cecchi, S.; Hague, J.P.; Frigerio, J.; Samarelli, A.; Ferre–Llin, L.; Paul, D.J.; Müller, E.; Etzelstorfer, T.; Stangl, J.; Isella, G.

    2013-01-01

    Thermoelectrics are presently used in a number of applications for both turning heat into electricity and also for using electricity to produce cooling. Mature Si/SiGe and Ge/SiGe heteroepitaxial growth technology would allow highly efficient thermoelectric materials to be engineered, which would be compatible and integrable with complementary metal oxide silicon micropower circuits used in autonomous systems. A high thermoelectric figure of merit requires that electrical conductivity be maintained while thermal conductivity is reduced; thermoelectric figures of merit can be improved with respect to bulk thermoelectric materials by fabricating low-dimensional structures which enhance the density of states near the Fermi level and through phonon scattering at heterointerfaces. We have grown and characterized Ge-rich Ge/SiGe/Si superlattices for nanofabricated thermoelectric generators. Low-energy plasma-enhanced chemical vapor deposition has been used to obtain nanoscale-heterostructured material which is several microns thick. Crystal quality and strain control have been investigated by means of high resolution X-ray diffraction. High-resolution transmission electron microscopy images confirm the material and interface quality. Electrical conductivity has been characterized by the mobility spectrum technique. - Highlights: ► High-quality Ge/SiGe multiple quantum wells for thermoelectric applications ► Mobility spectra of systems featuring a large number of parallel conduction channels ► Competitive thermoelectric properties measured in single devices

  6. Structure of 78Ge from the 76Ge(t,p)78Ge reaction

    International Nuclear Information System (INIS)

    Ardouin, D.; Lebrun, C.; Guilbault, F.; Remaud, B.; Vergnes, M.N.; Rotbard, G.; Kumar, K.

    1978-01-01

    The 76 Ge(t,p) 78 Ge reaction has been performed at a bombarding energy of 17 MeV. Thirteen excited states below 3 MeV excitation are reported with Jsup(π) values obtained by comparison to DWBA analysis. A comparison to a dynamical deformation theory is made and the results suggest 78 Ge is a transitional nucleus nearing spherical shape due to the proximity of the N-50 closed shell

  7. Activation and thermal stability of ultra-shallow B+-implants in Ge

    International Nuclear Information System (INIS)

    Yates, B. R.; Darby, B. L.; Jones, K. S.; Petersen, D. H.; Hansen, O.; Lin, R.; Nielsen, P. F.; Romano, L.; Doyle, B. L.; Kontos, A.

    2012-01-01

    The activation and thermal stability of ultra-shallow B + implants in crystalline (c-Ge) and preamorphized Ge (PA-Ge) following rapid thermal annealing was investigated using micro Hall effect and ion beam analysis techniques. The residual implanted dose of ultra-shallow B + implants in Ge was characterized using elastic recoil detection and was determined to correlate well with simulations with a dose loss of 23.2%, 21.4%, and 17.6% due to ion backscattering for 2, 4, and 6 keV implants in Ge, respectively. The electrical activation of ultra-shallow B + implants at 2, 4, and 6 keV to fluences ranging from 5.0 × 10 13 to 5.0 × 10 15 cm −2 was studied using micro Hall effect measurements after annealing at 400–600 °C for 60 s. For both c-Ge and PA-Ge, a large fraction of the implanted dose is rendered inactive due to the formation of a presumable B-Ge cluster. The B lattice location in samples annealed at 400 °C for 60 s was characterized by channeling analysis with a 650 keV H + beam by utilizing the 11 B(p, α)2α nuclear reaction and confirmed the large fraction of off-lattice B for both c-Ge and PA-Ge. Within the investigated annealing range, no significant change in activation was observed. An increase in the fraction of activated dopant was observed with increasing energy which suggests that the surface proximity and the local point defect environment has a strong impact on B activation in Ge. The results suggest the presence of an inactive B-Ge cluster for ultra-shallow implants in both c-Ge and PA-Ge that remains stable upon annealing for temperatures up to 600 °C.

  8. Electronic structure of SnF{sub 3}: An example of valence skipper which forms charge density wave

    Energy Technology Data Exchange (ETDEWEB)

    Hase, I., E-mail: i.hase@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568 (Japan); Yanagisawa, T. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568 (Japan); Kawashima, K. [IMRA Material R& D Co., LTD., Kariya, Aichi 448-0032 (Japan)

    2016-11-15

    Highlights: • We calculated the electronic structure of SnF{sub 3} and BaBiO{sub 3} from first principles. • As for SnF{sub 3}, charge-density-wave (CDW) is found, which agrees with the experiment. • As for BaBiO{sub 3}, CDW is not found, contrary to the experiment. • We conclude that the CDW is hard in SnF{sub 3} and is soft in BaBiO{sub 3}. - Abstract: In the present study we calculated the electronic structure of the valence skipping compound SnF{sub 3} and BaBiO{sub 3} from first-principles. We confirmed that the charge-density-wave (CDW) is formed in SnF{sub 3}, and the Sn atoms in two crystallographic different sites take the valence Sn{sup 2+} and Sn{sup 4+}. Structure optimization study reveals that this CDW is stable, though the atomic position is slightly different from the experimental data. This behavior is in contrast with the case of BaBiO{sub 3}, where the structure optimization leads to the uniform state, which means that two Bi sites are equivalent. The CDW state is hard in SnF{sub 3}, which means that the CDW gap is large enough and it is difficult to melt this CDW order.

  9. 75 FR 47318 - GE Asset Management Incorporated and GE Investment Distributors, Inc.; Notice of Application and...

    Science.gov (United States)

    2010-08-05

    ...] GE Asset Management Incorporated and GE Investment Distributors, Inc.; Notice of Application and.... Applicants: GE Asset Management Incorporated (``GEAM'') and GE Investment Distributors, Inc. (``GEID... of Investment Management, Office of Investment Company Regulation). SUPPLEMENTARY INFORMATION: The...

  10. Unique interconnected graphene/SnO2 nanoparticle spherical multilayers for lithium-ion battery applications.

    Science.gov (United States)

    Shao, Qingguo; Tang, Jie; Sun, Yige; Li, Jing; Zhang, Kun; Yuan, Jinshi; Zhu, Da-Ming; Qin, Lu-Chang

    2017-03-30

    We have designed and synthesized a unique structured graphene/SnO 2 composite, where SnO 2 nanoparticles are inserted in between interconnected graphene sheets which form hollow spherical multilayers. The hollow spherical multilayered structure provides much flexibility to accommodate the configuration and volume changes of SnO 2 in the material. When it is used as an anode material for lithium-ion batteries, such a novel nanostructure can not only provide a stable conductive matrix and suppress the mechanical stress, but also eliminate the need of any binders for constructing electrodes. Electrochemical tests show that the unique graphene/SnO 2 composite electrode as designed could exhibit a large reversible capacity over 1000 mA h g -1 and long cycling life with 88% retention after 100 cycles. These results indicate the great potential of the composite for being used as a high performance anode material for lithium-ion batteries.

  11. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.

    2013-11-25

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p-type oxide semiconductor processed at similar temperature. Compared to thin film transistors, the SnO nanowire transistors exhibit five times higher mobility and one order of magnitude lower subthreshold swing. The SnO nanowire transistors show three times lower threshold voltages (−1 V) than the best reported SnO thin film transistors and fifteen times smaller than p-type Cu 2O nanowire transistors. Gate dielectric and process temperature are critical to achieving such performance.

  12. Sn whiskers removed by energy photo flashing

    International Nuclear Information System (INIS)

    Jiang, N.; Yang, M.; Novak, J.; Igor, P.; Osterman, M.

    2012-01-01

    Highlights: ► Sn whiskers were sintered by intense light flashing (Photosintering). ► Photosintering can effectively eliminate Sn whiskers. ► Photosintering would not damage electronic devices. ► Photosintering is a very promising approach to improve Sn-based electronic surface termination. - Abstract: Sn whiskers have been known to be the major issue resulting in electronic circuit shorts. In this study, we present a novel energy photo flashing approach (photosintering) to shorten and eliminate Sn whiskers. It has been found that photosintering is very effective to modify and remove Sn whiskers; only a sub-millisecond duration photosintering can amazingly get rid of over 90 vol.% of Sn whiskers. Moreover, this photosintering approach has also been proved to cause no damages to electronic devices, suggesting it is a potentially promising way to improve Sn-based electronic surface termination.

  13. Lattice dynamics, thermodynamics and elastic properties of C22-Zr{sub 6}FeSn{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuan-Kai [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Shi, Siqi, E-mail: sqshi@shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Shen, Jian-Yun [General Research Institute for Nonferrous Metals, Beijing 100088 (China); Shang, Shun-Li [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Yao, Mei-Yi, E-mail: yaomeiyi@shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Liu, Zi-Kui [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-10-15

    Since Zr-Fe-Sn is one of the key ternary systems for cladding and structural materials in nuclear industry, it is of significant importance to understand physicochemical properties related to Zr-Fe-Sn system. In order to design the new Zr alloys with advanced performance by CALPHAD method, the thermodynamic model for the lower order systems is required. In the present work, first-principles calculations are employed to obtain phonon, thermodynamic and elastic properties of Zr{sub 6}FeSn{sub 2} with C22 structure and the end-members (C22-Zr{sub 6}FeFe{sub 2}, C22-Zr{sub 6}SnSn{sub 2} and C22-Zr{sub 6}SnFe{sub 2}) in the model of (Zr){sub 6}(Fe, Sn){sub 2}(Fe, Sn){sub 1}. It is found that the imaginary phonon modes are absent for C22-Zr{sub 6}FeSn{sub 2} and C22-Zr{sub 6}SnSn{sub 2}, indicating they are dynamically stable, while the other two end-members are unstable. Gibbs energies of C22-Zr{sub 6}FeSn{sub 2} and C22-Zr{sub 6}SnSn{sub 2} are obtained from the quasiharmonic phonon approach and can be added in the thermodynamic database: Nuclearbase. The C22-Zr{sub 6}FeSn{sub 2}’s single-crystal elasticity tensor components along with polycrystalline bulk, shear and Young’s moduli are computed with a least-squares approach based upon the stress tensor computed from first-principles method. The results indicate that distortion is more difficult in the directions normal the c-axis than along to it.

  14. The Ruthenostannylene Complex [Cp*(IXy)H2 Ru-Sn-Trip]: Providing Access to Unusual Ru-Sn Bonded Stanna-imine, Stannene, and Ketenylstannyl Complexes.

    Science.gov (United States)

    Liu, Hsueh-Ju; Ziegler, Micah S; Tilley, T Don

    2015-05-26

    Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2 Ru-Sn-Trip] (1; IXy=1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; Cp*=η(5) -C5 Me5 ; Trip=2,4,6-iPr3 C6 H2 ) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β-unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2 RuSn(κ(2) -O,O-OCPhCPhO)Trip] (2) and [Cp*(IXy)(H)2 RuSn(κ(2) -O,C-OCPhCHCHPh)Trip] (3), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin-substituted ketene complex [Cp*(IXy)(H)2 RuSn(OC2 H5 )(CHCO)Trip] (4), which is most likely a decomposition product from the putative ruthenium-substituted stannene complex. The isolation of a ruthenium-substituted stannene [Cp*(IXy)(H)2 RuSn(=Flu)Trip] (5) and stanna-imine [Cp*(IXy)(H)2 RuSn(κ(2) -N,O-NSO2 C6 H4 Me)Trip] (6) complexes was achieved by treatment of 1 with 9-diazofluorene and tosyl azide, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Reduction of 68Ge activity containing liquid waste from 68Ga PET chemistry in nuclear medicine and radiopharmacy by solidification.

    Science.gov (United States)

    de Blois, Erik; Chan, Ho Sze; Roy, Kamalika; Krenning, Eric P; Breeman, Wouter A P

    PET with 68 Ga from the TiO 2 - or SnO 2 - based 68 Ge/ 68 Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity ( 68 Ge vs. 68 Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts of 68 Ge activity is produced by eluting the 68 Ge/ 68 Ga generators and residues from PET chemistry. Since clearance level of 68 Ge activity in waste may not exceed 10 Bq/g, as stated by European Directive 96/29/EURATOM, our purpose was to reduce 68 Ge activity in solution from >10 kBq/g to <10 Bq/g; which implies the solution can be discarded as regular waste. Most efficient method to reduce the 68 Ge activity is by sorption of TiO 2 or Fe 2 O 3 and subsequent centrifugation. The required 10 Bq per mL level of 68 Ge activity in waste was reached by Fe 2 O 3 logarithmically, whereas with TiO 2 asymptotically. The procedure with Fe 2 O 3 eliminates ≥90% of the 68 Ge activity per treatment. Eventually, to simplify the processing a recirculation system was used to investigate 68 Ge activity sorption on TiO 2 , Fe 2 O 3 or Zeolite. Zeolite was introduced for its high sorption at low pH, therefore 68 Ge activity containing waste could directly be used without further interventions. 68 Ge activity containing liquid waste at different HCl concentrations (0.05-1.0 M HCl), was recirculated at 1 mL/min. With Zeolite in the recirculation system, 68 Ge activity showed highest sorption.

  16. TOF for heavy stable particle identification

    International Nuclear Information System (INIS)

    Chang, C.Y.

    1983-01-01

    Searching for heavy stable particle production in a new energy region of hadron-hadron collisions is of fundamental theoretical interest. Observation of such particles produced in high energy collisions would indicate the existence of stable heavy leptons or any massive hadronic system carrying new quantum numbers. Experimentally, evidence of its production has not been found for PP collisions either at FNAL or at the CERN ISR for √S = 23 and 62 GeV respectively. However, many theories beyond the standard model do predict its existence on a mass scale ranging from 50 to a few hundred GeV. If so, it would make a high luminosity TeV collider an extremely ideal hunting ground for searching the production of such a speculated object. To measure the mass of a heavy stable charged particle, one usually uses its time of flight (TOF) and/or dE/dX information. For heavy neutral particle, one hopes it may decay at some later time after its production. Hence a pair of jets or a jet associated with a high P/sub t/ muon originated from some places other than the interacting point (IP) of the colliding beams may be a good signal. In this note, we examine the feasibility of TOF measurement on a heavy stable particle produced in PP collisions at √S = 1 TeV and a luminosity of 10 33 cm -2 sec -1 with a single arm spectrometer pointing to the IP

  17. La5Zn2Sn

    Directory of Open Access Journals (Sweden)

    Igor Oshchapovsky

    2011-11-01

    Full Text Available A single crystal of pentalanthanum dizinc stannide, La5Zn2Sn, was obtained from the elements in a resistance furnace. It belongs to the Mo5SiB2 structure type, which is a ternary ordered variant of the Cr5B3 structure type. The space is filled by bicapped tetragonal antiprisms from lanthanum atoms around tin atoms sharing their vertices. Zinc atoms fill voids between these bicapped tetragonal antiprisms. All four atoms in the asymmetric unit reside on special positions with the following site symmetries: La1 (..m; La2 (4/m..; Zn (m.2m; Sn (422.

  18. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    Science.gov (United States)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  19. Ge-Au eutectic bonding of Ge (100) single crystals

    International Nuclear Information System (INIS)

    Knowlton, W.B.; Beeman, J.W.; Emes, J.H.; Loretto, D.; Itoh, K.M.; Haller, E.E.

    1993-01-01

    The author present preliminary results on the eutectic bonding between two (100) Ge single crystal surfaces using thin films of Au ranging from 900 angstrom/surface to 300 angstrom/surface and Pd (10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses ≤ 500 angstrom/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300 angstrom/surface Au sample show epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200 angstrom/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within ±150 angstrom across an interval of lmm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons

  20. Strain controlled switching effects in phosphorene and GeS.

    Science.gov (United States)

    Li, B W; Wang, Y; Xie, Y Q; Zhu, L; Yao, K L

    2017-10-27

    By performing first principles calculations within the combined approach of density functional theory and nonequilibrium Green's function technique, we have designed some nanoelectronic devices to explore the ferroelastic switching of phosphorene and phosphorene analogs GeS. With the structure swapping along the zigzag direction and armchair direction, band gap transformed at different states due to their anisotropic phosphorene-like structure. From the initial state to the middle state, the band gap becomes progressively smaller, after that, it becomes wide. By analyzing transmission coefficients, it is found that the transport properties of phosphorene and GeS can be controlled by a uniaxial strain. The results also manifest that GeS has great potential to fabricate ferroic nonvolatile memory devices, because its relatively high on/off transmission coefficient ratio (∼1000) between the two stable ferroelastic states.

  1. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  2. Si, Ge and SiGe wires for sensor application

    International Nuclear Information System (INIS)

    Druzhinin, A.A.; Khoverko, Yu.M.; Ostrovskii, I.P.; Nichkalo, S.I.; Nikolaeva, A.A.; Konopko, L.A.; Stich, I.

    2011-01-01

    Resistance and magnetoresistance of Si, Ge and Si-Ge micro- and nanowires were studied in temperature range 4,2-300 K at magnetic fields up to 14 T. The wires diameters range from 200 nm to 20 μm. Ga-In gates were created to wires and ohmic I-U characteristics were observed in all temperature range. It was found high elastic strain for Ge nanowires (of about 0,7%) as well as high magnitude of magnetoresistance (of about 250% at 14 T), which was used to design multifunctional sensor of simultaneous measurements of strain and magnetic field intensity. (authors)

  3. Thermoelectric prospects of chemically deposited PbSe and SnSe thin films

    Science.gov (United States)

    Nair, P. K.; Martínez, Ana Karen; Rosa García Angelmo, Ana; Barrios Salgado, Enue; Nair, M. T. S.

    2018-03-01

    Thin films of PbSe of 400-600 nm in thickness, were obtained via chemical deposition from a solution containing lead nitrate, thiourea and selenosufate. SnSe thin films of 90-180 nm in thickness, were also obtained by chemical deposition from a solution containing selenosulfate. Optical and electrical properties of these thin films were significantly altered by heating them in selenium vapor at 300 °C. Thin film PbSe has a bandgap (Eg) of 1.17 eV (direct gap, forbidden transitions), which decreases to 0.77 eV when it has been heated. Its electrical conductivity (σ) is p-type: 0.18 Ω-1 cm-1 (as-prepared), and 6.4 Ω-1 cm-1 when heated. Thin film SnSe is of orthorhombic crystalline structure which remains stable when heated at 300 °C, but its Eg increases from 1.12 eV (indirect) in as-prepared film to 1.5 eV (direct, forbidden transitions) upon heating. Its electrical conductivity is p-type, which increases from 0.3 Ω-1 cm-1 (as-prepared) to 1 Ω-1 cm-1 when heated (without Se-vapor). When SnSe film is heated at 300 °C in the presence of Se-vapor, they transform to SnSe2, with Eg of 1.5 eV (direct, forbidden) with n-type electrical conductivity, 11 Ω-1 cm-1. The Seebeck coefficient for the PbSe films is: +0.55 mV K-1 (as prepared) and +0.275 mV K-1 (heated); for SnSe films it is: +0.3 mV K-1 (as prepared) and +0.20 mV K-1 (heated); and for SnSe2 film, - 0.35 mV K-1. A five-element PbSe-SnSe2-PbSe-SnSe2-PbSe thermoelectric device demonstrated 50 mV for a temperature difference ΔT = 20 °C (2.5 mV K-1). For SnSe-SnSe2-SnSe-SnSe2-SnSe device, the value is 15 mV for ΔT = 20 °C (0.75 mV K-1). Prospect of these thin films in thermoelectric devices of hybrid materials, in which the coatings may be applied on distinct substrate and geometries is attractive.

  4. First-principles study on the thermodynamic stability, magnetism, and half-metallicity of full-Heusler alloy Ti{sub 2}FeGe (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yan; Zhang, Jian-Min, E-mail: jmzhang@snnu.edu.cn

    2017-05-10

    For the Ti{sub 2}FeGe Heusler alloy, the surface stability, electronic and magnetic properties of the various (001) surfaces have been studied by using first-principles calculations. The TiGe termination is the most stable one while the GeGe* termination is the most unstable one. Both the density of states (DOS) and atomic magnetic moments (AMMs) of the central layers are similar to the corresponding bulk characters due to no influence of surface effect as we expected. The TiGe termination has the highest spin polarization 96.67%, followed by the TiFe (67.17%), GeGe* (66.51%) and FeFe* terminations (62.02%). The TiTi* terminations has the lowest spin polarization 61.31%. The magnetic moments for atoms on the surfaces and subsurfaces of these terminations are different from the bulk case. - Highlights: • TiGe termination is the most stable while GeGe* termination is the most unstable. • TiGe termination has the highest spin polarization followed by TiFe, GeGe*, FeFe* and TiTi*. • Atomic magnetic moments at the (001) surfaces are greatly different from the bulk values.

  5. Magnetic behaviour of cerium in Ce2 Sn5 and Ce3 Sn7, surstructures of Ce Sn3

    International Nuclear Information System (INIS)

    Stunault, A.

    1988-07-01

    The compound studied, Ce 2 Sn 5 and Ce 3 Sn 7 are both orthorhombic, surstructure of cubic Ce Sn 3 . Magnetic susceptibility measurements show in both compounds an antiferromagnetic order at low temperature and magnetization shows a high anisotropy. Magnetization densities are determined by polarized neutron diffraction. The cerium site which has two Ce atoms as nearest neighbourgs carries all the magnetism in both structures. For Ce 2 Sn 5 moments are directed as the high magnetization axis and structure is modulated. Ce 3 Sn 7 presents a simple antiferromagnetic order but moment are directed as low magnetization axis. Various transitions towards a ferromagnetic order are presented. Results are interpreted by measuring the difference between energy levels of crystalline field. A model of crystalline field and isotrope exchange agrees well with Ce 3 Sn 7 , but for Ce 2 Sn 7 it is necessary to reduce the magnetic moment which is typical of the Kondo effect [fr

  6. Selective epitaxial growth properties and strain characterization of Si1- x Ge x in SiO2 trench arrays

    Science.gov (United States)

    Koo, Sangmo; Jang, Hyunchul; Ko, Dae-Hong

    2017-04-01

    In this study, we investigated the formation of a Si1- x Ge x fin structure in SiO2 trench arrays via an ultra-high-vacuum chemical-vapor deposition (UHV-CVD) selective epitaxial growth (SEG) process. Defect generation and microstructures of Si1- x Ge x fin structures with different Ge concentrations ( x = 0.2, 0.3 and 0.45) were examined. In addition, the strain evolution of a Si1- x Ge x fin structure was analyzed by using reciprocal space mapping (RSM). An (111) facet was formed from the Si1- x Ge x epi-layer and SiO2 trench wall interface to minimize the interface and the surface energy. The Si1- x Ge x fin structures were fully relaxed along the direction perpendicular to the trenches regardless of the Ge concentration. On the other hand, the fin structures were fully or partially strained along the direction parallel to the trenches depending on the Ge concentration: fully strained Si0.8Ge0.2 and Si0.7Ge0.3, and a Si0.55Ge0.45 strain-relaxed buffer. We further confirmed that the strain on the Si1- x Ge x fin structures remained stable after oxide removal and H2/N2 post-annealing.

  7. Stable Heavy Hadrons in ATLAS

    CERN Document Server

    Mackeprang, Rasmus

    2007-01-01

    Several extensions to the SM feature heavy long-lived particles with masses of O(10^2-10^3 GeV) and mean lifetimes fulfilling $CT \\geq 10m$. Among such theories are supersymmetric scenarios as well as extra-dimensional models in which the heavy new particles are seen as Kaluza-Klein excitations of the well-known SM particles. Such particles will, from the point of view of a collider experiment be seen as stable. This thesis is concerned with the case where the exotic heavy particles emph{can} be considered stable while traversing the detector. Specifically the case is considered where the particles in question carry the charge of the strong nuclear force, commonly referred to as emph{colour charge}. A simulation kit has been developed using GEANT4. This framework is the current standard in experimental particle physics for the simulation of interactions of particles with matter, and it is used extensively for detector simulation. The simulation describes the interactions of these particles with matter which i...

  8. Direct search for pair production of heavy stable charged particles in Z decays

    International Nuclear Information System (INIS)

    Soderstrom, E.; McKenna, J.A.; Abrams, G.S.; Adolphsen, C.E.; Averill, D.; Ballam, J.; Barish, B.C.; Barklow, T.; Barnett, B.A.; Bartelt, J.; Bethke, S.; Blockus, D.; Bonvicini, G.; Boyarski, A.; Brabson, B.; Breakstone, A.; Bulos, F.; Burchat, P.R.; Burke, D.L.; Cence, R.J.; Chapman, J.; Chmeissani, M.; Cords, D.; Coupal, D.P.; Dauncey, P.; DeStaebler, H.C.; Dorfan, D.E.; Dorfan, J.M.; Drewer, D.C.; Elia, R.; Feldman, G.J.; Fernandes, D.; Field, R.C.; Ford, W.T.; Fordham, C.; Frey, R.; Fujino, D.; Gan, K.K.; Gero, E.; Gidal, G.; Glanzman, T.; Goldhaber, G.; Gomez Cadenas, J.J.; Gratta, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Hanson, G.; Harr, R.; Harral, B.; Harris, F.A.; Hawkes, C.M.; Hayes, K.; Hearty, C.; Heusch, C.A.; Hildreth, M.D.; Himel, T.; Hinshaw, D.A.; Hong, S.J.; Hutchinson, D.; Hylen, J.; Innes, W.R.; Jacobsen, R.G.; Jaros, J.A.; Jung, C.K.; Kadyk, J.A.; Kent, J.; King, M.; Koetke, D.S.; Komamiya, S.; Koska, W.; Kowalski, L.A.; Kozanecki, W.; Kral, J.F.; Kuhlen, M.; Labarga, L.; Lankford, A.J.; Larsen, R.R.; Le Diberder, F.; Levi, M.E.; Litke, A.M.; Lou, X.C.; Lueth, V.; Matthews, J.A.J.; Mattison, T.; Milliken, B.D.; Moffeit, K.C.; Munger, C.T.; Murray, W.N.; Nash, J.; Ogren, H.; O'Shaughnessy, K.F.; Parker, S.I.; Peck, C.; Perl, M.L.; Petradza, M.; Pitthan, R.; Porter, F.C.; Rankin, P.; Riles, K.; Rouse, F.R.; Rust, D.R.; Sadrozinski, H.F.W.; Schaad, M.W.; Schumm, B.A.; Seiden, A.; Smith, J.G.; Snyder, A.; Stoker, D.P.; Stroynowski, R.; Swartz, M.; Thun, R.; Trilling, G.H.; Van Kooten, R.; Voruganti, P.; Wagner, S.R.; Watson, S.; Weber, P.; Weinstein, A.J.; Weir, A.J.; Wicklund, E.; Woods, M.; Wu, D.Y.; Yurko, M.; Zaccardelli, C.; von Zanthie, C.

    1990-01-01

    A search for pair production of stable charged particles from Z decay has been performed with the Mark II detector at the SLAC Linear Collider. Particle masses are determined from momentum, ionization energy loss, and time-of-flight measurements. A limit excluding pair production of stable fourth-generation charged leptons and stable mirror fermions with masses between the muon mass and 36.3 GeV/c 2 is set at the 95% confidence level. Pair production of stable supersymmetric scalar leptons with masses between the muon mass and 32.6 GeV/c 2 is also excluded

  9. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.; Alshareef, Husam N.

    2013-01-01

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p

  10. Study of vortex configurations in Yb3Rh4Sn13 via minor hysteresis loops

    International Nuclear Information System (INIS)

    Sarkar, S.; Tulapurkar, A.A.; Ramakrishnan, S.; Grover, A.K.; Tomy, C.V.

    2001-01-01

    The tracings of the minor hysteresis loops in the superconductor Yb 3 Rh 4 Sn 13 (i) elucidate the path dependence in J c (H), (ii) help to reach the stable vortex configuration from a given metastable state and (iii) reveal the occurrence of step change in equilibrium magnetization across the peak effect (PE) regime. (author)

  11. Undulator sources at a 8 GeV storage ring

    International Nuclear Information System (INIS)

    Harami, Taikan.

    1989-06-01

    The use of undulators plays an important role as a high brilliance sources of synchrotron photon at a facility having an electron (or positron) storage ring. This paper describes the characteristics, tunability from gap variation and brilliance of synchrotron photon from undulators at a 8 GeV storage ring. The numerical studies show the following results. (1) Undulators for a 8 GeV storage ring can cover the first harmonic photon energy range from about 0.3 to 30 keV and the third harmonic photon from 0.85 to 70 keV. (2) The brilliance of undulator can be expected to be the order of 10 21 photons/(sec mm 2 mrad 2 0.1% band width mA), without size and angular spread in the electron beam (diffraction limit). (3) The peak brilliance has a broad maximum as a function of β function of the lattice and is shown to be practically independent on the β function. The peak brilliance is calculated to be the order of 10 16 photons/(sec mm 2 mrad 2 0.1% band width mA) at the electron beam emittance of 5 x 10 -9 m·rad (undulator length 2 m). (4) The nuclei of 57 Fe, 119 Sn and 238 U are expected to be the candidates for the Moessbauer scattering experiment using synchrotron photon from a 8 GeV storage ring. (author)

  12. Uniaxially stressed Ge:Ga and Ge:Be

    Energy Technology Data Exchange (ETDEWEB)

    Dubon, Jr., Oscar Danilo [Univ. of California, Berkeley, CA (United States)

    1992-12-01

    The application of a large uniaxial stress to p-type Ge single crystals changes the character of both the valence band and the energy levels associated with the acceptors. Changes include the splitting of the fourfold degeneracy of the valence band top and the reduction of the ionization energy of shallow acceptors. In order to study the effect of uniaxial stress on transport properties of photoexcited holes, a variable temperature photo-Hall effect system was built in which stressed Ge:Ga and Ge:Be could be characterized. Results indicate that stress increases the lifetime and Hall mobility of photoexcited holes. These observations may help further the understanding of fundamental physical processes that affect the performance of stressed Ge photoconductors including the capture of holes by shallow acceptors.

  13. Dually fixed SnO2 nanoparticles on graphene nanosheets by polyaniline coating for superior lithium storage.

    Science.gov (United States)

    Dong, Yanfeng; Zhao, Zongbin; Wang, Zhiyu; Liu, Yang; Wang, Xuzhen; Qiu, Jieshan

    2015-02-04

    Dually fixed SnO2 nanoparticles (DF-SnO2 NPs) on graphene nanosheets by a polyaniline (Pani) coating was successfully fabricated via two facile wet chemistry processes, including anchoring SnO2 NPs onto graphene nanosheets via reducing graphene oxide by Sn(2+) ion, followed by in situ surface sealing with the Pani coating. Such a configuration is very appealing anode materials in LIBs due to several structural merits: (1) it prevents the aggregation of SnO2 NPs, (2) accommodates the structural expanding of SnO2 NPs during lithiation, (3) ensures the stable as-formed solid electrolyte interface films, and (4) effectively enhances the electronic conductivity of the overall electrode. Therefore, the final DF-SnO2 anode exhibits stable cycle performance, such as a high capacity retention of over 90% for 400 cycles at a current density of 200 mA g(-1) and a long cycle life up to 700 times at a higher current density of 1000 mA g(-1).

  14. Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery

    Science.gov (United States)

    Wang, Ming-Shan; Lei, Ming; Wang, Zhi-Qiang; Zhao, Xing; Xu, Jun; Yang, Wei; Huang, Yun; Li, Xing

    2016-03-01

    Nano tin dioxide-carbon (SnO2/C) composites prepared by various carbon materials, such as carbon nanotubes, porous carbon, and graphene, have attracted extensive attention in wide fields. However, undesirable concerns of nanoparticles, including in higher surface area, low tap density, and self-agglomeration, greatly restricted their large-scale practical applications. In this study, novel porous micron-SnO2/C (p-SnO2/C) composites are scalable prepared by a simple hydrothermal approach using glucose as a carbon source and Pluronic F127 as a pore forming agent/soft template. The SnO2 nanoparticles were homogeneously dispersed in micron carbon spheres by assembly with F127/glucose. The continuous three-dimensional porous carbon networks have effectively provided strain relaxation for SnO2 volume expansion/shrinkage during lithium insertion/extraction. In addition, the carbon matrix could largely minimize the direct exposure of SnO2 to the electrolyte, thus ensure formation of stable solid electrolyte interface films. Moreover, the porous structure could also create efficient channels for the fast transport of lithium ions. As a consequence, the p-SnO2/C composites exhibit stable cycle performance, such as a high capacity retention of over 96% for 100 cycles at a current density of 200 mA g-1 and a long cycle life up to 800 times at a higher current density of 1000 mA g-1.

  15. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    International Nuclear Information System (INIS)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Huang, Shanluo; Du, Xiaowei; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong

    2015-01-01

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  16. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Xu, Baojian, E-mail: xbj@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Shanghai Internet of Things Co., LTD, No. 1455, Pingcheng Road, Shanghai 201899 (China); Ye, Lin [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Di, Zengfeng [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Huang, Shanluo; Du, Xiaowei [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049 (China); Zhang, Jishen; Jin, Qinghui [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China); Zhao, Jianlong, E-mail: jlzhao@mail.sim.ac.cn [State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, No. 865, Changning Road, Shanghai 200050 (China)

    2015-10-30

    Highlights: • A simple and effective approach for higly stable germanium passivation. • 1-Dodecanethiol self-assembled monolayers for germanium oxidation resistance. • The influence factors of germanium passivation were systematically studied. • The stability of the passivated Ge was more than 10 days even in water conditions. - Abstract: As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  17. Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries.

    Science.gov (United States)

    Wang, Bei; Su, Dawei; Park, Jinsoo; Ahn, Hyojun; Wang, Guoxiu

    2012-04-13

    SnO2 nanoparticles were dispersed on graphene nanosheets through a solvothermal approach using ethylene glycol as the solvent. The uniform distribution of SnO2 nanoparticles on graphene nanosheets has been confirmed by scanning electron microscopy and transmission electron microscopy. The particle size of SnO2 was determined to be around 5 nm. The as-synthesized SnO2/graphene nanocomposite exhibited an enhanced electrochemical performance in lithium-ion batteries, compared with bare graphene nanosheets and bare SnO2 nanoparticles. The SnO2/graphene nanocomposite electrode delivered a reversible lithium storage capacity of 830 mAh g-1 and a stable cyclability up to 100 cycles. The excellent electrochemical properties of this graphene-supported nanocomposite could be attributed to the insertion of nanoparticles between graphene nanolayers and the optimized nanoparticles distribution on graphene nanosheets.

  18. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  19. Angina Pectoris (Stable Angina)

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Angina Pectoris (Stable Angina) Updated:Aug 21,2017 You may have heard the term “angina pectoris” or “stable angina” in your doctor’s office, ...

  20. Outstanding laser damage threshold in Li2MnGeS4 and tunable optical nonlinearity in diamond-like semiconductors.

    Science.gov (United States)

    Brant, Jacilynn A; Clark, Daniel J; Kim, Yong Soo; Jang, Joon I; Weiland, Ashley; Aitken, Jennifer A

    2015-03-16

    The new Li2MnGeS4 and Li2CoSnS4 compounds result from employing a rational and simple design strategy that guides the discovery of diamond-like semiconductors (DLSs) with wide regions of optical transparency, high laser damage threshold, and efficient second-order optical nonlinearity. Single-crystal X-ray diffraction was used to solve and refine the crystal structures of Li2MnGeS4 and Li2CoSnS4, which crystallize in the noncentrosymmetric space groups Pna21 and Pn, respectively. Synchrotron X-ray powder diffraction (SXRPD) was used to assess the phase purity, and diffuse reflectance UV-vis-NIR spectroscopy was used to estimate the bandgaps of Li2MnGeS4 (Eg = 3.069(3) eV) and Li2CoSnS4 (Eg = 2.421(3) eV). In comparison with Li2FeGeS4, Li2FeSnS4, and Li2CoSnS4 DLSs, Li2MnGeS4 exhibits the widest region of optical transparency (0.60-25 μm) and phase matchability (≥1.6 μm). All four of the DLSs exhibit second-harmonic generation and are compared with the benchmark NLO material, AgGaSe2. Most remarkably, Li2MnGeS4 does not undergo two- or three-photon absorption upon exposure to a fundamental Nd:YAG beam (λ = 1.064 μm) and exhibits a laser damage threshold > 16 GW/cm(2).

  1. Analysis of threshold current of uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers.

    Science.gov (United States)

    Jiang, Jialin; Sun, Junqiang; Gao, Jianfeng; Zhang, Ruiwen

    2017-10-30

    We propose and design uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers with the stress along direction. The micro-bridge structure is adapted for introducing uniaxial stress in Ge/SiGe quantum well. To enhance the fabrication tolerance, full-etched circular gratings with high reflectivity bandwidths of ~500 nm are deployed in laser cavities. We compare and analyze the density of state, the number of states between Γ- and L-points, the carrier injection efficiency, and the threshold current density for the uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers. Simulation results show that the threshold current density of the Ge/SiGe quantum well laser is much higher than that of the bulk Ge laser, even combined with high uniaxial tensile stress owing to the larger number of states between Γ- and L- points and extremely low carrier injection efficiency. Electrical transport simulation reveals that the reduced effective mass of the hole and the small conduction band offset cause the low carrier injection efficiency of the Ge/SiGe quantum well laser. Our theoretical results imply that unlike III-V material, uniaxially tensile stressed bulk Ge outperforms a Ge/SiGe quantum well with the same strain level and is a promising approach for Si-compatible light sources.

  2. Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si

    Science.gov (United States)

    Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko

    2016-04-01

    A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.

  3. <300> GeV team

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The 300 GeV team had been assembled. In the photograph are Hans Horisberger, Clemens Zettler, Roy Billinge, Norman Blackburne, John Adams, Hans-Otto Wuster, Lars Persson, Bas de Raad, Hans Goebel, Simon Van der Meer.

  4. Premonochromator characteristics of Si and Ge crystals for nuclear Bragg scattering

    International Nuclear Information System (INIS)

    Harami, Taikan

    1990-07-01

    The use of monochromator plays an important role as monochromatizing the photon from a facility having an electron storage ring to a narrow band width about the wavelength determined by the Bragg condition. This paper describes the dynamical diffraction formulae and collects the characteristics data of premonochromators of Si and Ge crystals for nuclear Bragg scattering. The numerical studies show the following data. (1) Reflectivity, Bragg reflection width, energy resolution and integral reflecting power for the various reflections of Si and Ge crystals at the photon with the resonance excitation energy of the Moessbauer nuclei of 181 Tm(6.21 keV), 169 Tm(8.42 keV), 57 Fe(14.41 keV), 119 Sn(23.87 keV) and 238 U(44.70 keV). (2) Tables of susceptibilities and figures of rocking curves for the various reflections of Si and Ge crystals. (author)

  5. Processing high-Tc superconductors with GeV heavy ions

    International Nuclear Information System (INIS)

    Marwick, A.D.; Civale, L.; Krusin-Elbaum, L.; Worthington, T.K.; Holtzberg, F.; Thompson, J.R.; Sun, Y.R.; Kerchner, H.R.

    1992-01-01

    Irradiation of high-T c superconducting crystals with low doses (10 10 --10 11 ions/cm 2 ) of GeV heavy ions (0.58 GeV Sn-116; 1.0-GeV Au-197) produces a unique microstructure consisting of discrete amorphous columns which are only a few nm in diameter but tens of microns long. It has been found recently that this columnar microstructure causes larger increases in magnetization and critical current at high temperature and high magnetic field than other types of defects in these materials. This can be understood as a consequence of the effective pinning of magnetic vortex lines provided by the columnar defects. Measurements confirm that the pinning is strongest when the magnetic field is aligned with the ion tracks. Differences in the pinning in different materials can be related to differences in their anisotropy, which affects the structure of the vortices and their pinning at columnar defects

  6. Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification

    International Nuclear Information System (INIS)

    Ai Zhihui; Lee Shuncheng; Huang Yu; Ho Wingkei; Zhang Lizhi

    2010-01-01

    Nanocrystalline Zn 2 SnO 4 microcubes were hydrothermally synthesized and systematically characterized by XRD, SEM, TEM, XPS, N 2 adsorption-desorption, and UV-vis DRS analysis. The resulting Zn 2 SnO 4 microcubes with the edge size ranging from 0.8 to 1.2 μm were composed of numerous nanoparticles with size of 10-20 nm, and their optical band gap energy was estimated to be 3.25 eV from the UV-vis diffuse reflectance spectra. On degradation of nitrogen monoxide (NO) and formaldehyde (HCHO) at typical concentrations for indoor air quality, these nanocrystalline Zn 2 SnO 4 microcubes exhibited superior photocatalytic activity to the hydrothermally synthesized ZnO, SnO 2 , and Degussa TiO 2 P25, as well as C doped TiO 2 under UV-vis light irradiation. This enhanced photocatalytic activity of the nanocrystalline Zn 2 SnO 4 microcubes was attributed to their bigger surface areas, smaller particle size, special porous structures, and special electronic configuration. The nanocrystalline Zn 2 SnO 4 microcubes were chemically stable as there was no obvious deactivation during the multiple photocatalytic reactions. This work presents a promising approach for scaling-up industrial production of Zn 2 SnO 4 nanostructures and suggests that the synthesized nanocrystalline Zn 2 SnO 4 microcubes are promising photocatalysts for indoor air purification.

  7. Electronic structure and isomer shifts of Sn halides

    International Nuclear Information System (INIS)

    Terra, J.; Guenzburger, D.

    1988-01-01

    The all-electron first-principles Discrete Variational method was employed to study the electronic structure of SnF 4 , SnCl 4 , SnBr 4 and SnI 4 . Values of the electronic density at the Sn nucleus were derived and related to 119 Sn Isomer Shifts to obtain the nuclear constant Δ 2 >. Differences in values of ρ(o) area discussed in terms of the chemical bonding between Sn and halogen atoms. (author) [pt

  8. Layered SnS sodium ion battery anodes synthesized near room temperature

    KAUST Repository

    Xia, Chuan

    2017-08-10

    In this report, we demonstrate a simple chemical bath deposition approach for the synthesis of layered SnS nanosheets (typically 6 nm or ~10 layers thick) at very low temperature (40 °C). We successfully synthesized SnS/C hybrid electrodes using a solution-based carbon precursor coating with subsequent carbonization strategy. Our data showed that the ultrathin carbon shell was critical to the cycling stability of the SnS electrodes. As a result, the as-prepared binder-free SnS/C electrodes showed excellent performance as sodium ion battery anodes. Specifically, the SnS/C anodes delivered a reversible capacity as high as 792 mAh·g−1 after 100 cycles at a current density of 100 mA·g−1. They also had superior rate capability (431 mAh·g−1 at 3,000 mA·g−1) and stable long-term cycling performance under a high current density (345 mAh·g−1 after 500 cycles at 3 A·g−1). Our approach opens up a new route to synthesize SnS-based hybrid materials at low temperatures for energy storage and other applications. Our process will be particularly useful for chalcogenide matrix materials that are sensitive to high temperatures during solution synthesis.

  9. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  10. Effects of interlayer Sn-Sn lone pair interaction on the band gap of bulk and nanosheet SnO

    Science.gov (United States)

    Umezawa, Naoto; Zhou, Wei

    2015-03-01

    Effects of interlayer lone-pair interactions on the electronic structure of SnO are firstly explored by the density-functional theory. Our comprehensive study reveals that the band gap of SnO opens as increase in the interlayer Sn-Sn distance. The effect is rationalized by the character of band edges which consists of bonding and anti-bonding states from interlayer lone pair interactions. The band edges for several nanosheets and strained double-layer SnO are estimated. We conclude that the double-layer SnO is a promising material for visible-light driven photocatalyst for hydrogen evolution. This work is supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) program.

  11. Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yujin; Park, Juyun; Kim, Dong-Woo; Kim, Hakjun; Kang, Yong-Cheol, E-mail: yckang@pknu.ac.kr

    2016-12-15

    Highlights: • We deposit CuSn thin films on a Si substrate with various Cu/Sn ratio. • Antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time increased. • XPS was utilized to assign the chemical environment of CuSn thin films before and after antibacterial test. - Abstract: We investigated antibacterial activity of CuSn thin films against Gram positive Staphylococcus aureus (S. aureus). CuSn thin films with different Cu to Sn ratios were deposited on Si(100) by radio frequency (RF) magnetron sputtering method using Cu and Sn metal anodes. The film thickness was fixed at 200 nm by varying the sputtering time and RF power on the metal targets. The antibacterial test was conducted in various conditions such as different contact times and Cu to Sn ratios in the CuSn films. The antibacterial activities of CuSn thin films increased as the ratio of Cu and the contact time between the film and bacteria suspension increased execpt in the case of CuSn-83. The oxidation states of Cu and Sn and the chemical composition of CuSn thin films before and after the antibacterial test were investigated by X-ray photoelectron spectroscopy (XPS). When the contact time was fixed, the Cu species was further oxidized as the RF power on Cu target increased. The intensity of Sn 3d decreased with increasing Cu ratio. When the sample was fixed, the peak intensity of Sn 3d decreased as the contact time increased due to the permeation of Sn into the cell.

  12. Search for heavy neutral and charged leptons in $e^+ e^-$ annihilation at $\\sqrt{s}$ = 161 GeV and $\\sqrt{s}$ = 172 GeV

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hong, S J; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sassowsky, M; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    A search for unstable neutral and charged heavy leptons as well as for stable charged heavy leptons has been made at center-of-mass energies $\\sqrt{s}$ = 161 GeV and $\\sqrt{s}$ = 172 GeV with the L3 detector at LEP. No evidence for their existence was found. We exclude unstable neutral leptons of Dirac (Majorana) type for masses below 78.0 (66.7), 78.0 (66.7) and 72.2 (58.2) GeV, if the heavy neutrino couples to the electron, muon or tau family, respectively. We exclude unstable charged heavy leptons for masses below 81.0 GeV for a wide mass range of the associated neutral heavy lepton. The production of stable charged heavy leptons with a mass less than 84.2 GeV is also excluded. If the unstable charged heavy lepton decays via mixing into a massless neutrino, we exclude masses below 78.7 GeV.

  13. SnSe2 Two Dimensional Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan

    2017-05-30

    Sodium-ion batteries (SIBs) are considered as a promising alternative to lithium-ion batteries (LIBs) for large-scale renewable energy storage units due to the abundance of sodium resource and its low cost. However, the development of anode materials for SIBs to date has been mainly limited to some traditional anodes for LIBs, such as carbonaceous materials. SnSe2 is a member of two dimensional layered transition metal dichalcogenide (TMD) family, which has been predicted to have high theoretical capacity as anode material for sodium ion batteries (756 mAh g-1), thanks to its layered crystal structure. Yet, there have been no studies on using SnSe2 as Na ion battery anode. In this thesis, we developed a simple synthesis method to prepare pure SnSe2 nanosheets, employing N2 saturated NaHSe solution as a new selenium source. The SnSe2 2D sheets achieve theoretical capacity during the first cycle, and a stable and reversible specific capacity of 515 mAh g-1 at 0.1 A g-1 after 100 cycles, with excellent rate performance. Among all of the reported transition metal selenides, our SnSe2 sample has the highest reversible capacity and the best rate performances. A combination of ex-situ high resolution transmission electron microscopy (HRTEM) and X-ray diffraction was used to study the mechanism of sodiation and desodiation process in this SnSe2, and to understand the reason for the excellent results that we have obtained. The analysis indicate that a combination of conversion and alloying reactions take place with SnSe2 anodes during battery operation, which helps to explain the high capacity of SnSe2 anodes for SIBs compared to other binary selenides. Density functional theory was used to elucidate the volume changes taking place in this important 2D material.

  14. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  15. Beta decays of 126Cd and 126In to levels in 126In and 126Sn

    International Nuclear Information System (INIS)

    Gartner, M.L.

    1979-01-01

    A study of the beta decays of 126 Cd and 126 In using the TRISTAN on-line isotope separator facility is reported. Gamma-ray singles measurements were made for both decays usng Ge(Li) and LEPS (low energy photon spectrometer) detectors. In addition, gamma--gamma coincidence measurements and gamma multiscale measurements were made for both decays using Ge(Li) detectors. The half-life for 126 Cd was determined to be 0.506 +- 0.015 sec., and the half-lives for the low- and high-spin 126 In isomers were determined to be 1.83 +- 0.11 sec. and 1.96 +- 0.10 sec., respectively. A total of 11 gamma rays were observed in the decay of 126 Cd, and all but one were placed in a level scheme for 126 In. A total of 48 gamma rays were observed in the decay of the low- and high-spin 126 In isomers and all were placed in a level scheme for 126 Sn. Spin and parity assignments were deduced, whenever possible, on the basis of logft values and gamma decay selection rules. The 126 In decay schemes (one has been proposed for each isomer) are compared with earlier decay studies and with results from 124 Sn(t,p) 126 Sn reaction experiments. The systematics associated with the level schemes are discussed and a comparison is made with the nuclear shell model. 49 references

  16. Mineralogy, stable isotopes (δ{sup 18}O and δ{sup 34}S) and {sup 40}Ar-{sup 39}Ar geochronology studies on the hydrothermal carapace of the Igarapé Manteiga W-Sn Deposit, Rondônia

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Thais Marcela Fernandes do; Souza, Valmir da Silva, E-mail: thais.marcela@gmail.com, E-mail: valmirsouzaunb@gmail.com [Geosciences Postgraduate Program, Universidade Federal do Amazonas – UFAM, Manaus, AM (Brazil)

    2017-10-15

    The Igarapé Manteiga W-Sn deposit is formed by a granite stock that intrudes in the Paleoproterozoic basement. The mineralization is encapsulated in an alumino-siliceous hydrothermal carapace formed by greisen, vein-veinlets and breccia, developed in the apex zone of a granite stock. At this site, wolframite, cassiterite and sulfides-minerals, as well as siderite, monazite, xenotime, hematite and others, are spread out or in massive clusters associated with quartz, topaz, zinnwaldite and fluorite. Wolframite is not zoned and relatively rich in Fe, and poor in Nb and Ta. Cassiterite exhibits growth-zones with light-yellow to dark-orange colors, and is rich in Ta, and poor in Ti, W, Mn and U. Oxygen and sulfur (δ{sup 18}O and δ{sup 34}S) isotope data on the ore- and sulfide-minerals indicates that it is a magmatic source, with closing temperatures from 230° C to 480° C. The hydrothermal phase was cyclical and protractedly active, promoting greisenization and hydrofracturing. The lowering of temperature and the change in the composition of fluids (from oxidized to reduced) controlled the precipitation of the hydrothermal mineral assemblage. The {sup 40}Ar-{sup 39}Ar analyses reveal a plateau age of 988 Ma, interpreted as the closure time for the hydrothermal processes responsible for mineralization, which is linked to the final magmatic evolution of the Rondônia Intrusive Suite (995-991Ma). (author)

  17. Direct growth of Ge1-xSnx films on Si using a cold-wall ultra-high-vacuum chemical-vapor-deposition system

    Directory of Open Access Journals (Sweden)

    Aboozar eMosleh

    2015-04-01

    Full Text Available Germanium tin alloys were grown directly on Si substrate at low temperatures using a cold-wall ultra-high vacuum chemical vapor deposition system. Epitaxial growth was achieved by adopting commercial gas precursors of germane and stannic chloride without any carrier gases. The X-ray diffraction analysis showed the incorporation of Sn and that the Ge1-xSnx films are fully epitaxial and strain relaxed. Tin incorporation in the Ge matrix was found to vary from 1% to 7%. The scanning electron microscopy images and energy dispersive X-ray spectra maps show uniform Sn incorporation and continuous film growth. Investigation of deposition parameters shows that at high flow rates of stannic chloride the films were etched due to the production of HCl. The photoluminescence study shows the reduction of bandgap from 0.8 eV to 0.55 eV as a result of Sn incorporation.

  18. SN1987A's Twentieth Anniversary

    Science.gov (United States)

    2007-02-01

    Looking back at 20 Years of Observations of this Supernova with ESO telescopes The unique supernova SN 1987A has been a bonanza for astrophysicists. It provided several observational 'firsts,' like the detection of neutrinos from an exploding star, the observation of the progenitor star on archival photographic plates, the signatures of a non-spherical explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material. ESO PR Photo 08a/07 ESO PR Photo 08a/07 SN1987A in the Large Magellanic Cloud Today, it is exactly twenty years since the explosion of Supernova 1987A in the Large Magellanic Cloud was first observed, at a distance of 163,000 light-years. It was the first naked-eye supernova to be seen for 383 years. Few events in modern astronomy have met with such an enthusiastic response by the scientists and now, after 20 years, it continues to be an extremely exciting object that is further studied by astronomers around the world, in particular using ESO's telescopes. When the first signs of Supernova 1987A, the first supernova of the year 1987, were noticed early on 24 February of that year, it was clear that this would be an unusual event. It was discovered by naked-eye and on a panoramic photographic plate taken with a 10-inch astrograph on Las Campanas in Chile by Oscar Duhalde and Ian Shelton, respectively. A few hours earlier, still on 23 February, two large underground detectors - in Japan and the USA - had registered the passage of high-energy neutrinos. Since SN 1987A exploded in the Large Magellanic Cloud (LMC), it was only accessible to telescopes in the Southern Hemisphere, more particularly in Australia, South Africa, and South America. In Chile, ESO's observatory at La Silla with its armada of telescopes with sizes between 0.5 and 3.6-m, played an important role. ESO PR Photo 08c/07 ESO PR Photo 08c/07 The

  19. Multifunctional Binary Monolayers Ge xP y: Tunable Band Gap, Ferromagnetism, and Photocatalyst for Water Splitting.

    Science.gov (United States)

    Li, Pengfei; Zhang, Wei; Li, Dongdong; Liang, Changhao; Zeng, Xiao Cheng

    2018-06-04

    The most stable structures of two-dimensional Ge x P y and Ge x As y monolayers with different stoichiometries (e.g., GeP, GeP 2 , and GeP 3 ) are explored systematically through the combination of the particle-swarm optimization technique and density functional theory optimization. For GeP 3 , we show that the newly predicted most stable C2/ m structure is 0.16 eV/atom lower in energy than the state-of-the-art P3̅m1 structure reported previously ( Nano Lett. 2017, 17, 1833). The computed electronic band structures suggest that all the stable and metastable monolayers of Ge x P y are semiconductors with highly tunable band gaps under the biaxial strain, allowing strain engineering of their band gaps within nearly the whole visible-light range. More interestingly, the hole doping can convert the C2/ m GeP 3 monolayer from nonmagnetic to ferromagnetic because of its unique valence band structure. For the GeP 2 monolayer, the predicted most stable Pmc2 1 structure is a (quasi) direct-gap semiconductor that possesses a high electron mobility of ∼800 cm 2 V -1 s -1 along the k a direction, which is much higher than that of MoS 2 (∼200 cm 2 V -1 s -1 ). More importantly, the Pmc2 1 GeP 2 monolayer not only can serve as an n-type channel material in field-effect transistors but also can be an effective catalyst for splitting water.

  20. Fabrication of multilayered Ge nanocrystals embedded in SiOxGeNy films

    International Nuclear Information System (INIS)

    Gao Fei; Green, Martin A.; Conibeer, Gavin; Cho, Eun-Chel; Huang Yidan; Perez-Wurfl, Ivan; Flynn, Chris

    2008-01-01

    Multilayered Ge nanocrystals embedded in SiO x GeN y films have been fabricated on Si substrate by a (Ge + SiO 2 )/SiO x GeN y superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO 2 composite target and subsequent thermal annealing in N 2 ambient at 750 deg. C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm -1 , which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO 2 ) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction

  1. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  2. ORIGIN FOR IRRADIATION EFFECT OF 0.56GeV C6+ ON CaVSn:YIG

    Institute of Scientific and Technical Information of China (English)

    熊宏齐; 侯明东; 等

    1995-01-01

    This paper presents numerous physical characteristics of Ca,V.Sn doped yttrium iron garnet(CaVSn:YIG) irradiated with 0.56GeV carbon ions delivered by the Heavy Ion Research Facility of Lanzhou (HIRFL).The reason for change of the magnetic properties of the samples induced by energetic carbon ions bombardment is discussed.By comparison of this results with the irradiation effects of YIG induced by eneregetic argon,krypton and xenon oibtained on the GANIL,Caen,France,it is concluded that the irradiation effect of 0.56GeV C6+ on CaVSn:YIG arises from the electronic energy losses.

  3. STRESS a SN survey at ESO

    Science.gov (United States)

    Botticella, M. T.

    We performed the Southern inTermediate Redshift ESO Supernova Search (STRESS), a survey specifically designed to measure the rate of both SNe Ia and CC SNe, in order to obtain a direct comparison of the high redshift and local rates and to investigate the dependence of the rates on specific galaxy properties, most notably their colour. We found that the type Ia SN rate, at mean redshift z = 0.3, is 0.22+0.10+0.16-0.08-0.14 h270 SNu, while the CC SN rate, at z = 0.21, is 0.82+0.31+0.300.24-0.26 h270 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to the local value, the CC SN rate at z = 0.2 is higher by a factor of ˜ 2, whereas the type Ia SN rate remains almost constant. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. Finally we exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.

  4. Synthesis of hierarchical worm-like SnO2@C aggregates and their enhanced lithium storage properties

    International Nuclear Information System (INIS)

    Wu, Zhen-Guo; Li, Jun-Tao; Zhong, Yan-Jun; Liu, Jie; Guo, Xiao-Dong; Huang, Ling; Zhong, Ben-He; Sun, Shi-Gang

    2015-01-01

    Highlights: • The hierarchical worm-like SnO 2 @C aggregates were synthesized. • The hierarchical worm-like SnO 2 @C unit is assembled by nanowires. • The cycling performances of SnO 2 @C aggregates are improved. • A capacity of 477.0 mA h g −1 at 400 mA g −1 could be obtained after 60 cycles. - Abstract: The present paper reports a synthetic strategy of hierarchical worm-like SnO 2 @C aggregates with enhanced electrochemical performances. Specifically, a glucose-assisted hydrothermal treatment of the intermediate Co–Sn alloy nanoparticles, which were formed by carbothermal reduction of mixed commercial SnO 2 and Co 3 O 4 nanoparticles. The SnO 2 @C sample exhibits enhanced cycling performance in comparison with raw commercial SnO 2 nanoparticles and intermediate Co–Sn alloy nanoparticles when used as anode of lithium ion battery. A stable capacity of 533.6 mA h g −1 at 100 mA g −1 and 477.0 mA h g −1 at 400 mA g −1 remains after 60 cycles. When the current density increases to 1600 mA g −1 , the SnO 2 @C sample still deliver a high capacity of 384.2 mA h g −1 . The superior electrochemical performances could be attributed to the synergistic effect of unique worm-like aggregates structure and carbon surface-layer, which facilitate the electron transportation and buffer the large volume change

  5. Synthesis of hierarchical worm-like SnO{sub 2}@C aggregates and their enhanced lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhen-Guo [School of Chemical Engineering, SichuanUniversity, Chengdu 610065 (China); College of Energy, Xiamen University, Xiamen 361005 (China); Li, Jun-Tao, E-mail: jtli@xmu.edu.cn [College of Energy, Xiamen University, Xiamen 361005 (China); Zhong, Yan-Jun [School of Chemical Engineering, SichuanUniversity, Chengdu 610065 (China); College of Energy, Xiamen University, Xiamen 361005 (China); Liu, Jie [State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Guo, Xiao-Dong, E-mail: xiaodong2009@163.com [School of Chemical Engineering, SichuanUniversity, Chengdu 610065 (China); Huang, Ling [State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Zhong, Ben-He [School of Chemical Engineering, SichuanUniversity, Chengdu 610065 (China); Sun, Shi-Gang [College of Energy, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2015-01-25

    Highlights: • The hierarchical worm-like SnO{sub 2}@C aggregates were synthesized. • The hierarchical worm-like SnO{sub 2}@C unit is assembled by nanowires. • The cycling performances of SnO{sub 2}@C aggregates are improved. • A capacity of 477.0 mA h g{sup −1} at 400 mA g{sup −1} could be obtained after 60 cycles. - Abstract: The present paper reports a synthetic strategy of hierarchical worm-like SnO{sub 2}@C aggregates with enhanced electrochemical performances. Specifically, a glucose-assisted hydrothermal treatment of the intermediate Co–Sn alloy nanoparticles, which were formed by carbothermal reduction of mixed commercial SnO{sub 2} and Co{sub 3}O{sub 4} nanoparticles. The SnO{sub 2}@C sample exhibits enhanced cycling performance in comparison with raw commercial SnO{sub 2} nanoparticles and intermediate Co–Sn alloy nanoparticles when used as anode of lithium ion battery. A stable capacity of 533.6 mA h g{sup −1} at 100 mA g{sup −1} and 477.0 mA h g{sup −1} at 400 mA g{sup −1} remains after 60 cycles. When the current density increases to 1600 mA g{sup −1}, the SnO{sub 2}@C sample still deliver a high capacity of 384.2 mA h g{sup −1}. The superior electrochemical performances could be attributed to the synergistic effect of unique worm-like aggregates structure and carbon surface-layer, which facilitate the electron transportation and buffer the large volume change.

  6. SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Hongyu; Ahmad, Mashkoor; Luo, Jun; Shi, Yingying; Shen, Wanci; Zhu, Jing

    2014-01-01

    Graphical abstract: The synthesized SnS 2 nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS 2 nanoflakes. - Highlights: • Synthesis of SnS 2 nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS 2 . • Enhanced performance as Li-ion batteries. - Abstract: SnS 2 nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS 2 /MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS 2 nanoflakes. It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS 2 nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g −1 for SnS 2 /MWCNTs composite electrodes at a current density of 100 mA g −1 between 5 mV and 1.15 V versus Li/Li + . A stable reversible capacity of ∼510 mA h g −1 is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS 2 and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously

  7. SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongyu [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [Nanomaterials Research Group (NRG), Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Luo, Jun [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Shi, Yingying; Shen, Wanci [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-01-01

    Graphical abstract: The synthesized SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. - Highlights: • Synthesis of SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS{sub 2}. • Enhanced performance as Li-ion batteries. - Abstract: SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS{sub 2}/MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS{sub 2} nanoflakes. It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g{sup −1} for SnS{sub 2}/MWCNTs composite electrodes at a current density of 100 mA g{sup −1} between 5 mV and 1.15 V versus Li/Li{sup +}. A stable reversible capacity of ∼510 mA h g{sup −1} is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS{sub 2} and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously.

  8. Analyses of the Sn IX-Sn XII spectra in the EUV region

    International Nuclear Information System (INIS)

    Churilov, S S; Ryabtsev, A N

    2006-01-01

    The Sn IX-Sn XII spectra excited in a vacuum spark have been analysed in the 130-160 A wavelength region. The analysis was based on the energy parameter extrapolation in the isonuclear Sn VI-VIII and Sn XIII-XIV sequence. 266 spectral lines belonging to the 4d m -(4d m-1 4f+4p 5 4d m+1 ) (m=6-3) transition arrays were classified in the Sn IX-Sn XII spectra for the first time. All 18 level energies of the 4d 3 configuration and 39 level energies of the strongly interacting 4d 2 4f and 4p 5 4d 4 configurations were established in the Sn XII spectrum. The energy differences between the majority of the 4d m levels and about 40 levels of the 4d m-1 4f+4p 5 4d m+1 configurations were determined in each of the Sn IX, Sn X and Sn XI spectra (m=6-4). As a result, all intense lines were classified in the 130-140 A region relevant to the extreme ultraviolet (EUV) lithography. It was shown that the most of the intense lines in the 2% bandwidth at 135 A belong to the transitions in the Sn XI-Sn XIII spectra

  9. Structural stability, electronic and magnetic behaviour of spin-polarized YCoVZ (Z = Si, Ge) and YCoTiZ (Z = Si, Ge) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Muhammad Nasir, E-mail: nasir4iub@gmail.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 (Pakistan); Hussain, Altaf, E-mail: altafiub@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 (Pakistan); Javed, Athar [Department of Physics, University of the Punjab, Lahore, 54590 (Pakistan); Khan, Muhammad Azhar; Iqbal, F. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 (Pakistan)

    2016-11-01

    The structural stability, electronic and magnetic behaviour of YCoVZ (Z = Si, Ge) and YCoTiZ (Z = Si, Ge) Heusler alloys have been studied by first principle approach. Generalized gradient approximation (GGA) based on density functional theory (DFT) has been applied to investigate the properties of quaternary Heusler alloys. The YCoVSi, YCoVGe, YCoTiSi and YCoTiGe Heusler alloys of Type-3 structure are found to be stable in spin-polarized/magnetic phase. The YCoVSi and YCoVGe alloys exhibit nearly spin gapless semiconductor (SGS) behaviour while YCoTiSi and YCoTiGe alloys show half-metallic ferromagnetic (HMF) behaviour. For YCoVSi, YCoVGe, YCoTiSi and YCoTiGe alloys, the calculated energy band gaps in spin down (↓) channel are 0.60, 0.54, 0.68 and 0.44 eV, respectively. The YCoVZ and YCoTiZ alloys are found to have integral value of total magnetic moment (M{sub T}), thus obeying the Slater-Pauling rule, M{sub T} = (N{sub v}–18)μ{sub B}. - Highlights: • Four Heusler alloys i.e. YCoVZ (Z = Si, Ge) and YCoTiZ (Z = Si, Ge) are studied. • Type-3 crystal structure of all four alloys is stable in magnetic phase. • The compressibility (S) follows the order: S{sub YCoVSi} > S{sub YCoTiSi} > S{sub YCoVGe} > S{sub YCoTiGe}. • Half metallic ferromagnetic behaviour is observed in all four alloys. • All four alloys obey the Slater-Pauling rule, M{sub T} = (N{sub v} – 18)μ{sub B}.

  10. Toepassing geïntegreerde maatregelen geïnvestariseerd

    NARCIS (Netherlands)

    Heijne, B.

    2009-01-01

    Kennis over 'good practices' en 'best practices' van geïntegreerde bedrijfsstrategieën verspreidt zich snel over Europa. Dat is één van de conclusies van een inventarisatie binnen het project Endure. Het aanplanten van minder vatbare of resistente rassen blijkt weinig toegepast te worden in de

  11. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    International Nuclear Information System (INIS)

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, L.A.; Watkins, S.P.

    2016-01-01

    Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-type dopants. Here we present high-resolution photoluminescence (PL) spectroscopy studies of unintentionally doped and Sn-doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I 10 bound exciton transition that was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. The PL linewidths are exceptionally sharp for these samples, enabling a clear identification of several donor species. Temperature-dependent PL measurements of the I 10 line emission energy and intensity dependence reveal a behavior that is similar to other shallow donors in ZnO. Ionized donor bound-exciton and two-electron satellite transitions of the I 10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule) similar to recently observed carbon related donors, and confirming the shallow nature of this defect center, which was recently attributed to a Sn Zn double donor compensated by an unknown single acceptor.

  12. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  13. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  14. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  15. Thermoelectric Properties in the TiO2/SnO2 System

    Science.gov (United States)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  16. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development

    International Nuclear Information System (INIS)

    Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.

    2007-01-01

    Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)

  17. Study of photocatalytic asset of the ZnSnO3 synthesized by green chemistry

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2017-02-01

    Full Text Available In this paper, we report a simple one-step mechanochemical synthesis method with a green chemistry approach for a light-induced heterogeneous oxide photocatalyst, ZnSnO3. The catalyst was characterized by various investigative techniques, like Infrared Fourier Transform Spectroscopy, Diffused Reflectance UV–visible Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy, Tunnelling Electron Microscopy, and Thermogravimetric analysis to carry out structural and spectroscopic properties of the photocatalyst. The synthesized ZnSnO3 particles had an average size of 105 nm with a band gap of 3.34 eV. The photocatalyst was thermally stable over a wide range of temperatures. The sunlight mediated degradation of Methyl blue, Indigo carmine and Acid violet dyes were achieved by using ZnSnO3.

  18. Enhanced cyclic stability of SnS microplates with conformal carbon coating derived from ethanol vapor deposition for sodium-ion batteries

    Science.gov (United States)

    Li, Xiang; Liu, Jiangwen; Ouyang, Liuzhang; Yuan, Bin; Yang, Lichun; Zhu, Min

    2018-04-01

    Carbon coated SnS microplates (SnS@C MPs) were prepared via a facile chemical vapor deposition method using SnS2 nanoflakes as precursor and ethanol vapor as carbon source. The carbon coating restrains the growth of SnS during the heat treatment. Furthermore, it improves the electronic conductivity as well as accommodates volume variations of SnS during the sodiation and desodiation processes. Therefore, the rate capability and cycle performance of the SnS@C MPs as anode materials for sodium-ion batteries are remarkably enhanced compared with the bare SnS and the SnS2 precursor. At current densities of 0.1, 0.2, 0.5, 1 and 2 A g-1, the optimized SnS@C MPs exhibit stable capacities of 602.9, 532.1, 512.2, 465.9 and 427.2 mAh g-1, respectively. At 1 A g-1, they show a reversible capacity of 528.8 mAh g-1 in the first cycle, and maintain 444.7 mAh g-1 after 50 cycles, with capacity retention of 84.1%. The carbon coating through chemical vapor deposition using ethanol vapor as carbon sources is green, simple and cost-effective, which shows great promise to improve the reversible Na+ storage of electrode materials.

  19. Quantum oscillation evidence for a topological semimetal phase in ZrSnTe

    Science.gov (United States)

    Hu, Jin; Zhu, Yanglin; Gui, Xin; Graf, David; Tang, Zhijie; Xie, Weiwei; Mao, Zhiqiang

    2018-04-01

    The layered WHM-type (W =Zr /Hf /La , H =Si /Ge /Sn /Sb , M =S /Se /Te ) materials represent a large family of topological semimetals, which provides an excellent platform to study the evolution of topological semimetal state with the fine tuning of spin-orbit coupling and structural dimensionality for various combinations of W , H , and M elements. In this work, through high field de Haas-van Alphen (dHvA) quantum oscillation studies, we have found evidence for the predicted topological nontrivial bands in ZrSnTe. Furthermore, from the angular dependence of quantum oscillation frequency, we have revealed the three-dimensional Fermi surface topologies of this layered material owing to strong interlayer coupling.

  20. States in 118Sn from 117Sn(d,p) 118Sn at 12 MeV

    International Nuclear Information System (INIS)

    Frota-Pessoa, E.

    1983-01-01

    118 Sn energy levels up to = 5.2 MeV excitation energy are studied in the reaction 117 Sn (d,p) 118 Sn. Deuterons had a bombarding energy of 12 MeV. The protons were analized by a magnetic spectrograph. The detector was nuclear emulsion and the resolution in energy about 10 KeV. The distorted-wave analysis was used to determine l values and spectroscopic strengths. Centers of gravity and the sums of reduced spectroscopic factors are presented for the levels when it was possible to determine the S' value. 66 levels of excitation energy were found which did not appear in previous 117 Sn (d,p) reactions. 40 levels were not found previously in any reaction giving 118 Sn. The results are compared with the known ones. (Author) [pt

  1. Cross sections of neutron production with energies of 7,5-190 MeV in the p+A → n+X reaction at 1-9 GeV/c, π++A → n+X reaction at 1-6 GeV/c, π-+A → n+X reaction at 1,4 and 5 GeV/c

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Gavrilov, V.B.; Goryainov, N.A.

    1983-01-01

    The tables of cross sections of neutron production with energies 7.5-190 MeV for reactions p+A→n+X at 1-9 GeV/c, π + +A→n+X at 1-6 GeV/c and π - +A→n+X at 1.4 and 5 GeV/c are presented. A-dependence (for Be, C, Al, Ti, Fe, Cu, Nb, Cd, Sn, Ta, Pb and U targets) for incident 7.5 GeV/c protons and dependence on incident particle momentum (for protons at 1, 1.4, 2, 3, 5, 6, 6.25, 6.5, 7, 7.5, 8.25, 8.5 and 9 GeV/c, for π + -mesons at 1, 1.4, 2, 3, 4, 5 and 6 GeV/c, π - -mesons at 1,4 and 5 GeV/c) for C, Cu, Pb, U targets are measured in detail, for secondary neutrons at 119 deg. Detailed angular dependences in the range from 10 deg to 160 deg are presented for C, Cu, Pb, U targets for incident 7.5 GeV/c protons and 5 GeV/c π - -mesons. Some of typical dependences are illustrated by diagrams

  2. Observing the Bose-condensation of Cooper's pairs in superconductors on the isotope 73(73Ge)

    International Nuclear Information System (INIS)

    Nemov, S.A.; Seregin, P.P.; Khujakulov, E.S.; Turaev, N.Yu.

    2007-01-01

    Using the emission Moessbauer spectroscopy method on the isotope 73 ( 73 Ge) it has been established that the superconducting transition in the solid solutions (Pb 1-x Sn x ) 1-z In z Te and superconductor Nb 3 Al leads to the change of the electron density in the metal sites, while in the anion sites no change in the electronic density has been observed. (author)

  3. Synthesis of tin monosulfide (SnS) nanoparticles using surfactant free microemulsion (SFME) with the single microemulsion scheme

    Science.gov (United States)

    Tarkas, Hemant S.; Marathe, Deepak M.; Mahajan, Mrunal S.; Muntaser, Faisal; Patil, Mahendra B.; Tak, Swapnil R.; Sali, Jaydeep V.

    2017-02-01

    Synthesis of monomorphic, SnS nanoparticles without using a capping agent is a difficult task with chemical route of synthesis. This paper reports on synthesis of tin monosulfide (SnS) nanopartilces with dimension in the quantum-dot regime using surfactant free microemulsion with single microemulsion scheme. This has been achieved by reaction in microreactors in the CME (C: chlorobenzene, M: methanol and E: ethylene glycol) microemulsion system. This is an easy and controllable chemical route for synthesis of SnS nanoparticles. Nanoparticle diameter showed prominent dependence on microemulsion concentration and marginal dependence on microemulsion temperature in the temperature range studied. The SnS nanoparticles formed with this method form stable dispersion in Tolune.

  4. Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys

    Science.gov (United States)

    Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.

    2018-06-01

    A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.

  5. Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source

    Energy Technology Data Exchange (ETDEWEB)

    Vanacore, G. M.; Zani, M.; Tagliaferri, A., E-mail: alberto.tagliaferri@polimi.it [CNISM-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Nicotra, G. [IMM-CNR, Stradale Primosole 50, I-95121 Catania (Italy); Bollani, M. [CNR-IFN, LNESS, Via Anzani 42, I-22100 Como (Italy); Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F. [Dipartimento di Scienza dei Materiali and L-NESS, Università Milano-Bicocca, via Cozzi 53, I-20125 Milano (Italy); Capellini, G. [Department of Sciences at the Università Roma Tre, Via Vasca Navale 79, 00146 Roma (Italy); Isella, G. [CNISM, LNESS, Dipartimento di Fisica, Politecnico di Milano (Polo di Como), Via Anzani 42, I-22100 Como (Italy); Osmond, J. [ICFO–The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, 3, E-08860 Castelldefels (Barcelona) (Spain)

    2015-03-14

    The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.

  6. Rod-like hierarchical Sn/SnOx@C nanostructures with enhanced lithium storage properties

    Science.gov (United States)

    Yang, Juan; Chen, Sanmei; Tang, Jingjing; Tian, Hangyu; Bai, Tao; Zhou, Xiangyang

    2018-03-01

    Rod-like hierarchical Sn/SnOx@C nanostructures have been designed and synthesized via calcining resorcinol-formaldehyde (RF) resin coated Sn-based metal-organic frameworks. The rod-like hierarchical Sn/SnOx@C nanostructures are made of a great number of carbon-wrapped primary Sn/SnOx nanospheres of 100-200 nm in diameter. The as-prepared hierarchical Sn/SnOx@C nanocomposite manifests a high initial reversible capacity of 1177 mAh g-1 and remains 1001 mAh g-1 after 240 cycles at a current density of 200 mA g-1. It delivers outstanding high-rate performance with a reversible capacity of 823 mAh g-1 even at a high current density of 1000 mA g-1. The enhanced electrochemical performances of the Sn/SnOx@C electrode are mainly attributed to the synergistic effect of the unique hierarchical micro/nanostructures and the protective carbon layer.

  7. Studying superconducting Nb3Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb3Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb3Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  8. Anomalous temperature behavior of Sn impurities

    International Nuclear Information System (INIS)

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  9. Studying superconducting Nb$_{3}$Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb$_{3}$Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb$_{3}$Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  10. Neutrino properties and supernova SN1987a

    International Nuclear Information System (INIS)

    Nussinov, S.

    1989-01-01

    The use of SN1987a to indicate how limits on neutrino properties can be deduced from the observed neutrino signals is shown. Bounds on possible deviations from relativity are briefly considered. The possible evidence for a half-millisecond pulsar in the SN remnant and on speculative attempts at finding the same periodicity in the neutrino signal are commented on. 37 refs

  11. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  12. Phase relations in the quasi-binary Cu{sub 2}GeS{sub 3}-ZnS and quasi-ternary Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems and crystal structure of Cu{sub 2}ZnGeS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine)]. E-mail: oleg@lab.univer.lutsk.ua; Piskach, L.V. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Romanyuk, Y.E. [Advanced Photonics Laboratory, Institute of Imaging and Applied Optics, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Olekseyuk, I.D. [Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk (Ukraine); Zaremba, V.I. [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya Str., 79005 L' viv (Ukraine); Pekhnyo, V.I. [V.I. Vernadskii Institute of General and Inorganic Chemistry, Ukrainian National Academy of Sciences, Palladina Ave 32-34, 03680 Kiev (Ukraine)

    2005-07-19

    The isothermal section of the Cu{sub 2}S-Zn(Cd)S-GeS{sub 2} systems at 670K was constructed using X-ray diffraction analysis. At this temperature, two quaternary intermediate phases, Cu{sub 2}CdGeS{sub 4} and {approx}Cu{sub 8}CdGeS{sub 7}, exist in the Cu{sub 2}S-CdS-GeS{sub 2} system, and only one phase, Cu{sub 2}ZnGeS{sub 4}, exists in the Cu{sub 2}S-ZnS-GeS{sub 2} system. The phase diagram of the Cu{sub 2}GeS{sub 3}-ZnS system was constructed using differential-thermal analysis and X-ray diffraction, and the existence of Cu{sub 2}ZnGeS{sub 4} has been confirmed. It forms incongruently at 1359K. Powder X-ray diffraction was used to refine the crystal structure of Cu{sub 2}ZnGeS{sub 4}, which crystallizes in the tetragonal stannite-type structure at 670K (space group I4-bar 2m, a=0.534127(9)nm, c=1.05090(2)nm, R{sub I}=0.0477). The possibility of the formation of quaternary compounds in the quasi-ternary systems A{sup I}{sub 2}X-B{sup II}X-C{sup IV}X{sub 2}, where A{sup I}-Cu, Ag; B{sup II}-Zn, Cd, Hg; C{sup IV}-Si, Ge, Sn and X-S, Se, Te is discussed.

  13. Studies of adsorber materials for preparing 68Ge/68Ga generators

    International Nuclear Information System (INIS)

    Brambilla, Tania de Paula

    2013-01-01

    The 68 Ga is a promising radionuclide for nuclear medicine, decaying by positron emission with an abundance of 89%, with physical half-life of 68 minutes, which is compatible with the pharmacokinetics of many biomolecules and low molecular weight substrates. Another important feature is its availability through a generator system, where the parent radionuclide, 68 Ge (t 1/2 = 270.95 days) is adsorbed on a column and the daughter, 68 Ga, is eluted in an ionic form 68Ga 3+ . The development of 68 Ge/ 68 Ga generators began in the 60s, but its clinical use began to be acceptable and relevant only recently. The method of separation of 68 Ge and 68 Ga most used is the ion-exchange chromatographic system, due to its practical operation, but other generator systems have been proposed, such as solvent extraction and evaporation technique. Currently, 68 Ge/ 68 Ga generators are commercially available using inorganic matrices columns prepared with TiO 2 or SnO 2 as well using organic resin. The efficiency of 68 Ga elution ranges from 70% to 80%, decreasing over time. The 68 Ge breakthrough varies from 10 -2 to10 -3 % or lower in a fresh generator, but there is an increase in the levels of contamination after long periods of use. Even with all the technological advances in the development of 68 Ge/ 68 Ga generators in the past decades, the 68 Ga eluted from commercial generators is not suitable for direct use in humans and some improvements in the systems need to be made to reduce the 68 Ge breakthrough and chemical impurities levels. The main objective of this work was to develop a 68 Ge/ 68 Ga generator system is which 68 Ga could be eluted with quality required for clinical use. The chemical behavior of Ge and Ga was evaluated on various inorganic adsorbents materials. Two types of 68 Ge/ 68 Ga generator systems were developed using TiO 2 as adsorbent material: elution system with manual pressure and vacuum controlled. The efficiencies of the generators were similar to

  14. Electrodeposition of nanostructured Sn-Zn coatings

    Science.gov (United States)

    Salhi, Y.; Cherrouf, S.; Cherkaoui, M.; Abdelouahdi, K.

    2016-03-01

    The electrodeposition of Sn-Zn coating at ambient temperature was investigated. The bath consists of metal salts SnCl2·2H2O and ZnSO4·7H2O and sodium citrate (NaC6H5Na3O7·2H2O) as complexing agent. To prevent precipitation, the pH is fixed at 5. Reducing tin and zinc through Sncit2- and ZnHcit- complex respectively is confirmed by the presence of two cathodic peaks on the voltammogram. The kinetic of tin (II) reduction process is limited by the SnCit2- dissociation. The SEM and TEM observations have showed that the coating consists of a uniform Sn-Zn layer composed of fine grains on which tin aggregates grow up. XRD revealed peaks corresponding to the hexagonal Zn phase and the tetragonal β-Sn phase.

  15. Laser spectroscopy of neutron deficient Sn isotopes

    CERN Multimedia

    We propose to study the ground state properties of neutron-deficient Sn isotopes towards the doubly-magic nucleus $^{100}$Sn. Nuclear spins, changes in the rms charge radii and electromagnetic moments of $^{101-121}$Sn will be measured by laser spectroscopy using the CRIS experimental beam line. These ground-state properties will help to clarify the evolution of nuclear structure properties approaching the $\\textit{N = Z =}$ 50 shell closures. The Sn isotopic chain is currently the frontier for the application of state-of-the-art ab-initio calculations. Our knowledge of the nuclear structure of the Sn isotopes will set a benchmark for the advances of many-body methods, and will provide an important test for modern descriptions of the nuclear force.

  16. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    International Nuclear Information System (INIS)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-01-01

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm 2 V −1 s −1 ), which is much higher than that of MoS 2 monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm 2 V −1 s −1 ), which is higher than that of MoS 2 monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm 2 V −1 s −1 , which is much higher than that of MoS 2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  17. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Xia, Congxin, E-mail: xiacongxin@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Yaming [Henan Institute of Science and Technology, Xinxiang 453003 (China); Li, Xueping [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Peng, Yuting [Department of Physics, University of Texas at Arlington, TX 76019 (United States); Wei, Shuyi [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2017-04-15

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is much higher than that of MoS{sub 2} monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is higher than that of MoS{sub 2} monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm{sup 2} V{sup −1} s{sup −1}, which is much higher than that of MoS{sub 2} monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  18. A new dental powder from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons

    International Nuclear Information System (INIS)

    Do-Minh, N.; Le-Thi, C.; Nguyen-Anh, S.

    2003-01-01

    A new non-gamma-two dental powder has been developed from nanocrystalline melt-spun Ag-Sn-Cu alloy ribbons. The amalgam made from this powder exhibits excellent properties for dental filling. The nanocrystalline microstructure was found for the first time in as-spun and heat treated Ag(27-28)Sn(9-32) Cu alloy ribbons, using X-ray diffraction, scanning electron microscopy and energy-dispersive spectroscopy. As-spun ribbons exhibited a multi-phase microstructure with preferred existence of β (Ag 4 Sn) phase formed during rapid solidification (RS) due to supersaturating of copper (Cu) atoms and homogenous nanostructure with subgrain size of about (40-50) nm, which seems to be developed during RS process and can be caused by eutectic reaction of the Ag 3 Sn/Ag 4 Sn-Cu 3 Sn system. In heat treated ribbons the clustering of Cu atoms was always favored and stable in an ageing temperature and time interval determined by Cu content. The heat treatment led to essential changes of subgrain morphology, resulted in the appearance of large-angle boundaries with fine Cu 3 Sn precipitates and forming typical recrystallization twins. Such a microstructure variation in melt-spun ribbons could eventually yield enhanced technological, clinical and physical properties of the dental products, controlled by the ADA Specification N deg 1 and reported before. Thus, using the rapid solidification technique a new non-gamma-two dental material of high quality, nanocrystalline ribbon powder, can be produced. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  19. Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Shkir, Mohd.

    2018-02-01

    Single-layered tin selenide that shares the same structure with phosphorene and possesses intriguing optoelectronic properties has received great interest as a two-dimensional material beyond graphene and phosphorene. Herein, we explore the optoelectronic response of the newly discovered stable honeycomb derivatives (such as α , β , γ , δ , and ɛ ) of single-layered SnSe in the framework of density functional theory. The α , β , γ , and δ derivatives of a SnSe monolayer have been found to exhibit an indirect band gap, however, the dispersion of their band-gap edges demonstrates multiple direct band gaps at a relatively high energy. The ɛ -SnSe, however, features an intrinsic direct band gap at the high-symmetry Γ point. Their energy band gaps (0.53, 2.32, 1.52, 1.56, and 1.76 eV for α -, β -, γ -, δ -, and ɛ -SnSe, respectively), calculated at the level of the Tran-Blaha modified Becke-Johnson approach, mostly fall right in the visible range of the electromagnetic spectrum and are in good agreement with the available literature. The optical spectra of these two-dimensional (2D) SnSe polymorphs (besides β -SnSe) are highly anisotropic and possess strictly different optical band gaps along independent diagonal components. They show high absorption in the visible and UV ranges. Similarly, the reflectivity, refraction, and optical conductivities inherit strong anisotropy from the dielectric functions as well and are highly visible-UV polarized along the cartesian coordinates, showing them to be suitable for optical filters, polarizers, and shields against UV radiation. Our investigations suggest these single-layered SnSe allotropes as a promising 2D material for next-generation nanoscale optoelectronic and photovoltaic applications beyond graphene and phosphorene.

  20. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...

  1. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  2. Sn2+—Stabilization in MASnI3 perovskites by superhalide incorporation

    Science.gov (United States)

    Xiang, Junxiang; Wang, Kan; Xiang, Bin; Cui, Xudong

    2018-03-01

    Sn-based hybrid halide perovskites are a potential solution to replace Pb and thereby reduce Pb toxicity in MAPbI3 perovskite-based solar cells. However, the instability of Sn2+ in air atmosphere causes a poor reproducibility of MASnI3, hindering steps towards this goal. In this paper, we propose a new type of organic metal-superhalide perovskite of MASnI2BH4 and MASnI2AlH4. Through first-principles calculations, our results reveal that the incorporation of BH4 and AlH4 superhalides can realize an impressive enhancement of oxidation resistance of Sn2+ in MASnI3 perovskites because of the large electron transfer between Sn2+ and [BH4]-/[AlH4]-. Meanwhile, the high carrier mobility is preserved in these superhalide perovskites and only a slight decrease is observed in the optical absorption strength. Our studies provide a new path to attain highly stable performance and reproducibility of Sn-based perovskite solar cells.

  3. Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Antonio Tricoli

    2012-05-01

    Full Text Available The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0–15 SiO2 wt% has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C, thermally stable crystal sizes of ca. 24 and 11 nm were identified for SnO2 nanoparticles and 1.4 wt% SnO2-SiO2 nanocomposites, respectively. The effect of crystal growth during operation (TO = 320 °C on the sensor response to ethanol has been reported, revealing possible long-term destabilization mechanisms. In particular, crystal growth and sintering-neck formation were discussed with respect to their potential to change the sensor response and calibration. Furthermore, the effect of SiO2 cosynthesis on the cross-sensitivity to humidity of these noble metal-free SnO2-based gas sensors was assessed.

  4. Stability and charge separation of different CH3NH3SnI3/TiO2 interface: A first-principles study

    Science.gov (United States)

    Yang, Zhenzhen; Wang, Yuanxu; Liu, Yunyan

    2018-05-01

    Interface has an important effect on charge separation of perovskite solar cells. Using first-principles calculations, we studied several different interfaces between CH3NH3SnI3 and TiO2. The interfacial structure and electronic structure of these interfaces are thoroughly explored. We found that the SnI2/anatase (SnI2/A) system is more stable than the other three systems, because an anatase surface can make Snsbnd I bond faster restore to the pristine value than a rutile surface, and SnI2/A system has a smaller standard deviation. The calculated plane-averaged electrostatic potential and the density of states suggest that SnI2/anatase interface has a better separation of photo-generated electron-hole pairs.

  5. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    Science.gov (United States)

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  6. GE Healthcare | College of Engineering & Applied Science

    Science.gov (United States)

    Olympiad Girls Who Code Club FIRST Tech Challenge NSF I-Corps Site of Southeastern Wisconsin UW-Milwaukee ; Talent GE Healthcare is the founding partner of the Center for Advanced Embedded Systems (CAES), formerly GE Healthcare's needs for talent. Business Corporate Partners ANSYS Institute GE Healthcare Catalyst

  7. Analysing Stable Time Series

    National Research Council Canada - National Science Library

    Adler, Robert

    1997-01-01

    We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...

  8. Radiation emission from wrinkled SiGe/SiGe nanostructure

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2010-01-01

    Roč. 96, č. 11 (2010), s. 113104-113107 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : SiGe wrinkled nanostructures * si-based optical emitter * synchrotron radiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.820, year: 2010 http://apl.aip.org/resource/1/applab/v96/i11/p113104_s1?isAuthorized=no

  9. In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation

    Science.gov (United States)

    Gonzalez, Joseph F.; Antartis, Dimitrios A.; Chasiotis, Ioannis; Dillon, Shen J.; Lambros, John

    2018-03-01

    Sn has been proposed for use as a high capacity anode material. Because of its ductile metallic nature, Sn may exhibit unique stress evolution during lithiation. Here, 2D radiography and 3D tomography are employed to visualize the evolution of geometry, internal structure, alloying, and damage during lithiation, delithiation, and rest of Sn wires with micron scale diameters. Lithiation proceeds isotropically, resulting in geometric and dimensional changes after 25% of total lithiation when the tensile stresses are sufficiently high to exceed the flow stress of the unlithiated Sn core and cause elongation and diameter increase. Damage occurs at later stages in the form of cracks terminating at the wire surface and voids forming in the unlithiated core. Notably, significant fragmentation occurs during delithiation which, due to void formation that accommodates the resulting stresses, does not measurably alter the wire cross-section and length. The distinguishing feature of the chemo-mechanics of Sn compared to Si or Ge is the pronounced creep rate at applied strain rates as high as 10-6 s-1, which promotes large strains in the core, eventually leading to void nucleation in the unlithiated core during lithiation, and more importantly, continues driving the deformation of the anode while at rest.

  10. Magnetic structure of RPdSn (R=Tb, Ho) single crystal compounds under strong magnetic field

    International Nuclear Information System (INIS)

    Andoh, Y.; Kurisu, M.; Nakamoto, G.; Tsutaoka, T.; Kawano, S.

    2003-01-01

    Rare earth compounds RTX, where R stands for rare earth elements, T for Ni, Pd or Rh, and X for Sn or Ge, crystallize to a rhombic ε-TiNiSi structure. Only rare earth elements R contribute to magnetic properties since T and X atoms are nonmagnetic. The competition between RKKY indirect interaction and large magnetic anisotropy generates many complicated magnetic phases. At a low temperature phase, complicated magnetisms such as meta-magnetism were observed in magnetization curves with many steps. In previous experiments dealing with RPdSn where R means Tb or Ho, some characteristics of magnetic properties of these compounds were deduced from magnetization measurements and neutron diffraction without external magnetic field. In this report, the change of magnetic scattering of neutron diffraction was studied under external magnetic fields in order to reveal the mechanism of the phase transformations of the compounds. The difference between TbPdSn and HoPdSn compounds was observed in magnetic field dependence of the wave vectors of the magnetic scattering. Two independent wave vectors in magnetic scattering existed in HoPdSn compound. (Y. Kazumata)

  11. Effect of Preparation Method on Phase Formation Process and Structural and Magnetic Properties of Mn2.5Ge Samples

    Directory of Open Access Journals (Sweden)

    R. Sobhani

    2016-12-01

    Full Text Available In this paper, the phase formation process of Mn2.5Ge samples, prepared by mechanical alloying of Mn and Ge metal powders and annealing, has been studied. Results showed that in the milled samples the stable phase is Mn11Ge8 compound with orthorhombic structure and Pnam space group. The value of saturation magnetization increases by increasing milling time from 0.2 up to 1.95 (Am2Kg-1. The remanece of the samples increases by increasing the milling time while the coercivity decreases. Annealing of 15-hour milled sample results in disappearance of Mn and Ge and the formation of new phases of Mn3Ge, Mn5Ge2, Mn5Ge3 and Mn2.3Ge. Mn3Ge is the main phase with Do22 tetragonal structure and I4/mmm space group which is stable and dominant. The enhancement of saturation magnetization in the annealed sample is related to the formation of three new magnetic phases and the increase of coercivity is due to the presence of Mn3Ge compound with tetragonal structure. Studies were replicated on samples made by arc melting method to compare the results and to investigate the effect of the preparation method on phase formation and structural and magnetic properties of the materials. In these samples the saturation value was in range of 0.2 up to 1.95 (Am2Kg-1 depending on preparation methods. Rietveld refinement shows that Mn2.3Ge sample prepared from arc melted under 620oC anealing is single phase. Magnetic analysis of this sample show a saturation magnetization of 5.252(Am2Kg-1 and 0.005 T coercive field.

  12. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  13. Magnetic properties of ultrathin Co/Ge(111) and Co/Ge(100) films

    International Nuclear Information System (INIS)

    Cheng, W. C.; Tsay, J. S.; Yao, Y. D.; Lin, K. C.; Yang, C. S.; Lee, S. F.; Tseng, T. K.; Neih, H. Y.

    2001-01-01

    The orientation of the magnetization and the occurrence of interfacial ferromagnetic inactive layers for ultrathin Co films grown on Ge(111) and Ge(100) surfaces have been studied using the in situ surface magneto-optic Kerr effect. On a Ge(111) substrate, cobalt films (≤28 monolayers) with in-plane easy axis of magnetization have been observed; however, on a Ge(100) substrate, ultrathin Co films (14 - 16 monolayers) with canted out-of-plane easy axis of magnetization were measured. The ferromagnetic inactive layers were formed due to the intermixing of Co and Ge and lowering the Curie temperature by reducing Co film thickness. The Co - Ge compound inactive layers were 3.8 monolayers thick for Co films grown on Ge(111) and 6.2 monolayers thick for Co films deposited on Ge(100). This is attributed to the difference of the density of surface atoms on Ge(111) and Ge(100). [copyright] 2001 American Institute of Physics

  14. Sn-In-Ag phase equilibria and Sn-In-(Ag)/Ag interfacial reactions

    International Nuclear Information System (INIS)

    Chen Sinnwen; Lee Wanyu; Hsu Chiaming; Yang Chingfeng; Hsu Hsinyun; Wu Hsinjay

    2011-01-01

    Research highlights: → Thermodynamic models of Sn-In and Sn-In-Ag are developed using the CALPHAD approach. → Reaction layer in the Sn-In-(Ag)/Ag couples at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. → Reactions in the Sn-20 wt%In-2.8 wt%Ag/Ag couples are faster than those in the Sn-20 wt%In/Ag couples. - Abstract: Experimental verifications of the Sn-In and Sn-In-Ag phase equilibria have been conducted. The experimental measurements of phase equilibria and thermodynamic properties are used for thermodynamic modeling by the CALPHAD approach. The calculated results are in good agreement with experimental results. Interfacial reactions in the Sn-In-(Ag)/Ag couples have been examined. Both Ag 2 In and AgIn 2 phases are formed in the Sn-51.0 wt%In/Ag couples reacted at 100 and 150 deg. C, and only the Ag 2 In phase is formed when reacted at 25, 50 and 75 deg. C. Due to the different growth rates of different reaction phases, the reaction layer at 100 deg. C is thinner than those at 25 deg. C, 50 deg. C, and 75 deg. C. In the Sn-20.0 wt%In/Ag couples, the ζ phase is formed at 250 deg. C and ζ/AgIn 2 phases are formed at 125 deg. C. Compared with the Sn-20 wt%In/Ag couples, faster interfacial reactions are observed in the Sn-20.0 wt%In-2.8 wt%Ag/Ag couples, and minor Ag addition to Sn-20 wt%In solder increases the growth rates of the reaction phases.

  15. Growth of highly textured SnS on mica using an SnSe buffer layer

    International Nuclear Information System (INIS)

    Wang, S.F.; Fong, W.K.; Wang, W.; Surya, C.

    2014-01-01

    We report the growth of SnS thin films on mica substrates by molecular beam epitaxy. Excellent 2D layered structure and strong (001) texture were observed with a record low rocking curve full width at half maximum of ∼ 0.101° for the SnS(004) diffraction. An interface model is used to investigate the nucleation of SnS on mica which indicates the co-existence of six pairs of lateral growth orientations and is in excellent agreement with the experimental Φ-scan measurements indicating 12 peaks separated by 30° from each other. To control the lateral growth of the SnS epilayers we investigate the utilization of a thin SnSe buffer layer deposited on the mica substrate prior to the growth of the SnS thin film. The excellent lattice match between SnSe and mica enhances the alignment of the nucleation of SnS and suppresses the minor lateral orientations along the mica[110] direction and its orthogonal axis. Detailed low-frequency noise measurement was performed to characterize the trap density in the films and our results clearly demonstrate substantial reduction in the density of the localized states in the SnS epilayer with the use of an SnSe buffer layer. - Highlights: • A record low rocking curve FWHM for deposited SnS on mica • Investigation of the nucleation of SnS on mica using the interface model • Investigation of nucleation mechanism by phi-scan measurement • Grain boundary formation from crystallites of various nucleation orientations • Suppression of nucleation orientations using an SnSe buffer layer

  16. Isothermal section of the ternary phase diagram U–Fe–Ge at 900 °C and its new intermetallic phases

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, M.S., E-mail: mish@itn.pt [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal); Berthebaud, D.; Lignie, A.; El Sayah, Z.; Moussa, C.; Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, Université Rennes 1, UMR CNRS 6226, 263 Avenue du Général Leclerc, 35042 Rennes (France); Havela, L. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Gonçalves, A.P. [CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal)

    2015-08-05

    Highlights: • Isothermal section of the U–Fe–Ge at 900 °C was investigated. • Ten ternary compounds and four significant solubility ranges were found. • Three new compounds and a solid solution were discovered. - Abstract: The isothermal section at 900 °C of the U–Fe–Ge ternary system was assessed using experimental results from X-ray diffraction and observations by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy chemical analysis. The phase diagram at this temperature is characterized by the formation of fourteen stable phases: four homogeneity ranges and ten intermetallic compounds. Among these, there is an extension of the binary compound UFe{sub 2} into the ternary system (UFe{sub 2−x}Ge{sub x,}x < 0.15), three ternary line compounds, U{sub 2}Fe{sub 17−x}Ge{sub x} (2 < x < 3.7), UFe{sub 1−x}Ge{sub 2} (0.58 < x < 0.78), UFe{sub 6+x}Ge{sub 6−x} (x < 0.7), and ten ternary stoichiometric compounds, U{sub 2}Fe{sub 3}Ge, U{sub 6}Fe{sub 16}Ge{sub 7}, UFe{sub 4}Ge{sub 2}, U{sub 6}Fe{sub 22}Ge{sub 13}, UFeGe, U{sub 3}Fe{sub 4}Ge{sub 4}, UFe{sub 2}Ge{sub 2}, U{sub 34}Fe{sub 3.32}Ge{sub 33}, U{sub 3}Fe{sub 2}Ge{sub 7}, and U{sub 9}Fe{sub 7}Ge{sub 24}.

  17. Facile, low temperature synthesis of SnO_2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh; Chang, Chia-Chin; Huang, Jow-Lay

    2017-01-01

    Highlights: • Facile, one-pot, low temperature synthesis of SnO_2-RGO composite. • In-situ reduction of graphene oxide and growth of SnO_2 nanoparticle. • Concentration of reductant during synthesis affects the properties significantly. • SnO_2-RGO composite shows good rate capability and stable capacitance. • Synthesis method is energy efficient and scalable for other metal oxides. - Abstract: We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO_2-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO_2 nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO_2-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g"−"1 at 3200 mA g"−"1) and stable capacitance (522 mAh g"−"1 after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO_2 nanoparticle aggregation and degrade the Li ion storage property.

  18. Facile, low temperature synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70001, Taiwan, ROC (China); Chang, Chia-Chin [Department of Greenergy, National University of Tainan, Tainan 70005, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70001, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China)

    2017-08-15

    Highlights: • Facile, one-pot, low temperature synthesis of SnO{sub 2}-RGO composite. • In-situ reduction of graphene oxide and growth of SnO{sub 2} nanoparticle. • Concentration of reductant during synthesis affects the properties significantly. • SnO{sub 2}-RGO composite shows good rate capability and stable capacitance. • Synthesis method is energy efficient and scalable for other metal oxides. - Abstract: We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO{sub 2}-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO{sub 2} nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO{sub 2}-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g{sup −1} at 3200 mA g{sup −1}) and stable capacitance (522 mAh g{sup −1} after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO{sub 2} nanoparticle aggregation and degrade the Li ion storage property.

  19. CH 3 NH 3 PbI 3 /GeSe bilayer heterojunction solar cell with high performance

    Science.gov (United States)

    Hou, Guo-Jiao; Wang, Dong-Lin; Ali, Roshan; Zhou, Yu-Rong; Zhu, Zhen-Gang; Su, Gang

    2018-01-01

    Perovskite (CH3NH3PbI3) solar cells have made significant advances recently. In this paper, we propose a bilayer heterojunction solar cell comprised of a perovskite layer combining with a IV-VI group semiconductor layer, which can give a conversion efficiency even higher than the conventional perovskite solar cell. Such a scheme uses a property that the semiconductor layer with a direct band gap can be better in absorption of long wavelength light and is complementary to the perovskite layer. We studied the semiconducting layers such as GeSe, SnSe, GeS, and SnS, respectively, and found that GeSe is the best, where the optical absorption efficiency in the perovskite/GeSe solar cell is dramatically increased. It turns out that the short circuit current density is enhanced 100% and the power conversion efficiency is promoted 42.7% (to a high value of 23.77%) larger than that in a solar cell with only single perovskite layer. The power conversion efficiency can be further promoted so long as the fill factor and open-circuit voltage are improved. This strategy opens a new way on developing the solar cells with high performance and practical applications.

  20. Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, D.M. dos; Hahn, F.; Leger, J.M.; Kokoh, K.B. [Universite de Poitiers, Poitiers Cedex (France). Centre National de la Recherche Scientifique (CNRS). Equipe Electrocatalyse; Tremiliosi-Filho, G. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2008-07-01

    Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO{sub 2}.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone. (author)

  1. Electrical and optical properties of SnEuTe and SnSrTe films

    Science.gov (United States)

    Ishida, Akihiro; Tsuchiya, Takuro; Yamada, Tomohiro; Cao, Daoshe; Takaoka, Sadao; Rahim, Mohamed; Felder, Ferdinand; Zogg, Hans

    2010-06-01

    The SnTe, Sn1-xEuxTe and Sn1-xSrxTe (x<0.06) films were prepared by hot wall epitaxy. The ternary alloy films prepared in cation rich condition had hole concentration around 1×1019 cm-3 with high mobility exceeding 2000 cm2/V s at room temperature. Optical transmission spectra were also measured in the temperature range from 100 to 400 K and compared with theoretical calculations. Optical transmission spectra of the SnTe were simulated successfully assuming bumped band edge structures. A band inversion model was proposed for the Sn1-xEuxTe and Sn1-xSrxTe systems, and the optical transmission spectra were also simulated successfully assuming the band inversion model.

  2. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  3. Lithium insertion mechanism in SnS2

    International Nuclear Information System (INIS)

    Lefebvre-Devos, I.; Olivier-Fourcade, J.; Jumas, J.C.; Lavela, P.

    2000-01-01

    We study lithium insertion in SnS 2 by means of 119 Sn Moessbauer spectroscopy, x-ray absorption spectroscopy at Sn L I,III , and S K edges, and theoretical electronic structures (calculated in the density-functional theory framework). An insertion mechanism is derived according to the Li amount. It shows the influence of the SnS 2 -layered structure on the Sn reduction, particularly the possibility of an intermediate oxidation state between Sn IV and Sn II , which is not observed during Li insertion in three-dimensional sulfides

  4. Reactivity and stability of thallium oxide for fabricating TlSnZnO toward thin-film transistors with high mobility

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Katsushi [Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, 630-0192 (Japan); Nose, Yoshitaro [Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501 (Japan); Ishikawa, Yasuaki, E-mail: yishikawa@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, 630-0192 (Japan); Fujii, Mami N.; Uraoka, Yukiharu [Graduate School of Materials Science, Nara Institute of Science and Technology, Nara, 630-0192 (Japan)

    2016-07-05

    Thermal reaction between thallium oxide (Tl{sub 2}O{sub 3}) and zinc oxide (ZnO), tin oxide (SnO{sub 2}) or indium oxide (In{sub 2}O{sub 3}) annealed at 600 °C for 18 h in the air atmosphere was investigated. From XRD results of 600 °C annealed samples, Tl{sub 2}O{sub 3} had the biggest reactivity compared with ZnO. The EDX results suggest the mechanism in which the thallium atoms scattered and attached uniformly only on ZnO particles. We also analyzed XPS data to compare O 1s bond and Tl 4f bond of as-mixed samples with that of annealed samples, and found that Zn and Sn can contribute in improving Tl and O bonding stability. However, the affinity of In for Tl is weaker than that of Zn or Sn. Finally, we prepared the samples mixed with ZnO, SnO{sub 2}, and Tl{sub 2}O{sub 3} powder and the samples mixed with Zn{sub 2}SnO{sub 4} and Tl{sub 2}O{sub 3} powder annealed at 600 °C for 18 h. Results show that Zn{sub 2}SnO{sub 4} has the same or more reactivity than SnO{sub 2} and ZnO mixed particle despite of the more stable and sufficient dispersion of Zn and Sn atoms. More stable TlSnZnO can be fabricated from Zn{sub 2}SnO{sub 4} + Tl{sub 2}O{sub 3} powder by suitable thermal processes. It is expected that TlSnZnO sputtering target can be fabricated by suitable calcination. - Highlights: • Thermal reaction of Tl{sub 2}O{sub 3} and ZnO, SnO or In{sub 2}O{sub 3} were investigate. • It is found that Tl{sub 2}O{sub 3} is reactive with ZnO rather than SnO or In{sub 2}O{sub 3}. • Two-step annealing process is promising route for forming TlSnZnO tablet.

  5. Improving the stability and ethanol electro-oxidation activity of Pt catalysts by selectively anchoring Pt particles on carbon-nanotubes-supported-SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.J.; Wang, J.S.; Zhao, J.H.; Song, C.Y.; Wang, L.C. [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou (China); Guo, X. [Department of Chemistry, Tsinghua University, Beijing (China)

    2012-10-15

    To improve the stability and activity of Pt catalysts for ethanol electro-oxidation, Pt nanoparticles were selectively deposited on carbon-nanotubes (CNTs)-supported-SnO{sub 2} to prepare Pt/SnO{sub 2}/CNTs and Pt/CNTs was prepared by impregnation method for reference study. X-ray diffraction (XRD) was used to confirm the crystalline structures of Pt/SnO{sub 2}/CNTs and Pt/CNTs. The stabilities of Pt/SnO{sub 2}/CNTs and Pt/CNTs were compared by analyzing the Pt size increase amplitude using transmission electron microscopy (TEM) images recorded before and after cyclic voltammetry (CV) sweeping. The results showed that the Pt size increase amplitude is evidently smaller for Pt/SnO{sub 2}/CNTs, indicating the higher stability of Pt/SnO{sub 2}/CNTs. Although both catalysts exhibit degradation of electrochemical active surface area (EAS) after CV sweeping, the EAS degradation for the former is lower, further confirming the higher stability of Pt/SnO{sub 2}/CNTs. CV and potentiostatic current-time curves were recorded for ethanol electro-oxidation on both catalysts before and after CV sweeping and the results showed that the mass specific activity of Pt/CNTs increases more than that of Pt/SnO{sub 2}/CNTs, indicating that Pt/CNTs experiences more severe evolution and is less stable. The calculated area specific activity of Pt/SnO{sub 2}/CNTs is larger than that of Pt/CNTs, indicating SnO{sub 2} can co-catalyze Pt due to plenty of interfaces between SnO{sub 2} and Pt. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  7. 195Pt and 119Sn Knight shifts of U3Pt3Sn4

    International Nuclear Information System (INIS)

    Kojima, K.; Takabatake, T.; Harada, A.; Hihara, T.

    1995-01-01

    The 195 Pt and 119 Sn Knight shifts in U 3 Pt 3 Sn 4 have been measured in the temperature range 4.2-298K. They exhibit Curie-Weiss like behaviors above about 50K and remain constant below about 10K. This suggests that the deviation of χ(T) from the modified Curie-Weiss law is an intrinsic property of U 3 Pt 3 Sn 4 . ((orig.))

  8. First-principles investigations on the mechanical, thermal, electronic, and optical properties of the defect perovskites Cs2Sn X 6 ( X = Cl, Br, I)

    International Nuclear Information System (INIS)

    Huang Hai-Ming; Jiang Zhen-Yi; Luo Shi-Jun

    2017-01-01

    The mechanical properties, thermal properties, electronic structures, and optical properties of the defect perovskites Cs 2 Sn X 6 ( X = Cl, Br, I) were investigated by first-principles calculation using PBE and HSE06 hybrid functional. The optic band gaps based on HSE06 are 3.83 eV for Cs 2 SnCl 6 , 2.36 eV for Cs 2 SnBr 6 , and 0.92 eV for Cs 2 SnI 6 , which agree with the experimental results. The Cs 2 SnCl 6 , Cs 2 SnBr 6 , and Cs 2 SnI 6 are mechanically stable and they are all anisotropic and ductile in nature. Electronic structures calculations show that the conduction band consists mainly of hybridization between the halogen p orbitals and Sn 5s orbitals, whereas the valence band is composed of the halogen p orbitals. Optic properties indicate that these three compounds exhibit good optical absorption in the ultraviolet region, and the absorption spectra red shift with the increase in the number of halogen atoms. The defect perovskites are good candidates for probing the lead-free and high power conversion efficiency of solar cells. (paper)

  9. Yb5Ni4Sn10 and Yb7Ni4Sn13: New polar intermetallics with 3D framework structures

    International Nuclear Information System (INIS)

    Lei Xiaowu; Sun Zhongming; Li Longhua; Zhong Guohua; Hu Chunli; Mao Jianggao

    2010-01-01

    The title compounds have been obtained by solid state reactions of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction studies. Yb 5 Ni 4 Sn 10 adopts the Sc 5 Co 4 Si 10 structure type and crystallizes in the tetragonal space group P4/mbm (No. 127) with cell parameters of a=13.785(4) A, c=4.492 (2) A, V=853.7(5) A 3 , and Z=2. Yb 7 Ni 4 Sn 13 is isostructural with Yb 7 Co 4 InGe 12 and crystallizes in the tetragonal space group P4/m (No. 83) with cell parameters of a=11.1429(6) A, c=4.5318(4) A, V=562.69(7) A 3 , and Z=1. Both structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are occupied by the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic. These results are in agreement with those from temperature-dependent resistivity and magnetic susceptibility measurements. - Graphical abstract: Two new ytterbium nickel stannides, namely, Yb 5 Ni 4 Sn 10 and Yb 7 Ni 4 Sn 13 , have been synthesized and structurally characterized by single-crystal X-ray diffraction studies. Both their structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are situated by all the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic, which are in accordance with the results from temperature-dependent resistivity and magnetic susceptibility measurements.

  10. Theoretical study of electronic structures and spectroscopic properties of Ga 3Sn, GaSn 3, and their ions

    Science.gov (United States)

    Zhu, Xiaolei

    2007-01-01

    Ground and excited states of mixed gallium stannide tetramers (Ga 3Sn, Ga 3Sn +, Ga 3Sn -, GaSn 3, GaSn 3+, and GaSn 3-) are investigated employing the complete active space self-consistent-field (CASSCF), density function theory (DFT), and the coupled-cluster single and double substitution (including triple excitations) (CCSD(T)) methods. The ground states of Ga 3Sn, Ga 3Sn +, and Ga 3Sn - are found to be the 2A 1, 3B 1, and 1A 1 states in C2v symmetry with a planar quadrilateral geometry, respectively. The ground states of GaSn 3 and GaSn 3- is predicted to be the 2A 1 and 1A 1 states in C2v point group with a planar quadrilateral structure, respectively, while the ground state of GaSn 3+ is the 1A 1 state with ideal triangular pyramid C3v geometry. Equilibrium geometries, vibrational frequencies, binding energies, electron affinities, ionization energies, and other properties of Ga 3Sn and GaSn 3 are computed and discussed. The anion photoelectron spectra of Ga 3Sn - and GaSn 3- are also predicted. It is interesting to find that the amount of charge transfer between Ga and Sn 2 atoms in the 1A 1 state of GaSn 3+ greatly increases upon electron ionization from the 2A 1 state of GaSn 3, which may be caused by large geometry change. On the other hand, the results of the low-lying states of Ga 3Sn and GaSn 3 are compared with those of Ga 3Si and GaSi 3.

  11. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  12. Calcium stable isotope geochemistry

    International Nuclear Information System (INIS)

    Gausonne, Nikolaus; Schmitt, Anne-Desiree; Heuser, Alexander; Wombacher, Frank; Dietzel, Martin; Tipper, Edward; Schiller, Martin

    2016-01-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  13. Laser annealed in-situ P-doped Ge for on-chip laser source applications (Conference Presentation)

    Science.gov (United States)

    Srinivasan, Ashwyn; Pantouvaki, Marianna; Shimura, Yosuke; Porret, Clement; Van Deun, Rik; Loo, Roger; Van Thourhout, Dries; Van Campenhout, Joris

    2016-05-01

    Realization of a monolithically integrated on-chip laser source remains the holy-grail of Silicon Photonics. Germanium (Ge) is a promising semiconductor for lasing applications when highly doped with Phosphorous (P) and or alloyed with Sn [1, 2]. P doping makes Ge a pseudo-direct band gap material and the emitted wavelengths are compatible with fiber-optic communication applications. However, in-situ P doping with Ge2H6 precursor allows a maximum active P concentration of 6×1019 cm-3 [3]. Even with such active P levels, n++ Ge is still an indirect band gap material and could result in very high threshold current densities. In this work, we demonstrate P-doped Ge layers with active n-type doping beyond 1020 cm-3, grown using Ge2H6 and PH3 and subsequently laser annealed, targeting power-efficient on-chip laser sources. The use of Ge2H6 precursors during the growth of P-doped Ge increases the active P concentration level to a record fully activated concentration of 1.3×1020 cm-3 when laser annealed with a fluence of 1.2 J/cm2. The material stack consisted of 200 nm thick P-doped Ge grown on an annealed 1 µm Ge buffer on Si. Ge:P epitaxy was performed with PH3 and Ge2H6 at 320oC. Low temperature growth enable Ge:P epitaxy far from thermodynamic equilibrium, resulting in an enhanced incorporation of P atoms [3]. At such high active P concentration, the n++ Ge layer is expected to be a pseudo-direct band gap material. The photoluminescence (PL) intensities for layers with highest active P concentration show an enhancement of 18× when compared to undoped Ge grown on Si as shown in Fig. 1 and Fig. 2. The layers were optically pumped with a 640 nm laser and an incident intensity of 410 mW/cm2. The PL was measured with a NIR spectrometer with a Hamamatsu R5509-72 NIR photomultiplier tube detector whose detectivity drops at 1620 nm. Due to high active P concentration, we expect band gap narrowing phenomena to push the PL peak to wavelengths beyond the detection limit

  14. Structural stability, dynamical stability, thermoelectric properties, and elastic properties of GeTe at high pressure

    Science.gov (United States)

    Kagdada, Hardik L.; Jha, Prafulla K.; Śpiewak, Piotr; Kurzydłowski, Krzysztof J.

    2018-04-01

    The stability of GeTe in rhombohedral (R 3 m ), face centred cubic (F m 3 m ), and simple cubic (P m 3 m ) phases has been studied using density functional perturbation theory. The rhombohedral phase of GeTe is dynamically stable at 0 GPa, while F m 3 m and P m 3 m phases are stable at 3.1 and 33 GPa, respectively. The pressure-dependent phonon modes are observed in F m 3 m and P m 3 m phases at Γ and M points, respectively. The electronic and the thermoelectric properties have been investigated for the stable phases of GeTe. The electronic band gap for rhombohedral and F m 3 m phases of GeTe has been observed as 0.66 and 0.17 eV, respectively, while the P m 3 m phase shows metallic behavior. We have used the Boltzmann transport equation under a rigid band approximation and constant relaxation time approximation as implemented in boltztrap code for the calculation of thermoelectric properties of GeTe. The metallic behavior of P m 3 m phase gives a very low value of Seebeck coefficient compared to the other two phases as a function of temperature and the chemical potential μ. It is observed that the rhombohedral phase of GeTe exhibits higher thermoelectric performance. Due to the metallic nature of P m 3 m phase, negligible thermoelectric performance is observed compared to R 3 m and F m 3 m -GeTe. The calculated lattice thermal conductivities are low for F m 3 m -GeTe and high for R 3 m -GeTe. At the relatively higher temperature of 1350 K, the figure of merit ZT is found to be 0.7 for rhombohedral GeTe. The elastic constants satisfy the Born stability criteria for all three phases. The rhombohedral and F m 3 m phases exhibits brittleness and the P m 3 m phase shows ductile nature.

  15. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Fluid sensitive nanoscale switching with quantum levitation controlled by $\\alpha$-Sn/$\\beta$-Sn phase transition

    OpenAIRE

    Boström, Mathias; Dou, Maofeng; Malyi, Oleksandr I.; Parashar, Prachi; Parsons, Drew F.; Brevik, Iver; Persson, Clas

    2018-01-01

    We analyze the Lifshitz pressure between silica and tin separated by a liquid mixture of bromobenzene and chlorobenzene. We show that the phase transition from semimetallic α−Sn to metallic β−Sn can switch Lifshitz forces from repulsive to attractive. This effect is caused by the difference in dielectric functions of α−Sn and β−Sn, giving both attractive and repulsive contributions to the total Lifshitz pressure in different frequency regions controlled by the composition of the intervening l...

  17. Oxidation of Pb-Sn and Pb-Sn-In alloys

    International Nuclear Information System (INIS)

    Sluzewski, D.A.; Chang, Y.A.; Marcotte, V.C.

    1990-01-01

    Air oxidized Pb-Sn and Pb-Sn-In single phase alloys have been studied with scanning Auger microscopy. Line scans across grain boundaries combined with argon ion sputter etching revealed grain boundary oxidation. In the Pb-Sn samples, tin is preferentially oxidized with the grain boundary regions having a much higher percentage of tin oxide than the bulk surface oxide. In the Pb-Sn-In alloys, both tin and indium are preferentially oxidized with the grain boundary regions being enriched with tin and indium oxides

  18. Evolution of E-centers during the annealing of Sb-doped Si0.8Ge0.2

    DEFF Research Database (Denmark)

    Kilpeläinen, S.; Tuomisto, F.; Slotte, J.

    2011-01-01

    Evolution of the chemical surroundings of vacancy complexes in Sb-doped ([Sb] = 2 × 1018 and 2 × 1019 cm−3) Si0.8Ge0.2 was studied with positron annihilation spectroscopy in Doppler broadening mode. The study was performed by annealing the samples both isochronally and isothermally. Defect...... evolution was observed at the temperature range 450–650 K. Both treatments were shown to induce changes in the chemical surroundings of the E-centers via introduction of Ge near the defects. Moreover, Sb was found to hinder these changes by stabilizing the E-centers and thus preventing them from finding Ge....... The stable state reached after the anneals was found to differ from that measured from an as-grown sample. This difference was deemed to be the result of Ge gathering in small clusters during the annealing thus breaking the initially random Ge distribution....

  19. The crystallographic growth directions of Sn whiskers

    International Nuclear Information System (INIS)

    Stein, J.; Welzel, U.; Leineweber, A.; Huegel, W.; Mittemeijer, E.J.

    2015-01-01

    The growth directions of 55 Sn whiskers, i.e. the crystallographic orientation parallel to the whisker-growth axes, were determined using (i) a focused ion beam microscope for the determination of the physical growth angles of the whiskers with respect to a specimen (reference) coordinate system and (ii) an electron backscatter detector in a scanning electron microscope for the determination of the crystallographic orientation of the whiskers. The Sn whiskers were found to grow preferentially along low-index directions of the β-Sn crystal structure. The experimental findings of this study (and most of the results presented in the literature as well) were explained by applying, in a modified way, the Hartman–Perdok concept of periodic bond chains, i.e. chains of strong bonds running uninterruptedly through the structure, to the Sn whisker-growth phenomenon

  20. Discovery of 11 ASAS-SN Supernovae

    Science.gov (United States)

    Brimacombe, J.; Cacella, P.; Stone, G.; Fernandez, J. M.; Vallely, P.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Stritzinger, M.; Holmbo, S.; Nicholls, B.; Post, R. S.

    2018-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from 14-cm telescopes in Hawaii, Texas, South Africa, and Chile, we discovered several new transient sources.

  1. Nb3Sn for Radio Frequency Cavities

    International Nuclear Information System (INIS)

    Godeke, A.

    2006-01-01

    In this article, the suitability of Nb3Sn to improve the performance of superconducting Radio-Frequency (RF) cavities is discussed. The use of Nb3Sn in RF cavities is recognized as an enabling technology to retain a very high cavity quality factor (Q0) at 4.2 K and to significantly improve the cavity accelerating efficiency per unit length (Eacc). This potential arises through the fundamental properties of Nb3Sn. The properties that are extensively characterized in the literature are, however, mainly related to improvements in current carrying capacity (Jc) in the vortex state. Much less is available for the Meissner state, which is of key importance to cavities. Relevant data, available for the Meissner state is summarized, and it is shown how this already validates the use of Nb3Sn. In addition, missing knowledge is highlighted and suggestions are given for further Meissner state specific research

  2. Beta-decay studies near 100Sn

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Burkard, K.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2005-01-01

    The β-decay of 102 Sn was studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). A decay scheme has been constructed based on the γ-γ coincidence data. The total experimental Gamow-Teller strength B GT exp of 102 Sn was deduced from the TAS data to be 4.2(9). A search for β-delayed γ-rays of 100 Sn decay remained unsuccessful. However, a Gamow-Teller hindrance factor h = 2.2(3), and a cross-section of about 3nb for the production of 100 Sn in fusion-evaporation reaction between 58 Ni beam and 50 Cr target have been estimated from the data on heavier tin isotopes. The estimated hindrance factor is similar to the values derived for lower shell nuclei

  3. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  4. Facile Preparation of Graphene/SnO₂ Xerogel Hybrids as the Anode Material in Li-Ion Batteries.

    Science.gov (United States)

    Li, Zhe-Fei; Liu, Qi; Liu, Yadong; Yang, Fan; Xin, Le; Zhou, Yun; Zhang, Hangyu; Stanciu, Lia; Xie, Jian

    2015-12-16

    SnO2 has been considered as one of the most promising anode materials for Li-ion batteries due to its theoretical ability to store up to 8.4 Li(+). However, it suffers from poor rate performance and short cycle life due to the low intrinsic electrical conductivity and particle pulverization caused by the large volume change upon lithiation/delithiation. Here, we report a facile synthesis of graphene/SnO2 xerogel hybrids as anode materials using epoxide-initiated gelation method. The synthesized hybrid materials (19% graphene/SnO2 xerogel) exhibit excellent electrochemical performance: high specific capacity, stable cyclability, and good rate capability. Even cycled at a high current density of 1 A/g for 300 cycles, the hybrid electrode can still deliver a specific capacity of about 380 mAh/g, corresponding to more than 60% capacity retention. The incorporation of graphene sheets provides fast electron transfer between the interfaces of the graphene nanosheets and the SnO2 and a short lithium ion diffusion path. The porous structure of graphene/xerogel and the strong interaction between SnO2 and graphene can effectively accommodate the volume change and tightly confine the formed Li2O and Sn nanoparticles, thus preventing the irreversible capacity degradation.

  5. Electrochemical corrosion and bioactivity of Ti-Nb-Sn-hydroxyapatite composites fabricated by pulse current activated sintering.

    Science.gov (United States)

    Xiaopeng, Wang; Fantao, Kong; Biqing, Han; Yuyong, Chen

    2017-11-01

    Ti-Nb-Sn-hydroxyapatite (HA) composites were prepared by mechanical alloying for different times (unmilled, 4, 8 and 12h), followed by pulse current activated sintering. The effects of the milling time on the electrochemical corrosion resistance and bioactivity of the sintered Ti-35Nb-2.5Sn-15HA composites were investigated. Potentiodynamic polarization test results indicated that the sintered Ti-35Nb-2.5Sn-15HA composites exhibited higher corrosion resistance with increasing milling time. The corrosion potential and current of the Ti-35Nb-2.5Sn-15HA composite sintered by 12h milled powders were - 0.261V and 0.18μA/cm 2 , respectively, and this sintered composite showed a stable and wide passivation region. The hemolysis rate of the sintered Ti-35Nb-2.5Sn-15HA composites reduced with increasing milling time and the lowest hemolytic rate of the composites was 0.87%. In addition, the in vitro cell culture results indicated that the composite sintered by 12h milled powders had good biocompatibility. These results indicate the significant potential of Ti-35Nb-2.5Sn/xHA composites for biomedical implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Hu Renzong; Zhu Min; Wang Hui; Liu Jiangwen; Liuzhang Ouyang; Zou Jin

    2012-01-01

    By applying the shape memory effect of the NiTi alloys to buffer the Sn anodes, we demonstrate a simple approach to overcome a long-standing challenge of Sn anode in the applications of Li-ion batteries – the capacity decay. By supporting the Sn anodes with NiTi shape memory alloys, the large volume change of Sn anodes due to lithiation and delithiation can be effectively accommodated, based on the stress-induced martensitic transformation and superelastic recovery of the NiTi matrix respectively, which leads to a decrease in the internal stress and closing of cracks in Sn anodes. Accordingly, stable cycleability (630 mA h g −1 after 100 cycles at 0.7C) and excellent high-rate capabilities (478 mA h g −1 at 6.7C) were attained with the NiTi/Sn/NiTi film electrode. These shape memory alloys can also combine with other high-capacity metallic anodes, such as Si, Sb, Al, and improve their cycle performance.

  7. Synthesis, characterization and photocatalytic performance of SnS nanofibers and SnSe nanofibers derived from the electrospinning-made SnO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li; Li, Dan; Dong, Xiangting; Ma, Qianli; Yu, Wensheng; Wang, Xinlu; Yu, Hui; Wang, Jinxian; Liu, Guixia, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2017-11-15

    SnO{sub 2} nanofibers were fabricated by calcination of the electrospun PVP/SnCl{sub 4} composite nanofibers. For the first time, SnS nanofibers and SnSe nanofibers were successfully synthesized by double crucible sulfurization and selenidation methods via inheriting the morphology of SnO{sub 2} nanofibers used as precursors, respectively. X-ray diffraction (XRD) analysis shows SnS nanofibers and SnSe nanofibers are respectively pure orthorhombic phase with space group of Pbnm and Cmcm. Scanning electron microscope (SEM) observation indicates that the diameters of SnS nanofibers and SnSe nanofibers are respectively 140.54±12.80 nm and 96.52±14.17 nm under the 95 % confidence level. The photocatalytic activities of samples were studied by using rhodamine B (Rh B) as degradation agent. When SnS or SnSe nanofibers are employed as the photocatalysts, the respective degradation rates of Rh B solution under the ultraviolet light irradiation after 200 min irradiation are 92.55 % and 92.86 %. The photocatalytic mechanism and formation process of SnS and SnSe nanofibers are also provided. More importantly, this preparation technique is of universal significance to prepare other metal chalcogenides nanofibers. (author)

  8. The system SnTe-InSe

    International Nuclear Information System (INIS)

    Gurshumov, A.P.; Alidzhanov, M.A.; Aliev, A.S.; Gadzhiev, T.G.; Mamedov, N.A.

    1986-01-01

    This paper discusses the nature of the interaction and physicochemical properties of the alloys of the system SnTe-InSe. The DTA was performed on an NTR-74 pyrometer, XPA on a Dron-2.0 diffractometer and MSA on an MIM-7 metallographic microscope. The microhardness of the samples was determined on a PMT-3 microhardness tester. The congruently melting compound SnInTeSe and solid solutions based on the starting components are formed in the system

  9. Advances in Nb3Sn Performance

    International Nuclear Information System (INIS)

    Godeke, Arno

    2008-01-01

    Nb 3 Sn wires with non-Cu critical current densities (J c ) that surpass 3 kAmm -2 at 12 T and 4.2 K are commercially available in piece lengths longer than 10 km. Accelerator-type magnets that utilize these conductors have achieved record magnetic fields. This article summarizes key developments in the last decade that have led to these significant improvements in the performance of Nb 3 Sn wires.

  10. In situ 119Sn Moessbauer spectroscopy used to study lithium insertion in c-Mg2Sn

    International Nuclear Information System (INIS)

    Aldon, L.; Ionica, C. M.; Lippens, P. E.; Larcher, D.; Tarascon, J.-M.; Olivier-Fourcade, J.; Jumas, J.-C.

    2006-01-01

    The electrochemical reactions of Li with c-Mg 2 Sn have been investigated by in situ Moessbauer spectroscopy of 119 Sn and X-ray diffraction. The lithiation transforms initially c-Mg 2 Sn part into Li x Mg 2 Sn alloy (x 2 MgSn ternary alloy. In situ Moessbauer spectroscopy provides valuable information on local environment of tin and swelling behavior and cracking of the particles during discharge and charge processes.

  11. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  12. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  13. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  14. Stable radiographic scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    Stable compositions which are useful in the preparation of Technetium-99m-based scintigraphic agents are discussed. They are comprised of ascorbic acid or a pharmaceutically acceptable salt or ester thereof in combination with a pertechnetate reducing agent or dissolved in oxidized pertechnetate-99m (sup(99m)TcO 4 - ) solution

  15. Some stable hydromagnetic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J L; Oberman, C R; Kulsrud, R M; Frieman, E A [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    We have been able to find and investigate the properties of equilibria which are hydromagnetically stable. These equilibria can be obtained, for example, by wrapping conductors helically around the stellarator tube. Systems with I = 3 or 4 are indicated to be optimum for stability purposes. In some cases an admixture of I = 2 fields can be advantageous for achieving equilibrium. (author)

  16. Effects of C+ ion implantation on electrical properties of NiSiGe/SiGe contacts

    International Nuclear Information System (INIS)

    Zhang, B.; Yu, W.; Zhao, Q.T.; Buca, D.; Breuer, U.; Hartmann, J.-M.; Holländer, B.; Mantl, S.; Zhang, M.; Wang, X.

    2013-01-01

    We have investigated the morphology and electrical properties of NiSiGe/SiGe contact by C + ions pre-implanted into relaxed Si 0.8 Ge 0.2 layers. Cross-section transmission electron microscopy revealed that both the surface and interface of NiSiGe were improved by C + ions implantation. In addition, the effective hole Schottky barrier heights (Φ Bp ) of NiSiGe/SiGe were extracted. Φ Bp was observed to decrease substantially with an increase in C + ion implantation dose

  17. Enhanced charge storage capability of Ge/GeO2 core/shell nanostructure

    International Nuclear Information System (INIS)

    Yuan, C L; Lee, P S

    2008-01-01

    A Ge/GeO 2 core/shell nanostructure embedded in an Al 2 O 3 gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO 2 core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO 2 shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering

  18. Enhanced charge storage capability of Ge/GeO(2) core/shell nanostructure.

    Science.gov (United States)

    Yuan, C L; Lee, P S

    2008-09-03

    A Ge/GeO(2) core/shell nanostructure embedded in an Al(2)O(3) gate dielectrics matrix was produced. A larger memory window with good data retention was observed in the fabricated metal-insulator-semiconductor (MIS) capacitor for Ge/GeO(2) core/shell nanoparticles compared to Ge nanoparticles only, which is due to the high percentage of defects located on the surface and grain boundaries of the GeO(2) shell. We believe that the findings presented here provide physical insight and offer useful guidelines to controllably modify the charge storage properties of indirect semiconductors through defect engineering.

  19. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    Directory of Open Access Journals (Sweden)

    Sutichai Chaisitsak

    2011-07-01

    Full Text Available This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG sensors by doping with fluorine (F. Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer. The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  20. SnO{sub 2}/reduced graphene oxide composite films for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V., E-mail: mazanikalexander@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-12-15

    Highlights: • SnO{sub 2}/GO composites with mass fraction of carbon phase 0.01% ≤ w{sub C} ≤ 80% have been formed. • 400 °C annealing was applied for GO reduction in the composites. • SnO{sub 2}/rGO composites demonstrate a high electrocatalytic activity in anodic processes. • Exchange current density grows linearly with carbon phase concentration at w{sub C} ≤ 10%. - Abstract: SnO{sub 2}/GO (GO is graphene oxide) composite films with GO mass fraction w{sub C} ranging from 0.01 to 80% have been prepared using colloidal solutions. Heat treatment of SnO{sub 2}/GO films in Ar atmosphere at 400 °C leads to GO reduction accompanied by partial exfoliation and decreasing of the particle thickness. SnO{sub 2}/rGO (rGO is reduced GO) film electrodes demonstrate a high electrocatalytic activity in the anodic oxidation of inorganic (iodide-, chloride-, sulfite-anions) and organic (ascorbic acid) substances. The increase of the anodic current in these reactions is characterized by overpotential inherent to the individual rGO films and exchange current density grows linearly with rGO concentration at w{sub C} ≤ 10% indicating that the rGO particles in composites act as sites of electrochemical process. The SnO{sub 2}/rGO composite films, in which the chemically stable oxide matrix encapsulates the rGO inclusions, can be considered as a promising material for applied electrochemistry.

  1. Synthesis, Crystal Structure, and Magnetic Properties of Giant Unit Cell Intermetallics R117Co52+δSn112+γ (R = Y, La, Pr, Nd, Ho

    Directory of Open Access Journals (Sweden)

    Ping Chai

    2016-12-01

    Full Text Available Ternary intermetallics R117Co52+δSn112+γ (R = Y, La, Pr, Nd, and Ho have been prepared by arc-melting followed by annealing at 800 °C. All the compounds belong to the Tb117Fe52Ge112 structure type (space group Fm 3 ¯ m characterized by a complex giant cubic unit cell with a ~ 30 Å. The single-crystal structure determination of Y- and La-containing compounds reveals a significant structural disorder. A comparison of these and earlier reported crystal structures of R117Co52+δSn112+γ suggests that more extensive disorder occurs for structures that contain larger lanthanide atoms. This observation can be explained by the need to maintain optimal bonding interactions as the size of the unit cell increases. Y117Co56Sn115 exhibits weak paramagnetism due to the Co sublattice and does not show magnetic ordering in the 1.8–300 K range. Ho117Co55Sn108 shows ferromagnetic ordering at 10.6 K. Both Pr117Co54Sn112 and Nd117Co54Sn111 exhibit antiferromagnetic ordering at 17 K and 24.7 K, respectively, followed by a spin reorientation transition at lower temperature.

  2. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures.

    Science.gov (United States)

    Khomenkova, L; Lehninger, D; Kondratenko, O; Ponomaryov, S; Gudymenko, O; Tsybrii, Z; Yukhymchuk, V; Kladko, V; von Borany, J; Heitmann, J

    2017-12-01

    Ge-rich ZrO 2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO 2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO 2 . The "start point" of this process is in the range of 640-700 °C depending on the Ge content. The higher the Ge content, the lower is the temperature necessary for phase separation, nucleation of Ge nanoclusters, and crystallization. Along with this, the crystallization temperature of the tetragonal ZrO 2 exceeds that of the Ge phase, which results in the formation of Ge crystallites in an amorphous ZrO 2 matrix. The mechanism of phase separation is discussed in detail.

  3. Effect of Ge Content on the Formation of Ge Nanoclusters in Magnetron-Sputtered GeZrOx-Based Structures

    OpenAIRE

    Khomenkova, L.; Lehninger, D.; Kondratenko, O.; Ponomaryov, S.; Gudymenko, O.; Tsybrii, Z.; Yukhymchuk, V.; Kladko, V.; von Borany, J.; Heitmann, J.

    2017-01-01

    Ge-rich ZrO2 films, fabricated by confocal RF magnetron sputtering of pure Ge and ZrO2 targets in Ar plasma, were studied by multi-angle laser ellipsometry, Raman scattering, Auger electron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction for varied deposition conditions and annealing treatments. It was found that as-deposited films are homogeneous for all Ge contents, thermal treatment stimulated a phase separation and a formation of crystalline Ge and ZrO2. The ?...

  4. Quaternary selenostannates Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} and AGaSnSe{sub 4} (A=K, Rb, and Cs) through rapid cooling of melts. Kinetics versus thermodynamics in the polymorphism of AGaSnSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S -J; Iyer, R G; Kanatzidis, M G

    2004-10-01

    The quaternary alkali-metal gallium selenostannates, Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} and AGaSnSe{sub 4} (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) A, b=7.594(2) A, c=13.842(3) A, {beta}=118.730(4) deg., V=1226.7(5) A{sup 3}. {alpha}-KGaSnSe{sub 4} crystallizes in the tetragonal space group I4/mcm with a=8.186(5) A and c=6.403(5) A, V=429.1(5) A{sup 3}. {beta}-KGaSnSe{sub 4} crystallizes in the space group P2{sub 1}/c with cell constants a=7.490(2) A, b=12.578(3) A, c=18.306(5) A, {beta}=98.653(5) deg., V=1705.0(8) A{sup 3}. The unit cell of isostructural RbGaSnSe{sub 4} is a=7.567(2) A, b=12.656(3) A, c=18.277(4) A, {beta}=95.924(4) deg., V=1741.1(7) A{sup 3}. CsGaSnSe{sub 4} crystallizes in the orthorhombic space group Pmcn with a=7.679(2) A, b=12.655(3) A, c=18.278(5) A, V=1776.1(8) A{sup 3}. The structure of Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} consists of a polar three-dimensional network of trimeric (Sn,Ga){sub 3}Se{sub 9} units with Na atoms located in tunnels. The AGaSnSe{sub 4} possess layered structures. The compounds show nearly the same Raman spectral features, except for Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6}. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na{sub 2-x}Ga{sub 2-x}Sn{sub 1+x}Se{sub 6} to 1.97 eV in CsGaSnSe{sub 4}. Cooling of the melts of KGaSnSe{sub 4} and RbGaSnSe{sub 4} produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called {gamma}-form (BaGa{sub 2}S{sub 4}-type) of these compounds.

  5. Numerical study of the electronic structure, elastic and optical properties of defect quaternary semiconductor CuGaSnSe4

    Science.gov (United States)

    Shen, Kesheng; Lu, Hai; Zhang, Xianzhou; Jiao, Zhaoyong

    2018-06-01

    The electronic structure, elastic and optical properties of the defect quaternary semiconductor CuGaSnSe4 in I 4 bar structure are systematically investigated using first-principles calculations. We summarize and discuss some of the studies on CuGaSnSe4 in partially ordered chalcopyrite structure and find that there are three atomic arrangements so far, but it is still uncertain which is the most stable. Through detailed simulation and comparison with the corresponding literature, we get three models and predict that M1 model should be the most stable. The band structure and optical properties of compound CuGaSnSe4, including dielectric constant, refractive index and absorption spectrum, are drawn for a more intuitive understanding. The elastic constants are also calculated, which not only prove that CuGaSnSe4 in I 4 bar structure is stable naturally but also help solve the problem of no data to accurately predict axial thermal expansion coefficients. The calculated values of the zero frequency dielectric constant and refractive index are comparable to those of the corresponding chalcopyrite structure but slightly larger.

  6. Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory

    OpenAIRE

    Whittles, TJ; Burton, LA; Skelton, JM; Walsh, A; Veal, TD; Dhanak, VR

    2016-01-01

    Tin sulfide solar cells show relatively poor efficiencies despite attractive photovoltaic properties, and there is difficulty in identifying separate phases, which are also known to form during Cu2ZnSnS4 depositions. We present X-ray photoemission spectroscopy (XPS) and inverse photoemission spectroscopy measurements of single crystal SnS, SnS2, and Sn2S3, with electronic-structure calculations from density functional theory (DFT). Differences in the XPS spectra of the three phases, including...

  7. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  8. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys

    Science.gov (United States)

    Noskova, N. I.; Vil'Danova, N. F.; Filippov, Yu. I.; Churbaev, R. V.; Pereturina, I. A.; Korshunov, L. G.; Korznikov, A. V.

    2006-12-01

    Changes in the structure, hardness, mechanical properties, and friction coefficient of Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb (wt %) alloys subjected to severe plastic deformation by equal-channel angular pressing (with a force of 40 tonne) and by shear at a pressure of 5 GPa have been studied. The transition into the nanocrystalline state was shown to occur at different degrees of plastic deformation. The hardness exhibits nonmonotonic variations, namely, first it increases and subsequently decreases. The friction coefficient of the Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys quenched from the melt was found to be 0.33; the friction coefficients of these alloys in the submicrocrystalline state (after equal-channel angular pressing) equal 0.24, 0.32, and 0.35, respectively. The effect of disintegration into nano-sized powders was found to occur in the Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys after severe plastic deformation to ɛ = 6.4 and subsequent short-time holding.

  9. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  10. Fabrication of SrGe2 thin films on Ge (100), (110), and (111) substrates

    Science.gov (United States)

    Imajo, T.; Toko, K.; Takabe, R.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.

    2018-01-01

    Semiconductor strontium digermanide (SrGe2) has a large absorption coefficient in the near-infrared light region and is expected to be useful for multijunction solar cells. This study firstly demonstrates the formation of SrGe2 thin films via a reactive deposition epitaxy on Ge substrates. The growth morphology of SrGe2 dramatically changed depending on the growth temperature (300-700 °C) and the crystal orientation of the Ge substrate. We succeeded in obtaining single-oriented SrGe2 using a Ge (110) substrate at 500 °C. Development on Si or glass substrates will lead to the application of SrGe2 to high-efficiency thin-film solar cells.

  11. Electronic and magnetic properties of rare earth-Sn3 compounds for 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.P.; Friedt, J.M.; Shenoy, G.K.; Percheron, A.; Achard, J.C.

    1975-01-01

    The electronic and magnetic properties of RESn 3 compounds (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Yb) have been investigated using the 23.8keV Moessbauer resonance of 119 Sn. The isomer shifts and quadrupole interactions are nearly the same in all compounds. The transferred magnetic fields and their orientation with respect to the principal electric field gradient axis at various Sn sites in the magnetically ordered state of RESn 3 (RE=Pr, Nd, Sm, Eu, Gd) have been utilized to get information about the magnetic structure. An evaluation of the transferred fields in PrSn 3 and NdSn 3 shows that the spin density at the Sn nucleus is nearly the same in both compounds [fr

  12. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried o