WorldWideScience

Sample records for stable serine protease

  1. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Aysha Kamran

    2015-06-01

    Full Text Available Alkaline serine protease was purified to homogeneity from culture supernatant of a thermophilic, alkaliphilic Bacillus sp. by 80% ammonium sulphate precipitation followed by CM-cellulose and DEAE-cellulose ion exchange column chromatography. The enzyme was purified up to 16.5-fold with 6900 U/mg activity. The protease exhibited maximum activity towards casein at pH 8.0 and at 80 °C. The enzyme was stable at pH 8.0 and 80 °C temperature up to 2 h. The Ca2+ and Mn2+ enhanced the proteolytic activity up to 44% and 36% as compared to control, respectively. However, Zn2+, K+, Ba2+, Co2+, Hg2+ and Cu2+ significantly reduced the enzyme activity. PMSF (phenyl methyl sulphonyl fluoride completely inhibited the protease activity, whereas the activity of protease was stimulated up to two folds in the presence of 5 mM 2-mercaptoethanol. The enzyme was also stable in surfactant (Tween-80 and other commercial detergents (SDS, Triton X-100.

  2. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650.

    Science.gov (United States)

    Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bejar, Wacim; Boulkour Touioui, Souraya; Hmidi, Maher; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-08-01

    An alkaline proteinase (STAP) was produced from strain TN650 isolated from a Tunisian off-shore oil field and assigned as Streptomyces koyangensis strain TN650 based on physiological and biochemical properties and 16S rRNA gene sequencing. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 45125.17-Da. The enzyme had an NH2-terminal sequence of TQSNPPSWGLDRIDQTTAFTKACSIKY, thus sharing high homology with those of Streptomyces proteases. The results showed that this protease was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), diiodopropyl fluorophosphates (DFP), and partially inhibited by 5,5-dithio-bis-(2-nitro benzoic acid) (DTNB), which strongly suggested its belonging to the serine thiol protease family. Using casein as a substrate, the optimum pH and temperature values for protease activity were pH 10 and 70 °C, respectively. The protease was stable at pH 7-10 and 30-60 °C for 24 h. STAP exhibited high catalytic efficiency, significant detergent stability, and elevated organic solvent resistance compared to the SG-XIV proteases from S. griseus and KERAB from Streptomyces sp. AB1. The stap gene encoding STAP was isolated, and its DNA sequence was determined. These properties make STAP a potential candidate for future application in detergent formulations and non-aqueous peptide biocatalysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A two disulfide bridge Kazal domain from Phytophthora exhibits stable inhibitory activity against serine proteases of the subtilisin family

    Directory of Open Access Journals (Sweden)

    Kamoun Sophien

    2005-08-01

    Full Text Available Abstract Background Kazal-like serine protease inhibitors are defined by a conserved sequence motif. A typical Kazal domain contains six cysteine residues leading to three disulfide bonds with a 1–5/2–4/3–6 pattern. Most Kazal domains described so far belong to this class. However, a novel class of Kazal domains with two disulfide bridges resulting from the absence of the third and sixth cysteines have been found in biologically important molecules, such as human LEKTI, a 15-domain inhibitor associated with the severe congenital disease Netherton syndrome. These domains are referred to as atypical Kazal domains. Previously, EPI1, a Kazal-like protease inhibitor from the oomycete plant pathogen Phytophthora infestans, was shown to be a tight-binding inhibitor of subtilisin A. EPI1 also inhibits and interacts with the pathogenesis-related P69B subtilase of the host plant tomato, suggesting a role in virulence. EPI1 is composed of two Kazal domains, the four-cysteine atypical domain EPI1a and the typical domain EPI1b. Results In this study, we predicted the inhibition constants of EPI1a and EPI1b to subtilisin A using the additivity-based sequence to reactivity algorithm (Laskowski algorithm. The atypical domain EPI1a, but not the typical domain EPI1b, was predicted to have strong inhibitory activity against subtilisin A. Inhibition assays and coimmunoprecipitation experiments showed that recombinant domain EPI1a exhibited stable inhibitory activity against subilisin A and was solely responsible for inhibition and interaction with tomato P69B subtilase. Conclusion The finding that the two disulfide bridge atypical Kazal domain EPI1a is a stable inhibitor indicates that the missing two cysteines and their corresponding disulfide bond are not essential for inhibitor reactivity and stability. This report also suggests that the Laskowski algorithm originally developed and validated with typical Kazal domains might operate accurately for atypical

  4. Purification and Characterization of a New Thermostable, Haloalkaline, Solvent Stable, and Detergent Compatible Serine Protease from Geobacillus toebii Strain LBT 77

    Directory of Open Access Journals (Sweden)

    Wajdi Thebti

    2016-01-01

    Full Text Available A new thermostable, haloalkaline, solvent stable SDS-induced serine protease was purified and characterized from a thermophilic Geobacillus toebii LBT 77 newly isolated from a Tunisian hot spring. This study reveals the potential of the protease from Geobacillus toebii LBT 77 as an additive to detergent with spectacular proprieties described for the first time. The protease was purified to homogeneity by ammonium sulfate precipitation followed by Sephadex G-75 and DEAE-Cellulose chromatography. It was a monomeric enzyme with molecular weight of 30 kDa. The optimum pH, temperature, and NaCl for maximum protease activity were 13.0, 95°C, and 30%, respectively. Activity was stimulated by Ca2+, Mg2+, DTNB, β-mercaptoethanol, and SDS. The protease was extremely stable even at pH 13.25, 90°C, and 30% NaCl and in the presence of hydrophilic, hydrophobic solvents at high concentrations. The high compatibility with ionic, nonionic, and commercial detergents confirms the utility as an additive to cleaning products. Kinetic and thermodynamic characterization of protease revealed Km=1 mg mL−1,  Vmax=217.5 U mL−1, Kcat/Km=99 mg mL−1 S−1, Ea=51.5 kJ mol−1, and ΔG⁎=56.5 kJ mol−1.

  5. Serine protease inhibitor Serp-1 strongly impairs atherosclerotic lesion formation and induces a stable plaque phenotype in ApoE-/-mice

    NARCIS (Netherlands)

    Bot, Ilze; von der Thüsen, Jan H.; Donners, Marjo M. P. C.; Lucas, Alexandra; Fekkes, Madelon L.; de Jager, Saskia C. A.; Kuiper, Johan; Daemen, Mat J. A. P.; van Berkel, Theo J. C.; Heeneman, Sylvia; Biessen, Erik A. L.

    2003-01-01

    The myxoma virus protein Serp-1 is a member of the serine protease inhibitor superfamily. Serp-1 potently inhibits human serum proteases including plasmin, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA). Serp-1 also displays a high antiinflammatory activity,

  6. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  7. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum.

    Science.gov (United States)

    Zhang, Huan; Fei, Rui; Xue, Baigong; Yu, Shanshan; Zhang, Zuoming; Zhong, Sheng; Gao, Yuanqi; Zhou, Xiaoli

    2017-01-07

    Serine protease inhibitors (serpins) are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum , was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI) of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  8. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  9. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  10. Serine protease inhibitors suppress pancreatic endogenous proteases and modulate bacterial neutral proteases.

    Science.gov (United States)

    Nduaguibe, Chikodili C; Bentsi-Barnes, Kwamina; Mullen, Yoko; Kandeel, Fouad; Al-Abdullah, Ismail

    2010-01-01

    Pefabloc, Trasylol and Urinary Trypsin Inhibitor (UTI) have been reported to be effective serine protease inhibitors that impair pancreatic endogenous proteases resulting in improved islet yield. Here we evaluated the effect of these inhibitors on endogenous proteases (trypsin, chymotrypsin and elastase), bacterial neutral proteases (thermolysin and neutral protease) and islet isolation digestion samples. Protease activity was measured using a fluorimetric assay and islet function was assessed by dynamic perifusion. Trypsin, chymotrypsin and elastase were significantly inhibited by Pefabloc and UTI. Trasylol showed strong inhibitory effects on trypsin and chymotrypsin but also decreased thermolysin activity. UTI was found to inhibit the activity of endogenous proteases and increase the activity of bacterial neutral proteases. Human islets exposed to Pefabloc had reduced insulin response, unlike Trasylol or UTI, which had no detrimental effect on insulin secretion. Although Trasylol was an effective inhibitor of endogenous proteases, FDA regulatory issues preclude its use in clinical application and thus in the isolation process. UTI has the greatest potential because it impairs endogenous pancreatic proteases and enhances digestion enzymes.

  11. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta

    OpenAIRE

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Zhang, Xiufeng; Wang, Yang; Zou, Zhen; Chen, Yunru; Blissard, Gary W.; Kanost, Michael R.; Jiang, Haobo

    2014-01-01

    Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., 2015), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sush...

  12. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    Science.gov (United States)

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  13. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease

    DEFF Research Database (Denmark)

    Studdert, C A; Herrera Seitz, M K; Plasencia, I

    2001-01-01

    other halobacteria nor with commercial proteases except subtilisin. The amino acid sequences of three tryptic peptides obtained from Natronococcus occultus protease did not show significant similarity to other known proteolytic enzymes. This fact, in addition to its high molecular mass suggests......A serine protease was purified from Natronococcus occultus stationary phase culture medium (328-fold, yield 19%) and characterized at the biochemical level. The enzyme has a native molecular mass of 130 kDa, has chymotrypsin-like activity, is stable and active in a broad pH range (5...... that Natronococcus occultus extracellular protease may be a novel enzyme. Udgivelsesdato: 2001-null...

  14. Inhibition of serine proteases by peptidyl fluoromethyl ketones

    International Nuclear Information System (INIS)

    Imperiali, B.; Abeles, R.H.

    1986-01-01

    Peptidyl fluoromethyl ketones that are specific inhibitors of the serine proteases α-chymotrypsin and porcine pancreatic elastase were synthesized. By analogy with the corresponding aldehydes it is assumed that the fluoromethyl ketones react with the γ-OH group of the active site serine to form a stable hemiacetal. 19 F NMR studies of the chymotrypsin-bound trifluoromethyl ketone inhibitors Ac-Leu-ambo-Phe-CF 3 1 and Ac-ambo-Phe-CF 3 clearly indicate that the carbonyl carbon is tetrahedral at the active site of the enzyme. The inhibitor is bound as either the stable hydrat or the hemiacetal, involving the active site serine. The effect of varying the number of amino acid residues in the peptidyl portion of the inhibitor and the number of fluorines in the fluoromethyl ketone moiety is examined. In the series of trifluoromethyl ketone elastase inhibitors, the lowering of K/sub i/ concomitant with the change from a dipeptide analogue to a tetrapeptide analogue correlates well with the variation in V/K for hydrolysis of the corresponding amide substrates. This trend is indicative of the inhibitors acting as transition-state analogues. In addition to chain length, the number of fluorine substituents also affects the K/sub i/. In the case of chymotrypsin, the K/sub i/ for Ac-Leu-ambo-Phe-CF 3 is 30-fold lower than that for Ac-Leu-ambo-Phe-CF 2 H. With elastase this trend is not as profound. In all cases, however, the difluoro- and trifluoromethyl ketones are better inhibitors than the monofluoromethyl and nonfluorinated analogues. This improvement must be associated with both the degree of hydration of the fluoromethyl ketones and the significant effect that fluorine substitution has on lowering the first pK/sub a/ of the hemiacetal hydroxyl. The monofluoromethyl ketone inhibitor of chymotrypsin, Ac-Leu-ambo-Phe-CFH 2 , is a weak competitive inhibitor

  15. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  16. Serine protease from midgut of Bombus terrestris males

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Jana; Kindl, Jiří; Valterová, Irena; Pichová, Iva; Zarevúcka, Marie; Brabcová, J.; Jágr, Michal; Mikšík, Ivan

    2013-01-01

    Roč. 82, č. 3 (2013), s. 117-128 ISSN 0739-4462 R&D Projects: GA ČR GA203/09/1446; GA TA ČR TA01020969 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : Bombus terrestris * midgut * serine protease * bumblebee Subject RIV: CE - Biochemistry; CE - Biochemistry (FGU-C) Impact factor: 1.160, year: 2013

  17. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus.

    Science.gov (United States)

    Mothe, Thirumala; Sultanpuram, Vishnuvardhan Reddy

    2016-06-01

    Alkaline proteases are important enzymes in many industrial applications, especially as additives in laundry detergent industry. Though there are a number of Bacillus species which are reported to be producing proteases, the efficiency of a protease produced by a novel strain has to be studied in comparison to the others. Hence, in this study, an alkaline serine protease produced by a novel species Bacillus caseinilyticus was purified and characterized for its possible usage in detergent industry. Ammonium sulphate, dialysis and DEAE column chromatographic methods were used for purification of the isolated alkaline protease. The molecular weight of the protease was determined by SDS-PAGE and it was found to be 66 kDa. Peptide mass fingerprinting (PMF) was carried out using MALDI-TOF-TOF mass spectrometry and the peptides were found to be similar to that of subtilisin protease. Specific activity of purified protein was found to be 89.2 U/mg. Optimum pH and temperature for enzyme activity were at pH 8 and 60 °C, respectively, showing stability with 10 mM CaCl 2 . Phenyl methyl sulphonyl fluoride (PMSF) at both 5 and 10 mM concentrations completely inhibited the enzyme activity suggesting its serine nature. EDTA, metal ions Mg 2+ and Ca 2+ increased the enzyme activity. The one factor at a time optimisation of the protease production was carried to identify the important factors that affect its production. After optimisation, the protease was produced at lab scale, purified and characterised. This alkali, thermotolerant serine protease was found to be significantly stable in the presence of various surfactants and H 2 O 2. Also, it was successfully able to remove blood stain when used as an additive along with commercial detergent suggesting its potential application in the laundry detergent industry.

  18. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  19. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina

    Science.gov (United States)

    2010-01-01

    Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved

  20. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.; Reynolds, Simone; Willis, Charlene; Beckham, Simone; Law, Ruby H.P.; Yang, Sundy; Bashtannyk-Puhalovich, Tanya A.; McGowan, Sheena; Whisstock, James C.; Pike, Robert N.; Kemp, David J.; Buckle, Ashley M.; (Monash); (Queensland Inst. of Med. Rsrch.)

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.

  1. Serine proteases of the human immune system in health and disease

    NARCIS (Netherlands)

    Heutinck, Kirstin M.; ten Berge, Ineke J. M.; Hack, C. Erik; Hamann, Jörg; Rowshani, Ajda T.

    2010-01-01

    Serine proteases form a large family of protein-cleaving enzymes that play an essential role in processes like blood coagulation, apoptosis and inflammation. Immune cells express a wide variety of serine proteases such as granzymes in cytotoxic lymphocytes, neutrophil elastase, cathepsin G and

  2. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.

    Science.gov (United States)

    Köcher, Steffen; Rey, Juliana; Bongard, Jens; Tiaden, André N; Meltzer, Michael; Richards, Peter J; Ehrmann, Michael; Kaiser, Markus

    2017-07-10

    The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases. For efficient synthetic access, we developed a practical mixed solid- and solution-phase synthesis that we validated through performing the first chemical synthesis of the two natural products Tasipeptin A and B. The suitability of the Ahp-cyclodepsipeptide scaffold for tailored inhibitor synthesis is showcased by the generation of the most potent human HTRA protease inhibitors to date. We anticipate that our approach may also be applied to other serine proteases, thus opening new avenues for a systematic discovery of serine protease inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cytokeratin 8 Is an Epithelial Cell Receptor for Pet, a Cytotoxic Serine Protease Autotransporter of Enterobacteriaceae

    OpenAIRE

    Nava-Acosta, Raul; Navarro-Garcia, Fernando

    2013-01-01

    ABSTRACT The group of proteins known as serine protease autotransporters of Enterobacteriaceae (SPATE) is a growing family of serine proteases secreted to the external milieu by the type V secretion system. Pet toxin and some other SPATE belong to the class 1 cytotoxic SPATE, which have comparable protease strength on fodrin. Pet is internalized and is directed to its intracellular substrate by retrograde transport. However, the epithelial cell receptor for Pet has yet to be identified. We sh...

  4. Regulation of Adrenal Aldosterone Production by Serine Protease Prostasin

    Directory of Open Access Journals (Sweden)

    Takehiro Ko

    2010-01-01

    Full Text Available A serine protease prostasin has been demonstrated to have a pivotal role in the activation of the epithelial sodium channel. Systemic administration of adenovirus carrying human prostasin gene in rats resulted in an increase in plasma prostasin and aldosterone levels. However, the mechanism by which the elevation of prostasin levels in the systemic circulation stimulated the plasma aldosterone levels remains unknown. Therefore, we examined if prostasin increases the aldosterone synthesis in a human adrenocortical cell line (H295R cells. Luciferase assay using CYP11B2 promoter revealed that prostasin significantly increased the transcriptional activity of CYP11B2. Prostasin significantly increased both CYP11B2 mRNA expression and aldosterone production in a dose-dependent manner. Surprisingly, treatment with camostat mesilate, a potent prostasin inhibitor, had no effect on the aldosterone synthesis by prostasin and also a protease-dead mutant of prostasin significantly stimulated the aldosterone production. A T-type/L-type calcium channel blocker and a protein kinase C (PKC inhibitor significantly reduced the aldosterone synthesis by prostasin. Our findings suggest a stimulatory effect of prostasin on the aldosterone synthesis by adrenal gland through the nonproteolytic action and indicate a new role of prostasin in the systemic circulation.

  5. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding.

    Science.gov (United States)

    Medeiros, Ane H; Mingossi, Fabiana B; Dias, Renata O; Franco, Flávia P; Vicentini, Renato; Mello, Marcia O; Moura, Daniel S; Silva-Filho, Marcio C

    2016-09-01

    Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.

  6. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding

    Science.gov (United States)

    Medeiros, Ane H.; Mingossi, Fabiana B.; Dias, Renata O.; Franco, Flávia P.; Vicentini, Renato; Mello, Marcia O.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2016-01-01

    Sugarcane’s (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory. PMID:27598134

  7. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta.

    Science.gov (United States)

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Zhang, Xiufeng; Wang, Yang; Zou, Zhen; Chen, Yunru; Blissard, Gary W; Kanost, Michael R; Jiang, Haobo

    2015-07-01

    Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., in preparation), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sushi, Wonton, TSP, CUB, Frizzle, and SR domains. There are nineteen groups of genes evolved from relatively recent gene duplication and sequence divergence. Thirty-five SPs and seven SPHs contain 1, 2 or 5 clip domains. Multiple sequence alignment and molecular modeling of the 54 clip domains have revealed structural diversity of these regulatory modules. Sequence comparison with their homologs in Drosophila melanogaster, Anopheles gambiae and Tribolium castaneum allows us to classify them into five subfamilies: A are SPHs with 1 or 5 group-3 clip domains, B are SPs with 1 or 2 group-2 clip domains, C, D1 and D2 are SPs with a single clip domain in group-1a, 1b and 1c, respectively. We have classified into six categories the 125 expression profiles of SP-related proteins in fat body, brain, midgut, Malpighian tubule, testis, and ovary at different stages, suggesting that they participate in various physiological processes. Through RNA-Seq-based gene annotation and expression profiling, as well as intragenomic sequence comparisons, we have established a framework of information for future biochemical research of nondigestive SPs and SPHs in this model species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Serine protease inhibitors to treat inflammation: a patent review (2011-2016).

    Science.gov (United States)

    Soualmia, Feryel; El Amri, Chahrazade

    2018-02-01

    Inflammation is a physiological part of the complex biological response of tissues to counteract various harmful signals. This process involves diverse actors such as immune cells, blood vessels, and nerves as sources of mediators for inflammation control. Among them serine proteases are key elements in both physiological and pathological inflammation. Areas covered: Serine protease inhibitors to treat inflammatory diseases are being actively investigated by various industrial and academic institutions. The present review covers patent literature on serine protease inhibitors for the therapy of inflammatory diseases patented between 2011 and 2016. Expert opinion: Serine proteases regulating inflammation are versatile enzymes, usually involved in proinflammatory cytokine production and activation of immune cells. Their dysregulation during inflammation can have devastating consequences, promoting various diseases including skin and lung inflammation, neuroinflammation, and inflammatory arthritis. Several serine proteases were selected for their contribution to inflammatory diseases and significant efforts that are spread to develop inhibitors. Strategies developed for inhibitor identification consist on either peptide-based inhibitor derived from endogenous protein inhibitors or small-organic molecules. It is also worth noting that among the recent patents on serine protease inhibitors related to inflammation a significant number are related to retinal vascular dysfunction and skin diseases.

  9. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.

    Science.gov (United States)

    Beers, Eric P; Jones, Alan M; Dickerman, Allan W

    2004-01-01

    The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.

  10. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Directory of Open Access Journals (Sweden)

    Lior Doron

    Full Text Available Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  11. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Science.gov (United States)

    Doron, Lior; Coppenhagen-Glazer, Shunit; Ibrahim, Yara; Eini, Amir; Naor, Ronit; Rosen, Graciela; Bachrach, Gilad

    2014-01-01

    Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF) with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  12. Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus

    NARCIS (Netherlands)

    van der Laan, J.M.; Teplyakov, A.V.; Kelders, H.; Kalk, K.H.; Misset, O.; Mulleners, L.J.S.M.; Dijkstra, B.W.

    The crystal structure of a serine protease from the alkalophilic strain Bacillus alcalophilus PB92 has been determined by X-ray diffraction at 1.75 Å resolution. The structure has been solved by molecular replacement using the atomic model of subtilisin Carlsberg. The model of the PB92 protease has

  13. Characterisation of an extracellular serine protease gene (nasp gene) from Dermatophilus congolensis.

    Science.gov (United States)

    Garcia-Sanchez, Alfredo; Cerrato, Rosario; Larrasa, Jose; Ambrose, Nicholas C; Parra, Alberto; Alonso, Juan M; Hermoso-de-Mendoza, Miguel; Rey, Joaquin M; Mine, Madisa O; Carnegie, Patrick R; Ellis, Trevor M; Masters, Anne M; Pemberton, Alan D; Hermoso-de-Mendoza, Javier

    2004-02-09

    A partial amino acid sequence of a serine protease from Dermatophilus congolensis allowed the design of oligonucleotide primers that were complemented with additional ones from previously published partial sequences of the gene encoding the enzyme. The polymerase chain reaction (PCR), using combinations of specific and degenerate oligonucleotide primers, allowed the amplification of a 1738-bp internal fragment of the gene, which was finally characterised by inverse PCR as the first full-length sequenced serine protease gene (nasp) from Dermatophilus congolensis. The deduced amino acid sequence of this enzyme, probably involved in the pathogenesis of dermatophilosis, links it to the subtilisin family of proteases.

  14. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    Science.gov (United States)

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  15. Recovery of serine protease inhibitor from fish roes by polyethylene glycol precipitation

    Directory of Open Access Journals (Sweden)

    Hyun Ji Lee

    2016-07-01

    Full Text Available Abstract The fractionation of serine protease inhibitor (SPI from fish roe extracts was carried out using polyethylene glycol-4000 (PEG4000 precipitation. The protease inhibitory activity of extracts and PEG fractions from Alaska pollock (AP, bastard halibut (BH, skipjack tuna (ST, and yellowfin tuna (YT roes were determined against target proteases. All of the roe extracts showed inhibitory activity toward bromelain (BR, chymotrypsin (CH, trypsin (TR, papain-EDTA (PED, and alcalase (AL as target proteases. PEG fractions, which have positive inhibitory activity and high recovery (%, were the PEG1 fraction (0–5 %, w/v against cysteine proteases (BR and PA and the PEG4 fraction (20–40 %, w/v against serine proteases (CH and TR. The strongest specific inhibitory activity toward CH and TR of PEG4 fractions was AP (9278 and 1170 U/mg followed by ST (6687 and 2064 U/mg, YT (3951 and 1536 U/mg, and BH (538 and 98 U/mg. The inhibitory activity of serine protease in extracts and PEG fractions from fish roe was stronger than that of cysteine protease toward common casein substrate. Therefore, SPI is mainly distributed in fish roe and PEG fractionation effectively isolated the SPI from fish roes.

  16. Characterization of a membrane-associated serine protease in Escherichia coli

    International Nuclear Information System (INIS)

    Palmer, S.M.; St John, A.C.

    1987-01-01

    Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively. The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. They termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [ 3 H]diisopropylfluorophosphate as an active-site labeling reagent, they determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, an endogenous, periplasmic inhibitor of trypsin

  17. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.

    Science.gov (United States)

    Yasumitsu, Hidetaro

    2017-01-01

    To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.

  18. Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex.

    Science.gov (United States)

    Raskovic, Brankica; Bozovic, Olga; Prodanovic, Radivoje; Niketic, Vesna; Polovic, Natalija

    2014-12-01

    A novel collagenolytic serine protease was identified and then purified (along with ficin) to apparent homogeneity from the latex of fig (Ficus carica, var. Brown Turkey) by two step chromatographic procedure using gel and covalent chromatography. The enzyme is a monomeric protein of molecular mass of 41 ± 9 kDa as estimated by analytical gel filtration chromatography. It is an acidic protein with a pI value of approximately 5 and optimal activity at pH 8.0-8.5 and temperature 60°C. The enzymatic activity was strongly inhibited by PMSF and Pefabloc SC, indicating that the enzyme is a serine protease. The enzyme showed specificity towards gelatin and collagen (215 GDU/mg and 24.8 CDU/mg, respectively) and non-specific protease activity (0.18 U/mg against casein). The enzyme was stable and retained full activity over a broad range of pH and temperature. The fig latex collagenolytic protease is potentially useful as a non-microbial enzyme with collagenolytic activity for various applications in the fields of biochemistry, biotechnology and medicine. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Hepatitis B and Hepatitis C Virus Replication Upregulates Serine Protease Inhibitor Kazal, Resulting in Cellular Resistance to Serine Protease-Dependent Apoptosis▿ †

    OpenAIRE

    Lamontagne, Jason; Pinkerton, Mark; Block, Timothy M.; Lu, Xuanyong

    2009-01-01

    Hepatitis B and C viruses (HBV and HCV, respectively) are different and distinct viruses, but there are striking similarities in their disease potential. Infection by either virus can cause chronic hepatitis, liver cirrhosis, and ultimately, liver cancer, despite the fact that no pathogenetic mechanisms are known which are shared by the two viruses. Our recent studies have suggested that replication of either of these viruses upregulates a cellular protein called serine protease inhibitor Kaz...

  20. Crystal Structure of a Novel Viral Protease with a Serine/Lysine Catalytic Dyad Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Feldman,A.; Lee, J.; Delmas, B.; Paetzel, M.

    2006-01-01

    The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.

  1. Sol-gel immobilization of serine proteases for application in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2001-01-01

    The serine proteases α-chymotrypsin, trypsin, and subtilisin Carlsberg were immobilized in a sol-gel matrix and the effects on the enzyme activity in organic media are evaluated. The percentage of immobilized enzyme is 90% in the case of α-chymotrypsin and the resulting specific enzyme activity in

  2. Mannan-binding lectin and MBL-associated serine protease-2

    DEFF Research Database (Denmark)

    Jorgensen, J.; Ytting, H.; Steffensen, R.M.

    2008-01-01

    be used for detection, evaluation of prognosis, therapy selection and monitoring. The serum proteins of the innate immune system mannan-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are novel biomarkers under validation in CRC. Low preoperative MBL levels are predictive of pneumonia...

  3. A novel non-canonical binding mode for serine proteases on plant Kunitz inhibitors

    Czech Academy of Sciences Publication Activity Database

    Srp, Jaroslav; Pachl, Petr; Mishra, Manasi; Horn, Martin; Mareš, Michael

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 299 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 Keywords : Kunitz inhibitors * serine proteases Subject RIV: CE - Biochemistry

  4. Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis

    NARCIS (Netherlands)

    Bardou, Olivier; Menou, Awen; François, Charlène; Duitman, Jan Willem; von der Thüsen, Jan H.; Borie, Raphaël; Sales, Katiuchia Uzzun; Mutze, Kathrin; Castier, Yves; Sage, Edouard; Liu, Ligong; Bugge, Thomas H.; Fairlie, David P.; Königshoff, Mélanie; Crestani, Bruno; Borensztajn, Keren S.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and experimental pulmonary fibrogenesis.

  5. Membrane-anchored serine protease matriptase is a trigger of pulmonary fibrogenesis

    NARCIS (Netherlands)

    Bardou, O. (Olivier); Menou, A. (Awen); François, C. (Charlène); J.W. Duitman (Jan Willem); J. von der Thusen (Jan); Borie, R. (Raphaël); Sales, K.U. (Katiuchia Uzzun); Mutze, K. (Kathrin); Y. Castier (Yves); Sage, E. (Edouard); Liu, L. (Ligong); Bugge, T.H. (Thomas H.); Fairlie, D.P. (David P.); Königshoff, M. (Mélanie); B. Crestani (Bruno); K. Borensztajn (Keren)

    2016-01-01

    textabstractRationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies. Objectives: To characterize the expression and activity of the membrane-anchored serine protease matriptase in IPF in humans and unravel its potential role in human and

  6. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations.

    Science.gov (United States)

    Snelgrove, Robert J; Gregory, Lisa G; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A; Walker, Simone A; Lloyd, Clare M

    2014-09-01

    The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. IL-33 levels were quantified in wild-type and ST2(-/-) mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease-IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Schistosome serine protease inhibitors: parasite defense or homeostasis?

    Directory of Open Access Journals (Sweden)

    Landys A. Lopez Quezada

    2011-06-01

    Full Text Available Serpins are a structurally conserved family of macromolecular inhibitors found in numerous biological systems. The completion and annotation of the genomes of Schistosoma mansoni and Schistosoma japonicum has enabled the identification by phylogenetic analysis of two major serpin clades. S. mansoni shows a greater multiplicity of serpin genes, perhaps reflecting adaptation to infection of a human host. Putative targets of schistosome serpins can be predicted from the sequence of the reactive center loop (RCL. Schistosome serpins may play important roles in both post-translational regulation of schistosome-derived proteases, as well as parasite defense mechanisms against the action of host proteases.Serpinas são uma família de inibidores macromoleculares estruturalmente conservados encontrados em inúmeros sistemas biológicos. O término e a anotação dos genomas de Schistosoma mansoni e de Schistosoma japonicum permitiram a identificação por análise filogenética de dois principais clados de serpinas. S. mansoni mostra uma multiplicidade maior de genes de serpinas, talvez refletindo uma adaptação à infecção de um hospedeiro humano. Alvos putativos das serpinas de esquistossomos podem ser preditos a partir da sequência do "loop" do centro reativo. Serpinas de esquistossomos podem ter importantes papeis tanto na regulação pós-traducional de proteases derivadas do esquistossoma, quanto nos mecanismos de defesa contra a ação de proteases do hospedeiro.

  8. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    Science.gov (United States)

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  9. Intracellular serine protease inhibitor SERPINB4 inhibits granzyme M-induced cell death.

    Directory of Open Access Journals (Sweden)

    Pieter J A de Koning

    Full Text Available Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1' triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×10(4 M(-1 s(-1. SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death.

  10. Modeling and structural analysis of evolutionarily diverse S8 family serine proteases.

    Science.gov (United States)

    Laskar, Aparna; Rodger, Euan James; Chatterjee, Aniruddha; Mandal, Chhabinath

    2011-01-01

    Serine proteases are an abundant class of enzymes that are involved in a wide range of physiological processes and are classified into clans sharing structural homology. The active site of the subtilisin-like clan contains a catalytic triad in the order Asp, His, Ser (S8 family) or a catalytic tetrad in the order Glu, Asp and Ser (S53 family). The core structure and active site geometry of these proteases is of interest for many applications. The aim of this study was to investigate the structural properties of different S8 family serine proteases from a diverse range of taxa using molecular modeling techniques. In conjunction with 12 experimentally determined three-dimensional structures of S8 family members, our predicted structures from an archaeon, protozoan and a plant were used for analysis of the catalytic core. Amino acid sequences were obtained from the MEROPS database and submitted to the LOOPP server for threading based structure prediction. The predicted structures were refined and validated using PROCHECK, SCRWL and MODELYN. Investigation of secondary structures and electrostatic surface potential was performed using MOLMOL. Encompassing a wide range of taxa, our structural analysis provides an evolutionary perspective on S8 family serine proteases. Focusing on the common core containing the catalytic site of the enzyme, the analysis presented here is beneficial for future molecular modeling strategies and structure-based rational drug design.

  11. The growth hormone dependent serine protease inhibitor, Spi 2.1 inhibits the des (1-3) insulin-like growth factor-I generating protease.

    Science.gov (United States)

    Maake, C; Yamamoto, H; Murphy, L J

    1997-12-01

    The conversion of insulin-like growth factor-I (IGF-I) to the biologically more active des (1-3) IGF-I variant is catalyzed by a ubiquitous protease. This proteolytic activity is inhibited by human alpha1-antitrypsin and soy-bean trypsin inhibitor and is up-regulated in serum and tissue extracts of hypophysectomized rats. These observations lead us to investigate whether the growth hormone regulated, serine protease inhibitor, Spi 2.1 was able to inhibit the des (1-3) IGF-I generating protease. Dihydrofolate reductase deficient Chinese hamster ovary (CHO(dhfr-ve)) cells were transfected with a rat Spi 2.1 expression vector containing the dhfr and neomycin resistance gene. Stable transfectants were selected using G418 and amplified using methotrexate. Conditioned medium from Spi 2.1 transfected CHO cells potently inhibited proteolytic activity directed against a synthetic hexa-peptide with a sequence identical to the N-terminal of IGF-I. In contrast conditioned medium from wild-type CHO cells had little effect. Based upon these observations we suggest that our previous finding of enhanced des (1-3) IGF-I generating protease activity in growth hormone deficient rats may be, at least partly explained by reduced levels of Spi 2.1. Furthermore, we propose that the regulation of the generation of des (1-3) IGF-I may be an additional potential site of growth hormone regulation of IGF-I action.

  12. Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations

    Science.gov (United States)

    Snelgrove, Robert J.; Gregory, Lisa G.; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A.; Walker, Simone A.; Lloyd, Clare M.

    2014-01-01

    Background The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. Objective We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. Methods IL-33 levels were quantified in wild-type and ST2−/− mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Results Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease–IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Conclusion Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. PMID:24636086

  13. Epigenetic silencing of serine protease HTRA1 drives polyploidy

    International Nuclear Information System (INIS)

    Schmidt, Nina; Irle, Inga; Ripkens, Kamilla; Lux, Vanda; Nelles, Jasmin; Johannes, Christian; Parry, Lee; Greenow, Kirsty; Amir, Sarah; Campioni, Mara; Baldi, Alfonso; Oka, Chio; Kawaichi, Masashi; Clarke, Alan R.; Ehrmann, Michael

    2016-01-01

    Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation. Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated. HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs). Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation. The online version of this article (doi:10.1186/s12885-016-2425-8) contains supplementary material, which is available to authorized users

  14. Vacuolar proteases from Candida glabrata: Acid aspartic protease PrA, neutral serine protease PrB and serine carboxypeptidase CpY. The nitrogen source influences their level of expression.

    Science.gov (United States)

    Sepúlveda-González, M Eugenia; Parra-Ortega, Berenice; Betancourt-Cervantes, Yuliana; Hernández-Rodríguez, César; Xicohtencatl-Cortes, Juan; Villa-Tanaca, Lourdes

    2016-01-01

    The Saccharomyces cerevisiae vacuole is actively involved in the mechanism of autophagy and is important in homeostasis, degradation, turnover, detoxification and protection under stressful conditions. In contrast, vacuolar proteases have not been fully studied in phylogenetically related Candida glabrata. The present paper is the first report on proteolytic activity in the C. glabrata vacuole. Biochemical studies in C. glabrata have highlighted the presence of different kinds of intracellular proteolytic activity: acid aspartyl proteinase (PrA) acts on substrates such as albumin and denatured acid hemoglobin, neutral serine protease (PrB) on collagen-type hide powder azure, and serine carboxypeptidase (CpY) on N-benzoyl-tyr-pNA. Our results showed a subcellular fraction with highly specific enzymatic activity for these three proteases, which allowed to confirm its vacuolar location. Expression analyses were performed in the genes CgPEP4 (CgAPR1), CgPRB1 and CgCPY1 (CgPRC), coding for vacuolar aspartic protease A, neutral protease B and carboxypeptidase Y, respectively. The results show a differential regulation of protease expression depending on the nitrogen source. The proteases encoded by genes CgPEP4, CgPRB1 and CgCPY1 from C. glabrata could participate in the process of autophagy and survival of this opportunistic pathogen. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  15. Biopotency of serine protease inhibitors from cowpea (Vigna unguiculata) seeds on digestive proteases and the development of Spodoptera littoralis (Boisduval).

    Science.gov (United States)

    Abd El-latif, Ashraf Oukasha

    2015-05-01

    Serine protease inhibitors (PIs) have been described in many plant species and are universal throughout the plant kingdom, where trypsin inhibitors is the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of 13 selected cultivars/accessions of cowpea. Two cowpea cultivars, Cream7 and Buff, were found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested cultivars for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Cream7-purified proteins showed two bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) corresponding to molecular mass of 17.10 and 14.90 kDa, while the purified protein from Buff cultivar showed a single band corresponding mass of 16.50 kDa. The purified inhibitors were stable at temperature below 60°C and were active at wide range of pH from 2 to 12. The kinetic analysis revealed noncompetitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki ) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis, where Buff PI was more effective than Cream7 PI. It may be concluded that cowpea PI gene(s) could be potential insect control protein for future studies in developing insect-resistant transgenic plants. © 2014 Wiley Periodicals, Inc.

  16. Trypsin- and Chymotrypsin-Like Serine Proteases in Schistosoma mansoni - 'The Undiscovered Country'

    Czech Academy of Sciences Publication Activity Database

    Horn, Martin; Fajtová, Pavla; Arreola, L. R.; Ulrychová, Lenka; Bartošová-Sojková, Pavla; Franta, Zdeněk; Protasio, A. V.; Opavský, David; Vondrášek, Jiří; McKerrow, J. H.; Mareš, Michael; Caffrey, C. R.; Dvořák, Jan

    2014-01-01

    Roč. 8, č. 3 (2014), e2766/1-e2766/13 ISSN 1935-2735 R&D Projects: GA ČR(CZ) GAP302/11/1481; GA MŠk(CZ) ME10011 EU Projects: European Commission(XE) 248642 - SCHISTOSOMA PROTEASE Institutional support: RVO:61388963 ; RVO:68378050 ; RVO:60077344 Keywords : schistosomiasis * blood fluke * serine protease Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (UMG-J); FN - Epidemiology, Contagious Diseases ; Clinical Immunology (BC-A) Impact factor: 4.446, year: 2014 http://www.plosntds.org/article/info%3Adoi%2F10.1371%2Fjournal.pntd.0002766

  17. The action of neutrophil serine proteases on elastin and its precursor

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Jahreis, Günther

    2012-01-01

    proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P(1), which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr....... CG shows a strong preference for the charged amino acid Lys at P(1) in tropoelastin, whereas Lys was not identified at P(1) in CG digests of elastin due to extensive cross-linking at Lys residues in mature elastin. All three serine proteases showed a clear preference for Pro at P(2) and P(4...

  18. Localization of a new serine protease, ingobsin, in goblet cells in rat, pig and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1985-01-01

    A serine protease, ingobsin, that cleaves Lys-x and Arg-x, has been purified from rat duodenal tissue. By immunohistochemical methods, the enzyme was localized in goblet cells in the small intestine of rat, pig, and man. The immunoreactive cells were most numerous in the proximal part of the inte...... of the intestine. In the electron microscope, the immunoreaction was localized mainly to the rough endoplasmic reticulum of the goblet cells and to the secretion being extruded from the cells....

  19. A New Bacillus licheniformis Mutant Strain Producing Serine Protease Efficient for Hvdrolvqis of Sov Meal Proteins.

    Science.gov (United States)

    Kostyleva, E V; Sereda, A S; Velikoretskaya, I A; Nefedova, L I; Sharikov, A Yu; Tsurikova, N V; Lobanov, N S; Semenova, M V; Sinitsyn, A P

    2016-07-01

    Induced mutagenesis with y-irradiation of the industrial strain Bacillus licheniformis-60 VKM B-2366,D was used to obtain a new highly active producer of an extracellular serine protease, Bacillus licheni- formis7 145. Samples of dry.concentrated preparations of serine protease produced by the original and mutant strains were obtained, and identity of their protein composition was'established. Alkaline serine protease sub- tilisin DY was the main component of the preparations. The biochemical and physicochemical properties of the Protolkheterm-145 enzyme preparation obtained from the mutant strain were studied. It exhibited pro- teolytic activity (1.5 times higher than the preparation from the initial strain) within broad ranges of pH (5- 11) and temperature (30-70'C).-Efficient hydrolysis of extruded soy meal protein at high concentrations (2 to 50%) in-the reaction mixture was.the main advantage of the Protolikheterm 145 preparation. Compared to,. the preparation obtained using the initial strain, the new preparation with increased proteolytic-activity pro- vided for more complete hydrolysis of the main non-nutritious soy,proteins.(glycinin and 0-conglycinin) with the yield of soluble protein increased by 19-28%, which decreased the cost of bioconversion of the protein- aceous material and indicated promise of the new preparation in resource-saving technologies for processing soy meals and cakes.

  20. Assessment and partial purification of serine protease inhibitors from Rhipicephalus (Boophilus annulatuslarvae

    Directory of Open Access Journals (Sweden)

    Sedigheh Nabian

    Full Text Available Ticks are rich sources of serine protease inhibitors, particularly those that prevent blood clotting and inflammatory responses during blood feeding. The tick Rhipicephalus (Boophlus annulatusis an important ectoparasite of cattle. The aims of this study were to characterize and purify the serine protease inhibitors present in R. (B. annulatus larval extract. The inhibitors were characterized by means of one and two-dimensional reverse zymography, and purified using affinity chromatography on a trypsin-Sepharose column. The analysis on one and two-dimensional reverse zymography of the larval extract showed trypsin inhibitory activity at between 13 and 40 kDa. Through non-reducing SDS-PAGE and reverse zymography for proteins purified by trypsin-Sepharose affinity chromatography, some protein bands with molecular weights between 13 and 34 kDa were detected. Western blotting showed that five protein bands at 48, 70, 110, 130 and 250 kDa reacted positively with immune serum, whereas there was no positive reaction in the range of 13-40 kDa. Serine protease inhibitors from R. (B. annulatus have anti-trypsin activity similar to inhibitors belonging to several other hard tick species, thus suggesting that these proteins may be useful as targets in anti-tick vaccines.

  1. Fluorescently labeled inhibitors detect localized serine protease activities in Drosophila melanogaster pole cells, embryos, and ovarian egg chambers

    DEFF Research Database (Denmark)

    Jakobsen, Rasmus Kragh; Ono, S.; Powers, J. C.

    2005-01-01

    processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce...... activity localized to the oocyte-somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos....

  2. Purification and characterization of a serine protease (CESP) from mature coconut endosperm

    Science.gov (United States)

    Panicker, Leelamma M; Usha, Rajamma; Roy, Samir; Mandal, Chhabinath

    2009-01-01

    Background In plants, proteases execute an important role in the overall process of protein turnover during seed development, germination and senescence. The limited knowledge on the proteolytic machinery that operates during seed development in coconut (Cocos nucifera L.) prompted us to search for proteases in the coconut endosperm. Findings We have identified and purified a coconut endosperm protease (CESP) to apparent homogeneity. CESP is a single polypeptide enzyme of approximate molecular mass of 68 kDa and possesses pH optimum of 8.5 for the hydrolysis of BAPNA. Studies relating to substrate specificity and pattern of inhibition by various protease inhibitors indicated that CESP is a serine protease with cleavage specificity to peptide bonds after arginine. Purified CESP was often autolysed to two polypeptides of 41.6 kDa (CESP1) and 26.7 kDa (CESP2) and is confirmed by immunochemistry. We have shown the expression of CESP in all varieties of coconut and in all stages of coconut endosperm development with maximum amount in fully matured coconut. Conclusion Since the involvement of proteases in the processing of pre-proteins and maintenance of intracellular protein levels in seeds are well known, we suspect this CESP might play an important role in the coconut endosperm development. However this need to be confirmed using further studies. PMID:19426537

  3. Biochemical aspects of a serine protease from Caesalpinia echinata Lam. (Brazilwood) seeds: a potential tool to access the mobilization of seed storage proteins.

    Science.gov (United States)

    Praxedes-Garcia, Priscila; Cruz-Silva, Ilana; Gozzo, Andrezza Justino; Abreu Nunes, Viviane; Torquato, Ricardo José; Tanaka, Aparecida Sadae; Figueiredo-Ribeiro, Rita de Cássia; Gonzalez, Yamile Gonzalez; Araújo, Mariana da Silva

    2012-01-01

    Several proteins have been isolated from seeds of leguminous, but this is the first report that a protease was obtained from seeds of Caesalpinia echinata Lam., a tree belonging to the Fabaceae family. This enzyme was purified to homogeneity by hydrophobic interaction and anion exchange chromatographies and gel filtration. This 61-kDa serine protease (CeSP) hydrolyses H-D-prolyl-L-phenylalanyl-L-arginine-p-nitroanilide (K(m) 55.7 μM) in an optimum pH of 7.1, and this activity is effectively retained until 50 °C. CeSP remained stable in the presence of kosmotropic anions (PO(4) (3-), SO(4) (2-), and CH(3)COO(-)) or chaotropic cations (K(+) and Na(+)). It is strongly inhibited by TLCK, a serine protease inhibitor, but not by E-64, EDTA or pepstatin A. The characteristics of the purified enzyme allowed us to classify it as a serine protease. The role of CeSP in the seeds cannot be assigned yet but is possible to infer that it is involved in the mobilization of seed storage proteins.

  4. Analysis of serine proteases from marine sponges by 2-D zymography.

    Science.gov (United States)

    Wilkesman, Jeff G; Schröder, Heinz C

    2007-02-01

    Proteolytic activities isolated from the marine demosponges Geodia cydonium and Suberites domuncula were analyzed by 2-D zymography, a technique that combines IEF and zymography. After purification, a 200 kDa proteolytically active protein band was obtained from G. cydonium when analyzed in gelatin copolymerized 1-D zymograms. The enzymatic activity was quantified using alpha-N-benzoyl-D-arginine p-nitroanilide (BAPNA) as a substrate and corresponded to a serine protease. The protease activity was resistant to urea and SDS. DTT and 2-mercaptoethanol (2-ME) did not significantly change the protease activity, but induced a shift in molecular mass of the proteolytic band to lower M(r) values as detected by zymography. Under mild denaturing conditions, lower M(r) bands (zymography, the protease from G. cydonium revealed a pI of 8.0 and an M(r) shift from 200 to 66 kDa. To contrast these results, a cytosolic sample from S. domuncula was analyzed. The proteolytic activity of this sponge after 2-D zymography corresponded to an M(r) of 40 kDa and a pI of 4.0. The biological function of both sponge proteases is not yet known. This study demonstrates that mild denaturing conditions required for IEF may alter the interpretation of the 2-D zymography, and care must be taken during sample preparation.

  5. Preliminary characterisation of extracellular serine proteases of Dermatophilus congolensis isolates from cattle, sheep and horses.

    Science.gov (United States)

    Ambrose, N C; Mijinyawa, M S; Hermoso de Mendoza, J

    1998-08-15

    Dermatophilus congolensis is a filamentous branching actinomycete that causes dermatophilosis, an exudative dermatitis in ruminants. The pathogenesis of this disease is poorly understood and virulence factors of D. congolensis have not been characterised. Culture filtrate (CF) of 14 D. congolensis isolates from cattle, 15 from sheep and four from horses were examined for proteolytic activity using azocasein as a non-specific substrate. The isolates were from a variety of geographical locations. All the isolates examined produced extracellular proteolytic activity. CF from 24 and 48 h cultures and from first and third passages contained proteases. Proteolytic activity was greatest in neutral to alkaline pH (pH 7-10). CF of bovine isolates contained more proteolytic activity than that of ovine isolates. Furthermore, in substrate SDS-PAGE gels containing azocasein the number of proteolytic bands and their molecular weights in CF of bovine, ovine and equine isolates were different, giving distinctive band patterns for isolates from each host species. Three out of four bovine isolates from Antigua gave a fourth band pattern. Bands of equivalent molecular weights to the proteases could not be identified in silver stained SDS-PAGE gels of CF. Serine protease inhibitors had a concentration-dependent inhibitory effect on proteolytic activity in CF and inhibited activity of all proteolytic bands in substrate gels. With the exception of EDTA which had a variable-enhancing effect on activity, inhibitors of other classes of protease had no effect on activity. We conclude that D. congolensis produces a number of extracellular alkaline serine proteases, our results suggest the presence of host-specific variation between isolates and to a lesser extent between isolates from the same host species.

  6. Structure Determination of Mycobacterium tuberculosis Serine Protease Hip1 (Rv2224c)

    Energy Technology Data Exchange (ETDEWEB)

    Naffin-Olivos, Jacqueline L.; Daab, Andrew; White, Andre; Goldfarb, Nathan E.; Milne, Amy C.; Liu, Dali; Baikovitz, Jacqueline; Dunn, Ben M.; Rengarajan, Jyothi; Petsko, Gregory A.; Ringe, Dagmar

    2017-04-07

    The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity

  7. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase.

    Directory of Open Access Journals (Sweden)

    Thomas A Prohaska

    Full Text Available The serine protease inhibitor protein C inhibitor (PCI is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4 M(-1 s(-1. Low molecular weight (LMWH and unfractionated heparin (UFH slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml. By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.

  8. Portulaca oleracea L. as a Prospective Candidate Inhibitor of Hepatitis C Virus NS3 Serine Protease.

    Science.gov (United States)

    Noreen, Sobia; Hussain, Ishtiaq; Tariq, Muhammad Ilyas; Ijaz, Bushra; Iqbal, Shahid; Qamar-ul-Zaman; Ashfaq, Usman Ali; Husnain, Tayyab

    2015-06-01

    Hepatitis C virus (HCV) infection is a worldwide health problem affecting about 300 million individuals. HCV causes chronic liver disease, liver cirrhosis, hepatocellular carcinoma, and death. Many side effects are associated with the current treatment options. Natural products that can be used as anti-HCV drugs are thus of considerable potential significance. NS3 serine protease (NS3-SP) is a target for the screening of antiviral activity against HCV. The present work explores plants with anti-HCV potential, isolating possible lead compounds. Ten plants, used for medicinal purposes against different infections in rural areas of Pakistan, were collected. The cellular toxicity effects of methanolic extracts of the plants on the viability of Huh-7 cells were studied through the Trypan blue dye exclusion method. Following this, the anti-HCV potential of phytoextracts was assessed by infecting liver cells with HCV-3a-infected serum inoculum. Only the methanolic extract of Portulaca oleracea L. (PO) exhibited more than 70% inhibition. Four fractions were obtained through bioassay-guided extraction of PO. Subsequent inhibition of all organic extract fractions against NS3 serine protease was checked to track the specific target in the virus. The results showed that the PO methanolic crude and ethyl acetate extract specifically abridged the HCV NS3 protease expression in a dose-dependent fashion. Hence, PO extract and its constituents either alone or with interferon could offer a future option to treat chronic HCV.

  9. A Mycobacterium avium subsp. paratuberculosis predicted serine protease is associated with acid stress and intraphagosomal survival

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-08-01

    Full Text Available AbstractThe ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP, the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophage and MAC-T cells and coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increase bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5 conditions. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

  10. Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1

    DEFF Research Database (Denmark)

    Fex Svenningsen, Åsa; Loering, Svenja; Sørensen, Anna Lahn

    2017-01-01

    its function is far from clear. Here, we report the finding of a new binding partner to MIF, the ser-ine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the func-tion of the binding between...... MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes...

  11. Potent and Selective Peptidyl Boronic Acid Inhibitors of the Serine Protease Prostate-Specific Antigen

    Science.gov (United States)

    LeBeau, Aaron M.; Singh, Pratap; Isaacs, John T.; Denmeade, Samuel R.

    2012-01-01

    SUMMARY Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a Ki for PSA of 65 nM. The inhibitor had a 60-fold higher Ki for chymotrypsin. A validated model of PSA’s catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme. PMID:18635003

  12. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae.

    Science.gov (United States)

    Bhatia, Varnika; Bhattacharya, Ramcharan; Uniyal, Prem L; Singh, Rajendra; Niranjan, Rampal S

    2012-01-01

    Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids.

  13. Optimization of the Conditions for Extraction of Serine Protease from Kesinai Plant (Streblus asper Leaves Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2011-11-01

    Full Text Available Response surface methodology (RSM using a central composite design (CCD was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper leaves. The effect of independent variables, namely temperature (42.5,47.5, X1, mixing time (2–6 min, X2, buffer content (0–80 mL, X3 and buffer pH (4.5–10.5, X4 on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.

  14. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    Science.gov (United States)

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    Directory of Open Access Journals (Sweden)

    Nicolas Faller

    Full Text Available Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  16. Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice.

    Directory of Open Access Journals (Sweden)

    Gaelle Lentini

    Full Text Available During the infection process, Apicomplexa discharge their secretory organelles called micronemes, rhoptries and dense granules to sustain host cell invasion, intracellular replication and to modulate host cell pathways and immune responses. Herein, we describe the Toxoplasma gondii Deg-like serine protein (TgDegP, a rhoptry protein homologous to High temperature requirement A (HtrA or Deg-like family of serine proteases. TgDegP undergoes processing in both types I and II strains as most of the rhoptries proteins. We show that genetic disruption of the degP gene does not impact the parasite lytic cycle in vitro but affects virulence in mice. While in a type I strain DegPI appears dispensable for the establishment of an infection, removal of DegPII in a type II strain dramatically impairs the virulence. Finally, we show that KO-DegPII parasites kill immunodeficient mice as efficiently as the wild-type strain indicating that the protease might be involved in the complex crosstalk that the parasite engaged with the host immune response. Thus, this study unravels a novel rhoptry protein in T. gondii important for the establishment of lethal infection.

  17. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement.

    Directory of Open Access Journals (Sweden)

    Joanna Homa

    Full Text Available Formation of extracellular traps (ETs capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA, histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i facilitating decondensation of chromatin by citrullination of histones, and (ii serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27 and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates.

  18. A secreted serine protease of Paracoccidioides brasiliensis and its interactions with fungal proteins

    Directory of Open Access Journals (Sweden)

    Soares Célia MA

    2010-11-01

    Full Text Available Abstract Background Paracoccidioides brasiliensis is a thermodimorphic fungus, the causative agent of paracoccidioidomycosis (PCM. Serine proteases are widely distributed and this class of peptidase has been related to pathogenesis and nitrogen starvation in pathogenic fungi. Results A cDNA (Pbsp encoding a secreted serine protease (PbSP, was isolated from a cDNA library constructed with RNAs of fungal yeast cells recovered from liver of infected mice. Recombinant PbSP was produced in Escherichia coli, and used to develop polyclonal antibodies that were able to detect a 66 kDa protein in the P. brasiliensis proteome. In vitro deglycosylation assays with endoglycosidase H demonstrated that PbSP is a N-glycosylated molecule. The Pbsp transcript and the protein were induced during nitrogen starvation. The Pbsp transcript was also induced in yeast cells infecting murine macrophages. Interactions of PbSP with P. brasiliensis proteins were evaluated by two-hybrid assay in the yeast Saccharomyces cerevisiae. PbSP interacts with a peptidyl prolyl cis-trans isomerase, calnexin, HSP70 and a cell wall protein PWP2. Conclusions A secreted subtilisin induced during nitrogen starvation was characterized indicating the possible role of this protein in the nitrogen acquisition. PbSP interactions with other P. brasiliensis proteins were reported. Proteins interacting with PbSP are related to folding process, protein trafficking and cytoskeleton reorganization.

  19. Stepwise Versus Concerted Mechanisms in General-Base Catalysis by Serine Proteases.

    Science.gov (United States)

    Uritsky, Neta; Shokhen, Michael; Albeck, Amnon

    2016-01-26

    General-base catalysis in serine proteases still poses mechanistic challenges despite decades of research. Whether proton transfer from the catalytic Ser to His and nucleophilic attack on the substrate are concerted or stepwise is still under debate, even for the classical Asp-His-Ser catalytic triad. To address these key catalytic steps, the transformation of the Michaelis complex to tetrahedral complex in the covalent inhibition of two prototype serine proteases was studied: chymotrypsin (with the catalytic triad) inhibition by a peptidyl trifluoromethane and GlpG rhomboid (with Ser-His dyad) inhibition by an isocoumarin derivative. The sampled MD trajectories of averaged pKa  values of catalytic residues were QM calculated by the MD-QM/SCRF(VS) method on molecular clusters simulating the active site. Differences between concerted and stepwise mechanisms are controlled by the dynamically changing pKa  values of the catalytic residues as a function of their progressively reduced water exposure, caused by the incoming ligand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder.

    Directory of Open Access Journals (Sweden)

    James J Valdés

    Full Text Available A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions.We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases.By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level.

  1. Characterization of Bactrocera dorsalis Serine Proteases and Evidence for Their Indirect Role in Insecticide Tolerance

    Directory of Open Access Journals (Sweden)

    Ming-Zhe Hou

    2014-02-01

    Full Text Available The oriental fruit fly Bactrocera dorsalis (Hendel causes devastating losses to agricultural crops world-wide and is considered to be an economically important pest. Little is known about the digestive enzymes such as serine proteases (SPs in B. dorsalis, which are important both for energy supply and mitigation of fitness cost associated with insecticide tolerance. In this study, we identified five SP genes in the midgut of B. dorsalis, and the alignments of their deduced amino acid sequences revealed the presence of motifs conserved in the SP superfamily. Phylogenetic analyses with known SPs from other insect species suggested that three of them were trypsin-like proteases. Analyses of the expression profiles among the different developmental stages showed that all five genes were most abundant in larvae than in other stages. When larvae were continuously fed on diet containing 0.33 μg/g β-Cypermethrin, expression of all five genes were upregulated in the midgut but the larval development was delayed. Biochemical assays were consistent with the increased protease activity exhibited by SPs in the midgut after treatment with β-Cypermethrin. Taken together, these findings provide evidence for the hypothesis that enhanced SP activity may play an indirect role in relieving the toxicity stress of insecticide in B. dorsalis.

  2. Streptococcus pneumoniae Serine Protease HtrA, but Not SFP or PrtA, Is a Major Virulence Factor in Pneumonia

    NARCIS (Netherlands)

    Stoppelaar, S.F. de; Bootsma, H.J.; Zomer, A.L.; Roelofs, J.J.; Hermans, P.W.M.; Veer, C. van't; Poll, T. van der

    2013-01-01

    Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA

  3. Streptococcus pneumoniae serine protease HtrA, but not SFP or PrtA, is a major virulence factor in pneumonia

    NARCIS (Netherlands)

    de Stoppelaar, Sacha F.; Bootsma, Hester J.; Zomer, Aldert; Roelofs, Joris J. T. H.; Hermans, Peter W. M.; van 't Veer, Cornelis; van der Poll, Tom

    2013-01-01

    Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA

  4. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior*

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki

    2016-01-01

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  5. Serine protease inhibitor attenuates ovalbumin induced inflammation in mouse model of allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Sanjay Saw

    Full Text Available BACKGROUND: Serine proteases promote inflammation and tissue remodeling by activating proteinase-activated receptors, urokinase, metalloproteinases and angiotensin. In the present study, 4-(2-Aminoethyl benzenesulfonyl fluoride (AEBSF a serine protease inhibitor was evaluated for prophylactic and therapeutic treatment in mouse model of airway allergy. METHODS: BALB/c mice were sensitized by i.p route and challenged with ovalbumin. They were treated i.n. with 2, 10 and 50 µg of AEBSF, one hour before or after challenge and euthanized to collect BALF (bronchoalveolar lavage fluid, blood and lungs. Proteolytic activity, total cell/eosinophil/neutrophil count eosinophil peroxidase activity (EPO, IL-4, IL-5, IL-10, IL-13, cysteinyl leukotrienes and 8-isoprostane were determined in BALF and immunoglobulins were measured in serum. H&E and PAS stained lung sections were examined for cellular infiltration and airway inflammation. RESULTS: Mice exposed to ovalbumin and treated with PBS showed increased cellular infiltration in lungs and higher serum IgE, IgG1 and IgG2a levels as compared to sham mice. Treatment with AEBSF reduced total cells/eosinophil/neutrophil infiltration. Both prophylactic and therapeutic AEBSF treatment of 10 or 50 µg reduced serum IgE and IgG1 significantly (p<0.05 than control. AEBSF treatment reduced the proteolytic activity in BALF. IL-4 IL-5 and IL-13 levels decreased significantly (p<0.05 after AEBSF treatment while IL-10 levels increased significantly (p<0.05 in BALF. Airway inflammation and goblet cell hyperplasia reduced as demonstrated by lung histopathology, EPO activity and cysteinyl leukotrienes in BALF after treatment. AEBSF treatment also suppressed oxidative stress in terms of 8-isoprostane in BALF. Among the treatment doses, 10 or 50 µg of AEBSF were most effective in reducing the inflammatory parameters. CONCLUSIONS: Prophylactic and therapeutic treatment with serine protease inhibitor attenuates the airway

  6. Molecular cloning and tissue-specific expression analysis of mouse spinesin, a type II transmembrane serine protease 5

    International Nuclear Information System (INIS)

    Watanabe, Yoshihisa; Okui, Akira; Mitsui, Shinichi; Kawarabuki, Kentaro; Yamaguchi, Tatsuyuki; Uemura, Hidetoshi; Yamaguchi, Nozomi

    2004-01-01

    We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression

  7. Degradation of the disease-associated prion protein by a serine protease from lichens

    Science.gov (United States)

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.; Bartz, Jason C.

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  8. The charge density distribution in a model compound of the catalytic triad in serine proteases.

    Science.gov (United States)

    Overgaard, J; Schiøtt, B; Larsen, F K; Iversen, B B

    2001-09-03

    Combined low temperature (28(1) K) X-ray and neutron diffraction measurements were carried out on the co-crystallised complex of betaine, imidazole, and picric acid (1). The experimental charge density was determined and compared with ab initio theoretical calculations at the B3LYP/6-311G(d,p) level of theory. The complex serves as a model for the active site in, for example, the serine protease class of enzymes, the so-called catalytic triad. The crystal contains three short strong N-H...O hydrogen bonds (HBs) with dN...O comparison with low-barrier and single-well hydrogen bonding systems (e.g., benzoylacetone and nitromalonamide) shows that the low-barrier hydrogen bond (LBHB) state is characterized by an enormously increased hydrogen atom source contribution to the bond critical point in the HB. In this context, HB2 can be characterized as intermediate between localized HBs and delocalized LBHBs.

  9. Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania amazonensis promastigotes

    Directory of Open Access Journals (Sweden)

    José Andrés Morgado-Díaz

    2005-07-01

    Full Text Available Here we report the subcellular localization of an intracellular serine protease of 68 kDa in axenic promastigotes of Leishmania (Leishmania amazonensis, using subcellular fractionation, enzymatic assays, immunoblotting, and immunocytochemistry. All fractions were evaluated by transmission electron microscopy and the serine protease activity was measured during the cell fractionation procedure using a-N-r-tosyl-L-arginine methyl ester (L-TAME as substrate, phenylmethylsulphone fluoride (PMSF and L-1-tosylamino-2-phenylethylchloromethylketone (TPCK as specific inhibitors. The enzymatic activity was detected mainly in a membranous vesicular fraction (6.5-fold enrichment relative to the whole homogenate, but also in a crude plasma membrane fraction (2.0-fold. Analysis by SDS-PAGE gelatin under reducing conditions demonstrated that the major proteolytic activity was found in a 68 kDa protein in all fractions studied. A protein with identical molecular weight was also recognized in immunoblots by a polyclonal antibody against serine protease (anti-SP, with higher immunoreactivity in the vesicular fraction. Electron microscopic immunolocalization using the same polyclonal antibody showed the enzyme present at the cell surface, as well as in cytoplasmic membranous compartments of the parasite. Our findings indicate that the internal location of this serine protease in L. amazonensis is mainly restricted to the membranes of intracellular compartments resembling endocytic/exocytic elements.

  10. Mannan-binding lectin and mannan-binding lectin-associated serine protease 2 in acute pancreatitis

    DEFF Research Database (Denmark)

    Novovic, Srdan; Andersen, Anders Møller; Ersbøll, Annette Kjær

    2011-01-01

    Complement activation may play a prominent role in acute pancreatitis (AP). Mannan-binding lectin (MBL) and MBL-associated serine protease 2 (MASP-2) participate in complement activation. The objective of the present study was to evaluate the role of MBL and MASP-2 as markers in AP with regard...

  11. The Serine Protease Inhibitor Neuroserpin Is Required for Normal Synaptic Plasticity and Regulates Learning and Social Behavior

    Science.gov (United States)

    Reumann, Rebecca; Vierk, Ricardo; Zhou, Lepu; Gries, Frederice; Kraus, Vanessa; Mienert, Julia; Romswinkel, Eva; Morellini, Fabio; Ferrer, Isidre; Nicolini, Chiara; Fahnestock, Margaret; Rune, Gabriele; Glatzel, Markus; Galliciotti, Giovanna

    2017-01-01

    The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the…

  12. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway.

    Directory of Open Access Journals (Sweden)

    Simone L Reynolds

    2014-05-01

    Full Text Available Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics.

  13. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    Directory of Open Access Journals (Sweden)

    Little Tom J

    2009-06-01

    Full Text Available Abstract Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the An. gambiae species complex in both East and West Africa. Results Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes. Conclusion It is well known that phylogenetic and population history in the An. gambiae complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the An. gambiae genome are discussed.

  14. Newly generated cells are increased in hippocampus of adult mice lacking a serine protease inhibitor

    Directory of Open Access Journals (Sweden)

    Sticker Melanie

    2010-06-01

    Full Text Available Abstract Background Neurogenesis in the hippocampal dentate gyrus and the subventricular zone occurs throughout the life of mammals and newly generated neurons can integrate functionally into established neuronal circuits. Neurogenesis levels in the dentate gyrus are modulated by changes in the environment (enrichment, exercise, hippocampal-dependent tasks, NMDA receptor (NMDAR activity, sonic hedgehog (SHH and/or other factors. Results previously, we showed that Protease Nexin-1 (PN-1, a potent serine protease inhibitor, regulates the NMDAR availability and activity as well as SHH signaling. Compared with wild-type (WT, we detected a significant increase in BrdU-labeled cells in the dentate gyrus of mice lacking PN-1 (PN-1 -/- both in controls and after running exercise. Patched homologue 1 (Ptc1 and Gli1 mRNA levels were higher and Gli3 down-regulated in mutant mice under standard conditions and to a lesser extent after running exercise. However, the number of surviving BrdU-positive cells did not differ between WT and PN-1 -/- animals. NMDAR availability was altered in the hippocampus of mutant animals after exercise. Conclusion All together our results indicate that PN-1 controls progenitors proliferation through an effect on the SHH pathway and suggest an influence of the serpin on the survival of newly generated neurons through modulation of NMDAR availability.

  15. The putative serine protease inhibitor Api m 6 from Apis mellifera venom: recombinant and structural evaluation.

    Science.gov (United States)

    Michel, Y; McIntyre, M; Ginglinger, H; Ollert, M; Cifuentes, L; Blank, S; Spillner, E

    2012-01-01

    Immunoglobulin (Ig) E-mediated reactions to honeybee venom can cause severe anaphylaxis, sometimes with fatal consequences. Detailed knowledge of the allergic potential of all venom components is necessary to ensure proper diagnosis and treatment of allergy and to gain a better understanding of the allergological mechanisms of insect venoms. Our objective was to undertake an immunochemical and structural evaluation of the putative low-molecular-weight serine protease inhibitor Api m 6, a component of honeybee venom. We recombinantly produced Api m 6 as a soluble protein in Escherichia coli and in Spodoptera frugiperda (Sf9) insect cells.We also assessed specific IgE reactivity of venom-sensitized patients with 2 prokaryotically produced Api m 6 variants using enzyme-linked immunosorbent assay. Moreover, we built a structural model ofApi m 6 and compared it with other protease inhibitor structures to gain insights into the function of Api m 6. In a population of 31 honeybee venom-allergic patients, 26% showed specific IgE reactivity with prokaryotically produced Api m 6, showing it to be a minor but relevant allergen. Molecular modeling of Api m 6 revealed a typical fold of canonical protease inhibitors, supporting the putative function of this venom allergen. Although Api m 6 has a highly variant surface charge, its epitope distribution appears to be similar to that of related proteins. Api m 6 is a honeybee venom component with IgE-sensitizing potential in a fraction of venom-allergic patients. Recombinant Api m 6 can help elucidate individual component-resolved reactivity profiles and increase our understanding of immune responses to low-molecular-weight allergens

  16. Protease purification and characterization of a serine protease inhibitor from Egyptian varieties of soybean seeds and its efficacy against Spodoptera littoralis

    Directory of Open Access Journals (Sweden)

    El-latif Ashraf Oukasha Abd

    2015-01-01

    Full Text Available Serine inhibitors have been described in many plant species and are universal throughout the plant kingdom. Trypsin inhibitors are the most common type. In the present study, trypsin and chymotrypsin inhibitory activity was detected in the seed flour extracts of four Egyptian varieties of soybean (Glycine max. The soybean variety, Giza 22, was found to have higher trypsin and chymotrypsin inhibitory potential compared to other tested soybean varieties. For this reason, Giza 22 was selected for further purification studies which used ammonium sulphate fractionation and DEAE-Sephadex A-25 column. Soybean purified proteins showed a single band on SDS-PAGE corresponding to a molecular mass of 17.9 kDa. The purified inhibitor was stable at temperatures below 60°C and was active at a wide range of pH, from 2 to 12 pH. The kinetic analysis revealed a non-competitive type of inhibition against trypsin and chymotrypsin enzymes. The inhibitor constant (Ki values suggested that the inhibitor has higher affinity toward a trypsin enzyme than to a chymotrypsin enzyme. Purified inhibitor was found to have deep and negative effects on the mean larval weight, larval mortality, pupation, and mean pupal weight of Spodoptera littoralis. It may be concluded, that soybean protease inhibitor gene(s could be potential targets for those future studies which are concerned with developing insect resistant transgenic plants

  17. Dual function of a bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals.

    Science.gov (United States)

    Choo, Young Moo; Lee, Kwang Sik; Yoon, Hyung Joo; Kim, Bo Yeon; Sohn, Mi Ri; Roh, Jong Yul; Je, Yeon Ho; Kim, Nam Jung; Kim, Iksoo; Woo, Soo Dong; Sohn, Hung Dae; Jin, Byung Rae

    2010-05-03

    Bee venom contains a variety of peptides and enzymes, including serine proteases. While the presence of serine proteases in bee venom has been demonstrated, the role of these proteins in bee venom has not been elucidated. Furthermore, there is currently no information available regarding the melanization response or the fibrin(ogen)olytic activity of bee venom serine protease, and the molecular mechanism of its action remains unknown. Here we show that bee venom serine protease (Bi-VSP) is a multifunctional enzyme. In insects, Bi-VSP acts as an arthropod prophenoloxidase (proPO)-activating factor (PPAF), thereby triggering the phenoloxidase (PO) cascade. Bi-VSP injected through the stinger induces a lethal melanization response in target insects by modulating the innate immune response. In mammals, Bi-VSP acts similarly to snake venom serine protease, which exhibits fibrin(ogen)olytic activity. Bi-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products, defining roles for Bi-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings provide a novel view of the mechanism of bee venom in which the bee venom serine protease kills target insects via a melanization strategy and exhibits fibrin(ogen)olytic activity.

  18. Effects of a marine serine protease inhibitor on viability and morphology of Trypanosoma cruzi, the agent of Chagas disease.

    Science.gov (United States)

    de Almeida Nogueira, Natália Pereira; Morgado-Díaz, José Andrés; Menna-Barreto, Rubem Figueiredo Sadok; Paes, Marcia Cristina; da Silva-López, Raquel Elisa

    2013-10-01

    It has been reported that serine peptidase activities of Trypanosoma cruzi play crucial roles in parasite dissemination and host cell invasion and therefore their inhibition could affect the progress of Chagas disease. The present study investigates the interference of the Stichodactyla helianthus Kunitz-type serine protease inhibitor (ShPI-I), a 55-amino acid peptide, in T. cruzi serine peptidase activities, parasite viability, and parasite morphology. The effect of this peptide was also studied in Leishmania amazonensis promastigotes and it was proved to be a powerful inhibitor of serine proteases activities and the parasite viability. The ultrastructural alterations caused by ShPI-I included vesiculation of the flagellar pocket membrane and the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole. ShPI-I, which showed itself to be an important T. cruzi serine peptidase inhibitor, reduced the parasite viability, in a dose and time dependent manner. The maximum effect of peptide on T. cruzi viability was observed when ShPI-I at 1×10(-5)M was incubated for 24 and 48h which killed completely both metacyclic trypomastigote and epimastigote forms. At 1×10(-6)M ShPI-I, in the same periods of time, reduced parasite viability about 91-95% respectively. Ultrastructural analysis demonstrated the formation of concentric membranar structures especially in the cytosol, involving organelles and small vesicles. Profiles of endoplasmic reticulum were also detected, surrounding cytosolic vesicles that resembled autophagic vacuoles. These results suggest that serine peptidases are important in T. cruzi physiology since the inhibition of their activity killed parasites in vitro as well as inducing important morphological alterations. Protease inhibitors thus appear to have a potential role as anti-trypanosomatidal agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Expression and characterization of a thermostable serine protease (TfpA) from Thermomonospora fusca YX in Pichia pastoris.

    Science.gov (United States)

    Kim, Taewan; Lei, Xin Gen

    2005-08-01

    A serine protease produced by Thermomonospora fusca YX (TfpA) is heat-stable (up to 85 degrees C) and has a broad pH activity range and strong resistance to detergents. The objective of this study was to determine if the methylotropic yeast Pichia pastoris could express TfpA extracellularly. A 1.0-kb DNA fragment (tfpA) encoding the pro-peptide and mature protein of TfpA was cloned into expression vectors pPICZalphaA (inducible) and pGAPZalphaA (constitutive) and introduced into P. pastoris by electroporation. Expression of r-TfpA was greater in the inducible system than in the constitutive one, producing 135 U ml(-1) medium supernatant 6 days after methanol induction. The r-TfpA was not glycosylated (21.7 kDa), and had pH and temperature optima of 8.5 and 80 degrees C, respectively, using azocasein as a substrate. In conclusion, P. pastoris can be used as a host to produce extracellular r-TfpA, and expression efficiency may be improved by optimizing fermentation conditions and modifying factors related to protein expression and stability.

  20. Serine protease isoforms in Gloydius intermedius venom: Full sequences, molecular phylogeny and evolutionary implications.

    Science.gov (United States)

    Yang, Zhang-Min; Yu, Hui; Liu, Zhen-Zhen; Pei, Jian-Zhu; Yang, Yu-E; Yan, Su-Xian; Zhang, Cui; Zhao, Wen-Long; Wang, Zhe-Zhi; Wang, Ying-Ming; Tsai, Inn-Ho

    2017-07-05

    Nine distinct venom serine proteases (vSPs) of Gloydius intermedius were studied by transcriptomic, sub-proteomic and phylogenetic analyses. Their complete amino acid sequences were deduced after Expression Sequence Tag (EST) analyses followed by cDNA cloning and sequencing. These vSPs appear to be paralogs and contain the catalytic triads and 1-4 potential N-glycosylation sites. Their relative expression levels evaluated by qPCR were grossly consistent with their EST hit-numbers. The major vSPs were purified by HPLC and their N-terminal sequences matched well to the deduced sequences, while fragments of the minor vSPs were detected by LC-MS/MS identification. Specific amidolytic activities of the fractions from HPLC and anion exchange separation were assayed using four chromogenic substrates, respectively. Molecular phylogenetic tree based on the sequences of these vSPs and their orthologs revealed six major clusters, one of them covered four lineages of plasminogen activator like vSPs. N-glycosylation patterns and variations for the vSPs are discussed. The high sequence similarities between G. intermedius vSPs and their respective orthologs from American pitvipers suggest that most of the isoforms evolved before Asian pitvipers migrated to the New World. Our results also indicate that the neurotoxic venoms contain more kallikrein-like vSPs and hypotensive components than the hemorrhagic venoms. Full sequences and expression levels of nine paralogous serine proteases (designated as GiSPs) of Gloydius intermedius venom have been studied. A kallikrein-like enzyme is most abundant and four isoforms homologous to venom plasminogen-activators are also expressed in this venom. Taken together, the present and previous data demonstrate that the neurotoxic G. intermedius venoms contain more hypotensive vSPs relative to other hemorrhagic pitviper venoms and the pitviper vSPs are highly versatile and diverse. Their structure-function relationships remain to be explored and

  1. Horseshoe crab coagulation factor B. A unique serine protease zymogen activated by cleavage of an Ile-Ile bond.

    Science.gov (United States)

    Muta, T; Oda, T; Iwanaga, S

    1993-10-05

    Horseshoe crab factor B is an intracellular serine protease zymogen involved in the bacterial endotoxin-responsive hemolymph coagulation cascade. cDNAs for factor B were isolated utilizing a polymerase chain reaction product using two primers derived from the partial amino acid sequence. The cloned cDNA of 1928 base pairs encoded 400 amino acid residues of factor B precursor. The first 23 amino acid residues constitute a presumed prepropeptide that may be processed by both a signal peptidase and a processing protease, similar to mammalian vitamin K-dependent protease precursors. The mature protein consists of 377 amino acids with a calculated molecular mass of 40,570 Da. The overall structure is highly homologous to that of limulus proclotting enzyme (35.9% identity), the substrate for active factor B in the cascade. Like the proclotting enzyme, mature factor B is composed of an amino-terminal "clip"-like domain and a carboxyl-terminal serine protease domain homologous to that of human plasma prekallikrein (36.5%). Internal sequences encode a unique activation peptide. Surprisingly, the cleavage sites of the zymogen factor B for activation by limulus active factor C were found to be an Arg-Ser and an Ile-Ile bond, the latter of which has not been found in any other protease zymogens. These cleavages result in the release of the activation peptide, which consists of 21 residues with a carboxyl-terminal isoleucine. These results indicate that the intracellular clotting system of the limulus hemocyte, like mammalian plasma clotting cascade, proceeds with the sequential activation of three serine protease zymogens: factor C, factor B, and proclotting enzyme.

  2. A cyclic peptidic serine protease inhibitor: increasing affinity by increasing peptide flexibility.

    Directory of Open Access Journals (Sweden)

    Baoyu Zhao

    Full Text Available Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC, of the serine protease murine urokinase-type plasminogen activator (uPA. We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden.

  3. Optimization of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system.

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  4. Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease

    Science.gov (United States)

    Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo

    2015-01-01

    The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.

  5. STRUCTURAL ASPECTS OF STRONG INHIBITION AND ROLE OF SCAFFOLD FOR SERINE PROTEASE INHIBITORS

    Directory of Open Access Journals (Sweden)

    Jhimli Dasgupta

    2011-12-01

    Full Text Available Canonical serine protease inhibitors inhibit their cognate enzymes by binding tightly at the enzyme active site in a substrate-like manner, being cleaved extremely slowly compared to a true substrate. They interact with cognate enzymes through P3-P2 region of the inhibitory loop while the scaffold hardly makes any contact. Neighbouring scaffolding residues like arginine or asparagine shape-up the inhibitory loop and religate the cleaved scissile bond. The specificity of the inhibitor can be altered by mutating the hyper solvent accessible P1 residue without changing loop-scaffold interactions. To understand the loop-scaffold compatibility, we prepared three chimeric proteins ECIL-WCIS , ETIL-WCIS , and STIL-WCIS , where the inhibitory loops of ECI, ETI, and STI were placed on the scaffold of their homologue WCI. Results showed that although ECIL-WCIS and STIL-WCIS behave like inhibitors, ETIL-WCIS behaves like a substrate. Crystal structure of ETIL-WCIS and its comparison with ETI indicated that three novel scaffolding residues Trp88, Arg74, and Tyr113 in ETI act as barrier to confine the inhibitory loop to canonical conformation. Absence of this barrier in the scaffold of WCI makes the inhibitory loop flexible in ETIL-WCIS leading to a loss of canonical conformation, explaining its substrate-like behaviour. Furthermore, complex structures of the inhibitors with their cognate enzymes indicate that rigidification of the inhibitory loop at the enzyme active site is necessary for efficient inhibition.

  6. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential.

    Science.gov (United States)

    Verma, Mahendra Kumar; Pulicherla, K K

    2016-04-01

    Enzymes are the most versatile molecules in the biological world. These amazing molecules play an integral role in the regulation of various metabolic pathways and physiology subsequently. Promiscuity of an enzyme is the capacity to catalyze additional biochemical reactions besides their native one. Catalytic promiscuity has shown great impact in enzyme engineering for commercial enzyme and therapeutics with natural or engineered catalytic promiscuity. The earthworm serine protease (ESP) is a classic example of enzyme promiscuity and studied for its therapeutic potential over the last few decades. The ESP was reported for several therapeutic properties and fibrinolytic activity has been much explored. ESP, a complex enzyme exists as several isoforms of molecular weight ranging from 14 to 33 kDa. The fibrinolytic capacity of the enzyme has been studied in different species of earthworm and molecular mechanism is quite different from conventional thrombolytics. Cytotoxic and anti-tumor activities of ESP were evaluated using several cancer cell lines. Enzyme had shown tremendous scope in fighting against plant viruses and microbes. ESP is also reported for anti-inflammatory activity and anti-oxidant property. Apart from these, recently, ESP is reported for DNase activity. The daunting challenge for researchers is to understand the molecular mechanism for such diverse properties and possibility of enzyme promiscuity. This review emphasizes molecular mechanism of ESP governing various biochemical reactions. Further, the concept of enzyme promiscuity in ESP towards development of novel enzyme based drugs has been reviewed in this study.

  7. Association of serine protease with the rise of intracellular calcium in cytotoxic T lymphocytes.

    Science.gov (United States)

    Koo, G C; Luk, Y; Talento, A; Wu, J; Sirotina, A; Fischer, P A; Blake, J T; Nguyen, M P; Parsons, W; Poe, M

    1996-12-15

    The precise role of the granular enzyme A (granzyme A), a serine protease, in the lytic process of cytotoxic T lymphocytes (CTL) is not clear. We have recently constructed a CTL line transfected with the antisense gene of granzyme A (a-GrA). These a-GrA CTL had lower GrA activity as well as decreased lytic activities, as measured by 51Cr and by DNA degradation assays. Furthermore, at low effector:target ratio (1:8) in prolonged lytic assays, they could not lyse targets as rapidly as the control CTL. When we examined their ability to exocytose BLT (CBZ-L-lys-thiobenzyl)-esterase in the presence of anti-CD3 antibody, the a-GrA CTL exocytosed poorly compared to the parental CTL or control transfectant with a CAT gene. Most strikingly, a-GrA cells could not release intracellular stores of Ca2+ in response to anti-CD3 induction, although the Ca2+ flux was normal when they were stimulated with ionomycin. When the parental CTL was treated with a specific benzyllactam inhibitor of BLT-esterase or N-tosyl-L-phenylalanylchloromethyl ketone, the Ca2+ flux induced by anti-CD3 was also suppressed. We propose that granzyme A is involved in the signal transduction pathway that causes the rise of the intracellular calcium.

  8. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    OpenAIRE

    Rodrigues, Janneth; Oliveira, Giselle A.; Kotsyfakis, Michalis; Dixit, Rajnikant; Molina-Cruz, Alvaro; Jochim, Ryan; Barillas-Mury, Carolina

    2012-01-01

    BACKGROUND: Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. METHODOLOGY/PRINCIPAL FINDINGS: We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the sa...

  9. Effects of two serine proteases from Bothrops pirajai snake venom on the complement system and the inflammatory response.

    Science.gov (United States)

    Menaldo, Danilo L; Bernardes, Carolina P; Pereira, Juliana C; Silveira, Denise S C; Mamede, Carla C N; Stanziola, Leonilda; Oliveira, Fábio de; Pereira-Crott, Luciana S; Faccioli, Lúcia H; Sampaio, Suely V

    2013-04-01

    The present study aimed to evaluate the effects of two serine proteases from Bothrops pirajai snake venom, named BpirSP27 and BpirSP41, on the complement system and the inflammatory response. The effects of these enzymes on the human complement system were assessed by kinetic hemolytic assays, evaluating the hemolysis promoted by the classical/lectin (CP/LP) and alternative (AP) pathways after incubation of normal human serum with the serine proteases. The results suggested that these enzymes were able to induce modulation of CP/LP and AP at different levels: BpirSP41 showed higher inhibitory effects on the hemolytic activity of CP/LP than BpirSP27, with inhibition values close to 40% and 20%, respectively, for the highest concentration assayed. Regarding AP, both enzymes showed percentages of inhibition of the hemolytic activity around 20% for the highest concentrations tested, indicating similar effects on this complement pathway. The proinflammatory effects of B. pirajai serine proteases were evaluated regarding their ability to induce paw edema, variations in the pain threshold and leukocyte recruitment at the site of injection. Both showed mild effects on these inflammatory processes, leading to low levels of increase of paw volumes and decrease in pain thresholds in rats up to 6 h after injection, and inducing neutrophil recruitment without significant increases in the total number of leukocytes in the inflammatory exudates after 6 and 24 h of administration into mice peritoneal cavity. These results suggest that serine proteases must present a minor role in the inflammation caused by B. pirajai snake venom. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    Czech Academy of Sciences Publication Activity Database

    Rodrigues, J.; Oliveira, G. A.; Kotsyfakis, Michalis; Dixit, R.; Molina-Cruz, A.; Jochim, R.; Barillas-Mury, C.

    2012-01-01

    Roč. 7, č. 4 (2012), e35210 E-ISSN 1932-6203 Institutional support: RVO:60077344 Keywords : malaria * mosquito * serine protease * sporozoites * ookinetes * gene silencing * midgut * salivary glands * Plasmodium falciparum * Anopheles gambiae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0035210

  11. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    Directory of Open Access Journals (Sweden)

    André Weiss

    Full Text Available EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI, α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.

  12. A cyclohexanecarboxamide derivative with inhibitory effects on Schistosoma mansoni cercarial serine protease and penetration of mice skin by the parasite.

    Science.gov (United States)

    Bahgat, Mahmoud; Aboul-Enein, Mohamed N; El Azzouny, Aida A; Maghraby, Amany; Ruppel, Andreas; Soliman, Wael M

    2009-01-01

    A cyclohexanecarboxamide derivative, N-phenyl-N-[1-(piperidine-1-carbonyl)cyclohexyl] benzamide (MNRC-5), was evaluated for its inhibitory effects on Schistosoma mansoni cercarial serine protease activity and cercarial penetration. MNRC-5 exerted an inhibitory effect on S. mansoni cercarial serine protease at serial concentrations of the specific chromogenic substrate Boc-Val-Leu-Gly-Arg-PNA for such enzyme family and the inhibitory coefficient (Ki) value was deduced. Moreover, topical treatment of mice tails with the most potent inhibitory concentration of MNRC-5 formulated in jojoba oil successfully blocked cercarial penetration as demonstrated by a significant reduction (75%; p jojoba oil base containing no MNRC-5. In addition, the IgM and IgG reactivities to crude S. mansoni cercarial, worm and egg antigens were generally lower in sera from treated infected mice than untreated infected mice. In conclusion, we report on a new serine protease inhibitor capable for blocking penetration of host skin by S. mansoni cercariae as measured by lowering worm burden and decrease in the levels of both IgM and IgG towards different bilharzial antigens upon topical treatment.

  13. Isolation and Biochemical Characterization of a New Thrombin-Like Serine Protease from Bothrops pirajai Snake Venom

    Directory of Open Access Journals (Sweden)

    Kayena D. Zaqueo

    2014-01-01

    Full Text Available This paper presents a novel serine protease (SP isolated from Bothrops pirajai, a venomous snake found solely in Brazil that belongs to the Viperidae family. The identified SP, named BpirSP-39, was isolated by three chromatographic steps (size exclusion, bioaffinity, and reverse phase chromatographies. The molecular mass of BpirSP-39 was estimated by SDS-PAGE and confirmed by mass spectrometry (39,408.32 Da. The protein was able to form fibrin networks, which was not observed in the presence of serine protease inhibitors, such as phenylmethylsulfonyl fluoride (PMSF. Furthermore, BpirSP-39 presented considerable thermal stability and was apparently able to activate factor XIII of the blood coagulation cascade, unlike most serine proteases. BpirSP-39 was capable of hydrolyzing different chromogenic substrates tested (S-2222, S-2302, and S-2238 while Cu2+ significantly diminished BspirSP-39 activity on the three tested substrates. The enzyme promoted platelet aggregation and also exhibited fibrinogenolytic, fibrinolytic, gelatinolytic, and amidolytic activities. The multiple alignment showed high sequence similarity to other thrombin-like enzymes from snake venoms. These results allow us to conclude that a new SP was isolated from Bothrops pirajai snake venom.

  14. Serine protease PrtA from Streptococcus pneumoniae plays a role in the killing of S. pneumoniae by apolactoferrin.

    Science.gov (United States)

    Mirza, Shaper; Wilson, Landon; Benjamin, William H; Novak, Jan; Barnes, Stephen; Hollingshead, Susan K; Briles, David E

    2011-06-01

    It is known that apolactoferrin, the iron-free form of human lactoferrin, can kill many species of bacteria, including Streptococcus pneumoniae. Lactoferricin, an N-terminal peptide of apolactoferrin, and fragments of it are even more bactericidal than apolactoferrin. In this study we found that apolactoferrin must be cleaved by a serine protease in order for it to kill pneumococci. The serine protease inhibitors were able to block killing by apolactoferrin but did not block killing by a lactoferrin-derived peptide. Thus, the killing of pneumococci by apolactoferrin appears to require a protease to release a lactoferricin-like peptide(s). Incubation of apolactoferrin with growing pneumococci resulted in a 12-kDa reduction in its molecular mass, of which about 7 to 8 kDa of the reduction was protease dependent. Capsular type 2 and 19F strains with mutations in the gene encoding the major cell wall-associated serine protease, prtA, lost much of their ability to degrade apolactoferrin and were relatively resistant to killing by apolactoferrin (P mass by about 8 kDa, and greatly enhance the killing activity of the solution containing the apolactoferrin and its cleavage products. Mass spectroscopy revealed that PrtA makes a major cut between amino acids 78 and 79 of human lactoferrin, removing the N-terminal end of the molecule (about 8.6 kDa). The simplest interpretation of these data is that the mechanism by which apolactoferrin kills Streptococcus pneumoniae requires the release of a lactoferricin-like peptide(s) and that it is this peptide(s), and not the intact apolactoferrin, which kills pneumococci.

  15. In vivo and in vitro inhibition of Spodoptera littoralis gut-serine protease by protease inhibitors isolated from maize and sorghum seeds.

    Science.gov (United States)

    El-latif, Ashraf Oukasha Abd

    2014-11-01

    Seeds of cereals (Gramineae) are a rich source of serine proteinase inhibitors of most of the several inhibitor families. In the present study, trypsin and chymotrypsin inhibitory activities was detected in the seed flour extracts of three varieties of maize (Zea maize) and six varieties of sorghum (Sorghum bicolor). The maize variety, Hi Teck 2031 and the sorghum variety, Giza 10 were found to have higher trypsin and chymotrypsin inhibitory potentials compared to other tested varieties for which they have been selected for further purification studies using ammonium sulfate fractionation and DEAE-Sephadex A-25 column. Maize and sorghum purified proteins showed a single band on SDS-PAGE corresponding to molecular mass of 20.0 and 15.2 kDa for maize and sorghum PIs respectively. The purified inhibitors were stable at temperature below 60 °C and were active at wide range of pH from 2 to 12 pH. The kinetic analysis revealed non-competitive type of inhibition for both inhibitors against both enzymes. The inhibitor constant (Ki) values suggested high affinity between inhibitors and enzymes. Purified inhibitors were found to have deep and negative effects on the mean larval weight, larval mortality, pupation and mean pupal weight of S.littoralis where maize PI was more effective than sorghum PI. It may be concluded that maize and sorghum protease inhibitor gene(s) could be potential targets for future studies in developing insect resistant transgenic plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    Full Text Available Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  17. Distribution of serine protease autotransporters of Enterobacteriaceae in typical and atypical enteroaggregative Escherichia coli.

    Science.gov (United States)

    Andrade, Fernanda B; Abreu, Afonso G; Nunes, Kamila O; Gomes, Tânia A T; Piazza, Roxane M F; Elias, Waldir P

    2017-06-01

    Enteroaggregative Escherichia coli (EAEC) is an agent of acute and persistent diarrhea worldwide, categorized in typical or atypical subgroups. Some EAEC virulence factors are members of the serine protease autotransporters of Enterobacteriaceae (SPATE). The presence of SPATE-encoding genes of different E. coli pathotypes was searched in a large collection of EAEC strains, and a possible association between SPATEs and E. coli phylogroups was investigated. Among 108 typical and 85 atypical EAEC, pic was the most prevalent gene, detected in 47.1% of the strains, followed by sat (24.3%), espI (21.2%), pet (19.2%), sepA (13.5%), sigA (4.1%), eatA (4.1%), vat (1.0%), espP and tsh, detected in one strain (0.5%) each; while epeA and espC were not detected. Phylogenetic analysis demonstrated that 39.9% of the strains belonged to group A, 23.3% to B1, 10.9% to B2, 7.8% to D, 8.8% to E and 1.5% to F. The majority of the SPATE genes were distributed in typical and atypical strains without association with any phylogroup. In addition, pic and pet were strongly associated with typical EAEC and sepA was detected in close association with atypical EAEC. Our data indicate that SPATEs may represent important virulence traits in both subgroups of EAEC. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evolutional and functional analysis of a serine protease in Spodoptera litura.

    Science.gov (United States)

    Yang, Li; Tang, Zhuo; Liu, Wanfei; Xiao, Jingfa; Hu, Songnian; Yang, Li; Liu, Wanfei; Deng, Huimin; Feng, Qili

    2012-11-01

    Spodoptera litura is a threatening agricultural insect in tropical and subtropical areas and accounts for tremendous annual crop losses. As seen in virtually all insect species, serine proteases (SPs) are crucial to S. litura. The expression pattern of SPs from the midgut of S. litura was studied through expressed sequence tags (ESTs) analysis. One of SP (SlSP1) was chosen for detailed study, because the expression of the gene was midgut and larvae specific. SlSP1 was conducted as a model of its evolution, structure, and potential binding activity with corresponding substrates. SlSP1 is composed of 255 amino acids including a signal peptide at N-terminal followed by a putative activation peptide and the mature protein along with five putative phosphorylation sites, three disulphide bridges, and two N-glycosylation positions. At least nine conserved motifs were obtained in multiple sequence alignments. Some conserved residues, such as the catalytic triad His84, Asp127, and Ser229 as well as six cysteines at position 66, 82, 194, 211, 223, and 247, were examined. After homology modeling and molecular dynamics simulation, the resultant three-dimensional (3D) structure of SlSP1 was docked with the substrates 2PTC-Arg and 2PTC-Lys, respectively. Molecular Mechanic/Poisson-Boltzmann surface area analysis was applied to anticipate optimal binding mode and crucial active sites of this enzyme. The residues Trp28, Gly187, Aso188, Arg249, Ile250, Lys246, and Lys278 are crucial for the substrate binding and molecule process. This information can be used in logical design of SPs inhibitors. New inhibitors may be a basis for development of a new pest control technology. © 2012 Wiley Periodicals, Inc.

  19. The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host

    Science.gov (United States)

    Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B. Brett; Turvey, Stuart E.

    2015-01-01

    Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed “protein involved in colonization,” or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system. PMID:25895966

  20. A novel anti-plant viral protein from coelomic fluid of the earthworm Eisenia foetida: purification, characterization and its identification as a serine protease.

    Science.gov (United States)

    Ueda, Mitsuhiro; Noda, Kanako; Nakazawa, Masami; Miyatake, Kazutaka; Ohki, Satoshi; Sakaguchi, Minoru; Inouye, Kuniyo

    2008-12-01

    A novel protein showing strong antiviral activities against cucumber mosaic virus (CMV) and tomato mosaic virus (TMV) was purified from the coelomic fluid of the earthworm Eisenia foetida. The protein was characterized as a cold-adapted serine protease. Its molecular weight was estimated to be 27,000 by SDS-PAGE. The enzyme was most active at pH 9.5 and 40-50 degrees C. The protease activity at 4 degrees C was 60% of that obtained at the optimal temperature. The activity was suppressed by various serine protease inhibitors. Partial N-terminal amino acid sequence of the enzyme showed homology with serine proteases of earthworms, E. foetida and Lumbricus rubellus previously studied. Our results suggest that the enzyme can be applicable as a potential antiviral factor against CMV, TMV, and other plant viruses.

  1. The chaperone and potential mannan-binding lectin (MBL) co-receptor calreticulin interacts with MBL through the binding site for MBL-associated serine proteases

    DEFF Research Database (Denmark)

    Pagh, Rasmus; Duus, Karen; Laursen, Inga

    2008-01-01

    was immobilized on a solid surface or bound to mannan on a surface. The binding was non-covalent and biphasic with an initial salt-sensitive phase followed by a more stable salt-insensitive interaction. For plasma-derived MBL, known to be complexed with MBL-associated serine proteases (MASPs), no binding...... with calreticulin. Comparative analysis of MBL with complement component C1q, its counterpart of the classical pathway, revealed that they display similar binding characteristics for calreticulin, providing further indication that calreticulin is a common co-receptor/chaperone for both proteins. In conclusion......The chaperone calreticulin has been suggested to function as a C1q and collectin receptor. The interaction of calreticulin with mannan-binding lectin (MBL) was investigated by solid-phase binding assays. Calreticulin showed saturable and time-dependent binding to recombinant MBL, provided that MBL...

  2. Tri-domain Bifunctional Inhibitor of Metallocarboxypeptidases A and Serine Proteases Isolated from Marine Annelid Sabellastarte magnifica*

    Science.gov (United States)

    Alonso-del-Rivero, Maday; Trejo, Sebastian A.; Reytor, Mey L.; Rodriguez-de-la-Vega, Monica; Delfin, Julieta; Diaz, Joaquin; González-González, Yamile; Canals, Francesc; Chavez, Maria Angeles; Aviles, Francesc X.

    2012-01-01

    This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar Ki values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature. PMID:22411994

  3. Insight into the intermolecular recognition mechanism involved in complement component 4 activation through serine protease-trypsin.

    Science.gov (United States)

    Sinha, Vikrant Kumar; Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2018-02-01

    Serine protease cleaved-complement component 4 (C4) at sessile loop, which is significant for completion of lectin and classical complement pathways at the time of infections. The co-crystalized structure of C4 with Mannose-binding protein-associated serine protease 2 (MASP2) provided the structural and functional aspects of its interaction and underlined the C4 activation by MASP2. The same study also revealed the significance of complement control protein (CCP) domain through mutational study, where mutated CCP domain led to the inhibition of C4 activation. However, the interaction of trypsin serine domain with C4α sessile loop revealed another aspect of C4 activation. The human C4 cleavage by Trypsin (Tryp) in a control manner was explored but not yet revealed the identification of cleaved fragments. Hence, the present study investigated the Tryp mediated C4 activation using computational approach (protein-protein docking and molecular dynamics simulation) by comparing with the co-crystalized structure of C4-MASP2. Docking result identified the crucial interacting residues Gly219, Gln178, and Asn102 of Tryp catalytic pocket which were interacting with Arg756 and Glu759 (sessile loop) of α-Chain (C4) in a similar manner to C4-MASP2 co-crystallized complex. Moreover, MD simulation results and mutational study underlined the conformational rearrangements in the C4 due to the Tryp interaction. Comparative analysis of C4 alone, C4-Tryp, and C4-MASP2 revealed the impact of Tryp on C4 was similar as MASP2. These studies designate the role of sessile loop in the interaction with serine domain, which could be useful to understand the various interactions of C4 with other complement components.

  4. Apical serine protease activity is necessary for assembly of a high-resistance renal collecting duct epithelium

    DEFF Research Database (Denmark)

    Steensgaard, Mette; Svenningsen, Per; Tinning, Anne R

    2010-01-01

    Abstract AIM: We hypothesized that the serine protease prostasin is necessary for differentiation of a high resistance renal collecting duct epithelium governed by glucocorticoid. METHODS: Postnatal rat kidney and adult human kidney was used to study expression and localization of prostasin...... 21) and was detected in collecting ducts. Immunoreactive prostasin was associated with collecting ducts and loops of Henle in human kidney. In rat, adrenalectomy at day 10 had no effect on prostasin mRNA level in kidney at day 20. Cultured M-1 cells exhibited parallel increases in prostasin m...

  5. Optimization of Serine Protease Purification from Mango (Mangifera indica cv. Chokanan Peel in Polyethylene Glycol/Dextran Aqueous Two Phase System

    Directory of Open Access Journals (Sweden)

    Abdul Manap Mohd Yazid

    2012-03-01

    Full Text Available Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG/dextran-based aqueous two-phase system (ATPS to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000–12,000 g·mol−1, tie line length (−3.42–35.27%, NaCl (−2.5–11.5% and pH (4.5–10.5 on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2 purification factor (14.37 and yield (97.3% of serine protease were obtained in the presence of 8000 g·mol−1 of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  6. Mutations in SERPINB7, Encoding a Member of the Serine Protease Inhibitor Superfamily, Cause Nagashima-type Palmoplantar Keratosis

    Science.gov (United States)

    Kubo, Akiharu; Shiohama, Aiko; Sasaki, Takashi; Nakabayashi, Kazuhiko; Kawasaki, Hiroshi; Atsugi, Toru; Sato, Showbu; Shimizu, Atsushi; Mikami, Shuji; Tanizaki, Hideaki; Uchiyama, Masaki; Maeda, Tatsuo; Ito, Taisuke; Sakabe, Jun-ichi; Heike, Toshio; Okuyama, Torayuki; Kosaki, Rika; Kosaki, Kenjiro; Kudoh, Jun; Hata, Kenichiro; Umezawa, Akihiro; Tokura, Yoshiki; Ishiko, Akira; Niizeki, Hironori; Kabashima, Kenji; Mitsuhashi, Yoshihiko; Amagai, Masayuki

    2013-01-01

    “Nagashima-type” palmoplantar keratosis (NPPK) is an autosomal recessive nonsyndromic diffuse palmoplantar keratosis characterized by well-demarcated diffuse hyperkeratosis with redness, expanding on to the dorsal surfaces of the palms and feet and the Achilles tendon area. Hyperkeratosis in NPPK is mild and nonprogressive, differentiating NPPK clinically from Mal de Meleda. We performed whole-exome and/or Sanger sequencing analyses of 13 unrelated NPPK individuals and identified biallelic putative loss-of-function mutations in SERPINB7, which encodes a cytoplasmic member of the serine protease inhibitor superfamily. We identified a major causative mutation of c.796C>T (p.Arg266∗) as a founder mutation in Japanese and Chinese populations. SERPINB7 was specifically present in the cytoplasm of the stratum granulosum and the stratum corneum (SC) of the epidermis. All of the identified mutants are predicted to cause premature termination upstream of the reactive site, which inhibits the proteases, suggesting a complete loss of the protease inhibitory activity of SERPINB7 in NPPK skin. On exposure of NPPK lesional skin to water, we observed a whitish spongy change in the SC, suggesting enhanced water permeation into the SC due to overactivation of proteases and a resultant loss of integrity of the SC structure. These findings provide an important framework for developing pathogenesis-based therapies for NPPK. PMID:24207119

  7. Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta.

    Science.gov (United States)

    Patel, Girijesh Kumar; Kawale, Ashish Ashok; Sharma, Ashwani Kumar

    2012-03-01

    A 34 kDa serine protease, designated as hirtin, with fibrinolytic activity was purified to homogeneity from the latex of Euphorbia hirta by the combination of ion exchange and gel filtration chromatography. The N-terminal sequence of hirtin was found to be YAVYIGLILETAA/NNE. Hirtin exhibited esterase and amidase activities along with azocaseinolytic, gelatinolytic, fibrinogenolytic and fibrinolytic activities. It preferentially hydrolyzed Aα and α-chains, followed by Bβ and β, and γ and γ-γ chains of fibrinogen and fibrin clot respectively. The optimum pH and temperature for enzyme activity was found to be pH 7.2 and 50 °C respectively. Enzymatic activity of hirtin was significantly inhibited by PMSF and AEBSF. It showed higher specificity for synthetic substrate p-tos-GPRNA for thrombin. The CD spectra of hirtin showed a high content of β-sheets as compared to α-helix. The results indicate that hirtin is a thrombin-like serine protease and may have potential industrial and therapeutic applications. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. A serine protease isolated from the bristles of the Amazonic caterpillar, Premolis semirufa, is a potent complement system activator.

    Directory of Open Access Journals (Sweden)

    Isadora Maria Villas Boas

    Full Text Available The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called "Pararamose", characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa's bristles extract could interfere with the human complement system.The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly interfere

  9. Streptococcus pneumoniae serine protease HtrA, but not SFP or PrtA, is a major virulence factor in pneumonia.

    Science.gov (United States)

    de Stoppelaar, Sacha F; Bootsma, Hester J; Zomer, Aldert; Roelofs, Joris J T H; Hermans, Peter W M; van 't Veer, Cornelis; van der Poll, Tom

    2013-01-01

    Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S. pneumoniae, HtrA (high-temperature requirement A) and PrtA (cell wall-associated serine protease A), that contributed to virulence in models of pneumonia and intraperitoneal infection respectively. We here sought to identify additional S. pneumoniae serine proteases and determine their role in virulence. The S. pneumoniae D39 genome contains five putative serine proteases, of which HtrA, Subtilase Family Protein (SFP) and PrtA were selected for insertional mutagenesis because they are predicted to be secreted and surface exposed. Mutant D39 strains lacking serine proteases were constructed by in-frame insertion deletion mutagenesis. Pneumonia was induced by intranasal infection of mice with wild-type or mutant D39. After high dose infection, only D39ΔhtrA showed reduced virulence, as reflected by strongly reduced bacterial loads, diminished dissemination and decreased lung inflammation. D39ΔprtA induced significantly less lung inflammation together with smaller infiltrated lung surface, but without influencing bacterial loads. After low dose infection, D39ΔhtrA again showed strongly reduced bacterial loads; notably, pneumococcal burdens were also modestly lower in lungs after infection with D39Δsfp. These data confirm the important role for HtrA in S. pneumoniae virulence. PrtA contributes to lung damage in high dose pneumonia; it does not however contribute to bacterial outgrowth in pneumococcal pneumonia. SFP may facilitate S. pneumoniae growth after low dose infection.

  10. Purification and Characterization of a New Serine Protease (VLCII) Isolated from Vipera lebetina Venom: Its Role in Hemostasis.

    Science.gov (United States)

    Amel, Kadi-Saci; Fatima, Laraba-Djebari

    2015-08-01

    Snake venom serine proteinases (SVSPs) affect various physiological functions including blood coagulation, fibrinolysis, and platelet aggregation. Coagulant serine proteinase (VLCII) was purified from Vipera lebetina venom using three chromatographic steps: gel filtration on SephadexG-75, DEAE-Sephadex A-50, and reversed-phase high-performance liquid chromatography (RP-HPLC) on C8 column. VLCII appeared homogenous (60 kDa) when tested on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). VLCII as a thrombin-like enzyme was able to hydrolyze Nα-CBZ L-arginine-p-nitroanilide hydrochloride and could be a serine protease because it is inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of VLCII was not affected by ethylenediaminetetraacetic acid and 1.10-phenanthroline. It showed high coagulant activity against human plasma and cleaved both Aα chain and Bβ chain of bovine fibrinogen. The isolated VLCII displayed proaggregating effect on human platelet in a concentration-dependent manner with an absence of lag time. Clopidogrel P2Y12 adenosine diphosphate (ADP) receptor inhibitor reduced markedly the aggregating effect induced by VLCII than aspirin, indicating the involvement of ADP signaling pathway. © 2015 Wiley Periodicals, Inc.

  11. Use of degenerate primers and heat-soaked polymerase chain reaction (PCR) to clone a serine protease antigen from Dermatophilus congolensis.

    Science.gov (United States)

    Mine, O M; Carnegie, P R

    1997-10-01

    Serine proteases are thought to be involved in the initial attack on sheep skin by Dermatophilus congolensis and are obvious antigens for inclusion in a vaccine to prevent lumpy wool disease (dermatophilosis). Degenerate primers were designed after alignment of seven bacterial serine proteases. Inosine was incorporated into the primers at positions of three- and four-base redundancy, and this reduced the complexity of the primer mixtures from several thousand to sixteen different sequences for each primer. The primers were validated by production and sequencing of amplicons from serine protease genes in Bacillus subtilis and Serratia marcescens. The primers were used with heat-soaked polymerase chain reaction (PCR) to produce amplicons from two D. congolensis strains, AG and MB. In the amplicon codons for arginine, rather than the expected serine, were found where inosine was used for both the first and third positions for a codon in the primer. A search with the deduced amino acid sequences of the amplicons showed significant similarity to a keratinase and other serine proteases from various organisms. Similarity was most apparent around the active site residues and other essential secondary structural elements.

  12. Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity

    OpenAIRE

    Zou, Z; Lopez, Dawn L; Kanost, Michael R; Evans, Jay D; Jiang, Haobo

    2006-01-01

    We have identified 44 serine protease (SP) and 13 serine protease homolog (SPH) genes in the genome of Apis mellifera. Most of these genes encode putative secreted proteins, but four SPs and three SPHs may associate with the plasma membrane via a transmembrane region. Clip domains represent the most abundant non-catalytic structural units in these SP-like proteins −12 SPs and six SPHs contain at least one clip domain. Some of the family members contain other modules for protein–protein intera...

  13. Cleavage of peptide bonds bearing ionizable amino acids at P1 by serine proteases with hydrophobic S1 pocket

    International Nuclear Information System (INIS)

    Qasim, Mohammad A.; Song, Jikui; Markley, John L.; Laskowski, Michael

    2010-01-01

    Research highlights: → Large pK shifts in ionizable groups when buried in the protein interior. → Substrate dependent shifts in pH optimum for serine proteases. → Lys side chain is a stronger acid in serine protease S 1 pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and ∼10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S 1 pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.

  14. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Ashis K Mukherjee

    Full Text Available Proteases from Russell's viper venom (RVV induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis.

  15. CHANGES IN LEVELS OF ACTIVITY OF SERINE PROTEASES ACCOMPANY THE EXPOSURE OF COMMON BEAN (PHASEOLUS VULGARIS L. TO WATER DEFICIT

    Directory of Open Access Journals (Sweden)

    M. Budič

    2008-09-01

    Full Text Available A wide variety of proteolytic enzymes exist in plants. On their levels depends protein turnover, a fundamental component in plant development and adaptation to environmental conditions. Cysteine proteases have frequently been reported to be influenced by drought, but only a few serine proteases (SP, among them the trypsin-like enzyme and two aminopeptidases from bean leaves (Bartels and Sunkar, 2005; Hieng et al., 2004. Our starting point was to identify proteolytic activities assigned to SPs that change with drought and then to characterize the corresponding proteases. A quantitative, analytical one-step method was used to separate endopeptidases and aminopeptidases active against a range of substrates in leaf extracts of plants grown in the field (FC. The influence of drought was determined for those of these activities which were confirmed as SPs, based on their inhibition by specific inhibitors. Under water deficit in plants grown under controlled conditions (CC their levels changed in different ways. The levels of SP activities in FC plants, observed during a period of relative drought, were similar to those measured in mildly stressed CC plants. The partial characterisations of some of these SPs will be presented. Our results point to a number of roles for different SPs in the plant response to water stress, which could range from enhanced protein turnover to limited proteolysis at specific sites.

  16. Site-SpecificCu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N), Using Copper Free Click Chemistry

    DEFF Research Database (Denmark)

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H

    2018-01-01

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with64Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migrati...

  17. Inter-ethnic differences in genetic variants within the transmembrane protease, serine 6 (TMPRSS6) gene associated with iron status indicators: a systematic review with meta-analyses

    NARCIS (Netherlands)

    Gichohi-Wainaina, W.N.; Towers, G.W.; Swinkels, D.W.; Zimmermann, M.B.; Feskens, E.J.M.; Melse-Boonstra, A.

    2015-01-01

    Transmembrane protease, serine 6 (TMPRSS6), is likely to be involved in iron metabolism through its pleiotropic effect on hepcidin concentrations. Recently, genome-wide association studies have identified common variants in the TMPRSS6 gene to be linked to anaemia and low iron status. To get a more

  18. The Levels of the Lectin Pathway Serine Protease MASP-1 and Its Complex Formation with C1 Inhibitor Are Linked to the Severity of Hereditary Angioedema

    DEFF Research Database (Denmark)

    Hansen, Cecilie Bo; Csuka, Dorottya; Munthe-Fog, Lea

    2015-01-01

    C1 inhibitor (C1-INH) is known to form complexes with the lectin complement pathway serine proteases MASP-1 and MASP-2. Deficiency of C1-INH is associated with hereditary angioedema (HAE), an autosomal inherited disease characterized by swelling attacks caused by elevated levels of bradykinin. MASP...

  19. Molecular subtyping and distribution of the serine protease from shiga toxin-producing Escherichia coli among atypical enteropathogenic E. coli strains.

    Science.gov (United States)

    Cookson, Adrian L; Bennett, Jenny; Nicol, Carolyn; Thomson-Carter, Fiona; Attwood, Graeme T

    2009-04-01

    Atypical enteropathogenic Escherichia coli (aEPEC) and Shiga toxin-producing E. coli (STEC) were examined to determine the prevalence and sequence of espP, which encodes a serine protease. These analyses indicated shared espP sequence types between the two E. coli pathotypes and thus provide further insights into the evolution of aEPEC and STEC.

  20. Serine protease EspP from enterohemorrhagic Escherichia coli is sufficient to induce shiga toxin macropinocytosis in intestinal epithelium.

    Science.gov (United States)

    In, Julie; Lukyanenko, Valeriy; Foulke-Abel, Jennifer; Hubbard, Ann L; Delannoy, Michael; Hansen, Anne-Marie; Kaper, James B; Boisen, Nadia; Nataro, James P; Zhu, Chengru; Boedeker, Edgar C; Girón, Jorge A; Kovbasnjuk, Olga

    2013-01-01

    Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC) O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells' basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.

  1. Serine protease EspP from enterohemorrhagic Escherichia coli is sufficient to induce shiga toxin macropinocytosis in intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Julie In

    Full Text Available Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells' basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.

  2. Analysis of binding properties and specificity through identification of the interface forming residues (IFR for serine proteases in silico docked to different inhibitors

    Directory of Open Access Journals (Sweden)

    da Silveira Carlos H

    2010-10-01

    Full Text Available Abstract Background Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR. We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. Results We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI, ecotine and ovomucoid third domain inhibitor. The table (matrix of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. Conclusions The serine proteases interfaces prefer polar (including glycine residues (with some exceptions. Charged residues were found to be uniquely prevalent at the

  3. Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors.

    Science.gov (United States)

    Ribeiro, Cristina; Togawa, Roberto C; Neshich, Izabella A P; Mazoni, Ivan; Mancini, Adauto L; Minardi, Raquel C de Melo; da Silveira, Carlos H; Jardine, José G; Santoro, Marcelo M; Neshich, Goran

    2010-10-20

    Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR). We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix) of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR) for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB) does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes. The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI), ecotine and ovomucoid third domain inhibitor. The table (matrix) of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. The serine proteases interfaces prefer polar (including glycine) residues (with some exceptions). Charged residues were found to be uniquely prevalent at the interfaces between the "miscellaneous-virus" subfamily

  4. Analysis of binding properties and specificity through identification of the interface forming residues (IFR) for serine proteases in silico docked to different inhibitors

    Science.gov (United States)

    2010-01-01

    Background Enzymes belonging to the same super family of proteins in general operate on variety of substrates and are inhibited by wide selection of inhibitors. In this work our main objective was to expand the scope of studies that consider only the catalytic and binding pocket amino acids while analyzing enzyme specificity and instead, include a wider category which we have named the Interface Forming Residues (IFR). We were motivated to identify those amino acids with decreased accessibility to solvent after docking of different types of inhibitors to sub classes of serine proteases and then create a table (matrix) of all amino acid positions at the interface as well as their respective occupancies. Our goal is to establish a platform for analysis of the relationship between IFR characteristics and binding properties/specificity for bi-molecular complexes. Results We propose a novel method for describing binding properties and delineating serine proteases specificity by compiling an exhaustive table of interface forming residues (IFR) for serine proteases and their inhibitors. Currently, the Protein Data Bank (PDB) does not contain all the data that our analysis would require. Therefore, an in silico approach was designed for building corresponding complexes The IFRs are obtained by "rigid body docking" among 70 structurally aligned, sequence wise non-redundant, serine protease structures with 3 inhibitors: bovine pancreatic trypsin inhibitor (BPTI), ecotine and ovomucoid third domain inhibitor. The table (matrix) of all amino acid positions at the interface and their respective occupancy is created. We also developed a new computational protocol for predicting IFRs for those complexes which were not deciphered experimentally so far, achieving accuracy of at least 0.97. Conclusions The serine proteases interfaces prefer polar (including glycine) residues (with some exceptions). Charged residues were found to be uniquely prevalent at the interfaces between the

  5. Identification and characterization of digestive serine proteases from inhibitor-resistant Helicoverpa zea larval midgut

    NARCIS (Netherlands)

    Volpicella, M.; Cordewener, J.H.G.; Jongsma, M.A.; Gallerani, R.; Ceci, L.R.; Beekwilder, M.J.

    2006-01-01

    Protease inhibitors mediate a natural form of plant defence against insects, by interfering with the digestive system of the insect. In this paper, affinity chromatography was used to isolate trypsins and chymotrypsins from Helicoverpa zea larvae, which had been raised on inhibitor-containing diet.

  6. Discovery of an Unexplored Protein Structural Scaffold of Serine Protease from Big Blue Octopus (Octopus cyanea): A New Prospective Lead Molecule.

    Science.gov (United States)

    Panda, Subhamay; Kumari, Leena

    2017-01-01

    Serine proteases are a group of enzymes that hydrolyses the peptide bonds in proteins. In mammals, these enzymes help in the regulation of several major physiological functions such as digestion, blood clotting, responses of immune system, reproductive functions and the complement system. Serine proteases obtained from the venom of Octopodidae family is a relatively unexplored area of research. In the present work, we tried to effectively utilize comparative composite molecular modeling technique. Our key aim was to propose the first molecular model structure of unexplored serine protease 5 derived from big blue octopus. The other objective of this study was to analyze the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the aid of different bioinformatic tools. In the present study, molecular model has been generated with the help of I-TASSER suite. Afterwards the refined structural model was validated with standard methods. For functional annotation of protein molecule we used Protein Information Resource (PIR) database. Serine protease 5 of big blue octopus was analyzed with different bioinformatical algorithms for the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program. The molecular model data in cooperation to other pertinent post model analysis data put forward molecular insight to proteolytic activity of serine protease 5, which helps in the clear understanding of procoagulant and anticoagulant characteristics of this natural lead molecule. Our approach was to investigate the octopus

  7. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    International Nuclear Information System (INIS)

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage λgt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16 + natural killer cells and CD3 + , CD16 - T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells

  8. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel.

    Science.gov (United States)

    Coda, Alvin B; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C; Del Rosso, James Q; Gallo, Richard L

    2013-10-01

    Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  9. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel

    Science.gov (United States)

    Coda, Alvin B.; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C.; Del Rosso, James Q.; Gallo, Richard L.

    2014-01-01

    Background Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. Objective We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Methods Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. Results AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Limitations Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. Conclusions These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. PMID:23871720

  10. Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R.

    Science.gov (United States)

    Mechri, Sondes; Kriaa, Mouna; Ben Elhoul Berrouina, Mouna; Omrane Benmrad, Maroua; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bouacem, Khelifa; Bouanane-Darenfed, Amel; Chebbi, Alif; Sayadi, Sami; Chamkha, Mohamed; Bejar, Samir; Jaouadi, Bassem

    2017-08-01

    In this study, we aimed to optimize the cultural and nutritional conditions for protease production by Lysinibacillus fusiformis strain C250R in submerged fermentation process using statistical methodology. The most significant factors (gruel, wheat bran, yeast extract, and FeSO 4 ) were identified by Plackett-Burman design. Response surface methodology (RSM) was used to determine the optimum levels of the screened factors and their interaction. Under the optimized conditions, protease yield 3100U/mL was 4.5 folds higher than those obtained by the use of the initial conditions (680U/mL). Additionally, a new extracellular 51kDa-protease, designated SAPLF, was purified and biochemically characterized from strain C250R. It shows optimum activity at 70°C and pH 10. Its half-life times at 70 and 80°C were 10 and 6-h, respectively. Irreversible inhibition of enzyme activity of SAPLF with serine protease inhibitors demonstrated that it belongs to the serine protease family. Interestingly, its catalytic efficiency was higher than that of SPVP from Aeribacillus pallidus strain VP3 and Alcalase Ultra 2.5L from Bacillus licheniformis. This study demonstrated that SAPLF has a high detergent compatibility and an excellent stain removal compared to Alcalase Ultra 2.5L; which offers an interesting potential for its application in the laundry detergent industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Purification and biochemical characterization of a serine alkaline ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... The enzyme was inactivated by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suggesting that it is a serine protease. The protease was stable in 0.5% SDS and retained 70.3% of its initial activity after 1 h of incubation. It was active in the presence of 3% Triton X-100 with 100% activity.

  12. Purification and biochemical characterization of a novel thermostable serine alkaline protease from Aeribacillus pallidus C10: a potential additive for detergents.

    Science.gov (United States)

    Yildirim, Vildan; Baltaci, Mustafa Ozkan; Ozgencli, Ilknur; Sisecioglu, Melda; Adiguzel, Ahmet; Adiguzel, Gulsah

    2017-12-01

    An extracellular thermostable alkaline serine protease enzyme from Aeribacillus pallidus C10 (GenBank No: KC333049), was purified 4.85 and 17. 32-fold with a yield of 26.9 and 19.56%, respectively, through DE52 anion exchange and Probond affinity chromatography. The molecular mass of the enzyme was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), with approximately 38.35 kDa. The enzyme exhibited optimum activity at pH 9 and at temperature 60 °C. It was determined that the enzyme had remained stable at the range of pH 7.0-10.0, and that it had preserved more than 80% of its activity at a broad temperature range (20-80 °C). The enzyme activity was found to retain more than 70% and 55% in the presence of organic solvents and commercial detergents, respectively. In addition, it was observed that the enzyme activity had increased in the presence of 5% SDS. K M and V max values were calculated as 0.197 mg/mL and 7.29 μmol.mL - 1 .min - 1 , respectively.

  13. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes.

    Science.gov (United States)

    Yamasaki, Kenshi; Kanada, Kimberly; Macleod, Daniel T; Borkowski, Andrew W; Morizane, Shin; Nakatsuji, Teruaki; Cogen, Anna L; Gallo, Richard L

    2011-03-01

    A diverse environment challenges skin to maintain temperature, hydration, and electrolyte balance while also maintaining normal immunological function. Rosacea is a common skin disease that manifests unique inflammatory responses to normal environmental stimuli. We hypothesized that abnormal function of innate immune pattern recognition could explain the enhanced sensitivity of patients with rosacea, and observed that the epidermis of patients with rosacea expressed higher amounts of Toll-like receptor 2 (TLR2) than normal patients. Increased expression of TLR2 was not seen in other inflammatory skin disorders such as atopic dermatitis or psoriasis. Overexpression of TLR2 on keratinocytes, treatment with TLR2 ligands, and analysis of TLR2-deficient mice resulted in a calcium-dependent release of kallikrein 5 from keratinocytes, a critical protease involved in the pathogenesis of rosacea. These observations show that abnormal TLR2 function may explain enhanced inflammatory responses to environmental stimuli and can act as a critical element in the pathogenesis of rosacea.

  14. The effects of a serine protease, Alcalase, on the adhesives of barnacle cyprids (Balanus amphitrite).

    Science.gov (United States)

    Aldred, Nick; Phang, In Yee; Conlan, Sheelagh L; Clare, Anthony S; Vancso, G Julius

    2008-01-01

    Barnacles are a persistent fouling problem in the marine environment, although their effects (eg reduced fuel efficiency, increased corrosion) can be reduced through the application of antifouling or fouling-release coatings to marine structures. However, the developments of fouling-resistant coatings that are cost-effective and that are not deleterious to the marine environment are continually being sought. The incorporation of proteolytic enzymes into coatings has been suggested as one potential option. In this study, the efficacy of a commercially available serine endopeptidase, Alcalase as an antifoulant is assessed and its mode of action on barnacle cypris larvae investigated. In situ atomic force microscopy (AFM) of barnacle cyprid adhesives during exposure to Alcalase supported the hypothesis that Alcalase reduces the effectiveness of the cyprid adhesives, rather than deterring the organisms from settling. Quantitative behavioural tracking of cyprids, using Ethovision 3.1, further supported this observation. Alcalase removed cyprid 'footprint' deposits from glass surfaces within 26 min, but cyprid permanent cement became resistant to attack by Alcalase within 15 h of expression, acquiring a crystalline appearance in its cured state. It is concluded that Alcalase has antifouling potential on the basis of its effects on cyprid footprints, un-cured permanent cement and its non-toxic mode of action, providing that it can be successfully incorporated into a coating.

  15. Herbivore damage-induced production and specific anti-digestive function of serine and cysteine protease inhibitors in tall goldenrod, Solidago altissima L. (Asteraceae).

    Science.gov (United States)

    Bode, Robert F; Halitschke, Rayko; Kessler, André

    2013-05-01

    Plant protease inhibitors (PIs) are among the most well-studied and widely distributed resistance traits that plants use against their herbivore attackers. There are different types of plant PIs which putatively function against the different types of proteases expressed in insect guts. Serine protease inhibitors (SPIs) and cysteine protease inhibitors (CPIs) are hypothesized to differentially function against the predominant gut proteases in lepidopteran and coleopteran herbivores, respectively. Here, we test the hypothesis that tall goldenrod, Solidago altissima, can specifically respond to damage by different herbivores and differentially induce SPIs and CPIs in response to damage by lepidopteran and coleopteran herbivores. Moreover, we ask if the concerted induction of different types of PIs accounts for variation in induced resistance to herbivory. We altered and optimized a rapid and effective existing methodology to quantitatively analyze both SPI and CPI activity simultaneously from a single tissue sample and to use the same plant extracts directly for characterization of inhibitory effects on insect gut protease activity. We found that both SPIs and CPIs are induced in S. altissima in response to damage, regardless of the damaging herbivore species. However, only SPIs were effective against Spodoptera exigua gut proteases. Our data suggest that plant PI responses are not necessarily specific to the identity of the attacking organism but that different components of generally induced defense traits can specifically affect different herbivore species. While providing an efficient and broadly applicable methodology to analyze multiple PIs extracted from the same tissue, this study furthers our understanding of specificity in induced plant resistance.

  16. Hydrolysis with Cucurbita ficifolia serine protease reduces antigenic response to bovine whey protein concentrate and αs-casein.

    Science.gov (United States)

    Babij, Konrad; Bajzert, Joanna; Dąbrowska, Anna; Szołtysik, Marek; Zambrowicz, Aleksandra; Lubec, Gert; Stefaniak, Tadeusz; Willak-Janc, Ewa; Chrzanowska, Józefa

    2015-11-01

    In the present study the effect of hydrolysis with non-commercial Cucurbita ficifolia serine protease on a reduction of the IgE and IgG binding capacity of whey protein concentrate and αs-casein was investigated. The intensity of the protein degradation was analyzed by the degree of hydrolysis, the free amino groups content and RP-HPLC. The ability to bind the antibodies by native proteins and their hydrolysates was determined using a competitive ELISA test. Deep hydrolysis contributed to a significant reduction of immunoreactive epitopes present in WPC. In the case of IgE and IgG present in the serum pool of children with CMA, the lowest binding capacity was detected in the 24 h WPC hydrolysate, where the inhibition of the reaction with native WPC was ≤23 and ≤60 %, respectively. The analysis of the IgG reactivity in the antiserum of the immunized goat showed that the lowest antibody binding capacity was exhibited also by 24 h WPC hydrolysate at a concentration of 1000 μg/ml where the inhibition of the reaction with nWPC was ≤47 %. One-hour hydrolysis of α-casein was sufficient to significant reduction of the protein antigenicity, while the longer time (5 h) of hydrolysis probably lead to the appearance of new epitopes reactive with polyclonal.

  17. Vaccinomics Approach for Designing Potential Peptide Vaccine by Targeting Shigella spp. Serine Protease Autotransporter Subfamily Protein SigA

    Directory of Open Access Journals (Sweden)

    Arafat Rahman Oany

    2017-01-01

    Full Text Available Shigellosis, a bacillary dysentery, is closely associated with diarrhoea in human and causes infection of 165 million people worldwide per year. Casein-degrading serine protease autotransporter of enterobacteriaceae (SPATE subfamily protein SigA, an outer membrane protein, exerts both cytopathic and enterotoxic effects especially cytopathic to human epithelial cell type-2 (HEp-2 and is shown to be highly immunogenic. In the present study, we have tried to impose the vaccinomics approach for designing a common peptide vaccine candidate against the immunogenic SigA of Shigella spp. At first, 44 SigA proteins from different variants of S. flexneri, S. dysenteriae, S. boydii, and S. sonnei were assessed to find the most antigenic protein. We retrieved 12 peptides based on the highest score for human leukocyte antigen (HLA supertypes analysed by NetCTL. Initially, these peptides were assessed for the affinity with MHC class I and class II alleles, and four potential core epitopes VTARAGLGY, FHTVTVNTL, HTTWTLTGY, and IELAGTLTL were selected. From these, FHTVTVNTL and IELAGTLTL peptides were shown to have 100% conservancy. Finally, IELAGTLTL was shown to have the highest population coverage (83.86% among the whole world population. In vivo study of the proposed epitope might contribute to the development of functional and unique widespread vaccine, which might be an operative alleyway to thwart dysentery from the world.

  18. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Israel S. [Departamento de Ciencia de Proteínas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Ständker, Ludger [Departamento de Ciencia de Proteínas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Hannover Medical School, Center of Pharmacology, 30625 Hannover (Germany); Forssmann, Wolf-Georg [Hannover Medical School, Center of Pharmacology, 30625 Hannover (Germany); Giménez-Gallego, Guillermo; Romero, Antonio, E-mail: romero@cib.csic.es [Departamento de Ciencia de Proteínas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer. In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.

  19. Appearance and distribution of regioisomers in metallo- and serine-protease-catalysed acylation of sucrose in N,N-dimethylformamide

    DEFF Research Database (Denmark)

    Lie, Aleksander; Meyer, Anne S.; Pedersen, Lars Haastrup

    2014-01-01

    The appearance and distribution of monoester regioisomers were investigated in the virtually irreversible acylation of sucrose with the enol ester, vinyl laurate, as acyl donor catalysed by serine proteases and a metalloprotease in the hydrophilic, aprotic solvent N,N-dimethylformamide. Sucrose l...... without protein in the reaction mixture appeared to be catalysed in the presence of aluminosilicate molecular sieves. Non-catalytic protein in the reaction medium seemed to lower the catalytic activity of the molecular sieves....

  20. Oxidant and solvent stable alkaline protease from Aspergillus flavus ...

    African Journals Online (AJOL)

    The enzyme retained 80% of its original activity in the presence of non ionic and ionic surfactants and 100% with 10% H2O2 after 1 h of incubation at 30°C. In addition, the enzyme showed excellent compatibility with some commercial powder detergents. The compatibility of our protease with several detergents, oxidants ...

  1. An oxidant, detergent and salt stable alkaline protease from Bacillus ...

    African Journals Online (AJOL)

    A novel soil bacterium, Bacillus cereus SIU1 was earlier isolated from non-saline, slightly alkaline soil of Eastern Uttar Pradesh, India. The isolate B. cereus SIU1 was grown in modified glucose yeast extract (modified GYE) medium at pH 9.0 and 45°C. It produced maximum protease at 20 h incubation. The enzyme was ...

  2. Serine protease inhibitor A3K suppressed the formation of ocular surface squamous metaplasia in a mouse model of experimental dry eye.

    Science.gov (United States)

    Lin, Zhirong; Zhou, Yueping; Wang, Yuqian; Zhou, Tong; Li, Jie; Luo, Pingping; He, Hui; Wu, Huping; Liu, Zuguo

    2014-08-07

    To investigate the effects and possible mechanisms of serine protease inhibitor A3K (SERPINA3K) on the formation of ocular surface squamous metaplasia in a mouse dry eye model induced by topical benzalkonium chloride (BAC). The eye drops containing SERPINA3K were topically administered during the induction of BAC-induced dry eye. The clinical indications of dry eye were evaluated on day (D)16, including tear break-up time (BUT), tear volume, corneal fluorescein staining, and inflammatory index. Global specimens were collected on D16 and the following examinations were performed: histologic investigation, immunostaining of cytokeratin 10 (K10), p63 and Ki67 in the cornea, and Western blot analysis of tumor necrosis factor-α (TNF-α). Serine protease inhibitor A3K suppressed the formation of BAC-induced dry eye, presenting with longer BUTs, lower corneal fluorescein staining scores, and inflammatory index, while no significant changes in tear volume. It also reduced the severity of abnormal differentiation and proliferation on ocular surface with lower expressions of K10, p63, and Ki67, and retained the number of goblet cells in the conjunctival fornix. Serine protease inhibitor A3K significantly decreased the levels of TNF-α in the cornea. Topical application of SERPINA3K ameliorated the severity of ocular surface squamous metaplasia and suppressed the formation of BAC-induced dry eye. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  3. Collagenolytic serine protease PC and trypsin PC from king crab Paralithodes camtschaticus: cDNA cloning and primary structure of the enzymes

    Directory of Open Access Journals (Sweden)

    Rebrikov Denis V

    2004-01-01

    Full Text Available Abstract Background In this paper, we describe cDNA cloning of a new anionic trypsin and a collagenolytic serine protease from king crab Paralithodes camtschaticus and the elucidation of their primary structures. Constructing the phylogenetic tree of these enzymes was undertaken in order to prove the evolutionary relationship between them. Results The mature trypsin PC and collagenolytic protease PC contain 237 (Mcalc 24.8 kDa and 226 amino acid residues (Mcalc 23.5 kDa, respectively. Alignments of their amino acid sequences revealed a high degree of the trypsin PC identity to the trypsin from Penaeus vannamei (approximately 70% and of the collagenolytic protease PC identity to the collagenase from fiddler crab Uca pugilator (76%. The phylogenetic tree of these enzymes was constructed. Conclusions Primary structures of the two mature enzymes from P. camtschaticus were obtained and compared with those of other proteolytic proteins, including some enzymes from brachyurans. A phylogenetic analysis was also carried out. These comparisons revealed that brachyurins are closely related to their vertebrate and bacterial congeners, occupy an intermediate position between them, and their study significantly contributes to the understanding of the evolution and function of serine proteases.

  4. Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins

    Science.gov (United States)

    2013-10-01

    synthesized as a fusion protein on the surface of M13 phage . The random library of subtilisin phage is mixed with the GA- PLFRAL-S-GB substrate...factor (LF), representing four functionally distinct families of toxins. The centerpiece of our design effort is a phage -display selection method for...hour assay. 15. SUBJECT TERMS Enterotoxin, protease, directed evolution, subtilisin, protein engineering, phage -display, enzymology 16. SECURITY

  5. Identification and characterization of human polyserase-3, a novel protein with tandem serine-protease domains in the same polypeptide chain

    Directory of Open Access Journals (Sweden)

    Garabaya Cecilia

    2006-03-01

    Full Text Available Abstract Background We have previously described the identification and characterization of polyserase-1 and polyserase-2, two human serine proteases containing three different catalytic domains within the same polypeptide chain. Polyserase-1 shows a complex organization and it is synthesized as a membrane-bound protein which can generate three independent serine protease domains as a consequence of post-translational processing events. The two first domains are enzymatically active. By contrast, polyserase-2 is an extracellular glycosylated protein whose three protease domains remain embedded in the same chain, and only the first domain possesses catalytic activity. Results Following our interest in the study of the human degradome, we have cloned a human liver cDNA encoding polyserase-3, a new protease with tandem serine protease domains in the same polypeptide chain. Comparative analysis of polyserase-3 with the two human polyserases described to date, revealed that this novel polyprotein is more closely related to polyserase-2 than to polyserase-1. Thus, polyserase-3 is a secreted protein such as polyserase-2, but lacks additional domains like the type II transmembrane motif and the low-density lipoprotein receptor module present in the membrane-anchored polyserase-1. Moreover, analysis of post-translational mechanisms operating in polyserase-3 maturation showed that its two protease domains remain as integral parts of the same polypeptide chain. This situation is similar to that observed in polyserase-2, but distinct from polyserase-1 whose protease domains are proteolytically released from the original chain to generate independent units. Immunolocalization studies indicated that polyserase-3 is secreted as a non-glycosylated protein, thus being also distinct from polyserase-2, which is a heavily glycosylated protein. Enzymatic assays indicated that recombinant polyserase-3 degrades the α-chain of fibrinogen as well as pro

  6. Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels.

    Science.gov (United States)

    Khan, Alamgir; Williams, Keith; Molloy, Mark P; Nevalainen, Helena

    2003-12-01

    The filamentous fungus Paecilomyces lilacinus is currently developed as a biocontrol agent against plant parasitic nematodes. Nematode eggs and cuticles are the infection sites for biocontrol agents that penetrate by the production of lytic enzymes. P. lilacinus was cultured in liquid media and proteases and chitinases were induced by the introduction of egg yolk and chitin, respectively. A serine protease was purified from a culture medium using Sepharose-bacitracin affinity column. The protease occurred in three forms, two of which were C-terminally truncated. Chitinase activity was also observed in the culture supernatant, and after separation by isoelectric focusing six proteins were detected that showed activity. Chitinase activity was further confirmed on non-denaturing one-dimensional (1D) and two-dimensional (2D) gels using a sandwich assay with glycol chitin as a substrate. Two of the proteins had similarities with endochitinases as shown by their N-terminal amino acid sequences.

  7. Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus.

    Science.gov (United States)

    Soares, Tatiane Sanches; Rodriguez Gonzalez, Boris Luis; Torquato, Ricardo José Soares; Lemos, Francisco Jose Alves; Costa-da-Silva, André L; Capurro Guimarães, Margareth de Lara; Tanaka, Aparecida Sadae

    2018-01-01

    During feeding with blood meal, female Aedes aegypti can transmit infectious agents, such as dengue, yellow fever, chikungunya and Zika viruses. Dengue virus causes human mortality in tropical regions of the world, and there is no specific treatment or vaccine with maximum efficiency being used for these infections. In the vector-virus interaction, the production of several molecules is modulated by both mosquitoes and invading agents. However, little information is available about these molecules in the Ae. aegypti mosquito during dengue infection. Inhibitors of the pacifastin family have been described to participate in the immune response of insects and Pac2 is the only gene of this family present in Ae. aegypti being then chosen for investigation. Pac2 was expressed in E. coli, purified and analyzed by mass spectrometry and SDS-PAGE. The Pac2 transcript was detected by qPCR, and its protein levels were assessed by Western blotting. The inhibitory activity of Pac2 was measured using its K i , IC 50 and zymography. Mosquito infections with DENV were introduced with the Brazilian ACS-46 DENV-2 strain propagated in C6/36 cells. In the present work, we showed that it is possibly involved in the interaction of the mosquitoes with the dengue virus. The Pac2 transcript was detected in larvae and in both the salivary gland and midgut of Ae. aegypti females, while the native protein was identified in females 3 h post-blood meal. Pac2 is a strong inhibitor of trypsin-like and thrombin-like proteases, which are present in 4th instar larvae midgut and females 24 h after blood meal. During DENV infection, up regulation of Pac2 expression occurs in the salivary gland and midgut. Pac2 is the first Pacifastin inhibitor member described in mosquitoes. Our results suggest that Pac2 acts on mosquito serine proteases, mainly the trypsin-like type, and is under transcriptional control by virus infection signals to allow its survival in the vector or by the mosquito as a defense

  8. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission

    Directory of Open Access Journals (Sweden)

    Adrien A. Blisnick

    2017-05-01

    Full Text Available New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs, whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.

  9. Involvement of a Serpin serine protease inhibitor (OoSerpin) from mollusc Octopus ocellatus in antibacterial response.

    Science.gov (United States)

    Wei, Xiumei; Xu, Jie; Yang, Jianmin; Liu, Xiangquan; Zhang, Ranran; Wang, Weijun; Yang, Jialong

    2015-01-01

    Serpin is an important member of serine protease inhibitors (SPIs), which is capable of regulating proteolytic events and involving in a variety of physiological processes. In present study, a Serpin homolog was identified from Octopus ocellatus (designated as OoSerpin). Full-length cDNA of OoSerpin was of 1735 bp, containing a 5' untranslated region of 214 bp, a 3' UTR of 282 bp, and an open reading frame of 1239 bp. The open reading frame encoded a polypeptide of 412 amino acids which has a predicted molecular weight of 46.5 kDa and an isoelectric point of 8.52. The OoSerpin protein shares 37% sequence identity with other Serpins from Mus musculus (NP_941373) and Ixodes scapularis (XP_002407493). The existence of a conserved SERPIN domain strongly suggested that OoSerpin was a member of the Serpin subfamily. Expression patterns of OoSerpin, both in tissues and towards bacterial stimulation, were then characterized. The mRNA of OoSerpin was constitutively expressed at different levels in all tested tissues of untreated O. ocellatus, including mantle (lowest), muscle, renal sac, gill, hemocyte, gonad, systemic heart, and hepatopancreas (highest). The transcriptional level of OoSerpin was significantly up-regulated (P<0.01) in O. ocellatus upon bacterial challenges with Vibrio anguillarum and Micrococcus luteus, indicating its involvement in the antibacterial immune response. Furthermore, rOoSerpin, the recombinant protein of OoSerpin, exhibited strong abilities to inhibit proteinase activities of trypsin and chymotrypsin as well as the growth of Escherichia coli. Our results demonstrate that OoSerpin is a potential antibacterial factor involved in the immune response of O. ocellatus against bacterial infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Identification of a Highly Antigenic Region of Subtilisin-Like Serine Protease 1 for Serodiagnosis of Neospora caninum Infection

    Science.gov (United States)

    Ybañez, Rochelle Haidee D.; Terkawi, Mohamad Alaa; Kameyama, Kyohko; Xuan, Xuenan

    2013-01-01

    Neospora caninum is an apicomplexan parasite that causes abortion in cattle; hence, accurate diagnosis of this pathogen is important to the cattle farming industry. Our previous proteomics and immunoscreening analyses revealed that the N. caninum subtilisin-like serine protease 1 (NcSUB1) has potential as a serodiagnostic tool for Neospora. Consequently, we expressed two fragments containing five NcSUB1 tandem repeat copies covering amino acids (aa) 524 to 843 (NcSUB1t) and 555 to 679 (NcSUB1tr) to identify the antigenic regions. The serodiagnostic performances of NcSUB1t and NcSUB1tr were compared with that of N54, which contains a single copy of the repeats (aa 649 to 784), and with the truncated NcSAG1 (NcSAG1t), which lacks a signal peptide and C-terminal hydrophobic regions, as a positive reference. Serum samples from N. caninum experimentally infected cattle and mice and cattle from a farm with confirmed cases of Neospora abortion were tested by enzyme-linked immunosorbent assay (ELISA) with the four antigens. In the N. caninum experimentally infected cattle, the highest IgG1 antibody titers were detected against NcSUB1t, while specific IgG1 antibodies were detectable from 16 days postinfection (dpi), with levels peaking at 36 dpi for all of the antigens. On the other hand, the levels of anti-NcSUB1 IgG2 antibodies were lower than those of anti-SAG1t IgG2 antibodies. The ELISA with NcSUB1t and NcSUB1tr had good sensitivity (94.59 to 95.95%) and specificity (80 to 100%) with bovine serum field samples compared to NcSAG1t and showed no cross-reactions with sera from Toxoplasma gondii experimentally infected mice. Moreover, IgG antibodies against NcSUB1t were detected during parturition in the NcSAG1t antibody-positive cattle, and NcSUB1t-specific antibody transfer was observed from a mother to her calf. Our results show that the NcSUB1 tandem repeat is potentially useful for serodiagnosis of N. caninum. PMID:23966554

  11. MBL-associated serine protease-3 circulates in high serum concentrations predominantly in complex with Ficolin-3 and regulates Ficolin-3 mediated complement activation

    DEFF Research Database (Denmark)

    Skjoedt, Mikkel-ole; Palarasah, Yaseelan; Munthe-fog, Lea

    2010-01-01

    The human lectin complement pathway (LCP) involves circulating complexes consisting of mannose-binding lectin (MBL) or ficolins in association with serine proteases named MASP-1, -2 and -3 and a non-enzymatic protein, sMAP. MASP-3 originates from the MASP1 gene through differential splicing...... and little is known about its biological characteristics. For this reason we expressed recombinant MASP-3 and generated specific monoclonal antibodies to establish biochemical characteristics and to determine the serum levels, the interactions with the LCP recognition molecules and the influence...

  12. Spink13, an Epididymis-specific Gene of the Kazal-type Serine Protease Inhibitor (SPINK) Family, Is Essential for the Acrosomal Integrity and Male Fertility*

    Science.gov (United States)

    Ma, Li; Yu, Heguo; Ni, Zimei; Hu, Shuanggang; Ma, Wubin; Chu, Chen; Liu, Qiang; Zhang, Yonglian

    2013-01-01

    Sperm maturation involves numerous surface modifications by a variety of secreted proteins from epididymal epithelia. The sperm surface architecture depends on correct localization of its components and highlights the importance of the sequence of the proteolytic processing of the sperm surface in the epididymal duct. The presence of several protease inhibitors from different families is consistent with the hypothesis that correctly timed epididymal protein processing is essential for proper sperm maturation. Here we show that the rat (Rattus norvegicus) epididymis-specific gene Spink13, an androgen-responsive serine protease inhibitor, could bind to the sperm acrosome region. Furthermore, knockdown of Spink13 in vivo dramatically enhanced the acrosomal exocytosis during the process of capacitation and thus led to a significant reduction in male fertility, indicating that Spink13 was essential for sperm maturation. We conclude that blockade of SPINK13 may provide a new putative target for post-testicular male contraceptives. PMID:23430248

  13. Interaction of C1q and mannan-binding lectin (MBL) with C1r, C1s, MBL-associated serine proteases 1 and 2, and the MBL-associated protein MAp19

    DEFF Research Database (Denmark)

    Thiel, S; Petersen, Steen Vang; Vorup-Jensen, T

    2000-01-01

    Mannan-binding lectin (MBL) and C1q activate the complement cascade via attached serine proteases. The proteases C1r and C1s were initially discovered in a complex with C1q, whereas the MBL-associated serine proteases 1 and 2 (MASP-1 and -2) were discovered in a complex with MBL. There is controv......Mannan-binding lectin (MBL) and C1q activate the complement cascade via attached serine proteases. The proteases C1r and C1s were initially discovered in a complex with C1q, whereas the MBL-associated serine proteases 1 and 2 (MASP-1 and -2) were discovered in a complex with MBL......, whereas MASP-1, MASP-2, and a third protein, MAp19 (19-kDa MBL-associated protein), were found to be associated only with MBL. The bulk of MASP-1 and MAp19 was found in association with each other and was not bound to MBL or MASP-2. The interactions of MASP-1, MASP-2, and MAp19 with MBL differ from those...... of C1r and C1s with C1q in that both high salt concentrations and calcium chelation (EDTA) are required to fully dissociate the MASPs or MAp19 from MBL. In the presence of calcium, most of the MASP-1, MASP-2, and MAp19 emerged on gel-permeation chromatography as large complexes that were not associated...

  14. Topical application of serine proteases from Wrightia tinctoria R. Br. (Apocyanaceae) latex augments healing of experimentally induced excision wound in mice.

    Science.gov (United States)

    Yariswamy, M; Shivaprasad, H V; Joshi, Vikram; Nanjaraj Urs, A N; Nataraju, A; Vishwanath, B S

    2013-08-26

    Wrightia tinctoria R. Br. (Apocyanaceae) is a folk medicinal plant known to have immunomodulatory, anti-inflammatory and antihemorrhagic potential. Wrightia tinctoria latex is used for treatment of various clinical conditions including psoriasis, blisters, mouth ulcers, and extensively for topical application on fresh wounds to promote accelerated healing. To investigate the wound healing potential of Wrightia tinctoria latex proteases using a mouse model. Proteolytic activity of Wrightia tinctoria latex proteases (WTLP) was determined on various substrates (casein, gelatin and collagen (type-I and IV)). The thermal stability and the class of proteases present in WTLP were determined using heat treatment and specific protease inhibitors, respectively. Excision wound model in mice was used to evaluate the healing potential of WTLP application (twice daily, 10mg/kg). Neosporin, a standard drug, was used for comparison. The progression of healing was monitored using physical (wound contraction), biochemical (collagen content, catalase and MMP activity) and histological examinations. WTLP contains thermostable serine proteases, which are completely inhibited by PMSF. WTLP showed strong caseinolytic, gelatinolytic and collagenolytic activity. The excision wound healing rate upon WTLP treatment was significantly higher than (>2-fold) the control group (49% vs. 18%, (**)p<0.01) on day 3 and throughout the study. PMSF pre-treated and heat denatured WTLP failed to promote wound healing. In addition, serial biochemical analysis of the granulation tissue demonstrated 1.5-fold more (2444 ± 100 vs. 1579 ± 121 µg/100mg tissue) hydroxyproline content and 5.6-fold higher catalase activity (16.7 ± 1.3 vs. 3 ± 0.3 units/mg) compared to controls. Further, the enhanced collagen content and matrix metalloproteinase activity correlated with wound contraction rate following WTLP and Neosporin treatment. Histological analysis on day 9 confirmed complete epithelialization, re

  15. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    Directory of Open Access Journals (Sweden)

    Sven Malm

    Full Text Available Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP and Factor H (FH. Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  16. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    Science.gov (United States)

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  17. Characterization of a New S8 serine Protease from Marine SedimentaryPhotobacteriumsp. A5-7 and the Function of Its Protease-Associated Domain.

    Science.gov (United States)

    Li, Hui-Juan; Tang, Bai-Lu; Shao, Xuan; Liu, Bai-Xue; Zheng, Xiao-Yu; Han, Xiao-Xu; Li, Ping-Yi; Zhang, Xi-Ying; Song, Xiao-Yan; Chen, Xiu-Lan

    2016-01-01

    Bacterial extracellular proteases are important for bacterial nutrition and marine sedimentary organic nitrogen degradation. However, only a few proteases from marine sedimentary bacteria have been characterized. Some subtilases have a protease-associated (PA) domain inserted in the catalytic domain. Although structural analysis and deletion mutation suggests that the PA domain in subtilases is involved in substrate binding, direct evidence to support this function is still absent. Here, a protease, P57, secreted by Photobacterium sp. A5-7 isolated from marine sediment was characterized. P57 could hydrolyze casein, gelatin and collagen. It showed the highest activity at 40°C and pH 8.0. P57 is a new subtilase, with 63% sequence identity to the closest characterized protease. Mature P57 contains a catalytic domain and an inserted PA domain. The recombinant PA domain from P57 was shown to have collagen-binding ability, and Phe349 and Tyr432 were revealed to be key residues for collagen binding in the PA domain. This study first shows direct evidence that the PA domain of a subtilase can bind substrate, which provides a better understanding of the function of the PA domain of subtilases and bacterial extracellular proteases from marine sediment.

  18. Exploiting subsite S1 of trypsin-like serine proteases for selectivity: potent and selective inhibitors of urokinase-type plasminogen activator.

    Science.gov (United States)

    Mackman, R L; Katz, B A; Breitenbucher, J G; Hui, H C; Verner, E; Luong, C; Liu, L; Sprengeler, P A

    2001-11-08

    A nonselective inhibitor of trypsin-like serine proteases, 2-(2-hydroxybiphenyl-3-yl)-1H-indole-5-carboxamidine (1) (Verner, E.; Katz, B. A.; Spencer, J.; Allen, D.; Hataye, J.; Hruzewicz, W.; Hui, H. C.; Kolesnikov, A.; Li, Y.; Luong, C.; Martelli, A.; Radika. K.; Rai, R.; She, M.; Shrader, W.; Sprengeler, P. A.; Trapp, S.; Wang, J.; Young, W. B.; Mackman, R. L. J. Med. Chem. 2001, 44, 2753-2771) has been optimized through minor structural changes on the S1 binding group to afford remarkably selective and potent inhibitors of urokinase-type plasminogen activator (uPA). The trypsin-like serine proteases(1) that comprise drug targets can be broadly categorized into two subfamilies, those with Ser190 and those with Ala190. A single-atom modification, for example, replacement of hydrogen for chlorine at the 6-position of the 5-amidinoindole P1 group on 1, generated up to 6700-fold selectivity toward the Ser190 enzymes and against the Ala190 enzymes. The larger chlorine atom displaces a water molecule (H(2)O1(S1)) that binds near residue 190 in all the complexes of 1, and related inhibitors, in uPA, thrombin, and trypsin. The water molecule, H(2)O1(S1), in both the Ser190 or Ala190 enzymes, hydrogen bonds with the amidine N1 nitrogen of the inhibitor. When it is displaced, a reduction in affinity toward the Ala190 enzymes is observed due to the amidine N1 nitrogen of the bound inhibitor being deprived of a key hydrogen-bonding partner. In the Ser190 enzymes the affinity is maintained since the serine hydroxyl oxygen O gamma(Ser190) compensates for the displaced water molecule. High-resolution crystallography provided evidence for the displacement of the water molecule and validated the design rationale. In summation, a novel and powerful method for engineering selectivity toward Ser190 proteases and against Ala190 proteases without substantially increasing molecular weight is described.

  19. Identification and characterization of a novel serine protease, VvpS, that contains two functional domains and is essential for autolysis of Vibrio vulnificus.

    Science.gov (United States)

    Lim, Moon Sub; Kim, Jeong-A; Lim, Jong Gyu; Kim, Byoung Sik; Jeong, Kwang Cheol; Lee, Kyu-Ho; Choi, Sang Ho

    2011-08-01

    Little is known about the molecular mechanism for autolysis of Gram-negative bacteria. In the present study, we identified the vvpS gene encoding a serine protease, VvpS, from Vibrio vulnificus, a Gram-negative food-borne pathogen. The amino acid sequence predicted that VvpS consists of two functional domains, an N-terminal protease catalytic domain (PCD) and a C-terminal carbohydrate binding domain (CBD). A null mutation of vvpS significantly enhanced viability during stationary phase, as measured by enumerating CFU and differentially staining viable cells. The vvpS mutant reduced the release of cytoplasmic β-galactosidase and high-molecular-weight extracellular chromosomal DNA into the culture supernatants, indicating that VvpS contributes to the autolysis of V. vulnificus during stationary phase. VvpS is secreted via a type II secretion system (T2SS), and it exerts its effects on autolysis through intracellular accumulation during stationary phase. Consistent with this, a disruption of the T2SS accelerated intracellular accumulation of VvpS and thereby the autolysis of V. vulnificus. VvpS also showed peptidoglycan-hydrolyzing activity, indicating that the autolysis of V. vulnificus is attributed to the self-digestion of the cell wall by VvpS. The functions of the VvpS domains were assessed by C-terminal deletion analysis and demonstrated that the PCD indeed possesses a proteolytic activity and that the CBD is required for hydrolyzing peptidoglycan effectively. Finally, the vvpS mutant exhibited reduced virulence in the infection of mice. In conclusion, VvpS is a serine protease with a modular structure and plays an essential role in the autolysis and pathogenesis of V. vulnificus.

  20. Identification and Characterization of a Novel Serine Protease, VvpS, That Contains Two Functional Domains and Is Essential for Autolysis of Vibrio vulnificus ▿

    Science.gov (United States)

    Lim, Moon Sub; Kim, Jeong-A; Lim, Jong Gyu; Kim, Byoung Sik; Jeong, Kwang Cheol; Lee, Kyu-Ho; Choi, Sang Ho

    2011-01-01

    Little is known about the molecular mechanism for autolysis of Gram-negative bacteria. In the present study, we identified the vvpS gene encoding a serine protease, VvpS, from Vibrio vulnificus, a Gram-negative food-borne pathogen. The amino acid sequence predicted that VvpS consists of two functional domains, an N-terminal protease catalytic domain (PCD) and a C-terminal carbohydrate binding domain (CBD). A null mutation of vvpS significantly enhanced viability during stationary phase, as measured by enumerating CFU and differentially staining viable cells. The vvpS mutant reduced the release of cytoplasmic β-galactosidase and high-molecular-weight extracellular chromosomal DNA into the culture supernatants, indicating that VvpS contributes to the autolysis of V. vulnificus during stationary phase. VvpS is secreted via a type II secretion system (T2SS), and it exerts its effects on autolysis through intracellular accumulation during stationary phase. Consistent with this, a disruption of the T2SS accelerated intracellular accumulation of VvpS and thereby the autolysis of V. vulnificus. VvpS also showed peptidoglycan-hydrolyzing activity, indicating that the autolysis of V. vulnificus is attributed to the self-digestion of the cell wall by VvpS. The functions of the VvpS domains were assessed by C-terminal deletion analysis and demonstrated that the PCD indeed possesses a proteolytic activity and that the CBD is required for hydrolyzing peptidoglycan effectively. Finally, the vvpS mutant exhibited reduced virulence in the infection of mice. In conclusion, VvpS is a serine protease with a modular structure and plays an essential role in the autolysis and pathogenesis of V. vulnificus. PMID:21642466

  1. Heterocomplex Formation between MBL/Ficolin/CL-11–Associated Serine Protease-1 and -3 and MBL/Ficolin/CL-11–Associated Protein-1

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Munthe-Fog, Lea; Garred, Peter

    2014-01-01

    (LCP). It has previously been shown that MAP-1 can compete with the MBL/ficolin/collectin-11-associated serine proteases (MASPs) in binding to MBL and the ficolins. However, this mechanism may only partly explain the inhibitory complement effect of MAP-1. We hypothesized that MAP-1 is also involved...... in heterocomplex formation with the MASPs thereby breaking the stoichiometry of the activation complexes of the LCP, which could represent an alternative mechanism of MAP-1-mediated complement inhibition. We assessed the heterocomplex formation with ELISA, size-exclusion chromatography, and immunoblotting using...... detected in normal human serum and plasma, and depletion of the LCP recognition molecules from ficolin-3-deficient human serum showed that free circulating heterocomplexes also exist in the blood, although the major part appears to be associated with the LCP recognition molecules. Altogether...

  2. Loss of MYC confers resistance to doxorubicin-induced apoptosis by preventing the activation of multiple serine protease- and caspase-mediated pathways

    DEFF Research Database (Denmark)

    Grassilli, Emanuela; Ballabeni, Andrea; Maellaro, Emilia

    2004-01-01

    c-Myc plays an essential role in proliferation, differentiation, and apoptosis. Because of its relevance to cancer, most studies have focused on the cellular consequences of c-Myc overexpression. Here, we address the role of physiological levels of c-Myc in drug-induced apoptosis. By using c-MYC...... null cells we confirm and extend recent reports showing a c-Myc requirement for the induction of apoptosis by a number of anticancer agents. In particular, we show that c-Myc is required for the induction of apoptosis by doxorubicin and etoposide, whereas it is not required for camptothecin......-3 activation. Finally, a complete rescue from doxorubicin-induced apoptosis is obtained only when serine proteases, caspase-3, and mitochondrial activation are inhibited simultaneously. Interestingly, doxorubicin requires c-Myc for the activation of all of these pathways. Our findings therefore...

  3. Raf-1 forms a stable complex with Mek1 and activates Mek1 by serine phosphorylation.

    OpenAIRE

    Huang, W; Alessandrini, A; Crews, C M; Erikson, R L

    1993-01-01

    Recombinant Mek1 and Raf-1 proteins produced in Sf9 cells undergo a tight association both in vivo and in vitro, which apparently does not depend on additional factors or the kinase activity of Mek1 or Raf-1. The complex can be disrupted by two polyclonal antibodies raised against Raf-1 peptides. Coinfection with Raf-1 activates Mek1 > 150-fold, and coinfection with Raf-1 and Mek1 activates Erk1 approximately 90-fold. The activation of Mek1 by Raf-1 involves only serine phosphorylation, which...

  4. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore; Rice, Amy J.; Ojeda, Isabel; Light, Samuel; Minasov, George; Vargas, Jason; Nagarathnam, Dhanapalan; Anderson, Wayne F.; Johnson, Michael E. (UIC); (NWU); (Novalex); (DNSK)

    2016-12-26

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activity (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.

  5. The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation

    DEFF Research Database (Denmark)

    Kozarcanin, H; Lood, C; Fog, Lea Munthe

    2016-01-01

    both in vitro and in vivo. These findings may represent a crossroad between the complement and the coagulation systems. SUMMARY: BACKGROUND: The activated forms of the complement lectin pathway (LP) proteases MASP-1 and MASP-2 are able to cleave the coagulation factors prothrombin, fibrinogen, factor...

  6. Serine Proteases-Like Genes in the Asian Rice Gall Midge Show Differential Expression in Compatible and Incompatible Interactions with Rice

    Directory of Open Access Journals (Sweden)

    Suresh Nair

    2011-04-01

    Full Text Available The Asian rice gall midge, Orseolia oryzae (Wood-Mason, is a serious pest of rice. Investigations into the gall midge-rice interaction will unveil the underlying molecular mechanisms which, in turn, can be used as a tool to assist in developing suitable integrated pest management strategies. The insect gut is known to be involved in various physiological and biological processes including digestion, detoxification and interaction with the host. We have cloned and identified two genes, OoprotI and OoprotII, homologous to serine proteases with the conserved His87, Asp136 and Ser241 residues. OoProtI shared 52.26% identity with mosquito-type trypsin from Hessian fly whereas OoProtII showed 52.49% identity to complement component activated C1s from the Hessian fly. Quantitative real time PCR analysis revealed that both the genes were significantly upregulated in larvae feeding on resistant cultivar than in those feeding on susceptible cultivar. These results provide an opportunity to understand the gut physiology of the insect under compatible or incompatible interactions with the host. Phylogenetic analysis grouped these genes in the clade containing proteases of phytophagous insects away from hematophagous insects.

  7. 1H, 13C and 15N resonance assignments and secondary structure analysis of CmPI-II, a serine protease inhibitor isolated from marine snail Cenchritis muricatus.

    Science.gov (United States)

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Alonso-del-Rivero Antigua, Maday; Pires, José Ricardo

    2016-04-01

    A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the (1)H, (15)N and (13)C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14-19, β2: 23-35 and β3: 43-45 and one helix α1: 28-37 arranged in the sequential order β1-β2-α1-β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor.

  8. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein.

    Directory of Open Access Journals (Sweden)

    Mark J White

    2011-03-01

    Full Text Available Mycobacterium tuberculosis remains a significant global health concern largely due to its ability to persist for extended periods within the granuloma of the host. While residing within the granuloma, the tubercle bacilli are likely to be exposed to stress that can result in formation of aberrant proteins with altered structures. Bacteria encode stress responsive determinants such as proteases and chaperones to deal with misfolded or unfolded proteins. pepD encodes an HtrA-like serine protease and is thought to process proteins altered following exposure of M. tuberculosis to extra-cytoplasmic stress. PepD functions both as a protease and chaperone in vitro, and is required for aspects of M. tuberculosis virulence in vivo. pepD is directly regulated by the stress-responsive two-component signal transduction system MprAB and indirectly by extracytoplasmic function (ECF sigma factor SigE. Loss of PepD also impacts expression of other stress-responsive determinants in M. tuberculosis. To further understand the role of PepD in stress adaptation by M. tuberculosis, a proteomics approach was taken to identify binding proteins and possible substrates of this protein. Using subcellular fractionation, the cellular localization of wild-type and PepD variants was determined. Purified fractions as well as whole cell lysates from Mycobacterium smegmatis or M. tuberculosis strains expressing a catalytically compromised PepD variant were immunoprecipitated for PepD and subjected to LC-MS/MS analyses. Using this strategy, the 35-kDa antigen encoding a homolog of the PspA phage shock protein was identified as a predominant binding partner and substrate of PepD. We postulate that proteolytic cleavage of the 35-kDa antigen by PepD helps maintain cell wall homeostasis in Mycobacterium and regulates specific stress response pathways during periods of extracytoplasmic stress.

  9. Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: implications for fungal survival.

    Directory of Open Access Journals (Sweden)

    Cheng-Gang Zou

    Full Text Available BACKGROUND: Soil fungi face a variety of environmental stresses such as UV light, high temperature, and heavy metals. Adaptation of gene expression through transcriptional regulation is a key mechanism in fungal response to environmental stress. In Saccharomyces cerevisiae, the transcription factors Msn2/4 induce stress-mediated gene expression by binding to the stress response element. Previous studies have demonstrated that the expression of extracellular proteases is up-regulated in response to heat shock in fungi. However, the physiological significance of regulation of these extracellular proteases by heat shock remains unclear. The nematophagous fungus Clonostachys rosea can secret an extracellular serine protease PrC during the infection of nematodes. Since the promoter of prC has three copies of the stress response element, we investigated the effect of environmental stress on the expression of prC. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrated that the expression of prC was up-regulated by oxidants (H(2O(2 or menadione and heat shock, most likely through the stress response element. After oxidant treatment or heat shock, the germination of conidia in the wild type strain was significantly higher than that in the prC mutant strain in the presence of nematode cuticle. Interestingly, the addition of nematode cuticle significantly attenuated the production of reactive oxygen species (ROS induced by oxidants and heat shock in the wild type strain, but not in prC mutant strain. Moreover, low molecule weight (<3 kD degradation products of nematode cuticle suppressed the inhibitory effect of conidial germination induced by oxidants and heat shock. CONCLUSIONS/SIGNIFICANCE: These results indicate that PrC plays a protective role in oxidative stress in C. rosea. PrC degrades the nematode cuticle to produce degradation products, which in turn offer a protective effect against oxidative stress by scavenging ROS. Our study reveals a novel

  10. Characterization of cDNAs encoding serine proteases and their transcriptional responses to Cry1Ab protoxin in the gut of Ostrinia nubilalis larvae.

    Directory of Open Access Journals (Sweden)

    Jianxiu Yao

    Full Text Available Serine proteases, such as trypsin and chymotrypsin, are the primary digestive enzymes in lepidopteran larvae, and are also involved in Bacillus thuringiensis (Bt protoxin activation and protoxin/toxin degradation. We isolated and sequenced 34 cDNAs putatively encoding trypsins, chymotrypsins and their homologs from the European corn borer (Ostrinia nubilalis larval gut. Our analyses of the cDNA-deduced amino acid sequences indicated that 12 were putative trypsins, 12 were putative chymotrypsins, and the remaining 10 were trypsin and chymotrypsin homologs that lack one or more conserved residues of typical trypsins and chymotrypsins. Reverse transcription PCR analysis indicated that all genes were highly expressed in gut tissues, but one group of phylogenetically-related trypsin genes, OnTry-G2, was highly expressed in larval foregut and midgut, whereas another group, OnTry-G3, was highly expressed in the midgut and hindgut. Real-time quantitative PCR analysis indicated that several trypsin genes (OnTry5 and OnTry6 were significantly up-regulated in the gut of third-instar larvae after feeding on Cry1Ab protoxin from 2 to 24 h, whereas one trypsin (OnTry2 was down-regulated at all time points. Four chymotrypsin and chymotrypsin homolog genes (OnCTP2, OnCTP5, OnCTP12 and OnCTP13 were up-regulated at least 2-fold in the gut of the larvae after feeding on Cry1Ab protoxin for 24 h. Our data represent the first in-depth study of gut transcripts encoding expanded families of protease genes in O. nubilalis larvae and demonstrate differential expression of protease genes that may be related to Cry1Ab intoxication and/or resistance.

  11. Structural Characterization and Determinants of Specificity of Single- Chain Antibody Inhibitors of Membrane-Type Serine Protease 1

    Science.gov (United States)

    2007-03-01

    protease involved in male chromatin remodeling blocks the development of sea urchin embryos at the initial cell cycle. J. Cell Biochem. 98, 335–342. 18...Macrophage Morphology Changes and Inhibition of Nitric Oxide Production by Macrophages. The cleavage of MSP-1 by MT-SP1 was then tested in primary cells in...inhibitor (Fig. 3) were studied. The morphology change in response to MSP-1 was independent of HAI-1 or anti-MT-SP1 antibody presence. Both inhibitors

  12. A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Niels [Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States; Levdikov, Vladimir M. [Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom; Zimanyi, Christina M. [Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States; Gaudet, Rachelle [Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States; Wilkinson, Anthony J. [Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom; Losick, Richard [Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States

    2017-05-20

    PP2C phosphatases control biological processes including stress responses, development, and cell division in all kingdoms of life. Diverse regulatory domains adapt PP2C phosphatases to specific functions, but how these domains control phosphatase activity was unknown. We present structures representing active and inactive states of the PP2C phosphatase SpoIIE from Bacillus subtilis. Based on structural analyses and genetic and biochemical experiments, we identify an α-helical switch that shifts a carbonyl oxygen into the active site to coordinate a metal cofactor. Our analysis indicates that this switch is widely conserved among PP2C family members, serving as a platform to control phosphatase activity in response to diverse inputs. Remarkably, the switch is shared with proteasomal proteases, which we identify as evolutionary and structural relatives of PP2C phosphatases. Although these proteases use an unrelated catalytic mechanism, rotation of equivalent helices controls protease activity by movement of the equivalent carbonyl oxygen into the active site.

  13. The role of up-regulated serine proteases and matrix metalloproteinases in the pathogenesis of a murine model of colitis

    DEFF Research Database (Denmark)

    Tarlton, J F; Whiting, C V; Tunmore, D

    2000-01-01

    , with major species of 23 kd, 30 kd, and 45 kd. Co-migration and inhibition studies indicated that the 23-kd proteinase was pancreatic trypsin and that the 30-kd species was neutrophil elastase. Matrix metalloproteinase (MMP)-9 expression, and MMP-2 and MMP-9 activation, was elevated in colitic tissues....... Proteinase levels followed a decreasing concentration gradient from proximal to distal colon. Proteolysis was localized to infiltrating leukocytes in diseased severe combined immunodeficient mice. Transmural inflammation was associated with serine proteinase and MMP activity in overlying epithelium...

  14. Studies on a novel serine protease of a ΔhapAΔprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model.

    Directory of Open Access Journals (Sweden)

    Aurelia Syngkon

    Full Text Available BACKGROUND: Two well-characterized proteases secreted by Vibrio cholerae O1 strains are hemagglutinin protease (HAP and V. cholerae protease (PrtV. The hapA and prtV knock out mutant, V. cholerae O1 strain CHA6.8ΔprtV, still retains residual protease activity. We initiated this study to characterize the protease present in CHA6.8ΔprtV strain and study its role in pathogenesis in rabbit ileal loop model (RIL. METHODOLOGY/PRINCIPAL FINDINGS: We partially purified the residual protease secreted by strain CHA6.8ΔprtV from culture supernatant by anion-exchange chromatography. The major protein band in native PAGE was identified by MS peptide mapping and sequence analysis showed homology with a 59-kDa trypsin-like serine protease encoded by VC1649. The protease activity was partially inhibited by 25 mM PMSF and 10 mM EDTA and completely inhibited by EDTA and PMSF together. RIL assay with culture supernatants of strains C6709 (FA ratio 1.1+/-0.3 n = 3, CHA6.8 (FA ratio 1.08+/-0.2 n = 3, CHA6.8ΔprtV (FA ratio 1.02+/-0.2 n = 3 and partially purified serine protease from CHA6.8ΔprtV (FA ratio 1.2+/-0.3 n = 3 induced fluid accumulation and histopathological studies on rabbit ileum showed destruction of the villus structure with hemorrhage in all layers of the mucosa. RIL assay with culture supernatant of CHA6.8ΔprtVΔVC1649 strain (FA ratio 0.11+/-0.005 n = 3 and with protease incubated with PMSF and EDTA (FA ratio 0.3+/-0.05 n = 3 induced a significantly reduced FA ratio with almost complete normal villus structure. CONCLUSION: Our results show the presence of a novel 59-kDa serine protease in a ΔhapAΔprtV V. cholerae O1 strain and its role in hemorrhagic response in RIL model.

  15. Discovery of novel potent and selective dipeptide hepatitis C virus NS3/4A serine protease inhibitors.

    Science.gov (United States)

    Raboisson, Pierre; Lin, Tse-I; Kock, Herman de; Vendeville, Sandrine; Vreken, Wim Van de; McGowan, David; Tahri, Abdellah; Hu, Lili; Lenz, Oliver; Delouvroy, Frederic; Surleraux, Dominique; Wigerinck, Piet; Nilsson, Magnus; Rosenquist, Sa; Samuelsson, Bertil; Simmen, Kenneth

    2008-09-15

    Starting from the previously reported HCV NS3/4A protease inhibitor BILN 2061, we have used a fast-follower approach to identify a novel series of HCV NS3/4A protease inhibitors in which (i) the P3 amino moiety and its capping group have been truncated, (ii) a sulfonamide is introduced in the P1 cyclopropyl amino acid, (iii) the position 8 of the quinoline is substituted with a methyl or halo group, and (iv) the ring size of the macrocycle has been reduced to 14 atoms. SAR analysis performed with a limited set of compounds led to the identification of N-{17-[8-chloro-2-(4-isopropylthiazol-2-yl)-7-methoxyquinolin-4-yloxy]-2,14-dioxo-3,15-diazatricyclo [13.3.0.0 [Bartenschlager, R.; Lohmann, V. J. Gen. Virol. 2000, 81, 1631; Vincent Soriano, Antonio Madejon, Eugenia Vispo, Pablo Labarga, Javier Garcia-Samaniego, Luz Martin-Carbonero, Julie Sheldon, Marcelle Bottecchia, Paula Tuma, Pablo Barreiro Expert Opin. Emerg. Drugs, 2008, 13, 1-19

  16. Target-based screen against a periplasmic serine protease that regulates intrabacterial pH homeostasis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhao, Nan; Darby, Crystal M; Small, Jennifer; Bachovchin, Daniel A; Jiang, Xiuju; Burns-Huang, Kristin E; Botella, Helene; Ehrt, Sabine; Boger, Dale L; Anderson, Erin D; Cravatt, Benjamin F; Speers, Anna E; Fernandez-Vega, Virneliz; Hodder, Peter S; Eberhart, Christina; Rosen, Hugh; Spicer, Timothy P; Nathan, Carl F

    2015-02-20

    Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within activated macrophages. A previously reported genetic screen revealed that Mtb loses this ability when the mycobacterial acid resistance protease (marP) gene is disrupted. In the present study, a high throughput screen (HTS) of compounds against the protease domain of MarP identified benzoxazinones as inhibitors of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2'-methylphenyl)-4H-1,3-benzoxazin-4-one), acylated MarP and lowered Mtb's pHIB and survival during incubation at pH 4.5. BO43 had similar effects on MarP-deficient Mtb, suggesting the existence of additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T, with Mycobacterium bovis variant bacille Calmette-Guérin (BCG) followed by click chemistry with azido-biotin identified both the MarP homologue and the high temperature requirement A1 (HtrA1) homologue, an essential protein. Thus, the chemical probe identified through a target-based screen not only reacted with its intended target in the intact cells but also implicated an additional enzyme that had eluded a genetic screen biased against essential genes.

  17. Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity.

    Science.gov (United States)

    Zou, Z; Lopez, Dawn L; Kanost, Michael R; Evans, Jay D; Jiang, Haobo

    2006-10-01

    We have identified 44 serine protease (SP) and 13 serine protease homolog (SPH) genes in the genome of Apis mellifera. Most of these genes encode putative secreted proteins, but four SPs and three SPHs may associate with the plasma membrane via a transmembrane region. Clip domains represent the most abundant non-catalytic structural units in these SP-like proteins -12 SPs and six SPHs contain at least one clip domain. Some of the family members contain other modules for protein-protein interactions, including disulphide-stabilized structures (LDL(r)A, SRCR, frizzled, kringle, Sushi, Wonton and Pan/apple), carbohydrate-recognition domains (C-type lectin and chitin-binding), and other modules (such as zinc finger, CUB, coiled coil and Sina). Comparison of the sequences with those from Drosophila led to a proposed SP pathway for establishing the dorsoventral axis of honey bee embryos. Multiple sequence alignments revealed evolutionary relationships of honey bee SPs and SPHs with those in Drosophila melanogaster, Anopheles gambiae, and Manduca sexta. We identified homologs of D. melanogaster persephone, M. sexta HP14, PAP-1 and SPH-1. A. mellifera genome includes at least five genes for potential SP inhibitors (serpin-1 through -5) and three genes of SP putative substrates (prophenoloxidase, spätzle-1 and spätzle-2). Quantitative RT-PCR analyses showed an elevation in the mRNA levels of SP2, SP3, SP9, SP10, SPH41, SPH42, SP49, serpin-2, serpin-4, serpin-5, and spätzle-2 in adults after a microbial challenge. The SP41 and SP6 transcripts significantly increased after an injection of Paenibacillus larva, but there was no such increase after injection of saline or Escherichia coli. mRNA levels of most SPs and serpins significantly increased by 48 h after the pathogen infection in 1st instar larvae. On the contrary, SP1, SP3, SP19 and serpin-5 transcript levels reduced. These results, taken together, provide a framework for designing experimental studies of the roles of

  18. Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5, a subtilisin-like serine protease.

    Science.gov (United States)

    Sénéchal, Fabien; Graff, Lucile; Surcouf, Ogier; Marcelo, Paulo; Rayon, Catherine; Bouton, Sophie; Mareck, Alain; Mouille, Gregory; Stintzi, Annick; Höfte, Herman; Lerouge, Patrice; Schaller, Andreas; Pelloux, Jérôme

    2014-10-01

    In Arabidopsis thaliana, the degree of methylesterification (DM) of homogalacturonans (HGs), the main pectic constituent of the cell wall, can be modified by pectin methylesterases (PMEs). In all organisms, two types of protein structure have been reported for PMEs: group 1 and group 2. In group 2 PMEs, the active part (PME domain, Pfam01095) is preceded by an N-terminal extension (PRO part), which shows similarities to PME inhibitors (PMEI domain, Pfam04043). This PRO part mediates retention of unprocessed group 2 PMEs in the Golgi apparatus, thus regulating PME activity through a post-translational mechanism. This study investigated the roles of a subtilisin-type serine protease (SBT) in the processing of a PME isoform. Using a combination of functional genomics, biochemistry and proteomic approaches, the role of a specific SBT in the processing of a group 2 PME was assessed together with its consequences for plant development. A group 2 PME, AtPME17 (At2g45220), was identified, which was highly co-expressed, both spatially and temporally, with AtSBT3.5 (At1g32940), a subtilisin-type serine protease (subtilase, SBT), during root development. PME activity was modified in roots of knockout mutants for both proteins with consequent effects on root growth. This suggested a role for SBT3.5 in the processing of PME17 in planta. Using transient expression in Nicotiana benthamiana, it was indeed shown that SBT3.5 can process PME17 at a specific single processing motif, releasing a mature isoform in the apoplasm. By revealing the potential role of SBT3.5 in the processing of PME17, this study brings new evidence of the complexity of the regulation of PMEs in plants, and highlights the need for identifying specific PME-SBT pairs. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Mannose-binding lectin and MBL-associated serine protease-2 gene polymorphisms in a Brazilian population from Rio de Janeiro.

    Science.gov (United States)

    Ferraroni, N R; Segat, L; Guimarães, R L; Brandão, L A C; Crovella, S; Constantino-Silva, R N; Loja, C; da Silva Duarte, A J; Grumach, A S

    2012-02-01

    Mannose-binding lectin (MBL) is a protein able to bind to carbohydrate patterns on pathogen membranes; upon MBL binding, its' associated serine protease MBL-associated serine protease type 2 (MASP2) is autoactivated, promoting the activation of complement via the lectin pathway. For both MBL2 and MASP2 genes, the frequencies of polymorphisms are extremely variable between different ethnicities, and this aspect has to be carefully considered when performing genetic studies. While polymorphisms in the MBL-encoding gene (MBL2) have been associated, depending upon ethnicity, with several diseases in different populations, little is known about the distribution of MASP2 gene polymorphisms in human populations. The aim of our study was thus to determine the frequencies of MBL2 (exon 1 and promoter) and MASP2 (p.D371Y) polymorphisms in a Brazilian population from Rio de Janeiro. A total of 294 blood donor samples were genotyped for 27 polymorphisms in the MBL2 gene by direct sequencing of a region spanning from the promoter polymorphism H/L rs11003125 to the rs1800451 polymorphism (at codon 57 in the first exon of the gene). Genotyping for MASP2 p.D371Y was carried out using fluorogenic probes. To our knowledge, this is the first study reporting the prevalence of the MASP2 p.D371Y polymorphism in a Brazilian population. The C allele frequency 39% is something intermediate between the reported 14% in Europeans and 90% in Sub-Saharan Africans. MBL2 polymorphisms frequencies were quite comparable to those previously reported for admixed Brazilians. Both MBL2 and MASP2 polymorphisms frequencies reported in our study for the admixed Brazilian population are somehow intermediate between those reported in Europeans and Africans, reflecting the ethnic composition of the southern Brazilian population, estimated to derive from an admixture of Caucasian (31%), African (34%) and Native American (33%) populations. In conclusion, our population genetic study describes the frequencies

  20. Cleavage of kininogen and subsequent bradykinin release by the complement component: mannose-binding lectin-associated serine protease (MASP-1.

    Directory of Open Access Journals (Sweden)

    József Dobó

    Full Text Available Bradykinin (BK, generated from high-molecular-weight kininogen (HK is the major mediator of swelling attacks in hereditary angioedema (HAE, a disease associated with C1-inhibitor deficiency. Plasma kallikrein, activated by factor XIIa, is responsible for most of HK cleavage. However other proteases, which activate during episodes of angioedema, might also contribute to BK production. The lectin pathway of the complement system activates after infection and oxidative stress on endothelial cells generating active serine proteases: MASP-1 and MASP-2. Our aim was to study whether activated MASPs are able to digest HK to release BK. Initially we were trying to find potential new substrates of MASP-1 in human plasma by differential gel electrophoresis, and we identified kininogen cleavage products by this proteomic approach. As a control, MASP-2 was included in the study in addition to MASP-1 and kallikrein. The proteolytic cleavage of HK by MASPs was followed by SDS-PAGE, and BK release was detected by HPLC. We showed that MASP-1 was able to cleave HK resulting in BK production. MASP-2 could also cleave HK but could not release BK. The cleavage pattern of MASPs is similar but not strictly identical to that of kallikrein. The catalytic efficiency of HK cleavage by a recombinant version of MASP-1 and MASP-2 was about 4.0×10(2 and 2.7×10(2 M(-1 s(-1, respectively. C1-inhibitor, the major inhibitor of factor XIIa and kallikrein, also prevented the cleavage of HK by MASPs. In all, a new factor XII- and kallikrein-independent mechanism of bradykinin production by MASP-1 was demonstrated, which may contribute to the pro-inflammatory effect of the lectin pathway of complement and to the elevated bradykinin levels in HAE patients.

  1. Three novel clade B serine protease inhibitors from disk abalone, Haliotis discus discus: Molecular perspectives and responses to immune challenges and tissue injury.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Godahewa, G I; Whang, Ilson; Kim, Chul; Park, Hae-Chul; Lee, Jehee

    2015-08-01

    Serine protease inhibitors (SERPINs) control cellular protease activity in order to maintain cellular homeostasis. The immune and inflammatory responses of invertebrate clade B SERPINs have not been widely reported. In the present study, three proteins with high similarity to clade B SERPINs, referred to as AbSERPIN-1, AbSERPIN-2 and AbSERPIN-3, were identified from disk abalone (Haliotis discus discus). While AbSERPIN-1 (399 aa) was of a typical size for this protein class, AbSERPIN-2 (506 aa) and AbSERPIN-3 (532 aa) were relatively larger. Bioinformatic analysis revealed the characteristic SERPIN domain in each AbSERPIN. In addition, the N-terminal region of both AbSERPIN-2 and AbSERPIN-3 contained a predicted low complexity region (LCR) and a signal peptide, suggesting that these proteins are secretory proteins and are, thus, novel peptides. Tertiary structural models of the AbSERPINs highlighted their structural and functional conservation. Ubiquitous expression of AbSERPIN transcripts was evaluated by quantitative real time PCR (qPCR) analysis in seven tissue types. AbSERPIN-1, AbSERPIN-2, and AbSERPIN-3 transcript levels were highest in mantle, hemocytes, and muscles, respectively. Temporal expression analysis revealed that AbSERPINs were significantly (P < 0.05) elevated in hemocytes during the early/middle stages following the injection of a bacterial pathogen (Vibrio parahaemolyticus or Listeria monocytogenes) or an immuno-stimulant (lipopolysaccharide). Moreover, mantle tissue injury led to significant changes in the temporal expression of AbSERPIN mRNA. Specifically, transcription of AbSERPIN-1 and AbSERPIN-3 was considerably up-regulated, while expression of AbSERPIN-2 was suppressed. These results suggest a potential role of AbSERPINs in response to pathogen invasion and tissue injury in disk abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Regulation of visceral adipose tissue-derived serine protease inhibitor by nutritional status, metformin, gender and pituitary factors in rat white adipose tissue.

    Science.gov (United States)

    González, C R; Caminos, J E; Vázquez, M J; Garcés, M F; Cepeda, L A; Angel, A; González, A C; García-Rendueles, M E; Sangiao-Alvarellos, S; López, M; Bravo, S B; Nogueiras, R; Diéguez, C

    2009-07-15

    Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a recently discovered adipocytokine mainly secreted from visceral adipose tissue, which plays a main role in insulin sensitivity. In this study, we have investigated the regulation of vaspin gene expression in rat white adipose tissue (WAT) in different physiological (nutritional status, pregnancy, age and gender) and pathophysiological (gonadectomy, thyroid status and growth hormone deficiency) settings known to be associated with energy homeostasis and alterations in insulin sensitivity. We have determined vaspin gene expression by real-time PCR. Vaspin was decreased after fasting and its levels were partially recovered after leptin treatment. Chronic treatment with metformin increased vaspin gene expression. Vaspin mRNA expression reached the highest peak at 45 days in both sexes after birth and its expression was higher in females than males, but its levels did not change throughout pregnancy. Finally, decreased levels of growth hormone and thyroid hormones suppressed vaspin expression. These findings suggest that WAT vaspin mRNA expression is regulated by nutritional status, and leptin seems to be the nutrient signal responsible for those changes. Vaspin is influenced by age and gender, and its expression is increased after treatment with insulin sensitizers. Finally, alterations in pituitary functions modify vaspin levels. Understanding the molecular mechanisms regulating vaspin will provide new insights into the pathogenesis of the metabolic syndrome.

  3. Identification of the site of human mannan-binding lectin involved in the interaction with its partner serine proteases: the essential role of Lys55

    DEFF Research Database (Denmark)

    Teillet, F; Lacroix, M; Thiel, Steffen

    2007-01-01

    Mannan-binding lectin (MBL) is an oligomeric lectin that binds neutral carbohydrates on pathogens, forms complexes with MBL-associated serine proteases (MASP)-1, -2, and -3 and 19-kDa MBL-associated protein (MAp19), and triggers the complement lectin pathway through activation of MASP-2. To ident...... centered on residue Lys(55), which may form an ionic bond representing the major component of the MBL-MASP interaction. The binding sites for MASP-2/MAp19 and MASP-1/3 have common features but are not strictly identical........ To identify the MASP binding site(s) of human MBL, point mutants targeting residues C-terminal to the hinge region were produced and tested for their interaction with the MASPs and MAp19 using surface plasmon resonance and functional assays. Mutation Lys(55)Ala abolished interaction with the MASPs and MAp19...... and prevented formation of functional MBL-MASP-2 complexes. Mutations Lys(55)Gln and Lys(55)Glu abolished binding to MASP-1 and -3 and strongly inhibited interaction with MAp19. Conversely, mutation Lys(55)Arg abolished interaction with MASP-2 and MAp19, but only weakened interaction with MASP-1 and -3...

  4. Involvement of clip-domain serine protease in the anti-Vibrio immune response of abalone (Haliotis discus hannai)-Molecular cloning, characterization and functional analysis.

    Science.gov (United States)

    Hu, Jian-Jian; Chen, Yu-Lei; Duan, Xue-Kun; Jin, Teng-Chuan; Li, Yue; Zhang, Ling-Jing; Liu, Guang-Ming; Cao, Min-Jie

    2018-01-01

    Vibrio parahemolyticus (V. parahemolyticus) is a major pathogen for abalone, an important economical shellfish in coastal area of China. There is little known about the abalone innate immune system against pathogen infection. Clip-domain serine proteases (cSPs) are increasingly recognized to play important roles in host immune defense in invertebrates. In this study, we cloned a cSP (Hdh-cSP) from abalone (Haliotis discus hannai). We found out that Hdh-cSP was widely expressed in multiple tissues of abalone, with highest level in the immune-like organ, hepatopancreas. V. parahemolyticus infection induced significantly elevated expression of Hdh-cSP in addition to better-characterized innate immune component genes including Rel/NF-κB, allograft inflammatory factor (ALInFa), macrophage expressed protein (MEP) and caspase-8. Importantly, the silencing of Hdh-cSP reduced the expression of these genes, suggesting that Hdh-cSP was an upstream regulatory factor in V. parahemolyticus infection. Further analysis showed that apoptosis of hemocytes was inhibited when the transcription of Hdh-cSP was knocked down, suggesting that Hdh-cSP participated in cell apoptosis by regulation of caspase 8 expression in V. parahemolyticus infection. Therefore, our study established an important role of cSP in the innate immunity against V. parahemolyticus infection in abalone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Planar integrated optical waveguide used as a transducer to yield chemical information: detection of the activity of proteolytic enzymes e.g. serine-proteases

    Science.gov (United States)

    Zhylyak, Gleb; Ramoz-Perez, Victor; Linnhoff, Michael; Hug, Thomas; Citterio, Daniel; Spichiger-Keller, Ursula E.

    2005-03-01

    The paper shows the very first results of a feasibility study where the activity of proteolytic enzymes towards dye-labelled artificial substrates immobilized on the surface of planar optical Ta2O5 waveguide was investigated. Within this project, a chromophore label was developed, synthesized and attached to the carboxy-terminus of specific tripeptides. The goal was to develop a highly sensitive optical assay in order to monitor the activity of serine-proteases by cleavage of the amide bond between peptide and chromophore. On the one hand, a strategy was developed to immobilize the labeled tripeptide unto integrated planar waveguides. On the other hand, an instrument, the so-called "chip-reader" was developed to detect the biological process on the surface of the integrated planar optical waveguide. Surface characteristics were analyzed by XPS, TOF-SIMS and contact angle measurements. A comparison between the effectivity of ATR-photometry on chip using TE0 mode and photometry in transmission mode is discussed.

  6. Disk abalone (Haliotis discus discus) expresses a novel antistasin-like serine protease inhibitor: Molecular cloning and immune response against bacterial infection.

    Science.gov (United States)

    Nikapitiya, Chamilani; De Zoysa, Mahanama; Oh, Chulhong; Lee, Youngdeuk; Ekanayake, Prashani Mudika; Whang, Ilson; Choi, Cheol Young; Lee, Jae-Seong; Lee, Jehee

    2010-04-01

    A novel antistasin-like cDNA homologue named as Ab-Antistasin was isolated from the disk abalone Haliotis discus discus normalized cDNA library. The Ab-Antistasin (1398-bp) consisted of an 1185-bp open reading frame encoding 395 amino acid (aa) residues. The predicted molecular mass and isoelectric point of Ab-Antistasin was 44 kDa and 8.5, respectively, and showed highest identity (23.1%) to Hydra magnipapillata antistasin. The most striking feature of Ab-Antistasin is the 12-fold internal repeats (IR) of an antistasin-like domain. Ten of the 12 IR domains (26-27 aa) are highly conserved, with 6 cysteines and 1 glycine. Ab-Antistasin was comprised of three Bowman-Birk serine protease inhibitor family motifs. The recombinant Ab-Antistasin (rAb-Antistasin) was over-expressed in Escherichia coli and purified using a pMAL system. rAb-Antistasin (10 microM) was able to inhibit trypsin activity by 66% in a dose-dependent manner. Moreover, it exhibited low prolongation activity for coagulation in an APTT assay (86.0 s compared to control 42.0 s) with human blood. Endogenous Ab-Antistasin mRNA was found to be expressed in digestive tract, hepatopancreas, hemocytes, abductor muscle and mantle, with highest expression levels in digestive tract followed by hepatopancreas and hemocytes. Quantitative real time PCR results revealed that Ab-Antistasin transcription was significantly induced at 3 h post-infection (p.i.) after challenged by a mixture of bacteria (Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes) in the abalone digestive tract; in the hemocytes, induction occurred at 6 and 12 h. The results indicated that Ab-Antistasin could play an important role in the immune responses of mollusks. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. The Serine Protease EspC from Enteropathogenic Escherichia coli Regulates Pore Formation and Cytotoxicity Mediated by the Type III Secretion System.

    Directory of Open Access Journals (Sweden)

    Julie Guignot

    2015-07-01

    Full Text Available Type III secretion systems (T3SSs are specialized macromolecular machines critical for bacterial virulence, and allowing the injection of bacterial effectors into host cells. The T3SS-dependent injection process requires the prior insertion of a protein complex, the translocon, into host cell membranes consisting of two-T3SS hydrophobic proteins, associated with pore-forming activity. In all described T3SS to date, a hydrophilic protein connects one hydrophobic component to the T3SS needle, presumably insuring the continuum between the hollow needle and the translocon. In the case of Enteropathogenic Escherichia coli (EPEC, the hydrophilic component EspA polymerizes into a filament connecting the T3SS needle to the translocon composed of the EspB and EspD hydrophobic proteins. Here, we identify EspA and EspD as targets of EspC, a serine protease autotransporter of Enterobacteriaceae (SPATE. We found that in vitro, EspC preferentially targets EspA associated with EspD, but was less efficient at proteolyzing EspA alone. Consistently, we found that EspC did not regulate EspA filaments at the surface of primed bacteria that was devoid of EspD, but controlled the levels of EspD and EspA secreted in vitro or upon cell contact. While still proficient for T3SS-mediated injection of bacterial effectors and cytoskeletal reorganization, an espC mutant showed increased levels of cell-associated EspA and EspD, as well as increased pore formation activity associated with cytotoxicity. EspP from enterohaemorrhagic E. coli (EHEC also targeted translocator components and its activity was interchangeable with that of EspC, suggesting a common and important function of these SPATEs. These findings reveal a novel regulatory mechanism of T3SS-mediated pore formation and cytotoxicity control during EPEC/EHEC infection.

  8. The Serine Protease EspC from Enteropathogenic Escherichia coli Regulates Pore Formation and Cytotoxicity Mediated by the Type III Secretion System.

    Science.gov (United States)

    Guignot, Julie; Segura, Audrey; Tran Van Nhieu, Guy

    2015-07-01

    Type III secretion systems (T3SSs) are specialized macromolecular machines critical for bacterial virulence, and allowing the injection of bacterial effectors into host cells. The T3SS-dependent injection process requires the prior insertion of a protein complex, the translocon, into host cell membranes consisting of two-T3SS hydrophobic proteins, associated with pore-forming activity. In all described T3SS to date, a hydrophilic protein connects one hydrophobic component to the T3SS needle, presumably insuring the continuum between the hollow needle and the translocon. In the case of Enteropathogenic Escherichia coli (EPEC), the hydrophilic component EspA polymerizes into a filament connecting the T3SS needle to the translocon composed of the EspB and EspD hydrophobic proteins. Here, we identify EspA and EspD as targets of EspC, a serine protease autotransporter of Enterobacteriaceae (SPATE). We found that in vitro, EspC preferentially targets EspA associated with EspD, but was less efficient at proteolyzing EspA alone. Consistently, we found that EspC did not regulate EspA filaments at the surface of primed bacteria that was devoid of EspD, but controlled the levels of EspD and EspA secreted in vitro or upon cell contact. While still proficient for T3SS-mediated injection of bacterial effectors and cytoskeletal reorganization, an espC mutant showed increased levels of cell-associated EspA and EspD, as well as increased pore formation activity associated with cytotoxicity. EspP from enterohaemorrhagic E. coli (EHEC) also targeted translocator components and its activity was interchangeable with that of EspC, suggesting a common and important function of these SPATEs. These findings reveal a novel regulatory mechanism of T3SS-mediated pore formation and cytotoxicity control during EPEC/EHEC infection.

  9. The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol.

    Directory of Open Access Journals (Sweden)

    Elaine Ward

    Full Text Available The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers may enhance biocontrol potential in some circumstances.

  10. The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM

    Directory of Open Access Journals (Sweden)

    Brant R. Johnson

    2017-06-01

    Full Text Available Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S- layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs. Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs. In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578, was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms’ immunomodulatory properties and interactions with some intestinal epithelial cell components.

  11. The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice

    Directory of Open Access Journals (Sweden)

    Markus M. Heimesaat

    2014-06-01

    Full Text Available Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden. C. jejuni can cross the intestinal epithelial barrier as visualised in biopsies derived from human patients and animal models, however, the underlying molecular mechanisms and associated immunopathology are still not well understood. We have recently shown that the secreted serine protease HtrA plays a key role in C. jejuni cellular invasion and transmigration across polarised epithelial cells in vitro. In the present in vivo study we investigated the role of HtrA during C. jejuni infection of mice. We used the gnotobiotic IL-10-/- mouse model to study campylobacteriosis following peroral infection with the C. jejuni wild-type strain NCTC11168 and the isogenic, non-polar NCTC11168ΔhtrA deletion mutant. Six days post infection (p.i. with either strain mice harboured comparable intestinal C. jejuni loads, whereas ulcerative enterocolitis was less pronounced in mice infected with the ΔhtrA mutant strain. Moreover, ΔhtrA mutant infected mice displayed lower apoptotic cell numbers in the large intestinal mucosa, less colonic accumulation of neutrophils, macrophages and monocytes, lower large intestinal nitric oxide, IFN-γ and IL-6 as well as lower TNF-α and IL-6 serum concentrations as compared to wild-type strain infected mice at day 6 p.i. Notably, immunopathological responses were not restricted to the intestinal tract given that liver and kidneys exhibited mild histopathological changes six days p.i. with either C. jejuni strain. We also found that hepatic and renal nitric oxide levels or renal TNF-α concentrations were lower in the ΔhtrA mutant as compared to wild-type strain infected mice. In conclusion, we show here that the C. jejuni HtrA protein plays a pivotal role in inducing host cell apoptosis and immunopathology during murine campylobacteriosis in the gut in vivo.

  12. Towards tricking a pathogen's protease into fighting infection: the 3D structure of a stable circularly permuted onconase variant cleavedby HIV-1 protease.

    Directory of Open Access Journals (Sweden)

    Mariona Callís

    Full Text Available Onconase® is a highly cytotoxic amphibian homolog of Ribonuclease A. Here, we describe the construction of circularly permuted Onconase® variants by connecting the N- and C-termini of this enzyme with amino acid residues that are recognized and cleaved by the human immunodeficiency virus protease. Uncleaved circularly permuted Onconase® variants are unusually stable, non-cytotoxic and can internalize in human T-lymphocyte Jurkat cells. The structure, stability and dynamics of an intact and a cleaved circularly permuted Onconase® variant were determined by Nuclear Magnetic Resonance spectroscopy and provide valuable insight into the changes in catalytic efficiency caused by the cleavage. The understanding of the structural environment and the dynamics of the activation process represents a first step toward the development of more effective drugs for the treatment of diseases related to pathogens expressing a specific protease. By taking advantage of the protease's activity to initiate a cytotoxic cascade, this approach is thought to be less susceptible to known resistance mechanisms.

  13. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.

    Science.gov (United States)

    Singh, Satbir; Bajaj, Bijender Kumar

    2016-10-02

    Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728 U ml(-1)), which was followed by gram husk (714 U ml(-1)), mustard cake (680 U ml(-1)), and soybean meal (653 U ml(-1)). Plackett-Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020 U ml(-1)). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.

  14. The Membrane-anchored Serine Protease Prostasin (CAP1/PRSS8) Supports Epidermal Development and Postnatal Homeostasis Independent of Its Enzymatic Activity

    DEFF Research Database (Denmark)

    Peters, Diane E; Szabo, Roman; Friis, Stine

    2014-01-01

    . Prostasin null (Prss8(-/-)) mice lack barrier formation and display fatal postnatal dehydration. In sharp contrast, mice homozygous for a point mutation in the Prss8 gene, which causes the substitution of the active site serine within the catalytic histidine-aspartate-serine triad with alanine and renders...

  15. Identification of Transmembrane Protease Serine 2 and Forkhead Box A1 As the Potential Bisphenol A Responsive Genes in the Neonatal Male Rat Brain

    Directory of Open Access Journals (Sweden)

    Takayoshi Ubuka

    2018-03-01

    Full Text Available Perinatal exposure of Bisphenol A (BPA to rodents modifies their behavior in later life. To understand how BPA modifies their neurodevelopmental process, we first searched for BPA responsive genes from androgen and estrogen receptor signaling target genes by polymerase chain reaction array in the neonatal male rat brain. We used a transgenic strain of Wistar rats carrying enhanced green fluorescent protein tagged to gonadotropin-inhibitory hormone (GnIH promoter to investigate the possible interaction of BPA responsive genes and GnIH neurons. We found upregulation of transmembrane protease serine 2 (Tmprss2, an androgen receptor signaling target gene, and downregulation of Forkhead box A1 (Foxa1, an ER signaling target gene, in the medial amygdala of male rats that were subcutaneously administered with BPA from day 1 to 3. Tmprss2-immunoreactive (ir cells were distributed in the olfactory bulb, cerebral cortex, hippocampus, amygdala, and hypothalamus in 3 days old but not in 1-month-old male rats. Density of Tmprss2-ir cells in the medial amygdala was increased by daily administration of BPA from day 1 to 3. Tmprss2 immunoreactivity was observed in 26.5% of GnIH neurons clustered from the ventral region of the ventromedial hypothalamic nucleus to the dorsal region of the arcuate nucleus of 3-day-old male rat hypothalamus. However, Tmprss2 mRNA expression significantly decreased in the amygdala and hypothalamus of 1-month-old male rats. Foxa1 mRNA expression was higher in the hypothalamus than the amygdala in 3 days old male rats. Intense Foxa1-ir cells were only found in the peduncular part of lateral hypothalamus of 3-day-old male rats. Density of Foxa1-ir cells in the hypothalamus was decreased by daily administration of BPA from day 1 to 3. Foxa1 mRNA expression in the hypothalamus also significantly decreased at 1 month. These results suggest that BPA disturbs the neurodevelopmental process and behavior of rats later in their life by

  16. Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2

    DEFF Research Database (Denmark)

    Yaseen, Sadam; Demopulos, Gregory; Dudler, Thomas

    2017-01-01

    All 3 activation pathways of complement-the classic pathway (CP), the alternative pathway, and the lectin pathway (LP)- converge into a common central event: the cleavage and activation of the abundant third complement component, C3,viaformation of C3-activating enzymes (C3 convertases). The four......., Sacks, S., Garred, P., Andrew, P., Sim, R. B., Lachmann, P. J., Wallis, R., Lynch, N., Schwaeble, W. J. Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2....

  17. Kinetics Study of Extracellular Detergent Stable Alkaline Protease from Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Zareena Mushtaq

    2015-04-01

    Full Text Available In this study, extracellular alkaline protease was produced from Rhizopus oryzae in submerged fermentation using dairy waste (whey as a substrate. Fermentation kinetics was studied and various parameters were optimized. The strain produced maximum protease at initial medium pH of 6.0 medium depth of 26 mm, inoculum size of 2% at incubation temperature of 35ºC for 168 h of fermentation. Alkaline protease was purified to homogeneity by ammonium sulphate fractionation followed by sephadex G-100 chromatography. The molecular mass of alkaline protease was 69 kDa determined by 10% SDS-PAGE. The optimum pH and temperature of alkaline protease was 9.0 and 40ºC, respectively. Metal profile of the enzyme showed that the enzyme was non-metallic in nature. The Km , Kcat , Vmax and Kcat/Km values of purified protease were 7.0 mg/mL, 3.8 x102S-1, 54.30 µmol/min and 54.28 s-1mg -1.mL respectively, using casein as substrate. The purified alkaline protease had stability with commercial detergents.

  18. Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12

    Directory of Open Access Journals (Sweden)

    Norsyuhada Alias

    2014-01-01

    Full Text Available Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE strategy with an open reading frame (ORF of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml was obtained from P. pastoris GS115 host (GpPro2 at 20°C after 72 hours of postinduction time with 0.5% (v/v of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa.

  19. Identification of the degradome of Isp-1, a major intracellular serine protease of Bacillus subtilis, by two-dimensional gel electrophoresis and matrix- assisted laser desorption/ionization-time of flight analysis.

    Science.gov (United States)

    Lee, Ah Young; Goo Park, Sung; Kho, Chang Won; Young Park, Sun; Cho, Sayeon; Lee, Sang Chul; Lee, Do Hee; Myung, Pyung Keun; Park, Byoung Chul

    2004-11-01

    Intracellular serine protease-1 (Isp-1) is a major intracellular serine protease of Bacillus subtilis, whose functions still remain largely unknown. Furthermore, physiological substrates are yet to be determined. To identify Isp-1 substrates, we digested extract obtained from an Isp-1 deficient Bacillus mutant with purified Isp-1 and examined eliminated or decreased spots by two-dimensional gel and matrix-assisted laser desorption/ionization-time of flight analyses. Proteins degraded by Isp-1, termed the Isp-1 degradome, are involved in a variety of cellular functions such as DNA packing, genetic competence, and protein secretion. From the degradome we selected ClpC and EF-Tu as putative Isp-1 substrates and studied their in vitro degradation. ClpC and EF-Tu contain putative cleavage sites for Isp-1. N-terminal sequencing of in vitro proteolytic fragments of ClpC and EF-Tu revealed that these sites are indeed recognized and cleaved by Isp-1. Moreover, the cellular levels of ClpC and EF-Tu were dramatically reduced at the late stationary phase, where the expression level of Isp-1 was greatly increased. These results suggest that the regulated proteolysis of ClpC by Isp-1 plays an important role in the stationary phase adaptive response. This degradomic approach could provide a powerful tool for finding physiological substrates of many proteolytic enzymes whose functions remain to be determined.

  20. The proteolytic activation of (H3N2) influenza A virus hemagglutinin is facilitated by different type II transmembrane serine proteases

    NARCIS (Netherlands)

    N. Kühn (Nora); S. Bergmann (Silke); N. Kösterke (Nadine); R.L.O. Lambertz (Ruth L.O.); A. Keppner (Anna); J.M.A. van den Brand (Judith); S. Pöhlmann (Stefan); S. Weiß (Siegfried); E. Hummler (Edith); B. Hatesuer (Bastian); K. Schughart (Klaus)

    2016-01-01

    textabstractCleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus

  1. Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere.

    Science.gov (United States)

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, Chand Karan

    2016-02-01

    A thermostable extracellular alkaline protease producing Bacillus amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth promoting activities. Strain SP1 was purified to 6.48-fold using four-step purification protocol and characterized in detail for its robustness and ecofriendly application in leather and detergent industries. Structural analysis revealed that the protease was monomeric and had a molecular weight of 43 kDa. It exhibited optimum activity at 60°C in alkaline environment (pH 8.0) and stable in the presence of surfactants and oxidizing agents. Enzyme was thermostable at 50°C and retained more than 70% activity after 30 min incubation. It has shown stain removal property and dehairing of goat skin without chemical assistance and hydrolyzing fibrous proteins. This protease showed Km of 0.125 mg ml(-1) and V(max) of 12820 μg ml(-1) indicating its excellent affinity and catalytic role. Thermal inactivation of the pure enzyme followed first-order kinetics. The half life of the pure enzyme at 50, 60, and 65°C was 77, 19.80, and 13.33 min, respectively. The activation energy was 37.19 KJ mol(-1). The results suggest that the B. amyloliquefaciens SP1 has a potential application in different industries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. EspP, a Type V-secreted serine protease of enterohaemorrhagic Escherichia coli O157:H7, influences intestinal colonization of calves and adherence to bovine primary intestinal epithelial cells.

    Science.gov (United States)

    Dziva, Francis; Mahajan, Arvind; Cameron, Pamela; Currie, Carol; McKendrick, Iain J; Wallis, Timothy S; Smith, David G E; Stevens, Mark P

    2007-06-01

    Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of zoonotic diarrhoeal pathogens of worldwide importance. Cattle are a key reservoir; however the molecular mechanisms that promote persistent colonization of the bovine intestines by EHEC are ill-defined. The large plasmid of EHEC O157:H7 encodes several putative virulence factors. Here, it is reported that the pO157-encoded Type V-secreted serine protease EspP influences the intestinal colonization of calves. To dissect the basis of attenuation, a bovine primary rectal epithelial cell line was developed. Adherence of E. coli O157:H7 to such cells was significantly impaired by espP mutation but restored upon addition of highly purified exogenous EspP. Data of this study add to the growing body of evidence that cytotoxins facilitate intestinal colonization by EHEC.

  3. Production and Characterization of Alkaline Protease from a High Yielding and Moderately Halophilic Strain of SD11 Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Hongxia Cui

    2015-01-01

    Full Text Available A marine bacterium SD11, which was isolated from sea muds (Geziwo Qinhuangdao Sea area, China, was used to produce thermostable alkaline serine nonmetal protease in the skim milk agar plate medium with 10% NaCl. The optimal temperature about the manufacture of the extracellular protease was ~60°C. The crude enzyme was stable at 20–50°C. The activity was retained to 60% and 45% after heating for 1 h at 60 and 70°C, respectively. The protease was highly active in a wide pH scope (8.0–10.0 and maximum protease activity exhibited at pH 10.0. The activity was restrained by phenylmethylsulfonyl fluoride (PMSF but mildly increased (~107% in the presence of ethylenediaminetetraacetic acid (EDTA, indicating that the production contains serine-protease(s and nonmetal protease(s. Moreover, the crude alkaline protease was active with the 5 mM Ca2+, Mn2+, Zn2+, Cu2+, Na+, and K+ that existed separately. In addition, the protease showed superduper stability when exposed to an anionic surfactant (5 mM SDS, an oxidizing agent (1% H2O2, and several organic solvents (methanol, isopropanol, and acetone. These results suggest that the marine bacterium SD11 is significant in the industry from the prospects of its ability to produce thermally stable alkaline protease.

  4. Distinct pathways of mannan-binding lectin (MBL)- and C1-complex autoactivation revealed by reconstitution of MBL with recombinant MBL-associated serine protease-2

    DEFF Research Database (Denmark)

    Vorup-Jensen, T; Petersen, Steen Vang; Hansen, A G

    2000-01-01

    proteolytic activation of both C1r and C1s, reconstitution with MASP-2 alone is sufficient for complement activation by MBL. The results suggest that the catalytic activities of MASP-2 split between the two proteases of the C1 complex during the course of vertebrate complement evolution. Udgivelsesdato: 2000...

  5. Ser2 from Serratia liquefaciens L53: A new heat stable protease able to destabilize UHT milk during its storage.

    Science.gov (United States)

    Baglinière, François; Tanguy, Gaëlle; Salgado, Rafael Locatelli; Jardin, Julien; Rousseau, Florence; Robert, Benoît; Harel-Oger, Marielle; Vanetti, Maria Cristina Dantas; Gaucheron, Frédéric

    2017-08-15

    The heat-stable protease Ser2 is secreted by the species Serratia liquefaciens, a psychrotrophic bacteria frequently found in raw milk. To understand the physicochemical modifications of casein micelles induced by Ser2 and to confirm its implication in UHT milk destabilization, the enzyme was purified and added to microfiltered raw milk before UHT treatment. UHT milk destabilization was investigated during 90days of storage. A visual destabilization appeared after 8days of storage with the presence of sediment. Zeta potential increase and formation of aggregates were observed during the storage. Using tandem mass spectrometry, numerous released peptides from the four caseins were identified at the end of storage. Caseins were hydrolyzed in the preferential order β->α s1 ->κ->α s2 . No specific peptidic hydrolysed bond was detected. The present study confirmed that the presence of the protease Ser2 in raw milk can be one of the main causes of UHT milk destabilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The prevalence of the pre-existing hepatitis C viral variants and the evolution of drug resistance in patients treated with the NS3-4a serine protease inhibitor telaprevir

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Libin [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory

    2008-01-01

    Telaprevir (VX-950), a novel hepatitis C virus (HCV) NS3-4A serine protease inhibitor, has demonstrated substantial antiviral activity in patients infected with HCV genotype 1. Some patients experience viral breakthrough, which has been shown to be associated with emergence of telaprevir-resistant HCV variants during treatment. The exact mechanisms underlying the rapid selection of drug resistant viral variants during dosing are not fully understood. In this paper, we develop a two-strain model to study the pre-treatment prevalence of the mutant virus and derive an analytical solution of the mutant frequency after administration of the protease inhibitor. Our analysis suggests that the rapid increase of the mutant frequency during therapy is not due to mutant growth but rather due to the rapid and profound loss of wild-type virus, which uncovers the pre-existing mutant variants. We examine the effects of backward mutation and hepatocyte proliferation on the pre-existence of the mutant virus and the competition between wild-type and drug resistant virus during therapy. We then extend the simple model to a general model with multiple viral strains. Mutations during therapy do not play a significant role in the dynamics of various viral strains, although they are capable of generating low levels of HCV variants that would otherwise be completely suppressed because of fitness disadvantages. Hepatocyte proliferation may not affect the pretreatment frequency of mutant variants, but is able to influence the quasispecies dynamics during therapy. It is the relative fitness of each mutant strain compared with wild-type that determines which strain(s) will dominate the virus population. The study provides a theoretical framework for exploring the prevalence of pre-existing mutant variants and the evolution of drug resistance during treatment with other protease inhibitors or HCV polymerase inhibitors.

  7. The roles of serine protease, intracellular and extracellular phenoloxidase in activation of prophenoloxidase system, and characterization of phenoloxidase from shrimp haemocytes induced by lipopolysaccharide or dopamine

    Science.gov (United States)

    Xie, Peng; Pan, Luqing; Xu, Wujie; Yue, Feng

    2013-09-01

    We investigated the effects of lipopolysaccharide (LPS) and dopamine (DA) on the activation of the prophenoloxidase (proPO) system of Litopenaeus vannamei. LPS and DA were shown with a negative dose-dependent effect on hyalne cells (HC), semi-granular cells (SGC), large granular cells (LGC), and total haemocyte count (THC). When haemocytes were treated with LPS or DA, serine proteinase activity and intracellular phenoloxidase (PO) activity were significantly reduced, but extracellular PO activity increased significantly. These findings indicated that the reduction in haemocyte counts was mainly because of the degranulation and activation of the proPO system from semi-granule and large granule cells. The PKC inhibitor, chelerythrine, and the TPK inhibitor, genistein, had an inhibitory effect on extracellular PO activity, while serine proteinase and intracellular PO activity increased. This suggests that the LPS and DA induce the activation of proPO in haemocytes via PKC and TPK-related signaling pathways, but serine proteinase may be activated only by PKC, as the genistein effects were not statistically significant. Electrophoresis analysis revealed that POs induced by LPS or DA have the same molecular mass and high diphenolase activity. Two PO bands at 526 kDa and 272 kDa were observed in PAGE, while in the haemocyte lysate supernatant (HLS), only a 272-kDa band was observed. This band was resolved after SDS-PAGE under non-reducing and reducing conditions into two groups of POs, 166 kDa and 126 kDa, and 78.1 kDa and 73.6 kDa, respectively, suggesting that PO in L. vannamei is an oligomer, which may have different compositions intra- and extracellularly.

  8. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease

    DEFF Research Database (Denmark)

    Gal, Andreas; Rau, Isabella; El Matri, Leila

    2011-01-01

    heterogeneity of the trait. Using RT-PCR, PRSS56 transcripts were detected in samples derived from the human adult retina, cornea, sclera, and optic nerve. The expression of the mouse ortholog could be first detected in the eye at E17 and was maintained into adulthood. The predicted PRSS56 protein is a 603......Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we...... amino acid long secreted trypsin-like serine peptidase. The c.1066dupC is likely to result in a functional null allele, whereas the two point mutations predict the replacement of evolutionary conserved and functionally important residues. Molecular modeling of the p.Trp309Ser mutant suggests that both...

  9. Cytomegalovirus protease targeted prodrug development.

    Science.gov (United States)

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  10. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    Science.gov (United States)

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin ( Cucurbita ficifolia ). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 <0.64 mg/mL and DPP-IV IC50 <0.55 mg/mL. This study suggests that peptides generated from whey proteins may support postprandial glycemia regulation and blood pressure maintenance, and could be used as functional food ingredients in the diet of patients with type 2 diabetes.

  11. Distinct Spatiotemporal Expression of Serine Proteases Prss23 and Prss35 in Periimplantation Mouse Uterus and Dispensable Function of Prss35 in Fertility

    Science.gov (United States)

    Diao, Honglu; Xiao, Shuo; Li, Rong; Zhao, Fei; Ye, Xiaoqin

    2013-01-01

    PRSS23 and PRSS35 are homologous proteases originally identified in mouse ovaries. In the periimplantation mouse uterus, Prss23 was highly expressed in the preimplantation gestation day 3.5 (D3.5) uterine luminal epithelium (LE). It disappeared from the postimplantation LE and reappeared in the stromal compartment next to the myometrium on D6.5. It was undetectable in the embryo from D4.5 to D6.5 but highly expressed in the embryo on D7.5. Prss35 became detectable in the uterine stromal compartment surrounding the embryo on D4.5 and shifted towards the mesometrial side of the stromal compartment next to the embryo from D5.5 to D7.5. In the ovariectomized uterus, Prss23 was moderately and Prss35 was dramatically downregulated by progesterone and 17β-estradiol. Based on the expression of Prss35 in granulosa cells and corpus luteum of the ovary and the early pregnant uterus, we hypothesized that PRSS35 might play a role in female reproduction, especially in oocyte development, ovulation, implantation, and decidualization. This hypothesis was tested in Prss35(−/−) mice, which proved otherwise. Between wild type (WT) and Prss35(−/−) mice, superovulation of immature females produced comparable numbers of cumulus-oocyte complexes; there were comparable numbers of implantation sites detected on D4.5 and D7.5; there were no obvious differences in the expression of implantation and decidualization marker genes in D4.5 or D7.5 uteri. Comparable mRNA expression levels of a few known protease-related genes in the WT and Prss35(−/−) D4.5 uteri indicated no compensatory upregulation. Comparable litter sizes from WT × WT and Prss35 (−/−)× Prss35 (−/−) crosses suggested that Prss35 gene was unessential for fertility and embryo development. Prss35 gene has been linked to cleft lip/palate in humans. However, no obvious such defects were observed in Prss35(−/−) mice. This study demonstrates the distinct expression of Prss23 and Prss35 in the periimplantation

  12. Distinct spatiotemporal expression of serine proteases Prss23 and Prss35 in periimplantation mouse uterus and dispensable function of Prss35 in fertility.

    Directory of Open Access Journals (Sweden)

    Honglu Diao

    Full Text Available PRSS23 and PRSS35 are homologous proteases originally identified in mouse ovaries. In the periimplantation mouse uterus, Prss23 was highly expressed in the preimplantation gestation day 3.5 (D3.5 uterine luminal epithelium (LE. It disappeared from the postimplantation LE and reappeared in the stromal compartment next to the myometrium on D6.5. It was undetectable in the embryo from D4.5 to D6.5 but highly expressed in the embryo on D7.5. Prss35 became detectable in the uterine stromal compartment surrounding the embryo on D4.5 and shifted towards the mesometrial side of the stromal compartment next to the embryo from D5.5 to D7.5. In the ovariectomized uterus, Prss23 was moderately and Prss35 was dramatically downregulated by progesterone and 17β-estradiol. Based on the expression of Prss35 in granulosa cells and corpus luteum of the ovary and the early pregnant uterus, we hypothesized that PRSS35 might play a role in female reproduction, especially in oocyte development, ovulation, implantation, and decidualization. This hypothesis was tested in Prss35((-/- mice, which proved otherwise. Between wild type (WT and Prss35((-/- mice, superovulation of immature females produced comparable numbers of cumulus-oocyte complexes; there were comparable numbers of implantation sites detected on D4.5 and D7.5; there were no obvious differences in the expression of implantation and decidualization marker genes in D4.5 or D7.5 uteri. Comparable mRNA expression levels of a few known protease-related genes in the WT and Prss35((-/- D4.5 uteri indicated no compensatory upregulation. Comparable litter sizes from WT × WT and Prss35((-/-× Prss35((-/- crosses suggested that Prss35 gene was unessential for fertility and embryo development. Prss35 gene has been linked to cleft lip/palate in humans. However, no obvious such defects were observed in Prss35((-/- mice. This study demonstrates the distinct expression of Prss23 and Prss35 in the periimplantation uterus

  13. Production and Characterization of Keratinolytic Protease from New Wool-Degrading Bacillus Species Isolated from Egyptian Ecosystem

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hassan

    2013-01-01

    Full Text Available Novel keratin-degrading bacteria were isolated from sand soil samples collected from Minia Governorate, Egypt. In this study, the isolates were identified as Bacillus amyloliquefaciens MA20 and Bacillus subtilis MA21 based on morphological and biochemical characteristics as well as 16S rRNA gene sequencing. B. amyloliquefaciens MA20 and B. subtilis MA21 produced alkaline keratinolytic serine protease when cultivated in mineral medium containing 1% of wool straight off sheep as sole carbon and nitrogen source. The two strains were observed to degrade wool completely to powder at pH 7 and 37°C within 5 days. Under these conditions the maximum activity of proteases produced by B. amyloliquefaciens MA20 and B. subtilis MA21 was 922 and 814 U/ml, respectively. The proteases exhibited optimum temperature and pH at 60°C and 9, respectively. However, the keratinolytic proteases were stable in broad range of temperature and pH values towards casein Hammerstein. Furthermore the protease inhibitor studies indicated that the produced proteases belong to serine protease because of their sensitivity to PMSF while they were inhibited partially in presence of EDTA. The two proteases are stable in most of the used organic solvents and enhanced by metals suggesting their potential use in biotechnological applications such as wool industry.

  14. In-silico prediction and modeling of the Entamoeba histolytica proteins: Serine-rich Entamoeba histolytica protein and 29 kDa Cysteine-rich protease

    Directory of Open Access Journals (Sweden)

    Kumar Manochitra

    2017-06-01

    Full Text Available Background Amoebiasis is the third most common parasitic cause of morbidity and mortality, particularly in countries with poor hygienic settings. There exists an ambiguity in the diagnosis of amoebiasis, and hence there arises a necessity for a better diagnostic approach. Serine-rich Entamoeba histolyticaprotein (SREHP, peroxiredoxin and Gal/GalNAc lectin are pivotal in E. histolyticavirulence and are extensively studied as diagnostic and vaccine targets. For elucidating the cellular function of these proteins, details regarding their respective quaternary structures are essential. However, studies in this aspect are scant. Hence, this study was carried out to predict the structure of these target proteins and characterize them structurally as well as functionally using appropriate in-silicomethods. Methods The amino acid sequences of the proteins were retrieved from National Centre for Biotechnology Information database and aligned using ClustalW. Bioinformatic tools were employed in the secondary structure and tertiary structure prediction. The predicted structure was validated, and final refinement was carried out. Results The protein structures predicted by i-TASSER were found to be more accurate than Phyre2 based on the validation using SAVES server. The prediction suggests SREHP to be an extracellular protein, peroxiredoxin a peripheral membrane protein while Gal/GalNAc lectin was found to be a cell-wall protein. Signal peptides were found in the amino-acid sequences of SREHP and Gal/GalNAc lectin, whereas they were not present in the peroxiredoxin sequence. Gal/GalNAc lectin showed better antigenicity than the other two proteins studied. All the three proteins exhibited similarity in their structures and were mostly composed of loops. Discussion The structures of SREHP and peroxiredoxin were predicted successfully, while the structure of Gal/GalNAc lectin could not be predicted as it was a complex protein composed of sub-units. Also, this

  15. Biological variation in circulating levels of mannan-binding lectin (MBL) and MBL-associated serine protease-2 and the influence of age, gender and physical exercise

    DEFF Research Database (Denmark)

    Ytting, H; Christensen, IJ; Thiel, Steffen

    2007-01-01

    not affect the levels (P > 0.8). Serum and plasma levels were only marginally different, and were independent of age and gender. Circulating levels of MBL and MASP-2 are stable over time in healthy individuals, which is advantageous for their potential application as biomarkers....... is needed. We here investigate variations of MBL and MASP-2 in healthy persons over time and in relation to gender, age and physical activity. MBL and MASP-2 concentrations were determined in serum from healthy adults over a 3-week period and this was repeated 6 months later (n = 32); during a 24-h period...... (n = 16); and in relation to physical exercise (n = 14). Concentrations in serum and plasma were compared (n = 198). No significant variation over 6 months and no circadian variation was found for MBL (P = 0.39 and P = 0.34 respectively) or MASP-2 (P = 0.54 and P = 0.55). Physical exercise did...

  16. Synergism of Selective Tumor Vascular Thrombosis and Protease Activated Prodrug

    National Research Council Canada - National Science Library

    Liu, Cheng

    2008-01-01

    ... by administration of protease-activated prodrug. The activation of coagulation cascade and tumor vascular thrombosis as well as the following activation of the thrombolytic pathways led to explosive amplification of serine protease cascades...

  17. Selection of Protease Inhibitors to Prevent or Attenuate Inflammatory Processes

    Science.gov (United States)

    2007-08-01

    temperature. elevated body temperature, pH, oxygen tension): * number of chemical factors (fatty acids. lactid acid, pepsin, lysozyme, antimicrobial ...inhibit toxic serine proteases produced by the fungus Metarhizium anisopliae. The known spectrum of protease inhibitors from invertebrates includes also

  18. Biological variation in circulating levels of mannan-binding lectin (MBL) and MBL-associated serine protease-2 and the influence of age, gender and physical exercise

    DEFF Research Database (Denmark)

    Ytting, H; Christensen, I J; Thiel, S

    2007-01-01

    not affect the levels (P > 0.8). Serum and plasma levels were only marginally different, and were independent of age and gender. Circulating levels of MBL and MASP-2 are stable over time in healthy individuals, which is advantageous for their potential application as biomarkers....... is needed. We here investigate variations of MBL and MASP-2 in healthy persons over time and in relation to gender, age and physical activity. MBL and MASP-2 concentrations were determined in serum from healthy adults over a 3-week period and this was repeated 6 months later (n = 32); during a 24-h period...... (n = 16); and in relation to physical exercise (n = 14). Concentrations in serum and plasma were compared (n = 198). No significant variation over 6 months and no circadian variation was found for MBL (P = 0.39 and P = 0.34 respectively) or MASP-2 (P = 0.54 and P = 0.55). Physical exercise did...

  19. Biological Variation in Circulating Levels of Mannan-Binding Lectin (MBL) and MBL-Associated Serine Protease-2 and the Influence of Age, Gender and Physical Exercise

    DEFF Research Database (Denmark)

    Ytting, Henriette; Christensen, Ib Jarle; Thiel, S.

    2007-01-01

    not affect the levels (P > 0.8). Serum and plasma levels were only marginally different, and were independent of age and gender. Circulating levels of MBL and MASP-2 are stable over time in healthy individuals, which is advantageous for their potential application as biomarkers....... is needed. We here investigate variations of MBL and MASP-2 in healthy persons over time and in relation to gender, age and physical activity. MBL and MASP-2 concentrations were determined in serum from healthy adults over a 3-week period and this was repeated 6 months later (n = 32); during a 24-h period...... (n = 16); and in relation to physical exercise (n = 14). Concentrations in serum and plasma were compared (n = 198). No significant variation over 6 months and no circadian variation was found for MBL (P = 0.39 and P = 0.34 respectively) or MASP-2 (P = 0.54 and P = 0.55). Physical exercise did...

  20. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of its Binding Model towards its Applications as Detergent Additive

    Directory of Open Access Journals (Sweden)

    Mehak Baweja

    2016-08-01

    Full Text Available A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10˚C -70˚C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50 ºC and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and ̴ 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50ºC and 4ºC with low supplementation (109 U/ml. Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash.

  1. Secreted proteases from pathogenic fungi.

    Science.gov (United States)

    Monod, Michel; Capoccia, Sabrina; Léchenne, Barbara; Zaugg, Christophe; Holdom, Mary; Jousson, Olivier

    2002-10-01

    Many species of human pathogenic fungi secrete proteases in vitro or during the infection process. Secreted endoproteases belong to the aspartic proteases of the pepsin family, serine proteases of the subtilisin family, and metalloproteases of two different families. To these proteases has to be added the non-pepsin-type aspartic protease from Aspergillus niger and a unique chymotrypsin-like protease from Coccidioides immitis. Pathogenic fungi also secrete aminopeptidases, carboxypeptidases and dipeptidyl-peptidases. The function of fungal secreted proteases and their importance in infections vary. It is evident that secreted proteases are important for the virulence of dermatophytes since these fungi grow exclusively in the stratum corneum, nails or hair, which constitutes their sole nitrogen and carbon sources. The aspartic proteases secreted by Candida albicans are involved in the adherence process and penetration of tissues, and in interactions with the immune system of the infected host. For Aspergillus fumigatus, the role of proteolytic activity has not yet been proved. Although the secreted proteases have been intensively investigated as potential virulence factors, knowledge on protease substrate specificities is rather poor and few studies have focused on the research of inhibitors. Knowledge of substrate specificities will increase our understanding about the action of each protease secreted by pathogenic fungi and will help to determine their contribution to virulence.

  2. Effect of protease inhibitors on exflagellation in Plasmodium falciparum.

    Science.gov (United States)

    Rupp, Ingrid; Bosse, Rebecca; Schirmeister, Tanja; Pradel, Gabriele

    2008-04-01

    Enzymes involved in sexual differentiation and fertilization of the human malaria parasite Plasmodium falciparum represent potential targets for transmission blocking strategies. Parasite proteases are putatively involved in several steps during fertilization, but the types of proteases, their targets and modes of action remain hitherto unknown. We investigated the involvement of proteases in gametogenesis via exflagellation and immunofluorescence assays, using a variety of commercially available as well as newly designed protease inhibitors. The assays revealed a blockade of microgamete formation by the cysteine/serine protease inhibitors TLCK and TPCK. The serine protease inhibitor PMSF, the falcipain-targeting inhibitor RV112D, and the aspartic protease inhibitor EPNP also significantly decreased formation of microgametes. The metalloprotease inhibitor 1,10-phenanthroline, on the other hand, inhibited exflagellation by interfering with microgamete motility. Furthermore, EPNP reduced the activation of male and female gametocytes. Our data point to a major involvement of serine proteases and a non-thermolysin-like zinc metalloprotease in microgametocyte exflagellation.

  3. Highly Constrained Bicyclic Scaffolds for the Discovery of Protease-Stable Peptides via mRNA Display.

    Science.gov (United States)

    Hacker, David E; Hoinka, Jan; Iqbal, Emil S; Przytycka, Teresa M; Hartman, Matthew C T

    2017-03-17

    Highly constrained peptides such as the knotted peptide natural products are promising medicinal agents because of their impressive biostability and potent activity. Yet, libraries of highly constrained peptides are challenging to prepare. Here, we present a method which utilizes two robust, orthogonal chemical steps to create highly constrained bicyclic peptide libraries. This technology was optimized to be compatible with in vitro selections by mRNA display. We performed side-by-side monocyclic and bicyclic selections against a model protein (streptavidin). Both selections resulted in peptides with mid-nanomolar affinity, and the bicyclic selection yielded a peptide with remarkable protease resistance.

  4. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao

    2018-02-16

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named \\'tamarillin\\'.

  5. Purification and characterization of alkaline proteases from aspergillus terreus

    International Nuclear Information System (INIS)

    Hussain, A.; Mannan, A.; Zubair, H.; Mirza, B.

    2010-01-01

    Proteases belong to an important class of enzymes known as hydrolases and catalyze hydrolysis of proteins. They act primarily to degrade proteins that are used for energy production and as biosynthetic precursors. In the following study, protease produced from Aspergillus terreus was found to be thermo stable and included in the category of alkaline serine and metallo protease. During partial purification, presence of enzyme in 60% (NH/sub 4/)/sub 2/SO/sub 4/ indicated small molecular weight polypeptide; later purification with Sephadex G-75 fractionation yielded a single proteolytic active molecule. At final purification step, the increase in specific activity of the enzyme was 7.5 fold with 23% yield. SDS-PAGE analysis revealed that alkaline protease of Aspergillus terreus is a monomer with approximate molecular weight of 35 kDa. Optimum pH for protease activity was found in the range of 7.5-11.0 (maximum at pH 8.5), thus apparently classified as an alkaline protease. The enzyme was thermo stable towards high temperature (60 deg. C), however it denatured irreversibly at 70 deg. C showing 80% loss of activity. The maximum proteolytic activity was found at 40 deg. C. The enzyme was effectively inhibited by PMSF, EDTA and urea whereas iodoacetamide and thiourea did not result in any loss in activity while cysteine was found to be activator molecule. The study with metal ions Mg/sup +2/, Mn/sup +2/ and Fe/sup +3/ (1 mM each) showed minute stimulatory effects on enzyme activity. Co/sup +2/ and Ca/sup +2/ (1 mM) had neither excitatory nor inhibitory effect while Hg/sup +2/ and Cu/sup +2/ (1 mM) slightly reduced the enzyme activity. (author)

  6. Evaluating the role of a trypsin inhibitor from soap nut (Sapindus trifoliatus L. Var. Emarginatus) seeds against larval gut proteases, its purification and characterization.

    Science.gov (United States)

    Gandreddi, V D Sirisha; Kappala, Vijaya Rachel; Zaveri, Kunal; Patnala, Kiranmayi

    2015-10-22

    The defensive capacities of plant protease Inhibitors (PI) rely on inhibition of proteases in insect guts or those secreted by microorganisms; and also prevent uncontrolled proteolysis and offer protection against proteolytic enzymes of pathogens. An array of chromatographic techniques were employed for purification, homogeneity was assessed by electrophoresis. Specificity, Ki value, nature of inhibition, complex formation was carried out by standard protocols. Action of SNTI on insect gut proteases was computationally evaluated by modeling the proteins by threading and docking studies by piper using Schrodinger tools. We have isolated and purified Soap Nut Trypsin Inhibitor (SNTI) by acetone fractionation, ammonium sulphate precipitation, ion exchange and gel permeation chromatography. The purified inhibitor was homogeneous by both gel filtration and polyacrylamide gel electrophoresis (PAGE). SNTI exhibited a molecular weight of 29 kDa on SDS-PAGE, gel filtration and was negative to Periodic Acid Schiff's stain. SNTI inhibited trypsin and pronase of serine class. SNTI demonstrated non-competitive inhibition with a Ki value of 0.75 ± 0.05×10-10 M. The monoheaded inhibitor formed a stable complex in 1:1 molar ratio. Action of SNTI was computationally evaluated on larval gut proteases from Helicoverpa armigera and Spodoptera frugiperda. SNTI and larval gut proteases were modeled and docked using Schrodinger software. Docking studies revealed strong hydrogen bond interactions between Lys10 and Pro71, Lys299 and Met80 and Van Der Waals interactions between Leu11 and Cys76amino acid residues of SNTI and protease from H. Armigera. Strong hydrogen bonds were observed between SNTI and protease of S. frugiperda at positions Thr79 and Arg80, Asp90 and Gly73, Asp2 and Gly160 respectively. We conclude that SNTI potentially inhibits larval gut proteases of insects and the kinetics exhibited by the protease inhibitor further substantiates its efficacy against serine

  7. Production and some properties of crude alkaline proteases of indigenous Central Amazonian rhizobia strains

    Directory of Open Access Journals (Sweden)

    Arlem Nascimento de Oliveira

    2010-10-01

    Full Text Available Two rhizobia strains isolated from soils of the Central Amazonian floodplain produced appreciable quantities of crude alkaline protease extracts with inexpensive carbon and nitrogen sources. These protease crude extracts were optimally active at pH 9.0-11.0. The optimum temperatures were 35 ºC for Rhizobium sp. strain R-986 and 55 ºC for Bradyrhizobium sp. strain R-993. Protease activities in the crude extracts were enhanced in the presence of 5 mM metal ions, such as Na+, Ca2+, Mg2+ and Mn2+. Rhizobia proteases were strongly inhibited by PMSF, a serine-protease inhibitor. The enzymes were active in the presence of surfactants (SDS and Triton X-100 and stable in oxidizing (H2O2 and reducing agents (β-mercaptoethanol, and organic solvents (acetone, hexane, methanol, 1-propanol and toluene.Duas estirpes de rizóbia isoladas de solos de várzea da Amazônia Central produziram grandes quantidades de proteases alcalinas extracelulares, usando fontes baratas de carbono e nitrogênio. Os extratos brutos de proteases foram ativos em pH 9,0-11,0. As temperaturas ótimas foram de 35 ºC para a enzima do Rhizobium R-986 e de 55 ºC para a do Bradyrhizobium R-993. As atividades proteolíticas aumentaram na presença de 5 mM dos íons Na+, Ca2+ , Mg2+ e Mn2+ . As proteases secretadas pelos rizóbios foram fortemente inibidas por PMSF, um inibidor de serina protease. As enzimas foram ativas na presença de surfactantes (SDS e Triton X-100, e estáveis na presença de agentes oxidantes (H2O2 e redutores (β-mercaptoetanol e solventes orgânicos (acetona, hexano, metanol, 1-propanol e tolueno.

  8. Analysis and protease-catalysed synthesis of sucrose alkanoate regioisomers

    DEFF Research Database (Denmark)

    Lie, Aleksander

    2014-01-01

    laurate in DMF using serine proteases and a metalloprotease. A broad range of elution strategies for the chromatographic analysis of sucrose alkanoate regioisomers was systematically investigated using design of experiments strategies and statistical and multivariate analysis and modelling. Efficiency...

  9. The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin

    DEFF Research Database (Denmark)

    Friis, Stine; Sales, Katiuchia Uzzun; Schafer, Jeffrey Martin

    2014-01-01

    The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin f...

  10. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: Purification and characterization.

    Science.gov (United States)

    Patil, Ulhas; Mokashe, Narendra; Chaudhari, Ambalal

    2016-01-01

    Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.

  11. Purification and biochemical characterization of a 22-kDa stable cysteine- like protease from the excretory-secretory product of the liver fluke Fasciola hepatica by using conventional techniques.

    Science.gov (United States)

    Hemici, Ahmed; Benerbaiha, Roumaila Sabrina; Bendjeddou, Dalila

    2017-11-15

    This study describes the purification and characterization of a stable protease activity isolated from Fasciola hepatica adult worms maintained in vitro by employing acetone precipitation (40-60%) followed by a gel filtration through Sephadex G-100 and DEAE- cellulose ion exchange column. Through this three-step purification, the enzyme was purified 11-fold with a specific activity of 1893.9U/mg and 31.5% recovery. After the final ultrafiltration step, the purification fold was increased up to 13.1 and the overall activity yield reached a rate of 18.8%. The MW of the purified protease was estimated by reducing SDS-PAGE to be 22kDa while the proteolytic activity detection was carried out by zymography on non-denaturing SDS-PAGE containing the casein as substrate. Using this substrate, the protease showed extreme proteolytic activity at pH 5.5 and temperature 35-40°C and was highly stable over a wide range of pH, from 5.0 to 10.0. In addition to its preference for the Z-Phe-Arg-AMC fluorogenic substrate resulting in maximum proteolytic activity (99.7%) at pH 7.0, the pure protease exhibited highest cleavage activity against hemoglobin and casein substrates at pH 5.5 (85.6% and 82.8%, respectively). The K m values obtained for this protease were 5.4, 13, 160 and approximately 1000μM using respectively the fluorogenic substrate Z-Phe-Arg-AMC, hemoglobin, casein and albumin. The protease activity was completely inhibited either by E-64 inhibitor (5mM) or iodoacetamide (10mM), indicating its cysteine nature. The usefulness of the purified protease as an antigen was studied by immunoblotting. Thus, sera from sheep experimentally infected with F. hepatica recognized the protease band at 2 weeks post-infection (WPI) and strongly at 7 WPI. The early detection of antibodies anti- F. hepatica suggests the application of this molecule as a specific epitope for the serodiagnosis of fascioliasis disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    Science.gov (United States)

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  13. Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR)

    Energy Technology Data Exchange (ETDEWEB)

    Kocab, S.; Erdem, B. [Middle East Technical University, Ankara (Turkey). Dept. of Biological Sciences

    2002-08-01

    In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70{sup o}C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes. (author)

  14. The threonine protease activity of testes-specific protease 50 (TSP50 is essential for its function in cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yu-Yin Li

    Full Text Available BACKGROUND: Testes-specific protease 50 (TSP50, a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION: Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.

  15. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly...... of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  16. Linear Discriminant Analysis for the in Silico Discovery of Mechanism-Based Reversible Covalent Inhibitors of a Serine Protease: Application of Hydration Thermodynamics Analysis and Semi-empirical Molecular Orbital Calculation.

    Science.gov (United States)

    Masuda, Yosuke; Yoshida, Tomoki; Yamaotsu, Noriyuki; Hirono, Shuichi

    2018-01-01

    We recently reported that the Gibbs free energy of hydrolytic water molecules (ΔG wat ) in acyl-trypsin intermediates calculated by hydration thermodynamics analysis could be a useful metric for estimating the catalytic rate constants (k cat ) of mechanism-based reversible covalent inhibitors. For thorough evaluation, the proposed method was tested with an increased number of covalent ligands that have no corresponding crystal structures. After modeling acyl-trypsin intermediate structures using flexible molecular superposition, ΔG wat values were calculated according to the proposed method. The orbital energies of antibonding π* molecular orbitals (MOs) of carbonyl C=O in covalently modified catalytic serine (E orb ) were also calculated by semi-empirical MO calculations. Then, linear discriminant analysis (LDA) was performed to build a model that can discriminate covalent inhibitor candidates from substrate-like ligands using ΔG wat and E orb . The model was built using a training set (10 compounds) and then validated by a test set (4 compounds). As a result, the training set and test set ligands were perfectly discriminated by the model. Hydrolysis was slower when (1) the hydrolytic water molecule has lower ΔG wat ; (2) the covalent ligand presents higher E orb (higher reaction barrier). Results also showed that the entropic term of hydrolytic water molecule (-TΔS wat ) could be used for estimating k cat and for covalent inhibitor optimization; when the rotational freedom of the hydrolytic water molecule is limited, the chance for favorable interaction with the electrophilic acyl group would also be limited. The method proposed in this study would be useful for screening and optimizing the mechanism-based reversible covalent inhibitors.

  17. Characterization of Thermo- and Detergent Stable Antigenic Glycosylated Cysteine Protease of Euphorbia nivulia Buch.-Ham. and Evaluation of Its Ecofriendly Applications

    Directory of Open Access Journals (Sweden)

    Shamkant B. Badgujar

    2013-01-01

    Full Text Available An antigenic glycosylated cysteine protease has been purified from the latex of Euphorbia nivulia Buch.-Ham. It exhibits remarkable protease activity in the presence of metal ions, oxidizing agents, organic solvents, and detergents. This enzyme showed potential role in leather processing industry due to its dehairing activity for animal hide without hydrolyzing fibrous proteins, producing, by this way, a better quality product. The enzyme can also be used for silver recovering from X-ray plates. In addition, the stability (temperature and surfactants and hydrolysis of blood stain data also revealed its application in detergent industries. Agriculturally, this protease finds application in biocontrol process against the infectious management of root knot nematode, Meloidogyne incognita. Biologically, it shows noticeable wound healing, haemostatic and antibacterial activity.

  18. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

    DEFF Research Database (Denmark)

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei

    2015-01-01

    of residue, i.e. serine, threonine, tyrosine and cysteine, is also quite common. The phosphorylation of the ester type (phospho-serine/threonine/tyrosine) is more stable than the aspartate phosphorylation of TCSs. The kinases which catalyse these phosphorylation events (Hanks-type serine/threonine protein...

  20. Convergent synthesis of a deuterium-labeled serine dipeptide lipid for analysis of biological samples.

    Science.gov (United States)

    Dietz, Christopher; Clark, Robert B; Nichols, Frank C; Smith, Michael B

    2017-05-30

    Bacterial serine dipeptide lipids are known to promote inflammatory processes and are detected in human tissues associated with periodontal disease or atherosclerosis. Accurate quantification of bacterial serine lipid, specifically lipid 654 [((S)-15-methyl-3-((13-methyltetradecanoyl)oxy)hexadecanoyl)glycyl-l-serine, (3S)-l-serine] isolated from Porphyromonas gingivalis, in biological samples requires the preparation of a stable isotope internal standard for sample supplementation and subsequent mass spectrometric analysis. This report describes the convergent synthesis of a deuterium-substituted serine dipeptide lipid, which is an isotopically labeled homologue that represents a dominant form of serine dipeptide lipid recovered in bacteria. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Role of Proteases in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Kailash C. Pandey

    2017-08-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem.

  2. Earthworm Protease

    Directory of Open Access Journals (Sweden)

    Rong Pan

    2010-01-01

    Full Text Available The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibriniolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP. The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate proenzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  3. Earthworm Protease

    International Nuclear Information System (INIS)

    Pan, R.; Zhang, Z.; He, R.

    2010-01-01

    The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibrinolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP). The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate pro enzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  4. Mannan-Binding Lectin-Associated Serine Protease 1/3 Cleavage of Pro-Factor D into Factor D In Vivo and Attenuation of Collagen Antibody-Induced Arthritis through Their Targeted Inhibition by RNA Interference-Mediated Gene Silencing

    Science.gov (United States)

    Banda, Nirmal K.; Acharya, Sumitra; Scheinman, Robert I.; Mehta, Gaurav; Coulombe, Marilyne; Takahashi, Minoru; Sekine, Hideharu; Thiel, Steffen; Fujita, Teizo; Holers, V Michael

    2016-01-01

    The complement system is proposed to play an important role in the pathogenesis of rheumatoid arthritis (RA). The complement system mannan-binding lectin associated serine proteases 1 and 3 (MASP-1/3) cleave proDf (inactive) into Df (active), but it is unknown where this cleavage occurs and whether inhibition of MASP-1/3 is a relevant therapeutic strategy for RA. We show herein that the cleavage of proDf into Df by MASP-1/3 can occur in the circulation and that inhibition of MASP-1/3 by gene silencing is sufficient to ameliorate collagen antibody-induced arthritis (CAIA) in mice. Specifically, to examine the cleavage of proDf into Df, MASP-1/3 producing Df−/− liver tissue (donor) was transplanted under the kidney capsule of MASP-1/3−/− (recipient) mice. Five weeks after the liver transplantation, cleaved Df was present in the circulation of MASP-1/3−/− mice. To determine the individual effects of MASP-1/3 and Df gene silencing on CAIA, mice were injected with scrambled, MASP-1/3 targeted, or Df targeted siRNAs. The mRNA levels for MASP-1 and 3 decreased in the liver to 62% and 58%, respectively, in mice injected with MASP-1/3 siRNAs, and Df mRNA decreased to 53% in the adipose tissue of mice injected with Df siRNAs; additionally, circulating MASP-1/3 and Df protein levels were decreased. In mice injected with both siRNAs the clinical disease activity, histopathologic injury scores, C3 deposition, and synovial macrophage/ neutrophil infiltration were significantly decreased. Thus MASP-1/3 is a new therapeutic target for the treatment of RA, likely through both direct effects on the LP and indirect through the AP. PMID:27707997

  5. Cleavage entropy as quantitative measure of protease specificity.

    Directory of Open Access Journals (Sweden)

    Julian E Fuchs

    2013-04-01

    Full Text Available A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity.

  6. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    Directory of Open Access Journals (Sweden)

    Madhusudhan Budatha

    Full Text Available Mice deficient for the fibulin-5 gene (Fbln5(-/- develop pelvic organ prolapse (POP due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/- mice, herein named V1 (25 kDa. V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/- mice. PRSS3 was (a localized in epithelial secretions, (b detected in media of vaginal organ culture from both Fbln5(-/- and wild type mice, and (c cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin and Elafin] was dysregulated in Fbln5(-/- epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice.

  7. THERMOPHILIC BACILLUS LICHENIFORMIS RBS 5 ISOLATED FROM HOT TUNISIAN SPRING CO-PRODUCING ALKALINE AND THERMOSTABLE α-AMYLASE AND PROTEASE ENZYMES

    Directory of Open Access Journals (Sweden)

    Rakia Ben Salem

    2016-06-01

    Full Text Available Bacillus licheniformis RBS 5 was isolated from thermal spring in Tunisia. The isolate coproduce α-amylase and protease enzymes. The α-amylase activity showed an optimal activity at approximately 65°C and in wide pH interval ranging from 4 to 9. This enzyme was stable over the range of 45 to 70°C after 30 min of incubation and in the pH range of 8 to 10. Protease activity was optimal; at 80°C, pH 12. This enzyme was stable until 60°C over the pH range of 10 to 12. EDTA at concentration of 5 mM reduces slightly both activities evoking the serine alkaline protease. Cationic ions (Ca2+, Cu2+, Zn2+, and Mg 2+ have an inhibition effect on α-amylase. However, protease activity was enhanced by Ca2+, Cu2+ and Mg 2+; the other cations reduce slightly the proteolytic activity. SDS and H2O2 were found as inhibitors for both activities whereas Triton X-100 and perfume have no effect. Taken together, these traits make protease activity of B. licheniformis RBS 5 as efficient for use in detergent industry.

  8. Effects of anti-tick vaccines, recombinant serine protease inhibitors ...

    African Journals Online (AJOL)

    A preliminary trial of a cocktail of recombinant RAS-1-2 and RIM 36 antigens was conducted in Uganda to assess the effects of ant-tick vaccines against Rhipicephalus appendiculatus tick feeding on Zebu cattle under both experimental and natural conditions. Under experimental conditions, over a period of 28 days, the ...

  9. Human eosinophils constitutively express a unique serine protease, PRSS33

    Directory of Open Access Journals (Sweden)

    Sumika Toyama

    2017-07-01

    Conclusions: Activated eosinophils may induce fibroblast extracellular matrix protein synthesis via cell surface expression of PRSS33, which would at least partly explain eosinophils' role(s in airway remodeling.

  10. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  11. Isolation, purification and characterization of extracellular protease produced by marine-derived endophytic fungus Xylaria psidii KT30

    Directory of Open Access Journals (Sweden)

    Bugi Ratno Budiarto

    2015-01-01

    Full Text Available Objective: To isolate, purify and characterize extracellular protease produced by Xylaria psidii (X. psidii KT30. Methods: In the present study, the extracellular protease secreted by X. psidii KT30 was isolated and purified by using three steps of protein purification, then the purified protease was characterized by applying qualitative and quantitative enzymatic assays. Results: Extracellular protease with molecular mass 71 kDa has been purified successfully by applying diethylaminoethanol-Sepharose followed by sephadex SG75 with its final specific protease activity of 0.091 IU/mg. Protease was the most active at temperature 60 °C and pH 7. The activity of enzyme was abolished mostly by phenylmethanesulfonyl fluoride, showing it is family of serine protease. Conclusions: Extracellular serine protease produced by X. psidii KT30 with good biochemical properties displayed some promising results for its further application in field of biotechnology or medicine.

  12. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    International Nuclear Information System (INIS)

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-01-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon - cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes [ 3 H]methyl-casein to acid-soluble products in the presence of ATP and Mg 2+ . ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles

  13. Phosphorylation of mouse serine racemase regulates D-serine synthesis

    DEFF Research Database (Denmark)

    Foltyn, Veronika N; Zehl, Martin; Dikopoltsev, Elena

    2010-01-01

    Serine racemase (SR) catalyses the synthesis of the transmitter/neuromodulator D-serine, which plays a major role in synaptic plasticity and N-methyl D-aspartate receptor neurotoxicity. We now report that SR is phosphorylated at Thr71 and Thr227 as revealed by mass spectrometric analysis...

  14. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.

    OpenAIRE

    Pizzi, E; Tramontano, A; Tomei, L; La Monica, N; Failla, C; Sardana, M; Wood, T; De Francesco, R

    1994-01-01

    We have built a model of the specificity pocket of the protease of hepatitis C virus on the basis of the known structures of trypsin-like serine proteases and of the conservation pattern of the protease sequences among various hepatitis C strains. The model allowed us to predict that the substrate of this protease should have a cysteine residue in position P1. This hypothesis was subsequently proved by N-terminal sequencing of two products of the protease. The success of this "blind" test inc...

  15. Use of MALDI-TOF Mass Spectrometry for Specificity Studies of Biomedically Important Proteases

    OpenAIRE

    Siigur, Jüri; Trummal, Katrin; TÕnismägi, Külli; Samel, Mari; Siigur, Ene; Vija, Heikki; Tammiste, Indrek; Subbi, Juhan

    2002-01-01

    Proteases play crucial role starting from fertilization until to cell death. Our studies of the two Viperidae venoms (Levantine viper Vipera lebetina, Common viper Vipera berus) have demonstrated the existence of biomedically important proteases, both coagulants and anticoagulants that may be useful as diagnostic tools or potential therapeutics. We showed that venoms of both snakes contain: (i) metalloproteases and serine proteases that degrade fibrinogen, but not fibrin; (ii) factor X activa...

  16. Bowman-Birk Protease Inhibitor from Vigna unguiculata Seeds Enhances the Action of Bradykinin-Related Peptides

    Directory of Open Access Journals (Sweden)

    Alice da Cunha M. Álvares

    2014-10-01

    Full Text Available The hydrolysis of bradykinin (Bk by different classes of proteases in plasma and tissues leads to a decrease in its half-life. Here, Bk actions on smooth muscle and in vivo cardiovascular assays in association with a protease inhibitor, Black eyed-pea trypsin and chymotrypsin inhibitor (BTCI and also under the effect of trypsin and chymotrypsin were evaluated. Two synthetic Bk-related peptides, Bk1 and Bk2, were used to investigate the importance of additional C-terminal amino acid residues on serine protease activity. BTCI forms complexes with Bk and analogues at pH 5.0, 7.4 and 9.0, presenting binding constants ranging from 103 to 104 M−1. Formation of BTCI-Bk complexes is probably driven by hydrophobic forces, coupled with slight conformational changes in BTCI. In vitro assays using guinea pig (Cavia porcellus ileum showed that Bk retains the ability to induce smooth muscle contraction in the presence of BTCI. Moreover, no alteration in the inhibitory activity of BTCI in complex with Bk and analogous was observed. When the BTCI and BTCI-Bk complexes were tested in vivo, a decrease of vascular resistance and consequent hypotension and potentiating renal and aortic vasodilatation induced by Bk and Bk2 infusions was observed. These results indicate that BTCI-Bk complexes may be a reliable strategy to act as a carrier and protective approach for Bk-related peptides against plasma serine proteases cleavage, leading to an increase in their half-life. These findings also indicate that BTCI could remain stable in some tissues to inhibit chymotrypsin or trypsin-like enzymes that cleave and inactivate bradykinin in situ.

  17. Bacillus amyloliquefaciens SUBSP. plantarum PROBIOTIC STRAINS AS PROTEASE PRODUCERS

    Directory of Open Access Journals (Sweden)

    E. V. Маtseliukh

    2015-04-01

    Full Text Available Proteases from probiotic strains of the genus Bacillus, just like the antibiotics, bacteriocins and other hydrolytic enzymes, are one of the main factors that determine their biological activity. The aim of this work was to study the synthesis and biochemical properties of proteases from two strains Bacillus amyloliquefaciens subsp. plantarum UCM B-5139 and UCM B-5140 that included in the probiotic Endosporin. The cultivation of strains was carried out in flasks under rotating for two days. The influence of physico-chemical parameters of the reaction medium on proteolytic activity was studied on partially purified protease preparations. Lytic activity was determined by turbidimetric method. On the second day of cultivation B. amyloliquefaciens subsp. plantarum UCM В-5139 and UCM В-5140 synthesized the metal-dependent peptidase and serine protease, respectively. The optimum conditions of their action were the following: temperature 37–40 °C and pH 6.5–7.0. Isolated proteases are able to lyse the living cells of Staphylococcus aureus and Candida albicans. Thus we demonstrated that B. amyloliquefaciens subsp. plantarum UCM B-5140 and UCM B-5139, included in the probiotic veterinary preparation Endosporin, produced proteolytic enzymes that hydrolyze the native insoluble proteins (elastin, fibrin and collagen. These enzymes belong to the group of neutral metal-dependent and serine proteases. They are active under physiological conditions against gram-positive bacteria and yeasts. The application of these proteases in biotechnology is considered.

  18. Improved Protease-Targeting and Biopharmaceutical Properties of Novel Prodrugs of Ganciclovir.

    Science.gov (United States)

    Sun, Kefeng; Xu, Hao; Hilfinger, John L; Lee, Kyung-Dall; Provoda, Chester J; Sabit, Hairat; Amidon, Gordon L

    2018-02-05

    The prodrug strategy has been frequently employed as a chemical approach for overcoming the disadvantages of existing parent drugs. In this report, we synthesized four monoester prodrugs of ganciclovir, an anticytomegalovirus drug, and demonstrated their potential advantages in protease-targeted activation and biopharmaceutical profiles over the parent compound. We demonstrated that these four prodrugs of ganciclovir, i.e., N-benzyloxycarbonyl-(L)-alanine-ganciclovir (CbzAlaGCV), N-benzyloxycarbonyl-(α,l)-aminobutyric acid-ganciclovir (CbzAbuGCV), N-acetyl-(l)-phenylalanine-(l)-alanine-ganciclovir (AcPheAlaGCV), and N-acetyl-(l)-phenylalanine-(α,l)-aminobutyric acid-ganciclovir (AcPheAbuGCV), are hydrolytically activated by the protease of human cytomegalovirus (hCMV), a serine protease that possesses intrinsic esterase activities. CbzAlaGCV and AcPheAlaGCV were found to be activated at a higher rate by the hCMV protease than CbzAbuGCV and AcPheAbuGCV. These ganciclovir prodrugs could potentially be targeted to selective activation by the hCMV protease which is only present at the viral infection sites, thereby achieving higher efficacy and lower systemic toxicity. The tissue stability, cellular uptake, and trans-epithelial transport of these ganciclovir prodrugs were also characterized. The N-acetylated dipeptide prodrugs of ganciclovir were found to be generally more stable than Cbz-amino acid prodrugs in various tissue matrices. Among the four prodrug candidates, AcPheAbuGCV was the most stable in human cell homogenates, plasma, and pooled liver microsomes. AcPheAbuGCV also possessed a superior cellular uptake profile and permeability across epithelial cell monolayers. Since the targeting and selective activation of a prodrug is determined by not only its rate of hydrolysis catalyzed by the hCMV protease target but also its biopharmaceutical properties, i.e., oral absorption and systemic availability, AcPheAbuGCV is considered the best overall candidate among

  19. Sulfur mustard-stimulated proteases and their inhibitors in a cultured normal human epidermal keratinocytes model: A potential approach for anti-vesicant drug development

    Directory of Open Access Journals (Sweden)

    Xiannu Jin

    Full Text Available Protease stimulation in cultured normal human epidermal keratinocytes (NHEK due to sulfur mustard (SM exposure is well documented. However, the specific protease(s stimulated by SM and the protease substrates remain to be determined. In this study, we observed that SM stimulates several proteases and the epidermal-dermal attachment protein laminin-5 is one of the substrates. We propose that following SM exposure of the skin, laminin-5 degradation causes the detachment of the epidermis from the dermis and, therefore, vesication. We utilized gelatin zymography, Western blotting, immuno-fluorescence staining, and real-time polymerase chain reaction (RT-PCR analyses to study the SM-stimulated proteases and laminin-5 degradation in NHEK. Two major protease bands (64 kDa and 72 kDa were observed by zymography in SM-exposed cells. Addition of serine protease inhibitor (aprotinin, 100 μM, or the metalloprotease inhibitor (amastatin, 100 μM to NHEK cultures prior to SM exposure decreased the SM-stimulated protease bands seen by zymography. These inhibitors completely or partially prevented SM-induced laminin-5 γ2 degradation as seen by Western blotting as well as immuno-fluorescence staining. Our results from Western blotting and RT-PCR studies also indicated that the membrane-type matrix metalloproteinase-1 (MT-MM-1 may be involved in SM-induced skin blistering.To summarize, our results in the NHEK model indicate the following: (a SM stimulates multiple proteases including serine protease(s, and metalloproteases; (b SM decreases the level of laminin-5 γ2, which is prevented by either a serine protease inhibitor or a metalloprotease inhibitor and (c MT-MMP-1 maybe one of the proteases that is involved in skin blistering due to SM exposure. Keywords: Sulfur mustard, Serine protease, Metalloprotease, Protease inhibiter, Zymography, Laminin-5 γ2

  20. A novel subtilase with NaCl-activated and oxidant-stable activity from Virgibacillus sp. SK37.

    Science.gov (United States)

    Phrommao, Ekkarat; Yongsawatdigul, Jirawat; Rodtong, Sureelak; Yamabhai, Montarop

    2011-06-09

    Microbial proteases are one of the most commercially valuable enzymes, of which the largest market share has been taken by subtilases or alkaline proteases of the Bacillus species. Despite a large amount of information on microbial proteases, a search for novel proteases with unique properties is still of interest for both basic and applied aspects of this highly complex class of enzymes. Oxidant stable proteases (OSPs) have been shown to have a wide application in the detergent and bleaching industries and recently have become one of the most attractive enzymes in various biotechnological applications. A gene encoding a novel member of the subtilase superfamily was isolated from Virgibacillus sp. SK37, a protease-producing bacterium isolated from Thai fish sauce fermentation. The gene was cloned by an activity-based screening of a genomic DNA expression library on Luria-Bertani (LB) agar plates containing 1 mM IPTG and 3% skim milk. Of the 100,000 clones screened, all six isolated positive clones comprised one overlapping open reading frame of 45% identity to the aprX gene from Bacillus species. This gene, designated aprX-sk37 was cloned into pET21d(+) and over-expressed in E. coli BL21(DE3). The enzyme product, designated AprX-SK37, was purified by an immobilized metal ion affinity chromatography to apparent homogeneity and characterized. The AprX-SK37 enzyme showed optimal catalytic conditions at pH 9.5 and 55°C, based on the azocasein assay containing 5 mM CaCl2. Maximum catalytic activity was found at 1 M NaCl with residual activity of 30% at 3 M NaCl. Thermal stability of the enzyme was also enhanced by 1 M NaCl. The enzyme was absolutely calcium-dependent, with optimal concentration of CaCl2 at 15 mM. Inhibitory effects by phenylmethanesulfonyl fluoride and ethylenediaminetetraacetic acid indicated that this enzyme is a metal-dependent serine protease. The enzyme activity was sensitive towards reducing agents, urea, and SDS, but relatively stable up to 5

  1. A novel subtilase with NaCl-activated and oxidant-stable activity from Virgibacillus sp. SK37

    Directory of Open Access Journals (Sweden)

    Yamabhai Montarop

    2011-06-01

    Full Text Available Abstract Background Microbial proteases are one of the most commercially valuable enzymes, of which the largest market share has been taken by subtilases or alkaline proteases of the Bacillus species. Despite a large amount of information on microbial proteases, a search for novel proteases with unique properties is still of interest for both basic and applied aspects of this highly complex class of enzymes. Oxidant stable proteases (OSPs have been shown to have a wide application in the detergent and bleaching industries and recently have become one of the most attractive enzymes in various biotechnological applications. Results A gene encoding a novel member of the subtilase superfamily was isolated from Virgibacillus sp. SK37, a protease-producing bacterium isolated from Thai fish sauce fermentation. The gene was cloned by an activity-based screening of a genomic DNA expression library on Luria-Bertani (LB agar plates containing 1 mM IPTG and 3% skim milk. Of the 100,000 clones screened, all six isolated positive clones comprised one overlapping open reading frame of 45% identity to the aprX gene from Bacillus species. This gene, designated aprX-sk37 was cloned into pET21d(+ and over-expressed in E. coli BL21(DE3. The enzyme product, designated AprX-SK37, was purified by an immobilized metal ion affinity chromatography to apparent homogeneity and characterized. The AprX-SK37 enzyme showed optimal catalytic conditions at pH 9.5 and 55°C, based on the azocasein assay containing 5 mM CaCl2. Maximum catalytic activity was found at 1 M NaCl with residual activity of 30% at 3 M NaCl. Thermal stability of the enzyme was also enhanced by 1 M NaCl. The enzyme was absolutely calcium-dependent, with optimal concentration of CaCl2 at 15 mM. Inhibitory effects by phenylmethanesulfonyl fluoride and ethylenediaminetetraacetic acid indicated that this enzyme is a metal-dependent serine protease. The enzyme activity was sensitive towards reducing agents

  2. Protease-Activated Receptor-2 Activation Contributes to House Dust Mite-Induced IgE Responses in Mice

    NARCIS (Netherlands)

    Post, Sijranke; Heijink, Irene; Petersen, A H; de Bruin, Harold G.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.

    2014-01-01

    Aeroallergens such as house dust mite (HDM), cockroach, and grass or tree pollen are innocuous substances that can induce allergic sensitization upon inhalation. The serine proteases present in these allergens are thought to activate the protease-activated receptor (PAR)-2, on the airway epithelium,

  3. Investigation of larvae digestive β-glucosidase and proteases of the tomato pest Tuta absoluta for inhibiting the insect development.

    Science.gov (United States)

    Sellami, S; Jamoussi, K

    2016-06-01

    The tomato leaf miner Tuta absoluta is one of the most devastating pests for tomato crops. Digestive proteases and β-glucosidase enzymes were investigated using general and specific substrates and inhibitors. Maximal β-glucosidase and proteolytic activities occurred at temperature and pH optima of 30 and 40°C, 5 and 10-11 unit of pH, respectively. Zymogram analysis showed the presence of distinguished β-glucosidase exhibiting a specific activity of about 183 ± 15 µmol min-1 mg-1. In vitro inhibition experiments suggested that serine proteases were the primary gut proteases. Gel based protease inhibition assays demonstrated that the 28 and 73 kDa proteases might be trypsin-like and chymotrypsin-like enzymes, respectively. Overall gut trypsin-like and chymotrypsin-like activities were evaluated to be about 27.2 ± 0.84 and 1.68 ± 0.03 µmol min-1 mg-1, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that T. absoluta gut serine proteases are responsible for Bacillus thuringiensis Cry insecticidal proteins proteolysis. Additionally, bioassays showed that T. absoluta larvae development was more affected by the β-glucosidases inhibitor (D-glucono-δ-lactone) than the serine proteases inhibitor (soybean trypsin inhibitor). These results are of basic interest since they present interesting data of β-glucosidases and gut serine proteases of T. absoluta larvae.

  4. Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China

    Directory of Open Access Journals (Sweden)

    Xi-Ying eZhang

    2015-09-01

    Full Text Available Although protease-producing bacteria are key players in the degradation of organic nitrogen and essential for the nitrogen recycling in marine sediments, diversity of both these bacteria and their extracellular proteases is still largely unknown. This study investigated the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the eutrophied Jiaozhou Bay, China through phylogenetic analysis and protease inhibitor tests. The abundance of the cultivable protease-producing bacteria was up to 104 cells/g in all six sediment samples. The cultivated protease-producing bacteria mostly belonged to the phyla Proteobacteria and Firmicutes with the predominant genera being Photobacterium (39.4%, Bacillus (25.8% and Vibrio (19.7%. Protease inhibitor tests revealed that extracellular proteases secreted by the bacteria were mainly serine proteases and/or metalloproteases with relatively low proportions of cysteine proteases. This study represents the first comprehensive analysis on the diversity of protease-producing bacteria and their extracellular proteases in sediments of a eutrophic bay.

  5. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.

    Science.gov (United States)

    Pizzi, E; Tramontano, A; Tomei, L; La Monica, N; Failla, C; Sardana, M; Wood, T; De Francesco, R

    1994-02-01

    We have built a model of the specificity pocket of the protease of hepatitis C virus on the basis of the known structures of trypsin-like serine proteases and of the conservation pattern of the protease sequences among various hepatitis C strains. The model allowed us to predict that the substrate of this protease should have a cysteine residue in position P1. This hypothesis was subsequently proved by N-terminal sequencing of two products of the protease. The success of this "blind" test increases our confidence in the overall correctness of our proposed alignment of the enzyme sequence with those of other proteases of known structure and constitutes a first step in the construction of a complete model of the viral protease domain.

  6. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    The enzyme was active in pH range 5 to11 and temperature of 30 to 80°C. The optimum pH and the temperature for protease activity were recorded to be pH 8 and 50°C, respectively. The enzyme was stable up to 40°C and pH 9. The protease activity was inhibited by Zn2+, Ni2+ and Sn2+ and increased by Ca2+, Mg2+ ...

  7. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Zhou

    Full Text Available Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 10(5 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%, Flavobacterium (21.0% and Lacinutrix (16.2%. Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea.

  8. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly...... specific inhibitor of uPA. With the aim of creating better inhibitors based on the upain-2 scaffold, the following three strategies were explored: First, it was attempted to predefine the structure of upain-2 in solution by incorporating turn-inducing sequences and peptidomimetics. Additionally...... bond across the ring. The second bridge was made by a disulfide bridge, amide bond formation or via ring-closing metathesis. A, with upain-2 equipotent, bicyclic inhibitor was obtained and its binding to uPA was studied by ITC, NMR and X-ray. The knowledge of how selective inhibitors bind uPA has been...

  9. Purification and biochemical characterization of a serine alkaline ...

    African Journals Online (AJOL)

    The protease was stable in 0.5% SDS and retained 70.3% of its initial activity after 1 h of incubation. It was active in the presence of 3% Triton X-100 with 100% activity and stable towards oxidizing agent with 69.2% activity in the presence of 1% H2O2. The enzyme showed excellent compatibility with commercial detergents ...

  10. Proteases and protease inhibitors in cancer

    NARCIS (Netherlands)

    van Noorden, C. J.

    1998-01-01

    The second conference on 'Proteases and protease inhibitors in cancer' was organized by the American Association for Cancer Research (AACR) and Acta Pathologica Microbiologica et Immunologica Scandinavica (APMIS). To understand the role of proteinases and to develop relevant synthetic inhibitors to

  11. HIV protease inhibitor resistance

    NARCIS (Netherlands)

    Wensing, Annemarie M.J.; Fun, Axel; Nijhuis, Monique

    2017-01-01

    HIV protease is pivotal in the viral replication cycle and directs the formation of mature infectious virus particles. The development of highly specific HIV protease inhibitors (PIs), based on thorough understanding of the structure of HIV protease and its substrate, serves as a prime example of

  12. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2.

    Directory of Open Access Journals (Sweden)

    Mi Kyung Park

    Full Text Available Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25 in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease.

  13. Acanthamoeba Protease Activity Promotes Allergic Airway Inflammation via Protease-Activated Receptor 2

    Science.gov (United States)

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Park, Hye-Kyung; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES) proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25) in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF) inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease. PMID:24658532

  14. Chemistry and biology of natural product derived protease inhibitors

    OpenAIRE

    Stolze, Sara Christina

    2012-01-01

    Im Rahmen dieser Dissertation sollten Naturstoffe und davon abgeleitete Derivate synthetisiert und im Hinblick auf ihre biologische Aktivität als Protease-Inhibitoren untersucht werden. Für die Naturstoffklasse der 3-Amino-6-Hydroxy-2-piperidon(Ahp)-Cyclodepsipeptide, die als nicht-kovalente Serin-Protease-Inhibitoren bekannt sind, konnte eine Festphasensynthese basierend auf einem allgemeinen Ahp-Vorläufermolekül entwickelt werden. Für den Ahp-Vorläufer wurde eine Lösungssynthese entwicke...

  15. An update on serine deficiency disorders

    NARCIS (Netherlands)

    van der Crabben, S. N.; Verhoeven-Duif, N. M.; Brilstra, E. H.; Van Maldergem, L.; Coskun, T.; Rubio-Gozalbo, E.; Berger, R.; de Koning, T. J.

    Serine deficiency disorders are caused by a defect in one of the three synthesising enzymes of the L-serine biosynthesis pathway. Serine deficiency disorders give rise to a neurological phenotype with psychomotor retardation, microcephaly and seizures in newborns and children or progressive

  16. Protease activity in the larval stage of the parasitoid wasp, Eulophus pennicornis (Nees) (Hymenoptera: Eulophidae); effects of protease inhibitors.

    Science.gov (United States)

    Down, R E; Ford, L; Mosson, H J; Fitches, E; Gatehouse, J A; Gatehouse, A M

    1999-08-01

    Hymenopteran, parasitoid wasps have good potential for use in integrated pest management (IPM); for example, the gregarious ectoparasitoid, Eulophus pennicornis, has been suggested as a biological control agent for larvae of the tomato moth (Lacanobia oleracea L.). However, the processes by which such parasitic larvae are able to utilize the nutritional resource provided by the host have been little studied. Protease activity was present in E. pennicornis larvae, and characterization of the enzymes responsible for proteolysis was performed using a range of synthetic substrates and specific inhibitors. Serine protease enzymes was both trypsin- and chymotrypsin-like activities were present. A range of plant-derived serine protease inhibitors was tested for activity against these enzymes. Certain inhibitors, notably soybean Kunitz inhibitor (SKTI), inhibited enzyme activity by > 80% at < 10(-5) M. When SKTI was fed to L. oleracea larvae in an artificial diet, the inhibitor was subsequently detected within the larval haemolymph, showing that protease inhibitors in the host diet can be delivered to a parasitoid via the host haemolymph. If transgenic plants expressing foreign protease inhibitors for protection against insect pests are to form a component of IPM systems, possible adverse effects, whether direct or indirect, of transgene expression on parasitoids like E. pennicornis should be considered.

  17. Identification of covalent active site inhibitors of dengue virus protease

    Directory of Open Access Journals (Sweden)

    Koh-Stenta X

    2015-12-01

    Full Text Available Xiaoying Koh-Stenta,1 Joma Joy,1 Si Fang Wang,1 Perlyn Zekui Kwek,1 John Liang Kuan Wee,1 Kah Fei Wan,2 Shovanlal Gayen,1 Angela Shuyi Chen,1 CongBao Kang,1 May Ann Lee,1 Anders Poulsen,1 Subhash G Vasudevan,3 Jeffrey Hill,1 Kassoum Nacro11Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR, Singapore; 2Novartis Institute for Tropical Diseases, Singapore; 3Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, SingaporeAbstract: Dengue virus (DENV protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described.Keywords: flavivirus protease, small molecule optimization, covalent inhibitor, active site binding, pyrazole ester derivatives

  18. Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis

    Directory of Open Access Journals (Sweden)

    Jarroll Edward L

    2006-05-01

    Full Text Available Abstract Background Granulomatous amoebic encephalitis due to Acanthamoeba is often a fatal human disease. However, the pathogenesis and pathophysiology of Acanthamoeba encephalitis remain unclear. In this study, the role of extracellular Acanthamoeba proteases in central nervous system pathogenesis and pathophysiology was examined. Results Using an encephalitis isolate belonging to T1 genotype, we observed two major proteases with approximate molecular weights of 150 KD and 130 KD on SDS-PAGE gels using gelatin as substrate. The 130 KD protease was inhibited with phenylmethylsulfonyl fluoride (PMSF suggesting that it is a serine protease, while the 150 KD protease was inhibited with 1, 10-phenanthroline suggesting that it is a metalloprotease. Both proteases exhibited maximal activity at neutral pH and over a range of temperatures, indicating their physiological relevance. These proteases degrade extracellular matrix (ECM, which provide structural and functional support to the brain tissue, as shown by the degradation of collagen I and III (major components of collagenous ECM, elastin (elastic fibrils of ECM, plasminogen (involved in proteolytic degradation of ECM, as well as casein and haemoglobin. The proteases were purified partially using ion-exchange chromatography and their effects were tested in an in vitro model of the blood-brain barrier using human brain microvascular endothelial cells (HBMEC. Neither the serine nor the metalloprotease exhibited HBMEC cytotoxicity. However, the serine protease exhibited HBMEC monolayer disruptions (trypsin-like suggesting a role in blood-brain barrier perturbations. Conclusion Overall, these data suggest that Acanthamoeba proteases digest ECM, which may play crucial role(s in invasion of the brain tissue by amoebae.

  19. Cell Entry of Porcine Epidemic Diarrhea Coronavirus Is Activated by Lysosomal Proteases*

    Science.gov (United States)

    Liu, Chang; Ma, Yuanmei; Yang, Yang; Zheng, Yuan; Shang, Jian; Zhou, Yusen; Jiang, Shibo; Du, Lanying; Li, Jianrong; Li, Fang

    2016-01-01

    Porcine epidemic diarrhea coronavirus (PEDV) is currently devastating the United States pork industry by causing an 80–100% fatality rate in infected piglets. Coronavirus spike proteins mediate virus entry into cells, a process that requires the spike proteins to be proteolytically activated. It has been a conundrum which proteases activate PEDV entry. Here we systematically investigated the roles of different proteases in PEDV entry using pseudovirus entry, biochemical, and live virus infection assays. We found that the PEDV spike is activated by lysosomal cysteine proteases but not proprotein convertases or cell surface serine proteases. Extracellular trypsin activates PEDV entry when lysosomal cysteine proteases are inhibited. We further pinpointed cathepsin L and cathepsin B as the lysosomal cysteine proteases that activate the PEDV spike. These results advance our understanding of the molecular mechanism for PEDV entry and identify potential antiviral targets for curbing the spread of PEDV. PMID:27729455

  20. Effects of serine palmitoyltransferase inhibitor ISP-I on the stratum corneum of intact mouse skin.

    Science.gov (United States)

    Mizukoshi, Koji; Matsumoto, Katsuo; Hirose, Ryouji; Fujita, Tetsuro; Ishida-Yamamoto, Akemi; Iizuka, Hajime

    2011-01-01

    Serine palmitoyltransferase (SPT) is involved in the ceramide synthesis pathway. We investigated the effects of ISP-I, a potent inhibitor of SPT, on the stratum corneum (SC) of hairless mouse skin. Application of ISP-I for one week resulted in a significant decrease in the amount of ceramide, which was associated with a decrease in SC hydration. However, there was an increase in the number of SC layers and less transepidermal water loss than control. Transmission Electron Microscopy observation revealed that the number of desmosome-like structures in the layers immediately above the stratum granulosum (SG) was significantly increased in ISP-I-treated skin compared to vehicle-treated skin. The activity of serine protease-an enzyme associated with the process of desquamation-was lower in the SC of ISP-I-treated skin than control. Furthermore, immunoelectronmicroscopy revealed that glucosylceramide and corneodesmosin tended to remain in corneocytes and were not secreted into the intercellular spaces of the SC in the ISP-I-treated skin. These results indicate that the application of ISP-I decreases ceramide and skin hydration, while at the same time increases the number of SC layers. The accumulation of corneocyte layers may originate from an aberrant desquamation process related to the decrease in the serine protease activity as well as an alteration in the transport of desquamation-related proteases by lamellar bodies.

  1. Infrared spectrum and structure of the homochiral serine octamer-dichloride complex

    Science.gov (United States)

    Seo, Jongcheol; Warnke, Stephan; Pagel, Kevin; Bowers, Michael T.; von Helden, Gert

    2017-12-01

    The amino acid serine is known to form a very stable octamer that has properties that set it apart from serine complexes of different sizes or from complexes composed of other amino acids. For example, both singly protonated serine octamers and anionic octamers complexed with two halogen ions strongly prefer homochirality, even when assembled from racemic D,L mixtures. Consequently, the structures of these complexes are of great interest, but no acceptable candidates have so far been identified. Here, we investigate anionic serine octamers coordinated with two chloride ions using a novel technique coupling ion mobility spectrometry-mass spectrometry with infrared spectroscopy, in combination with theoretical calculations. The results allow the identification of a unique structure for (Ser8Cl2)2- that is highly symmetric, very stable and homochiral and whose calculated properties match those observed in experiments.

  2. SjAPI, the First Functionally Characterized Ascaris-Type Protease Inhibitor from Animal Venoms

    Science.gov (United States)

    Yang, Weishan; Cao, Zhijian; Zhuo, Renxi; Li, Wenxin; Wu, Yingliang

    2013-01-01

    Background Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. Principal Findings Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI), Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2), Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI), and Buthus martensii Ascaris-type protease inhibitor (BmAPI). The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues “AAV” and might be a useful template to produce new serine protease inhibitors. Conclusions/Significance To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the development of

  3. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms.

    Directory of Open Access Journals (Sweden)

    Zongyun Chen

    Full Text Available BACKGROUND: Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. PRINCIPAL FINDINGS: Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI, Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2, Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI, and Buthus martensii Ascaris-type protease inhibitor (BmAPI. The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues "AAV" and might be a useful template to produce new serine protease inhibitors. CONCLUSIONS/SIGNIFICANCE: To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the

  4. A New Pepstatin-Insensitive Thermopsin-Like Protease Overproduced in Peptide-Rich Cultures of Sulfolobus solfataricus

    Directory of Open Access Journals (Sweden)

    Marta Gogliettino

    2014-02-01

    Full Text Available In this study, we gain insight into the extracellular proteolytic system of Sulfolobus solfataricus grown on proteinaceous substrates, providing further evidence that acidic proteases were specifically produced in response to peptide-rich media. The main proteolytic component was the previously isolated SsMTP (Sulfolobus solfataricus multi-domain thermopsin-like protease, while the less abundant (named SsMTP-1 one was purified, characterized and identified as the sso1175 gene-product. The protein revealed a multi-domain organization shared with the cognate SsMTP with a catalytic domain followed by several tandemly-repeated motifs. Moreover, both enzymes were found spread across the Crenarchaeota phylum and belonging to the thermopsin family, although segregated into diverse phylogenetic clusters. SsMTP-1 showed a 75-kDa molecular mass and was stable in the temperature range 50–90 °C, with optimal activity at 70 °C and pH 2.0. Serine, metallo and aspartic protease inhibitors did not affect the enzyme activity, designating SsMTP-1 as a new member of the pepstatin-insensitive aspartic protease family. The peptide-bond-specificity of SsMTP-1 in the cleavage of the oxidized insulin B chain was uncommon amongst thermopsins, suggesting that it could play a distinct, but cooperative role in the protein degradation machinery. Interestingly, predictions of the transmembrane protein topology of SsMTP and SsMTP-1 strongly suggest a possible contribution in signal-transduction pathways.

  5. Serine-like proteolytic enzymes correlated with differential pathogenicity in patients with acute Acanthamoeba keratitis.

    Science.gov (United States)

    de Souza Carvalho, F R; Carrijo-Carvalho, L C; Chudzinski-Tavassi, A M; Foronda, A S; de Freitas, D

    2011-04-01

    Acute ocular infection due to free-living amoebae of the genus Acanthamoeba is characterized by severe pain, loss of corneal transparency and, eventually, blindness. Proteolytic enzymes secreted by trophozoites of virulent Acanthamoeba strains have an essential role in the mechanisms of pathogenesis, including adhesion, invasion and destruction of the corneal stroma. In this study, we analysed the relationship between the extracellular proteases secreted by clinical isolates of Acanthamoeba and the clinical manifestations and severity of disease that they caused. Clinical isolates were obtained from patients who showed typical symptoms of Acanthamoeba keratitis. Trophozoites were cultivated axenically, and extracellular proteins were collected from cell culture supernatants. Secreted enzymes were partially characterized by gelatin and collagen zymography. Acanthamoeba trophozoites secreted proteases with different molecular masses, proteolysis rates and substrate specificities, mostly serine-like proteases. Different enzymatic patterns of collagenases were observed, varying between single and multiple collagenolytic activities. Low molecular weight serine proteases were secreted by trophozoites associated with worse clinical manifestations. Consequently, proteolytic enzymes of some Acanthamoeba trophozoites could be related to the degree of their virulence and clinical manifestations of disease in the human cornea. © 2010 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.

  6. Construction of dengue virus protease expression plasmid and in vitro protease assay for screening antiviral inhibitors.

    Science.gov (United States)

    Lai, Huiguo; Teramoto, Tadahisa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease.

  7. Cysteine proteases: Modes of activation and future prospects as pharmacological targets

    Directory of Open Access Journals (Sweden)

    Sonia eVerma

    2016-04-01

    Full Text Available Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria and parasite to the higher organisms (mammals. Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases and metallo-proteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a pro-domain (regulatory and a mature domain (catalytic. The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.

  8. Insights into the Cyanobacterial Deg/HtrA Proteases

    Directory of Open Access Journals (Sweden)

    Otilia eCheregi

    2016-05-01

    Full Text Available Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g. caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologues. Homology modeling was used to find specific features of the Deg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior.

  9. Sulfur mustard-stimulated proteases and their inhibitors in a cultured normal human epidermal keratinocytes model: A potential approach for anti-vesicant drug development.

    Science.gov (United States)

    Jin, Xiannu; Ray, Radharaman; Ray, Prabhati

    2016-01-01

    Protease stimulation in cultured normal human epidermal keratinocytes (NHEK) due to sulfur mustard (SM) exposure is well documented. However, the specific protease(s) stimulated by SM and the protease substrates remain to be determined. In this study, we observed that SM stimulates several proteases and the epidermal-dermal attachment protein laminin-5 is one of the substrates. We propose that following SM exposure of the skin, laminin-5 degradation causes the detachment of the epidermis from the dermis and, therefore, vesication. We utilized gelatin zymography, Western blotting, immuno-fluorescence staining, and real-time polymerase chain reaction (RT-PCR) analyses to study the SM-stimulated proteases and laminin-5 degradation in NHEK. Two major protease bands (64 kDa and 72 kDa) were observed by zymography in SM-exposed cells. Addition of serine protease inhibitor (aprotinin, 100 μM), or the metalloprotease inhibitor (amastatin, 100 μM) to NHEK cultures prior to SM exposure decreased the SM-stimulated protease bands seen by zymography. These inhibitors completely or partially prevented SM-induced laminin-5 γ2 degradation as seen by Western blotting as well as immuno-fluorescence staining. Our results from Western blotting and RT-PCR studies also indicated that the membrane-type matrix metalloproteinase-1 (MT-MM-1) may be involved in SM-induced skin blistering. To summarize, our results in the NHEK model indicate the following: (a) SM stimulates multiple proteases including serine protease(s), and metalloproteases; (b) SM decreases the level of laminin-5 γ2, which is prevented by either a serine protease inhibitor or a metalloprotease inhibitor and (c) MT-MMP-1 maybe one of the proteases that is involved in skin blistering due to SM exposure.

  10. Deep-sea fungi as a source of alkaline and cold-tolerant proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.; Raghukumar, C.; Muraleedharan, U.; Raghukumar, S.

    suggesting it to be a serine protease. It was active in the presence of several commercial detergents at 2 g L-1 concentration and in the presence of 0.5 M NaCl, equivalent to 29 parts per thousand salinity. In the presence of stabilizing agents...

  11. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell......Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...

  12. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites.

    Science.gov (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M

    2015-01-15

    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  13. Optical properties of D-serine doped TGS crystals for pyroelectric sensors*

    Directory of Open Access Journals (Sweden)

    Kurlyak V.Yu.

    2015-12-01

    Full Text Available Refractive and birefringence indices in the range of transparency of 300 to 700 nm for triglycine sulphate crystals doped with D-serine molecules have been measured in the temperature range of 290 K to 340 K. The obtained optical properties are discussed together with characteristic electrical features of these materials used as pyroelectric sensors for measurement of temperature. The experimental results obtained in this study will be necessary as the reference data for comparison with the calculated refractive indices of TGS + D-serine on the basis of density functional theory. Determination of the proper position of D-serine, will reveal the features of TGS + D-serine crystal structure necessary to achieve stable unipolarity.

  14. L-serine in disease and development

    NARCIS (Netherlands)

    de Koning, Tom J.; Snell, Keith; Duran, Marinus; Berger, Ruud; Poll-The, Bwee-Tien; Surtees, Robert

    2003-01-01

    The amino acid L-serine, one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell

  15. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea

    Science.gov (United States)

    Hou, Enling; Xia, Tao; Zhang, Zhaohui; Mao, Xiangzhao

    2017-04-01

    Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0-11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.

  17. Continuing education in neurometabolic disorders--serine deficiency disorders

    NARCIS (Netherlands)

    de Koning, T. J.; Poll-The, B. T.; Jaeken, J.

    1999-01-01

    Serine deficiency disorders comprise a new group of inborn errors of serine metabolism. Patients affected with these disorders present with major neurological symptoms including congenital microcephaly, seizures, psychomotor retardation or polyneuropathy. The diagnosis of serine deficiency is based

  18. Zebra chip disease decreases tuber (Solanum tuberosum L.) protein content by attenuating protease inhibitor levels and increasing protease activities.

    Science.gov (United States)

    Kumar, G N Mohan; Knowles, Lisa O; Knowles, N Richard

    2015-11-01

    Zebra chip disease of potato decreases protease inhibitor levels resulting in enhanced serine-type protease activity, decreased protein content and altered protein profiles of fully mature tubers. Zebra-chip (ZC), caused by Candidatus Liberibacter solanacearum (CLso), is a relatively new disease of potato that negatively affects growth, yield, propagation potential, and fresh and process qualities of tubers. Diseased plants produce tubers with characteristic brown discoloration of vascular tissue accompanied by elevated levels of free amino acids and reducing sugars. Here we demonstrate that ZC disease induces selective protein catabolism in tubers through modulating protease inhibitor levels. Soluble protein content of tubers from CLso-infected plants was 33% lower than from non-infected plants and electrophoretic analyses revealed substantial reductions in major tuber proteins. Patatin (~40 kDa) and ser-, asp- (22 kDa) and cys-type (85 kDa) protease inhibitors were either absent or greatly reduced in ZC-afflicted tubers. In contrast to healthy (non-infected) tubers, the proteolytic activity in CLso infected tubers was high and the ability of extracts from infected tubers to inhibit trypsin (ser-type) and papain (cys-type) proteases greatly attenuated. Moreover, extracts from CLso-infected tubers rapidly catabolized proteins purified from healthy tubers (40 kDa patatin, 22 kDa protease inhibitors, 85 kDa potato multicystatin) when subjected to proteolysis individually. In contrast, crude extracts from non-infected tubers effectively inhibited the proteolytic activity from ZC-afflicted tubers. These results suggest that the altered protein profile of ZC afflicted tubers is largely due to loss of ser- and cys-type protease inhibitors. Further analysis revealed a novel PMSF-sensitive (ser) protease (ca. 80-120 kDa) in CLso infected tubers. PMSF abolished the proteolytic activities responsible for degrading patatin, the 22 kDa protease inhibitor(s) and potato

  19. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  20. Intramembrane protease RasP boosts protein production in Bacillus.

    Science.gov (United States)

    Neef, Jolanda; Bongiorni, Cristina; Goosens, Vivianne J; Schmidt, Brian; van Dijl, Jan Maarten

    2017-04-04

    The microbial cell factory Bacillus subtilis is a popular industrial platform for high-level production of secreted technical enzymes. Nonetheless, the effective secretion of particular heterologous enzymes remains challenging. Over the past decades various studies have tackled this problem, and major improvements were achieved by optimizing signal peptides or removing proteases involved in product degradation. On the other hand, serious bottlenecks in the protein export process per se remained enigmatic, especially for protein secretion at commercially significant levels by cells grown to high density. The aim of our present study was to assess the relevance of the intramembrane protease RasP for high-level protein production in B. subtilis. Deletion of the rasP gene resulted in reduced precursor processing and extracellular levels of the overproduced α-amylases AmyE from B. subtilis and AmyL from Bacillus licheniformis. Further, secretion of the overproduced serine protease BPN' from Bacillus amyloliquefaciens was severely impaired in the absence of RasP. Importantly, overexpression of rasP resulted in threefold increased production of a serine protease from Bacillus clausii, and 2.5- to 10-fold increased production of an AmyAc α-amylase from Paenibacillus curdlanolyticus, depending on the culture conditions. Of note, growth defects due to overproduction of the two latter enzymes were suppressed by rasP-overexpression. Here we show that an intramembrane protease, RasP, sets a limit to high-level production of two secreted heterologous enzymes that are difficult to produce in the B. subtilis cell factory. This finding was unexpected and suggests that proteolytic membrane sanitation is key to effective enzyme production in Bacillus.

  1. D-serine and serine racemase are associated with PSD-95 and glutamatergic synapse stability

    Directory of Open Access Journals (Sweden)

    Hong eLin

    2016-02-01

    Full Text Available D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs, synthesized by serine racemase (SR through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking alpha7 nicotinic acetylcholine receptors, which promotes glutamatergic synapse formation and maturation during development. We thus hypothesize that D-serine and SR (D-serine/SR are associated with glutamatergic synaptic development. Using morphological and molecular studies in cortical neuronal cultures, we demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development. Endogenous D-serine and SR colocalize with PSD-95, but not presynaptic vesicular glutamate transporter 1 (VGLUT1, in glutamatergic synapses of cultured cortical neurons. Low-density astrocytes in cortical neuronal cultures lack SR expression but contain enriched D-serine in large vesicle-like structures, suggesting possible synthesis of D-serine in postsynaptic neurons and storage in astrocytes. More interestingly, endogenous D-serine and SR colocalize with PSD-95 in the postsynaptic terminals of glutamatergic synapses during early and late synaptic development, implicating involvement of D-serine/SR in glutamatergic synaptic development. Exogenous application of D-serine enhances the interactions of SR with PSD-95 and NR1, and increases the number of VGLUT1- and PSD-95-positive glutamatergic synapses, suggesting that exogenous D-serine enhances postsynaptic SR/PSD-95 signaling and stabilizes glutamatergic synapses during cortical synaptic development. This is blocked by NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5 and 7-chlorokynurenic acid (7-CK, a specific antagonist at the glycine site of NMDARs

  2. The Natural Product Acivicin as a Tool for ABPP and the Activity of Serine Hydrolases in Uterine Fibroids

    OpenAIRE

    Kreuzer, Johannes

    2015-01-01

    The target proteins of acivicin and structure derived probes in tumor cells were identified using activity-based protein profiling. The target proteins were further characterized and their relation to the antitumor activity of acivicin pointed out. In a further project, the activity of serine hydrolases in myoma and myometrium was examined from tissue samples. This revealed a different activity of mast cell proteases. Mittels Activity-based Protein Profiling wurde eine Identifikation der Z...

  3. Protease-activated receptors in kidney disease progression.

    Science.gov (United States)

    Palygin, Oleg; Ilatovskaya, Daria V; Staruschenko, Alexander

    2016-12-01

    Protease-activated receptors (PARs) are members of a well-known family of transmembrane G protein-coupled receptors (GPCRs). Four PARs have been identified to date, of which PAR1 and PAR2 are the most abundant receptors, and have been shown to be expressed in the kidney vascular and tubular cells. PAR signaling is mediated by an N-terminus tethered ligand that can be unmasked by serine protease cleavage. The receptors are activated by endogenous serine proteases, such as thrombin (acts on PARs 1, 3, and 4) and trypsin (PAR2). PARs can be involved in glomerular, microvascular, and inflammatory regulation of renal function in both normal and pathological conditions. As an example, it was shown that human glomerular epithelial and mesangial cells express PARs, and these receptors are involved in the pathogenesis of crescentic glomerulonephritis, glomerular fibrin deposition, and macrophage infiltration. Activation of these receptors in the kidney also modulates renal hemodynamics and glomerular filtration rate. Clinical studies further demonstrated that the concentration of urinary thrombin is associated with glomerulonephritis and type 2 diabetic nephropathy; thus, molecular and functional mechanisms of PARs activation can be directly involved in renal disease progression. We briefly discuss here the recent literature related to activation of PAR signaling in glomeruli and the kidney in general and provide some examples of PAR1 signaling in glomeruli podocytes. Copyright © 2016 the American Physiological Society.

  4. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Science.gov (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  5. Serine proteolytic pathway activation reveals an expanded ensemble of wound response genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Rachel A Patterson

    Full Text Available After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues.

  6. Mannan-binding lectin (MBL)-associated serine protease-1 (MASP-1), a serine protease associated with humoral pattern-recognition molecules

    DEFF Research Database (Denmark)

    Thiel, S; Jensen, L; Degn, Søren Egedal

    2012-01-01

    , an important component of the innate immune system. Three proteins are produced from the MASP1 gene: MASP-1 and MASP-3 and MAp44. We present an assay specific for MASP-1, which is based on inhibition of the binding of anti-MASP-1-specific antibody to MASP-1 domains coated onto microtitre wells. MASP-1...... was found in serum in large complexes eluting in a position corresponding to ∼600 kDa after gel permeation chromatography in calcium-containing buffer and as monomers of ∼75 kDa in dissociating buffer. The concentration of MASP-1 in donor sera (n = 105) was distributed log-normally with a median value of 11...

  7. Structure of granzyme C reveals an unusual mechanism of protease autoinhibition

    Energy Technology Data Exchange (ETDEWEB)

    Kaiserman, Dion; Buckle, Ashley M.; Van Damme, Petra; Irving, James A.; Law, Ruby H.P.; Matthews, Antony Y.; Bashtannyk-Puhalovich, Tanya; Langendorf, Chris; Thompson, Philip; Vandekerckhove, Joël; Gevaert, Kris; Whisstock, James C.; Bird, Phillip I.; (Monash); (Flanders)

    2009-05-21

    Proteases act in important homeostatic pathways and are tightly regulated. Here, we report an unusual structural mechanism of regulation observed by the 2.5-{angstrom} X-ray crystal structure of the serine protease, granzyme C. Although the active-site triad residues adopt canonical conformations, the oxyanion hole is improperly formed, and access to the primary specificity (S1) pocket is blocked through a reversible rearrangement involving Phe-191. Specifically, a register shift in the 190-strand preceding the active-site serine leads to Phe-191 filling the S1 pocket. Mutation of a unique Glu-Glu motif at positions 192-193 unlocks the enzyme, which displays chymase activity, and proteomic analysis confirms that activity of the wild-type protease can be released through interactions with an appropriate substrate. The 2.5-{angstrom} structure of the unlocked enzyme reveals unprecedented flexibility in the 190-strand preceding the active-site serine that results in Phe-191 vacating the S1 pocket. Overall, these observations describe a broadly applicable mechanism of protease regulation that cannot be predicted by template-based modeling or bioinformatic approaches alone.

  8. Karakterisasi protease Bacillus sp. UGM5

    Directory of Open Access Journals (Sweden)

    Titik Purwati Widowati

    1999-07-01

    Full Text Available The objective of this experiment is to indentify the characters of proetease produced by Bacillus sp.UGM5.the protease secreted by Bacillus sp.UGM5 was first isolated,purified and then charactirezed.The crude enzyme has spesific actifity of 1.14 U/mg,however,the spesific activity of purified enzyme was increased by 23.8 times fold and recovery was 33.69%.The Page of nondenatured crude enzymes showes two type of proreases,however ,the SDS-Page of denatured purified enzyme showed four protein-bends with molecular weights of 55.5 kDa,18kDa respecetively.The optimum pH and temperature for the enzyme acrivity are 8.5 and 420C and belongs to serin protease type,with Km 3 X 10-3mM and Vmax 0.0890mM/30 minutes.The activity is not inhibited by Ca+2,Fe+2 and EDTA.

  9. Phospholipid metabolism of serine in Plasmodium-infected erythrocytes involves phosphatidylserine and direct serine decarboxylation.

    Science.gov (United States)

    Elabbadi, N; Ancelin, M L; Vial, H J

    1997-01-01

    Erythrocytes infected with Plasmodium falciparum or Plasmodium knowlesi efficiently incorporated radioactive serine into phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho). Serine was also metabolized into ethanolamine (Etn) and phosphorylethanolamine (P-Etn) via direct serine decarboxylation; this is a major phenomenon since together these metabolites represent 60% of total radioactive water-soluble metabolites. They were identified by reverse-phase HPLC and two TLC-type analyses and confirmed by alkaline phosphatase treatment, which depleted the radioactive P-Etn peak completely with a concomitant increase in that of Etn. In the presence of 5 microM labelled serine, radioactivity appeared in Etn and P-Etn after a 25 min lag period, and isotopic equilibrium was reached at 40 and 95 min respectively. There was a similar lag period for PtdEtn formation, which accumulated steadily for at least 180 min. Incorporation of serine into phospholipids and water-soluble metabolites increased in the presence of up to 500 microM external serine. An apparent plateau was then reached for all metabolites except intracellular serine and Etn. Exogenous Etn (at 20 microM) induced a concomitant dramatic decrease in serine incorporation into P-Etn and all phospholipids, but not into Etn. Increasing exogenous serine to 100 microM decreased the incorporation of radioactive Etn into PtdEtn by only 30%, and the PtdCho level was not affected. 2-Hydroxyethylhydrazine significantly decreased serine incorporation into P-Etn and PtdEtn, whereas Etn was accumulated. No concomitant inhibition of PtdSer or PtdCho labelling from serine occurred, even when PtdEtn formation was decreased by 95%. This indicates that the PtdEtn pool derived from direct serine decarboxylation differed from that derived from PtdSer decarboxylation, and the latter appeared to be preferentially used for PtdCho biosynthesis. Hydroxylamine also inhibited phosphorylation of serine

  10. Serine deprivation enhances antineoplastic activity of biguanides.

    Science.gov (United States)

    Gravel, Simon-Pierre; Hulea, Laura; Toban, Nader; Birman, Elena; Blouin, Marie-José; Zakikhani, Mahvash; Zhao, Yunhua; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael

    2014-12-15

    Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Furthermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly enhanced the tumor growth-inhibitory actions of biguanide treatment. Our results define a dietary manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell energy metabolism. ©2014 American Association for Cancer Research.

  11. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  12. Endosymbiotic and host proteases in the digestive tract of the invasive snail Pomacea canaliculata: diversity, origin and characterization.

    Directory of Open Access Journals (Sweden)

    Martín S Godoy

    Full Text Available Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1 a 125 kDa protease in salivary gland extracts and in the crop content; (2 a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3 two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen.

  13. Endosymbiotic and host proteases in the digestive tract of the invasive snail Pomacea canaliculata: diversity, origin and characterization.

    Science.gov (United States)

    Godoy, Martín S; Castro-Vazquez, Alfredo; Castro-Vasquez, Alfredo; Vega, Israel A

    2013-01-01

    Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1) a 125 kDa protease in salivary gland extracts and in the crop content; (2) a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3) two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen.

  14. Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients.

    Science.gov (United States)

    Buhner, Sabine; Hahne, Hannes; Hartwig, Kerstin; Li, Qin; Vignali, Sheila; Ostertag, Daniela; Meng, Chen; Hörmannsperger, Gabriele; Braak, Breg; Pehl, Christian; Frieling, Thomas; Barbara, Giovanni; De Giorgio, Roberto; Demir, Ihsan Ekin; Ceyhan, Güralp Onur; Zeller, Florian; Boeckxstaens, Guy; Haller, Dirk; Kuster, Bernhard; Schemann, Michael

    2018-01-01

    The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques. We identify differentially expressed proteins with proteome analysis. Nerve activation by IBS supernatants was prevented by the protease activated receptor 1 (PAR1) antagonist SCHE79797. UC supernatants also activated enteric neurons through protease dependent mechanisms but without PAR1 involvement. Proteome analysis of the supernatants identified 204 proteins, among them 17 proteases as differentially expressed between IBS, UC and HC. Of those the four proteases elastase 3a, chymotrypsin C, proteasome subunit type beta-2 and an unspecified isoform of complement C3 were significantly more abundant in IBS compared to HC and UC supernatants. Of eight proteases, which were upregulated in IBS, the combination of elastase 3a, cathepsin L and proteasome alpha subunit-4 showed the highest prediction accuracy of 98% to discriminate between IBS and HC groups. Elastase synergistically potentiated the effects of histamine and serotonin-the two other main neuroactive substances in the IBS supernatants. A serine protease inhibitor isolated from the probiotic Bifidobacterium longum NCC2705 (SERPINBL), known to inhibit elastase-like proteases, prevented nerve activation by IBS supernatants. Proteases in IBS and UC supernatants were responsible for nerve activation. Our data demonstrate that proteases, particularly those signalling through neuronal PAR1, are biomarker candidates for IBS, and protease profiling may be used to

  15. Bioprocessing of “Hair Waste” by Paecilomyces lilacinus as a Source of a Bleach-Stable, Alkaline, and Thermostable Keratinase with Potential Application as a Laundry Detergent Additive: Characterization and Wash Performance Analysis

    Science.gov (United States)

    Cavello, Ivana A.; Hours, Roque A.; Cavalitto, Sebastián F.

    2012-01-01

    Paecilomyces lilacinus (Thom) Samson LPS 876, a locally isolated fungal strain, was grown on minimal mineral medium containing “hair waste,” a residue from the hair-saving unhairing process, and produced a protease with keratinolytic activity. This enzyme was biochemically characterized. The optimum reaction conditions, determined with a response surface methodology, were 60°C and pH 6.0. It was remarkably stable in a wide range of pHs and temperatures. Addition of Ca2+, Mg2+, or sorbitol was found to be effective in increasing thermal stability of the protease. PMSF and Hg2+ inhibited the proteolytic activity indicating the presence of a thiol-dependent serine protease. It showed high stability toward surfactants, bleaching agents, and solvents. It was also compatible with commercial detergents (7 mg/mL) such as Ariel, Skip, Drive, and Ace, retaining more than 70% of its proteolytic activity in all detergents after 1 h of incubation at 40°C. Wash performance analysis revealed that this protease could effectively remove blood stains. From these properties, this enzyme may be considered as a potential candidate for future use in biotechnological processes, as well as in the formulation of laundry detergents. PMID:23365760

  16. Genetically modified microorganisms having improved tolerance towards l-serine

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the microbiological industry, and specifically to the production of L-serine or L-serine derivatives using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes...... tolerant towards higher concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms....

  17. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    Directory of Open Access Journals (Sweden)

    Matthew J Kesic

    Full Text Available Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs human airway trypsin-like protease (HAT and transmembrane protease, serine 2 (TMPRSS2, whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI. Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.

  18. Characterization of a subtilisin-like protease with apical localization from microsporidian Nosema bombycis.

    Science.gov (United States)

    Dang, Xiaoqun; Pan, Guoqing; Li, Tian; Lin, Lipeng; Ma, Qiang; Geng, Lina; He, Yuanli; Zhou, Zeyang

    2013-02-01

    The microsporidian Nosema bombycis is the pathogen causing pébrine leading to heavy economic loss in sericulture. Little is known of the proteases of microsporidia that are important for both parasite development and pathogenesis. Here we identified a subtilisin-like serine protease NbSLP1 which contains an inhibitor_I9 and a peptidase_S8 domain. Three dimensional modeling of the catalytic domain of the NbSLP1 exhibited a typical 3-layer sandwich structure with S1 pocket substituted by Y(359). Phylogenetic analysis confirms that subtilisin-like serine proteases of microsporidia fall into two clades: SLP1 and SLP2, suggesting the initial subtilisin gene duplication events preceded microsporidia speciation. Furthermore, transcripts of Nbslp1 were detected in the midgut of Bombyx mori infection by N. bombycis by RT-PCR. Antibodies against NbSLP1 recognized both the precursor and mature enzyme by 2D Western blotting. Besides, indirect immunofluorescence assay revealed that the NbSLP1 is mainly localized at the two poles of spore which make the spore look like "safety pins". Remarkably, the mature protease is only detected in the apical region of the spore after germination. These studies demonstrate that NbSLP1 is a conserved subtilisin protease in microsporidia and suggest that NbSLP1 play a significant role in polar tube extrusion process. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    Science.gov (United States)

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  20. Death proteases come alive

    NARCIS (Netherlands)

    Woltering, E.J.

    2004-01-01

    Cell death in plants exhibits morphological features comparable to caspase-mediated apoptosis in animals, suggesting that plant cell death is executed by (caspase-like) proteases. However, to date, no caspase homologues have been identified in plants and therefore the existence and nature of these

  1. Hormone therapy affects plasma measures of factor VII-activating protease in younger postmenopausal women

    DEFF Research Database (Denmark)

    Mathiasen, Jørn Sidelmann; Skouby, S.O.; Vitzthum, F.

    2010-01-01

    Objectives Current reviews indicate that hormone therapy (HT) has a protective role in coronary heart disease (CHD) in younger postmenopausal women, whereas HT contributes to CHD in older women Factor VII-activating protease (FSAP) is a serine protease that accumulates in unstable atherosclerotic...... for the determination of FSAP antigen and FSAP activity. Results The FSAP measures were comparable at baseline. No significant changes were observed in the control group after 12 months. HT in general induced a significant increase in FSAP antigen (7.7 mu g/ml at baseline and 8.0 mu g/ml after 12 months, p = 0...

  2. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  3. Stromal serine protein kinase activity in spinach chloroplasts

    International Nuclear Information System (INIS)

    Cortez, N.; Lucero, H.A.; Vallejos, R.H.

    1987-01-01

    At least twelve 32 P-labeled stromal proteins were detected by electrophoresis under denaturing conditions when intact chloroplasts were incubated with 32 Pi, in the light but only three were detected in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or in the dark. Incubation of isolated stroma with [gamma- 32 P]ATP resulted in the preferential phosphorylation of one of them, a 70-kDa polypeptide, in serine residues. Thylakoid membranes in the dark promoted the phosphorylation of two additional stromal polypeptides of 55 and 40 kDa. Illumination during the phosphorylation of stroma in the presence of thylakoids stimulated severalfold the labeling of the 40-kDa polypeptide but not when DCMU was added. The protein kinase activity present in isolated stroma phosphorylated exogenous substrates like histone III, phosvitin, histone II, and casein with specific activities of 3, 1.8, 0.7, and 0.2 pmol X mg-1 X min-1. Histone III polypeptides were phosphorylated differently by stroma and by thylakoids in the dark. Moreover, histone III phosphorylated by thylakoids in the dark yielded a pattern of phosphopeptides after V8 protease treatment that was different from the pattern obtained when histone III was phosphorylated by stroma

  4. Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. strain AB1 with high stability in organic solvents.

    Science.gov (United States)

    Jaouadi, Bassem; Abdelmalek, Badis; Fodil, Djamila; Ferradji, Fatma Zohra; Rekik, Hatem; Zaraî, Nedia; Bejar, Samir

    2010-11-01

    A keratinolytic alkaline proteinase (KERAB) was isolated from Streptomyces sp. strain AB1. Based on MALDI-TOF mass spectrometry analysis, the purified enzyme is a monomer with a molecular mass of 29850.17Da. The NH(2)-terminal sequence of the enzyme was determined to be TQANPPSWGLDDIDQTAL. This keratinase was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DIFP), which suggests that it belongs to the serine protease family. Using keratin azure as a substrate, the optimum pH and temperature values for keratinase activity were pH 11.5 and 75 degrees C, respectively. This keratinase was stable between 30 and 60 degrees C and pH 4 and 11 for 4 and 96 h, respectively, and thermoactivity and thermostability were enhanced in the presence of 5 mM Mg(2+). Its catalytic efficiency was higher than those of SAPB-L31I/T33S/N99Y, nattokinase and subtilisin Carlsberg. KERAB exhibited stability to detergents and high resistance against organic solvents and was able to degrade feathers completely. These properties make KERAB a potential candidate for future applications in detergent formulations, dehairing during leather processing, and non-aqueous peptide biocatalysis. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets.

    Science.gov (United States)

    Coupe, Simon A; Sinclair, Ben K; Watson, Lyn M; Heyes, Julian A; Eason, Jocelyn R

    2003-03-01

    Harvest-induced senescence of broccoli results in tissue wilting and sepal chlorosis. As senescence progresses, chlorophyll and protein levels in floret tissues decline and endo-protease activity (measured with azo-casein) increases. Protease activity increased from 24 h after harvest for tissues held in air at 20 degrees C. Activity was lower in floret tissues from branchlets that had been held in solutions of sucrose (2% w/v) or under high carbon dioxide, low oxygen (10% CO(2), 5% O(2)) conditions. Four protease-active protein bands were identified in senescing floret tissue by zymography, and the use of chemical inhibitors of protease action suggests that some 44% of protease activity in senescing floret tissue 72 h after harvest is due to the action of cysteine and serine proteases. Four putative cysteine protease cDNAs have been isolated from broccoli floret tissue (BoCP1, BoCP2, BoCP3, BoCP4). The cDNAs are most similar (73-89% at the amino acid level) to dehydration-responsive cysteine proteases previously isolated from Arabidopsis thaliana (RD19, RD21). The mRNAs encoded by the broccoli cDNAs are expressed in floret tissue during harvest-induced senescence with mRNA accumulating within 6 h of harvest for BoCP1, 12 h of harvest for BoCP4 and within 24 h of harvest for BoCP2 and BoCP3. Induction of the cDNAs is differentially delayed when broccoli branchlets are held in solutions of water or sucrose. In addition, the expression of BoCP1 and BoCP3 is inhibited in tissue held in atmospheres of high carbon dioxide/low oxygen (10% CO(2), 5% O(2)). The putative cysteine protease mRNAs are expressed before measurable increases in endo-protease activity, loss of protein, chlorophyll or tissue chlorosis.

  6. Increased tolerance towards serine obtained by adaptive laboratory evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Koza, Anna

    2014-01-01

    The amino acid serine has previously been identified as one of the top 30 candidates of value added chemicals, making the production of serine from glucose attractive. Production of serine have previously been attempted in E. coli and C. glutamicum, however, titers sufficient for commercial...... by glyA), the conversion of serine to pyruvate (encoded by sdaA, sdaB and tdcG) was also deleted. As expected, the resulting strain turned out to be susceptible to even low concentrations of serine in the media. In order to improve the tolerance of the strain towards serine, adaptive laboratory evolution...

  7. The biosynthetic origins of the unusual glycopeptide suomilide and genome mining of aeruginosin family proteases

    OpenAIRE

    Ahmed, Muhammad Nouman

    2016-01-01

    Natural products have enormous structural and chemical diversity and are either the source or direct inspiration for many drugs in use today. Cyanobacteria are prolific producers of complex natural products with serine protease inhibiting activity. Many of these natural products are the product of non-ribosomal peptide synthetase (NRPS) modular enzyme complexes. Suomilide is a complex tetrapeptide produced by strains of the benthic cyanobacterium Nodularia sphaerocarpa. It has a highly compli...

  8. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Cytotoxic and Inflammatory Responses Induced by Outer Membrane Vesicle-Associated Biologically Active Proteases from Vibrio cholerae

    Science.gov (United States)

    Mondal, Ayan; Tapader, Rima; Chatterjee, Nabendu Sekhar; Ghosh, Amit; Sinha, Ritam; Koley, Hemanta; Saha, Dhira Rani; Chakrabarti, Manoj K.; Wai, Sun Nyunt

    2016-01-01

    Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses. PMID:26930702

  10. Clp chaperone-proteases: structure and function.

    Science.gov (United States)

    Kress, Wolfgang; Maglica, Zeljka; Weber-Ban, Eilika

    2009-11-01

    Clp proteases are the most widespread energy-dependent proteases in bacteria. Their two-component architecture of protease core and ATPase rings results in an inventory of several Clp protease complexes that often coexist. Here, we present insights into Clp protease function, from their assembly to substrate recruitment and processing, and how this is coupled to the expense of energy.

  11. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor.

    Science.gov (United States)

    Erlandson, Martin A; Hegedus, Dwayne D; Baldwin, Douglas; Noakes, Amy; Toprak, Umut

    2010-10-01

    The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.

  12. ISOLASI DAN KARAKTERISASI PROTEASE ALKALIN DARI ISOLAT BAKTERI LIMBAH TERNAK DI EXFARM FAKULTAS PETERNAKAN UNSOED

    Directory of Open Access Journals (Sweden)

    Zusfahair

    2011-05-01

    Full Text Available Protease is one of the widely used enzymes for the industry. The potential resource of microorganism that produced protease is milk cow waste. In this research, isolation and characterization has been done toward isolated protease from milk cow waste of the Exfarm’s Animal Husbandry Faculty at University of Jenderal Soedirman, Purwokerto. The research used experiment method and the parameters observed were the genus of bacteria which produce protease and the activity of protease. The characterizations of protease were determination of optimum pH and temperature, the influence of metal ions, EDTA, surfactant, and commercial detergent toward enzyme activity, and also the study of enzyme stability. The results from the research showed that the isolated bacteria from the Exfarm’s of Animal Husbandry Faculty of UNSOED, which produced protease was Salmonella sp. Characterization of isolated Salmonella sp. from 45% ammonium sulphate fraction indicated that the optimum temperature was 50 ºC, optimum pH was 8, the enzyme was activated by Ca2+ dan Mg2+ ion, whereas it was inhibited by Zn2+, Cu2+ ions and EDTA. The addition of Tween-80 with the concentration of 0.2% and 0.4% increased protease activity, however the addition of Tween-80 with concentration higher than 0.6% decreased the protease activity. Enzyme protease from isolated Salmonella sp. was relatively stable with the addition of commercial detergent such as Attack, Surf, and Bukrim.

  13. Serine carboxypeptidases of Triatoma brasiliensis (Hemiptera, Reduviidae): Sequence characterization, expression pattern and activity localization.

    Science.gov (United States)

    Waniek, Peter J; Araújo, Catarina A C; Momoli, Marisa M; Azambuja, Patricia; Jansen, Ana M; Genta, Fernando A

    2014-04-01

    Using specific oligonucleotides, 5'- and 3'-RACE and sequencing, two cDNAs encoding serine carboxypeptidases (tbscp-1 and tbscp-2) from the midgut of the blood sucking heteropteran Triatoma brasiliensis were identified. Both cDNAs with an open reading frame of 1389bp, encode serine carboxypeptidase precursors of 463 amino acid residues, which possess a signal peptide cleavage site after Ala19. Analysis of tbscp-1 and tbscp-2 genomic DNA showed an absence of introns in both sequences and the presence of a further intron-free SCP encoding gene (tbscp-2b). By reverse transcription polymerase chain reaction (RT-PCR), tbscp-1 and tbscp-2 transcript abundance was found similarly in fifth instar nymphs at different days after feeding (daf), high in the posterior midgut (small intestine), lower in the anterior midgut (stomach) and fat body and almost undetectable in the salivary glands. In the anterior, middle and posterior regions of the small intestine at 5daf the transcript abundance of both genes was almost identical. Also in adult female and male insects at 5daf both genes showed the strongest signal in the posterior midgut. Molecular modeling suggested that TBSCP-1 has carboxypeptidase D activity; activities against Hippuryl-Phenylalanine and Hippuryl-Arginine were also located at the posterior midgut, both were induced after blood feeding. Treatment of the posterior midgut extracts with the serine protease inhibitor PMSF strongly reduced carboxypeptidase activity. These findings suggest that triatomines might use serine carboxypeptidases, which are usually found in lysosomes, as digestive enzymes in the posterior midgut lumen, from which TBSCP-1 and TBSCP-2 are possible candidates to fulfill this function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Drosophila melanogaster seminal fluid protease "seminase" regulates proteolytic and post-mating reproductive processes.

    Directory of Open Access Journals (Sweden)

    Brooke A LaFlamme

    2012-01-01

    Full Text Available Proteases and protease inhibitors have been identified in the ejaculates of animal taxa ranging from invertebrates to mammals and form a major protein class among Drosophila melanogaster seminal fluid proteins (SFPs. Other than a single protease cascade in mammals that regulates seminal clot liquefaction, no proteolytic cascades (i.e. pathways with at least two proteases acting in sequence have been identified in seminal fluids. In Drosophila, SFPs are transferred to females during mating and, together with sperm, are necessary for the many post-mating responses elicited in females. Though several SFPs are proteolytically cleaved either during or after mating, virtually nothing is known about the proteases involved in these cleavage events or the physiological consequences of proteolytic activity in the seminal fluid on the female. Here, we present evidence that a protease cascade acts in the seminal fluid of Drosophila during and after mating. Using RNAi to knock down expression of the SFP CG10586, a predicted serine protease, we show that it acts upstream of the SFP CG11864, a predicted astacin protease, to process SFPs involved in ovulation and sperm entry into storage. We also show that knockdown of CG10586 leads to lower levels of egg laying, higher rates of sexual receptivity to subsequent males, and abnormal sperm usage patterns, processes that are independent of CG11864. The long-term phenotypes of females mated to CG10586 knockdown males are similar to those of females that fail to store sex peptide, an important elicitor of long-term post-mating responses, and indicate a role for CG10586 in regulating sex peptide. These results point to an important role for proteolysis among insect SFPs and suggest that protease cascades may be a mechanism for precise temporal regulation of multiple post-mating responses in females.

  15. Method for the production of l-serine using genetically engineered microorganisms deficient in serine degradation pathways

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the microbiological industry, and specifically to the production of L-serine using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes...... concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms....

  16. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor

    International Nuclear Information System (INIS)

    Hansen, Daiane; Macedo-Ribeiro, Sandra; Verissimo, Paula; Yoo Im, Sonia; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2007-01-01

    Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 A resolution were obtained using hanging drop method by vapor diffusion at 18 o C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function

  17. BSp66 protease is widespread in the acrosomal region of sperm from several mammalian species

    International Nuclear Information System (INIS)

    Cesari, A.; Katunar, M.R.; Monclus, M.A.; Vincenti, A.; Fornes, M.W.

    2004-01-01

    Fertilization in mammals comprises a sequence of events leading to the fusion of sperm and oocyte membranes. Although proteases are known to be involved in this process, their role in fertilization is controversial. There is extensive work on the characterization of proteolytic systems, including serine proteases, which demonstrates that acrosomal proteases can be distinguished among the sperm of different mammalian species on the basis of the gelatin-hydrolyzing activity on SDS-PAGE by the quantity and variety of the enzymes. In this report, we investigated the occurrence and activity of the serine protease BSp66, previously characterized in bovine spermatozoa, in various mammalian sperm. A protein with a molecular mass of 66 kDa cross-reacted with heterologous antibodies against bovine BSp66 when sperm extracts of several mammalian species were analyzed by Western blot. In agreement, proteolytic activity corresponding to the molecular mass of BSp66 was detected by gelatin zymography in all the species analyzed. This protein was located on the acrosomal region of sperm cells by immunofluorescence methods. We concluded that BSp66 is widespread in mammalian sperm, with a conserved location in the acrosomal region

  18. Fibroblast Activation Protein-Alpha, a Serine Protease that Facilitates Metastasis by Modification of Diverse Microenvironments

    Science.gov (United States)

    2011-10-01

    360 nM with the Tecan Safire microtiter plate reader. All samples were tested in duplicate. 7-Amino 4-Methyl Coumarin (AMC) (ACROS, New Jersey, USA...microtiter plate reader. All samples were tested in duplicate. 7-Amino 4-Methyl Coumarin (AMC) (ACROS, New Jersey, USA) was used to develop a standard curve

  19. Growth energetics of an alkaline serine protease-producing strain of Bacillus clausii during continuous cultivation

    DEFF Research Database (Denmark)

    Christiansen, Torben; Nielsen, Jens

    2002-01-01

    .93 mmol ATP/gDW/h. From these values it is concluded that the high oxygen consumption compared with other Bacillus species is due to a low efficiency in respiration resulting in a low P/O ratio. Finally, the energetic parameters were estimated for different architectures of the respiratory chain....

  20. Tryptogalinin Is a Tick Kunitz Serine Protease Inhibitor with a Unique Intrinsic Disorder

    Czech Academy of Sciences Publication Activity Database

    Valdés, James J.; Schwarz, Alexandra; Cabeza de Vaca, I.; Calvo, E.; Pedra, J. H. F.; Guallar, V.; Kotsyfakis, Michalis

    2013-01-01

    Roč. 8, č. 5 (2013), e62562 E-ISSN 1932-6203 R&D Projects: GA ČR GPP302/11/P798; GA MŠk LH12002; GA ČR GAP502/12/2409; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : mast-cell tryptase * Ixodes scapularis * sialostatin-L Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  1. Deficiency in Serine Protease Inhibitor Neuroserpin Exacerbates Ischemic Brain Injury by Increased Postischemic Inflammation

    Science.gov (United States)

    Ludewig, Peter; Bernreuther, Christian; Krasemann, Susanne; Arunachalam, Priyadharshini; Gerloff, Christian; Glatzel, Markus; Magnus, Tim

    2013-01-01

    The only approved pharmacological treatment for ischemic stroke is intravenous administration of plasminogen activator (tPA) to re-canalize the occluded cerebral vessel. Not only reperfusion but also tPA itself can induce an inflammatory response. Microglia are the innate immune cells of the central nervous system and the first immune cells to become activated in stroke. Neuroserpin, an endogenous inhibitor of tPA, is up-regulated following cerebral ischemia. To examine neuroserpin-dependent mechanisms of neuroprotection in stroke, we studied neuroserpin deficient (Ns−/−) mice in an animal model of temporal focal ischemic stroke. Infarct size and neurological outcome were worse in neuroserpin deficient mice even though the fibrinolytic activity in the ischemic brain was increased. The increased infarct size was paralleled by a selective increase in proinflammatory microglia activation in Ns−/− mice. Our results show excessive microglial activation in Ns−/− mice mediated by an increased activity of tPA. This activation results in a worse outcome further underscoring the potential detrimental proinflammatory effects of tPA. PMID:23658802

  2. A Mycobacterium avium subsp. paratuberculosis predicted serine protease is associated with acid stress and intraphagosomal survival

    Science.gov (United States)

    Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular pathogen that persists inside host macrophages despite severe oxidative stress and nutrient deprivation. Intrabacterial pH homeostasis is vital to pathogenic mycobacteria to preserve cellular biological processes and stability of ...

  3. The effects of a serine protease, Alcalase ®, on the adhesives of barnacle cyprids (Balanus amphitrite),

    NARCIS (Netherlands)

    Aldred, Nick; Phang, In Yee; Conlan, Sheelagh L.; Clare, Anthony S.; Vancso, Gyula J.

    2008-01-01

    Barnacles are a persistent fouling problem in the marine environment, although their effects (eg reduced fuel efficiency, increased corrosion) can be reduced through the application of antifouling or fouling-release coatings to marine structures. However, the developments of fouling-resistant

  4. Molecular Recognition of Cobalt(III)-ligated Peptides by Serine Proteases: The Role of Electrostatic Effects

    DEFF Research Database (Denmark)

    Bagger, Sven; Wagner, Kim

    1998-01-01

    pancreatic trypsin, and proteinase K from Tritirachium album was examined. The efficiency of the substrates was assessed by kinetic measurement of the partition between aminolysis and hydrolysis. The results are discussed with special reference to coulombic interactions between the metal-ligated substrates...

  5. A novel serine protease secreted by medicinal maggots enhances plasminogen activator-induced fibrinolysis

    DEFF Research Database (Denmark)

    van der Plas, Mariena J A; Andersen, Anders S; Nazir, Sheresma

    2014-01-01

    . Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis...

  6. A serine protease inhibitor from hemolymph of green mussel, Perna viridis

    Digital Repository Service at National Institute of Oceanography (India)

    Khan, M.S.; Goswami, U.; Rojatkar, S.R.; Khan, M.I.

    Bioactivity guided fractions of cell-free hemolymph of bacterially challenged marine mussel, Perna viridis led to the isolation of a novel quaternary alkaloid 1, which was identified by its spectral data. The isolated molecule 1 has been found...

  7. Deficiency of mannan-binding lectin associated serine protease-2 due to missense polymorphisms

    DEFF Research Database (Denmark)

    Thiel, S; Steffensen, R; Christensen, I J

    2007-01-01

    inflammatory actions. We examined human populations for MASP-2 levels, MASP-2 function and for the presence of mutations in coding exons of MASP2. The MASP-2 levels were lowest in Africans from Zambia (median, 196 ng/ml) followed by Hong Kong Chinese (262 ng/ml), Brazilian Amerindians (290 ng/ml) and Danish...... Caucasians (416 ng/ml). In the Chinese population, we uncovered a novel four amino-acid tandem duplication (p.156_159dupCHNH) associated with low levels of MASP-2. The frequency of this mutation as well as the SNPs p.R99C, p.R118C, p.D120G, p.P126L and p.V377A were analyzed. The p.156_159dupCHNH was only...... found in Chinese (gene frequency 0.26%) and p.D120G was found only in Caucasians and Inuits from West-Greenland. The p.P126L and p.R99Q were present in Africans and Amerindians only, except for p.R99Q in one Caucasian. The MASP-2 levels were reduced in individuals with p.V377A present. The MASP-2...

  8. An Epithelial-Derived, Integral Membrane, Kunitz-Type serine Protease Inhibitor in Breast Cancer

    National Research Council Canada - National Science Library

    Lin, Chen-Yong

    2004-01-01

    .... During matriptase activation induced either by S1P or suramin, HAI-1 along with matriptase is translocated and accumulated at cell-cell junctions or in vesicle-like structures, which were named...

  9. Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis.

    Science.gov (United States)

    Li, Fan; Yang, Liyuan; Lv, Xue; Liu, Dongbo; Xia, Hongmei; Chen, Shan

    2016-05-01

    An extracellular alkaline protease produced by the alkali-tolerant Cellulomonas bogoriensis was purified by a combination of ammonium sulfate precipitation and cation exchange chromatography. The purity of the protease was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was confirmed to be 18.3 kDa. The enzyme showed optimum activity at 60 °C and pH 11. The stability of the protease was maintained at a wide temperature range of 4-60 °C and pH range of 3-12. Irreversible inhibition of the enzyme activity by phenylmethylsulfonyl fluoride and tosyl-l-phenylalanine chloromethyl ketone demonstrated that the purified enzyme is a chymotrypsin of the serine protease family. The Km and Vmax of the protease activity on casein were 19.2 mg/mL and 25000 μg/min/mg, respectively. The broad substrate specificity and remarkable stability in the presence of organic solvents, salt, and commercial detergents, as well as its excellent stain removal and dehairing capability, make the purified alkaline protease a promising candidate for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Dynamic viscoelasticity of protease-treated rice batters for gluten-free rice bread making.

    Science.gov (United States)

    Honda, Yuji; Inoue, Nanami; Sugimoto, Reina; Matsumoto, Kenji; Koda, Tomonori; Nishioka, Akihiro

    2018-03-01

    Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19-63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G' and G″, respectively) at 35 °C, and the maximum values of G' and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.

  11. Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases

    Science.gov (United States)

    Niehaus, F.; Gabor, E.; Wieland, S.; Siegert, P.; Maurer, K. H.; Eck, J.

    2011-01-01

    Summary In the wide field of laundry and cleaning applications, there is an unbroken need for novel detergent proteases excelling in high stability and activity and a suitable substrate range. We demonstrated the large amount of highly diverse subtilase sequences present in metagenomic DNA by recovering 57 non‐redundant subtilase sequence tags with degenerate primers. Furthermore, an activity‐ as well as a sequence homology‐based screening of metagenomic DNA libraries was carried out, using alkaline soil and habitat enrichments as a source of DNA. In this way, 18 diverse full‐length protease genes were recovered, sharing only 37–85% of their amino acid residues with already known protease genes. Active clones were biochemically characterized and subjected to a laundry application assay, leading to the identification of three promising detergent proteases. According to sequence similarity, two proteases (HP53 and HP70) can be classified as subtilases, while the third enzyme (HP23) belongs to chymotrypsin‐like S1 serine proteases, a class of enzymes that has not yet been described for the use in laundry and cleaning applications. PMID:21895993

  12. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Silva, Jose Alberto Alves da

    2009-01-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH 2 , respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  13. Humanized-VHH Transbodies that Inhibit HCV Protease and Replication

    Directory of Open Access Journals (Sweden)

    Surasak Jittavisutthikul

    2015-04-01

    Full Text Available There is a need for safe and broadly effective anti-HCV agents that can cope with genetic multiplicity and mutations of the virus. In this study, humanized-camel VHHs to genotype 3a HCV serine protease were produced and were linked molecularly to a cell penetrating peptide, penetratin (PEN. Human hepatic (Huh7 cells transfected with the JFH-1 RNA of HCV genotype 2a and treated with the cell penetrable nanobodies (transbodies had a marked reduction of the HCV RNA intracellularly and in their culture fluids, less HCV foci inside the cells and less amounts of HCV core antigen in culture supernatants compared with the infected cells cultured in the medium alone. The PEN-VHH-treated-transfected cells also had up-regulation of the genes coding for the host innate immune response (TRIF, TRAF3, IRF3, IL-28B and IFN-β, indicating that the cell penetrable nanobodies rescued the host innate immune response from the HCV mediated-suppression. Computerized intermolecular docking revealed that the VHHs bound to residues of the protease catalytic triad, oxyanion loop and/or the NS3 N-terminal portion important for non-covalent binding of the NS4A protease cofactor protein. The so-produced transbodies have high potential for testing further as a candidate for safe, broadly effective and virus mutation tolerable anti-HCV agents.

  14. Processing of pro-CGRP in a rat medullary thyroid carcinoma cell line transfected with protease inhibitors

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Schifter, S; Vogel, Charlotte Katrine

    1991-01-01

    A rat medullary thyroid carcinoma cell line, CA77, was used to study the effect of a series of biosynthesized protease inhibitors on the proteolytic cleavage of the endogenously synthesized pro-CGRP. This cell line efficiently converted the pro-CGRP to mature CGRP as assessed by chromatography...... of cell extracts followed by radioimmunoassay for CGRP. CA77 cells were transfected with expression vectors encoding protease inhibitors: the Arg-serpins, alpha 1-antitrypsin Pittsburgh (358 Met----Arg) and plasminogen activator inhibitor 1, the Kazal type serine protease inhibitor, pancreatic secretory...... trypsin inhibitor, and the general thiol protease inhibitor, cystatin C. Only the chromatography of cell extracts from CA77 cells transfected with a plasmid encoding cystatin C showed an apparent higher content of unprocessed pro-CGRP as compared to non-transfected cells. No effect on pro-CGRP processing...

  15. Increase in the plasma levels of protein Z-dependent protease inhibitor in normal pregnancies but not in non-pregnant patients with unexplained recurrent miscarriage

    NARCIS (Netherlands)

    Souri, Masayoshi; Sugiura-Ogasawara, Mayumi; Saito, Shigeru; Kemkes-Matthes, Bettina; Meijers, Joost C. M.; Ichinose, Akitada

    2012-01-01

    Protein Z (PZ)-dependent p-otease inhibitor (ZPI) is a serine protease inhibitor which efficiently inactivates activated factor X, when ZPI is complexed with PZ in plasma. Reduced plasma levels of ZPI and PZ have been reported in association with thrombosis. It has also been reported that PZ

  16. Small serine recombination systems ParA-MRS and CinH-RS2 perform precise excision of plastid DNA

    Science.gov (United States)

    Selectable marker genes (SMGs) are necessary for selection of transgenic plants. However, once stable transformants have been identified, the marker gene is no longer needed. In this study, we demonstrate the use of the small serine recombination systems, ParA-MRS and CinH-RS2, to precisely excise ...

  17. Variability and resistance mutations in the hepatitis C virus NS3 protease in patients not treated with protease inhibitors

    Directory of Open Access Journals (Sweden)

    Luciana Bonome Zeminian

    2013-02-01

    Full Text Available The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3 have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.

  18. Immunolocalization and characterization of two novel proteases in Leishmania donovani: putative roles in host invasion and parasite development.

    Science.gov (United States)

    Choudhury, Rajdeep; Das, Partha; De, Tripti; Chakraborti, Tapati

    2010-10-01

    Two novel intracellular proteases having identical molecular mass (58 kDa) were purified from virulent Indian strain of Leishmania donovani by a combination of aprotinin-agarose affinity chromatography, ion exchange chromatography and finally continuous elution electrophoresis. Both of these proteases migrate in SDS-PAGE as a single homogeneous bands suggesting monomeric nature of these proteases. The enzyme activity of one of the proteases was inhibited by serine protease inhibitor aprotinin and another one was inhibited by metalloprotease inhibitor 1, 10 phenanthroline. The purified enzymes were thus of serine protease (SP-Ld) and metalloprotease (MP-Ld) type. The optimal pH for protease activity is 8.0 and 7.5 for SP-Ld and MP-Ld respectively. The temperature optimum for SP-Ld is 28 °C and for MP-Ld is 37 °C showing their thermostability upto 60 °C. Broad substrate (both natural and synthetic) specificity and the effect of Ca2+ upon these enzymes suggested novelty of these proteases. Kinetic data indicate that SP-Ld is of trypsin like as BAPNA appears to be the best substrate and MP-Ld seems to be collagenase type as it degrades azocoll with maximum efficiency. Both immunofluorescence and immune-gold electron microscopy studies revealed that the SP-Ld is localized in the flagellar pocket as well as at the surface of the parasite, whereas MP-Ld is located extensively near the flagellar pocket region. This work also suggests that the uses of anti SP-Ld and anti MP-Ld antibodies are quite significant in interfering with the process of parasite invasion and multiplication respectively. Thus the major role of SP-Ld could be predicted in invasion process as it down regulates the phagocytic activity of macrophages, and MP-Ld appears to play important roles in parasitic development. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease

    Directory of Open Access Journals (Sweden)

    Vikram Surendra

    2010-07-01

    Full Text Available Abstract Background Many workers have reported halotolerant bacteria from saline conditions capable of protease production. However, antibiotic resistance and heavy metal tolerance pattern of such organisms is not documented very well. Similarly, only a few researchers have reported the pattern of pH change of fermentation medium during the course of protease production. In this study, we have isolated a halotolerant Bacillus cereus SIU1 strain from a non-saline environment and studied its antibiotic and heavy metal resistance pattern. The isolate produces a thermoalkaline protease and changes the medium pH during the course of fermentation. Thermostability of protease was also studied for 30 min. Results Seventy bacterial strains isolated from the soils of Eastern Uttar Pradesh, India were screened for protease production. All of them exhibited protease activity. However, 40% bacterial isolates were found good protease producers as observed by caseinolytic zones on milk agar plates. Among them, culture S-4 was adjudged as the best protease producer, and was identified as Bacillus cereus by morphological, biochemical and 16 S rDNA sequence analyses. The isolate was resistant to heavy metals (As2+, Pb2+, Cs1+ and antibiotics (penicillin, lincomycin, cloxacillin, pefloxacin. Its growth behavior and protease production was studied at 45°C and pH 9.0. The protease units of 88 ml-1 were noted in unoptimized modified glucose yeast extract (GYE medium during early stationary phase at 20 h incubation period. The enzyme was stable in the temperature range of 35°-55°C. Conclusions An antibiotic and heavy metal resistant, halotolerant Bacillus cereus isolate is capable of producing thermoalkaline protease, which is active and stable at pH 9.0 and 35°-55°C. This isolate may be useful in several industrial applications owing to its halotolerance and antibiotic and heavy metal resistance characteristics.

  20. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    Science.gov (United States)

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    International Nuclear Information System (INIS)

    Jin Xin; Li Jufang; Huang Pingying; Dong Xuyan; Guo Lulu; Yang Liang; Cao Yuancheng; Wei Fang; Zhao Yuandi

    2010-01-01

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63±2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  2. Characterizing structural features of cuticle-degrading proteases from fungi by molecular modeling

    Directory of Open Access Journals (Sweden)

    Fu Yun-Xin

    2007-05-01

    Full Text Available Abstract Background Serine proteases secreted by nematode and insect pathogenic fungi are bio-control agents which have commercial potential for developing into effective bio-pesticides. A thorough understanding of the structural and functional features of these proteases would significantly assist with targeting the design of efficient bio-control agents. Results Structural models of serine proteases PR1 from entomophagous fungus, Ver112 and VCP1 from nematophagous fungi, have been modeled using the homology modeling technique based on the crystal coordinate of the proteinase K. In combination with multiple sequence alignment, these models suggest one similar calcium-binding site and two common disulfide bridges in the three cuticle-degrading enzymes. In addition, the predicted models of the three cuticle-degrading enzymes present an essentially identical backbone topology and similar geometric properties with the exception of a limited number of sites exhibiting relatively large local conformational differences only in some surface loops and the N-, C termini. However, they differ from each other in the electrostatic surface potential, in hydrophobicity and size of the S4 substrate-binding pocket, and in the number and distribution of hydrogen bonds and salt bridges within regions that are part of or in close proximity to the S2-loop. Conclusion These differences likely lead to variations in substrate specificity and catalytic efficiency among the three enzymes. Amino acid polymorphisms in cuticle-degrading enzymes were discussed with respect to functional effects and host preference. It is hoped that these structural models would provide a further basis for exploitation of these serine proteases from pathogenic fungi as effective bio-control agents.

  3. Role of protease-activated receptor-2 in inflammation, and its possible implications as a putative mediator of periodontitis

    Directory of Open Access Journals (Sweden)

    M Holzhausen

    2005-03-01

    Full Text Available Proteinase-activated receptor-2 (PAR2 belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR2 activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.

  4. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.; Callstrom, M.R. [Ohio State Univ., Columbus, OH (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonyl amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.

  5. Protease-Sensitive Synthetic Prions

    OpenAIRE

    Colby, David W.; Wain, Rachel; Baskakov, Ilia V.; Legname, Giuseppe; Palmer, Christina G.; Nguyen, Hoang-Oanh B.; Lemus, Azucena; Cohen, Fred E.; DeArmond, Stephen J.; Prusiner, Stanley B.

    2010-01-01

    Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but no...

  6. Serine proteinases and their inhibitors in fertilization

    Czech Academy of Sciences Publication Activity Database

    Jonáková, Věra; Jelínková-Slavíčková, Petra

    2004-01-01

    Roč. 8, 3,4 (2004), s. 108-110 ISSN 1211-8869. [Central European Conference on Human Tumor Markers /5./. Praha, 01.10.2004-03.10.2004] R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA ČR GP303/04/P070; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915 Keywords : serine proteinase * proteinase inhibitors * fertilization Subject RIV: CE - Biochemistry

  7. Co-evolution of insect proteases and plant protease inhibitors.

    Science.gov (United States)

    Jongsma, Maarten A; Beekwilder, Jules

    2011-08-01

    Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.

  8. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    Science.gov (United States)

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  9. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  10. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    Science.gov (United States)

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  11. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium

    Directory of Open Access Journals (Sweden)

    Anderson F. Santos

    2013-12-01

    Full Text Available Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9, a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i molecular masses ranging from 30 to 80 kDa, (ii better hydrolytic activities under neutral-alkaline pH range, (iii expression modulated according to the culture age, (iv susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v specific cleavage over the chymotrypsin substrate, and (vi enzymatic stability in the presence of salt (up to 20% NaCl and organic solvents (e.g., ether, isooctane and cyclohexane. The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  12. Neutrophil Protease Cleavage of Von Willebrand Factor in Glomeruli – An Anti-thrombotic Mechanism in the Kidney

    Directory of Open Access Journals (Sweden)

    Ramesh Tati

    2017-02-01

    Full Text Available Adequate cleavage of von Willebrand factor (VWF prevents formation of thrombi. ADAMTS13 is the main VWF-cleaving protease and its deficiency results in development of thrombotic microangiopathy. Besides ADAMTS13 other proteases may also possess VWF-cleaving activity, but their physiological importance in preventing thrombus formation is unknown. This study investigated if, and which, proteases could cleave VWF in the glomerulus. The content of the glomerular basement membrane (GBM was studied as a reflection of processes occurring in the subendothelial glomerular space. VWF was incubated with human GBMs and VWF cleavage was assessed by multimer structure analysis, immunoblotting and mass spectrometry. VWF was cleaved into the smallest multimers by the GBM, which contained ADAMTS13 as well as neutrophil proteases, elastase, proteinase 3 (PR3, cathepsin-G and matrix-metalloproteinase 9. The most potent components of the GBM capable of VWF cleavage were in the serine protease or metalloprotease category, but not ADAMTS13. Neutralization of neutrophil serine proteases inhibited GBM-mediated VWF-cleaving activity, demonstrating a marked contribution of elastase and/or PR3. VWF-platelet strings formed on the surface of primary glomerular endothelial cells, in a perfusion system, were cleaved by both elastase and the GBM, a process blocked by elastase inhibitor. Ultramorphological studies of the human kidney demonstrated neutrophils releasing elastase into the GBM. Neutrophil proteases may contribute to VWF cleavage within the subendothelium, adjacent to the GBM, and thus regulate thrombus size. This anti-thrombotic mechanism would protect the normal kidney during inflammation and could also explain why most patients with ADAMTS13 deficiency do not develop severe kidney failure.

  13. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Properties of protease and lipase from whole and individual organ of viscera from three tuna species

    Directory of Open Access Journals (Sweden)

    Thiraratana Prachumratana

    2008-04-01

    Full Text Available Properties of visceral enzymes from yellowfin tuna (Thunnus albacares, skipjack tuna (Katsuwonus pelamis and tonggol tuna (Thunnus albacares were studied. The crude enzymes from viscera of yellowfin tuna and skipjack tuna exhibited the highest activities at pH 10.0 whereas it was at pH 9.0 for those from viscera of tonggol tuna. The enzymes were the most stable at their optima pH after 120 min incubation. The optimum temperatures for protease and lipase activities were at 50oC and 60oC, respectively but the extracted enzymes were more stable in the temperature range of 37- 40oC. The protease and lipase from spleen were the most thermostable with the half-life of 120 and 90 min at 60oC incubation, respectively. Protease activity from spleen accounted for 45.6% of the total protease activity of the whole tuna viscera.

  15. Induction of serine racemase expression and D-serine release from microglia by amyloid β-peptide

    Directory of Open Access Journals (Sweden)

    Griffin W Sue T

    2004-04-01

    Full Text Available Abstract Background Roles for excitotoxicity and inflammation in Alzheimer's disease have been hypothesized. Proinflammatory stimuli, including amyloid β-peptide (Aβ, elicit a release of glutamate from microglia. We tested the possibility that a coagonist at the NMDA class of glutamate receptors, D-serine, could respond similarly. Methods Cultured microglial cells were exposed to Aβ. The culture medium was assayed for levels of D-serine by HPLC and for effects on calcium and survival on primary cultures of rat hippocampal neurons. Microglial cell lysates were examined for the levels of mRNA and protein for serine racemase, the enzyme that forms D-serine from L-serine. The racemase mRNA was also assayed in Alzheimer hippocampus and age-matched controls. A microglial cell line was transfected with a luciferase reporter construct driven by the putative regulatory region of human serine racemase. Results Conditioned medium from Aβ-treated microglia contained elevated levels of D-serine. Bioassays of hippocampal neurons with the microglia-conditioned medium indicated that Aβ elevated a NMDA receptor agonist that was sensitive to an antagonist of the D-serine/glycine site (5,7-dicholorokynurenic acid; DCKA and to enzymatic degradation of D-amino acids by D-amino acid oxidase (DAAOx. In the microglia, Aβ elevated steady-state levels of dimeric serine racemase, the apparent active form of the enzyme. Promoter-reporter and mRNA analyses suggest that serine racemase is transcriptionally induced by Aβ. Finally, the levels of serine racemase mRNA were elevated in Alzheimer's disease hippocampus, relative to age-matched controls. Conclusions These data suggest that Aβ could contribute to neurodegeneration through stimulating microglia to release cooperative excitatory amino acids, including D-serine.

  16. Neonatal disruption of serine racemase causes schizophrenia-like behavioral abnormalities in adulthood: clinical rescue by d-serine.

    Directory of Open Access Journals (Sweden)

    Hiroko Hagiwara

    Full Text Available D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA receptor, is synthesized from L-serine by serine racemase (SRR. Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life.Neonatal mice (7-9 days were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day, an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT, and prepulse inhibition (PPI were performed at juvenile (5-6 weeks old and adult (10-12 weeks old stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70 significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure.This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.

  17. The properties of peptidyl diazoethanes and chloroethanes as protease inactivators.

    Science.gov (United States)

    Wikstrom, P; Kirschke, H; Stone, S; Shaw, E

    1989-04-01

    Earlier work has demonstrated the irreversible inactivation of serine and cysteine proteinases by peptides with a C-terminal chloromethyl ketone group. With a C-terminal diazomethyl ketone, on the other hand, peptides become reagents specific for cysteine proteinases. We have now synthesized and examined the properties of reagents with an additional methyl side chain near the reactive grouping with the goal of diminishing side reactions in a cellular environment. Derivatives of neutral amino acids as well as of lysine and arginine have been prepared. The chloroethyl ketones are about 60% less reactive to chemical nucleophiles than the chloromethyl ketones. However, the susceptibilities of the proteases examined varied remarkably. Cathepsins B and L of the papain family of cysteine proteinases were much less susceptible (about 2 orders of magnitude less) to both peptidyl diazoethyl and chloroethyl ketones. In marked contrast, clostripain, a cysteine proteinase of a separate family was decisively more susceptible to chloroethyl ketones. The serine proteinases showed a drop in susceptibility to the chloroethyl ketones generally, and this was similar to the drop in chemical reactivity in proceeding from the chloromethyl to the chloroethyl ketone.

  18. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus.

    Science.gov (United States)

    Yun, Bingling; Zhang, Yao; Liu, Yongzhen; Guan, Xiaolu; Wang, Yongqiang; Qi, Xiaole; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Gao, Honglei; Gao, Li; Li, Kai; Gao, Yulong; Wang, Xiaomei

    2016-12-15

    The entry of avian metapneumovirus (aMPV) into host cells initially requires the fusion of viral and cell membranes, which is exclusively mediated by fusion (F) protein. Proteolysis of aMPV F protein by endogenous proteases of host cells allows F protein to induce membrane fusion; however, these proteases have not been identified. Here, we provide the first evidence that the transmembrane serine protease TMPRSS12 facilitates the cleavage of subtype B aMPV (aMPV/B) F protein. We found that overexpression of TMPRSS12 enhanced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. Subsequently, knockdown of TMPRSS12 with specific small interfering RNAs (siRNAs) reduced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. We also found a cleavage motif in the aMPV/B F protein (amino acids 100 and 101) that was recognized by TMPRSS12. The histidine, aspartic acid, and serine residue (HDS) triad of TMPRSS12 was shown to be essential for the proteolysis of aMPV/B F protein via mutation analysis. Notably, we observed TMPRSS12 mRNA expression in target organs of aMPV/B in chickens. Overall, our results indicate that TMPRSS12 is crucial for aMPV/B F protein proteolysis and aMPV/B infectivity and that TMPRSS12 may serve as a target for novel therapeutics and prophylactics for aMPV. Proteolysis of the aMPV F protein is a prerequisite for F protein-mediated membrane fusion of virus and cell and for aMPV infection; however, the proteases used in vitro and vivo are not clear. A combination of analyses, including overexpression, knockdown, and mutation methods, demonstrated that the transmembrane serine protease TMPRSS12 facilitated cleavage of subtype B aMPV (aMPV/B) F protein. Importantly, we located the motif in the aMPV/B F protein recognized by TMPRSS12 and the catalytic triad in TMPRSS12 that facilitated proteolysis of the aMPV/B F protein. This is the first report on TMPRSS12 as a protease for proteolysis of viral envelope

  19. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    Science.gov (United States)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  20. A modular system to evaluate the efficacy of protease inhibitors against HIV-2.

    Directory of Open Access Journals (Sweden)

    Mohamed Mahdi

    Full Text Available The human immunodeficiency virus (HIV protease is a homodimeric aspartyl protease that is crucial for the viral life-cycle, cleaving proviral polyproteins, hence creating mature protein components that are required for the formation of an infectious virus. With diagnostic measures and clinically used protease inhibitors focusing on HIV-1, due to its higher virulence and prevalence, studies of the efficacy of those inhibitors on HIV-2 protease remain widely lacking. Utilizing a wild-type HIV-2 vector backbone and cloning techniques we have developed a cassette system where the efficacy of clinically used protease inhibitors can be studied for various serotypes of HIV-2 protease both in enzymatic and cell culture assays. In our experiments, optimization of the expression protocol led to a relatively stable enzyme, for cell culture assays, the efficiency of transfection and transduction capability of the modified vector was tested and was not found to differ from that of the wild-type, moreover, a 2nd generation protease inhibitor was used to demonstrate the usefulness of the system. The combination of assays performed with our cassette system is expected to provide an accurate measure of the efficacy of currently used; as well as experimental protease inhibitors on HIV-2.

  1. A modular system to evaluate the efficacy of protease inhibitors against HIV-2.

    Science.gov (United States)

    Mahdi, Mohamed; Matúz, Krisztina; Tóth, Ferenc; Tőzsér, József

    2014-01-01

    The human immunodeficiency virus (HIV) protease is a homodimeric aspartyl protease that is crucial for the viral life-cycle, cleaving proviral polyproteins, hence creating mature protein components that are required for the formation of an infectious virus. With diagnostic measures and clinically used protease inhibitors focusing on HIV-1, due to its higher virulence and prevalence, studies of the efficacy of those inhibitors on HIV-2 protease remain widely lacking. Utilizing a wild-type HIV-2 vector backbone and cloning techniques we have developed a cassette system where the efficacy of clinically used protease inhibitors can be studied for various serotypes of HIV-2 protease both in enzymatic and cell culture assays. In our experiments, optimization of the expression protocol led to a relatively stable enzyme, for cell culture assays, the efficiency of transfection and transduction capability of the modified vector was tested and was not found to differ from that of the wild-type, moreover, a 2nd generation protease inhibitor was used to demonstrate the usefulness of the system. The combination of assays performed with our cassette system is expected to provide an accurate measure of the efficacy of currently used; as well as experimental protease inhibitors on HIV-2.

  2. D-serine : The right or wrong isoform?

    NARCIS (Netherlands)

    Fuchs, Sabine A; Berger, Ruud; de Koning, Tom J

    2011-01-01

    Only recently, d-amino acids have been identified in mammals. Of these, d-serine has been most extensively studied. d-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl-d-aspartate receptor (NMDAr), similar to

  3. Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor.

    Directory of Open Access Journals (Sweden)

    Ulf Meyer-Hoffert

    Full Text Available Kallikreins-related peptidases (KLKs are serine proteases and have been implicated in the desquamation process of the skin. Their activity is tightly controlled by epidermal protease inhibitors like the lympho-epithelial Kazal-type inhibitor (LEKTI. Defects of the LEKTI-encoding gene serine protease inhibitor Kazal type (Spink5 lead to the absence of LEKTI and result in the genodermatose Netherton syndrome, which mimics the common skin disease atopic dermatitis. Since many KLKs are expressed in human skin with KLK5 being considered as one of the most important KLKs in skin desquamation, we proposed that more inhibitors are present in human skin. Herein, we purified from human stratum corneum by HPLC techniques a new KLK5-inhibiting peptide encoded by a member of the Spink family, designated as Spink9 located on chromosome 5p33.1. This peptide is highly homologous to LEKTI and was termed LEKTI-2. Recombinant LEKTI-2 inhibited KLK5 but not KLK7, 14 or other serine proteases tested including trypsin, plasmin and thrombin. Spink9 mRNA expression was detected in human skin samples and in cultured keratinocytes. LEKTI-2 immune-expression was focally localized at the stratum granulosum and stratum corneum at palmar and plantar sites in close localization to KLK5. At sites of plantar hyperkeratosis, LEKTI-2 expression was increased. We suggest that LEKTI-2 contributes to the regulation of the desquamation process in human skin by specifically inhibiting KLK5.

  4. Differences in susceptibility to German cockroach frass and its associated proteases in induced allergic inflammation in mice

    Directory of Open Access Journals (Sweden)

    Herman Nancy

    2007-12-01

    Full Text Available Abstract Background Cockroach exposure is a major risk factor for the development of asthma. Inhalation of fecal remnants (frass is the likely sensitizing agent; however isolated frass has not been tested for its ability to induce experimental asthma in mice. Methods Mice (Balb/c or C57Bl/6 were sensitized and challenged with GC frass or GC frass devoid of proteases and measurements of airway inflammation and hyperresponsiveness were performed (interleukin (IL-5, -13, and interferon gamma (IFNγ levels in bronchoalveolar lavage fluid, serum IgE levels, airway hyperresponsiveness, cellular infiltration, and mucin production. Results Sensitization and challenge of Balb/c mice with GC frass resulted in increased airway inflammation and hyperresponsiveness. C57Bl/6 mice were not susceptible to this model of sensitization; however they were sensitized to GC frass using a more aggressive sensitization and challenge protocol. In mice that were sensitized by inhalation, the active serine proteases in GC frass played a role in airway hyperresponsiveness as these mice had less airway hyperresponsiveness to acetylcholine and less mucin production. Proteases did not play a role in mediating the allergic inflammation in mice sensitized via intraperitoneal injection. Conclusion While both strains of mice were able to induce experimental asthma following GC frass sensitization and challenge, the active serine proteases in GC frass only play a role in airway hyperresponsiveness in Balb/c mice that were susceptible to sensitization via inhalation. The differences in the method of sensitization suggest genetic differences between strains of mice.

  5. Two-step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1.

    Science.gov (United States)

    Thumar, Jignasha; Singh, S P

    2007-07-01

    An alkaline protease from a salt-tolerant alkaliphilic Streptomyces clavuligerus was purified to homogeneity by 141-fold with a yield of 12% using two-step method of salt precipitation and ion exchange chromatography on DEAE cellulose. The apparent molecular mass was 49+/-2 kDa and the enzyme appeared as monomer based on SDS and Native-PAGE. The temperature optimum was 70 degrees C with significant stability at 60-80 degrees C for more than 60 min. The enzyme was active over the pH range of 8.5-11, with an optimum at 10-11. The serine nature of the protease was confirmed by PMSF inhibition. The enzyme was highly resistant against chemical denaturation and displayed varied effects towards metal ions. The results are significant as extremozymes are difficult to purify and therefore, a two-step purification of alkaline protease from relatively less explored group of actinomycetes is quite appealing.

  6. Crystal Structure of Serine Racemase that Produces Neurotransmitter d-Serine for Stimulation of the NMDA Receptor

    Science.gov (United States)

    Goto, Masaru

    d-Serine is an endogenous coagonist for the N-methyl-d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of l-serine to yield d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  7. Comparative analysis of procoagulant and fibrinogenolytic activity of crude protease fractions of turmeric species.

    Science.gov (United States)

    Shivalingu, B R; Vivek, H K; Nafeesa, Zohara; Priya, B S; Swamy, S Nanjunda

    2015-08-22

    Turmeric rhizome is a traditional herbal medicine, which has been widely used as a remedy to stop bleeding on fresh cuts and for wound healing by the rural and tribal population of India. To validate scientific and therapeutic application of turmeric rhizomes to stop bleeding on fresh cuts and its role in wound healing process. The water extracts of thoroughly scrubbed and washed turmeric rhizomes viz., Curcuma aromatica Salisb., Curcuma longa L., Curcuma caesia Roxb., Curcuma amada Roxb. and Curcuma zedoria (Christm.) Roscoe. were subjected to salting out and dialysis. The dialyzed crude enzyme fractions (CEFs) were assessed for proteolytic activity using casein as substrate and were also confirmed by caseinolytic zymography. Its coagulant activity and fibrinogenolytic activity were assessed using human citrated plasma and fibrinogen, respectively. The type of protease(s) in CEFs was confirmed by inhibition studies using specific protease inhibitors. The CEFs of C. aromatica, C. longa and C. caesia showed 1.89, 1.21 and 1.07 folds higher proteolytic activity, respectively, compared to papain. In contrast to these, C. amada and C. zedoria exhibited moderate proteolytic activity. CEFs showed low proteolytic activities compared to trypsin. The proteolytic activities of CEFs were confirmed by caseinolytic zymography. The CEFs of C. aromatica, C. longa and C. caesia showed complete hydrolysis of Aα, Bβ and γ subunits of human fibrinogen, while C. amada and C. zedoria showed partial hydrolysis. The CEFs viz., C. aromatica, C. longa, C. caesia, C. amada and C. zedoria exhibited strong procoagulant activity by reducing the human plasma clotting time from 172s (Control) to 66s, 84s 88s, 78s and 90s, respectively. The proteolytic activity of C. aromatica, C. longa, C. caesia and C. amada was inhibited (>82%) by PMSF, suggesting the possible presence of a serine protease(s). However, C. zedoria showed significant inhibition (60%) against IAA and moderate inhibition (30

  8. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  9. Inhibitory effects of sudanese medicinal plant extracts on hepatitis C virus (HCV) protease.

    Science.gov (United States)

    Hussein, G; Miyashiro, H; Nakamura, N; Hattori, M; Kakiuchi, N; Shimotohno, K

    2000-11-01

    One hundred fifty-two methanol and water extracts of different parts of 71 plants commonly used in Sudanese traditional medicine were screened for their inhibitory effects on hepatitis C virus (HCV) protease (PR) using in vitro assay methods. Thirty-four extracts showed significant inhibitory activity (>/=60% inhibition at 100 microg/mL). Of these, eight extracts, methanol extracts of Acacia nilotica, Boswellia carterii, Embelia schimperi, Quercus infectoria, Trachyspermum ammi and water extracts of Piper cubeba, Q. infectoria and Syzygium aromaticum, were the most active (>/=90% inhibition at 100 microg/mL). From the E. schimperi extract, two benzoquinones, embelin (I) and 5-O-methylembelin (II), were isolated and found as potent HCV-PR inhibitors with IC(50) values of 21 and 46 microM, respectively. Inhibitory activities of derivatives of I against HCV-PR as well as their effects on other serine proteases were also investigated. Copyright 2000 John Wiley & Sons, Ltd.

  10. Overexpression of protease nexin-1 mRNA and protein in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Gao, Shan; Krogdahl, Annelise; Sørensen, Jens Ahm

    2007-01-01

    Protease nexin-1 (PN-1) belongs to the serpin family of serine protease inhibitors. It is the phylogenetically closest relative of plasminogen activator inhibitor-1 (PAI-1). Whilst there are numerous studies of the occurrence and functions of PAI-1 in cancer, a possible tumour biological role of PN......-1 has been almost totally neglected. We have now compared the level of PN-1 mRNA in 20 cases of oral squamous cell carcinomas and in matched samples of the corresponding normal oral tissues. We found that the average PN-1 mRNA level in tumours and normal tissues was significantly different, being...... increased up to 13 fold in tumour samples compared with the average level in normal tissues. The PN-1 mRNA level was significantly higher in tumours from patients with lymph node metastasis than in tumours from patients without. We could conclude that PN-1 is frequently overexpressed in oral squamous cell...

  11. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  12. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    Science.gov (United States)

    2011-01-01

    Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089

  13. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... suggest the suitability of the enzyme for applications in peptide synthesis, detergent formulation and ... The cell free supernatant was recovered as crude enzyme preparation and used for further studies. Assay of protease activity. Protease activity was ... Effect of pH on growth and protease production.

  14. A genomic survey of proteases in Aspergilli

    NARCIS (Netherlands)

    Budak, Sebnem Ozturkoglu; Zhou, M.; Brouwer, Carlo; Wiebenga, A.; Benoit, Isabelle; Di Falco, Marcos; Tsang, Adrian; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    BACKGROUND: Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide

  15. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  16. Screening and Characterization of Protease Inhibitors from Marine Bacteria Associated with Sponge Jaspis sp.

    Directory of Open Access Journals (Sweden)

    ARIS TRI WAHYUDI

    2010-12-01

    Full Text Available Three isolates among 138 sponge-associated bacteria were isolated from Waigeo Island, Raja Ampat West Papua Province, Indonesia, have been shown protease inhibitory activity against subtilisin (serine protease, thermolysin (metalloprotease, and crude extract from pathogenic bacteria (Eschericia coli enteropathogenic/EPEC K.1.1, Staphylococcus aureus, and Pseudomonas aeruginosa. Those three isolates were designated as sponge associated bacteria SAB S-12, SAB S-21, and SAB S-17. A simple casein and Sea Water Complete (SWC double layer agar method was used to screen the bacteria against pathogenic bacteria producing protease, i.e. EPEC K.1.1, S. aureus, and P. aeruginosa. Among them, SAB S-12 isolate showed no inhibitory zone indicated. The isolate had the highest inhibitory activity against subtilisin and crude extract enzyme of pathogenic bacteria, the inhibitory activity was 91.6 and 98.9%, respectively. In addition, the SAB S-21 isolate had the highest inhibitory activity against thermolysin, it was 70.4%. The optimum pH and temperature for protease inhibition of the three isolates was at pH 7.0-8.0 and 40-50 °C respectively. Based on 16S rRNA gene sequence, the closest related with SAB S-12, SAB-17, and SAB-21 isolates was Providencia sp. (92% identity, Paracoccus sp. (86% identity, and Bacillus sp. (100% identity, respectively.

  17. Screening and Characterization of Protease Inhibitors from Marine Bacteria Associated with Sponge Jaspis sp.

    Directory of Open Access Journals (Sweden)

    ARIS TRI WAHYUDI

    2010-12-01

    Full Text Available Three isolates among 138 sponge-associated bacteria were isolated from Waigeo Island, Raja Ampat West Papua Province, Indonesia, have been shown protease inhibitory activity against subtilisin (serine protease, thermolysin (metalloprotease, and crude extract from pathogenic bacteria (Eschericia coli enteropathogenic/EPEC K.1.1, Staphylococcus aureus, and Pseudomonas aeruginosa. Those three isolates were designated as sponge associated bacteria SAB S-12, SAB S-21, and SAB S-17. A simple casein and Sea Water Complete (SWC double layer agar method was used to screen the bacteria against pathogenic bacteria producing protease, i.e. EPEC K.1.1, S. aureus, and P. aeruginosa. Among them, SAB S-12 isolate showed no inhibitory zone indicated. The isolate had the highest inhibitory activity against subtilisin and crude extract enzyme of pathogenic bacteria, the inhibitory activity was 91.6 and 98.9%, respectively. In addition, the SAB S-21 isolate had the highest inhibitory activity against thermolysin, it was 70.4%. The optimum pH and temperature for protease inhibition of the three isolates was at pH 7.0-8.0 and 40-50 oC respectively. Based on 16S rRNA gene sequence, the closest related with SAB S-12, SAB-17, and SAB-21 isolates was Providencia sp. (92% identity, Paracoccus sp. (86% identity, and Bacillus sp. (% identity, respectively.

  18. PROTEOLYTIC PROCESSING OF VON WILLEBRAND FACTOR BY ADAMTS13 AND LEUKOCYTE PROTEASES

    Directory of Open Access Journals (Sweden)

    Stefano Lancellotti

    2013-09-01

    Full Text Available ADAMTS13 is a 190 kDa zinc protease encoded by a gene located on chromosome 9q34.   This protease specifically hydrolyzes von Willebrand factor (VWF multimers, thus causing VWF size reduction. ADAMTS13 belongs to the A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS family, involved in proteolytic processing of many matrix proteins. ADAMTS13 consists of numerous domains including a metalloprotease domain, a disintegrin domain, several thrombospondin type 1 (TSP1 repeats, a cysteine-rich domain, a spacer domain and 2 CUB (Complement c1r/c1s, sea Urchin epidermal growth factor, and Bone morphogenetic protein domains. ADAMTS13 cleaves a single peptide bond (Tyr1605-Met1606 in the central A2 domain of the VWF molecule. This proteolytic cleavage is essential to reduce the size of ultra-large VWF polymers, which, when exposed to high shear stress in the microcirculation, are prone to form with platelets clumps, which cause severe syndromes called thrombotic microangiopathies (TMAs. In this review, we a discuss the current knowledge of structure-function aspects of ADAMTS13 and its involvement in the pathogenesis of TMAs, b address the recent findings concerning proteolytic processing of VWF multimers by different proteases, such as the leukocyte-derived serine and metallo-proteases and c indicate the direction of future investigations

  19. Purification and Characterization of Fibrinolytic Proteases from Mushroom Volvariela volvaceae Extract.

    Directory of Open Access Journals (Sweden)

    Willy Praira

    2010-11-01

    Full Text Available Purification and Characterization of Fibrinolytic Proteases from Mushroom Volvariela volvaceae Extract. Ediblestraw mushroom (V. volvaceae has been known used for improvement of blood circulation due to its fibrinolyticcontent. The objective of the study is to purify and characterize fibrinolytic protease from straw mushroom extract.Purification were performed through several steps, i.e. precipitation using ammonium sulphate 75%, dialyzed membran(cut-off 10 kDa, and ion-exchange chromatography using DEAE Sepharose. The active fraction of DEAE-Sepharosecontains two purified protein bands with molecular weight of 12.9 and 15.8 kDa. The active fraction has specificactivity of 0.383 U/mg with 2.7 fold higher purification compared to its crude extract. Both crude and purified enzymeshad optimum activity at temperature of 50 ºC and pH 7 in 10 minutes of incubation. Fibrin zymographic profiledemonstrated that the enzyme hydrolyzed fibrin, as well as casein, indicating their potent fibrinolytic activity. Theenzyme was strongly inhibited by phenilmethylsulphonyl fluoride and N-p-tosil-L-lysinchloromethyl keton. Thissuggested that it was a serine protease. In summary, these results showed that crude and purified protease of strawmushroom (V. volvaceae has fibrinolytic activities that can be applied for alternative thrombolytic therapy.

  20. Characterization of a novel protease from Aeribacillus pallidus strain VP3 with potential biotechnological interest.

    Science.gov (United States)

    Mechri, Sondes; Ben Elhoul Berrouina, Mouna; Omrane Benmrad, Maroua; Zaraî Jaouadi, Nadia; Rekik, Hatem; Moujehed, Emna; Chebbi, Alif; Sayadi, Sami; Chamkha, Mohamed; Bejar, Samir; Jaouadi, Bassem

    2017-01-01

    The present study investigates the purification and physico-chemical characterization of an extracellular protease from the Aeribacillus pallidus strain VP3 previously isolated from a geothermal oil-field (Sfax, Tunisia). The maximum protease activity recorded after 22h of incubation at 45°C was 3000U/ml. Pure enzyme, designated as SPVP, was obtained after ammonium sulfate fractionation (40-60%)-dialysis followed by heat-treatment (70°C for 30min) and UNO Q-6 FPLC anion-exchange chromatography. The purified enzyme is a monomer of molecular mass about 29kDa. The sequence of the 25 NH 2 -terminal residues of SPVP showed a high homology with those of Bacillus proteases. The almost complete inhibition by PMSF and DIFP confirmed that SPVP is a member of serine protease family. Its optima of pH and temperature were pH 10 and 60°C, respectively. Its half-life times at 70 and 80°C were 8 and 4h, respectively. Its catalytic efficiency was higher than those of SAPCG, Alcalase Ultra 2.5L, and Thermolysin type X. SPVP exhibited excellent stability to detergents and wash performance analysis revealed that it could remove blood-stains effectively and high resistance against organic solvents. These properties make SPVP a potential candidate for applications in detergent formulations and non-aqueous peptide biocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Reverse zymography alone does not confirm presence of a protease inhibitor.

    Science.gov (United States)

    Dutta, Sangita; Bhattacharyya, Debasish

    2013-03-01

    Reverse zymography is applied for identification and semi-quantification of protease inhibitors that are of protein in nature. However, a protein that shows band in reverse zymography against a protease used for digestion of the gel need not be an inhibitor; it might be resistant to degradation by the protease. We demonstrate that in reverse zymography, avidin, streptavidin and the leaf extract of Catharanthus roseus behave like inhibitors of proteases like papain, ficin, bromelain extracts from pineapple leaf, stem and fruit and trypsin. Still, they do not act as inhibitors of those proteases when enzyme assays were done in solution. In reverse zymography, the extract of pineapple crown leaf shows two major inhibitor bands against its own proteases. Identification of these proteins from sequences derived from MALDI TOF MS analysis indicated that they are fruit and stem bromelains. Avidin, streptavidin and bromelains are 'kinetically stable proteins' that are usually resistant to proteolysis. Thus, it is recommended that identification of an inhibitor of a protease by reverse zymography should be supported by independent assay methods for confirmation.

  2. Carbohydrase and protease supplementation increased ...

    African Journals Online (AJOL)

    User

    2014-09-15

    Sep 15, 2014 ... Department of Animal and Wildlife Sciences, Faculty of Natural and Agricultural Science ... control birds was 12% higher than that of the positive control, while diets supplemented with single enzyme ... The inclusion of exogenous proteases in maize-soya-based diets increases protein digestion by.

  3. Carbohydrase and protease supplementation increased ...

    African Journals Online (AJOL)

    A trial was conducted to evaluate whether the addition of commercial enzyme preparations containing carbohydrases and a protease would increase the available metabolizable energy (ME) of maize-soya-based broiler diets. Seven thousand five hundred and sixty (7560) day-old Ross 788 chicks were randomly allocated ...

  4. Polymorphisms of clip domain serine proteinase and serine proteinase homolog in the swimming crab Portunus trituberculatus and their association with Vibrio alginolyticus

    Science.gov (United States)

    Liu, Meng; Liu, Yuan; Hui, Min; Song, Chengwen; Cui, Zhaoxia

    2017-03-01

    Clip domain serine proteases (cSPs) and their homologs (SPHs) play an important role in various biological processes that are essential components of extracellular signaling cascades, especially in the innate immune responses of invertebrates. Here, polymorphisms of PtcSP and PtSPH from the swimming crab Portunus trituberculatus were investigated to explore their association with resistance/susceptibility to Vibrio alginolyticus. Polymorphic loci were identified using Clustal X, and characterized with SPSS 16.0 software, and then the significance of genotype and allele frequencies between resistant and susceptible stocks was determined by a χ 2 test. A total of 109 and 77 single nucleotide polymorphisms (SNPs) were identified in the genomic fragments of PtcSP and PtSPH, respectively. Notably, nearly half of PtSPH polymorphisms were found in the non-coding exon 1. Fourteen SNPs investigated were significantly associated with susceptibility/resistance to V. alginolyticus ( P <0.05). Among them, eight SNPs were observed in introns, and one synonymous, four non-synonymous SNPs and one ins-del were found in coding exons. In addition, five simple sequence repeats (SSRs) were detected in intron 3 of PtcSP. Although there was no statistically significant difference of allele frequencies, the SSRs showed different polymorphic alleles on the basis of the repeat number between resistant and susceptible stocks. After further validation, polymorphisms investigated here might be applied to select potential molecular markers of P. trituberculatus with resistance to V. alginolyticus.

  5. Astrocytes in primary cultures express serine racemase, synthesize d-serine and acquire A1 reactive astrocyte features.

    Science.gov (United States)

    Li, Suyan; Uno, Yota; Rudolph, Uwe; Cobb, Johanna; Liu, Jing; Anderson, Thea; Levy, Deborah; Balu, Darrick T; Coyle, Joseph T

    2018-01-03

    d-Serine is a co-agonist at forebrain N-methyl-d-aspartate receptors (NMDAR) and is synthesized by serine racemase (SR). Although d-serine and SR were originally reported to be localized to glia, recent studies have provided compelling evidence that under healthy physiologic conditions both are localized primarily in neurons. However, in pathologic conditions, reactive astrocytes can also express SR and synthesize d-serine. Since cultured astrocytes exhibit features of reactive astrocytes, we have characterized d-serine synthesis and the expression of enzymes involved in its disposition in primary glial cultures. The levels of SR were quite low early in culture and increased markedly in all astrocytes with the duration in vitro. The concentration of d-serine in the culture medium increased in parallel with SR expression in the astrocytes. Microglia, identified by robust expression of Iba1, did not express SR. While the levels of glial fibrillary acidic protein (GFAP), glycine decarboxylase (GLDC) and phosphoglycerate dehydrogenase (PHGDH), the initial enzyme in the pathway converting glycine to l-serine, remained constant in culture, the expression of lipocalin-2, a marker for pan-reactive astrocytes, increased several-fold. The cultured astrocytes also expressed Complement-3a, a marker for a subpopulation of reactive astrocytes (A1). Astrocytes grown from mice with a copy number variant associated with psychosis, which have four copies of the GLDC gene, showed a more rapid production of d-serine and a reduction in glycine in the culture medium. These results substantiate the conclusion that A1 reactive astrocytes express SR and release d-serine under pathologic conditions, which may contribute to their neurotoxic effects by activating extra-synaptic NMDARs. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Molecular models of NS3 protease variants of the Hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Mello Isabel MVGC

    2005-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. Results The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. Conclusions This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure

  7. Purification and biochemical characterization of a serine alkaline ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    , which sulfonated the essential serine residue in the active site and resulted in the complete loss of its activity. However, the enzyme was resistant to EDTA. The high activity of TC4 in the presence of EDTA was advantageous.

  8. Purification and characterization of fibrinolytic protease from Bacillus amyloliquefaciens MCC2606 and analysis of fibrin degradation product by MS/MS.

    Science.gov (United States)

    Devaraj, Yogesh; Rajender, Savita Kumari; Halami, Prakash Motiram

    2018-02-07

    A serine protease with preference for fibrin protein was purified and characterized from Bacillus amyloliquefaciens MCC2606, isolated from dosa batter. The protease was purified using ammonium sulfate precipitation, ion-exchange, and gel filtration chromatography. The degradation activity of the protease toward the fibrin was significantly higher compared with other protein substrates in the study. The molecular weight of the CFR15-protease was estimated to be 32 kDa based on SDS-PAGE. The purified enzyme exhibited both fibrinolytic and fibrinogenolytic activity. The optimum pH and temperature for the activity of the enzyme was found to be 10.5 and 45°C. A significant inhibition was seen with the protease inhibitors phenyl methyl sulphonyl fluoride and ethylene diamine tetra acetic acid and the activity of the enzyme was enhanced in presence of Mn 2+ . There was an observed increase in vitro activated partial thromboplastin time and prothrombin time of both time and dose dependent study. Among the four chains of fibrin, the β-chain of fibrin appears to be the primary component and site susceptible for CFR15-protease in early action as indicated by MS/MS analysis of initial degradation products. These results indicated that the CFR15-protease have the potential to be an effective fibrinolytic agent.

  9. Biotechnology of Cold-Active Proteases

    Directory of Open Access Journals (Sweden)

    Tulasi Satyanarayana

    2013-05-01

    Full Text Available The bulk of Earth’s biosphere is cold (<5 °C and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.

  10. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    Science.gov (United States)

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.

  11. Protease activated receptors (PARS) mediation in gyroxin biological activity; Mediacao dos receptores ativados por proteases (PARs) em atividades biologicas da giroxina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Alberto Alves da

    2009-07-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH{sub 2}, respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  12. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    Science.gov (United States)

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  13. Structural and spectroscopic investigation on antioxidant dipeptide, L-Methionyl-L-Serine: A combined experimental and DFT study

    Science.gov (United States)

    Kecel-Gunduz, Serda; Bicak, Bilge; Celik, Sefa; Akyuz, Sevim; Ozel, Aysen E.

    2017-06-01

    The focus of this study is to determine the conformational, structural and vibrational properties of Methionyl-Serine dipeptide (L-Methionyl-L-Serine, Met-Ser), a biological active molecule. To investigate their energetically preferred conformations, molecular mechanics methods were utilized to determine the optimal conformations of the 3402 different dihedral angle values of the backbone and side chains. It was found that the extended (e) backbone shape in the LB conformational range was the most stable L-Methionyl-L-Serine dipeptide conformation, with 3.12 kcal/mol of energy. Density Functional Theory (DFT) was used to determine the optimized geometry, the vibrational wavenumbers and modes of the title dipeptide values, with 6-31G (d,p) and 6-311++G (d,p) basis sets. The potential energy distribution data was used to carry out the assignment of the bands. In addition, the vibrational spectra of the most stable conformer and its dimer form were determined and the obtained results were compared with the experimental IR and Raman spectra in the solid phase. To determine the presence of intramolecular charge transfer, molecular dipole moment, polarizability and hyperpolarizability, the Natural Bond Orbital (NBO), HOMO-LUMO calculations, the linear polarizability (α) and the first order hyperpolarizability (β0) value analyses of the investigated molecule were carried out using the DFT with the B3LYP/6-31++G(d,p) basis set. This study aims to determine a relatively stable conformation of antioxidant dipeptide and to investigate the molecular geometry, molecular vibrations and hydrogen bonding interactions between monomeric and dimeric forms of Methiony-Serine dipeptide.

  14. Isolation and partial characterization of protease from Pseudomonas aeruginosa ATCC 27853

    Directory of Open Access Journals (Sweden)

    LIDIJA IZRAEL-ŽIVKOVIĆ

    2010-08-01

    Full Text Available Enzymatic characteristics of a protease from a medically important, referent strain of Pseudomonas aeruginosa ATCC 27853 were determined. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE, and gel filtration, it was estimated that the molecular mass of the purified enzyme was about 15 kDa. Other enzymatic properties were found to be: pH optimum 7.1, pH stability between 6.5 and 10; temperature optimum around 60 °C while the enzyme was stable at 60 °C for 30 min. Inhibition of the enzyme was observed with metal chelators, such as EDTA and 1,10-phenanthroline, suggesting that the protease is a metalloenzyme. Furthermore, the enzyme contains one mole of zinc ion per mole of enzyme. The protease was stable in the presence of different organic solvents, which enables its potential use for the synthesis of peptides.

  15. Identification, recombinant production and partial biochemical characterization of an extracellular cold-active serine-metalloprotease from an Antarctic Pseudomonas isolate

    Directory of Open Access Journals (Sweden)

    Natalia Fullana

    2017-08-01

    Full Text Available Cold-adapted enzymes are generally derived from psychrophilic microorganisms and have features that make them very attractive for industrial and biotechnological purposes. In this work, we identified a 50 kDa extracellular protease (MP10 from the Antarctic isolate Pseudomonas sp. AU10. The enzyme was produced by recombinant DNA technology, purified using immobilized metal affinity chromatography and partially characterized. MP10 is an alkaline thermosensitive serine-metallo protease with optimal activity at pH 8.0 and 40 ℃, in the presence of 1.5 mM Ca2+. MP10 showed 100% residual activity and stability (up to 60 min when incubated with 7% of non-ionic surfactants (Triton X-100, Tween-80 and Tween-20 and 1.5% of the oxidizing agent hydrogen peroxide. The 3D MP10 structure was predicted and compared with the crystal structure of mesophilic homologous protease produced by Pseudomonas aeruginosa PA01 (reference strain and other proteases, showing similarity in surface area and volume of proteins, but a significantly higher surface pocket area and volume of MP10. The observed differences presumably may explain the enhanced activity of MP10 for substrate binding at low temperatures. These results give insight to the potential use of MP10 in developing new biotechnologically processes active at low to moderate temperatures, probably with focus in the detergent industry.

  16. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  17. Molecular Imaging of Proteases in Cancer

    Directory of Open Access Journals (Sweden)

    Yunan Yang

    2009-01-01

    Full Text Available Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence, magnetic resonance imaging (MRI, single-photon emission computed tomography (SPECT, and positron emission tomography (PET. In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction.

  18. In-silico structural and functional characterization of a V. cholerae O395 hypothetical protein containing a PDZ1 and an uncommon protease domain.

    Directory of Open Access Journals (Sweden)

    Avirup Dutta

    Full Text Available Vibrio cholerae, the causative agent of epidemic cholera, has been a constant source of concern for decades. It has constantly evolved itself in order to survive the changing environment. Acquisition of new genetic elements through genomic islands has played a major role in its evolutionary process. In this present study a hypothetical protein was identified which was present in one of the predicted genomic island regions of the large chromosome of V. cholerae O395 showing a strong homology with a conserved phage encoded protein. In-silico physicochemical analysis revealed that the hypothetical protein was a periplasmic protein. Homology modeling study indicated that the hypothetical protein was an unconventional and atypical serine protease belonging to HtrA protein family. The predicted 3D-model of the hypothetical protein revealed a catalytic centre serine utilizing a single catalytic residue for proteolysis. The predicted catalytic triad may help to deduce the active site for the recruitment of the substrate for proteolysis. The active site arrangements of this predicted serine protease homologue with atypical catalytic triad is expected to allow these proteases to work in different environments of the host.

  19. An unusual helix-turn-helix protease inhibitory motif in a novel trypsin inhibitor from seeds of Veronica (Veronica hederifolia L.).

    Science.gov (United States)

    Conners, Rebecca; Konarev, Alexander V; Forsyth, Jane; Lovegrove, Alison; Marsh, Justin; Joseph-Horne, Timothy; Shewry, Peter; Brady, R Leo

    2007-09-21

    The storage tissues of many plants contain protease inhibitors that are believed to play an important role in defending the plant from invasion by pests and pathogens. These proteinaceous inhibitor molecules belong to a number of structurally distinct families. We describe here the isolation, purification, initial inhibitory properties, and three-dimensional structure of a novel trypsin inhibitor from seeds of Veronica hederifolia (VhTI). The VhTI peptide inhibits trypsin with a submicromolar apparent K(i) and is expected to be specific for trypsin-like serine proteases. VhTI differs dramatically in structure from all previously described families of trypsin inhibitors, consisting of a helix-turn-helix motif, with the two alpha helices tightly associated by two disulfide bonds. Unusually, the crystallized complex is in the form of a stabilized acyl-enzyme intermediate with the scissile bond of the VhTI inhibitor cleaved and the resulting N-terminal portion of the inhibitor remaining attached to the trypsin catalytic serine 195 by an ester bond. A synthetic, truncated version of the VhTI peptide has also been produced and co-crystallized with trypsin but, surprisingly, is seen to be uncleaved and consequently forms a noncovalent complex with trypsin. The VhTI peptide shows that effective enzyme inhibitors can be constructed from simple helical motifs and provides a new scaffold on which to base the design of novel serine protease inhibitors.

  20. Cysteine Protease Zymography: Brief Review.

    Science.gov (United States)

    Wilkesman, Jeff

    2017-01-01

    Cysteine proteases play multiple roles in basically all aspects of physiology and development. In plants, they are involved in growth and development and in accumulation and mobilization of storage proteins. Furthermore, they are engaged in signalling pathways and in the response to biotic and abiotic stresses. In animals and also in humans, they are responsible for senescence and apoptosis, prohormone processing, and ECM remodelling. When analyzed by zymography, the enzyme must be renaturated after SDS-PAGE. SDS must be washed out and substituted by Triton X-100. Gels are then further incubated under ideal conditions for activity detection. Cysteine proteases require an acidic pH (5.0-6.0) and a reducing agent, usually DTT. When screening biological samples, there is generally no previous clue on what peptidase class will be present, neither optimal proteolysis conditions are known. Hence, it is necessary to assess several parameters, such as incubation time, pH, temperature, influence of ions or reducing agents, and finally evaluate the inhibition profile. For detection of cysteine peptidase activity, the use of specific inhibitors, such as E-64, can be used to prevent the development of cysteine peptidase activity bands and positively confirm its presence. Here four different protocols to assess cysteine protease activity from different sources are presented.

  1. Cathepsin G, a Neutrophil Protease, Induces Compact Cell-Cell Adhesion in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Kudo

    2009-01-01

    Full Text Available Cathepsin G is a serine protease secreted by activated neutrophils that play a role in the inflammatory response. Because neutrophils are known to be invading leukocytes in various tumors, their products may influence the characteristics of tumor cells such as the growth state, motility, and the adhesiveness between cells or the extracellular matrix. Here, we demonstrate that cathepsin G induces cell-cell adhesion of MCF-7 human breast cancer cells resulting from the contact inhibition of cell movement on fibronectin but not on type IV collagen. Cathepsin G subsequently induced cell condensation, a very compact cell colony, resulting due to the increased strength of E-cadherin-mediated cell-cell adhesion. Cathepsin G action is protease activity-dependent and was inhibited by the presence of serine protease inhibitors. Cathepsin G promotes E-cadherin/catenin complex formation and Rap1 activation in MCF-7 cells, which reportedly regulates E-cadherin-based cell-cell junctions. Cathepsin G also promotes E-cadherin/protein kinase D1 (PKD1 complex formation, and Go6976, the selective PKD1 inhibitor, suppressed the cathepsin G-induced cell condensation. Our findings provide the first evidence that cathepsin G regulates E-cadherin function, suggesting that cathepsin G has a novel modulatory role against tumor cell-cell adhesion.

  2. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhou

    2018-01-01

    Full Text Available Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.

  3. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail: hychung@mail.fcu.edu.tw; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  4. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Winther, J R

    2001-01-01

    have been suggested as transporters of monomers for cutin synthesis. We have analysed the stability of LTP1 towards denaturant, heat and proteases and found it to be a highly stable protein, which apparently does not denature at temperatures up to 100 degrees C. This high stability may be important...

  5. Transmural intestinal wall permeability in severe ischemia after enteral protease inhibition.

    Directory of Open Access Journals (Sweden)

    Angelina E Altshuler

    Full Text Available In intestinal ischemia, inflammatory mediators in the small intestine's lumen such as food byproducts, bacteria, and digestive enzymes leak into the peritoneal space, lymph, and circulation, but the mechanisms by which the intestinal wall permeability initially increases are not well defined. We hypothesize that wall protease activity (independent of luminal proteases and apoptosis contribute to the increased transmural permeability of the intestine's wall in an acutely ischemic small intestine. To model intestinal ischemia, the proximal jejunum to the distal ileum in the rat was excised, the lumen was rapidly flushed with saline to remove luminal contents, sectioned into equal length segments, and filled with a tracer (fluorescein in saline, glucose, or protease inhibitors. The transmural fluorescein transport was determined over 2 hours. Villi structure and epithelial junctional proteins were analyzed. After ischemia, there was increased transmural permeability, loss of villi structure, and destruction of epithelial proteins. Supplementation with luminal glucose preserved the epithelium and significantly attenuated permeability and villi damage. Matrix metalloproteinase (MMP inhibitors (doxycycline, GM 6001, and serine protease inhibitor (tranexamic acid in the lumen, significantly reduced the fluorescein transport compared to saline for 90 min of ischemia. Based on these results, we tested in an in-vivo model of hemorrhagic shock (90 min 30 mmHg, 3 hours observation for intestinal lesion formation. Single enteral interventions (saline, glucose, tranexamic acid did not prevent intestinal lesions, while the combination of enteral glucose and tranexamic acid prevented lesion formation after hemorrhagic shock. The results suggest that apoptotic and protease mediated breakdown cause increased permeability and damage to the intestinal wall. Metabolic support in the lumen of an ischemic intestine with glucose reduces the transport from the lumen

  6. Proteases of Sporothrix schenckii: Cytopathological effects on a host-cell model.

    Science.gov (United States)

    Sabanero López, Myrna; Flores Villavicencio, Lérida L; Soto Arredondo, Karla; Barbosa Sabanero, Gloria; Villagómez-Castro, Julio César; Cruz Jiménez, Gustavo; Sandoval Bernal, Gerardo; Torres Guerrero, Haydee

    Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. To evaluate the proteolytic activity of S. schenckii on epithelial cells. The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. An insight into the transcriptome and proteome of the salivary gland of the stable fly, Stomoxys calcitrans.

    Science.gov (United States)

    Wang, Xuyong; Ribeiro, José M C; Broce, Alberto B; Wilkerson, Melinda J; Kanost, Michael R

    2009-09-01

    Adult stable flies are blood feeders, a nuisance, and mechanical vectors of veterinary diseases. To enable efficient feeding, blood sucking insects have evolved a sophisticated array of salivary compounds to disarm their host's hemostasis and inflammatory reaction. While the sialomes of several blood sucking Nematocera flies have been described, no thorough description has been made so far of any Brachycera, except for a detailed proteome analysis of a tabanid (Xu et al., 2008). In this work we provide an insight into the sialome of the muscid Stomoxys calcitrans, revealing a complex mixture of serine proteases, endonucleases, Kazal-containing peptides, anti-thrombins, antigen 5 related proteins, antimicrobial peptides, and the usual finding of mysterious secreted peptides that have no known partners, and may reflect the very fast evolution of salivary proteins due to the vertebrate host immune pressure. Supplemental Tables S1 and S2 can be downloaded from http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T1/Sc-tb1-web.xls and http://exon.niaid.nih.gov/transcriptome/S_calcitrans/T2/Sc-tb2-web.xls.

  8. Advances in protease engineering for laundry detergents.

    Science.gov (United States)

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Cleavage of CD14 and LBP by a protease from Prevotella intermedia

    Science.gov (United States)

    Deschner, James; Singhal, Anuradha; Long, Ping; Liu, Chau-Ching; Piesco, Nicholas

    2016-01-01

    Periodontitis is an inflammatory disease caused by subgingival microorganisms and their components, such as lipopolysaccharide (LPS). Responses of the host to LPS are mediated by CD14 and LPS-binding protein (LBP). In this study, it was determined that proteases from a periodontal pathogen, Prevotella intermedia, cleave CD14 and LBP, and thereby modulate the virulence of LPS. Culture supernatants from two strains of P. intermedia (ATCC 25611 and 25261) cleaved CD14 and LBP in a concentration-dependent manner. Zymographic and molecular mass analysis revealed the presence of a membrane-associated, 170-kDa, monomeric protease. Class-specific inhibitors and stimulators demonstrated that this enzyme is a metal-requiring, thiol-activated, cysteine protease. The protease was stable over a wide range of temperatures (4–56 °C) and pH values (4.5–8.5). This enzyme also decreased the expression of interleukin-1β (IL-1β)-specific mRNA in the LPS-activated macrophage-like cell lines U937 and THP-1 in a concentration-dependent manner, indicating that it also cleaves membrane-associated CD14. Furthermore, addition of soluble CD14 abrogated protease-mediated inhibition of IL-1 mRNA expression induced by LPS. The observations suggest that proteolysis of CD14 and LBP by P. intermedia protease might modulate the virulence of LPS at sites of periodontal infections. PMID:12728301

  10. Enzymatic degradation of PrPSc by a protease secreted from Aeropyrum pernix K1.

    Science.gov (United States)

    Snajder, Marko; Vilfan, Tanja; Cernilec, Maja; Rupreht, Ruth; Popović, Mara; Juntes, Polona; Serbec, Vladka Čurin; Ulrih, Nataša Poklar

    2012-01-01

    An R30 fraction from the growth medium of Aeropyrum pernix was analyzed for the protease that can digest the pathological prion protein isoform (PrP(Sc)) from different species (human, bovine, deer and mouse). Degradation of the PrP(Sc) isoform by the R30 fraction and the purified protease was evaluated using the 6H4 anti-PrP monoclonal antibody. Fragments from the N-terminal and C-terminal of PrP(Sc) were also monitored by Western blotting using the EB8 anti-PrP monoclonal antibody, and by dot blotting using the C7/5 anti-PrP monoclonal antibody, respectively. For detection of smaller peptides from incomplete digestion of PrP(Sc), the EB8 monoclonal antibody was used after precipitation with sodium phosphotungstate. Characterization of the purified active protease from the R30 fraction was achieved, through purification by fast protein liquid chromatography, and identification by tandem mass spectrometry the serine metalloprotease pernisine. SDS-PAGE and zymography show the purified pernisine plus its proregion with a molecular weight of ca. 45 kDa, and the mature purified pernisine as ca. 23 kDa. The purified pernisine was active between 58 °C and 99 °C, and between pH 3.5 and 8.0. The temperature and pH optima of the enzymatic activity of the purified pernisine in the presence of 1 mM CaCl(2) were 105 °C ± 0.5 °C and pH 6.5 ± 0.2, respectively. Our study has identified and characterized pernisine as a thermostable serine metalloprotease that is secreted from A. pernix and that can digest the pathological prion protein PrP(Sc).

  11. Enzymatic degradation of PrPSc by a protease secreted from Aeropyrum pernix K1.

    Directory of Open Access Journals (Sweden)

    Marko Snajder

    Full Text Available BACKGROUND: An R30 fraction from the growth medium of Aeropyrum pernix was analyzed for the protease that can digest the pathological prion protein isoform (PrP(Sc from different species (human, bovine, deer and mouse. METHODOLOGY/PRINCIPAL FINDINGS: Degradation of the PrP(Sc isoform by the R30 fraction and the purified protease was evaluated using the 6H4 anti-PrP monoclonal antibody. Fragments from the N-terminal and C-terminal of PrP(Sc were also monitored by Western blotting using the EB8 anti-PrP monoclonal antibody, and by dot blotting using the C7/5 anti-PrP monoclonal antibody, respectively. For detection of smaller peptides from incomplete digestion of PrP(Sc, the EB8 monoclonal antibody was used after precipitation with sodium phosphotungstate. Characterization of the purified active protease from the R30 fraction was achieved, through purification by fast protein liquid chromatography, and identification by tandem mass spectrometry the serine metalloprotease pernisine. SDS-PAGE and zymography show the purified pernisine plus its proregion with a molecular weight of ca. 45 kDa, and the mature purified pernisine as ca. 23 kDa. The purified pernisine was active between 58 °C and 99 °C, and between pH 3.5 and 8.0. The temperature and pH optima of the enzymatic activity of the purified pernisine in the presence of 1 mM CaCl(2 were 105 °C ± 0.5 °C and pH 6.5 ± 0.2, respectively. CONCLUSIONS/SIGNIFICANCE: Our study has identified and characterized pernisine as a thermostable serine metalloprotease that is secreted from A. pernix and that can digest the pathological prion protein PrP(Sc.

  12. Semi purifikasi dan karakterisasi enzim protease Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Elidar Naiola

    2012-02-01

    Full Text Available The aim of the research was to find the partial purified of enzyme protease from Bacillus sp. The crude enzyme of protease was produce in rice brand medium (100 gram of rice brand in a liter tofu liquid waste. The enzyme was semi-purified by the procedure of precipitation using ethanol in different percentages of saturation, gel filtration using Sephadex G 100 and Ion Exchanged Chromatography using DEAE Sephadex A50. Specific activities of the enzyme during purification were 5.71 U/mg (crude enzyme; 6.75 U/mg (ethanol precipitations; 37.16 U/mg (gel filtration and 43.02 U/mg (Ion Exchanged Chromatography. The optimum temperature for enzyme reaction was 45 €“50 °C, while the optimum pH was 7.0 €“8.0. Protease was relatively stable after heating until 37 €“50 °C for 60 minutes. Metal ions had different effects to the enzyme. CaCl2, FeCl3, MnCl2, ZnCl2 and MgCl2 increased enzyme activity, CdCl2 and HgCl2 gave an inhibitory effect, and another of metal ions had no effects to the enzyme.

  13. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives

    Directory of Open Access Journals (Sweden)

    Nilesh P. Nirmal

    2014-01-01

    Full Text Available A fungal strain (Conidiobolus brefeldianus MTCC 5184 isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found to be very effective in increasing the stability of FAP, which was found to be concentration dependent. Fivefold increase in residual activity of FAP was observed in the presence of trehalose (50% and sorbitol (50% at 50°C for 4 h, compared to FAP without additive. Other additives like calcium at 20 mM and 10–15% ammonium sulphate showed lower stability improvement than trehalose and sorbitol. NaCl, MgCl2, K2HPO4, and glycine were found to be poor stabilizers and showed only a marginal improvement. PEG 6000 did not show any increase in stability but was found to be slightly inhibitory.

  14. Mass spectrometry-assisted protease substrate screening

    DEFF Research Database (Denmark)

    Schlüter, Hartmut; Rykl, Jana; Thiemann, Joachim

    2007-01-01

    Since sequencing of the human genome was completed, more than 500 genes have been annotated as proteases. Exploring the physiological role of each protease requires the identification of their natural substrates. However, the endogenous substrates of many of the human proteases are as yet unknown....... Here we describe a new assay that addresses this problem. The assay, which easily can be automated, is based on the incubation of immobilized protein fractions, which may contain the natural substrate, with a defined protease. After concentrating the proteolytically released peptides by reversed...

  15. Proteolytic crosstalk in multi-protease networks

    Science.gov (United States)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  16. Production and partial characterization of proteases from Mucor hiemalis URM3773

    Directory of Open Access Journals (Sweden)

    Roana Cecília dos Santos Ribeiro

    2015-03-01

    Full Text Available The current study evaluated the proteases production from 11 fungal species belonging to the genera Mucor, Rhizomucor and Absidia. The species were obtained from the Collection of Cultures URM at the Mycology Department-UFPE, Brazil. The best producing species was Mucor hiemalis URM 3773 (1.689 U mL-1. Plackett-Burman design methodology was employed to select the most effective parameter for protease production out of 11 medium components, including: concentration of filtrate soybean, glucose, incubation period, yeast extract, tryptone, pH, aeration, rotation, NH4Cl, MgSO4 and K2HPO4. Filtrated soybean concentration was the significant variable over the response variable, which was the specific protease activity. The crude enzyme extract showed optimal activity in pH 7.5 and at 50ºC. The enzyme was stable within a wide pH range from 5.8 to 8.0, in the phosphate buffer 0.1M and in stable temperature variation of 40-70ºC, for 180 minutes. The ions FeSO4, NaCl, MnCl2, MgCl2 and KCl stimulated the protease activity, whereas ZnCl2 ion inhibited the activity in 2.27%. Iodoacetic acid at 1mM was the proteases inhibitor that presented greater action.The results indicate that the studied enzyme have great potential for industrial application.

  17. Single-Step Purification and Characterization of A Recombinant Serine Proteinase Inhibitor from Transgenic Plants.

    Science.gov (United States)

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Amla, D V

    2016-05-01

    Expression of recombinant therapeutic proteins in transgenic plants has a tremendous impact on safe and economical production of biomolecules for biopharmaceutical industry. The major limitation in their production is downstream processing of recombinant protein to obtain higher yield and purity of the final product. In this study, a simple and rapid process has been developed for purification of therapeutic recombinant α1-proteinase inhibitor (rα1-PI) from transgenic tomato plants, which is an abundant serine protease inhibitor in human serum and chiefly inhibits the activity of neutrophil elastase in lungs. We have expressed rα1-PI with modified synthetic gene in transgenic tomato plants at a very high level (≃3.2 % of total soluble protein). The heterologous protein was extracted with (NH4)2SO4 precipitation, followed by chromatographic separation on different matrices. However, only immunoaffinity chromatography resulted into homogenous preparation of rα1-PI with 54 % recovery. The plant-purified rα1-PI showed molecular mass and structural conformation comparable to native serum α1-PI, as shown by mass spectrometry and optical spectroscopy. The results of elastase inhibition assay revealed biological activity of the purified rα1-PI protein. This work demonstrates a simple and efficient one-step purification of rα1-PI from transgenic plants, which is an essential prerequisite for further therapeutic development.

  18. Identification of a new subtilisin-like protease NbSLP2 interacting with cytoskeletal protein septin in Microsporidia Nosema bombycis.

    Science.gov (United States)

    Liu, Fangyan; Ma, Qiang; Dang, Xiaoqun; Wang, Ying; Song, Yue; Meng, Xianzhi; Bao, Jialing; Chen, Jie; Pan, Guoqing; Zhou, Zeyang

    2017-09-01

    Nosema bombycis is the pathogen of pébrine which brings heavy losses to sericulture every year. As a member of serine proteases, subtilisin-like protease (SLP) is related to the pathogenicity in fungi. In this study, we characterized a novel 63.8kDa subtilisin-like protease NbSLP2 with a predicted transmembrane domain from Microsporidia, N. bombycis. RT-PCR showed that the transcript of NbSLP2 was detected from third day post infection. Immunofluorescence assay (IFA) indicated that NbSLP2 mainly scattered around the spore wall of N. bombycis. Co-immunoprecipitation data and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis revealed that NbSLP2 directly interacts with septin2 of N. bombycis, which is a cytoskeletal protein. IFA showed that NbSLP2 and Nbseptin2 co-localized beneath the spore wall. NbSLP2 can be pulled down by Nbseptin2, further confirming the interaction between NbSLP2 and Nbseptin2. As an important serine protease with a transmembrane domain, NbSLP2 interacting with Nbseptin2, a scaffold protein adjacent to the membrane may provide advantages to stabilize the NbSLP2 for its hydrolysis function. Copyright © 2017. Published by Elsevier Inc.

  19. Dosage compensation of serine-4 transfer RNA in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Birchler, J.A.; Owenby, R.K.; Jacobson, K.B.

    1982-01-01

    A dosage series of the X chromosome site for serine-4 transfer RNA consisting of one of three copies in females and one to two in males was constructed to test whether transfer RNA expression is governed by dosage compensation. A dosage effect on the level of the serine-4 isoacceptor was observed in both females and males when the structural locus was varied. However, in males, each dose had a relatively greater expression so the normal one dose was slightly greater than the total female value and the duplicated male had the highest relative expression of all the types examined. Serine-4 levels in males and females from an isogenic Oregon-R stock were similar. Thus the transfer RNA levels conform to the expectations of dosage compensation

  20. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets, with a few more additions - with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers - exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the foree of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc. (orig.)

  1. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  2. Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA.

    Directory of Open Access Journals (Sweden)

    Martin Löwer

    Full Text Available Exported proteases of Helicobacter pylori (H. pylori are potentially involved in pathogen-associated disorders leading to gastric inflammation and neoplasia. By comprehensive sequence screening of the H. pylori proteome for predicted secreted proteases, we retrieved several candidate genes. We detected caseinolytic activities of several such proteases, which are released independently from the H. pylori type IV secretion system encoded by the cag pathogenicity island (cagPAI. Among these, we found the predicted serine protease HtrA (Hp1019, which was previously identified in the bacterial secretome of H. pylori. Importantly, we further found that the H. pylori genes hp1018 and hp1019 represent a single gene likely coding for an exported protein. Here, we directly verified proteolytic activity of HtrA in vitro and identified the HtrA protease in zymograms by mass spectrometry. Overexpressed and purified HtrA exhibited pronounced proteolytic activity, which is inactivated after mutation of Ser205 to alanine in the predicted active center of HtrA. These data demonstrate that H. pylori secretes HtrA as an active protease, which might represent a novel candidate target for therapeutic intervention strategies.

  3. Heterogeneity of the serine synthetic pathway in Entamoeba species.

    Science.gov (United States)

    Chiba, Yoko; Makiuchi, Takashi; Jeelani, Ghulam; Nozaki, Tomoyoshi

    2016-06-01

    Phosphoserine phosphatase (PSP) catalyzes the third step of the phosphorylated serine biosynthetic pathway, and occurred multiple times in evolution, while enzymes catalyzing the first and second steps in the pathway have single respective origins. In the present study, we examined the existence of PSP among genus Entamoeba including a human enteric parasite, Entamoeba histolytica. E. histolytica as well as majority of Entamoeba species have the first and second enzymes, but lacks PSP. In contrast, a reptilian enteric parasite, Entamoeba invadens possesses canonical PSP. Thus, there are variations in the existence of the serine biosynthetic ability among Entamoeba species. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A protease/peptidase from culture medium of Flammulina velutipes that acts on arabinogalactan-protein.

    Science.gov (United States)

    Yoshimi, Yoshihisa; Sugawara, Yumi; Hori, Chiaki; Igarashi, Kiyohiko; Kaneko, Satoshi; Tsumuraya, Yoichi; Kotake, Toshihisa

    2017-03-01

    Arabinogalactan-proteins (AGPs) are highly diverse plant proteoglycans found on the plant cell surface. AGPs have large arabinogalactan (AG) moieties attached to a core-protein rich in hydroxyproline (Hyp). The AG undergoes hydrolysis by various glycoside hydrolases, most of which have been identified, whereas the core-proteins is presumably degraded by unknown proteases/peptidases secreted from fungi and bacteria in nature. Although several enzymes hydrolyzing other Hyp-rich proteins are known, the enzymes acting on the core-proteins of AGPs remain to be identified. The present study describes the detection of protease/peptidase activity toward AGP core-proteins in the culture medium of winter mushroom (Flammulina velutipes) and partial purification of the enzyme by several conventional chromatography steps. The enzyme showed higher activity toward Hyp residues than toward proline and alanine residues and acted on core-proteins prepared from gum arabic. Since the activity was inhibited in the presence of Pefabloc SC, the enzyme is probably a serine protease.

  5. Neutrophilic proteases: Mediators of formyl-methionyl-leucyl-phenylalanine-induced ileitis in rats

    International Nuclear Information System (INIS)

    von Ritter, C.; Be, R.; Granger, D.N.

    1989-01-01

    N-formyl-methionyl-leucyl-phenylalanine (FMLP), a tripeptide of bacterial origin that activates and attracts neutrophils, increases mucosal permeability when placed in the lumen of rat ileum. Although studies using neutropenic animals demonstrate the essential role of neutrophils in FMLP-induced mucosal injury, the neutrophil-derived chemical mediator of this injury process remains undefined. The objective of this study was to determine whether neutrophilic proteases mediate FMLP-induced increases in mucosal permeability. The blood-to-lumen clearance of 51 Cr-ethylenediaminetetraacetate was used to monitor mucosal permeability in the terminal ileum of Sprague-Dawley rats. In control (untreated) animals luminal perfusion with 10(-5) M FMLP resulted in twofold and fourfold increases in 51 Cr-ethylenediaminetetraacetate clearance after 1 and 2 h of FMLP exposure, respectively. Pretreatment with the nonspecific serine protease inhibitor, soybean trypsin inhibitor (15 mg/kg), significantly attenuated the clearance responses normally observed during luminal perfusion with FMLP. The specific elastase inhibitors MeOSuc-Ala-Ala-Pro-Val-CH 2 Cl (10 mg/kg) and Eglin c (8 mg/kg) significantly attenuated the FMLP-induced increases in ethylenediaminetetraacetate clearance observed after both 1 and 2 h of exposure. The results of this study indicate that neutrophilic proteases mediate at least part of the increased mucosal permeability induced by luminal exposure to FMLP

  6. Studies on the Catalytic Properties of Partially Purified Alkaline Proteases from Some Selected Microorganisms

    Directory of Open Access Journals (Sweden)

    Titilayo Olufunke Femi-Ola

    2012-09-01

    Full Text Available Aims: The research was done to study the conditions enhancing catalytic activities of alkaline proteases from Vibro sp., Lactobacillus brevis, Zymomonas sp., Athrobacter sp., Corynebacterium sp. and Bacillus subtilis.Methodology and Results: The proteolytic enzymes were purified in 2-step procedures involving ammonium sulphate precipitation and sephadex G-150 gel permeation chromatography. The upper and lower limits for the specific activities of proteases from the selected microorganisms were estimated at 20.63 and 47.51 units/mg protein with Zymomonas protease having the highest specific activity towards casein as its substrate and purification fold of 3.46, while that ofLactobacillus brevis protease was 8.06. The native molecular weights of these active proteins ranged from 30.4 to 45.7 kDa with Athrobacter sp. protease having the highest weight for its subunits. The proteolytic enzymes had optimum pH range of 8 to 10 and temperature range of 50 to 62 ºC accounting for the percentage relative activity range of 75 to 94% and 71 to 84 % respectively. The activities of Lactobacillus brevis and Bacillus subtilis proteases were maximum at pH 9 and 10 respectively. Lactobacillus brevis protease activity was maximum at temperature of 62 ºC, while beyond this value, a general thermal instability of these active proteins was observed. At above 70 ºC, the catalytic activities of Corynebacterium sp., Vibrio sp., Zymomonas sp. and Arthrobacter sp. proteases were progressively reduced over a period of 120 min of incubation, while Bacillus subtlis and Lactobacillus brevis proteases were relatively stable. Effect of metal ions was investigated on the catalytic activity of protease from the microorganisms. Lactobacillus brevis,Zymomonas sp., Arthrobacter sp., Corynebacterium sp. and Bacillus subtilis protease activities were strongly activated by metal ions such as Ca+2 and Mg+2. Enzyme activities were inhibited strongly by Cu2+ and Hg2+ but were not

  7. Characterization of fluorescence quenching in bifluorophoric protease substrates.

    Science.gov (United States)

    Packard, B Z; Toptygin, D D; Komoriya, A; Brand, L

    1997-09-01

    NorFES is a relatively rigid, bent undecapeptide which contains an amino acid sequence that is recognized by the serine protease elastase (AspAlaIleProNle downward arrow SerIleProLysGlyTyr ( downward arrow indicates the primary cleavage site)). Covalent attachment of a fluorophore on each side of NorFES's elastase cleavage site enables one to use a change of fluorescence intensity as a measure of enzymatic activity. In this study two bichromophoric NorFES derivatives, D-NorFES-A and D-NorFES-D, were prepared in which D (donor) was tetramethylrhodamine and A (acceptor) was rhodamine-X, two chromophores with characteristics suitable for energy transfer. Absorption and fluorescence spectra were obtained with both the intact and cleaved homodoubly, heterodoubly and singly labeled derivatives. It was found that both the homo and hetero doubly-labeled derivatives form ground-state complexes which exhibit exciton bands. The hetero labeled derivative exhibits little or no resonance energy transfer. Spectral measurements were also done in urea, which partially disrupts ground-state dimers.

  8. Diagnosing Breast Cancer Using Protease Fingerprint

    National Research Council Canada - National Science Library

    Chen, Emily

    2002-01-01

    .... An activity-based probe, FP-biotin, was used to analyze the global activity pattern of a class of disease-relevant enzymes, serine hydrolases, in normal epithelial cells and several breast cancer cells...

  9. Differentiation of Trypanosoma cruzi I (TcI) and T. cruzi II (TcII) genotypes using genes encoding serine carboxypeptidases.

    Science.gov (United States)

    de Araújo, Catarina Andréa Chaves; Mayer, Christoph; Waniek, Peter Josef; Azambuja, Patricia; Jansen, Ana Maria

    2016-11-01

    The parasite Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) can be classified based on biochemical and molecular markers, into six lineages or discrete typing units (DTUs), T. cruzi I-VI (TcI-VI), from which TcI and TcII are the parental genotypes. Trying to understand the dispersion of the subpopulations of T. cruzi in nature and its complex transmission cycles, the serine carboxypeptidase genes of T. cruzi were used as a molecular marker in the present study. DTUs of 25 T. cruzi isolates derived from different hosts and from different regions of Brazil were classified. Using specific primers, the complete serine carboxypeptidase open reading frame of 1401 bp was sequenced. The obtained data shows significant differences in the sequences of TcI and TcII. The analysis of the T. cruzi significantly different serine carboxypeptidase genes allowed distinguishing between the parental DTUs TcI to TcII and the hybrid DTU TcVI which grouped within the latter branch. The sequence diversity within the T. cruzi subpopulations was rather low. The analysis using the genes encoding proteases seems to be an interesting approach for the reconstruction of the origin and genotype evolution of T. cruzi.

  10. Current and Novel Inhibitors of HIV Protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Machala, L.; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    Roč. 1, č. 3 (2009), s. 1209-1239 ISSN 1999-4915 R&D Projects: GA MŠk 1M0508 Grant - others:GA AV ČR(CZ) IAAX00320901 Program:IA Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * protease inhibitor * HAART Subject RIV: CE - Biochemistry

  11. Tissue dissociation enzyme neutral protease assessment.

    Science.gov (United States)

    Breite, A G; Dwulet, F E; McCarthy, R C

    2010-01-01

    Neutral proteases, essential components of purified tissue dissociation enzymes required for successful human islet isolation, show variable activities and effects of substrate on their activities. Initially we used a spectrophotometric endpoint assay with azocasein substrate to measure neutral protease activity. After critical review of the results, we observed these data to be inconsistent and not correlating expected differences in specific activities between thermolysin and Bacillus polymyxa proteases. This observation led to the development of a fluorescent microplate assay using fluorescein isothyocyanate-conjugated bovine serum albumin (FITC-BSA) as the substrate. This simpler, more flexible method offered a homogeneous, kinetic enzyme assay allowing determination of steady state reaction rates of sample replicates at various dilutions. The assay had a linear range of 4- to 8-fold and interassay coefficients of variation for B polymyxa protease and thermolysin of inhibitors, as illustrated by addition of sulfhydryl protease inhibitors, which, consistent with earlier reports, strongly indicated that the main contaminant in purified collagenase preparations was clostripain. Determination of the specific activities for several purified neutral proteases showed that the B polymyxa and Clostridium histolyticum proteases had approximately 40% and 15% specific activities, respectively, of those obtained with purified thermolysin, indicating the different characteristics of neutral protease enzymes for cell isolation procedures. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Production of extracellular aspartic protease in submerged fermentation with Mucor mucedo DSM 809. ... The preferred method was the inoculation of the culture media with spores at a total load of 6x105 spores per flask. Key words: Milk clotting enzyme, Aspartic protease, Mucor mucedo, Sub-merged fermentation.

  13. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    user

    2013-03-20

    Mar 20, 2013 ... be absorbed and utilized by living cells. Due to their wide .... The effect of pH on protease stability was determined by pre-incubating the enzyme without substrate at different pH values (5 to 11) using different buffers. The residual ..... detergent formulations: effects of thermodynamic stabilizers and protease ...

  14. Immobilization to prevent enzyme incompatibility with proteases

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2011-01-01

    Enzyme incompatibility is a problem in multi-enzyme processes that involve a non-specific protease, such as Alcalase. An example is the one-pot enzymatic synthesis of peptides catalyzed by a lipase and a protease. The incompatibility between lipase B from Candida antarctica (CalB) and Alcalase was

  15. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    USER

    ABSTRACT: Microbial proteases have wide industrial applications and proteases of the lactic acid bacteria (LAB) have received special attention ... Purification of the enzyme by gel filtration chromatography on Sephadex G75 following ammonium .... Gel filtration and ion exchange chromatography. The dialysate was ...

  16. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    A protease producing bacteria was isolated from meat waste contaminated soil and identified as Pseudomonas fluorescens. Optimization of the fermentation medium for maximum protease production was carried out. The culture conditions like inoculum concentration, incubation time, pH, temperature, carbon sources, ...

  17. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Optimization of the fermentation medium for maximization of thermostable neutral protease production by Bacillus sp. ... at 3.6 g/l and yeast extract at 3.9 g/l gived maximum protease activity of 6804 U/ml. Key words: Medium ... face method, which is used to study the effects of several factors influencing the ...

  18. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... the metal ions tested. Key words: Alkaline protease, casein agar, meat waste contaminated soil, Pseudomonas fluorescens. INTRODUCTION. Proteases are the most important industrial enzymes that execute a wide variety of functions and have various important biotechnological applications (Mohen et al.,.

  19. Purification and characterization of a novel trypsin-like protease from green-seeded chickpea (Cicer arientum).

    Science.gov (United States)

    Shamsi, Tooba Naz; Parveen, Romana; Sen, Priyankar; Fatima, Sadaf

    2017-05-28

    The present study describes the purification and physicochemical and biochemical characterization of trypsin-like protease from green-seeded chickpea (Cicer arientum). The crude extract of chickpea trypsin (CpT) was obtained by homogenization followed by differential ammonium sulfate precipitation. The CpT was purified by ion-exchange chromatography on diethylaminoethyl (DEAE) column, pre-equilibrated with 20 mM tris-CaCl 2 buffer (pH 8.2) with a flow rate of 0.5 mL min -1 . The molecular weight and purity of ∼23 kDa of CpT were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Activity of protease was determined using Nα-benzoyl-DL-arginine-p-nitroanilide as chromogenic substrate and CpT purified showed a specific inhibitor activity of 26978.7697 U mg -1 , fold purity of 9.8, and the yield of 70.2%. The characterization was performed for thermal stability, pH profile, and effect of various inhibitors on enzymatic activity. The protein isolated showed stability in the neutral to mild alkaline pH range and thermostability up to 50°C. CpT confirmed its serine nature as it was appreciably inhibited by serine protease inhibitors (maximum 6%), whereas metalloprotease inhibitors barely affected the activity of the enzyme (85%). To the best of our knowledge, it is first reported on purification of protease with trypsin-like properties, from this source.

  20. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  1. Fatal cerebral edema associated with serine deficiency in CSF

    NARCIS (Netherlands)

    Keularts, Irene M. L. W.; Leroy, Piet L. J. M.; Rubio-Gozalbo, Estela M.; Spaapen, Leo J. M.; Weber, Biene; Dorland, Bert; de Koning, Tom J.; Verhoeven-Duif, Nanda M.

    2010-01-01

    Two young girls without a notable medical history except for asthma presented with an acute toxic encephalopathy with very low serine concentrations both in plasma and cerebrospinal fluid (CSF) comparable to patients with 3-phosphoglycerate dehydrogenase (3-PGDH) deficiency. Clinical symptoms and

  2. Distribution pattern of histone H3 phosphorylation at serine 10

    Indian Academy of Sciences (India)

    Histones are the major eukaryotic DNA-binding proteins. Posttranslational modifications on N-terminal tails of histones that form nucleosomes are often associated with distinct biological functions. Some theories suggest that one of these modifications, the phosphorylation of histone H3 at serine 10 (H3S10ph) plays a role ...

  3. Metabolism of serine and ethanolamine plasmalogens in Megasphaera elsdenii

    NARCIS (Netherlands)

    Prins, R.A.; Akkermans-Kruyswijk, J.; Franklin-Klein, W.; Lankhorst, A.; Golde, L.M.G. van

    1974-01-01

    1. 1. Megasphaera elsdenii appears to be a very suitable organism for studies on the metabolism of plasmalogens in anaerobic bacteria due to its extremely high content of both serine and ethanolamine plasmalogen. 2. 2. Growth of this organism in the presence of either 32Pi or [2-3H]glycerol

  4. Secreted serine protease SmSP2 of the blood fluke Schistosoma mansoni: Biochemical characterization, localization and host protein processing

    Czech Academy of Sciences Publication Activity Database

    Leontovyč, Adrian; Ulrychová, Lenka; O'Donoghue, A.J.; Marešová, Lucie; Vondrášek, Jiří; Caffrey, C. R.; Mareš, Michael; Horn, Martin; Dvořák, Jan

    2017-01-01

    Roč. 15, č. 1 (2017), s. 18 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] R&D Projects: GA MŠk LD15101; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : Schistosoma mansoni * SmSP2 Subject RIV: CE - Biochemistry

  5. Genetic influences on mannan-binding lectin (MBL) and mannan-binding lectin associated serine protease-2 (MASP-2) activity

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Petersen, Inge; Thiel, Steffen

    2007-01-01

    The lectin pathway of the complement system is activated when Mannan-binding lectin (MBL) in complex with MASP-2 binds microorganisms. Polymorphisms in both genes are responsible for low serum levels, which associate with increased risk of infection and autoimmune disease. The present study...... includes 1215 MBL measurements and 1214 MASP-2 activity measurements in healthy Danish adult twins. Total MASP-2 activity was estimated by C4 cleaving activity of samples diluted in an excess of MBL. Twin-twin correlations were higher in monozygotic (MZ) than in dizygotic (DZ) twins for both traits...

  6. Serine Protease EspP from Enterohemorrhagic Escherichia Coli Is Sufficient to Induce Shiga Toxin Macropinocytosis in Intestinal Epithelium