WorldWideScience

Sample records for stable isotope-labelled cells

  1. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  2. Stable isotope labeling strategy based on coding theory

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori, E-mail: kigawa@riken.jp [RIKEN Quantitative Biology Center (QBiC), Laboratory for Biomolecular Structure and Dynamics (Japan)

    2015-10-15

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells.

  3. Stable isotope labeling strategy based on coding theory

    International Nuclear Information System (INIS)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori

    2015-01-01

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells

  4. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy

    NARCIS (Netherlands)

    van Manen, H.J.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2008-01-01

    We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C−D

  5. Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture

    DEFF Research Database (Denmark)

    Liberski, A. R.; Al-Noubi, M. N.; Rahman, Z. H.

    2013-01-01

    Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only ra...

  6. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  7. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture

    DEFF Research Database (Denmark)

    Vinther, Jeppe; Hedegaard, Mads Marquardt; Gardner, Paul Phillip

    2006-01-01

    miRNAs are small noncoding RNAs that regulate gene expression. We have used stable isotope labeling by amino acids in cell culture (SILAC) to investigate the effect of miRNA-1 on the HeLa cell proteome. Expression of 12 out of 504 investigated proteins was repressed by miRNA-1 transfection...

  8. [Progress in stable isotope labeled quantitative proteomics methods].

    Science.gov (United States)

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  9. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  10. Stereoselective synthesis of stable-isotope-labeled amino acids

    International Nuclear Information System (INIS)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-01-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the α-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids

  11. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    Science.gov (United States)

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  12. Advances in stable isotope assisted labeling strategies with information science.

    Science.gov (United States)

    Kigawa, Takanori

    2017-08-15

    Stable-isotope (SI) labeling of proteins is an essential technique to investigate their structures, interactions or dynamics by nuclear magnetic resonance (NMR) spectroscopy. The assignment of the main-chain signals, which is the fundamental first step in these analyses, is usually achieved by a sequential assignment method based on triple resonance experiments. Independently of the triple resonance experiment-based sequential assignment, amino acid-selective SI labeling is beneficial for discriminating the amino acid type of each signal; therefore, it is especially useful for the signal assignment of difficult targets. Various combinatorial selective labeling schemes have been developed as more sophisticated labeling strategies. In these strategies, amino acids are represented by combinations of SI labeled samples, rather than simply assigning one amino acid to one SI labeled sample as in the case of conventional amino acid-selective labeling. These strategies have proven to be useful for NMR analyses of difficult proteins, such as those in large complex systems, in living cells, attached or integrated into membranes, or with poor solubility. In this review, recent advances in stable isotope assisted labeling strategies will be discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Protein labelling with stable isotopes: strategies

    International Nuclear Information System (INIS)

    Lirsac, P.N.; Gilles, N.; Jamin, N.; Toma, F.; Gabrielsen, O.; Boulain, J.C.; Menez, A.

    1994-01-01

    A protein labelling technique with stable isotopes has been developed at the CEA: a labelled complete medium has been developed, performing as well as the Luria medium, but differing from it because it contains not only free aminated acids and peptides, but also sugars (96% of D-glucopyrannose) and labelled nucleosides. These precursors are produced from a labelled photosynthetic micro-organisms biomass, obtained with micro-algae having incorporated carbon 13, nitrogen 15 and deuterium during their culture. Labelling costs are reduced. 1 fig., 1 tab., 3 refs

  14. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    Science.gov (United States)

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  15. Stable isotope labelling with amino acids in cell culture for human embryonic stem cell proteomic analysis

    DEFF Research Database (Denmark)

    Harkness, Linda; Prokhorova, Tatyana A; Kassem, Moustapha

    2012-01-01

    The identification and quantitative measurements of proteins in human embryonic stem cells (hESC) is a fast growing interdisciplinary area with an enormous impact on understanding the biology of hESC and the mechanism controlling self-renewal and differentiation. Using a quantitative mass...... spectroscopic method of stable isotope labelling with amino acids during cell culture (SILAC), we are able to analyse differential expression of proteins from different cellular compartments and to identify intracellular signalling pathways involved in self-renewal and differentiation. In this chapter, we...

  16. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    Energy Technology Data Exchange (ETDEWEB)

    Serianni, A.S. [Univ. of Notre Dame, IN (United States)

    1994-12-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds.

  17. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    International Nuclear Information System (INIS)

    Serianni, A.S.

    1994-01-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds

  18. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors.

    Science.gov (United States)

    Allen, Paul; Bragg, Ryan A; Caffrey, Moya; Ericsson, Cecilia; Hickey, Michael J; Kingston, Lee P; Elmore, Charles S

    2017-02-01

    As part of a medicinal chemistry program aimed at developing a highly potent and selective cathepsin C inhibitor, tritium, carbon-14, and stable isotope-labeled materials were required. The synthesis of tritium-labeled methanesulfonate 5 was achieved via catalytic tritiolysis of a chloro precursor, albeit at a low radiochemical purity of 67%. Tritium-labeled AZD5248 was prepared via a 3-stage synthesis, utilizing amide-directed hydrogen isotope exchange. Carbon-14 and stable isotope-labeled AZD5248 were successfully prepared through modifications of the medicinal chemistry synthetic route, enabling the use of available labeled intermediates. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG).

    Science.gov (United States)

    Kim, Kyoung-Jin; Kim, Yoon-Woo; Kim, Yun-Gon; Park, Hae-Min; Jin, Jang Mi; Hwan Kim, Young; Yang, Yung-Hun; Kyu Lee, Jun; Chung, Junho; Lee, Sun-Gu; Saghatelian, Alan

    2015-01-01

    Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling-based quantitative targeted glycomics (i-QTaG) technique for the comparative and quantitative analysis of total N-glycans using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N-glycans using a model glycoprotein (bovine fetuin). Moreover, the i-QTaG using MALDI-TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of (13) C6 /(12) C6 -2-aminobenzoic acid-labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N-glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N-glycan peaks from i-QTaG method showed a good linearity (R(2) > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2-AA labeled N-glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up-regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof-of-concept study, we demonstrated that the i-QTaG method, which enables to achieve a reliable comparative quantitation of total N-glycans via MALDI-TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. © 2015 American Institute of Chemical Engineers.

  20. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2004-01-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13 C and 15 N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13 C 15 N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39 K, 23 Na and 40 Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors

  1. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Subhash

    2004-06-15

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes {sup 13}C and {sup 15}N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK{sub 1} kidney cells at mass 28 ({sup 13}C{sup 15}N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of {sup 39}K, {sup 23}Na and {sup 40}Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  2. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    Science.gov (United States)

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  3. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  4. Expeditious syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, and its metabolites.

    Science.gov (United States)

    Lin, Ronghui; Weaner, Larry E; Hoerr, David C; Salter, Rhys; Gong, Yong

    2013-01-01

    Syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, that is, N-(benzo[b]thien-3-ylmethyl)-sulfamide and its metabolites are described. [(13)C(15)N]Benzo[b]thiophene-3-carbonitrile was first prepared by coupling of 3-bromo-benzo[b]thiophene with [(13)C(15)N]-copper cyanide. The resultant [(13)C(15)N]benzo[b]thiophene-3-carbonitrile was reduced with lithium aluminum deuteride to give [(13)CD2(15)N]benzo[b]thiophen-3-yl-methylamine; which was then coupled with sulfamide to afford [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide, the stable isotope-labeled compound with four stable isotope atoms. Direct oxidation of [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide with hydrogen peroxide and peracetic acid gave the stable isotope-labeled sulfoxide and sulfone metabolites. On the other hand, radioactive (14)C-labeled N-(benzo[b]thien-3-ylmethyl)-sulfamide was prepared conveniently by sequential coupling of 3-bromo-benzo[b]thiophene with [(14)C]-copper cyanide, reduction of the carbonitrile to carboxaldehyde, and reductive amination with sulfamide. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: kkato@phar.nagoya-cu.ac.jp [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)

    2015-06-15

    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  6. Synthesis of 14C-labeled and stable isotope-labeled CGS 16617

    International Nuclear Information System (INIS)

    Chaudhuri, N.K.; Markus, B.; Sung Mingsang

    1988-01-01

    The synthesis of a 14 C-labeled and two stable isotope-labeled analogs of CGS 16617 is described. The synthetic method involved the preparation of tetrahydro-3-bromo-1-benzazepin-2-one, labeled with a 14 C or four deuterium atoms, followed by introduction of two side chains at 1- and 3-positions. The labeled bromobenzazepinones were prepared by Beckmann rearrangement of bromo-oximes of α-tetralones, obtained by cyclization of labeled benzenebutanoic acids. The 14 C-labeled acid was prepared by hydrolysis of the nitrile, prepared by reaction of 3-bromopropylbenzene and K 14 CN. The tetradeutero acid was prepared from ethyl phenylpropynoate by catalytic reduction of the triple bond with deuterium gas, followed by reduction of the deuterated ester with lithium aluminium hydride and conversion of the resulting alcohol into the carboxylic acid. The acetic acid side chain was introduced by N-alkylation with ethyl bromoacetate or ethyl bromoacetate-1, 2- 13 C 2 followed by hydrolysis, and the L-lysine side chain, by reaction with L-(-)-3-amino-ε-caprolactam followed by hydrolysis of the caprolactam ring. (author)

  7. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  8. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  9. Copper absorption from foods labelled intrinsically and extrinsically with Cu-65 stable isotope.

    Science.gov (United States)

    Harvey, L J; Dainty, J R; Beattie, J H; Majsak-Newman, G; Wharf, S G; Reid, M D; Fairweather-Tait, S J

    2005-03-01

    To determine copper absorption from copper containing foods labelled either intrinsically or extrinsically with a highly enriched Cu-65 stable isotope label. A longitudinal cross-over study. The study was conducted at the Institute of Food Research, Human Nutrition Unit, Norwich, UK. Subjects were recruited locally via advertisements placed around the Norwich Research Park. A total of 10 volunteers (nine female, one male) took part in the study, but not all volunteers completed each of the test meals. A highly enriched Cu-65 stable isotope label was administered to volunteers in the form of a reference dose or in breakfast test meals consisting of red wine, soya beans, mushrooms or sunflower seeds. Faecal monitoring and mass spectrometry techniques were used to estimate the relative quantities of copper absorbed from the different test meals. True copper absorption from the reference dose (54%) was similar to extrinsically labelled red wine (49%) and intrinsically labelled sunflower seeds (52%), but significantly higher than extrinsically labelled mushrooms (35%), intrinsically (29%) and extrinsically (15%) labelled soya beans and extrinsically labelled sunflower seed (32%) test meals. The use of Cu-65 extrinsic labels in copper absorption studies requires validation according to the food being examined; intrinsic and extrinsic labelling produced significantly different results for sunflower seeds.

  10. Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans

    NARCIS (Netherlands)

    Westera, Liset; Drylewicz, Julia; den Braber, Ineke; Mugwagwa, Tendai; van der Maas, Iris; Kwast, Lydia; Volman, Thomas; van de Weg-Schrijver, Elise H. R.; Bartha, István; Spierenburg, Gerrit; Gaiser, Koos; Ackermans, Mariëtte T.; Asquith, Becca; de Boer, Rob J.; Tesselaar, Kiki; Borghans, José A. M.

    2013-01-01

    Quantitative knowledge of the turnover of different leukocyte populations is a key to our understanding of immune function in health and disease. Much progress has been made thanks to the introduction of stable isotope labeling, the state-of-the-art technique for in vivo quantification of cellular

  11. SAIL--stereo-array isotope labeling.

    Science.gov (United States)

    Kainosho, Masatsune; Güntert, Peter

    2009-11-01

    Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

  12. Cell-free expression and stable isotope labelling strategies for membrane proteins

    International Nuclear Information System (INIS)

    Sobhanifar, Solmaz; Reckel, Sina; Junge, Friederike; Schwarz, Daniel; Kai, Lei; Karbyshev, Mikhail; Loehr, Frank; Bernhard, Frank; Doetsch, Volker

    2010-01-01

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  13. Classification-based quantitative analysis of stable isotope labeling by amino acids in cell culture (SILAC) data.

    Science.gov (United States)

    Kim, Seongho; Carruthers, Nicholas; Lee, Joohyoung; Chinni, Sreenivasa; Stemmer, Paul

    2016-12-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a practical and powerful approach for quantitative proteomic analysis. A key advantage of SILAC is the ability to simultaneously detect the isotopically labeled peptides in a single instrument run and so guarantee relative quantitation for a large number of peptides without introducing any variation caused by separate experiment. However, there are a few approaches available to assessing protein ratios and none of the existing algorithms pays considerable attention to the proteins having only one peptide hit. We introduce new quantitative approaches to dealing with SILAC protein-level summary using classification-based methodologies, such as Gaussian mixture models with EM algorithms and its Bayesian approach as well as K-means clustering. In addition, a new approach is developed using Gaussian mixture model and a stochastic, metaheuristic global optimization algorithm, particle swarm optimization (PSO), to avoid either a premature convergence or being stuck in a local optimum. Our simulation studies show that the newly developed PSO-based method performs the best among others in terms of F1 score and the proposed methods further demonstrate the ability of detecting potential markers through real SILAC experimental data. No matter how many peptide hits the protein has, the developed approach can be applicable, rescuing many proteins doomed to removal. Furthermore, no additional correction for multiple comparisons is necessary for the developed methods, enabling direct interpretation of the analysis outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  15. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  16. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    Science.gov (United States)

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction.

  17. Protein-based stable isotope probing.

    Science.gov (United States)

    Jehmlich, Nico; Schmidt, Frank; Taubert, Martin; Seifert, Jana; Bastida, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Vogt, Carsten

    2010-12-01

    We describe a stable isotope probing (SIP) technique that was developed to link microbe-specific metabolic function to phylogenetic information. Carbon ((13)C)- or nitrogen ((15)N)-labeled substrates (typically with >98% heavy label) were used in cultivation experiments and the heavy isotope incorporation into proteins (protein-SIP) on growth was determined. The amount of incorporation provides a measure for assimilation of a substrate, and the sequence information from peptide analysis obtained by mass spectrometry delivers phylogenetic information about the microorganisms responsible for the metabolism of the particular substrate. In this article, we provide guidelines for incubating microbial cultures with labeled substrates and a protocol for protein-SIP. The protocol guides readers through the proteomics pipeline, including protein extraction, gel-free and gel-based protein separation, the subsequent mass spectrometric analysis of peptides and the calculation of the incorporation of stable isotopes into peptides. Extraction of proteins and the mass fingerprint measurements of unlabeled and labeled fractions can be performed in 2-3 d.

  18. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  19. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    We present UNiquant, a new software program for analyzing stable isotope labeling (SIL) based quantitative proteomics data. UNiquant surpassed the performance of two other platforms, MaxQuant and Mascot Distiller, using complex proteome mixtures having either known or unknown heavy/light ratios. UNiquant is compatible with a broad spectrum of search engines and SIL methods, providing outstanding peptide pair identification and accurate measurement of the relative peptide/protein abundance.

  20. Characterization and relative quantification of phospholipids based on methylation and stable isotopic labeling[S

    Science.gov (United States)

    Cai, Tanxi; Shu, Qingbo; Liu, Peibin; Niu, Lili; Guo, Xiaojing; Ding, Xiang; Xue, Peng; Xie, Zhensheng; Wang, Jifeng; Zhu, Nali; Wu, Peng; Niu, Lili; Yang, Fuquan

    2016-01-01

    Phospholipids (PLs), one of the lipid categories, are not only the primary building blocks of cellular membranes, but also can be split to produce products that function as second messengers in signal transduction and play a pivotal role in numerous cellular processes, including cell growth, survival, and motility. Here, we present an integrated novel method that combines a fast and robust TMS-diazomethane-based phosphate derivatization and isotopic labeling strategy, which enables simultaneous profiling and relative quantification of PLs from biological samples. Our results showed that phosphate methylation allows fast and sensitive identification of the six major PL classes, including their lysophospholipid counterparts, under positive ionization mode. The isotopic labeling of endogenous PLs was achieved by deuterated diazomethane, which was generated through acid-catalyzed hydrogen/deuterium (H/D) exchange and methanolysis of TMS-diazomethane during the process of phosphate derivatization. The measured H/D ratios of unlabeled and labeled PLs, which were mixed in known proportions, indicated that the isotopic labeling strategy is capable of providing relative quantitation with adequate accuracy, reproducibility, and a coefficient of variation of 9.1%, on average. This novel method offers unique advantages over existing approaches and presents a powerful tool for research of PL metabolism and signaling. PMID:26733148

  1. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  2. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  3. Isotopically labelled pyrimidines and purines

    International Nuclear Information System (INIS)

    Balaban, A.T.; Bally, I.

    1987-01-01

    Among the three diazines, pyrimidine is by far the most important one because its derivatives uracil, thymine and cytosine are constituents of the ubiquitous deoxynucleic acids (DNA) and ribonucleic acids (RNA). Other derivatives of pyrimidine without condensed rings include barbiturates, alloxan, orotic acid and thiamine or vitamin B 1 . From the polycyclic derivatives of pyrimidine such as pteridine, alloxazine, and purine, the latter, through its derivatives adenine and guanine complete the list of bases which occur in DNA and RNA: in addition, other purine derivatives such as hypoxanthine, xanthine, theobromine, theophylline, caffeine and uric acid are important natural products with biological activity. The paper presents methods for preparing isotopically labeled pyrimidines as well as purine derivatives. For convenience, the authors describe separately carbon-labeled with radioisotopes 11 C (T 1/2 = 20.3 min) and 14 C (T 1/2 = 5736 years) or the stable isotope 13 C (natural abundance 1.1%) and then hydrogen-labeled systems with the radioisotope 3 H ≡ T (T 1/2 = 12.346 years) or with the stable isotope 2 H ≡ D (natural abundance 0.015%). We do not separate stable from radioactive isotopes because the synthetic methods are identical for the same element; however, the introduction of hydrogen isotopes into organic molecules is often performed by reactions such as isotope exchange which cannot take place in the case of carbon isotopes

  4. Cooperation of CMEA member states in the field of the manufacture and use of stable isotopes and compounds thus labelled

    International Nuclear Information System (INIS)

    Ertel, G.; Ewald, G.

    1977-01-01

    The contribution presents a survey of scientific-technical cooperation of CMEA member states in the field of stable isotopes, it deals with the specialization of stable isotope production and compounds thus labelled, and gives the prospects for further development of this cooperation. (HK) [de

  5. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Rigbolt, Kristoffer T G; Johansen, Pia T

    2009-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research...... embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers......: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase zeta (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell...

  6. Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    Science.gov (United States)

    Chikayama, Eisuke; Suto, Michitaka; Nishihara, Takashi; Shinozaki, Kazuo; Hirayama, Takashi; Kikuchi, Jun

    2008-01-01

    Background Metabolic phenotyping has become an important ‘bird's-eye-view’ technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. Methodology/Principal Findings The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. Conclusions/Significance Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of 13C atoms of

  7. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    Science.gov (United States)

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  8. Effect of Different Carbon Substrates on Nitrate Stable Isotope Fractionation During Microbial Denitrification

    DEFF Research Database (Denmark)

    Wunderlich, Anja; Meckenstock, Rainer; Einsiedl, Florian

    2012-01-01

    -labeled water and 18O-labeled nitrite were added to the microcosm experiments to study the effect of putative backward reactions of nitrite to nitrate on the stable isotope fractionation. We found no evidence for a reverse reaction. Significant variations of the stable isotope enrichment factor ε were observed......In batch experiments, we studied the isotope fractionation in N and O of dissolved nitrate during dentrification. Denitrifying strains Thauera aromatica and “Aromatoleum aromaticum strain EbN1” were grown under strictly anaerobic conditions with acetate, benzoate, and toluene as carbon sources. 18O...... of nitrate transport across the cell wall compared to the kinetics of the intracellular nitrate reduction step of microbial denitrification....

  9. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism.

    Science.gov (United States)

    Steinhauser, Matthew L; Bailey, Andrew P; Senyo, Samuel E; Guillermier, Christelle; Perlstein, Todd S; Gould, Alex P; Lee, Richard T; Lechene, Claude P

    2012-01-15

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter, but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with submicrometre resolution. Here we apply MIMS to diverse organisms, including Drosophila, mice and humans. We test the 'immortal strand hypothesis', which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labelling mice with (15)N-thymidine from gestation until post-natal week 8, we find no (15)N label retention by dividing small intestinal crypt cells after a four-week chase. In adult mice administered (15)N-thymidine pulse-chase, we find that proliferating crypt cells dilute the (15)N label, consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human haematopoietic system. These studies show that MIMS provides high-resolution quantification of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research.

  10. Determining synthesis rates of individual proteins in zebrafish (Danio rerio) with low levels of a stable isotope labelled amino acid.

    Science.gov (United States)

    Geary, Bethany; Magee, Kieran; Cash, Phillip; Young, Iain S; Whitfield, Phillip D; Doherty, Mary K

    2016-05-01

    The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([(2) H7 ]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Stable isotope labeling – Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids

    International Nuclear Information System (INIS)

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d_5-Girard reagent P (d_5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4–504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related

  12. Stable isotope labeling – Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi, E-mail: yqfeng@whu.edu.cn

    2016-01-28

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d{sub 5}-Girard reagent P (d{sub 5}-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4–504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones

  13. The synthesis of tritium, carbon-14 and stable isotope labelled selective estrogen receptor degraders.

    Science.gov (United States)

    Bragg, Ryan A; Bushby, Nick; Ericsson, Cecilia; Kingston, Lee P; Ji, Hailong; Elmore, Charles S

    2016-09-01

    As part of a Medicinal Chemistry program aimed at developing an orally bioavailable selective estrogen receptor degrader, a number of tritium, carbon-14, and stable isotope labelled (E)-3-[4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl]prop-2-enoic acids were required. This paper discusses 5 synthetic approaches to this compound class. Copyright © 2016 John Wiley & Sons, Ltd.

  14. A theory of stable-isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Pickup, J.F.; McPherson, C.K.

    1977-01-01

    In order to perform quantitative analysis using stable isotope dilution with mass spectrometry, an equation is derived which describes the relationship between the relative proportions of natural and labelled material and measured isotope ratios

  15. Reliable LC-MS quantitative glycomics using iGlycoMab stable isotope labeled glycans as internal standards.

    Science.gov (United States)

    Zhou, Shiyue; Tello, Nadia; Harvey, Alex; Boyes, Barry; Orlando, Ron; Mechref, Yehia

    2016-06-01

    Glycans have numerous functions in various biological processes and participate in the progress of diseases. Reliable quantitative glycomic profiling techniques could contribute to the understanding of the biological functions of glycans, and lead to the discovery of potential glycan biomarkers for diseases. Although LC-MS is a powerful analytical tool for quantitative glycomics, the variation of ionization efficiency and MS intensity bias are influencing quantitation reliability. Internal standards can be utilized for glycomic quantitation by MS-based methods to reduce variability. In this study, we used stable isotope labeled IgG2b monoclonal antibody, iGlycoMab, as an internal standard to reduce potential for errors and to reduce variabililty due to sample digestion, derivatization, and fluctuation of nanoESI efficiency in the LC-MS analysis of permethylated N-glycans released from model glycoproteins, human blood serum, and breast cancer cell line. We observed an unanticipated degradation of isotope labeled glycans, tracked a source of such degradation, and optimized a sample preparation protocol to minimize degradation of the internal standard glycans. All results indicated the effectiveness of using iGlycoMab to minimize errors originating from sample handling and instruments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DNA stable-isotope probing (DNA-SIP).

    Science.gov (United States)

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  17. Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-labeled tracer and LC-MS spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Fumio; Morino, Keiko; Miyashita, Masahiro; Miyagawa, Hisashi [Kyoto Univ. (Japan). Department of Agriculture

    2003-05-01

    The metabolic flux of two phenylpropanoid metabolites, N-p-coumaroyloctopamine (p-CO) and chlorogenic acid (CGA), in the wound-healing potato tuber tissue was quantitatively analyzed by a newly developed method based upon the tracer experiment using stable isotope-labeled compounds and LC-MS. Tuber disks were treated with aqueous solution of L-phenyl-d{sub 5}-alanine, and the change in the ratio of stable isotope-labeled compound to non-labeled (isotope abundance) was monitored for p-CO and CGA in the tissue extract by LC-MS. The time-dependent change in the isotope abundance of each metabolite was fitted to an equation that was derived from the formation and conversion kinetics of each compound. Good correlations were obtained between the observed and calculated isotope abundances for both p-CO and CGA. The rates of p-CO formation and conversion (i.e. fluxes) were 1.15 and 0.96 nmol (g FW){sup -1}h{sup -1}, respectively, and for CGA, the rates 4.63 and 0.42 nmol (g FW){sup -1}h{sup -1}, respectively. This analysis enabled a direct comparison of the biosynthetic activity between these two compounds. (author)

  18. Stable isotopes - separation and application

    International Nuclear Information System (INIS)

    Lockhart, I.M.

    1980-01-01

    In this review, methods used for the separation of stable isotopes ( 12 C, 13 C, 14 N, 15 N, 16 O, 17 O, 18 O, 34 S) will be described. The synthesis of labelled compounds, techniques for detection and assay, and areas of application will also be discussed. Particular attention will be paid to the isotopes of carbon, nitrogen, and oxygen; to date, sulphur isotopes have only assumed a minor role. The field of deuterium chemistry is too extensive for adequate treatment; it will therefore be essentially excluded. (author)

  19. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements

    DEFF Research Database (Denmark)

    Bornø, Andreas; van Hall, Gerrit

    2014-01-01

    An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined....... The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization....../ion exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration...

  20. Trends in the use of stable isotopes in biochemistry and pharmacology

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.; Walker, T.E.

    1977-01-01

    Recent trends in the use of the stable isotopes 13 C, 15 N and 18 O in biochemistry and pharmacology are reviewed with emphasis on the studies that have employed nuclear magnetic resonance (nmr) spectroscopy and mass spectrometry as analytical techniques. Pharmacological studies with drugs and other compounds labelled with stable isotopes have developed in parallel with the rapid progress in the enhancement of sensitivity and selectivity of gas chromatography - mass spectrometric analyses, and have been directed largely to an evaluation of pharmako-kinetics and drug metabolic pathways. In these studies, illustrated with selected samples, isotopically labelled compounds have been used to advantage as internal standards for the mass spectrometric analyses and as in vivo tracers for metabolites. In the broader discipline of biochemistry, stable isotopes and isotopically labelled compounds have been used increasingly in conjuction with both nmr spectroscopy and mass spectrometry in tracer and structural studies. The more recent trends in the use of stable isotopes in these biochemical studies are discussed in the context of the improvements in analytical techniques. Specific examples will be drawn from investigations of the biosynthesis of natural products by micro-organisms; the protein, fat and carbohydrate fluxes in humans; and the structure and function of enzymes, membranes and other macro-molecular assemblages. The potential for the future development of stable isotopes in biochemistry and pharmacology are considered briefly, together with some of the problems that must be solved if their considerable potential is to be realized. (author)

  1. Chloroformate derivatization for tracing the fate of Amino acids in cells and tissues by multiple stable isotope resolved metabolomics (mSIRM).

    Science.gov (United States)

    Yang, Ye; Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M

    2017-07-11

    Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different elemental isotopes can trace the allocation of e.g. C and N atoms through the network. Such dual-label experiments however challenge the resolution of conventional mass spectrometers, which must distinguish the neutron mass differences among different elemental isotopes. This requires ultrahigh resolution Fourier transform mass spectrometry (UHR-FTMS). When combined with direct infusion nano-electrospray ion source (nano-ESI), UHR-FTMS can provide rapid, global, and quantitative analysis of all possible mass isotopologues of metabolites. Unfortunately, very low mass polar metabolites such as amino acids can be difficult to analyze by current models of UHR-FTMS, plus the high salt content present in typical cell or tissue polar extracts may cause unacceptable ion suppression for sources such as nano-ESI. Here we describe a modified method of ethyl chloroformate (ECF) derivatization of amino acids to enable rapid quantitative analysis of stable isotope labeled amino acids using nano-ESI UHR-FTMS. This method showed excellent linearity with quantifiable limits in the low nanomolar range represented in microgram quantities of biological specimens, which results in extracts with total analyte abundances in the low to sub-femtomole range. We have

  2. Visualizing Microbial Biogeochemistry: NanoSIMS and Stable Isotope Probing (Invited)

    Science.gov (United States)

    Pett-Ridge, J.; Weber, P. K.

    2009-12-01

    Linking phylogenetic information to function in microbial communities is a key challenge for microbial ecology. Isotope-labeling experiments provide a useful means to investigate the ecophysiology of microbial populations and cells in the environment and allow measurement of nutrient transfers between cell types, symbionts and consortia. The combination of Nano-Secondary Ion Mass Spectrometry (NanoSIMS) analysis, in situ labeling and high resolution microscopy allows isotopic analysis to be linked to phylogeny and morphology and holds great promise for fine-scale studies of microbial systems. In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio ‘map’ can then be generated for the analyzed area. NanoSIMS images of 13C, 15N and Mo (a nitrogenase co-factor) localization in diazotrophic cyanobacteria show how cells differentially allocate resources within filaments and allow calculation of nutrient uptake rates on a cell by cell basis. Images of AM fungal hyphae-root and cyanobacteria-rhizobia associations indicate the mobilization and sharing (stealing?) of newly fixed C and N. In a related technique, “El-FISH”, stable isotope labeled biomass is probed with oligonucleotide-elemental labels and then imaged by NanoSIMS. In microbial consortia and cyanobacterial mats, this technique helps link microbial structure and function simultaneously even in systems with unknown and uncultivated microbes. Finally, the combination of re-engineered universal 16S oligonucleotide microarrays with NanoSIMS analyses may allow microbial identity to be linked to functional roles in complex systems such as mats and cellulose degrading hindgut communities. These newly developed methods provide correlated

  3. Validation of 13CO2 breath analysis as a measurement of demethylation of stable isotope labeled aminopyrine in man

    International Nuclear Information System (INIS)

    Schneider, J.F.; Schoeller, D.A.; Nemchausky, B.; Bayer, J.L.; Klein, P.

    1978-01-01

    Interval sampling of expired breath as a simple, non-invasive assessment of the effect of liver disease upon hepatic microsomal drug metabolism, has been demonstrated with [ 14 C] dimethylaminoantipyrine (aminopyrine). In order to eliminate radiation risk the authors have validated the use of aminopyrine labeled with the stable, non-radioactive isotope 13 C. Simultaneous oral administration of both [ 14 C]- and [ 13 C] aminopyrine to five adult subjects without liver disease as well as five patients with known liver disease, resulted in the excretion of label at nearly identical rates in both individual time collections (r=0.94) as well as cumulative excretion for three hours (r=0.97). An oral dose of 2-mg/kg of [ 13 C) aminopyrine resulted in rates of production of 13 CO 2 significantly greater than baseline variations in 13 CO 2 production in the fasting, resting subject. Measurements of a single peak value at one half hour correlated closely with the determination of cumulative appearance over three hours (r=0.96). A consistent reproducible increase in the peak production of 13 CO 2 was observed when five patients received phenobarbital. Stable isotope labeled aminopyrine may be used to detect the effects of disease and treatment upon hepatic N-demethylation activity in human subjects without incurring any risk from radiation. Furthermore, the availability of another isotopic carbon label should make possible the study of direct drug-drug interaction utilizing CO 2 analysis. (Auth.)

  4. iMS2Flux – a high–throughput processing tool for stable isotope labeled mass spectrometric data used for metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Poskar C Hart

    2012-11-01

    Full Text Available Abstract Background Metabolic flux analysis has become an established method in systems biology and functional genomics. The most common approach for determining intracellular metabolic fluxes is to utilize mass spectrometry in combination with stable isotope labeling experiments. However, before the mass spectrometric data can be used it has to be corrected for biases caused by naturally occurring stable isotopes, by the analytical technique(s employed, or by the biological sample itself. Finally the MS data and the labeling information it contains have to be assembled into a data format usable by flux analysis software (of which several dedicated packages exist. Currently the processing of mass spectrometric data is time-consuming and error-prone requiring peak by peak cut-and-paste analysis and manual curation. In order to facilitate high-throughput metabolic flux analysis, the automation of multiple steps in the analytical workflow is necessary. Results Here we describe iMS2Flux, software developed to automate, standardize and connect the data flow between mass spectrometric measurements and flux analysis programs. This tool streamlines the transfer of data from extraction via correction tools to 13C-Flux software by processing MS data from stable isotope labeling experiments. It allows the correction of large and heterogeneous MS datasets for the presence of naturally occurring stable isotopes, initial biomass and several mass spectrometry effects. Before and after data correction, several checks can be performed to ensure accurate data. The corrected data may be returned in a variety of formats including those used by metabolic flux analysis software such as 13CFLUX, OpenFLUX and 13CFLUX2. Conclusion iMS2Flux is a versatile, easy to use tool for the automated processing of mass spectrometric data containing isotope labeling information. It represents the core framework for a standardized workflow and data processing. Due to its flexibility

  5. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    Energy Technology Data Exchange (ETDEWEB)

    Torizawa, Takuya; Shimizu, Masato [Crest, Jst (Japan); Taoka, Masato [Tokyo Metropolitan University, Graduate School of Science (Japan); Miyano, Hiroshi [Ajinomoto Co., Inc. Institute of Life Sciences (Japan); Kainosho, Masatsune [Crest, Jst (Japan)], E-mail: kainosho@nmr.chem.metro-u.ac.jp

    2004-11-15

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis.

  6. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    International Nuclear Information System (INIS)

    Torizawa, Takuya; Shimizu, Masato; Taoka, Masato; Miyano, Hiroshi; Kainosho, Masatsune

    2004-01-01

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis

  7. Contribution of stable isotopes to the study of pharmacokinetics of magnesium salts; Apport des isotopes stables a l'etude de la pharmacocinetique de sels de magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Benech, H

    1999-05-28

    The use of stable isotopes as labels is becoming an attractive tool for the study of magnesium behavior in humans. It has been used two stable isotopes of magnesium, {sup 25}Mg and {sup 26}Mg, to measure the absolute bioavailability of a pharmaceutical form of magnesium. (N.C.)

  8. Development of uniformly stable isotope labeling system in higher plants for hetero-nuclear NMR experiments in vitro and in vivo

    International Nuclear Information System (INIS)

    Kikuchi, J.

    2005-01-01

    Full text: Novel methods for measurement of living systems are making new breakthroughs in life science. In the era of the metabolome (analysis of all measurable metabolites), a MS-based approach is considered to be the major technology, whereas a NMR-based method is recognized as minor technology due to its low sensitivity. Therefore, my laboratory is currently focusing to develop novel methodologies for an NMR-based metabolomics. This will be achieved by uniform stable isotope labeling of higher plants allowing application of multi-dimensional NMR experiments used in protein structure determination. Using these novel methods, I will analyze the dynamic molecular networks inside tissues. Especially, use of stable isotope labeling methods has enormous advantage for discrimination of incorporated or de novo synthesized compounds. Furthermore, potentiality of in vivo-NMR metabolomics will be discussed in the conference. (author)

  9. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  10. Advisory group meeting on stable isotope labelled compounds in biomedical studies

    International Nuclear Information System (INIS)

    Vera Ruiz, H.; Parr, R.M.

    1985-11-01

    The programme of the meeting was restricted to topics involving applications of stable isotopes of the lighter elements (H, C, N, O). The current status of stable isotope techniques and applications in nutritional and biomedical studies, the applicability of these techniques in developing countries and the IAEA's future programmes on this topic were discussed

  11. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study.

    Science.gov (United States)

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Rodriguez-Gonzalez, Pablo; Garcia-Alonso, Jose I; Mayo, Juan C; Sainz, Rosa M

    2017-07-26

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/ SLC2A ) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the "Warburg effect" only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13 C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13 C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13 C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13 C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type.

  12. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study

    Science.gov (United States)

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Mayo, Juan C.

    2017-01-01

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the “Warburg effect” only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type. PMID:28933733

  13. Contribution of stable isotopes to the study of pharmacokinetics of magnesium salts; Apport des isotopes stables a l'etude de la pharmacocinetique de sels de magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Benech, H

    1999-05-28

    The use of stable isotopes as labels is becoming an attractive tool for the study of magnesium behavior in humans. It has been used two stable isotopes of magnesium, {sup 25}Mg and {sup 26}Mg, to measure the absolute bioavailability of a pharmaceutical form of magnesium. (N.C.)

  14. Synthesis of stable isotopically labeled peptides with filter-assisted enzymatic labeling for the diagnosis of hepatitis B virus infection utilizing mass spectrometry-based proteomics strategy

    International Nuclear Information System (INIS)

    Tsai, Hsing-Fen; Hsiao, He-Hsuan

    2017-01-01

    A facile method for the preparation of stable isotopically labeled peptides was developed by means of filter-assisted tryptic "1"6O/"1"8O water labeling, which could be directly applied to the determination of hepatitis B virus infection from human serum with tandem mass spectrometry. Tryptic peptides of hepatitis B surface antigen or hepatitis B e antigen from different subtypes of hepatitis B virus were synthesized with traditional solid-phase peptide synthesis as potential biomarkers. Trypsin catalyzed oxygen-18 exchange at their amidated c-terminus of arginine or lysine residue. The protease catalyzed oxygen-18 to oxygen-16 back exchange reaction was eliminated due to the complete removal of trypsin by the centrifugal filter containing a thin membrane associated with molecular weight cut-off of 10 KDa. The synthetic isotopic peptides were spiked into trichloroacetic acid/acetone precipitated human serum as internal standards and were selectively detected with multiplexed parallel reaction monitoring on a hybrid quadrupole-orbitrap mass spectrometer. The limit of detection for all synthetic peptides were in the range of 0.09 fmol–1.13 fmol. The results indicated that the peptide YLWEWASVR derived from hepatitis B surface antigen was quantified approximately 200 fmol per μl serum and may serve as a diagnostic biomarker for the detection of hepatitis B virus infected disease. - Highlights: • Facile synthesis of an inexpensive and highly reproducible stable isotopically labeled peptides. • Complete incorporation of two "1"8O atoms into synthesized peptides with filter-assisted enzymatic labeling. • Targeted analysis with parallel reaction monitoring assay for the disease diagnosis.

  15. Synthesis of stable isotopically labeled peptides with filter-assisted enzymatic labeling for the diagnosis of hepatitis B virus infection utilizing mass spectrometry-based proteomics strategy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsing-Fen; Hsiao, He-Hsuan, E-mail: hhhsiao@dragon.nchu.edu.tw

    2017-03-01

    A facile method for the preparation of stable isotopically labeled peptides was developed by means of filter-assisted tryptic {sup 16}O/{sup 18}O water labeling, which could be directly applied to the determination of hepatitis B virus infection from human serum with tandem mass spectrometry. Tryptic peptides of hepatitis B surface antigen or hepatitis B e antigen from different subtypes of hepatitis B virus were synthesized with traditional solid-phase peptide synthesis as potential biomarkers. Trypsin catalyzed oxygen-18 exchange at their amidated c-terminus of arginine or lysine residue. The protease catalyzed oxygen-18 to oxygen-16 back exchange reaction was eliminated due to the complete removal of trypsin by the centrifugal filter containing a thin membrane associated with molecular weight cut-off of 10 KDa. The synthetic isotopic peptides were spiked into trichloroacetic acid/acetone precipitated human serum as internal standards and were selectively detected with multiplexed parallel reaction monitoring on a hybrid quadrupole-orbitrap mass spectrometer. The limit of detection for all synthetic peptides were in the range of 0.09 fmol–1.13 fmol. The results indicated that the peptide YLWEWASVR derived from hepatitis B surface antigen was quantified approximately 200 fmol per μl serum and may serve as a diagnostic biomarker for the detection of hepatitis B virus infected disease. - Highlights: • Facile synthesis of an inexpensive and highly reproducible stable isotopically labeled peptides. • Complete incorporation of two {sup 18}O atoms into synthesized peptides with filter-assisted enzymatic labeling. • Targeted analysis with parallel reaction monitoring assay for the disease diagnosis.

  16. Contribution of stable isotopes to the study of pharmacokinetics of magnesium salts

    International Nuclear Information System (INIS)

    Benech, H.

    1999-01-01

    The use of stable isotopes as labels is becoming an attractive tool for the study of magnesium behavior in humans. It has been used two stable isotopes of magnesium, 25 Mg and 26 Mg, to measure the absolute bioavailability of a pharmaceutical form of magnesium. (N.C.)

  17. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    Science.gov (United States)

    You, Le; Zhang, Baichen; Tang, Yinjie J.

    2014-01-01

    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020

  18. Shifts in rotifer life history in response to stable isotope enrichment: testing theories of isotope effects on organismal growth

    Science.gov (United States)

    2017-01-01

    In ecology, stable isotope labelling is commonly used for tracing material transfer in trophic interactions, nutrient budgets and biogeochemical processes. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism growth and metabolism. This assumption is, however, challenged by theoretical considerations and experimental studies on kinetic isotope effects in vivo. Here, I demonstrate profound changes in life histories of the rotifer Brachionus plicatilis fed 15N-enriched algae (0.4–5.0 at%); i.e. at the enrichment levels commonly used in ecological studies. These findings support theoretically predicted effects of heavy isotope enrichment on growth, metabolism and ageing in biological systems and underline the importance of accounting for such effects when using stable isotope labelling in experimental studies. PMID:28405367

  19. Analysis of stable isotope assisted metabolomics data acquired by GC-MS

    International Nuclear Information System (INIS)

    Wei, Xiaoli; Shi, Biyun; Koo, Imhoi; Yin, Xinmin; Lorkiewicz, Pawel; Suhail, Hamid; Rattan, Ramandeep; Giri, Shailendra; McClain, Craig J.

    2017-01-01

    Stable isotope assisted metabolomics (SIAM) measures the abundance levels of metabolites in a particular pathway using stable isotope tracers (e.g., 13 C, 18 O and/or 15 N). We report a method termed signature ion approach for analysis of SIAM data acquired on a GC-MS system equipped with an electron ionization (EI) ion source. The signature ion is a fragment ion in EI mass spectrum of a derivatized metabolite that contains all atoms of the underivatized metabolite, except the hydrogen atoms lost during derivatization. In this approach, GC-MS data of metabolite standards were used to recognize the signature ion from the EI mass spectra acquired from stable isotope labeled samples, and a linear regression model was used to deconvolute the intensity of overlapping isotopologues. A mixture score function was also employed for cross-sample chromatographic peak list alignment to recognize the chromatographic peaks generated by the same metabolite in different samples, by simultaneously evaluating the similarity of retention time and EI mass spectrum of two chromatographic peaks. Analysis of a mixture of 16 13 C-labeled and 16 unlabeled amino acids showed that the signature ion approach accurately identified and quantified all isotopologues. Analysis of polar metabolite extracts from cells respectively fed with uniform 13 C-glucose and 13 C-glutamine further demonstrated that this method can also be used to analyze the complex data acquired from biological samples. - Highlights: • A signature ion approach is developed for analysis of stable isotope GC-MS data. • GC-MS data of compound standards are used for selection of the signature ion. • Linear regression model is used to deconvolute the overlapping isotopologue peaks. • The developed method was tested by known compounds and biological samples.

  20. Positional enrichment by proton analysis (PEPA). A one-dimensional "1H-NMR approach for "1"3C stable isotope tracer studies in metabolomics

    International Nuclear Information System (INIS)

    Vinaixa, Maria; Yanes, Oscar; Rodriguez, Miguel A.; Capellades, Jordi; Aivio, Suvi; Stracker, Travis H.; Gomez, Josep; Canyellas, Nicolau

    2017-01-01

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of "1"3C-satellite peaks using 1D-"1H-NMR spectra. In comparison with "1"3C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of "1"3C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of "1H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  1. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    Science.gov (United States)

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  2. Simultaneous determination of glucose turnover, alanine turnover, and gluconeogenesis in human using a double stable-isotope-labeled tracer infusion and gas chromatography-mass spectrometry analysis

    International Nuclear Information System (INIS)

    Martineau, A.; Lecavalier, L.; Falardeau, P.; Chiasson, J.L.

    1985-01-01

    We have developed and validated a new method to measure simultaneously glucose turnover, alanine turnover, and gluconeogenesis in human, in steady and non-steady states, using a double stable-isotope-labeled tracer infusion and GC-MS analysis. The method is based on the concomitant infusion and dilution of D-[2,3,4,6,6-2H5]glucose and L-[1,2,3-13C3]alanine. The choice of the tracers was done on the basis of a minimal overlap between the ions of interest and those arising from natural isotopic abundances. Alanine was chosen as the gluconeogenic substrate because it is the major gluconeogenic amino acid extracted by the liver and, with lactate, constitutes the bulk of the gluconeogenic precursors. The method was validated by comparing the results obtained during simultaneous infusion of trace amounts of both stable isotope labeled compounds with the radioactive tracers (D-[3-3H]glucose and L-[1,2,3-14C3]alanine) in a normal and a diabetic subject; the radiolabeled tracers were used as the accepted reference procedure. A slight overestimation of glucose turnover (7.3 versus 6.8 in normal and 10.8 versus 9.2 mumol/kg min in diabetic subject) was noticed when the stable isotope-labeled tracers were used. For the basal turnover rate of alanine, similar values were obtained with both methods (6.2 mumol/kg min). For gluconeogenesis, higher values were observed in the basal state with the stable isotopes (0.42 versus 0.21 mumol/kg min); however, these differences disappeared in the postprandial period after the ingestion of a mixed meal. Despite those minor differences, the overall correlation with the reference method was excellent for glucose turnover (r = 0.87) and gluconeogenesis (r = 0.86)

  3. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    Science.gov (United States)

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  4. Progress in stable isotope analysis and new possibilities of clinical investigations

    International Nuclear Information System (INIS)

    Roth, E.

    1989-01-01

    The use of stable isotopes in medicine rests on three possibilities offered by labelling: identification of an element, a molecule, or a fragment of a molecule along its biological pathway; quantification of biological pools by isotopic dilution; measurement of metabolization rates, and more generally of clearances. Whenever a corporal function experiences a disregulation reflected either by changes in metabolic activity or modifications of the importance of pools of certain molecules, the possibility exists of making use of isotopes in diagnosis. Examples of practical applications of stable isotopes are given and analytical problems that had to be solved are underlined

  5. Positional enrichment by proton analysis (PEPA). A one-dimensional {sup 1}H-NMR approach for {sup 13}C stable isotope tracer studies in metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Vinaixa, Maria; Yanes, Oscar [Department of Electronic Engineering-Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Rodriguez, Miguel A.; Capellades, Jordi [Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Aivio, Suvi; Stracker, Travis H. [Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (Spain); Gomez, Josep; Canyellas, Nicolau [Department of Electronic Engineering-, Universitat Rovira i Virgili, Tarragona (Spain)

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of {sup 13}C-satellite peaks using 1D-{sup 1}H-NMR spectra. In comparison with {sup 13}C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of {sup 13}C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of {sup 1}H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  6. Formation of Hydroxymethyl DNA Adducts in Rats Orally Exposed to Stable Isotope Labeled Methanol

    Science.gov (United States)

    Lu, Kun; Gul, Husamettin; Upton, Patricia B.; Moeller, Benjamin C.; Swenberg, James A.

    2012-01-01

    Methanol is a large volume industrial chemical and widely used solvent and fuel additive. Methanol’s well known toxicity and use in a wide spectrum of applications has raised long-standing environmental issues over its safety, including its carcinogenicity. Methanol has not been listed as a carcinogen by any regulatory agency; however, there are debates about its carcinogenic potential. Formaldehyde, a metabolite of methanol, has been proposed to be responsible for the carcinogenesis of methanol. Formaldehyde is a known carcinogen and actively targets DNA and protein, causing diverse DNA and protein damage. However, formaldehyde-induced DNA adducts arising from the metabolism of methanol have not been reported previously, largely due to the absence of suitable DNA biomarkers and the inability to differentiate what was due to methanol compared with the substantial background of endogenous formaldehyde. Recently, we developed a unique approach combining highly sensitive liquid chromatography-mass spectrometry methods and exposure to stable isotope labeled chemicals to simultaneously quantify formaldehyde-specific endogenous and exogenous DNA adducts. In this study, rats were exposed daily to 500 or 2000 mg/kg [13CD4]-methanol by gavage for 5 days. Our data demonstrate that labeled formaldehyde arising from [13CD4]-methanol induced hydroxymethyl DNA adducts in multiple tissues in a dose-dependent manner. The results also demonstrated that the number of exogenous DNA adducts was lower than the number of endogenous hydroxymethyl DNA adducts in all tissues of rats administered 500 mg/kg per day for 5 days, a lethal dose to humans, even after incorporating an average factor of 4 for reduced metabolism due to isotope effects of deuterium-labeled methanol into account. PMID:22157354

  7. Mass spectrometric studies of stable isotope-labelled carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Andersson, B.Aa.; Dinger, F.; Dinh-Nguyen, N.

    1975-01-01

    Low resolution mass spectra of deuterium and carbon-13 labelled fatty acid pyrrolidides are discussed. The simple fragmentation pattern of pyrrolidides makes them superior to other derivatives, regarding location of isotopes. Deuteriation of ethylenic fatty acid pyrrolidides therefore seems to be an improved method to locate carbon-carbon double bonds by mass spectrometry. (author)

  8. Stable isotope utilization for research on human nutrition

    International Nuclear Information System (INIS)

    Desjeux, J.F.

    1994-01-01

    In the framework of nutritional molecule metabolism research, this paper presents the various stable isotopes used as labels for biological molecules, the reasons for their application in human nutritional study (mainly because of their non toxicity) and the various analysis methods (isotope ratio mass spectrometry, coupled gaseous chromatography and mass spectrometry, nuclear magnetic resonance). Several application examples in nutrition research are then discussed: metabolic conversion measurement for a molecule into its different metabolites, energetic losses. 23 refs

  9. Affordable uniform isotope labeling with 2H, 13C and 15N in insect cells

    International Nuclear Information System (INIS)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D.

    2015-01-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for 15 N and 13 C with yields comparable to expression in full media. For 2 H, 15 N and 2 H, 13 C, 15 N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins

  10. Stable isotope N-phosphoryl amino acids labeling for quantitative profiling of amine-containing metabolites using liquid chromatography mass spectrometry.

    Science.gov (United States)

    Zhang, Shanshan; Shi, Jinwen; Shan, Changkai; Huang, Chengting; Wu, Yile; Ding, Rong; Xue, Yuhua; Liu, Wen; Zhou, Qiang; Zhao, Yufen; Xu, Pengxiang; Gao, Xiang

    2017-07-25

    Stable isotope chemical labeling liquid chromatography-mass spectrometry (LC-MS) is a powerful strategy for comprehensive metabolomics profiling, which can improve metabolites coverage and quantitative information for exploration of metabolic regulation in complex biological systems. In the current work, a novel stable isotope N-phosphoryl amino acids labeling strategy (SIPAL) has been successful developed for quantitative profiling of amine-containing metabolites in urine based on organic phosphorus chemistry. Two isotopic reagents, 16 O 2 - and 18 O 2 -N-diisopropyl phosphoryl l-alanine N-hydroxysuccinimide esters ( 16 O/ 18 O-DIPP-L-Ala-NHS), were firstly synthesized in high yields for labeling the amine-containing metabolites. The performance of SIPAL strategy was tested by analyzing standard samples including 20 l-amino acids, 10 d-amino acids and small peptides by using LC-MS. We observed highly efficient and selective labeling for SIPAL strategy within 15 min in a one-pot derivatization reaction under aqueous reaction conditions. The introduction of a neutral phosphate group at N-terminus can increase the proton affinity and overall hydrophobicity of targeted metabolites, leading to the better ionization efficiency in electrospray ionization processes and chromatographic separations of hydrophilic metabolites on reversed-phase column. Furthermore, the chiral metabolites, such as d-amino acids, could be converted to diastereomers after SIPAL and successfully separated on regular reversed-phase column. The chirality of labeled enantiomers can be determined by using different detection methods such as 31 P NMR, UV, and MS, demonstrating the potential application of SIPAL strategy. In addition, absolute quantification of chiral metabolites in biological samples can be easily achieved by using SIPAL strategy. For this purpose, urine samples collected from a healthy volunteer were analyzed by using LC-ESI-Orbitrap MS. Over 300 pairs of different amine

  11. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS.

    Science.gov (United States)

    Zhang, Hong-Hai; Lechuga, Thomas J; Chen, Yuezhou; Yang, Yingying; Huang, Lan; Chen, Dong-Bao

    2016-05-01

    Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with "light" (L-(12)C6 (14)N4-Arg and L-(12)C6 (14)N2-Lys) or "heavy" (L-(13)C6 (15)N4-Arg and L-(13)C6 (15)N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis. © 2016 by the Society for the Study of Reproduction

  12. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  13. Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya

    Energy Technology Data Exchange (ETDEWEB)

    Ocana, Mireia Fernandez [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)], E-mail: Mireia.FernandezOcana@pfizer.com; Fraser, Paul D. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Patel, Raj K.P.; Halket, John M. [Specialist Bioanalytical Services Ltd., Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Bramley, Peter M. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)

    2009-02-16

    The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study.

  14. Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya

    International Nuclear Information System (INIS)

    Ocana, Mireia Fernandez; Fraser, Paul D.; Patel, Raj K.P.; Halket, John M.; Bramley, Peter M.

    2009-01-01

    The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study

  15. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS1

    Science.gov (United States)

    Zhang, Hong-Hai; Lechuga, Thomas J.; Chen, Yuezhou; Yang, Yingying; Huang, Lan; Chen, Dong-Bao

    2016-01-01

    Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with “light” (L-12C614N4-Arg and L-12C614N2-Lys) or “heavy” (L-13C615N4-Arg and L-13C615N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis. PMID:27075618

  16. Stable isotopes. Enriched wheat: a new chance for nutrition research

    International Nuclear Information System (INIS)

    Chagvardieff, P.

    1996-01-01

    The Department of Plant Eco-physiology (DEV) from the CEA/Life Sciences Department of Cadarache (France) has artificially produced two kg of carbon 13 labelled wheat for nutrition research. It is the first successful stable isotope labelling of complex nutriments with a 10% enrichment in carbon 13. This wheat has been used for the manufacturing of pastas to follow the assimilation of nutrients by the organism. This short paper gives some details about the experimental procedure of labelled wheat cultivation. (J.S.)

  17. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2011-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution3,4. Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labeling mice with 15N-thymidine from gestation through post-natal week 8, we find no 15N label retention by dividing small intestinal crypt cells after 4wk chase. In adult mice administered 15N-thymidine pulse-chase, we find that proliferating crypt cells dilute label consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human hematopoietic system. These studies show that MIMS provides high-resolution quantitation of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research. PMID:22246326

  18. Stable-label intravenous glucose tolerance test minimal model

    International Nuclear Information System (INIS)

    Avogaro, A.; Bristow, J.D.; Bier, D.M.; Cobelli, C.; Toffolo, G.

    1989-01-01

    The minimal model approach to estimating insulin sensitivity (Sl) and glucose effectiveness in promoting its own disposition at basal insulin (SG) is a powerful tool that has been underutilized given its potential applications. In part, this has been due to its inability to separate insulin and glucose effects on peripheral uptake from their effects on hepatic glucose inflow. Prior enhancements, with radiotracer labeling of the dosage, permit this separation but are unsuitable for use in pregnancy and childhood. In this study, we labeled the intravenous glucose tolerance test (IVGTT) dosage with [6,6- 2 H 2 ]glucose, [2- 2 H]glucose, or both stable isotopically labeled glucose tracers and modeled glucose kinetics in six postabsorptive, nonobese adults. As previously found with the radiotracer model, the tracer-estimated S*l derived from the stable-label IVGTT was greater than Sl in each case except one, and the tracer-estimated SG* was less than SG in each instance. More importantly, however, the stable-label IVGTT estimated each parameter with an average precision of +/- 5% (range 3-9%) compared to average precisions of +/- 74% (range 7-309%) for SG and +/- 22% (range 3-72%) for Sl. In addition, because of the different metabolic fates of the two deuterated tracers, there were minor differences in basal insulin-derived measures of glucose effectiveness, but these differences were negligible for parameters describing insulin-stimulated processes. In conclusion, the stable-label IVGTT is a simple, highly precise means of assessing insulin sensitivity and glucose effectiveness at basal insulin that can be used to measure these parameters in individuals of all ages, including children and pregnant women

  19. Synthesis of 15N isotope labeled alanine

    International Nuclear Information System (INIS)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant'Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira

    2005-01-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of 15 N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of 15 N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of α-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ( 15 NH 3 aq) was carried out. In order to avoid eventually losses of 15 NH 3 , special cares were adopted, since the production cost is high. Although the acquisition cost of the 13 N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH 3 (aq) being employed. With the establishment of the system for 15 NH 3 recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  20. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  1. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.

    Science.gov (United States)

    Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M

    2011-09-22

    Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and

  2. Simultaneous determination of the intravenous and oral pharmacokinetic parameters of D,L-verapamil using stable isotope-labelled verapamil.

    Science.gov (United States)

    Eichelbaum, M; Somogyi, A; von Unruh, G E; Dengler, H J

    1981-01-01

    Following i.v. administration, the plasma concentration-time curve of verapamil could best be described by either a mono- or biexponential equation. Total plasma clearance (1.26 1/min) approached liver blood flow (1.51/min), so it can be concluded that its clearance is liver blood flow-dependent. Although absorption was almost complete after oral administration, absolute bioavailability (20%) was low, due to extensive hepatic first-pass metabolism. The approach using stable isotope-labelled and unlabelled drug permits simultaneous administration by the intravascular and extravascular routes, thus allowing determination of absolute bioavailability in a single experiment.

  3. Stable isotope phenotyping via cluster analysis of NanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment

    Directory of Open Access Journals (Sweden)

    Katherine S Dawson

    2016-05-01

    Full Text Available Stable isotope probing (SIP is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS, allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with 13C-acetate, 15N-ammonium, and 33S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope (13C/12C, 15N/14N, and 33S/32S and elemental ratio (C/CN and S/CN profiles, our analysis partitioned ~2200 cellular regions of interest (ROIs into 5 distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA.

  4. Biomedical research applications of electromagnetically separated enriched stable isotopes

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1982-01-01

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosotope production, labeled compounds, and potential radiopharmaceuticals; (2) nutrition, food science, and pharmacology; (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and Moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and non-radioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Priorities and summaries are based on statements in the references and from answers to a survey conducted in the fall of 1981. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for 26 Mg, 43 Ca, 70 Zn, 76 Se, 78 Se, 102 Pd, 111 Cd, 113 Cd, and 190 Os. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments

  5. Development of Stable Isotope Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Han, Jae Min

    2009-03-01

    KAERI has obtained an advanced technology with singular originality for laser stable isotope separation. Objectives for this project are to get production technology of Tl-203 stable isotope used for medical application and are to establish the foundation of the pilot system, while we are taking aim at 'Laser Isotope Separation Technology to make resistance to the nuclear proliferation'. And we will contribute to ensuring a nuclear transparency in the world society by taking part in a practical group of NSG and being collaboration with various international groups related to stable isotope separation technology

  6. Affordable uniform isotope labeling with {sup 2}H, {sup 13}C and {sup 15}N in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for {sup 15}N and {sup 13}C with yields comparable to expression in full media. For {sup 2}H,{sup 15}N and {sup 2}H,{sup 13}C,{sup 15}N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  7. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  8. Calcium stable isotope geochemistry

    International Nuclear Information System (INIS)

    Gausonne, Nikolaus; Schmitt, Anne-Desiree; Heuser, Alexander; Wombacher, Frank; Dietzel, Martin; Tipper, Edward; Schiller, Martin

    2016-01-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  9. Mass spectrometric measurements of norepinephrine synthesis in man from infusion of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine

    International Nuclear Information System (INIS)

    Suzuki, T.; Sakoda, S.; Ueji, M.; Kishimoto, S.

    1985-01-01

    The kinetics of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS), an immediate precursor of (-)-norepinephrine, was studied to investigate the pharmacologic mechanism of its therapeutic effect on orthostatic hypotension in familial amyloid polyneuropathy (FAP) and on akinesia and freezing in parkinsonism. [ 13 C,D]-L-threo-DOPS was synthesized, and 100 mg of the compound was infused for 2 h into two normal subjects, two FAP patients and two patients with the degenerative diseases of the central nervous system. Labelled and endogenous norepinephrine in urine and plasma was assayed simultaneously by gas chromatography/mass spectrometry. The results indicate that the increase in norepinephrine in biological fluids after administration of L-threo-DOPS is attributable mostly to norepinephrine derived from L-threo-DOPS, not to pre-formed endogenous norepinephrine released by L-threo-DOPS

  10. Measurement of Hepatic Protein Fractional Synthetic Rate with Stable Isotope Labeling Technique in Thapsigargin Stressed HepG2 Cells

    Science.gov (United States)

    Song, Juquan; Zhang, Xiao-jun; Boehning, Darren; Brooks, Natasha C.; Herndon, David N.; Jeschke, Marc G.

    2012-01-01

    Severe burn-induced liver damage and dysfunction is associated with endoplasmic reticulum (ER) stress. ER stress has been shown to regulate global protein synthesis. In the current study, we induced ER stress in vitro and estimated the effect of ER stress on hepatic protein synthesis. The aim was two-fold: (1) to establish an in vitro model to isotopically measure hepatic protein synthesis and (2) to evaluate protein fractional synthetic rate (FSR) in response to ER stress. Human hepatocellular carcinoma cells (HepG2) were cultured in medium supplemented with stable isotopes 1,2-13C2-glycine and L-[ring-13C6]phenylalanine. ER stress was induced by exposing the cells to 100 nM of thapsigargin (TG). Cell content was collected from day 0 to 14. Alterations in cytosolic calcium were measured by calcium imaging and ER stress markers were confirmed by Western blotting. The precursor and product enrichments were detected by GC-MS analysis for FSR calculation. We found that the hepatic protein FSR were 0.97±0.02 and 0.99±0.05%/hr calculated from 1,2-13C2-glycine and L-[ring-13C6]phenylalanine, respectively. TG depleted ER calcium stores and induced ER stress by upregulating p-IRE-1 and Bip. FSR dramatically decreased to 0.68±0.03 and 0.60±0.06%/hr in the TG treatment group (pisotope tracer incorporation technique is a useful method for studying the effects of ER stress on hepatic protein synthesis. PMID:22298954

  11. Tests of intestinal absorption using carbon-14-labeled isotopes

    International Nuclear Information System (INIS)

    Fromm, H.; Sarva, R.P.

    1983-01-01

    Beta radiation-emitting isotopes are being used increasingly in diagnostic gastroenterology for the study of absorption. The major reason for the popularity of radioisotopes is that their use is convenient for patient and physician alike. They often obviate naso- or orointestinal intubation and the collection, storage, and analysis of stool. The radioactivity used for the studies of digestive and absorptive processes is small and is not hazardous. In spite of the safety of the radiolabeled compounds, their use is restricted in children and pregnant women. Therefore, for most tests, promising alternative methods that make use of the stable isotope of carbon, /sup 13/C, instead of the radioactive /sup 14/C have been developed. The analysis of stable isotopes requires more sophisticated technology than that of radioactive compounds, however. Only a few centers presently are equipped and staffed to analyze stable isotopes on a routine basis. In contrast, the analysis of radioactive isotopes has become a routine procedure in almost ever major laboratory. The last decade has brought the development of several radioactive absorption tests. The clinically most useful tests relate to the study of bile acid, fat, lactose, and xylose absorption. All of these tests utilize the excretion rate of /sup 14/CO/sub 2/ in breath after ingestion of a /sup 14/C-labeled compound as a measure of the rate of its absorption or malabsorption

  12. Melting point of high-purity germanium stable isotopes

    Science.gov (United States)

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  13. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics

    DEFF Research Database (Denmark)

    Ong, S.E.; Blagoev, B.; Kratchmarova, I.

    2002-01-01

    Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. H...

  14. Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis.

    Science.gov (United States)

    Oeljeklaus, Silke; Reinartz, Benedikt S; Wolf, Janina; Wiese, Sebastian; Tonillo, Jason; Podwojski, Katharina; Kuhlmann, Katja; Stephan, Christian; Meyer, Helmut E; Schliebs, Wolfgang; Brocard, Cécile; Erdmann, Ralf; Warscheid, Bettina

    2012-04-06

    The importomer complex plays an essential role in the biogenesis of peroxisomes by mediating the translocation of matrix proteins across the organellar membrane. A central part of this highly dynamic import machinery is the docking complex consisting of Pex14p, Pex13p, and Pex17p that is linked to the RING finger complex (Pex2p, Pex10p, Pex12p) via Pex8p. To gain detailed knowledge on the molecular players governing peroxisomal matrix protein import and, thus, the integrity and functionality of peroxisomes, we aimed at a most comprehensive investigation of stable and transient interaction partners of Pex14p, the central component of the importomer. To this end, we performed a thorough quantitative proteomics study based on epitope tagging of Pex14p combined with dual-track stable isotope labeling with amino acids in cell culture-mass spectrometry (SILAC-MS) analysis of affinity-purified Pex14p complexes and statistics. The results led to the establishment of the so far most extensive Pex14p interactome, comprising 9 core and further 12 transient components. We confirmed virtually all known Pex14p interaction partners including the core constituents of the importomer as well as Pex5p, Pex11p, Pex15p, and Dyn2p. More importantly, we identified new transient interaction partners (Pex25p, Hrr25p, Esl2p, prohibitin) that provide a valuable resource for future investigations on the functionality, dynamics, and regulation of the peroxisomal importomer.

  15. Application of Stable Isotope in Detection of Veterinary Drug Residues

    International Nuclear Information System (INIS)

    Wang Wei; Liu Zhanfeng; Du Xiaoning

    2010-01-01

    In recent years, there has happened a series of significant food safety events worldwide, which lower down consumers' confidence in food safety, and they are taking increasing care about the sources of their foods. The safety problem of animal-origin foods has become a global topic for discussion. Therefore, it is a pressing task to establish a precise, sensitive and reliable method for analyzing veterinary drug residue. An introduction of the present status regarding veterinary drug residue analysis was made in the paper, and it briefly summarized the limit of detection (LOD) and quantification (LOQ) which could be reached in veterinary drug residue analysis by isotopic internal standard method domestically and abroad. The paper also made a review of the progress in applied research of stable isotope labeled compound in veterinary drug residue analysis of, such as, antibiotic medicines, furans and sulfonamides. The paper elucidated the great importance of the application of stable isotopes in the sane development of China's food safety system. (authors)

  16. Application of enriched stable isotopes as tracers in biological systems

    DEFF Research Database (Denmark)

    Stürup, Stefan; Hansen, Helle Rüsz; Gammelgaard, Bente

    2008-01-01

    The application of enriched stable isotopes of minerals and trace elements as tracers in biological systems is a rapidly growing research field that benefits from the many new developments in inorganic mass spectrometric instrumentation, primarily within inductively coupled plasma mass spectrometry...... (ICP-MS) instrumentation, such as reaction/collision cell ICP-MS and multicollector ICP-MS with improved isotope ratio measurement and interference removal capabilities. Adaptation and refinement of radioisotope tracer experiment methodologies for enriched stable isotope experiments......, and the development of new methodologies coupled with more advanced compartmental and mathematical models for the distribution of elements in living organisms has enabled a broader use of enriched stable isotope experiments in the biological sciences. This review discusses the current and future uses of enriched...

  17. RNA–Stable-Isotope Probing Shows Utilization of Carbon from Inulin by Specific Bacterial Populations in the Rat Large Bowel

    Science.gov (United States)

    Lawley, Blair; Munro, Karen; Sims, Ian M.; Lee, Julian; Butts, Christine A.; Roy, Nicole

    2014-01-01

    Knowledge of the trophisms that underpin bowel microbiota composition is required in order to understand its complex phylogeny and function. Stable-isotope (13C)-labeled inulin was added to the diet of rats on a single occasion in order to detect utilization of inulin-derived substrates by particular members of the cecal microbiota. Cecal digesta from Fibruline-inulin-fed rats was collected prior to (0 h) and at 6, 12, 18 and 24 h following provision of the [13C]inulin diet. RNA was extracted from these cecal specimens and fractionated in isopycnic buoyant density gradients in order to detect 13C-labeled nucleic acid originating in bacterial cells that had metabolized the labeled dietary constituent. RNA extracted from specimens collected after provision of the labeled diet was more dense than 0-h RNA. Sequencing of 16S rRNA genes amplified from cDNA obtained from these fractions showed that Bacteroides uniformis, Blautia glucerasea, Clostridium indolis, and Bifidobacterium animalis were the main users of the 13C-labeled substrate. Culture-based studies of strains of these bacterial species enabled trophisms associated with inulin and its hydrolysis products to be identified. B. uniformis utilized Fibruline-inulin for growth, whereas the other species used fructo-oligosaccharide and monosaccharides. Thus, RNA–stable-isotope probing (RNA-SIP) provided new information about the use of carbon from inulin in microbiota metabolism. PMID:24487527

  18. Water enriched in the rare stable isotopes : Preparation, measurement and applications

    NARCIS (Netherlands)

    Faghihi, Vahideh

    2016-01-01

    The subject of this thesis is water with increased abundances of the rare stable isotopes 2H and 18O (and to some extent also 17O). Such artificially enriched (or "labelled") waters are often used in biomedicine, for establishing the total amount of body water (and thus body composition) of humans

  19. Melatonin labeled with hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1989-01-01

    A study has been made of isotope exchange between melatonin and deuterium (D 2 O) or tritium (HTO) oxide under different conditions. The ease of isotope exchange for the indole ring hydrogens of melatonin in an acidic medium decreases over the series H 4 > H 2 H 6 >> H 7 , enabling the authors to process a route for production of melatonin labeled with hydrogen isotopes at positions 4,6, and 2 of the indole ring. A method has been suggested for producing melatonin labeled with hydrogen isotopes at position 2 by desulfurization of 2-(2,4-dinitro-phenylsulfenyl)melatonin at Ni(Re) (D)

  20. Melatonin labelled by hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1988-01-01

    Isotope exchange of melatonin with deuterium (D 2 O) and tritium (HTO) oxides under different conditions is studied. Simplicity of isotope exchange of hydrogens of the indole ring of melatonin in the acidic medium decreases in series H 4 >H 2 >H 6 >>H 7 , that permits to suggest the way of melatonin preparation labelled by hydrogen isotopes in positions 4,6 and 2 of the indole ring. The way of melatonin preparation labelled by hydrogen isotopes in position 2 according to the reaction of desulfation 2-(2,4-dinitrophenylsulphenyl) melatonin at catalyst Ni(Re)(D) is suggested

  1. Accurate and sensitive determination of molar fractions of "1"3C-Labeled intracellular metabolites in cell cultures grown in the presence of isotopically-labeled glucose

    International Nuclear Information System (INIS)

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; Hevia Sánchez, David; González-Menéndez, Pedro; Sainz Menéndez, Rosa M.; García Alonso, J. Ignacio

    2017-01-01

    This work describes a methodology based on multiple linear regression and GC-MS for the determination of molar fractions of isotopically-labeled intracellular metabolites in cell cultures. Novel aspects of this work are: i) the calculation of theoretical isotopic distributions of the different isotopologues from an experimentally measured value of % 13C enrichment of the labeled precursor ii) the calculation of the contribution of lack of mass resolution of the mass spectrometer and different fragmentation mechanism such as the loss or gain of hydrogen atoms in the EI source to measure the purity of the selected cluster for each metabolite and iii) the validation of the methodology not only by the analysis of gravimetrically prepared mixtures of isotopologues but also by the comparison of the obtained molar fractions with experimental values obtained by GC-Combustion-IRMS based on "1"3C/"1"2C isotope ratio measurements. The method is able to measure molar fractions for twenty-eight intracellular metabolites derived from glucose metabolism in cell cultures grown in the presence of "1"3C-labeled Glucose. The validation strategies demonstrate a satisfactory accuracy and precision of the proposed procedure. Also, our results show that the minimum value of "1"3C incorporation that can be accurately quantified is significantly influenced by the calculation of the spectral purity of the measured cluster and the number of "1"3C atoms of the labeled precursor. The proposed procedure was able to accurately quantify gravimetrically prepared mixtures of natural and labeled glucose molar fractions of 0.07% and mixtures of natural and labeled glycine at molar fractions down to 0.7%. The method was applied to initial studies of glucose metabolism of different prostate cancer cell lines. - Highlights: • Determination of molar fractions of "1"3C-labeled metabolites in cell cultures. • The method is based on multiple linear regression and GC-MS. • Validation of the method by

  2. Accurate and sensitive determination of molar fractions of {sup 13}C-Labeled intracellular metabolites in cell cultures grown in the presence of isotopically-labeled glucose

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, Mario [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain); Rodríguez-González, Pablo, E-mail: rodriguezpablo@uniovi.es [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain); Hevia Sánchez, David; González-Menéndez, Pedro; Sainz Menéndez, Rosa M. [University Institute of Oncology (IUOPA), University of Oviedo, Julián Clavería 6, 33006 Oviedo (Spain); García Alonso, J. Ignacio [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain)

    2017-05-29

    This work describes a methodology based on multiple linear regression and GC-MS for the determination of molar fractions of isotopically-labeled intracellular metabolites in cell cultures. Novel aspects of this work are: i) the calculation of theoretical isotopic distributions of the different isotopologues from an experimentally measured value of % 13C enrichment of the labeled precursor ii) the calculation of the contribution of lack of mass resolution of the mass spectrometer and different fragmentation mechanism such as the loss or gain of hydrogen atoms in the EI source to measure the purity of the selected cluster for each metabolite and iii) the validation of the methodology not only by the analysis of gravimetrically prepared mixtures of isotopologues but also by the comparison of the obtained molar fractions with experimental values obtained by GC-Combustion-IRMS based on {sup 13}C/{sup 12}C isotope ratio measurements. The method is able to measure molar fractions for twenty-eight intracellular metabolites derived from glucose metabolism in cell cultures grown in the presence of {sup 13}C-labeled Glucose. The validation strategies demonstrate a satisfactory accuracy and precision of the proposed procedure. Also, our results show that the minimum value of {sup 13}C incorporation that can be accurately quantified is significantly influenced by the calculation of the spectral purity of the measured cluster and the number of {sup 13}C atoms of the labeled precursor. The proposed procedure was able to accurately quantify gravimetrically prepared mixtures of natural and labeled glucose molar fractions of 0.07% and mixtures of natural and labeled glycine at molar fractions down to 0.7%. The method was applied to initial studies of glucose metabolism of different prostate cancer cell lines. - Highlights: • Determination of molar fractions of {sup 13}C-labeled metabolites in cell cultures. • The method is based on multiple linear regression and GC-MS.

  3. Stable isotope analysis in primatology: a critical review.

    Science.gov (United States)

    Sandberg, Paul A; Loudon, James E; Sponheimer, Matt

    2012-11-01

    Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine-grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. © 2012 Wiley Periodicals, Inc.

  4. Applications of stable isotopes of 2H, 13C and 15N to clinical problems

    International Nuclear Information System (INIS)

    Klein, P.D.; Szczepanik, P.A.; Hachey, D.L.

    1974-01-01

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use 2 H, 13 C, or 15 N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective 13 C and 15 N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. 13 C and 15 N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B 12 -responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. 15 N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome. (Mukohata, S.)

  5. French days on stable isotopes

    International Nuclear Information System (INIS)

    2000-01-01

    These first French days on stable isotopes took place in parallel with the 1. French days of environmental chemistry. Both conferences had common plenary sessions. The conference covers all aspects of the use of stable isotopes in the following domains: medicine, biology, environment, tracer techniques, agronomy, food industry, geology, petroleum geochemistry, cosmo-geochemistry, archaeology, bio-geochemistry, hydrology, climatology, nuclear and particle physics, astrophysics, isotope separations etc.. Abstracts available on CD-Rom only. (J.S.)

  6. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  7. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability.

    Science.gov (United States)

    Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua

    2014-02-15

    With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  9. Quantitating subcellular metabolism with multi-isotope imaging mass spectrometry

    OpenAIRE

    Steinhauser, Matthew L.; Bailey, Andrew; Senyo, Samuel E.; Guillermier, Christelle; Perlstein, Todd S.; Gould, Alex P.; Lee, Richard T.; Lechene, Claude P.

    2012-01-01

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter 1,2 but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with sub-micron resolution 3,4 . Here we apply MIMS to diverse organisms, including Drosophila, mice, and humans. We test the “immortal strand hypothesis,” which predicts that during asymmetric stem cell division ch...

  10. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  11. Problems and prospects in future applications of stable isotopes in the life sciences and medicine

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.; Unkefer, C.J.; Walker, T.E.

    1982-01-01

    In the last decade, there has been a resurgence of interest in the use of stable isotopes of carbon, oxygen, and nitrogen in the life sciences and medicine fueled by the increased availability of the isotopes and isotopically labeled compounds and of instruments for their detection. Accelerated development of 13 C, 15 N, and 17 18 O can be expected in the future for studies of drug bioavailability, nutrition and body protein economy, viability of organs for transplant, and for non-invasive tests of metabolic diseases and dysfunctions. These accelerated developments depend on continued improvements in nmr and ms instrumentation and in methods for the synthesis of isotopically labeled compounds. The main part of this paper explores the possibilities of biosynthesis for the selective enrichment of natural products, especially amino acids, with 13 C

  12. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts

    International Nuclear Information System (INIS)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-01-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein 15 N and 13 C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor

  13. Stable isotope mass spectrometry in petroleum exploration

    International Nuclear Information System (INIS)

    Mathur, Manju

    1997-01-01

    The stable isotope mass spectrometry plays an important role to evaluate the stable isotopic composition of hydrocarbons. The isotopic ratios of certain elements in petroleum samples reflect certain characteristics which are useful for petroleum exploration

  14. The determination of blood volume in horses using stable isotope 50Cr

    International Nuclear Information System (INIS)

    Ito, Nobuhiko; Kunugiyama, Iwao; Tanaka, Masayoshi; Inoue, Megumi; Furukawa, Yoshinori; Hiraga, Atsushi; Yamanobe, Akira; Kubo, Katsuyoshi.

    1991-01-01

    A method using stable isotope 50 Cr was presented to determine equine blood volumes accurately in the field. The erythrocyte labelled with 50 Cr was injected intravenously, then small amount of blood was collected at regular intervals, and the erythrocyte volume was measured from dilution rate of 50 Cr. A blood volume was calculated from the erythrocyte volume and the packed cell volume (PCV). The present results suggested that the optimum time of collecting blood at rest was 2 h after injection of tagged blood. The red cell volumes and the total blood volumes of fifteen thoroughbred horses measured by the 50 Cr method were 46.6±9.9 and 133±17 ml/kg body weight, respectively. The mean red cell volume of stallion was larger than mare (t-test, p<0.05), and three was no significant difference in the blood volume. (author)

  15. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    Science.gov (United States)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  16. Deciphering systemic wound responses of the pumpkin extrafascicular phloem by metabolomics and stable isotope-coded protein labeling.

    Science.gov (United States)

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-12-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling.

  17. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing

  18. Stable Isotope Group 1982 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1983-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences during 1982, in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation, is described

  19. A Breast Cell Atlas: Organelle analysis of the MDA-MB-231 cell line by density-gradient fractionation using isotopic marking and label-free analysis

    Directory of Open Access Journals (Sweden)

    Marianne Sandin

    2015-09-01

    Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.

  20. Metabolic studies in man using stable isotopes

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Krumbiegel, P.

    1993-01-01

    In this project, stable isotope compounds and stable isotope pharmaceuticals were used (with emphasis on the application of 15 N) to study several aspects of nitrogen metabolism in man. Of the many methods available, the 15 N stable isotope tracer technique holds a special position because the methodology for application and nitrogen isotope analysis is proven and reliable. Valid routine methods using 15 N analysis by emission spectrometry have been demonstrated. Several methods for the preparation of biological material were developed during our participation in the Coordinated Research Programme. In these studies, direct procedures (i.e. use of diluted urine as a samples without chemical preparation) or rapid isolation methods were favoured. Within the scope of the Analytical Quality Control Service (AQCS) enriched stable isotope reference materials for medical and biological studies were prepared and are now available through the International Atomic Energy Agency. The materials are of special importance as the increasing application of stable isotopes as tracers in medical, biological and agricultural studies has focused interest on reliable measurements of biological material of different origin. 24 refs

  1. Stable Isotope Group 1983 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1984-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and related fields, and mass spectrometer instrumentation, during 1983, is described

  2. Overcoming interference with the detection of a stable isotopically labeled microtracer in the evaluation of beclabuvir absolute bioavailability using a concomitant microtracer approach.

    Science.gov (United States)

    Jiang, Hao; Titsch, Craig; Zeng, Jianing; Jones, Barry; Joyce, Philip; Gandhi, Yash; Turley, Wesley; Burrell, Richard; Aubry, Anne F; Arnold, Mark E

    2017-09-05

    The oral absolute bioavailability of beclabuvir in healthy subjects was determined using a microdose (100μg) of the stable isotopically labeled tracer via intravenous (IV) infusion started after oral dosing of beclabuvir (150mg). To simultaneously analyze the concentrations of the IV microtracer ([ 13 C 6 ]beclabuvir) and beclabuvir in plasma samples, a liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) method was initially developed. Surprisingly beclabuvir significantly interfered with the IV microtracer detection when using the selected reaction monitoring (SRM) in the assay. An interfering component from the drug substance was observed using a high resolution mass spectrometer (HRMS). The mass-to-charge (m/z) of the interfering component was -32ppm different from the nominal value for the IV microtracer and thus could not be differentiated in the SRM assay by the unit mass resolution. To overcome this interference, we evaluated two approaches by either monitoring an alternative product ion using the SRM assay or isolating the interfering component using the parallel reaction monitoring (PRM) assay on the HRMS. This case study has demonstrated two practical approaches for overcoming interferences with the detection of stable isotopically labeled IV microtracers in the evaluation of absolute bioavailability, which provides users the flexibility in using either LC-MS/MS or HRMS to mitigate unpredicted interferences in the assay to support microtracer absolute bioavailability studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Stable isotopes in Lithuanian bioarcheological material

    Science.gov (United States)

    Skipityte, Raminta; Jankauskas, Rimantas; Remeikis, Vidmantas

    2015-04-01

    Investigation of bioarcheological material of ancient human populations allows us to understand the subsistence behavior associated with various adaptations to the environment. Feeding habits are essential to the survival and growth of ancient populations. Stable isotope analysis is accepted tool in paleodiet (Schutkowski et al, 1999) and paleoenvironmental (Zernitskaya et al, 2014) studies. However, stable isotopes can be useful not only in investigating human feeding habits but also in describing social and cultural structure of the past populations (Le Huray and Schutkowski, 2005). Only few stable isotope investigations have been performed before in Lithuanian region suggesting a quite uniform diet between males and females and protein intake from freshwater fish and animal protein. Previously, stable isotope analysis has only been used to study a Stone Age population however, more recently studies have been conducted on Iron Age and Late medieval samples (Jacobs et al, 2009). Anyway, there was a need for more precise examination. Stable isotope analysis were performed on human bone collagen and apatite samples in this study. Data represented various ages (from 5-7th cent. to 18th cent.). Stable carbon and nitrogen isotope analysis on medieval populations indicated that individuals in studied sites in Lithuania were almost exclusively consuming C3 plants, C3 fed terrestrial animals, and some freshwater resources. Current investigation demonstrated social differences between elites and country people and is promising in paleodietary and daily life reconstruction. Acknowledgement I thank prof. dr. G. Grupe, Director of the Anthropological and Palaeoanatomical State Collection in Munich for providing the opportunity to work in her laboratory. The part of this work was funded by DAAD. Antanaitis-Jacobs, Indre, et al. "Diet in early Lithuanian prehistory and the new stable isotope evidence." Archaeologia Baltica 12 (2009): 12-30. Le Huray, Jonathan D., and Holger

  4. A new method for the labelling of proteins with radioactive arsenic isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Jennewein, M. [Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Hermanne, A. [VUB Cyclotron, University of Brussels, Laarbeeklaan 103, 1090 Brussels (Belgium); Mason, R.P. [Department of Radiology, Advanced Radiological Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (United States); Thorpe, P.E. [Department of Pharmacology and Simmons and Hamon Cancer Centers, University of Texas Southwestern Medical Center at Dallas, Dallas, TX (United States); Roesch, F. [Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany)]. E-mail: frank.roesch@uni-mainz.de

    2006-12-20

    Radioarsenic labelled radiopharmaceuticals could be a valuable asset to positron emission tomography. In particular, the long half-lives of {sup 72}As (T{sub 1/2}=26h) and {sup 74}As (T{sub 1/2}=17.8d) allow to investigate slow physiological or metabolical processes, like the enrichment and distribution of monoclonal antibodies (mab) in tumour tissue. In this work, a new method for the labelling of proteins with various radioactive arsenic isotopes was developed. For this purpose, two proteins, namely a chimeric IgG{sub 3} monoclonal antibody, ch3G4, directed against anionic phospholipids, and Rituxan (Rituximab), were labelled as a proof of principle with no-carrier-added radioarsenic isotopes ({sup 74}As and {sup 77}As). The developed labelling chemistry gives high yields (>99.9%), is reliable and could easily be transferred to automated labelling systems in a clinical environment. At least for the mab used in this work, this route of radioarsenic labelling does not affect the immunoreactivity of the product. The arsenic label stays stable for up to 72h at the molecular mass of the monoclonal antibody, which is in particular relevant to follow the pharmacology and pharmacokinetics of the labelled mab for several days.

  5. Quantification of isotope-labelled and unlabelled folates in plasma, ileostomy and food samples.

    Science.gov (United States)

    Büttner, Barbara E; Öhrvik, Veronica E; Witthöft, Cornelia M; Rychlik, Michael

    2011-01-01

    New stable isotope dilution assays were developed for the simultaneous quantitation of [(13)C(5)]-labelled and unlabelled 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid, folic acid along with unlabelled tetrahydrofolic acid and 10-formylfolic acid in clinical samples deriving from human bioavailability studies, i.e. plasma, ileostomy samples, and food. The methods were based on clean-up by strong anion exchange followed by LC-MS/MS detection. Deuterated analogues of the folates were applied as the internal standards in the stable isotope dilution assays. Assay sensitivity was sufficient to detect all relevant folates in the respective samples as their limits of detection were below 0.62 nmol/L in plasma and below 0.73 μg/100 g in food or ileostomy samples. Quantification of the [(13)C(5)]-label in clinical samples offers the possibility to differentiate between folate from endogenous body pools and the administered dose when executing bioavailability trials.

  6. Stable isotopes and biomarkers in microbial ecology

    NARCIS (Netherlands)

    Boschker, H.T.S.; Middelburg, J.J.

    2002-01-01

    The use of biomarkers in combination with stable isotope analysis is a new approach in microbial ecology and a number of papers on a variety of subjects have appeared. We will first discuss the techniques for analysing stable isotopes in biomarkers, primarily gas chromatography-combustion-isotope

  7. The use of stable isotopes as minerals tracers in human nutrition research

    International Nuclear Information System (INIS)

    Sajet, A. S.

    2007-01-01

    The idea of using stable isotopes as tracers in metabolic studies of vital systems started when it was noted that stable isotopes have the ability to unite with biomolecules.The article aims to review the methods used to measure quantities of tracer in doses given to donors orally or via intravenous injection, determinants of detection and their estimation as well as the use of mass spectrometer and other devices to measure different stable isotopes. In fact, the use of stable isotopes in nutrition research is an essential technique in order to understand many of the processes related to minerals absorption and the human body composition of water, fat and bones, transportation of food components within the body and estimation of the ages of red blood cells. It is possible to use the secretion of stable isotopes taken by injection to determine the paths of excretion or estimate self-retaining material by the intestine. The stable isotope technology helps to know the mechanics of minerals absorption and excretion in the body. It was possible to find out metabolic reactions of metals using mathematical models based on the measurement of tracers amount in biological fluids in order to know the absorbance situation of metals in the body.

  8. Direct infusion electrospray ionization–ion mobility–mass spectrometry for comparative profiling of fatty acids based on stable isotope labeling

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Jiapeng, E-mail: jpleng@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center (FUSCC), Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Sun, Tuanqi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center (FUSCC), Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Wang, Haoyang [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China); Cui, Jianlan; Liu, Qinghao [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang, Zhixu; Zhang, Manyu [Agilent Technologies China Co., Ltd, Shanghai 200080 (China); Guo, Yinlong, E-mail: ylguo@sioc.ac.cn [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China)

    2015-08-05

    A rapid method for fatty acids (FAs) comparative profiling based on carboxyl-specific stable isotope labeling (SIL) and direct infusion electrospray ionization–ion mobility–mass spectrometry (ESI–IM–MS) is established. The design of the method takes advantage of the three-dimensional characteristics of IM–MS including drift time, m/z and ion intensity, for comparison of d0-/d6-2,4-dimethoxy-6-piperazin-1-yl pyrimidine (DMPP)-labeled FAs. In particular, without chromatographic separation, the method allowed direct FAs profiling in complex samples due to the advantageous priority of DMPP in signal enhancement as well as the extra resolution that IM–MS offered. Additionally, the d0-/d6-DMPP-labeled FAs showed expected features, including very similar drift times, 6 Da mass deviations, specific reporter ions, similar MS responses, and adherence to the drift time rule regarding the influence of carbon chain length and unsaturation on relative drift times. Therefore, the introduction of isotope analogs minimized the matrix effect and variations in quantification and ensured accurate identification of non-targeted FAs by those typical features. Peak intensity ratios between d0-/d6-DMPP-labeled ions were subsequently used in relative quantification for the detected FAs. The established strategy has been applied successfully in the rapid profiling of trace free FAs between normal and cancerous human thyroid tissues. Sixteen free FAs were found with the increased level with a statistically significant difference (p < 0.05) compared to the normal tissue samples. The integrated SIL technique and ESI–IM–MS are expected to serve as an alternative tool for high-throughput analysis of FAs in complex samples. - Highlights: • A novel method based on IM–MS and SIL was developed for FAs comparative profiling. • Without LC separation, the method allowed direct infusion profiling of FAs in complex samples. • Both of the efficiency and accuracy for FAs analyses

  9. Stable isotope enrichment: Current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities

  10. Stable isotope enrichment - current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL. This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities. (orig.)

  11. The determination of blood volume in horses using stable isotope sup 50 Cr

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Nobuhiko; Kunugiyama, Iwao; Tanaka, Masayoshi; Inoue, Megumi; Furukawa, Yoshinori (Kitasato Univ., Towada, Aomori (Japan). School of Veterinary Medicine and Animal Sciences); Hiraga, Atsushi; Yamanobe, Akira; Kubo, Katsuyoshi

    1991-05-01

    A method using stable isotope {sup 50}Cr was presented to determine equine blood volumes accurately in the field. The erythrocyte labelled with {sup 50}Cr was injected intravenously, then small amount of blood was collected at regular intervals, and the erythrocyte volume was measured from dilution rate of {sup 50}Cr. A blood volume was calculated from the erythrocyte volume and the packed cell volume (PCV). The present results suggested that the optimum time of collecting blood at rest was 2 h after injection of tagged blood. The red cell volumes and the total blood volumes of fifteen thoroughbred horses measured by the {sup 50}Cr method were 46.6+-9.9 and 133+-17 ml/kg body weight, respectively. The mean red cell volume of stallion was larger than mare (t-test, p<0.05), and three was no significant difference in the blood volume. (author).

  12. Stable isotope tracers and exercise physiology: past, present and future.

    Science.gov (United States)

    Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J

    2017-05-01

    Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D 2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D 2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D 2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Development of stable isotope manufacturing in Russia

    International Nuclear Information System (INIS)

    Pokidychev, A.; Pokidycheva, M.

    1999-01-01

    For the past 25 years, Russia has relied heavily on the electromagnetic separation process for the production of middle and heavy mass stable isotopes. The separation of most light isotopes had been centered in Georgia which, after the collapse of the USSR, left Russia without this capability. In the mid-1970s, development of centrifuge technology for the separation of stable isotopes was begun. Alternative techniques such as laser separation, physical-chemical methods, and ion cyclotron resonance have also been investigated. Economic considerations have played a major role in the development and current status of the stable isotope enrichment capabilities of Russia

  14. LC/MS Method for the Determination of Stable Isotope Labeled Promethazine in Human Plasma

    Science.gov (United States)

    Zuwei, Wang; Boyd, Jason; Berens, Kurt L.; Putcha, Lakshmi

    2004-01-01

    Promethazine (PMZ) is taken by astronauts orally (PO), intramuscularly (IM) or rectally (PR) for space motion sickness. LC/MS method was developed with off-line solid phase extraction to measure plasma concentrations of PMZ given as stable isotope-labeled (SIL) formulations by the three different routes of administration simultaneously. Samples (0.5ml) were loaded on to Waters Oasis HLB co-polymer cartridges and eluted with 1.0 mL methanol. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 6 min. Acetonitrile/ ammonium acetate (30 mM) in water (3:2, v/v), pH 5.6 plus or minus 0.1, was used as the mobile phase for separation. Concentrations of PMZ, PMZ-d4 and PMZ-d7 and chlorpromazine (internal standard) were determined using a Micromass ZMD single quadrupole mass spectrometer with Electrospray Ionization (ESI). ESI mass spectra were acquired in positive ion mode with selected ion monitoring of [M+ H]dot plus. The method is rapid, reproducible and the assay specific parameters are listed in a table. A novel, sensitive and specific method for the measurement of PMZ and SIL PMZ in human plasma is reported.

  15. Application of stable isotopes and isotope pattern deconvolution-ICPMS to speciation of endogenous and exogenous Fe and Se in rats

    International Nuclear Information System (INIS)

    Gonzalez Iglesias, H.; Fernandez-Sanchez, M.L.; Garcia Alonso, J.I.; Lopez Sastre, J.B.; Sanz-Medel, A.

    2009-01-01

    Full text: Enriched stable isotopes are crucial to study essential trace element metabolism (e.g. Se, Fe) in biological systems. Measuring isotope ratios by ICPMS and using appropriate mathematical calculations, based on isotope pattern deconvolution (IPD) may provide quantitative data about endogenous and exogenous essential or toxic elements and their metabolism. In this work, IPD was applied to explore the feasibility of using two Se (or Fe) enriched stable isotopes, one as metabolic tracer and the other as quantitation tracer, to discriminate between the endogenous and supplemented Se (or Fe) species in rat fluids by collision cell ICPMS coupled to HPLC separation. (author)

  16. 5-Hydroxymethylcytosine is a predominantly stable DNA modification

    Science.gov (United States)

    Bachman, Martin; Uribe-Lewis, Santiago; Yang, Xiaoping; Williams, Michael; Murrell, Adele; Balasubramanian, Shankar

    2014-12-01

    5-Hydroxymethylcytosine (hmC) is an oxidation product of 5-methylcytosine which is present in the deoxyribonucleic acid (DNA) of most mammalian cells. Reduction of hmC levels in DNA is a hallmark of cancers. Elucidating the dynamics of this oxidation reaction and the lifetime of hmC in DNA is fundamental to understanding hmC function. Using stable isotope labelling of cytosine derivatives in the DNA of mammalian cells and ultrasensitive tandem liquid-chromatography mass spectrometry, we show that the majority of hmC is a stable modification, as opposed to a transient intermediate. In contrast with DNA methylation, which occurs immediately during replication, hmC forms slowly during the first 30 hours following DNA synthesis. Isotopic labelling of DNA in mouse tissues confirmed the stability of hmC in vivo and demonstrated a relationship between global levels of hmC and cell proliferation. These insights have important implications for understanding the states of chemically modified DNA bases in health and disease.

  17. Applications of stable isotopes in clinical pharmacology

    NARCIS (Netherlands)

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the

  18. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1986-08-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56. All requests for the loan of samples should be submitted with a summary of the purpose of the loan to: Iotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval

  19. An economic approach to efficient isotope labeling in insect cells using homemade {sup 15}N-, {sup 13}C- and {sup 2}H-labeled yeast extracts

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan, E-mail: Stephan.Grzesiek@unibas.ch [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)

    2015-07-15

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein {sup 15}N and {sup 13}C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  20. Use of stable isotope techniques in soil organic matter studies

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1998-01-01

    Plants differ distinctly in their C-isotopic composition. The largest differences occur between plant species with different photosynthetic pathways. C 3 - and C 4 -plants are differentiated by approximately 1.4% on the δ-scale (approx. -2.7% 13 C versus -1.3% 13 C). Modern elemental analyser - mass spectrometer combinations reach accuracies of at least 0.01% δ 13 C. Therefore, the difference between C 3 and C 4 plants is sufficient to be used for tracer studies. Several investigations of soil organic mater (SOM) turnover under field conditions were undertaken using the fact that the vegetation cover changed between C 3 and C 4 plants. The discrimination between SOM originating from indigenous vegetation (forest, C 3 ) and sugar cane (C 4 ) after 50 years of cropping introducing two SOM compartments of different stability was described. Another example is the change from prairie vegetation (C 4 ) to different C 3 -crops and the evaluation of the carbon origin at or near equilibrium. More recent studies use 15 N-labelled C 4 -plant residues or 13 C-labelled C 3 -plants to elucidate the fate of carbon and nitrogen in soils developed under C 3 -vegetation. Both in situ experiments and laboratory incubations were used to evaluate carbon and nitrogen fluxes from crop residues. Physical fractionation of bulk soil into particle sizes proved to be of advantage to follow short and long-term dynamics of crop residues within SOM. Changes in the natural abundance of 13 C and 15 N within soil profiles can elucidate leaching or mineralization of humic substances. Changes in the natural abundance of stable isotopes are also possible due to the application of organic manures, quantification, however is not easy because of the small isotopic differences between soil and manure carbon and nitrogen. 15 N labelling of soil nitrogen has been widely used in the last two decades to quantify biological nitrogen fixation. Considerable progress has been made due to the isotope dilution

  1. Development of new technology for the use of stable isotopic tracers in the study of human health and disease

    International Nuclear Information System (INIS)

    Hacyey, D.L.; Klein, P.D.; Szczepanik, P.A.; Niu, W.; Stellaard, F.; Tserng, K.Y.

    1977-01-01

    This program has five major aspects: first, the development of analytical instrumentation of requisite sensitivity, stability, and simplicity to conduct stable isotope measurements in a routine manner; second, the development of appropriately labeled compounds for metabolic investigations, initially through custom syntheses but eventually through commercial sources; third, development of analytical methodology to isolate, purify, and determine the isotopic content of specific organic compounds reflecting metabolic processes or disease states; fourth, collaborative development of clinical applications and testing on a routine basis, through a network of clinical centers around the country; and finally, the collection and dissemination of stable isotope information on an international scale through survey publications and conferences

  2. Evaluation of a Method for Nitrotyrosine Site Identification and Relative Quantitation Using a Stable Isotope-Labeled Nitrated Spike-In Standard and High Resolution Fourier Transform MS and MS/MS Analysis

    Directory of Open Access Journals (Sweden)

    Kent W. Seeley

    2014-04-01

    Full Text Available The overproduction of reactive oxygen and nitrogen species (ROS and RNS can have deleterious effects in the cell, including structural and possible activity-altering modifications to proteins. Peroxynitrite is one such RNS that can result in a specific protein modification, nitration of tyrosine residues to form nitrotyrosine, and to date, the identification of nitrotyrosine sites in proteins continues to be a major analytical challenge. We have developed a method by which 15N-labeled nitrotyrosine groups are generated on peptide or protein standards using stable isotope-labeled peroxynitrite (O15NOO−, and the resulting standard is mixed with representative samples in which nitrotyrosine formation is to be measured by mass spectrometry (MS. Nitropeptide MS/MS spectra are filtered using high mass accuracy Fourier transform MS (FTMS detection of the nitrotyrosine immonium ion. Given that the nitropeptide pair is co-isolated for MS/MS fragmentation, the nitrotyrosine immonium ions (at m/z = 181 or 182 can be used for relative quantitation with negligible isotopic interference at a mass resolution of greater than 50,000 (FWHM, full width at half-maximum. Furthermore, the standard potentially allows for the increased signal of nitrotyrosine-containing peptides, thus facilitating selection for MS/MS in a data-dependent mode of acquisition. We have evaluated the methodology in terms of nitrotyrosine site identification and relative quantitation using nitrated peptide and protein standards.

  3. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  4. Application of heavy stable isotopes in forensic isotope geochemistry: A review

    International Nuclear Information System (INIS)

    Aggarwal, Jugdeep; Habicht-Mauche, Judith; Juarez, Chelsey

    2008-01-01

    Light stable isotopes have been used for many years to characterize the source and transport of materials. More recently heavy isotope systems such as Sr, Nd and Pb have been added to this list in order to aid source identification. With the advent of multiple collector ICP-MS, the range of isotopic tools now available has increased considerably, however, until the isotope systematics of these new non-traditional isotope systems have become better understood, they will not be as useful in characterizing material source and transportation. Applications using heavy metal stable isotopes (mostly traditional heavy isotopes) have reached most avenues in science, including earth sciences, archaeology, anthropology, animal physiology, ecology and toxicology. This field will continue to grow as new applications are developed and techniques become simpler and quicker. This paper provides a review of how this field has grown and presents two new applications using Pb and Sr isotopes in glazes to determine the source of ore used in glazes, and using Sr isotopes to determine the origin of undocumented deceased Mexican border crossers

  5. Application of heavy stable isotopes in forensic isotope geochemistry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Jugdeep [W.M. Keck Isotope Laboratory, Department of Earth Sciences, University of California, Santa Cruz, CA 95064 (United States)], E-mail: jaggarwal@pmc.ucsc.edu; Habicht-Mauche, Judith; Juarez, Chelsey [Department of Anthropology, University of California, Santa Cruz, CA 95064 (United States)

    2008-09-15

    Light stable isotopes have been used for many years to characterize the source and transport of materials. More recently heavy isotope systems such as Sr, Nd and Pb have been added to this list in order to aid source identification. With the advent of multiple collector ICP-MS, the range of isotopic tools now available has increased considerably, however, until the isotope systematics of these new non-traditional isotope systems have become better understood, they will not be as useful in characterizing material source and transportation. Applications using heavy metal stable isotopes (mostly traditional heavy isotopes) have reached most avenues in science, including earth sciences, archaeology, anthropology, animal physiology, ecology and toxicology. This field will continue to grow as new applications are developed and techniques become simpler and quicker. This paper provides a review of how this field has grown and presents two new applications using Pb and Sr isotopes in glazes to determine the source of ore used in glazes, and using Sr isotopes to determine the origin of undocumented deceased Mexican border crossers.

  6. Applications of stable isotope analysis in mammalian ecology.

    Science.gov (United States)

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  7. The use of stable isotopes in medicinal chemistry

    International Nuclear Information System (INIS)

    Halliday, D.; Thompson, G.N.

    1988-01-01

    Stable isotopes have been employed increasingly as tracers over the last decade both to provide the clinician with the opportunity to broaden, in a quantitative manner, discrete areas of diagnosis and research, and the clinical chemist with definitive methodology for specific analyte analysis. These non-radioactive 'heavy' isotopes contain one or more extra neutrons in the nucleus compared with their more abundant 'lighter' analogues. Impetus in the application of stable isotopes for in vivo studies has come from an increased awareness of the possible harmful effects in the use of radionuclides, and a realisation of several positive advantages conferred by the use of stable isotopes in their own right - certain elements of clinical importance (especially nitrogen) lack a useable radio-nuclide equivalent; use of a 'cocktail' of stable isotopes permits a range of studies to be performed in the same patient simultaneously and, within specific constraints, serial studies can be performed in the same patients. (author)

  8. Stable isotopes and the environment

    International Nuclear Information System (INIS)

    Krouse, H.R.

    1990-01-01

    Whereas traditionally, stable isotope research has been directed towards resource exploration and development, it is finding more frequent applications in helping to assess the impacts of resource utilization upon ecosystems. Among the many pursuits, two themes are evident: tracing the transport and conversions of pollutants in the environment and better understanding of the interplay among environmental receptors, e.g. food web studies. Stable isotope data are used primarily to identify the presence of pollutants in the environment and with a few exceptions, the consequence of their presence must be assessed by other techniques. Increasing attention has been given to the isotopic composition of humans with many potential applications in areas such as paleodiets, medicine, and criminology. In this brief overview examples are used from the Pacific Rim to illustrate the above concepts. 26 refs., 1 tab., 3 figs

  9. Enriching stable isotopes: Alternative use for Urenco technology

    International Nuclear Information System (INIS)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D.

    1996-01-01

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope 235 U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company's uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco's stable isotopes business

  10. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  11. Isotopically labelled vitamin D derivatives and processes for preparing same

    International Nuclear Information System (INIS)

    Deluca, H.R.; Schnoes, H.K.; Napoli, J.L.; Fivizzani, M.A.

    1981-01-01

    This invention relates to 26,27-isotopically labelled vitamin D 3 compounds, including radiolabelled vitamin D 3 compounds of high specific activity, methods for their preparation, and intermediates obtained in their synthesis. The method involves reacting an ester of a 26,27-dinor-vitamin D-25-carboxylic acid with an isotopically labelled methyl Grignard reagent or methyl lithium reagent to obtain a 26,27-isotopically labelled compound in which at least some of the H atoms and/or C atoms are heavy isotopes. (author)

  12. Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome.

    Science.gov (United States)

    Ono, Katsuhiko; Jung, Minkyung; Zhang, Tianli; Tsutsuki, Hiroyasu; Sezaki, Hiroshi; Ihara, Hideshi; Wei, Fan-Yan; Tomizawa, Kazuhito; Akaike, Takaaki; Sawa, Tomohiro

    2017-05-01

    Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34 S-labeled L-cysteine from O-acetyl-L-serine and 34 S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur ( 34 S) and nitrogen ( 15 N) atoms was also achieved by performing enzyme reactions with 15 N-labeled L-serine, acetyl-CoA, and 34 S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34 S-labeled N-acetyl-L-cysteine (NAC) by incubating 34 S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34 S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology. Copyright © 2017 Elsevier Inc

  13. Stable isotope composition of human fingernails from Slovakia

    International Nuclear Information System (INIS)

    Grolmusová, Zuzana; Rapčanová, Anna; Michalko, Juraj; Čech, Peter; Veis, Pavel

    2014-01-01

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ 13 C and δ 15 N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in 13 C and 15 N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ 13 C and δ 15 N values. These data were compared to previously published δ 13 C and δ 15 N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ 13 C and δ 15 N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied

  14. Sequencing of Isotope-Labeled Small RNA Using Femtosecond Laser Ablation Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Kurata-Nishimura, Mizuki; Ando, Yoshinari; Kobayashi, Tohru; Matsuo, Yukari; Suzuki, Harukazu; Hayashizaki, Yoshihide; Kawai, Jun

    2010-04-01

    A novel method for the analysis of sequences of small RNAs using nucleotide triphosphates labeled with stable isotopes has been developed using time-of-flight mass spectroscopy combined with femtosecond laser ablation (fsLA-TOF-MS). Small RNAs synthesized with nucleotides enriched in 13C and 15N were efficiently atomized and ionized by single-shot fsLA and the isotope ratios 13C/12C and 15N/14N were evaluated using the TOF-MS method. By comparing the isotope ratios among four different configurations, the number of nucleotide contents of the control RNA sample were successfully reproduced.

  15. Gas phase thermal diffusion of stable isotopes

    International Nuclear Information System (INIS)

    Eck, C.F.

    1979-01-01

    The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes

  16. Custom synthesis of isotope-labelled Apis mellifera Pheromone

    International Nuclear Information System (INIS)

    Conanan, Aida P.; Cortes, Nicole Marie A.; Daguno, Cristel Lyn R.; Templonuevo, Jose Angelo A.; Sucgang, Raymond J.

    2012-01-01

    The object of this study is to determine the optimum conditions for the synthesis of the isotope-labelled isopentyl acetate. Isopentyl acetate is widely used as a raw material in industries, in syntheses, and is utilized as a sex attractant (pheromone) by the bee species, Apis mellifera. The isotope labelling of isopentyl acetate will allow tracking of the fate and movement of the isopentyl acetate in the environment, in chemical transformations, and in biological systems. Esterification by alcoholysis of acetic acid was optimized for the preparation of Carbon-14( 14 C)-labelled isopentyl acetate from 14 C-labelled acetic acid and isoamyl alcohol. The different conditions studied were: (1) The effects of acid catalysis and/or reflux on the incorporation and retention of the isotope label on the product. The efficiency of label incorporation and retention was determined through the beta radioactivity of Carbon 14 in each of the synthetic constructs. Determination of the beta radioactivity concentration of 14 C in the isopentyl acetate product was done using low level liquid scintillation spectrometry. Each of the synthetic products was mixed with Ultima Gold scintillation cocktail in a low potassium glass scintillation vial, and analysed in a low-level Wallac 1414 scintillation counter. The application of catalysis without reflux resulted in the highest yield (35%). The same condition also resulted in the highest abundance of carbon isotope label with 2.40 Bequerels per cubic centimetre, Bq/cc (measurement unit for radioactivity). (author)

  17. Metabolism and pharmacokinetic of cyclo-peptides and peptides. Use of radioelement and stable isotopes

    International Nuclear Information System (INIS)

    Aninat, C.

    2003-10-01

    More and more peptides and proteins are used in therapeutic. Three mainly techniques are used for pharmacokinetic and metabolism studies: immunoassay, radioactively labeled molecules and mass spectrometry. In the first part of this work, we have used uniformly labelled peptides (C-peptide and insulin) with stables ( 13 C, 15 N, and 13 C/ 15 N) or radioactive ( 14 C) isotopes to investigated these kind of studies. These works are based on isotope dilution mass spectrometry assay. In a second time we have investigated the metabolism of a particular cyclo-peptides families composed of two amino acids: the diketo-piperazine. These compounds are found in mammals and in microorganisms. There are not recognized by proteolytic enzymes. We have estimated if the main enzymes implicated in the metabolism of xenobiotics, the P450 cytochrome mono-oxygenases, were able to recognized them

  18. Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers

    International Nuclear Information System (INIS)

    Croteau, Marie-Noele; Luoma, Samuel N.; Pellet, Bastien

    2007-01-01

    We employ a novel approach that combines pulse-chase feeding and multi-labelled stable isotopes to determine gut passage time (GPT), gut retention time (GRT), food ingestion rate (IR) and assimilation efficiency (AE) of three trace elements for a freshwater gastropod. Lettuce isotopically enriched in 53 Cr, 65 Cu and 106 Cd was fed for 2 h to Lymnaea stagnalis. The release of tracers in feces and water was monitored for 48 h, during which unlabelled lettuce was provided ad libidum. The first defecation of 53 Cr occurred after 5 h of depuration (GPT), whereas 90% of the ingested 53 Cr was recovered in the feces after 22.5 h of depuration (GRT). 53 Chromium was not significantly accumulated in the soft tissues upon exposure. In contrast, 65 Cu and 106 Cd assimilation was detectable for most experimental snails, i.e., 65/63 Cu and 106/114 Cd ratios in exposed snails were higher than those for controls. Food IR during the labelled feeding phase was 0.16 ± 0.07 g g -1 d -1 . IR was inferred from the amount of 53 Cr egested in the feces during depuration and the concentration of 53 Cr in the labelled lettuce. Assimilation efficiencies (±95% CI) determined using mass balance calculations were 84 ± 4% for Cu and 85 ± 3% for Cd. The ratio method yields similar AE estimates. Expanding the application of this novel stable isotope tracer technique to other metals in a wide variety of species will provide unique opportunities to evaluate the interplay between digestive processes and dietary influx of metals. Understanding the biological processes that modulate dietborne metal uptake is crucial to assess the toxicity of dietborne metals

  19. Culture of microalgae Spirulina platensis with isotope stable Carbon-13

    International Nuclear Information System (INIS)

    Cronemberger, Luiz C.A.; Costa, Vladimir E.

    2017-01-01

    Gastric emptying time abnormalities cause complications that affect the quality of life in humans and scintigraphy is the gold standard for this diagnosis. However its application has restrictions due to the use of the radiopharmaceutical 99m Tc. An alternative to this method is the stable carbon isotope respiratory test. This is a non-radioactive, noninvasive technique with no contraindications. Its application varies according to the substrate used. For evaluation of gastric emptying time one of the substrates that can be used in the respiratory test is Spirulina platensis labeled at 97% carbon atoms with the stable isotope carbon-13 ( 13 C). In Brazil, there is no production of this substrate and its high cost (US$475.00/g, excluding import taxes) makes it difficult to apply the test. Thus, the objective of the work is to cultivate labeled S. platensis at 97% of 13 C for use in the respiratory test for gastric emptying and to establish optimization parameters for the best cost-benefit of this culture. In the cultivation process the microalgae will be kept in a closed sterilized glass volumetric flask, with deionized water and a pure 13 C source. The light (photoperiod 12h light / dark), pH (∼ 9.5) and temperature (30 deg C) will be controlled and after 35-40 days of growth, the cyanobacteria will be lyophilized and ground for the acquisition of a powder that will be analyzed by IRMS and compared to S. platensis, which will be our reference standard

  20. Stable isotope probing to study functional components of complex microbial ecosystems.

    Science.gov (United States)

    Mazard, Sophie; Schäfer, Hendrik

    2014-01-01

    This protocol presents a method of dissecting the DNA or RNA of key organisms involved in a specific biochemical process within a complex ecosystem. Stable isotope probing (SIP) allows the labelling and separation of nucleic acids from community members that are involved in important biochemical transformations, yet are often not the most numerically abundant members of a community. This pure culture-independent technique circumvents limitations of traditional microbial isolation techniques or data mining from large-scale whole-community metagenomic studies to tease out the identities and genomic repertoires of microorganisms participating in biological nutrient cycles. SIP experiments can be applied to virtually any ecosystem and biochemical pathway under investigation provided a suitable stable isotope substrate is available. This versatile methodology allows a wide range of analyses to be performed, from fatty-acid analyses, community structure and ecology studies, and targeted metagenomics involving nucleic acid sequencing. SIP experiments provide an effective alternative to large-scale whole-community metagenomic studies by specifically targeting the organisms or biochemical transformations of interest, thereby reducing the sequencing effort and time-consuming bioinformatics analyses of large datasets.

  1. Stable isotope composition of human fingernails from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Grolmusová, Zuzana, E-mail: zuzana.grolmusova@geology.sk [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Rapčanová, Anna [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Michalko, Juraj; Čech, Peter [State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Veis, Pavel [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia)

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ{sup 13}C and δ{sup 15}N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in {sup 13}C and {sup 15}N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ{sup 13}C and δ{sup 15}N values. These data were compared to previously published δ{sup 13}C and δ{sup 15}N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ{sup 13}C and δ{sup 15}N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied.

  2. Deciphering Systemic Wound Responses of the Pumpkin Extrafascicular Phloem by Metabolomics and Stable Isotope-Coded Protein Labeling1[C][W

    Science.gov (United States)

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-01-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling. PMID:23085839

  3. A new high-quality set of singly (H-2) and doubly (H-2 and O-18) stable isotope labeled reference waters for biomedical and other isotope-labeled research

    NARCIS (Netherlands)

    Faghihi, V.; Verstappen-Dumoulin, B. M. A. A.; Jansen, H. G.; van Dijk, G.; Aerts-Bijma, A. T.; Kerstel, E. R. T.; Groening, M.; Meijer, H. A. J.

    2015-01-01

    RATIONALE: Research using water with enriched levels of the rare stable isotopes of hydrogen and/or oxygen requires well-characterized enriched reference waters. The International Atomic Energy Agency (IAEA) did have such reference waters available, but these are now exhausted. New reference waters

  4. Custom isotope-labelling of apis mellifera pheromone

    International Nuclear Information System (INIS)

    Conanan, Aida P.; Cortes, Nicole Marie A.; Daguno, Cristel Lyn R.; Templonuevo, Jose Angelo A.; Sucgang, Raymond J.

    2012-01-01

    The object of this study is to determine the optimum conditions for the synthesis of isotope-labelled isoamyl acetate. Esterification by alcoholysis of acetic acid was optimized for the preparation of Carbon - 14 ( 14 C)-labelled isopentyl acetate from 14 C-labelled acetic acid and isopentyl alcohol. The optimization procedure defined the effects of catalysis, reflux time, and temperature. The application of catalysis without reflux resulted to the highest yield (40%); the same condition also resulted to the highest abundance of carbon isotope label with 2.40 disintegrations per minute per cubic centimetre, DPM/cc (measurement unit for radioactivity). Determination of the beta radioactivity concentration of 14 C in the isopentyl acetate product was done using low level liquid scintillation spectrometry. Each of the synthetic constructs was mixed with Ultima Gold scintillation cocktail in a glass scintillation vial, and analysed in a low-level Wallac 1414 scintillation counter. Samples were counted for 2 hours in a chamber temperature maintained at 14 degree centegrade. The catalysed reaction without reflux was established to be the most efficient scheme for the radiolabelling. The radiolabelled isoamyl acetate can give way to the synthesis of more complex substances which can be then tracked when they are introduced to a system through the carbon isotope label. (author)

  5. The status of applying stable isotope in the studies of environmental science

    International Nuclear Information System (INIS)

    Bai Zhipeng; Zhang Liwen; Zhu Tan; Feng Yinchang

    2007-01-01

    The stable isotope composition is characteristic in the pollution source, and it is relatively fixed in the process of transferring and reaction. At present the precise analysis result of stable isotope ratio can be obtained easily. So the stable isotopes can be applied to the pollution affair arbitration and source study. The concept and analytical method of stable isotopes are introduced. The research status of the stable isotopes in the field of environmental science and the isotope fractionation is reviewed. (authors)

  6. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    Directory of Open Access Journals (Sweden)

    Wayne Young

    2015-03-01

    Full Text Available Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health.

  7. Application of Stable Isotope Signatures in Food Traceability

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Roslanzairi Mostapha; Zainon Othman

    2016-01-01

    Stable isotope analysis has widely been used to trace the origin of organic materials in various fields, such as geochemistry, biochemistry, archaeology and petroleum. In past a decade, it has also become an important tool for food traceability study. The globalisation of food markets and the relative ease which food commodities are transported through and between countries and continents means that consumers are increasingly concerned about the origin of the foods they eat. The natural abundance of stable isotope variation such as carbon, nitrogen, hydrogen and oxygen are used as geographic tracers or marker to determine the geographic origin of fruits, crop, vegetables and food products from animal. The isotopic compositions of plant materials reflect various factors such as isotopic compositions of source materials and their assimilation processes as well as growth environments. This paper will discuss on stable carbon and nitrogen isotopic compositions in rice that been determined by Isotope Ratio Mass Spectrometry, advantages, limitations and potential of other analysis applications that can be incorporated in food traceability system. (author)

  8. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2014-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author)

  9. Stable isotope geochemistry: definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2015-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  10. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2016-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  11. Stable isotope customer list and summary of shipments:

    International Nuclear Information System (INIS)

    Tracy, J.G.

    1988-03-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: alphabetical lists of domestic and foreign customers;alphabetical lists of isotopes and services;alphabetical lists of states and countries;tabulation of the shipments, quantities, and dollars for each isotope and dollars for services divided into domestic, foreign, and DOE project categories. During FY 1987 sales of stable isotope products and services were made to 272 differnt customers, of whom 159 were domestic and 113 were foreign, representing 18 different foreign countries. The total revenue was $3,785,609 of which 12.3% was from sales to DOE project customers, 60.4% was from sales to other domestic customers, and 27.3% was from sales to foreign customers. this represented sales of 189 different stable isotopes plus associated services and was a 16.5% increase over FY 1986

  12. [Fractionation of hydrogen stable isotopes in the human body].

    Science.gov (United States)

    Siniak, Iu E; Grigor'ev, A I; Skuratov, V M; Ivanova, S M; Pokrovskiĭ, B G

    2006-01-01

    Fractionation of hydrogen stable isotopes was studied in 9 human subjects in a chamber with normal air pressure imitating a space cabin. Mass-spectrometry of isotopes in blood, urine, saliva, and potable water evidenced increases in the contents of heavy H isotope (deuterium) in the body liquids as compared with water. These results support one of the theories according to which the human organism eliminates heavy stable isotopes of biogenous chemical elements.

  13. Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples

    Science.gov (United States)

    Fehr, Manuela A.; Hammond, Samantha J.; Parkinson, Ian J.

    2018-02-01

    New methodologies employing a 125Te-128Te double-spike were developed and applied to obtain high precision mass-dependent tellurium stable isotope data for chondritic meteorites and some terrestrial samples by multiple-collector inductively coupled plasma mass spectrometry. Analyses of standard solutions produce Te stable isotope data with a long-term reproducibility (2SD) of 0.064‰ for δ130/125Te. Carbonaceous and enstatite chondrites display a range in δ130/125Te of 0.9‰ (0.2‰ amu-1) in their Te stable isotope signature, whereas ordinary chondrites present larger Te stable isotope fractionation, in particular for unequilibrated ordinary chondrites, with an overall variation of 6.3‰ for δ130/125Te (1.3‰ amu-1). Tellurium stable isotope variations in ordinary chondrites display no correlation with Te contents or metamorphic grade. The large Te stable isotope fractionation in ordinary chondrites is likely caused by evaporation and condensation processes during metamorphism in the meteorite parent bodies, as has been suggested for other moderately and highly volatile elements displaying similar isotope fractionation. Alternatively, they might represent a nebular signature or could have been produced during chondrule formation. Enstatite chondrites display slightly more negative δ130/125Te compared to carbonaceous chondrites and equilibrated ordinary chondrites. Small differences in the Te stable isotope composition are also present within carbonaceous chondrites and increase in the order CV-CO-CM-CI. These Te isotope variations within carbonaceous chondrites may be due to mixing of components that have distinct Te isotope signatures reflecting Te stable isotope fractionation in the early solar system or on the parent bodies and potentially small so-far unresolvable nucleosynthetic isotope anomalies of up to 0.27‰. The Te stable isotope data of carbonaceous and enstatite chondrites displays a general correlation with the oxidation state and hence might

  14. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Comparative analysis of monoclonal antibody N-glycosylation using stable isotope labelling and UPLC-fluorescence-MS.

    Science.gov (United States)

    Millán Martín, Silvia; Delporte, Cédric; Farrell, Amy; Navas Iglesias, Natalia; McLoughlin, Niaobh; Bones, Jonathan

    2015-03-07

    A twoplex method using (12)C6 and (13)C6 stable isotope analogues (Δmass = 6 Da) of 2-aminobenzoic acid (2-AA) is described for quantitative analysis of N-glycans present on monoclonal antibodies and other glycoproteins using ultra performance liquid chromatography with sequential fluorescence and accurate mass tandem quadrupole time of flight (QToF) mass spectrometric detection.

  16. Using Stable Isotopes of Carbon and Nitrogen to Mark Wild Populations of Anopheles and Aedes Mosquitoes in South-Eastern Tanzania.

    Directory of Open Access Journals (Sweden)

    Mercy A Opiyo

    Full Text Available Marking wild mosquitoes is important for understanding their ecology, behaviours and role in disease transmission. Traditional insect marking techniques include using fluorescent dyes, protein labels, radioactive labels and tags, but such techniques have various limitations; notably low marker retention and inability to mark wild mosquitoes at source. Stable isotopes are gaining wide spread use for non-invasive marking of arthropods, permitting greater understanding of mosquito dispersal and responses to interventions. We describe here a simple technique for marking naturally-breeding malaria and dengue vectors using stable isotopes of nitrogen (15N and carbon (13C, and describe potential field applications.We created man-made aquatic mosquito habitats and added either 15N-labelled potassium nitrate or 13C-labelled glucose, leaving non-adulterated habitats as controls. We then allowed wild mosquitoes to lay eggs in these habitats and monitored their development in situ. Pupae were collected promptly as they appeared and kept in netting cages. Emergent adults (in pools of ~4 mosquitoes/pool and individually stored pupae were desiccated and analysed using Isotope Ratio Mass Spectrometry (IRMS.Anopheles gambiae s.l and Aedes spp. from enriched 13C and enriched 15N larval habitats had significantly higher isotopic levels than controls (P = 0.005, and both isotopes produced sufficient distinction between marked and unmarked mosquitoes. Mean δ15N for enriched females and males were 275.6±65.1 and 248.0±54.6, while mean δ15N in controls were 2.1±0.1 and 3.9±1.7 respectively. Similarly, mean δ13C for enriched females and males were 36.08±5.28 and 38.5±6.86, compared to -4.3±0.2 and -7.9±3.6 in controls respectively. Mean δ15N and δ13C was significantly higher in any pool containing at least one enriched mosquito compared to pools with all unenriched mosquitoes, P<0.001. In all cases, there were variations in standardized isotopic ratios

  17. Measurement of apolipoprotein E and amyloid β clearance rates in the mouse brain using bolus stable isotope labeling

    Science.gov (United States)

    2012-01-01

    Background Abnormal proteostasis due to alterations in protein turnover has been postulated to play a central role in several neurodegenerative diseases. Therefore, the development of techniques to quantify protein turnover in the brain is critical for understanding the pathogenic mechanisms of these diseases. We have developed a bolus stable isotope-labeling kinetics (SILK) technique coupled with multiple reaction monitoring mass spectrometry to measure the clearance of proteins in the mouse brain. Results Cohorts of mice were pulse labeled with 13 C6-leucine and the brains were isolated after pre-determined time points. The extent of label incorporation was measured over time using mass spectrometry to measure the ratio of labeled to unlabeled apolipoprotein E (apoE) and amyloid β (Aβ). The fractional clearance rate (FCR) was then calculated by analyzing the time course of disappearance for the labeled protein species. To validate the technique, apoE clearance was measured in mice that overexpress the low-density lipoprotein receptor (LDLR). The FCR in these mice was 2.7-fold faster than wild-type mice. To demonstrate the potential of this technique for understanding the pathogenesis of neurodegenerative disease, we applied our SILK technique to determine the effect of ATP binding cassette A1 (ABCA1) on both apoE and Aβ clearance. ABCA1 had previously been shown to regulate both the amount of apoE in the brain, along with the extent of Aβ deposition, and represents a potential molecular target for lowering brain amyloid levels in Alzheimer's disease patients. The FCR of apoE was increased by 1.9- and 1.5-fold in mice that either lacked or overexpressed ABCA1, respectively. However, ABCA1 had no effect on the FCR of Aβ, suggesting that ABCA1 does not regulate Aβ metabolism in the brain. Conclusions Our SILK strategy represents a straightforward, cost-effective, and efficient method to measure the clearance of proteins in the mouse brain. We expect that

  18. Comparison of a Label-Free Quantitative Proteomic Method Based on Peptide Ion Current Area to the Isotope Coded Affinity Tag Method

    Directory of Open Access Journals (Sweden)

    Young Ah Goo

    2008-01-01

    Full Text Available Recently, several research groups have published methods for the determination of proteomic expression profiling by mass spectrometry without the use of exogenously added stable isotopes or stable isotope dilution theory. These so-called label-free, methods have the advantage of allowing data on each sample to be acquired independently from all other samples to which they can later be compared in silico for the purpose of measuring changes in protein expression between various biological states. We developed label free software based on direct measurement of peptide ion current area (PICA and compared it to two other methods, a simpler label free method known as spectral counting and the isotope coded affinity tag (ICAT method. Data analysis by these methods of a standard mixture containing proteins of known, but varying, concentrations showed that they performed similarly with a mean squared error of 0.09. Additionally, complex bacterial protein mixtures spiked with known concentrations of standard proteins were analyzed using the PICA label-free method. These results indicated that the PICA method detected all levels of standard spiked proteins at the 90% confidence level in this complex biological sample. This finding confirms that label-free methods, based on direct measurement of the area under a single ion current trace, performed as well as the standard ICAT method. Given the fact that the label-free methods provide ease in experimental design well beyond pair-wise comparison, label-free methods such as our PICA method are well suited for proteomic expression profiling of large numbers of samples as is needed in clinical analysis.

  19. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs.

  20. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2012-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 89 refs., 12 figs., 2 tabs.

  1. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2008-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  2. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  3. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2013-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 91 refs., 12 figs., 2 tabs.

  4. Climatic signals in multiple highly resolved stable isotope records from Greenland

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Dahl-Jensen, Dorthe; Johnsen, Sigfus Johann

    2010-01-01

    are found to correspond better with winter stable isotope data than with summer or annual average stable isotope data it is suggested that a strong local Greenland temperature signal can be extracted from the winter stable isotope data even on centennial to millennial time scales. Udgivelsesdato: Feb....

  5. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  6. Strontium stable isotope behaviour accompanying basalt weathering

    Science.gov (United States)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  7. Isotopic Abundance and Chemical Purity Analysis of Stable Isotope Deuterium Labeled Sudan I

    Directory of Open Access Journals (Sweden)

    CAI Yin-ping;LEI Wen;ZHENG Bo;DU Xiao-ning

    2014-02-01

    Full Text Available It is important that to analysis of the isotopic abundance and chemical purity of Sudan I-D5, which is the internal standard of isotope dilution mass spectrometry. The isotopic abundance of Sudan I-D5 is detected by “mass cluster” classification method and LC-MS. The repeatability and reproducibility experiments were carried out by using different mass spectrometers and different operators. The RSD was less than 0.1%, so the repeatability and reproducibility were satisfactory. The accuracy and precision of the isotopic abundance analysis method was good with the results of F test and t test. The high performance liquid chromatography (HPLC had been used for detecting the chemical purity of Sudan I-D5 as external standard method.

  8. Stable isotope deltas: Tiny, yet robust signatures in nature

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  9. Analysis of growth and tissue replacement rates by stable sulfur isotope turnover.

    Science.gov (United States)

    Arneson, L. S.; Macko, S. A.; Macavoy, S. E.

    2003-12-01

    Stable isotope analysis has become a powerful tool to study animal ecology. Analysis of stable isotope ratios of elements such as carbon, nitrogen, sulfur, hydrogen, oxygen and others have been used to trace migratory routes, reconstruct dietary sources and determine the physiological condition of individual animals. The isotopes most commonly used are carbon, due to differential carbon fractionation in C3 and C4 plants, and nitrogen, due to the approximately 3% enrichment in 15N per trophic level. Although all cells express sulfur-containing compounds, such as cysteine, methionine, and coenzyme A, the turnover rate of sulfur in tissues has not been examined in most studies, owing to the difficulty in determining the δ 34S signature. In this study, we have assessed the rate of sulfur isotopic turnover in mouse tissues following a diet change from terrestrial (7%) to marine (19%) source. Turnover models reflecting both growth rate and metabolic tissue replacement will be developed for blood, liver, fat and muscle tissues.

  10. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation

    Science.gov (United States)

    Uhlik, Ondrej; Leewis, Mary-Cathrine; Strejcek, Michal; Musilova, Lucie; Mackova, Martina; Leigh, Mary Beth; Macek, Tomas

    2012-01-01

    Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provides researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation. PMID:23022353

  11. Plasma Protein Turnover Rates in Rats Using Stable Isotope Labeling, Global Proteomics, and Activity-Based Protein Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Tyrrell, Kimberly J.; Hansen, Joshua R.; Thomas, Dennis G.; Murphree, Taylor A.; Shukla, Anil K.; Luders, Teresa; Madden, James M.; Li, Yunying; Wright, Aaron T.; Piehowski, Paul D.

    2017-12-06

    Protein turnover is important for general health on cellular and organism scales providing a strategy to replace old, damaged, or dysfunctional proteins. Protein turnover also informs of biomarker kinetics, as a better understanding of synthesis and degradation of proteins increases the clinical utility of biomarkers. Here, turnover rates of plasma proteins in rats were measured in vivo using a pulse-chase stable isotope labeling experiment. During the pulse, rats (n=5) were fed 13C6-labeled lysine (“heavy”) feed for 23 days to label proteins. During the chase, feed was changed to an unlabeled equivalent feed (“light”), and blood was repeatedly sampled from rats over 10 time points for 28 days. Plasma samples were digested with trypsin, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used to identify peptides and proteins, and quantify heavy:light lysine ratios. A system of ordinary differential equations was used to calculate protein turnover rates. Using this approach, 273 proteins were identified, and turnover rates were quantified for 157 plasma proteins with half-lives ranging 0.3-103 days. For the ~70 most abundant proteins, variability in turnover rates among rats was low (median coefficient of variation: 0.09). Activity-based protein profiling was applied to pooled plasma samples to enrich serine hydrolases using a fluorophosphonate (FP2) activity-based probe. This enrichment resulted in turnover rates for an additional 17 proteins. This study is the first to measure global plasma protein turnover rates in rats in vivo, measure variability of protein turnover rates in any animal model, and utilize activity-based protein profiling for enhancing measurements of targeted, low-abundant proteins, such as those commonly used as biomarkers. Measured protein turnover rates will be important for understanding of the role of protein turnover in cellular and organism health as well as increasing the utility of protein

  12. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fan, Ruo-Jing; Guan, Qing; Zhang, Fang; Leng, Jia-Peng; Sun, Tuan-Qi; Guo, Yin-Long

    2016-01-01

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  13. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Leng, Jia-Peng [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China)

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  14. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  15. A Computational Drug Metabolite Detection Using the Stable Isotopic Mass-Shift Filtering with High Resolution Mass Spectrometry in Pioglitazone and Flurbiprofen

    Directory of Open Access Journals (Sweden)

    Yohei Miyamoto

    2013-09-01

    Full Text Available The identification of metabolites in drug discovery is important. At present, radioisotopes and mass spectrometry are both widely used. However, rapid and comprehensive identification is still laborious and difficult. In this study, we developed new analytical software and employed a stable isotope as a tool to identify drug metabolites using mass spectrometry. A deuterium-labeled compound and non-labeled compound were both metabolized in human liver microsomes and analyzed by liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS. We computationally aligned two different MS data sets and filtered ions having a specific mass-shift equal to masses of labeled isotopes between those data using our own software. For pioglitazone and flurbiprofen, eight and four metabolites, respectively, were identified with calculations of mass and formulas and chemical structural fragmentation analysis. With high resolution MS, the approach became more accurate. The approach detected two unexpected metabolites in pioglitazone, i.e., the hydroxypropanamide form and the aldehyde hydrolysis form, which other approaches such as metabolite-biotransformation list matching and mass defect filtering could not detect. We demonstrated that the approach using computational alignment and stable isotopic mass-shift filtering has the ability to identify drug metabolites and is useful in drug discovery.

  16. SIMSISH technique does not alter the apparent isotopic composition of bacterial cells.

    Directory of Open Access Journals (Sweden)

    Olivier Chapleur

    Full Text Available In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH and nanoscale secondary ion mass spectrometry (nanoSIMS imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine - iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific (13C uptake during labelled methanol anaerobic degradation.

  17. SIMSISH Technique Does Not Alter the Apparent Isotopic Composition of Bacterial Cells

    Science.gov (United States)

    Chapleur, Olivier; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Mazéas, Laurent; Bouchez, Théodore

    2013-01-01

    In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS) measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine – iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific 13C uptake during labelled methanol anaerobic degradation. PMID:24204855

  18. Stable isotope studies of nicotine kinetics and bioavailability

    International Nuclear Information System (INIS)

    Benowitz, N.L.; Jacob, P. III; Denaro, C.; Jenkins, R.

    1991-01-01

    The stable isotope-labeled compound 3',3'-dideuteronicotine was used to investigate the disposition kinetics of nicotine in smokers, the systemic absorption of nicotine from cigarette smoke, and the bioavailability of nicotine ingested as oral capsules. Blood levels of labeled nicotine could be measured for 9 hours after a 30-minute intravenous infusion. Analysis of disposition kinetics in 10 healthy men revealed a multiexponential decline after the end of an infusion, with an elimination half-life averaging 203 minutes. This half-life was longer than that previously reported, indicating the presence of a shallow elimination phase. Plasma clearance averaged 14.6 ml/min/kg. The average intake of nicotine per cigarette was 2.29 mg. A cigarette smoke-monitoring system that directly measured particulate matter in smoke was evaluated in these subjects. Total particulate matter, number of puffs on the cigarette, total puff volume, and time of puffing correlated with the intake of nicotine from smoking. The oral bioavailability of nicotine averaged 44%. This bioavailability is higher than expected based on the systemic clearance of nicotine and suggests that there may be significant extrahepatic metabolism of nicotine

  19. Factors controlling stable isotope composition of European precipitation

    International Nuclear Information System (INIS)

    Rozanski, K.; Sonntag, C.; Muennich, K.O.

    1982-01-01

    The seasonal and spatial variations of stable isotope ratios in present day European precipitation are simulated with a simple multibox model of the mean west-east horizontal transport of the atmospheric water vapour across the European continent. Isotope fractionation during the formation of precipitation leads to an increasing depletion of heavy isotopes in the residual air moisture as it moves towards the centre of the continent. This isotopic depletion is partly compensated, particularly in summer, by evapotranspiration, which is assumed to transfer soil water into the atmosphere without isotope fractionation. The model estimates are based on horizontal water vapour flux data, varying seasonally between 88 and 130 kg m -1 s -1 for the Atlantic coast region, and on the monthly precipitation, evapotranspiration and surface air temperature data available for various locations in Europe. Both continental and seasonal temperature effects observed in the stable isotope composition of European precipitation are fairly well reproduced by the model. The calculations show that the isotopic composition of local precipitation is primarily controlled by regional scale processes, i.e. by the water vapour transport patterns into the continent, and by the average precipitation-evapotranspiration history of the air masses precipitating at a given place. Local parameters such as the surface and/or cloud base temperature or the amount of precipitation modify the isotope ratios only slightly. Implications of the model predictions for the interpretation of stable isotope ratios in earlier periods as they are preserved in ice cores and in groundwater are also discussed. (Auth.)

  20. Differential Isotope Labeling of Glycopeptides for Accurate Determination of Differences in Site-Specific Glycosylation.

    Science.gov (United States)

    Pabst, Martin; Benešová, Iva; Fagerer, Stephan R; Jacobsen, Mathias; Eyer, Klaus; Schmidt, Gregor; Steinhoff, Robert; Krismer, Jasmin; Wahl, Fabian; Preisler, Jan; Zenobi, Renato

    2016-01-04

    We introduce a stable isotope labeling approach for glycopeptides that allows a specific glycosylation site in a protein to be quantitatively evaluated using mass spectrometry. Succinic anhydride is used to specifically label primary amino groups of the peptide portion of the glycopeptides. The heavy form (D4(13)C4) provides an 8 Da mass increment over the light natural form (H4(12)C4), allowing simultaneous analysis and direct comparison of two glycopeptide profiles in a single MS scan. We have optimized a protocol for an in-solution trypsin digestion, a one-pot labeling procedure, and a post-labeling solid-phase extraction to obtain purified and labeled glycopeptides. We provide the first demonstration of this approach by comparing IgG1 Fc glycopeptides from polyclonal IgG samples with respect to their galactosylation and sialylation patterns using MALDI MS and LC-ESI-MS.

  1. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2005-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. (author). 52 refs., 11 figs., 2 tabs

  2. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms.

    Science.gov (United States)

    Jameson, Eleanor; Taubert, Martin; Coyotzi, Sara; Chen, Yin; Eyice, Özge; Schäfer, Hendrik; Murrell, J Colin; Neufeld, Josh D; Dumont, Marc G

    2017-01-01

    Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13 C, 18 O, or 15 N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labeled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labeled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing of clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labeling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, metagenomes, or metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labeled microorganisms. Analysis of labeled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allow the use of labeled substrates at ecologically relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies

  3. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991 - September 14, 1995

    International Nuclear Information System (INIS)

    Guss, W.

    1996-01-01

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as 13 C, 17 O, 18 O, and 203 Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes (≤ 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of 26 Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation

  4. Stable isotope geochemistry. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Hoefs, J.

    1987-01-01

    Stable Isotope Geochemistry is an authoritative book comprising theoretical and experimental principles; surveying important fractionation mechanisms affecting the most important elements; discussing the natural variations of geologically important reservoirs. This updated 3rd edition, with a completely rewritten and extended main part, contains two new chapters on stable isotope composition of mantle material and on changes of the ocean during the geological past. (orig.)

  5. Pyrolysis of Cigarette Ingredients Labelled with Stable Isotopes

    Directory of Open Access Journals (Sweden)

    Stotesbury S

    2014-12-01

    Full Text Available It is important to know how tobacco additives behave when cigarettes are smoked, whether they transfer intact to the smoke or whether there is any decomposition during smoking. Pyrolysis-GC-MS is a technique that can be focussed upon the effects of combustion from a single material free from interference from the complex mixture of different components present in the smoke. However, because pyrolysis is a model technique, the results need to be validated by comparison with cigarette smoke chemistry. In a previous paper we presented such a method for modelling the smoke chemistry from a burning cigarette using pyrolysis-GC-MS. The transfer and the extent of degradation of anisole, p-anisaldehyde, benzaldehyde, isoamylisovalerate, methyl trans-cinnamate and vanillin within a burning cigarette were estimated using this pyrolysis method. When these data were compared with results from smoke studies from 14C-analogues of the materials, the high levels of transfer predicted by pyrolysis were found to be generally consistent with the smoke chemistry data. However, there were still two outstanding issues. Firstly, there was some ambiguity in the labelled study about whether vanillin actually transferred without degradation or not. Furthermore, the results from the 14C-labelled study showed a greater extent of degradation for p-anisaldehyde than that indicated from the pyrolysis experiments. The purpose of the current study was to present some new information obtained to address these questions by better understanding the effect upon the smoke chemistry from adding vanillin and p-anisaldehyde, and the relationship between the smoke chemistry and the pyrolysis results. Components were identified in the smoke from cigarettes loaded with p-anisaldehyde and vanillin labelled with 18O and 13C. The extent of degradation from each additive was estimated by identifying labelled degradation products in the smoke. Because there was a clear distinction between the

  6. A new combined method of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Zheng, Longfang; Zhao, Xian-En; Zhu, Shuyun; Tao, Yanduo; Ji, Wenhua; Geng, Yanling; Wang, Xiao; Chen, Guang; You, Jinmao

    2017-06-01

    In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d 0 -10-methyl-acridone-2-sulfonyl chloride and d 3 -10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N>3) and limits of quantification (S/N>10) in the range of 0.002-0.010 and 0.015-0.040nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  8. Use of stable isotopes in human nutrition in Senegal

    International Nuclear Information System (INIS)

    2016-01-01

    In Senegal, the Laboratory of Nutrition of the Department of Animal Biology of the Faculty of Science and Technology of UCAD has been using stable isotopic techniques for nearly twenty years. Stable isotopes were applied to different target populations to measure milk production, exclusive breastfeeding, body composition, micronutrient bioavailability and total energy expenditure.The application of stable isotopic techniques in nutrition has contributed to advocacy for exclusive breastfeeding for up to 6 months in Senegal. It enabled government decision-makers to obtain essential information on the quality of foods needed for optimal effect during pregnancy and for infant growth and the results were reflected in the national policy on micronutrient supplementation.

  9. Application of stable isotopes in ecological research : it's all elemental

    International Nuclear Information System (INIS)

    Rogers, K.M.

    2005-01-01

    Stable isotopes have been used traditionally in the physical sciences, primarily in geochemistry, sedimentology, and oceanography. Increasingly, however, stable isotopes are also being used in the biological sciences. Application of stable isotopes in ecological studies can provide new and innovative ways of examining a host of topics of fundamental importance to biologists. These topics include, among others, feeding ecology and food webs, nutrient flow and assimilation, habitat use, migration patterns, and distribution and discrimination of species subpopulations. Furthermore, ecological research with isotopes can be applied at many levels (i.e. tissue and organ, whole animal, population, community, and ecosystem). (author). 38 refs., 2 figs

  10. Utilization of stable isotopes in medicine

    International Nuclear Information System (INIS)

    1980-11-01

    The ten lectures given at this round table are presented together with a discussion. Five lectures, relating to studies in which deuterium oxide was employed as a tracer of body water, dealt with pulmonary water measurements in man and animals, the total water pool in adipose subjects, and liquid compartments in children undergoing hemodyalisis. The heavy water is analysed by infrared spectrometry and a new double spectrodoser is described. Two studies using 13 C as tracer, described the diagnosis of liver troubles and diabetes respectively. A general review of the perspectives of the application of stable isotopes in clinical medicine is followed by a comparison of the use of stable and radioactive isotopes in France [fr

  11. High-precision mass spectrometric analysis using stable isotopes in studies of children

    NARCIS (Netherlands)

    Schierbeek, Henk; van den Akker, Chris H. P.; Fay, Laurent B.; van Goudoever, Johannes B.

    2012-01-01

    The use of stable isotopes combined with mass spectrometry (MS) provides insight into metabolic processes within the body. Herein, an overview on the relevance of stable isotope methodology in pediatric research is presented. Applications for the use of stable isotopes with MS cover carbohydrate,

  12. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    Science.gov (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  13. Gluconeogenesis from labeled carbon: estimating isotope dilution

    International Nuclear Information System (INIS)

    Kelleher, J.K.

    1986-01-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA

  14. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    Science.gov (United States)

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  15. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment

    International Nuclear Information System (INIS)

    Fan Ying; Shi Lichi; Ladizhansky, Vladimir; Brown, Leonid S.

    2011-01-01

    Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly 13 C, 15 N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5°C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution 13 C and 15 N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.

  16. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins during ex vivo Osteoblast Differentiation of Human Stromal Stem Cells

    DEFF Research Database (Denmark)

    Kristensen, Lars P; Chen, Li; Nielsen, Maria Overbeck

    2012-01-01

    , is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC...... the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate...... regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated...

  17. Stable isotope customer list and summary of shipments: FY 1975

    International Nuclear Information System (INIS)

    Davis, W.C.

    1975-10-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: an alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; an alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; an alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and a tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope, with the totals for loaned isotopes shown at the end of the table. (auth)

  18. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  19. Stable isotope separation in calutrons: Forty years of production and distribution

    International Nuclear Information System (INIS)

    Bell, W.A.; Tracy, J.G.

    1987-11-01

    The stable isotope separation program, established in 1945, has operated continually to provide enriched stable isotopes and selected radioactive isotopes, including the actinides, for use in research, medicine, and industrial applications. This report summarizes the first forty years of effort in the production and distribution of stable isotopes. Evolution of the program along with the research and development, chemical processing, and production efforts are highlighted. A total of 3.86 million separator hours has been utilized to separate 235 isotopes of 56 elements. Relative effort expended toward processing each of these elements is shown. Collection rates (mg/separator h), which vary by a factor of 20,000 from the highest to the lowest ( 205 Tl to 46 Ca), and the attainable isotopic purity for each isotope are presented. Policies related to isotope pricing, isotope distribution, and support for the enrichment program are discussed. Changes in government funding, coupled with large variations in sales revenue, have resulted in 7-fold perturbations in production levels

  20. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing

    Science.gov (United States)

    Herrmann, Elena; Young, Wayne; Rosendale, Douglas; Conrad, Ralf; Riedel, Christian U.; Egert, Markus

    2017-01-01

    The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS). In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP) to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS) analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the suitability of RNA

  1. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing

    Directory of Open Access Journals (Sweden)

    Elena Herrmann

    2017-07-01

    Full Text Available The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS. In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the

  2. Testing Suitability of Cell Cultures for SILAC-Experiments Using SWATH-Mass Spectrometry.

    Science.gov (United States)

    Reinders, Yvonne; Völler, Daniel; Bosserhoff, Anja-K; Oefner, Peter J; Reinders, Jörg

    2016-01-01

    Precise quantification is a major issue in contemporary proteomics. Both stable-isotope-labeling and label-free methods have been established for differential protein quantification and both approaches have different advantages and disadvantages. The present protocol uses the superior precision of label-free SWATH-mass spectrometry to test for suitability of cell lines for a SILAC-labeling approach as systematic regulations may be introduced upon incorporation of the "heavy" amino acids. The SILAC-labeled cell cultures can afterwards be used for further analyses where stable-isotope-labeling is mandatory or has substantial advantages over label-free approaches such as pulse-chase-experiments and differential protein interaction analyses based on co-immunoprecipitation. As SWATH-mass spectrometry avoids the missing-value-problem typically caused by undersampling in highly complex samples and shows superior precision for the quantification, it is better suited for the detection of systematic changes caused by the SILAC-labeling and thus, can serve as a useful tool to test cell lines for changes upon SILAC-labeling.

  3. Recent developments and future directions for stable isotope applications in nutrition research. Report of a consultants meeting

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) at its Headquarters in Vienna convened a consultants meeting to provide the Agency with an overview of the current status of isotopic techniques in nutritional science with respect to both methodology and applications. The main objectives were: To assess the practice of stable isotope methodologies in human nutrition research; To explore high quality stable isotope spikes for use in humans; To standardise the mathematical approaches to evaluate mass spectrometric data when using stable isotope labels within metabolic studies; To identify new strategies for improving sensitivity of nutrition monitoring techniques for use in projects in nutrition. This exercise was conducted to also identify strengths and weaknesses of methodologies currently used in IAEA funded research (CRPs and Technical Cooperation Projects) and to see how they can be improved for the general user, and to provide a basis for the assessment of outcomes delivered by collaborating laboratories in IAEA funded studies. The consultants reviewed the methods relating to the measurement of energy expenditure and noted that the analytical methodologies had changed substantially and that there was further refinement to data fitting and the calculation of uncertainties. They also felt that a repeat of a comparison of laboratory performances with a dilution series similar to the one carried out earlier should be performed for quality control. Other methods using labelled isotopes 13 C and 2 H were also discussed. The meeting noted that it was IAEA's intention to support the development of compound specific reference materials for 2 H, 13 C, 15 N and 18 O. Contrary to light isotope techniques where attempts have been made in the past towards standardization, in particular by IAEA and Stable Isotopes in Gastroenterology and Nutrition (SIGN) harmonization of techniques between laboratories is unsatisfactory for the minerals and trace elements. It was decided that

  4. Recent developments and future directions for stable isotope applications in nutrition research. Report of a consultants meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The International Atomic Energy Agency (IAEA) at its Headquarters in Vienna convened a consultants meeting to provide the Agency with an overview of the current status of isotopic techniques in nutritional science with respect to both methodology and applications. The main objectives were: To assess the practice of stable isotope methodologies in human nutrition research; To explore high quality stable isotope spikes for use in humans; To standardise the mathematical approaches to evaluate mass spectrometric data when using stable isotope labels within metabolic studies; To identify new strategies for improving sensitivity of nutrition monitoring techniques for use in projects in nutrition. This exercise was conducted to also identify strengths and weaknesses of methodologies currently used in IAEA funded research (CRPs and Technical Cooperation Projects) and to see how they can be improved for the general user, and to provide a basis for the assessment of outcomes delivered by collaborating laboratories in IAEA funded studies. The consultants reviewed the methods relating to the measurement of energy expenditure and noted that the analytical methodologies had changed substantially and that there was further refinement to data fitting and the calculation of uncertainties. They also felt that a repeat of a comparison of laboratory performances with a dilution series similar to the one carried out earlier should be performed for quality control. Other methods using labelled isotopes {sup 13}C and {sup 2}H were also discussed. The meeting noted that it was IAEA's intention to support the development of compound specific reference materials for {sup 2}H, {sup 13}C, {sup 15}N and {sup 18}O. Contrary to light isotope techniques where attempts have been made in the past towards standardization, in particular by IAEA and Stable Isotopes in Gastroenterology and Nutrition (SIGN) harmonization of techniques between laboratories is unsatisfactory for the minerals and trace

  5. Stable isotope customer list and summary of shipments: FY 1984

    International Nuclear Information System (INIS)

    Tracy, J.G.

    1984-12-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope

  6. Stable isotope customer list and summary of shipments - FY 1983

    International Nuclear Information System (INIS)

    Davis, W.C.

    1983-12-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope

  7. Stable-carbon isotope variability in tree foliage and wood

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Long, A.

    1986-01-01

    This study documents variation of stable-carbon isotope ratios ( 13 C/ 12 C) in trees of genera Juniperus and Pinus under field conditions. Results are from cellulose analysis on leaves, twigs, and wood from a number of localities in the southwestern US. Substantial variability, typically 1-3%, exists among leaves, within wood (radially, vertically, circumferentially), and between individuals at a site. These results may help guide sampling in tracer-type studies with stable-carbon isotope ratios and aid in the interpretation of isotopic results from such studies

  8. Application of Stable Isotope Signatures in Food Traceability

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Roslanzairi Mostapha; Zainon Othman; Nor Afiqah Harun; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Md Suhaimi Elias; Salmah Moosa

    2015-01-01

    Stable isotope analysis has widely been used to trace the origin of organic materials in various fields, such as geochemistry, biochemistry, archaeology and petroleum. In past a decade, it has also become an important tool for food traceability study. The globalization of food markets and the relative ease with which food commodities are transported through and between countries and continents, means that consumers are increasingly concerned about the origin of the foods they eat. The natural abundance isotope variation such as carbon, nitrogen, hydrogen and oxygen are use as geographic tracers or marker to determine the geographic origin of fruits, crop, vegetables and food products from animal. The isotopic compositions of plant materials reflect various factors such as isotopic compositions of source materials and their assimilation processes as well as growth environments. This paper will discuss on stable carbon and nitrogen isotopic compositions in rice, advantages, limitations and potential of other analysis applications that can be incorporated in food traceability system. (author)

  9. Platinum stable isotope ratio measurements by double-spike multiple collector ICPMS

    DEFF Research Database (Denmark)

    Creech, John; Baker, Joel; Handler, Monica

    2013-01-01

    We present a new technique for the precise determination of platinum (Pt) stable isotope ratios by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using two different Pt double-spikes ( Pt-Pt and Pt-Pt). Results are expressed relative to the IRMM-010 Pt isotope standard......) can be obtained on Pt stable isotope ratios with either double-spike. Elemental doping tests reveal that double-spike corrected Pt stable isotope ratios are insensitive to the presence of relatively high (up to 10%) levels of matrix elements, although the Pt-Pt double-spike is affected by an isobaric...... = 7.308%) results in a redefined Pt atomic weight of 195.08395 ± 0.00068. Using our technique we have measured small, reproducible and statistically significant offsets in Pt stable isotope ratios between different Pt element standards and the IRMM-010 standard, which potentially indicates...

  10. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Gregg, C.T.

    1977-01-01

    Clinical applications include the galactose breath test which consists of oral administration of 13 C-labeled galactose and measurement of the 13 C content of respired CO 2 as a function of time in patients with cirrhotic livers for diagnosis of liver dysfunction. Another application was the breath test to study glucose metabolism in children. Respired 13 CO 2 from ingested glucose- 13 C was measured for normal and diabetic children. Studies on mice in which 60 percent of the body carbon was replaced with 13 C failed to show significant effects of the isotope. Studies on biochemical applications include nuclear magnetic resonance studies of 13 C-labeled amino acids from Chlorella pyrenoidosa; studies on 15 N nmr spectra of arginine-guanidino- 13 C-2,3-- 15 N 2 as a function of pH; and isolation of fatty acids from algae

  11. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients.

    Science.gov (United States)

    Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W

    2004-01-01

    Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.

  12. Stable bromine isotopic composition of methyl bromide released from plant matter

    Science.gov (United States)

    Horst, Axel; Holmstrand, Henry; Andersson, Per; Thornton, Brett F.; Wishkerman, Asher; Keppler, Frank; Gustafsson, Örjan

    2014-01-01

    Methyl bromide (CH3Br) emitted from plants constitutes a natural source of bromine to the atmosphere, and is a component in the currently unbalanced global CH3Br budget. In the stratosphere, CH3Br contributes to ozone loss processes. Studies of stable isotope composition may reduce uncertainties in the atmospheric CH3Br budget, but require well-constrained isotope fingerprints of the source end members. Here we report the first measurements of stable bromine isotopes (δ81Br) in CH3Br from abiotic plant emissions. Incubations of both KBr-fortified pectin, a ubiquitous cell-stabilizing macromolecule, and of a natural halophyte (Salicornia fruticosa), yielded an enrichment factor (ε) of -2.00 ± 0.23‰ (1σ, n = 8) for pectin and -1.82 ± 0.02‰ (1σ, n = 4) for Salicornia (the relative amount of the heavier 81Br was decreased in CH3Br compared to the substrate salt). For short incubations, and up to 10% consumption of the salt substrate, this isotope effect was similar for temperatures from 30 up to 300 °C. For longer incubations of up to 90 h at 180 °C the δ81Br values increased from -2‰ to 0‰ for pectin and to -1‰ for Salicornia. These δ81Br source signatures of CH3Br formation from plant matter combine with similar data for carbon isotopes to facilitate multidimensional isotope diagnostics of the CH3Br budget.

  13. Multiple stable isotope fronts during non-isothermal fluid flow

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  14. A cost-effective approach to produce 15N-labelled amino acids employing Chlamydomonas reinhardtii CC503.

    Science.gov (United States)

    Nicolás Carcelén, Jesús; Marchante-Gayón, Juan Manuel; González, Pablo Rodríguez; Valledor, Luis; Cañal, María Jesús; Alonso, José Ignacio García

    2017-08-18

    The use of enriched stable isotopes is of outstanding importance in chemical metrology as it allows the application of isotope dilution mass spectrometry (IDMS). Primary methods based on IDMS ensure the quality of the analytical measurements and traceability of the results to the international system of units. However, the synthesis of isotopically labelled molecules from enriched stable isotopes is an expensive and a difficult task. Either chemical and biochemical methods to produce labelled molecules have been proposed, but so far, few cost-effective methods have been described. The aim of this study was to use the microalgae Chlamydomonas reinhardtii to produce, at laboratory scale, 15 N-labelled amino acids with a high isotopic enrichment. To do that, a culture media containing 15 NH 4 Cl was used. No kinetic isotope effect (KIE) was observed. The labelled proteins biosynthesized by the microorganism were extracted from the biomass and the 15 N-labelled amino acids were obtained after a protein hydrolysis with HCl. The use of the wall deficient strain CC503 cw92 mt+ is fit for purpose, as it only assimilates ammonia as nitrogen source, avoiding isotope contamination with nitrogen from the atmosphere or the reagents used in the culture medium, and enhancing the protein extraction efficiency compared to cell-walled wild type Chlamydomonas. The isotopic enrichment of the labelled amino acids was calculated from their isotopic composition measured by gas chromatography mass spectrometry (GC-MS). The average isotopic enrichment for the 16 amino acids characterized was 99.56 ± 0.05% and the concentration of the amino acids in the hydrolysate ranged from 18 to 90 µg/mL. Previously reported biochemical methods to produce isotopically labelled proteins have been applied in the fields of proteomics and fluxomics. For these approaches, low amounts of products are required and the isotopic enrichment of the molecules has never been properly determined. So far, only 13

  15. Isotope labeling strategies for NMR studies of RNA

    International Nuclear Information System (INIS)

    Lu, Kun; Miyazaki, Yasuyuki; Summers, Michael F.

    2010-01-01

    The known biological functions of RNA have expanded in recent years and now include gene regulation, maintenance of sub-cellular structure, and catalysis, in addition to propagation of genetic information. As for proteins, RNA function is tightly correlated with structure. Unlike proteins, structural information for larger, biologically functional RNAs is relatively limited. NMR signal degeneracy, relaxation problems, and a paucity of long-range 1 H- 1 H dipolar contacts have limited the utility of traditional NMR approaches. Selective isotope labeling, including nucleotide-specific and segmental labeling strategies, may provide the best opportunities for obtaining structural information by NMR. Here we review methods that have been developed for preparing and purifying isotopically labeled RNAs, as well as NMR strategies that have been employed for signal assignment and structure determination.

  16. Trophic position of coexisting krill species: a stable isotope approach

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Bode, Antonio; Nielsen, Torkel Gissel

    2014-01-01

    Four krill species with overlapping functional biology coexist in Greenland waters. Here, we used stable isotopes to investigate and discuss their trophic role and mode of coexistence. Bulk carbon (δ13C) and nitrogen (δ15N) stable isotope analyses of Thysanoessa longicaudata, T. inermis, T. raschii...

  17. Isotopically labelled benzodiazepines

    International Nuclear Information System (INIS)

    Liebman, A.A.

    1987-01-01

    This paper reports on the benzodiazepines which are a class of therapeutic agents. Improvements in the analytical methodology in the areas of biochemistry and pharmacology were significant, particularly in the application of chromatographic and spectroscopic techniques. In addition, the discovery and subsequent development of tritium and carbon-14 as an analytical tool in the biological sciences were essentially post-world war II phenomena. Thus, as these new chemical entities were found to be biologically active, they could be prepared in labeled form for metabolic study, biological half-life determination (pharmacokinetics), tissue distribution study, etc. This use of tracer methodology has been liberally applied to the benzodiazepines and also more recently to the study of receptor-ligand interactions, in which tritium, carbon-11 or fluorine-18 isotopes have been used. The history of benzodiazepines as medicinal agents is indeed an interesting one; an integral part of that history is their use in just about every conceivable labeled form

  18. Realistic Fasting Does Not Affect Stable Isotope Levels of a Metabolically Efficient Salamander

    Science.gov (United States)

    Stable isotopes are commonly used to examine various aspects of animal ecology. The use of stable isotopes generally proceeds under the implicit assumption that resource use is the only factor driving variation in stable isotope levels; however, a wealth of studies demonstrate a...

  19. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  20. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    Science.gov (United States)

    Hooker, Jacob Matthew [Port Jefferson, NY; Schonberger, Matthias [Mains, DE; Schieferstein, Hanno [Aabergen, DE; Fowler, Joanna S [Bellport, NY

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  1. Recent applications of stable isotopes in environmental medicine in germany

    International Nuclear Information System (INIS)

    Krumbiegel, P.; Herbarth, O.

    2000-01-01

    In the last few years, a new quality in the application of stable isotopes became manifest. It is the establishment of stable isotopes as a tool in medical routine diagnosis - a novel field of nuclear medicine - and in environmental-medical epidemiological surveys. Owing to missing suitable radioactive isotopes of the bio elements carbon and nitrogen and because of ethical problems in the human use of some radionuclides, the stable isotopes 13 C and 1% N play a key role in this new field. A review is given about four new stable isotope-aided methods for in vivo organ function test. Three of them were developed in Leipzig, germany, and one in houston/Texas. We have validated the tests and then introduced into medical and environmental routine diagnostic use: ( 15 N Methacetin and ( 13 C) methacetin liver function tests to characterize the detoxification capacity of the human liver; ( 15 N) Urea and ( 13 C) urea tests to detect the colonization of the human stomach by the bacterium helicobacter pylori. This bacterium is, as known, responsible for gastritis and ulcer of the gastrointestinal tract. The transmission ways of H. Pylori are under investigation world-wide

  2. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    Science.gov (United States)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  3. Manual for the Use of Stable Isotopes in Entomology

    International Nuclear Information System (INIS)

    2009-06-01

    result of problem driven inquisitiveness and technological advances, and are framed by the social and political environment. Although the external environment may mould the technological path, a technology will only become obsolete if there are viable substitution products or methods. Stable isotope methods are a substitute for many radionuclide methods. The progress made in stable isotope science over the past twenty years is a direct result of the interplay of the above factors. Stable isotopes are omnipresent in the environment and pose no health or environmental risks. Advances in isotope ratio mass spectrometry in terms of detection, accuracy and automation have broadened experimental possibilities immensely over the past twenty years. It was recognised that there was significant potential for answering many of the entomologist?s biological and ecological questions using stable isotopes, an expertise the Soil Science Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory in Seibersdorf had long fostered; therefore collaboration with the Entomology Unit at the same Laboratory was established. A number of collaborative experiments were carried and subsequently published. It was soon recognised that stable isotopes have tremendous potential in entomological research and although there were numerous studies using stable isotopes in ecology, their use in entomology per se was limited. Thus it was felt that a publication was required to make stable isotope techniques more widely known among entomologists. This manual will attempt to provide an introduction to the use of stable isotopes in entomological research. It will strive to communicate the basic principles and techniques of stable isotope science and provide a springboard for further interest and research in this area

  4. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    OpenAIRE

    Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicat...

  5. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

    OpenAIRE

    Vander Zanden, Hannah B.; Soto, David X.; Bowen, Gabriel J.; Hobson, Keith A.

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicatio...

  6. Isotope effects: definitions and consequences for pharmacologic studies

    International Nuclear Information System (INIS)

    Van Langenhove, A.

    1986-01-01

    The use of stable isotope-labeled compounds for pharmacologic studies requires careful consideration of the nature of the stable isotope label (2H, 13C, 15N, 18O) and its position of incorporation in the molecule. When deuterium is used, improper positioning can lead to significant primary isotope effects. Primary isotope effects occur when the breaking of the bond to the heavy isotope is the rate-limiting step in a reaction (or metabolic transformation). A reaction will proceed slower for the molecule with the heavy isotope label because of the mass difference between the light and the heavy isotope. In addition to these primary isotope effects, smaller but nevertheless important secondary isotope effects, physicochemical isotope effects, active hydrogen/deuterium exchange, or isotope effects associated with either the enzyme-catalyzed biotransformation or the mass spectrometric ionization and fragmentation can be operative. In mechanistic studies, isotope effects are used to their advantage; however, in pharmacokinetic studies, the occurrence of isotope effects can lead to grossly misleading biologic and analytic results: the metabolism of the drug will differ when in vivo isotope effects are operative, and isotope effects occurring during the analysis procedure will obscure the true metabolic profile of the drug

  7. Biomedical applications of mass spectrometry. Clinical uses of stable isotopes

    International Nuclear Information System (INIS)

    Krahmer, U.I.; McCloskey, J.A.

    1978-01-01

    The review covers typical or important examples of stable isotope usage in clinical fields during the period since the last triennial mass spectrometry conference in 1973. Items are included which involve uses of stable isotopes in human or clinically oriented studies, including measurements carried out on materials of human origin. 163 references. (U.K.)

  8. Synthesis of {sup 15}N isotope labeled alanine; Sintese da alanina enriquecida com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant' Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of {sup 15}N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of {sup 15}N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of {alpha}-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ({sup 15}NH{sub 3} aq) was carried out. In order to avoid eventually losses of {sup 15}NH{sub 3}, special cares were adopted, since the production cost is high. Although the acquisition cost of the {sup 13}N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH{sub 3} (aq) being employed. With the establishment of the system for {sup 15}NH{sub 3} recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  9. Verification of Egg Farming Systems from The Netherlands and New Zealand Using Stable Isotopes.

    Science.gov (United States)

    Rogers, Karyne M; van Ruth, Saskia; Alewijn, Martin; Philips, Andy; Rogers, Pam

    2015-09-30

    Stable isotopes were used to develop authentication criteria of eggs laid under cage, barn, free range, and organic farming regimens from The Netherlands and New Zealand. A training set of commercial poultry feeds and egg albumen from 49 poultry farms across The Netherlands was used to determine the isotopic variability of organic and conventional feeds and to assess trophic effects of these corresponding feeds and barn, free range, and organic farming regimens on corresponding egg albumen. A further 52 brands of New Zealand eggs were sampled from supermarket shelves in 2008 (18), 2010 (30), and 2014 (4) to characterize and monitor changes in caged, barn, free range, and organic egg farming regimens. Stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes of 49 commercial poultry feeds and their corresponding egg albumens reveals that Dutch poultry are fed exclusively on a plant-based feed and that it is possible to discriminate between conventional and organic egg farming regimens in The Netherlands. Similarly, it is possible to discriminate between New Zealand organic and conventional egg farming regimens, although in the initial screening in 2008, results showed that some organic eggs had isotope values similar to those of conventional eggs, suggesting hens were not exclusively receiving an organic diet. Dutch and New Zealand egg regimens were shown to have a low isotopic correlation between both countries, because of different poultry feed compositions. In New Zealand, both conventional and organic egg whites have higher δ(15)N values than corresponding Dutch egg whites, due to the use of fishmeal or meat and bone meal (MBM), which is banned in European countries. This study suggests that stable isotopes (specifically nitrogen) show particular promise as a screening and authentication tool for organically farmed eggs. Criteria to assess truthfulness in labeling of organic eggs were developed, and we propose that Dutch organic egg whites should have a minimum

  10. Isotope effect study of κ-(BEDT-TTF)2Cu(NCS)2: Labeling in the anion

    International Nuclear Information System (INIS)

    Kini, A.M.; Wang, H.H.; Schlueter, J.A.

    1995-01-01

    Since the initial discovery of organic superconductivity in 1979, a large number of organic superconductors have now been synthesized. However, the mechanism of electron-pairing in these novel superconductors has remained largely unresolved. Isotope effect studies constitute an important experimental tool for the investigation of whether or not the electron-pairing mechanism in organic superconductors is phonon-mediated, as in conventional superconductors. Recent isotope effect studies in the authors' laboratory, involving seven different isotopically labeled BEDT-TTF (or ET) derivatives, have demonstrated the following: (1) intramolecular phonon modes involving C double-bond C and Csingle bondS stretching vibrations in the ET donor molecule are not the dominant mediators of electron-pairing, and (2) in κ-(ET) 2 Cu(NCS) 2 , there exist two competing isotope effects--a normal mass effect, i.e., lowering of T c upon isotopic labeling, when the ET molecular mass is increased by concurrent 13 C and 34 S labeling, in addition to an inverse isotope effect upon deuterium labeling in ET. It is of great interest to investigate if there is an isotope effect when the charge-compensating anions, which are also located within the non-conducting layer in the superconducting cation-radical salts, are isotopically labeled. The existence of an isotope effect when the anions are labeled would be indicative of electron-pairing with the mediation of vibrational frequencies associated with the anions. In this paper, the authors present the results of the first isotope effect study in which isotopic labeling in the anion portion of κ-(ET) 2 Cu(NCS) 2 is carried out. The authors find no isotope effect when the carbon and nitrogen atoms of the thiocyanate groups in the anion are replaced with 13 C and 15 N isotopes

  11. Isotopic labelling with carbon-14 and tritium

    International Nuclear Information System (INIS)

    Evans, E.A.

    1980-01-01

    In this paper general methods of isotopic labelling with 14 C and with 3 H are briefly reviewed with special attention to examples of compounds likely to be of wide interest in biological research. (author)

  12. Biosynthetic effects on the stable carbon isotopic compositions of agal lipids: Implications for deciphering the carbon isotopic biomarker record

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Klein Breteler, W.C.M.; Blokker, P.; Schogt, N.; Rijpstra, W.I.C.; Grice, K.; Baas, M.

    1998-01-01

    Thirteen species of algae covering an extensive range of classes were cultured and stable carbon isotopic compositions of their lipids were analysed in order to assess carbon isotopic fractionation effects during their biosynthesis. The fatty acids were found to have similar stable carbon isotopic

  13. What can Fe stable isotopes tell us about magmas?

    DEFF Research Database (Denmark)

    Stausberg, Niklas

    the differentiation of magmas from the perspective of Fe stable isotopes, integrated with petrology, by studying igneous rocks and their constituent phases (minerals and glasses) from the Bushveld Complex, South Africa, Thingmuli, Iceland, Pantelleria, Italy, and the Bishop Tuff, USA. The findings are interpreted......The majority of the Earth’s crust is formed by magmas, and understanding their production and differentiation is important to interpret the geologic rock record. A powerful tool to investigate magmatic processes is the distribution of the stable isotopes of the major redox-sensitive element...... in magmas, Fe. Fe isotope compositions of magmatic rocks exhibit systematic differences, where the heaviest compositions are found in rhyolites and granites. Understanding of these systematics is complicated by a lack of constraints on Fe isotope fractionation among minerals and liquids under magmatic...

  14. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  15. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Lepoint, Gilles [Centre MARE, Laboratoire d' Oceanologie, Institut de Chimie, B6, Universite de Liege, B-4000 Liege (Belgium)]. E-mail: g.lepoint@ulg.ac.be; Dauby, Patrick [Centre MARE, Laboratoire d' Oceanologie, Institut de Chimie, B6, Universite de Liege, B-4000 Liege (Belgium); Institut Royal des Sciences Naturelles de Belgique, rue Vautier, B1000 Brussels (Belgium); Gobert, Sylvie [Centre MARE, Laboratoire d' Oceanologie, Institut de Chimie, B6, Universite de Liege, B-4000 Liege (Belgium)

    2004-12-01

    Stable isotopes of carbon and nitrogen are increasingly used in marine ecosystems, for ecological and environmental studies. Here, we examine some applications of stable isotopes as ecological integrators or tracers in seagrass ecosystem studies. We focus on both the use of natural isotope abundance as food web integrators or environmental tracers and on the use of stable isotopes as experimental tools. As ecosystem integrators, stable isotopes have helped to elucidate the general structure of trophic webs in temperate, Mediterranean and tropical seagrass ecosystems. As environmental tracers, stable isotopes have proven their utility in sewage impact measuring and mapping. However, to make such environmental studies more comprehensible, future works on understanding of basic reasons for variations of N and C stable isotopes in seagrasses should be encouraged. At least, as experimental tracers, stable isotopes allow the study of many aspects of N and C cycles at the scale of a plant or at the scale of the seagrass ecosystem.

  16. Discrimination factors of carbon and nitrogen stable isotopes in meerkat feces

    Directory of Open Access Journals (Sweden)

    Shaena Montanari

    2017-06-01

    Full Text Available Stable isotope analysis of feces can provide a non-invasive method for tracking the dietary habits of nearly any mammalian species. While fecal samples are often collected for macroscopic and genetic study, stable isotope analysis can also be applied to expand the knowledge of species-specific dietary ecology. It is somewhat unclear how digestion changes the isotope ratios of animals’ diets, so more controlled diet studies are needed. To date, most diet-to-feces controlled stable isotope experiments have been performed on herbivores, so in this study I analyzed the carbon and nitrogen stable isotope ratios in the diet and feces of the meerkat (Suricata suricatta, a small omnivorous mammal. The carbon trophic discrimination factor between diet and feces (Δ13Cfeces is calculated to be 0.1 ± 1.5‰, which is not significantly different from zero, and in turn, not different than the dietary input. On the other hand, the nitrogen trophic discrimination factor (Δ15Nfeces is 1.5 ± 1.1‰, which is significantly different from zero, meaning it is different than the average dietary input. Based on data generated in this experiment and a review of the published literature, carbon isotopes of feces characterize diet, while nitrogen isotope ratios of feces are consistently higher than dietary inputs, meaning a discrimination factor needs to be taken into account. The carbon and nitrogen stable isotope values of feces are an excellent snapshot of diet that can be used in concert with other analytical methods to better understand ecology, diets, and habitat use of mammals.

  17. Discrimination of ginseng cultivation regions using light stable isotope analysis.

    Science.gov (United States)

    Kim, Kiwook; Song, Joo-Hyun; Heo, Sang-Cheol; Lee, Jin-Hee; Jung, In-Woo; Min, Ji-Sook

    2015-10-01

    Korean ginseng is considered to be a precious health food in Asia. Today, thieves frequently compromise ginseng farms by pervasive theft. Thus, studies regarding the characteristics of ginseng according to growth region are required in order to deter ginseng thieves and prevent theft. In this study, 6 regions were selected on the basis of Korea regional criteria (si, gun, gu), and two ginseng-farms were randomly selected from each of the 6 regions. Then 4-6 samples of ginseng were acquired from each ginseng farm. The stable isotopic compositions of H, O, C, and N of the collected ginseng samples were analyzed. As a result, differences in the hydrogen isotope ratios could be used to distinguish regional differences, and differences in the nitrogen isotope ratios yielded characteristic information regarding the farms from which the samples were obtained. Thus, stable isotope values could be used to differentiate samples according to regional differences. Therefore, stable isotope analysis serves as a powerful tool to discriminate the regional origin of Korean ginseng samples from across Korea. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling.

    Science.gov (United States)

    Kuptz, Daniel; Fleischmann, Frank; Matyssek, Rainer; Grams, Thorsten E E

    2011-07-01

    • The CO(2) efflux of adult trees is supplied by recent photosynthates and carbon (C) stores. The extent to which these C pools contribute to growth and maintenance respiration (R(G) and R(M), respectively) remains obscure. • Recent photosynthates of adult beech (Fagus sylvatica) and spruce (Picea abies) trees were labeled by exposing whole-tree canopies to (13) C-depleted CO(2). Label was applied three times during the year (in spring, early summer and late summer) and changes in the stable C isotope composition (δ(13) C) of trunk and coarse-root CO(2) efflux were quantified. • Seasonal patterns in C translocation rate (CTR) and fractional contribution of label to CO(2) efflux (F(Label-Max)) were found. CTR was fastest during early summer. In beech, F(Label-Max) was lowest in spring and peaked in trunks during late summer (0.6 ± 0.1, mean ± SE), whereas no trend was observed in coarse roots. No seasonal dynamics in F(Label-Max) were found in spruce. • During spring, the R(G) of beech trunks was largely supplied by C stores. Recent photosynthates supplied growth in early summer and refilled C stores in late summer. In spruce, CO(2) efflux was constantly supplied by a mixture of stored (c. 75%) and recent (c. 25%) C. The hypothesis that R(G) is exclusively supplied by recent photosynthates was rejected for both species. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  19. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  20. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    International Nuclear Information System (INIS)

    Skelton, David; Goodyear, Abbey; Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T.; Logan, Timothy M.

    2010-01-01

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U- 13 C-glucose and 15 N-glutamate as labeled precursors. This study suggests that uniformly 15 N, 13 C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  1. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    Science.gov (United States)

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. The use of stable isotopes and gas chromatography/mass spectrometry in the identification of steroid metabolites in the equine

    International Nuclear Information System (INIS)

    Houghton, E.; Dumasia, M.C.; Teale, P.; Smith, S.J.; Cox, J.; Marshall, D.; Gower, D.B.

    1990-01-01

    Stable isotope gas chromatography/mass spectrometry has been used successfully in the elucidation of structures of urinary steroid metabolites in the horse and in the identification of metabolites isolated from in vivo perfusion and in vitro incubation studies using equine tissue preparations. Deuterium-labeled steroids, testosterone, dehydroepiandrosterone, and 5-androstene-3 beta,17 beta-diol have been synthesized by base-catalyzed isotope exchange methods and the products characterized by gas chromatography/mass spectrometry. [16,16(-2)H2]Dehydroepiandrosterone (plus radiolabeled dehydroepiandrosterone) was perfused into a testicular artery of a pony stallion and was shown to be metabolized into 2H2-labeled testosterone, 4-androstenedione, isomers of 5-androstene-3,17-diol, 19-hydroxytestosterone, and 19-hydroxy-4-androstenedione. In further studies, equine testicular minces have been incubated with 2H2-labeled and radiolabeled dehydroepiandrosterone and 5-androstene-3 beta, 17 beta-diol. The metabolites, whose identity was confirmed by stable isotope gas chromatography/mass spectrometry, proved the interconversion of the two substrates, as well as formation of testosterone and 4-androstenedione. The aromatization of dehydroepiandrosterone was also confirmed, together with the formation of an isomer of 5(10)-estrene-3,17-diol from both substrates showing 19-demethylation without concomitant aromatization. In studies of the feto-placental unit, the allantochorion was shown to aromatize [2H5]testosterone to [2H4]estradiol, the loss of one 2H from the substrate being consistent with aromatization of the A ring. The formation of 6-hydroxyestradiol was also confirmed in this study. The same technique has been valuable in determining the structure of two metabolites of nandrolone isolated from horse urine

  3. Stable isotope methodology and its application to nutrition and gastroenterology

    International Nuclear Information System (INIS)

    Klein, P.D.; Hachey, D.L.; Wong, W.W.; Abrams, S.A.

    1993-01-01

    This report describes the activities of the Stable Isotope Laboratory in its function as a core resource facility for stable isotope applications in human nutrition research. Three aspects are covered: Training of visitors, assessment of new instrumentation, and development of new methodology. The research achievements of the laboratory are indicated in the publications that appeared during this period. (author). 23 refs

  4. Effects of euthanasia method on stable-carbon and stable-nitrogen isotope analysis for an ectothermic vertebrate.

    Science.gov (United States)

    Atwood, Meredith A

    2013-04-30

    Stable isotope analysis is a critical tool for understanding ecological food webs; however, results can be sensitive to sample preparation methods. To limit the possibility of sample contamination, freezing is commonly used to euthanize invertebrates and preserve non-lethal samples from vertebrates. For destructive sampling of vertebrates, more humane euthanasia methods are preferred to freezing and it is essential to evaluate how these euthanasia methods affect stable isotope results. Stable isotope ratios and elemental composition of carbon and nitrogen were used to evaluate whether the euthanasia method compromised the integrity of the sample for analysis. Specifically, the stable isotope and C:N ratios were compared for larval wood frogs (Rana sylvatica  =  Lithobates sylvaticus), an ectothermic vertebrate, that had been euthanized by freezing with four different humane euthanasia methods: CO2, benzocaine, MS-222 (tricaine methanesulfonate), and 70% ethanol. The euthanasia method was not related to the δ(13)C or δ(15)N values and the comparisons revealed no differences between freezing and any of the other treatments. However, there were slight (non-significant) differences in the isotope ratios of benzocaine and CO2 when each was compared with freezing. The elemental composition was altered by the euthanasia method employed. The percentage nitrogen was higher in CO2 treatments than in freezing, and similar (non-significant) trends were seen for ethanol treatments relative to freezing. The resulting C:N ratios were higher for benzocaine treatments than for both CO2 and ethanol. Similar (non-significant) trends suggested that the C:N ratios were also higher for animals euthanized by freezing than for both CO2 and ethanol euthanasia methods. The euthanasia method had a larger effect on elemental composition than stable isotope ratios. The percentage nitrogen and the subsequent C:N ratios were most affected by the CO2 and ethanol euthanasia methods, whereas

  5. petrography, compositional characteristics and stable isotope ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Subsurface samples of the predominantly carbonate Ewekoro Formation, obtained from Ibese core hole within the Dahomey basin were used in this study. Investigations entail petrographic, elemental composition as well as stable isotopes (carbon and oxygen) geochemistry in order to deduce the different microfacies and ...

  6. Fractionation of Stable Isotopes in Atmospheric Aerosol Reactions

    DEFF Research Database (Denmark)

    Meusinger, Carl

    -independent) fractionation processes of stable isotopes of C, N, O and S in order to investigate three different systems related to aerosols: 1. Post-depositional processes of nitrate in snow that obscure nitrate ice core records 2. Formation and aging of secondary organic aerosol generated by ozonolysis of X...... reactions and undergo complex chemical and physical changes during their lifetimes. In order to assess processes that form and alter aerosols, information provided by stable isotopes can be used to help constrain estimates on the strength of aerosol sources and sinks. This thesis studies (mass...... as required. The kndings provide important results for the studies' respective felds, including a description of the isotopic fractionation and quantum yield of nitrate photolysis in snow, equilibrium fractionation in secondary organic aerosol and fractionation constants of different oxidation pathways of SO2....

  7. Indium-111 oxine labelling of white blood cells

    International Nuclear Information System (INIS)

    Lavender, J.P.; Silvester, D.J.; Goldman, J.; Hammersmith Hospital, London

    1978-01-01

    Following work done by Professor John McAfee and Mathew Thakur at the MRS Cyclotron Unit a method is available for labelling cells with indium-111 which results in a stable intracellular marker. The method uses indium-111-8 hydroxyquinoline (111In oxine) which is a lipoid soluble complex which goes across the cell membrane and results in the deposition of indium into various subcellular structures. It has been applied to various preparations of white cells, platelets and also malignant cells. Autologous granulocytes have been used to identify inflammatory lesions in 35 patients. By similar means autologous lymphocytes can also be labelled and reinfused. Lymphocytes have been shown in animals to circulate from the blood via the lymphatic system and then returning to the blood once more. The same phenomenon can be seen in man using indium labelled lymphocytes. Lymph nodes become visible at between 12 and 18 hours and recirculation of labelled cells can be shown on the blood activity curves. Certain problems arise concerning cell behaviour after labelling which appear due to irradiation of cells rather than chemical toxicity. (author)

  8. Passage of stable isotope-labeled grass silage fiber and fiber-bound protein through the gastroinstestinal tract of dairy cows

    NARCIS (Netherlands)

    Warner, D.; Dijkstra, J.; Hendriks, W.H.; Pellikaan, W.F.

    2013-01-01

    Fractional passage rates are required to predict nutrient absorption in ruminants but data on nutrient-specific passage kinetics are largely lacking. With the use of the stable isotope ratio (d) as an internal marker, we assessed passage kinetics of fiber and fiber-bound nitrogen (N) of

  9. Improved Sensitivity of Spectroscopic Quantification of Stable Isotope Content Using Capillary Absorption Spectroscopy

    Science.gov (United States)

    Moran, J.; Wilcox Freeburg, E.; Kriesel, J.; Linley, T. J.; Kelly, J.; Coleman, M. L.; Christensen, L. E.; Vance, S.

    2016-12-01

    Spectroscopy-based platforms have recently risen to the forefront for making stable isotope measurements of methane, carbon dioxide, water, or other analytes. These spectroscopy systems can be relatively straightforward to operate (versus a mass spectrometry platform), largely relieve the analyst of mass interference artifacts, and many can be used in the field. Despite these significant advantages, however, existing spectroscopy techniques suffer from a lack of measurement sensitivity that can ultimately limit select applications including spatially resolved and compound-specific measurements. Here we present a capillary absorption spectroscopy (CAS) system that is designed to mitigate sensitivity issues in spectroscopy-based stable isotope evaluation. The system uses mid-wave infrared excitation generated from a continuous wave quantum cascade laser. Importantly, the sample `chamber' is a flexible capillary with a total volume of less than one cc. Proprietary coatings on the internal surface of the fiber improve optical performance, guiding the light to a detector and facilitating high levels of interaction between the laser beam and gaseous analytes. We present data demonstrating that a tapered hollow fiber cell, with an internal diameter that broadens toward the detector, reduces optical feedback to further improve measurement sensitivity. Sensitivity of current hollow fiber / CAS systems enable measurements of only 10's of picomoles CO2 while theoretical improvements should enable measurements of as little as 10's of femtomoles. Continued optimization of sample introduction and improvements to optical feedback are being explored. Software is being designed to provide rapid integration of data and generation of processed isotope measurements using a graphical user interface. Taken together, the sensitivity improvements of the CAS system under development could, when coupled to a laser ablation sampling device, enable up to 2 µm spatial resolution (roughly the

  10. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    International Nuclear Information System (INIS)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ( 18 O/ 16 O) and carbon ( 13 C/ 12 C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs

  11. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  12. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in lemna gibba and the low incorporation of label into indole-3-acetic acid

    International Nuclear Information System (INIS)

    Baldi, B.G.; Maher, B.R.; Slovin, J.P.; Cohen, J.D.

    1991-01-01

    The authors present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of [ 15 N-indole]-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of L-[ 15 N]tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled L-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into D-tryptophan. D-[ 15 N]trytophan supplied to Lemna at rates of approximately 400 times excess of endogenous D-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of L-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that L-tryptophan is a more direct precursor to IAA than the D isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that L-tryptophan also may not be a primary precursor to IAA in plants

  13. Temporal Profiling and Pulsed SILAC Labeling Identify Novel Secreted Proteins During Ex Vivo Osteoblast Differentiation of Human Stromal Stem Cells*

    Science.gov (United States)

    Kristensen, Lars P.; Chen, Li; Nielsen, Maria Overbeck; Qanie, Diyako W.; Kratchmarova, Irina; Kassem, Moustapha; Andersen, Jens S.

    2012-01-01

    It is well established that bone forming cells (osteoblasts) secrete proteins with autocrine, paracrine, and endocrine function. However, the identity and functional role for the majority of these secreted and differentially expressed proteins during the osteoblast (OB) differentiation process, is not fully established. To address these questions, we quantified the temporal dynamics of the human stromal (mesenchymal, skeletal) stem cell (hMSC) secretome during ex vivo OB differentiation using stable isotope labeling by amino acids in cell culture (SILAC). In addition, we employed pulsed SILAC labeling to distinguish genuine secreted proteins from intracellular contaminants. We identified 466 potentially secreted proteins that were quantified at 5 time-points during 14-days ex vivo OB differentiation including 41 proteins known to be involved in OB functions. Among these, 315 proteins exhibited more than 2-fold up or down-regulation. The pulsed SILAC method revealed a strong correlation between the fraction of isotope labeling and the subset of proteins known to be secreted and involved in OB differentiation. We verified SILAC data using qRT-PCR analysis of 9 identified potential novel regulators of OB differentiation. Furthermore, we studied the biological effects of one of these proteins, the hormone stanniocalcin 2 (STC2) and demonstrated its autocrine effects in enhancing osteoblastic differentiation of hMSC. In conclusion, combining complete and pulsed SILAC labeling facilitated the identification of novel factors produced by hMSC with potential role in OB differentiation. Our study demonstrates that the secretome of osteoblastic cells is more complex than previously reported and supports the emerging evidence that osteoblastic cells secrete proteins with endocrine functions and regulate cellular processes beyond bone formation. PMID:22801418

  14. Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine).

    Science.gov (United States)

    Vystavna, Yuliya; Diadin, Dmytro; Huneau, Frédéric

    2018-05-01

    Stable isotopes of hydrogen ( 2 H) and oxygen ( 18 O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.

  15. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  16. Use of stable isotopes in agriculture

    International Nuclear Information System (INIS)

    Ali, F. K.

    2011-01-01

    Scientific research is considered to be one of the most important steps to achieve sustainable agriculture development. This paper is focused on the role of stable isotopes and their applications in agriculture for plant and animal production, and to study the relationship between soil, plant, air, water, nutrients and agricultural pests. Symbiotic N 2 fixation and efficient use of chemical and organic N fertilizers using 15 N were reported. Factors affecting 13 C values and application of carbon isotope discrimination to physiological and eco-physiological studies and selection of genotypes with improved water-use efficiency and drought tolerance and the recent progress in this field are reviewed. Moreover, the use of carbon isotope compositions in monitoring environmental changes and its various applications in food technology, animal production and entomology are discussed. (author)

  17. Gas cleaning with hot char beds studied by stable isotopes

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ahrenfeldt, Jesper; Ambus, Per

    2014-01-01

    The chemistry taking place in a high temperature char bed used for binding aromatic tar compounds has been studied in detail. 13C labelled tar compounds were used to trace the incorporation into the char bed using isotope ratio mass spectrometry (IRMS) and GC-MS. Furthermore, compounds labelled...

  18. Protein Stable Isotope Fingerprinting (P-SIF): Multidimensional Protein Chromatography Coupled to Stable Isotope-Ratio Mass Spectrometry

    Science.gov (United States)

    Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.

    2012-12-01

    As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.

  19. Advances in primate stable isotope ecology-Achievements and future prospects.

    Science.gov (United States)

    Crowley, Brooke E; Reitsema, Laurie J; Oelze, Vicky M; Sponheimer, Matt

    2016-10-01

    Stable isotope biogeochemistry has been used to investigate foraging ecology in non-human primates for nearly 30 years. Whereas early studies focused on diet, more recently, isotopic analysis has been used to address a diversity of ecological questions ranging from niche partitioning to nutritional status to variability in life history traits. With this increasing array of applications, stable isotope analysis stands to make major contributions to our understanding of primate behavior and biology. Most notably, isotopic data provide novel insights into primate feeding behaviors that may not otherwise be detectable. This special issue brings together some of the recent advances in this relatively new field. In this introduction to the special issue, we review the state of isotopic applications in primatology and its origins and describe some developing methodological issues, including techniques for analyzing different tissue types, statistical approaches, and isotopic baselines. We then discuss the future directions we envision for the field of primate isotope ecology. Am. J. Primatol. 78:995-1003, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Stable isotopic variation in tropical forest plants for applications in primatology.

    Science.gov (United States)

    Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E

    2016-10-01

    Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Application of stable isotopes to hydrogeology in coal mine

    International Nuclear Information System (INIS)

    Duan Qi; Duan Yucheng

    1988-01-01

    Stable isotopes including Oxygen-18 and Deuterium have been applied to investigation of hydrogeology in main coal mines. By determination of stable isotopic composition of hydrogen and oxygen together with water analysis, the following studies have been developed: Identification of the hydrogeochemical characteristics of the groundwater from varied aquifers; Analysis of the hydraulic relationship between varied aquifers; Interpretation of the probable recharge source of mine water. The research results mentioned above reveal that: 1. The groundwater from main aquifers at coal mines in north China is of meteoric origin, which is recharged from hilly area surrounding the coal mine. Its isotopic composition differs slightly from that of the local precipitation. 2. There is a mutual hydraulic relationship between the Ordovician and Quarternary aquifers, so the difference of isotopic composition is very small. 3. By way of the variation of isotopic composition of groundwater from coal-bearing strata, we can infer the hydraulic relationship extent between overlaid alluvial layer and underlaid Ordovician limestone. (author). 9 refs, 6 figs, 8 tabs

  2. Stable non-covalent labeling of layered silicate nanoparticles for biological imaging.

    Science.gov (United States)

    Mortimer, Gysell M; Jack, Kevin S; Musumeci, Anthony W; Martin, Darren J; Minchin, Rodney F

    2016-04-01

    Layered silicate nanoparticles (LSN) are widely used in industrial applications and consumer products. They also have potential benefits in biomedical applications such as implantable devices and for drug delivery. To study how nanomaterials interact with cells and tissues, techniques to track and quantify their movement through different biological compartments are essential. While radiolabels can be very sensitive, particularly for in vivo studies, fluorescent labeling has been preferred in recent years because of the array of methods available to image and quantify fluorescent nanoparticles. However, labeling can be problematic, especially if it alters the physical properties of the nanomaterial. Herein is described a novel non-covalent labeling technique for LSN using readily available fluorescent dimeric cyanine dyes without the need to use excess amounts of dye to achieve labeling, or the need for removal of unbound dye. The approach utilizes the cationic binding properties of layered silicate clays and the multiple quaternary nitrogens associated with the dyes. Preparation of YOYO-1 labeled LSN with optimal dispersion in aqueous media is presented. The utilization of the labeled particles is then demonstrated in cell binding and uptake studies using flow cytometry and confocal microscopy. The labeled LSN are highly fluorescent, stable and exhibit identical physical properties with respect to the unlabeled nanoparticles. The general approach described here is applicable to other cyanine dyes and may be utilized more widely for labeling nanoparticles that comprise a crystalline plate structure with a high binding capacity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  3. Quantitative determination of cyclobutane thymine dimers in DNA by stable isotope-dilution mass spectrometry

    International Nuclear Information System (INIS)

    Podmore, I.D.; Cooke, M.S.; Herbert, K.E.; Lunec, J.

    1996-01-01

    In order to understand the role of UV-induced DNA lesions in biological processes such as mutagenesis and carcinogenesis, it is essential to detect and quantify DNA damage in cells. In this paper we present a novel and both highly selective and sensitive assay using capillary gas chromatography (GC) combined with mass spectrometry (MS) for the detection and accurate quantitation of a major product of UV-induced DNA damage (cis-syb cyclobutadithymine). Quantitation of the cyclobutane thymine dimer was achieved by the use of an internal standard in the form of a stable 2 H-labeled analogue. Both isotopically labeled and nonlabeled dimers were prepared directly from their corresponding monomers. Each was identified as their trimethylsilyl ether derivative by GC-MS. Calibration plots were obtained for known quantities of both nonlabeled and analyte and internal standard. Quantitation of cis-syn cyclobutadithymine was demonstrated in DNA exposed to UVC radiation over a dose range of 0 3500 J m -2 . Under the conditions used, the limit of detection was found to be 20-50 fmol on column (equivalent to 0.002-0.005 nmol dimer per mg DNA). The results of the present study indicate that capillary GC-MS is an ideally suited technique for selective and sensitive quantification of cis-syn cyclobutadithymine in DNA and hence UV-induced DNA damage. (author)

  4. Determination of urea kinetics by isotope dilution with [C-13]urea and gas chromatography isotope ratio mass spectrometry (GC-IRMS) analysis

    NARCIS (Netherlands)

    Kloppenburg, Wybe; Wolthers, BG; Stellaard, F; Elzinga, H; Tepper, T; deJong, PE; Huisman, RM

    1. Stable urea isotopes can be used to study urea kinetics in humans, The use of stable urea isotopes far studying urea kinetic parameters in humans on a large scale is hampered by the high costs of the labelled material, We devised a urea dilution for measurement of the distribution volume,

  5. Applications of stable isotopes of /sup 2/H, /sup 13/C and /sup 15/N to clinical problems. Experience of a collaborative program at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P D; Szczepanik, P A; Hachey, D L [Argonne National Lab., Evanston, Ill. (USA)

    1974-08-01

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use /sup 2/H, /sup 13/C, or /sup 15/N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective /sup 13/C and /sup 15/N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. /sup 13/C and /sup 15/N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B/sub 12/-responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. /sup 15/N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome.

  6. Stable Isotope Group 1984 progress report

    International Nuclear Information System (INIS)

    Lyon, G.L.

    1985-04-01

    The work of the group in 1984 is described and includes studies in isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation. Geothermal studies have decreased compared to other years, but major data summaries were made for Wairakei and Ngawha. The hydrology of Whakarewarewa and Rotorua is being elucidated using water isotopes. Models of the subsurface flows at Kawerau and Ngawha are being made to relate fluid to mineral isotope compositions. A study of the δ 13 C and δ 34 S compositions of New Zealand oils has been started. Groups of oils of related origin are being defined, and compositions will be compared with those of potential source rocks. A method was developed for isotope analysis of sulphur in rocks. The isotopic composition of water is being used to identify and characterise groundwater aquifers in the Wairarapa and at Poverty Bay. Stable carbon isotopes have been used to identify food sources for invertebrates, and to show biochemical pathways in lactation by cows. The geochronology group is involved in major studies in Antarctica, using U-Pb, Rb-Sr and K-Ar methods. Rocks from North Victoria Land, Marie Byrd Land and the USARP mountains are being compared with possible correlatives in New Zealand and Argentina. Strontium isotope data is being applied to the origin of magmas in several regions of New Zealand. The K-Ar data is being stored on computer files. Fission track measurements are being applied to unravel uplift histories in Westland and Taranaki

  7. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel.

    Science.gov (United States)

    de Winter, Niels J; Snoeck, Christophe; Claeys, Philippe

    2016-01-01

    The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal's diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet.

  8. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    International Nuclear Information System (INIS)

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-01-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO 2 excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37 0 C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O 2 and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO 2 production

  9. Preparation of radioactive labelled compounds. Pt. 2. 82Br labelled organic bromine compounds by isotopic exchange

    International Nuclear Information System (INIS)

    Otto, R.

    1988-05-01

    Studies on isotopic exchange between organic bromine compounds and 82 Br labelled dioxane dibromide in the presence of AlCl 3 are described. The results obtained enable to develop a simple and quick preparation method for the labelling with 82 Br [fr

  10. Stable isotope measurements of atmospheric CO2

    International Nuclear Information System (INIS)

    White, J.W.C.; Ferretti, D.F.; Vaughn, B.H.; Francey, R.J.; Allison, C.E.

    2002-01-01

    The measurement of stable carbon isotope ratios of atmospheric carbon dioxide, δ 13 CO 2 are useful for partitioning surface-atmospheric fluxes into terrestrial and oceanic components. δC 18 OO also has potential for segregating photosynthetic and respiratory fluxes in terrestrial ecosystems. Here we describe in detail the techniques for making these measurements. The primary challenge for all of the techniques used to measure isotopes of atmospheric CO 2 is to achieve acceptable accuracy and precision and to maintain them over the decades needed to observe carbon cycle variability. The keys to success such an approach are diligent intercalibrations of laboratories from around the world, as well as the use of multiple techniques such as dual inlet and GC-IRMS and the intercomparison of such measurements. We focus here on two laboratories, the Stable Isotope Lab at the Institute for Arctic and Alpine Research (INSTAAR) at the University of Colorado is described and the Commonwealth Scientific and Industrial Research Organisation - Atmospheric Research (CSIRO). Different approaches exist at other laboratories (e.g. programs operated by Scripps Institution of Oceanography (SIO) and The Center for Atmospheric and Oceanic Studies, Toboku University (TU)) however these are not discussed here. Finally, we also discuss the recently developed Gas Chromatography - Isotope Ratio Mass Spectrometry (GC-IRMS) technique which holds significant promise for measuring ultra-small samples of gas with good precision. (author)

  11. Beyond diet reconstruction: stable isotope applications to human physiology, health, and nutrition.

    Science.gov (United States)

    Reitsema, Laurie J

    2013-01-01

    Analysis of stable carbon and nitrogen isotopes from soft or mineralized tissues is a direct and widely-used technique for modeling diets. In addition to its continued role in paleodiet analysis, stable isotope analysis is now contributing to studies of physiology, disease, and nutrition in archaeological and living human populations. In humans and other animals, dietary uptake and distribution of carbon and nitrogen among mineralized and soft tissue is carried out with varying efficiency due to factors of internal biology. Human pathophysiologies may lead to pathology-influenced isotopic fractionation that can be exploited to understand not just skeletal health and diet, but physiological health and nutrition. This study reviews examples from human biology, non-human animal ecology, biomedicine, and bioarchaeology demonstrating how stable isotope analyses are usefully applied to the study of physiological adaptation and adaptability. Suggestions are made for future directions in applying stable isotope analysis to the study of nutritional stress, disease, and growth and development in living and past human populations. Copyright © 2013 Wiley Periodicals, Inc.

  12. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS

    International Nuclear Information System (INIS)

    Wallner, A.; Melber, K.; Merchel, S.; Ott, U.; Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.

    2013-01-01

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of 198 Pt/ 195 Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction.

  13. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, A., E-mail: anton.wallner@univie.ac.at [University of Vienna, Faculty of Physics, VERA Laboratory, Waehringer Strasse 17, A-1090 Vienna (Austria); Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra (Australia); Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights (Australia); Melber, K. [University of Vienna, Faculty of Physics, VERA Laboratory, Waehringer Strasse 17, A-1090 Vienna (Austria); Merchel, S. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01314 Dresden (Germany); Ott, U. [Max-Planck-Institut fuer Chemie, Joh.-J.-Becherweg 27, D-55128 Mainz (Germany); Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P. [University of Vienna, Faculty of Physics, VERA Laboratory, Waehringer Strasse 17, A-1090 Vienna (Austria)

    2013-01-15

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of {sup 198}Pt/{sup 195}Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction.

  14. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    DEFF Research Database (Denmark)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-01-01

    -dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis...... and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection......-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local dispersion, as well as on the values of aqueous diffusion coefficients and diffusion-induced isotope fractionation from a previous study...

  15. Demonstration of de novo synthesis of enzymes by density labelling with stable isotopes

    International Nuclear Information System (INIS)

    Huebner, G.; Hirschberg, K.

    1977-01-01

    The technique of in vivo density labelling of proteins with H 2 18 O and 2 H 2 O has been used to investigate hormonal regulation and developmental expression of enzymes in plant cells. Buoyant density data obtained from isopycnic equilibrium centrifugation demonstrated that the cytokinine-induced nitrate reductase activity and the gibberellic acid-induced phosphatase activity in isolated embryos of Agrostemma githago are activities of enzymes synthesized de novo. The increase in alanine-specific aminopeptidase in germinating A. githago seeds is not due to de novo synthesis but to the release of preformed enzyme. On the basis of this result it is possible to apply the enzyme aminopeptidase as an internal density standard in equilibrium centrifugation. Density labelling experiments on proteins in pea cotyledons have been used to study the change in the activity of acid phosphatase, alanine-specific aminopeptidase, and peroxidase during germination. The activities of these enzymes increase in cotyledons of Pisum sativum. Density labelling by 18 O and 2 H demonstrates de novo synthesis of these three enzymes. The differential time course of enzyme induction shows the advantage of using H 2 18 O as labelling substance in cases when the enzyme was synthesized immediately at the beginning of germination. At this stage of development the amino-acid pool available for synthesis is formed principally by means of hydrolysis of storage proteins. The incorporation of 2 H into the new proteins takes place in a measurable amount at a stage of growth in which the amino acids are also synthesized de novo. The enzyme acid phosphatase of pea cotyledons was chosen to demonstrate the possibility of using the density labelling technique to detect protein turnover. (author)

  16. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    Science.gov (United States)

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  17. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients

    Science.gov (United States)

    Balter, Vincent; Nogueira da Costa, Andre; Paky Bondanese, Victor; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre

    2015-01-01

    The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is 63Cu-enriched by ∼0.4‰ and sulfur is 32S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The 32S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.

  18. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism

    Science.gov (United States)

    2016-01-01

    Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon (13C), nitrogen (15N), oxygen (18O), and hydrogen (2H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to “trace” the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC‐MS to LC‐MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein level

  19. Availability of phosphorus in cow slurry using isotopic labelling technique

    International Nuclear Information System (INIS)

    Pongsakul, P.; Bertelsen, F.; Gissel-Nielsen, G.

    1988-01-01

    A pot experiment was conducted to evaluate the influence of cow slurry on P uptake by corn and to estimate the readily available P in the slurry by using an isotopic labelling techique. Water-soluble P in soil was increased and isotopic equilibrium of available P was attained after labelled slurry was mixed thoroughly throughout the soil. Labelled slurry applied at planting increased the P uptake by corn, whereas the same amount applied one week before harvest did not affect the P uptake. It was estimated that 46-54% of the total P uptake in plants is derived from the slurry. The readily available P (the L-value) in the slurry was at least 26 mg/kg which equals 3.7% of the total P. (author)

  20. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1997-01-01

    The Oak Ridge national laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the isotope enrichment facility (IEF)fwill be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies. (orig.)

  1. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    Science.gov (United States)

    Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.

  2. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 years. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; SIO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capabilities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies

  3. Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging

    Science.gov (United States)

    Römer, Winfried; Wu, Ting-Di; Duchambon, Patricia; Amessou, Mohamed; Carrez, Danièle; Johannes, Ludger; Guerquin-Kern, Jean-Luc

    2006-07-01

    Dynamic SIMS imaging is proposed to map sub-cellular distributions of isotopically labelled, exogenous compounds. NanoSIMS imaging allows the characterisation of the intracellular transport pathways of exogenous molecules, including peptide vectors employed in innovative therapies, using stable isotopes as molecular markers to detect the compound of interest. Shiga toxin B-subunit (STxB) was chosen as a representative peptide vector. The recombinant protein ( 15N-STxB) was synthesised in Escherichia coli using 15NH 4Cl as sole nitrogen source resulting in 15N enrichment in the molecule. Using the NanoSIMS 50 ion microprobe (Cameca), different ion species ( 12C 14N -, 12C 15N -, 31P -) originating from the same sputtered micro volume were simultaneously detected. High mass resolving power enabled the discrimination of 12C 15N - from its polyatomic isobars of mass 27. We imaged the membrane binding and internalisation of 15N-STxB in HeLa cells at spatial resolutions of less than 100 nm. Thus, the use of rare stable isotopes like 15N with dynamic SIMS imaging permits sub-cellular detection of isotopically labelled, exogenous molecules and imaging of their transport pathways at high mass and spatial resolution. Application of stable isotopes as markers can replace the large and chemically complex tags used for fluorescence microscopy, without altering the chemical and physical properties of the molecule.

  4. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation

    International Nuclear Information System (INIS)

    Wood, Matthew J.; Komives, Elizabeth A.

    1999-01-01

    Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10-100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment

  5. Binding of β4γ5 by adenosine A1 and A2A receptors determined by stable isotope labeling with amino acids in cell culture and mass spectrometry.

    Science.gov (United States)

    Bigler Wang, Dora; Sherman, Nicholas E; Shannon, John D; Leonhardt, Susan A; Mayeenuddin, Linnia H; Yeager, Mark; McIntire, William E

    2011-01-18

    Characterization of G protein βγ dimer isoform expression in different cellular contexts has been impeded by low levels of protein expression, broad isoform heterogeneity, and antibodies of limited specificity, sensitivity, or availability. As a new approach, we used quantitative mass spectrometry to characterize native βγ dimers associated with adenosine A(1):α(i1) and adenosine A(2A):α(S) receptor fusion proteins expressed in HEK-293 cells. Cells expressing A(1):α(i1) were cultured in media containing [(13)C(6)]Arg and [(13)C(6)]Lys and βγ labeled with heavy isotopes purified. Heavy βγ was combined with either recombinant βγ purified from Sf9 cells, βγ purified from the A(2A):α(S) expressed in HEK-293 cells cultured in standard media, or an enriched βγ fraction from HEK-293 cells. Samples were separated by SDS-PAGE, protein bands containing β and γ were excised, digested with trypsin, and separated by HPLC, and isotope ratios were analyzed by mass spectrometry. Three β isoforms, β(1), β(2), and β(4), and seven γ isoforms, γ(2), γ(4), γ(5), γ(7), γ(10), γ(11), and γ(12), were identified in the analysis. β(1) and γ(5) were most abundant in the enriched βγ fraction, and this βγ profile was generally mirrored in the fusion proteins. However, both A(2A):α(S) and A(1):α(i1) bound more β(4) and γ(5) compared to the enriched βγ fraction; also, more β(4) was associated with A(2A):α(S) than A(1):α(i1). Both fusion proteins also contained less γ(2), γ(10), and γ(12) than the enriched βγ fraction. These results suggest that preferences for particular βγ isoforms may be driven in part by structural motifs common to adenosine receptor family members.

  6. Heavy element stable isotope ratios. Analytical approaches and applications

    International Nuclear Information System (INIS)

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-01-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  7. Blood cells kinetics by stable tracers assayed by XRF-analysis and by radioactive tracers

    International Nuclear Information System (INIS)

    Cesareo, R.; Del Principe, D.; Tallarida, B.

    1980-01-01

    Stable rubidium, as an analogue of potassium, has been employed to label human and rabbit red cells and platelets. The concentration of rubidium bound to the cells, which are deposited on filter paper disks, is assayed by a simple version of the X-ray fluorescence equipment, characterized by a 1 mCi Cd-109 radioisotopic source, a xenon-filled proportional detector and a single-channel-analyzer. Survival curves of platelets and of red-cells labelled with stable Rb were determined by measuring the Rb concentration in the labelled cells, withdrawn at different times. The fluorescent counts are linearly proportional to the mass of rubidium per unit area of the filter. The sensitivity of the XRF technique is about 0.05 μg/cm 2 in a measuring time of 500 s. The mean quantity of Rb incorporated by the platelets is of about 5-10 μg for human platelets labelled ''in vitro'', of about 30-50 μg for rabbit platelets labelled in vivo and of about 0.5 mg for rabbit red cell labelled in vivo. The following half-time values were deduced: Tsub(1/2) = 35-45 h for human platelets labelled in ''in vitro''. Tsub(1/2) = 22 +- 3 h for rabbit platelets labelled ''in vivo''. Tsub(1/2) = 310 +- 15 h for rabbit red cells labelled ''in vivo''. The next step of our studies is to label ''in vivo'' human red cells and human platelets. (author)

  8. Correlated optical and isotopic nanoscopy

    Science.gov (United States)

    Saka, Sinem K.; Vogts, Angela; Kröhnert, Katharina; Hillion, François; Rizzoli, Silvio O.; Wessels, Johannes T.

    2014-04-01

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm. However, secondary ion mass spectrometry cannot identify specific subcellular structures like organelles, and needs to be correlated with a second technique, such as fluorescence imaging. Here, we present a method based on stimulated emission depletion microscopy that provides correlated optical and isotopic nanoscopy (COIN) images. We use this approach to study the protein turnover in different organelles from cultured hippocampal neurons. Correlated optical and isotopic nanoscopy can be applied to a variety of biological samples, and should therefore enable the investigation of the isotopic composition of many organelles and subcellular structures.

  9. Capillary absorption spectrometer and process for isotopic analysis of small samples

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2018-04-24

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The process also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  10. Capillary absorption spectrometer and process for isotopic analysis of small samples

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  11. Stable isotope separation by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2001-01-01

    Thermal diffusion in both gaseous and liquid phase has been subject of extensive experimental and theoretical investigations, especially after the invention of K. Clusius and G. Dickel of the thermal diffusion column, sixty three years ago. This paper gives a brief overview of the most important research and developments performed during the time at the National Institute for Research and Development for Isotopic and Molecular Technology (ITIM) at Cluj - Napoca, Romania in the field of separation of stable isotopes by thermal diffusion. An retrospective analysis of the research and results concerning isotope separation by thermal diffusion entails the following conclusions: - thermal diffusion is an adequate method for hydrogen isotope separation (deuterium and tritium) and for noble gas isotope separation (He, Ne, Ar, Kr, Xe); - thermal diffusion is attractive also for 13 C enrichment using methane as raw material for separation, when annual yields of up to 100 g are envisaged; - lately, the thermal diffusion appears to be chosen as a final enrichment step for 17 O. An obvious advantage of this method is its non-specificity, i.e. the implied equipment can be utilized for isotope separation of other chemical elements too. Having in view the low investment costs for thermal diffusion cascades the method appears economically attractive for obtaining low-scale, laboratory isotope production. The paper has the following content: 1. The principle of method; 2. The method's application; 3. Research in the field of thermal diffusion at ITIM; 4. Thermal diffusion cascades for N, C, Ne, Ar and Kr isotope separation; 5. Conclusion

  12. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms

    Science.gov (United States)

    Shanks, W. C., III; Böhlke, J. K.; Seal, R. R., II

    Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios [Nier, 1947] Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.

  13. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel.

    Directory of Open Access Journals (Sweden)

    Niels J de Winter

    Full Text Available The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal's diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet.

  14. HaloTag protein-mediated specific labeling of living cells with quantum dots

    International Nuclear Information System (INIS)

    So, Min-kyung; Yao Hequan; Rao Jianghong

    2008-01-01

    Quantum dots emerge as an attractive alternative to small molecule fluorophores as fluorescent tags for in vivo cell labeling and imaging. This communication presents a method for specific labeling of live cells using quantum dots. The labeling is mediated by HaloTag protein expressed at the cell surface which forms a stable covalent adduct with its ligand (HaloTag ligand). The labeling can be performed in one single step with quantum dot conjugates that are functionalized with HaloTag ligand, or in two steps with biotinylated HaloTag ligand first and followed by streptavidin coated quantum dots. Live cell fluorescence imaging indicates that the labeling is specific and takes place at the cell surface. This HaloTag protein-mediated cell labeling method should facilitate the application of quantum dots for live cell imaging

  15. The Global Network of Isotopes in Rivers (GNIR): Integration of Stable Water Isotopes in Riverine Research and Management

    International Nuclear Information System (INIS)

    Halder, J.; Terzer, S.; Wassenaar, L.; Araguas, L.; Aggarwal, P.

    2015-01-01

    Rivers play a crucial role in the global water cycle as watershed-integrating hydrological conduits for returning terrestrial precipitation, runoff, surface and groundwater, as well as melting snow and ice back to the world’s oceans. The IAEA Global Network of Isotopes in Rivers (GNIR) is the coherent extension of the IAEA Global Network for Isotopes in Precipitation (GNIP) and aims to fill the informational data gaps between rainfall and river discharge. Whereas the GNIP has been surveying the stable hydrogen and oxygen isotopes, and tritium composition in precipitation, the objective of GNIR is to accumulate and disseminate riverine isotope data. We introduce the new global database of riverine water isotopes and evaluate its current long-term data holdings with the objective to improve the application of water isotopes and to inform water managers and researchers. An evaluation of current GNIR database holdings confirmed that seasonal variations of the stable water isotope composition in rivers are closely coupled to precipitation and snow-melt water run-off on a global scale. Rivers could be clustered on the basis of seasonal variations in their isotope composition and latitude. Results showed furthermore, that there were periodic phases within each of these groupings and additional modelling exercises allowed a priori prediction of the seasonal variability as well as the isotopic composition of stable water isotopes in rivers. This predictive capacity will help to improve existing and new sampling strategies, help to validate and interpret riverine isotope data, and identify important catchment processes. Hence, the IAEA promulgates and supports longterm hydrological isotope observation networks and the application of isotope studies complementary with conventional hydrological, water quality, and ecological studies. (author)

  16. Investigating differences in light stable isotopes between Thai jasmine rice and Sungyod rice

    Science.gov (United States)

    Kukusamude, C.; Kongsri, S.

    2017-10-01

    We report the differences in light stable isotopes between two kinds of Thai rice (Thai jasmine and Sungyod rice). Thai jasmine rice and Sungyod rice were cultivated in the northeast and the south of Thailand. Light isotopes including 13C, 15N and 18O of Thai jasmine rice and Sungyod rice samples were carried out using isotope ratio mass spectrometry (IRMS). Thai jasmine rice (Khao Dawk Mali 105) was cultivated from Thung Kula Rong Hai area, whereas Sungyod rice was cultivated from Phathalung province. Hypothesis testing of difference of each isotope between Thai jasmine rice and Sungyod rice was also studied. The study was the feasibility test whether the light stable isotopes can be the variables to identify Thai jasmine rice and Sungyod rice. The result shows that there was difference in the isotope patterns of Thai jasmine rice and Sungyod rice. Our results may provide the useful information in term of stable isotope profiles of Thai rice.

  17. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates

    Science.gov (United States)

    Mangalo, Muna; Meckenstock, Rainer U.; Stichler, Willibald; Einsiedl, Florian

    2007-09-01

    Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains ( Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ 18O water = +700‰) and depleted water (δ 18O water = -40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation ( ɛS > -13.2‰), δ 18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 ( ɛS factor ( ɛS exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5'-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the "recycled" sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the

  18. Use of the natural abundance of stable isotopes in animal physiology

    International Nuclear Information System (INIS)

    Koyama, Takeo

    1987-01-01

    Recent studies on the natural abundance (δ-value) of stable isotopes in animals are reviewed. The δ 13 C value of livestock varies among different portions of the body and depending on living conditions, etc. Typically, however, it is about 1 percent larger than that of the feed used. The value of δ 15 N of the blood, milk and droppings is reported to be larger than that of the feed while that of urine is smaller with the decrease showing changes through the day. Natural δ 13 C and δ 15 N of animals are known to vary among the various organs and tissues. Investigations on cattle and two types musseks have shown that δ 13 C and δ 15 N have no significant relations with their age. The isotopic ratio of stable isotopes in animals is largely dependent on that of the feed used. Study results are cited on the changes in isotopic ratio of carbon and nitrogen along the digestion process of ruminants. Discussion is made on the causes for the changes in isotopic ratio during the metabolic process. Measurement of natural abundance of stable isotopes can be used as a tool for determining the eating habits of ungulate animals raised on grazing lands. (Nogami, K.)

  19. Mechanistic Insights into Catalytic Ethanol Steam Reforming Using Isotope-Labeled Reactants.

    Science.gov (United States)

    Crowley, Stephen; Castaldi, Marco J

    2016-08-26

    The low-temperature ethanol steam reforming (ESR) reaction mechanism over a supported Rh/Pt catalyst has been investigated using isotope-labeled EtOH and H2 O. Through strategic isotope labeling, all nonhydrogen atoms were distinct from one another, and allowed an unprecedented level of understanding of the dominant reaction pathways. All combinations of isotope- and non-isotope-labeled atoms were detected in the products, thus there are multiple pathways involved in H2 , CO, CO2 , CH4 , C2 H4 , and C2 H6 product formation. Both the recombination of C species on the surface of the catalyst and preservation of the C-C bond within ethanol are responsible for C2 product formation. Ethylene is not detected until conversion drops below 100 % at t=1.25 h. Also, quantitatively, 57 % of the observed ethylene is formed directly through ethanol dehydration. Finally there is clear evidence to show that oxygen in the SiO2 -ZrO2 support constitutes 10 % of the CO formed during the reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M; Iglesias, J; Casas, J; Saviron, J M; Quintanilla, M

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  1. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  2. Stable strontium isotopic ratios from archaeological organic remains from the Thorsberg peat bog

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech; von Carnap-Bornheim, Claus; Grupe, Gisela

    2007-01-01

    Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog.......Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog....

  3. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  4. Insights into Wilson's Warbler migration from analyses of hydrogen stable-isotope ratios

    Science.gov (United States)

    Jeffrey F. Kelly; Viorel Atudorei; Zachary D. Sharp; Deborah M. Finch

    2002-01-01

    Our ability to link the breeding locations of individual passerines to migration stopover sites and wintering locations is limited. Stable isotopes of hydrogen contained in bird feathers have recently shown potential in this regard. We measured hydrogen stable-isotope ratios (deltaD) of feathers from breeding, migrating, and wintering Wilson's Warblers. Analyses...

  5. RNA-Based Stable Isotope Probing Suggests Allobaculum spp. as Particularly Active Glucose Assimilators in a Complex Murine Microbiota Cultured In Vitro

    Directory of Open Access Journals (Sweden)

    Elena Herrmann

    2017-01-01

    Full Text Available RNA-based stable isotope probing (RNA-SIP and metabolic profiling were used to detect actively glucose-consuming bacteria in a complex microbial community obtained from a murine model system. A faeces-derived microbiota was incubated under anaerobic conditions for 0, 2, and 4 h with 40 mM [U13C]glucose. Isopycnic density gradient ultracentrifugation and fractionation of isolated RNA into labeled and unlabeled fractions followed by 16S rRNA sequencing showed a quick adaptation of the bacterial community in response to the added sugar, which was dominated by unclassified Lachnospiraceae species. Inspection of distinct fractions of isotope-labeled RNA revealed Allobaculum spp. as particularly active glucose utilizers in the system, as the corresponding RNA showed significantly higher proportions among the labeled RNA. With time, the labeled sugar was used by a wider spectrum of faecal bacteria. Metabolic profiling indicated rapid fermentation of [U13C]glucose, with lactate, acetate, and propionate being the principal 13C-labeled fermentation products, and suggested that “cross-feeding” occurred in the system. RNA-SIP combined with metabolic profiling of 13C-labeled products allowed insights into the microbial assimilation of a general model substrate, demonstrating the appropriateness of this technology to study assimilation processes of nutritionally more relevant substrates, for example, prebiotic carbohydrates, in the gut microbiota of mice as a model system.

  6. Stable Isotope Identification of Nitrogen Sources for United ...

    Science.gov (United States)

    We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In addition, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources. There was also a strong gradient in δ15N of macroalgae with heavier sites located near the estuary mouth. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient. Nutrients are the leading cause of water quality impairments in the United States, and as a result too

  7. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    Science.gov (United States)

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  8. Influence of the enzyme dissimilatory sulfite reductase on stable isotope fractionation during sulfate reduction

    Science.gov (United States)

    Mangalo, Muna; Einsiedl, Florian; Meckenstock, Rainer U.; Stichler, Willibald

    2008-03-01

    The stable isotopes of sulfate are often used as a tool to assess bacterial sulfate reduction on the macro scale. However, the mechanisms of stable isotope fractionation of sulfur and oxygen at the enzymatic level are not yet fully understood. In batch experiments with water enriched in 18O we investigated the effect of different nitrite concentrations on sulfur isotope fractionation by Desulfovibrio desulfuricans. With increasing nitrite concentrations, we found sulfur isotope enrichment factors ranging from -11.2 ± 1.8‰ to -22.5 ± 3.2‰. Furthermore, the δ18O values in the remaining sulfate increased from approximately 50-120‰ when 18O-enriched water was supplied. Since 18O-exchange with ambient water does not take place in sulfate, but rather in intermediates of the sulfate reduction pathway (e.g. SO32-), we suggest that nitrite affects the steady-state concentration and the extent of reoxidation of the metabolic intermediate sulfite to sulfate during sulfate reduction. Given that nitrite is known to inhibit the production of the enzyme dissimilatory sulfite reductase, our results suggest that the activity of the dissimilatory sulfite reductase regulates the kinetic isotope fractionation of sulfur and oxygen during bacterial sulfate reduction. Our novel results also imply that isotope fractionation during bacterial sulfate reduction strongly depends on the cell internal enzymatic regulation rather than on the physico-chemical features of the individual enzymes.

  9. Tracking ENSO with tropical trees: Progress in stable isotope dendroclimatology

    Science.gov (United States)

    Evans, M. N.; Poussart, P. F.; Saleska, S. R.; Schrag, D. P.

    2002-12-01

    The terrestrial tropics remain an important gap in the growing proxy network used to characterize past ENSO behavior. Here we describe a strategy for development of proxy estimates of paleo-ENSO, via proxy rainfall estimates derived from stable isotope (δ18O) measurements made on tropical trees. The approach applies a new model of oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brand, 1996) to develop proxy chronological, rainfall and growth rate estimates from tropical trees, even those lacking annual rings. The promise and pitfalls of the approach are illustrated in pilot datasets from the US, Costa Rica, Brazil, and Peru, which show isotopic cycles of 4-6 per mil, and interannual anomalies of up to 8 per mil. Together with the mature ENSO proxies (corals, extratropical tree-rings, varved sediments, and ice cores), replicated and well-dated stable isotope chronologies from tropical trees may eventually improve our understanding of ENSO history over the past several hundred years.

  10. Stable isotope signatures of gases liberated from fluid inclusions in bedrock at Olkiluoto

    International Nuclear Information System (INIS)

    Eichinger, F.; Meier, D.; Haemmerli, J.; Diamond, L.

    2010-12-01

    Fluid inclusions in quartzes of the Olkiluoto bedrock contain gaseous N 2 , CO 2 , H 2 , CH 4 , and higher hydrocarbons in varying proportions. Stable carbon and hydrogen isotope signatures of the gas phases give valuable information on their origin and the formation conditions. In previous studies, a method to liberate and quantify the gases trapped in fluid inclusions was developed. It allowed determining the carbon isotope signatures of liberated CO 2 , CH 4 and higher hydrocarbons (HHC), but no hydrogen isotope data were acquired. The method was advanced and, in this study, also stable hydrogen isotopes of CH 4 and H 2 liberated from fluid inclusions could be analysed. The stable carbon signatures of methane and higher hydrocarbons, as well as the hydrogen isotope signatures of methane indicate a predominant thermogenic provenance for those gases. (orig.)

  11. Temporal diet changes recorded by stable isotopes in Asiatic black bear (Ursus thibetanus) hair.

    Science.gov (United States)

    Mizukami, R N; Goto, M; Izumiyama, S; Yoh, M; Ogura, N; Hayashi, H

    2005-03-01

    Carbon and nitrogen stable isotope ratios were measured in hair samples of the Asiatic black bear (Ursus thibetanus) inhabiting the Northern Japanese Alps (NJA) (n = 20) and the periphery of Nagano City (NC) (n = 6), in Nagano Prefecture, Japan. The hair of NJA bears, which did not have access to anthropogenic foods, showed lower values of d13C and d15N than that of NC bears which had access to garbage and corn fields, especially during the summer. These results reflect somewhat differing diets between the NJA and NC bears. We attempted to assess the feeding history during the hair growth cycle using the growth section analysis method. Each hair sample had been cut into 3?mm lengths from root to tip, labeled, and analyzed along the hair growth. We measured the carbon and nitrogen stable isotope ratios of each 3?mm length of hair sample from one NC bear which had been killed while raiding a corn field. The sections showed wide ranges of isotope ratios, from -23.2% to -14.6% for delta13C, and from 0.3% to 4.6% for delta15N. It was shown that the diet of this bear shifted dramatically from principally C3 plants to more C4 plants and to foods of animal origin. An analysis of the whole hair reflects just the average feeding habit during hair growth, but the present method can trace its diet history. This method can contribute to obtain precise ecological information of wildlife.

  12. Multiple stable isotope tracer technique for studying the metabolic kinetics of amino acids in hepatic failure

    Energy Technology Data Exchange (ETDEWEB)

    Zongqin, Xia; Tengchang, Dai; Jianhua, Zhang; Yaer, Hu; Bingyao, Yu; Xingrong, Xu; Guanlu, Huang; Gengrong, Shen; Yaqiu, Zhou; Hong, Yu

    1987-08-01

    In order to study the mechanism of the imbalance of amino acid metabolism during hepatic failure, a stable isotope tracer method for observing simultaneously the metabolic kinetics of several amino acids has been established. /sup 15/N-L-Ala, (2,3-D/sub 3/)-Leu and (2,3-D/sub 3/)-Phe were chosen as nonessential, branched chain and aromatic amino acids. A single iv injection of 40 mg N-Ala, 20 mg deuterated Leu and 20 mg deuterated Phe was given to each human subject. Blood samples were taken just before and at different times (up to 60 min) after the injection. Total free amino acids were isolated from the plasma with a small dowex 50 x 8 column and converted to trifluoroacetyl derivatives. Their abundances were then analyzed with a GC-MS system and typical double exponential time course curves were found for all the three labelled amino acids. A two-pool model was designed and applied for compartmental analysis. Significant changes were found in the kinetic parameters of Phe and Leu in patients with fulminant hepatitis or heptic cirrhosis. The half-lives of both Phe pools were longer and the pool sizes were larger than normal subjects, while the half-lives and pool sizes of Leu changes in the opposite direction. No marked change was found in Ala. The significance of intracellular imbalance of Phe and Leu metabolism was discussed. It is evident that the combination of GCMS technique and multiple-tracers labelled with stable isotopes is of great potential for similar purposes.

  13. Lifetimes of organic photovoltaics: Using TOF-SIMS and 18O2 isotopic labelling to characterise chemical degradation mechanisms

    DEFF Research Database (Denmark)

    Norrman, K.; Krebs, Frederik C

    2006-01-01

    The lifetimes of organic photovoltaic cells based on conjugated polymer materials were studied. The device geometry was glass:ITO:PEDOT:PSS:C-12-PSV:C-60:aluminium. To characterise and elucidate the parts of the degradation mechanisms induced by molecular oxygen, 1802 isotopic labelling was emplo......The lifetimes of organic photovoltaic cells based on conjugated polymer materials were studied. The device geometry was glass:ITO:PEDOT:PSS:C-12-PSV:C-60:aluminium. To characterise and elucidate the parts of the degradation mechanisms induced by molecular oxygen, 1802 isotopic labelling...

  14. A Map of General and Specialized Chromatin Readers in Mouse Tissues Generated by Label-free Interaction Proteomics

    DEFF Research Database (Denmark)

    Eberl, H.C.; Mann, M.; Spruijt, C.G.

    2013-01-01

    Posttranslational modifications on core histones can serve as binding scaffolds for chromatin-associated proteins. Proteins that specifically bind to or "read" these modifications were previously identified in mass spectrometry-based proteomics screens based on stable isotope-labeling in cell lines...... the chromatin interaction landscape in mouse tissues, our workflow can be used for peptides with different modifications and cell types of any organism....

  15. Using stable isotopes of nitrogen and carbon to study seabird ecology: applications in the Mediterranean seabird community

    Directory of Open Access Journals (Sweden)

    Manuela G. Forero

    2003-07-01

    Full Text Available The application of the stable isotope technique to ecological studies is becoming increasingly widespread. In the case of seabirds, stable isotopes of nitrogen and carbon have been mainly used as dietary tracers. This approach relieson the fact that food web isotopic signatures are reflected in the tissues of the consumer. In addition to the study of trophic ecology, stable isotopes have been used to track the movement of seabirds across isotopic gradients, as individuals moving between isotopically distinct foodwebs can carry with them information on the location of previous feeding areas. Studies applying the stable isotope methodology to the study of seabird ecology show a clear evolution from broad and descriptive approaches to detailed and individual-based analyses. The purpose of this article is to show the different fields of application of stable isotopes to the study of the seabird ecology. Finally, we illustrate the utility of this technique by considering the particularities of the Mediterranean seabird community, suggesting different ecological questions and conservation problems that could be addressed by using the stable isotope approach in this community.

  16. Stable isotope ratio mass spectrometry in forensic science and food adulteration research

    International Nuclear Information System (INIS)

    Kumar, B.

    2009-01-01

    Stable Isotope Ratio Mass Spectrometry (SIRMS) is an established technique for the determination of origin of geological, biological, chemical and physio-chemical samples/materials. With the development of highly precise mass spectrometers, the stable isotope ratio determination of hydrogen, carbon, nitrogen and oxygen have gained considerable interest in the fields of forensic science and food authentication. Natural variations in the isotopic composition of lighter elements occur due to fractionation effects, resulting in the finger printing of specific isotope ratio values that are characteristic of the origin, purity, and manufacturing processes of the products and their constituents. Forensic science uses scientific and technical methods to investigate traceable evidence of criminal acts. Stable isotope ratio mass spectrometry has been applied to numerous aspects of the forensic science. The analysis of explosives such as ammonium nitrate, gun powder and tri-nitro-toluene (TNT), cases of murder, armed robbery, drug smuggling, terrorism, arson and hit and run traffic accidents are a few of them. The main types of geological evidences in such cases are mud, soil, rocks, sand, gravel, dust particles, biological materials, organic particles and anthropogenic components. Stable isotopes are used as tools to corroborate and confirm the evidential leads in the investigation of such crimes. The variation in natural abundances of carbon and nitrogen and their isotopic ratios δ 13 C and δ 15 N can identify links between items found at crime scene with those of suspect. The paper discusses the applications of SIRMS in the field of forensic science and food adulteration research

  17. Stable isotopic composition of East African lake waters

    International Nuclear Information System (INIS)

    Odada, E.O.

    2001-01-01

    The investigation of stable isotopic composition of East African lake waters was conducted by scientists from the Department of Geology, University of Nairobi, as part of the International Decade for the East African Lakes (IDEAL) project and in close collaboration with the scientists from Large Lakes Observatory of the University of Minnesota and the Isotope Hydrology Laboratory of the IAEA in Vienna. The Research Contract was part of the IAEA Co-ordinated Research Programme on Isotope Techniques in Lake Dynamics Investigations, and was sponsored by the Agency. Water and grab sediment samples were obtained from East African Lakes during the month of January and February 1994 and July/August 1995. Water samples were analysed for oxygen and deuterium isotopic composition at the IAEA Laboratories in Vienna, Austria. In this final paper we report the results of the study of oxygen and deuterium isotopic composition from the East African lake waters. (author)

  18. IsoBank – Stable isotope ecology in the age of ‘Big Data’

    Science.gov (United States)

    Stable isotopes ratios provide valuable information to fish biologists working in a diverse range of fields: e.g. ecologists, population biologists and fishery managers. Ecologists take advantage of stable isotope ratios to provide information on the diet and migration history of consumers or when a...

  19. Labelled compounds. (Pt. B)

    International Nuclear Information System (INIS)

    Buncel, E.; Jones, J.R.

    1991-01-01

    Since the end of World War II there has been a tremendous increase in the number of compounds that have been synthesized with radioactive or stable isotopes. They have found application in many diverse fields, so much so, that hardly a single area in pure and applied science has not benefited. Not surprisingly it has been reflected in appearance of related publications. The early proceedings of the Symposia on Advances in Trace Methodology were soon followed by various Euratom sponsored meetings in which methods of preparing and storing labelled compounds featured prominently. In due course a resurgence of interest in stable isotopes, brought about by their greater availability (also lower cost) and partly by development of new techniques such as gas chromatography - mass spectrometry (gc-ms), led to the publication of proceedings of several successful conferences. More recently conferences dealing with the synthesis and applications of isotopes and isotopically labelled compounds have been established on a regular basis. In addition to the proceedings of conferences and journal publications individuals left their mark by producing definitive texts, usually on specific nuclides. Only the classic two volume publication of Murray and Williams (Organic syntheses with isotopes, New York 1985), now over 30 years old and out of print, attempted to do justice to several nuclides. With the large amount of work that has been undertaken since then it seems unlikely that an updated edition could be produced. The alternative strategy was to ask scientists currently active to review specific areas and this is the approach adopted in the present series of monographs. In this way it is intended to cover the broad advances that have been made in the synthesis and applications of isotopes and isotopically labelled compounds in the physical and biomedical sciences. (author). refs.; figs.; tabs

  20. Combining wood anatomy and stable isotope variations in a 600-year multi-parameter climate reconstruction from Corsican black pine

    Science.gov (United States)

    Szymczak, Sonja; Hetzer, Timo; Bräuning, Achim; Joachimski, Michael M.; Leuschner, Hanns-Hubert; Kuhlemann, Joachim

    2014-10-01

    We present a new multi-parameter dataset from Corsican black pine growing on the island of Corsica in the Western Mediterranean basin covering the period AD 1410-2008. Wood parameters measured include tree-ring width, latewood width, earlywood width, cell lumen area, cell width, cell wall thickness, modelled wood density, as well as stable carbon and oxygen isotopes. We evaluated the relationships between different parameters and determined the value of the dataset for climate reconstructions. Correlation analyses revealed that carbon isotope ratios are influenced by cell parameters determining cell size, whereas oxygen isotope ratios are influenced by cell parameters determining the amount of transportable water in the xylem. A summer (June to August) precipitation reconstruction dating back to AD 1185 was established based on tree-ring width. No long-term trends or pronounced periods with extreme high/low precipitation are recorded in our reconstruction, indicating relatively stable moisture conditions over the entire time period. By comparing the precipitation reconstruction with a summer temperature reconstruction derived from the carbon isotope chronologies, we identified summers with extreme climate conditions, i.e. warm-dry, warm-wet, cold-dry and cold-wet. Extreme climate conditions during summer months were found to influence cell parameter characteristics. Cold-wet summers promote the production of broad latewood composed of wide and thin-walled tracheids, while warm-wet summers promote the production of latewood with small thick-walled cells. The presented dataset emphasizes the potential of multi-parameter wood analysis from one tree species over long time scales.

  1. An Overview of Advanced SILAC-Labeling Strategies for Quantitative Proteomics.

    Science.gov (United States)

    Terzi, F; Cambridge, S

    2017-01-01

    Comparative, quantitative mass spectrometry of proteins provides great insight to protein abundance and function, but some molecular characteristics related to protein dynamics are not so easily obtained. Because the metabolic incorporation of stable amino acid isotopes allows the extraction of distinct temporal and spatial aspects of protein dynamics, the SILAC methodology is uniquely suited to be adapted for advanced labeling strategies. New SILAC strategies have emerged that allow deeper foraging into the complexity of cellular proteomes. Here, we review a few advanced SILAC-labeling strategies that have been published during last the years. Among them, different subsaturating-labeling as well as dual-labeling schemes are most prominent for a range of analyses including those of neuronal proteomes, secretion, or cell-cell-induced stimulations. These recent developments suggest that much more information can be gained from proteomic analyses if the labeling strategies are specifically tailored toward the experimental design. © 2017 Elsevier Inc. All rights reserved.

  2. Isotope products manufacture in Russia and its prospects

    International Nuclear Information System (INIS)

    Malyshev, S.V.; Okhotina, I.A.; Kalelin, E.A.; Krasnov, N.N.; Kuzin, V.V.; Malykh, J.A.; Makarovsky, S.B.

    1997-01-01

    At the present stage of the world economy development, stable and radioactive isotopes,preparations and products on their base are widely used in many fields of the national economy, medicine and scientific researches. The Russian Federation is one of the largest worldwide producers of a variety of nuclide products on the base of more than 350 isotopes, as follows: stable isotopes reactor, cyclotron, fission product radioactive isotopes, ion-radiation sources compounds, labelled with stable and radioactive isotopes, radionuclide short-lived isotope generators, radiopharmaceuticals, radionuclide light and heat sources; luminous paints on base of isotopes. The Russian Ministry for Atomic Energy coordinates activity for development and organization of manufacture and isotope products supply in Russia as well as for export. Within many years of isotope industry development, there have appeared some manufacturing centres in Russia, dealing with a variety of isotope products. The report presents the production potentialities of these centres and also an outlook on isotope production development in Russia in the next years

  3. Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes

    NARCIS (Netherlands)

    Moens, T.; Luyten, C.; Middelburg, J.J.; Herman, P.M.J.; Vincx, M.

    2002-01-01

    The present study explores the use of stable carbon isotopes to trace organic matter sources of intertidal nematodes in the Schelde estuary (SW Netherlands). Stable carbon isotope signatures of nematodes from a saltmarsh and 4 tidal flat stations were determined in spring and winter situations, and

  4. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  5. Optimization of in vitro cell labeling methods for human umbilical cord-derived mesenchymal stem cells.

    Science.gov (United States)

    Tao, R; Sun, T-J; Han, Y-Q; Xu, G; Liu, J; Han, Y-F

    2014-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are a novel source of seed cells for cell therapy and tissue engineering. However, in vitro labeling methods for hUCMSCs need to be optimized for better detection of transplanted cells. To identify the most stable and efficient method for labeling hUCMSCs in vitro. hUCMSCs were isolated using a modified enzymatic digestion procedure and cultured. hUCMSCs of passage three (P3) were then labeled with BrdU, PKH26, or lentivirus-GFP and passaged further. Cells from the first labeled passage (LP1), the fourth labeled passage (LP4) and later passages were observed using a fluorescence microscope. The differentiation potential of LP4 cells was assessed by induction with adipogenic and osteogenic medium. Flow cytometry was used to measure the percentage of labeled cells and the percentage of apoptotic or dead cells. The labeling efficiencies of the three hUCMSC-labeling methods were compared in vitro. BrdU, PKH26, and lentivirus-GFP all labeled LP1 cells with high intensity and clarity. However, the BrdU labeling of the LP4 cells was vague and not localized to the cell nuclei; LP9 cells were not detected under a fluorescence microscope. There was also a significant decrease in the fluorescence intensity of PKH26-labeled LP4 cells, and LP11 cells were not detected under a fluorescence microscope. However, the fluorescence of LP4 cells labeled with lentivirus-GFP remained strong, and cells labeled with lentivirus-GFP were detected up to LP14 under a fluorescence microscope. Statistical analyses indicated that percentages of LP1 cells labeled with PKH26 and lentivirus-GFP were significantly higher than that of cells labeled with BrdU (p 0.05) was observed between the death rates of labeled and unlabeled cells. Lentivirus-GFP is a valid method for long-term in vitro labeling, and it may be used as a long-term hUCMSC tracker following transplantation in vivo.

  6. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  7. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively, it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  8. Platinum stable isotopes in ferromanganese crust and nodules

    Science.gov (United States)

    Corcoran, Loretta; Seward, Terry; Handler, Monica R.

    2015-04-01

    Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.

  9. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC approach

    Directory of Open Access Journals (Sweden)

    Pan ST

    2015-02-01

    Full Text Available Shu-Ting Pan,1,* Zhi-Wei Zhou,2,3,* Zhi-Xu He,3 Xueji Zhang,4 Tianxin Yang,5 Yin-Xue Yang,6 Dong Wang,7 Jia-Xuan Qiu,1 Shu-Feng Zhou2 1Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 4Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 5Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA; 6Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 7Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China *These two authors contributed equally to this work Abstract: 5,6-Dimethylxanthenone 4-acetic acid (DMXAA, also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC approach. The proteomic data showed that treatment with DMXAA

  10. Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle

    International Nuclear Information System (INIS)

    Gat, J.R.; Gonfiantini, R.

    1981-01-01

    This monograph is mainly intended for hydrologists, hydrogeologists and geochemists who want to become acquainted, rapidly but in some detail, with the theoretical background of stable isotope fractionation in natural physico-chemical processes involving fresh water, with the isotopic differences actually encountered in natural waters and with their use for practical hydrological purposes. Throughout the monograph, and in particular in the last chapter, a series of examples are discussed, giving the results obtained with stable isotope techniques in current hydrological and hydrogeological investigations or, more generally, in water resources exploration and assessment. One chapter is also dedicated to the techniques for measuring D/H and 18 O/ 16 O ratios in water

  11. Stable isotope-resolved metabolomics and applications for drug development

    Science.gov (United States)

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  12. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    Science.gov (United States)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  13. Improved segmental isotope labeling of proteins and application to a larger protein

    International Nuclear Information System (INIS)

    Otomo, Takanori; Teruya, Kenta; Uegaki, Koichi; Yamazaki, Toshio; Kyogoku, Yoshimasa

    1999-01-01

    A new isotope labeling technique for peptide segments in a protein sample was recently established using the protein splicing element intein [Yamazaki et al. (1998) J. Am. Chem. Soc., 120, 5591-5592]. This method makes it possible to observe signals of a selected amino (N-) or carboxyl (C-) terminal region along a peptide chain. However, there is a problem with the yield of the segmentally labeled protein. In this paper, we report an increase in the yield of the protein that enables the production of sufficient amounts of segmentally 13 C/ 15 N-labeled protein samples. This was achieved by improvement of the expression level of the N-terminal fragment in cells and the efficiency of refolding into the active splicing conformation. The N-terminal fragment was expressed as a fused protein with the cellulose binding domain at its N-terminus, which was expressed as an insoluble peptide in cells and the expression level was increased. Incubation with 2.5 M urea and 50% glycerol increased the efficiency of the refolding greatly, thereby raising the final yields of the ligated proteins. The feasibility of application of the method to a high-molecular-weight protein was demonstrated by the results for a maltose binding protein consisting of 370 amino acids. All four examined joints in the maltose binding protein were successfully ligated to produce segmentally labeled protein samples

  14. Monitoring in situ biodegradation of hydrocarbons by using stable carbon isotopes

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Hinchee, R.E.

    1991-01-01

    Spilled or leaked nonhalogenated petroleum hydrocarbons in the soil can generally be metabolized by indigenous, aerobic bacteria. In situ biological degradation of hydrocarbons may be accelerated by supplying inorganic nutrients and/or oxygen. Approaches to monitoring and verifying enhanced in situ biodegradation have included measurements of changes over time in the (a) concentration of hydrocarbons, (b) temperature, (c) number of hydrocarbon-degrading microorganisms, (d) ratio of fast-degrading hydrocarbons (e.g., pristanes or phytanes), and (e) metabolic intermediates. Measurements of oxygen consumption over time and elevated carbon dioxide concentrations in soil gas also have been used as indicators of hydrocarbon degradation. An alternative approach that may help substantiate biodegradation is to measure stable carbon isotope ratios in soil gas CO 2 . Stable carbon isotope ratio analysis is inexpensive and commercially available at many laboratories. Carbon dioxide produced by hydrocarbon degradation may be distinguished from that produced by other processes based on the carbon isotopic compositions characteristic of the source material and/or fractionation accompanying microbial metabolism. Here the authors demonstrate the applicability of the stable isotope technique for monitoring enhanced. aerobic biodegradation of hydrocarbons using data from three locations in the United States

  15. Organic synthesis with stable isotopes

    International Nuclear Information System (INIS)

    Daub, G.H.; Kerr, V.N.; Williams, D.L.; Whaley, T.W.

    1978-01-01

    Some general considerations concerning organic synthesis with stable isotopes are presented. Illustrative examples are described and discussed. The examples include DL-2-amino-3-methyl- 13 C-butanoic-3,4- 13 C 2 acid (DL-valine- 13 C 3 ); methyl oleate-1- 13 C; thymine-2,6- 13 C 2 ; 2-aminoethanesulfonic- 13 C acid (taurine- 13 C); D-glucose-6- 13 C; DL-2-amino-3-methylpentanoic-3,4- 13 C 2 acid (DL-isoleucine- 13 C 2 ); benzidine- 15 N 2 ; and 4-ethylsulfonyl-1-naphthalene-sulfonamide- 15 N

  16. Synthesis of deuterium-labelled compounds for FOTEK project

    International Nuclear Information System (INIS)

    Joergensen, O.; Egsgaard, H.; Larsen, E.

    1996-01-01

    In the FoTech project there have been utilized labelled compounds of stable isotopes as internal standards. Some of these compounds are commercially available ( 13 C-labelled PCB congeners, 13 C-labelled diethylstilbestrol for determination of anabolic steroids). Others, like D 9 -clenbuterol, D 3 -clenbuterol, D 3 -zeramol and D 3 -dimetridazol have been synthesized. General aspects of deuterium compounds labelling are considered. (EG)

  17. Quantitative twoplex glycan analysis using 12C6 and 13C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    Science.gov (United States)

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available 12/13 C 6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for 12 C 6 'light' and 13 C 6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  18. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  19. A Stable-Isotope Mass Spectrometry-Based Metabolic Footprinting Approach to Analyze Exudates from Phytoplankton

    Directory of Open Access Journals (Sweden)

    Mark R. Viant

    2013-10-01

    Full Text Available Phytoplankton exudates play an important role in pelagic ecology and biogeochemical cycles of elements. Exuded compounds fuel the microbial food web and often encompass bioactive secondary metabolites like sex pheromones, allelochemicals, antibiotics, or feeding attractants that mediate biological interactions. Despite this importance, little is known about the bioactive compounds present in phytoplankton exudates. We report a stable-isotope metabolic footprinting method to characterise exudates from aquatic autotrophs. Exudates from 13C-enriched alga were concentrated by solid phase extraction and analysed by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. We used the harmful algal bloom forming dinoflagellate Alexandrium tamarense to prove the method. An algorithm was developed to automatically pinpoint just those metabolites with highly 13C-enriched isotope signatures, allowing us to discover algal exudates from the complex seawater background. The stable-isotope pattern (SIP of the detected metabolites then allowed for more accurate assignment to an empirical formula, a critical first step in their identification. This automated workflow provides an effective way to explore the chemical nature of the solutes exuded from phytoplankton cells and will facilitate the discovery of novel dissolved bioactive compounds.

  20. Stable isotope labeling-mass spectrometry analysis of methyl- and pyridyloxobutyl-guanine adducts of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in p53-derived DNA sequences.

    Science.gov (United States)

    Rajesh, Mathur; Wang, Gang; Jones, Roger; Tretyakova, Natalia

    2005-02-15

    The p53 tumor suppressor gene is a primary target in smoking-induced lung cancer. Interestingly, p53 mutations observed in lung tumors of smokers are concentrated at guanine bases within endogenously methylated (Me)CG dinucleotides, e.g., codons 157, 158, 245, 248, and 273 ((Me)C = 5-methylcytosine). One possible mechanism for the increased mutagenesis at these sites involves targeted binding of metabolically activated tobacco carcinogens to (Me)CG sequences. In the present work, a stable isotope labeling HPLC-ESI(+)-MS/MS approach was employed to analyze the formation of guanine lesions induced by the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) within DNA duplexes representing p53 mutational "hot spots" and surrounding sequences. Synthetic DNA duplexes containing p53 codons 153-159, 243-250, and 269-275 were prepared, where (Me)C was incorporated at all physiologically methylated CG sites. In each duplex, one of the guanine bases was replaced with [1,7,NH(2)-(15)N(3)-2-(13)C]-guanine, which served as an isotope "tag" to enable specific quantification of guanine lesions originating from that position. After incubation with NNK diazohydroxides, HPLC-ESI(+)-MS/MS analysis was used to determine the yields of NNK adducts at the isotopically labeled guanine and at unlabeled guanine bases elsewhere in the sequence. We found that N7-methyl-2'-deoxyguanosine and N7-[4-oxo-4-(3-pyridyl)but-1-yl]guanine lesions were overproduced at the 3'-guanine bases within polypurine runs, while the formation of O(6)-methyl-2'-deoxyguanosine and O(6)-[4-oxo-4-(3-pyridyl)but-1-yl]-2'-deoxyguanosine adducts was specifically preferred at the 3'-guanine base of 5'-GG and 5'-GGG sequences. In contrast, the presence of 5'-neighboring (Me)C inhibited O(6)-guanine adduct formation. These results indicate that the N7- and O(6)-guanine adducts of NNK are not overproduced at the endogenously methylated CG dinucleotides within the p53 tumor suppressor gene

  1. The neodymium stable isotope composition of the silicate Earth and chondrites

    Science.gov (United States)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  2. Magnesium stable isotope ecology using mammal tooth enamel

    Science.gov (United States)

    Martin, Jeremy E.; Vance, Derek; Balter, Vincent

    2015-01-01

    Geochemical inferences on ancient diet using bone and enamel apatite rely mainly on carbon isotope ratios (δ13C) and to a lesser extent on strontium/calcium (Sr/Ca) and barium/calcium (Ba/Ca) elemental ratios. Recent developments in nontraditional stable isotopes provide an unprecedented opportunity to use additional paleodietary proxies to disentangle complex diets such as omnivory. Of particular relevance for paleodietary reconstruction are metals present in large quantity in bone and enamel apatite, providing that biologically mediated fractionation processes are constrained. Calcium isotope ratios (δ44Ca) meet these criteria but exhibit complex ecological patterning. Stable magnesium isotope ratios (δ26Mg) also meet these criteria but a comprehensive understanding of its variability awaits new isotopic data. Here, 11 extant mammal species of known ecology from a single locality in equatorial Africa were sampled for tooth enamel and, together with vegetation and feces, analyzed for δ26Mg, δ13C, Sr/Ca, and Ba/Ca ratios. The results demonstrate that δ26Mg incorporated in tooth enamel becomes heavier from strict herbivores to omnivores/faunivores. Using data from experimentally raised sheep, we suggest that this 26Mg enrichment up the trophic chain is due to a 26Mg enrichment in muscle relative to bone. Notably, it is possible to distinguish omnivores from herbivores, using δ26Mg coupled to Ba/Ca ratios. The potential effects of metabolic and dietary changes on the enamel δ26Mg composition remain to be explored but, in the future, multiproxy approaches would permit a substantial refinement of dietary behaviors or enable accurate trophic reconstruction despite specimen-limited sampling, as is often the case for fossil assemblages.

  3. Production and use of stable isotopes in France

    International Nuclear Information System (INIS)

    Roth, E.; Letolle, R.

    1991-01-01

    This paper can not cover the field of production and use of stable isotopes in France exhaustively within six pages. We have chosen to concentrate on highlights of the subject and on recent work, and to give references for further reading. 26 refs

  4. Availability of enriched stable isotopes: present status and future prospects

    International Nuclear Information System (INIS)

    Hoff, R.W.

    1986-01-01

    The Electromagnetic Isotope Enrichment Facility (EMIEF) is currently used to produce 225 enriched stable isotopes of 50 elements. Among these are included most of the known elements with stable isotopes except for the noble gases, certain light elements, monisotopic elements, etc. The EMIEF can also be used to produce enriched samples of radioactive species, most notably the isotopes of uranium and plutonium. These enriched materials are placed in either the Sales Inventory of in the Research Materials Collection (RMC). The materials in the Sales Inventory are for sale to anyone on a first come, first served basis. Prices in the most recent catalog range from $0.05/mg for 99.8% 140 Ce to $1,267/mg for 98.5% 176 Lu. The materials in the RMC are made available to US researchers (or groups that include a US investigator) on a loan basis for use in non-destructive experiments and applications. In addition, certain samples have been provided to European investigators for cross-section studies through the auspices of EURATOM and the European-American Nuclear Data Committee. The status of the enriched isotopes included in the Sales Inventory is tabulated where isotopes are listed that are either not available or are in insufficient quantity or quality to meet current requests, as of 6/30/86. These can be summarized in the following subcategories: isotopes with zero inventory (22), Isotopes of insufficient quantity (17), and isotopes with insufficient enrichment quality (10). Of these 49 species, the supplies of 10 will be replenished by the scheduled FY86 enrichments in process (isotopes of bromine, calcium, nickel, potassium, rubidium, and strontium). In Table 3 are listed isotopes where the current inventory is less than the average annual sales level for the past five years. There are 47 isotopes listed, representing 25 different elements. Thus, there exists considerable potential for a substantial increase in the number of isotopes with zero inventory

  5. Isotopic measurements (C,N,O) of detonation soot produced from labeled and unlabeled Composition B-3 indicate source of solid carbon residues

    Science.gov (United States)

    Podlesak, David; Manner, Virginia; Amato, Ronald; Dattelbaum, Dana; Gusavsen, Richard; Huber, Rachel

    2017-06-01

    Detonation of HE is an exothermic process whereby metastable complex molecules are converted to simple stable molecules such as H2 O, N2, CO, CO2, and solid carbon. The solid carbon contains various allotropes such as detonation nanodiamonds, graphite, and amorphous carbon. It is well known that certain HE formulations such as Composition B (60% RDX, 40% TNT) produce greater amounts of solid carbon than other more oxygen-balanced formulations. To develop a greater understanding of how formulation and environment influence solid carbon formation, we synthesized TNT and RDX with 13 C and 15 N at levels slightly above natural abundance levels. Synthesized RDX and TNT were mixed at a ratio of 60:40 to form Composition B and solid carbon residues were collected from detonations of isotopically-labeled as well as un-labelled Composition B. The raw HE and detonation residues were analyzed isotopically for C, N, O isotopic compositions. We will discuss differences between treatments groups as a function of formulation and environment. LA-UR - 17-21266.

  6. Use of stable isotopes to monitor the natural attenuation of dicyclopentadiene

    International Nuclear Information System (INIS)

    Stehemier, L.G.; Cooke, L.; Hornett, R.; Aravena, R.

    2002-01-01

    Stable isotope fractionation is a method used to prove that residual hydrocarbons from an oil spill are being naturally attenuated in soil and groundwater. Hydrogen isotopes and carbon isotopes are the two isotopes that have been used to provide this evidence. Evaporation, adsorption and biodegradation are among the processes that can cause fractionation of isotopes. However, the largest fractionations take place during biodegradation because of the unidirectional characteristics of metabolism and the thermodynamic selectivity of enzymatic processes in biological systems. This paper presents the results of a monitored natural attenuation program for hydrocarbons in soil and groundwater at a chemical plant in Alberta where dicyclopentadiene (DCPD) was biodegraded. DCPD is a co-product from the cracking of ethane to ethylene. Piezometers were used to monitor the stable isotope fractionation of DCPD over a three year period. Evidence that DCPD was biodegrading was the fact that the change in carbon 13 was enriched 4.1 per cent in one study area during the monitoring period. The results are among the first definitive proof that DCPD biodegrades in the field. Analysis by gas chromatography-carbon-isotope ratio mass spectrometry is an essential technique for monitoring recalcitrant, low water-soluble hydrocarbons. 16 refs., 4 tabs., 3 figs

  7. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    Science.gov (United States)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  8. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  9. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  10. A manual for a Laboratory Information Management System (LIMS) for light stable isotopes

    Science.gov (United States)

    Coplen, Tyler B.

    1998-01-01

    The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program is presented herein. Major benefits of this system include (i) an increase in laboratory efficiency, (ii) reduction in the use of paper, (iii) reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) decreased errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for stable isotope laboratories. Since the original publication of the manual for LIMS for Light Stable Isotopes, the isotopes 3 H, 3 He, and 14 C, and the chlorofluorocarbons (CFCs), CFC-11, CFC-12, and CFC-113, have been added to this program.

  11. Russian ElectroKhimPribor integrated plant - producer and supplier of enriched stable isotopes

    International Nuclear Information System (INIS)

    Tatarinov, A.N.; Polyakov, L.A.

    1997-01-01

    Russian ElectroKhimPribor Integrated Plant, as well as ORNL, is a leading production which manufactures and supplied to the world market such specific products as stable isotopes. More than 200 isotopes of 44 elements can be obtained at its electromagnetic separator. Changes being underway for a few last years in Russia affected production and distribution of stable isotopes. There arose a necessity in a new approach to handling work in this field so as to create favourable conditions for both producers and customers. As a result, positive changes in calutron operation at ElectroKhimPribor has been reached; quality management system covering all stages of production has been set up; large and attractive stock of isotopes has been created; prospective scientific isotope-based developments are taken into account when planning separation F campaigns; executing the contracts is guaranteed; business philosophy has been changed to meet maximum of customer needs. For more than forty years ElectroKhimPribor have had no claim from customers as to quality of products or implementing contracts. Supplying enriched stable isotopes virtually to all the world's leading customers, ElectroKhimPribor cooperates successfully with Canadian company Trace Science since 1996

  12. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously

    International Nuclear Information System (INIS)

    Blank, Lars M.; Desphande, Rahul R.; Schmid, Andreas; Hayen, Heiko

    2012-01-01

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly 13 C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously - i.e., 13 C and 15 N - in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with 13 C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both 13 C-labeled glucose and 15 N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes. (orig.)

  13. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Wei, Fang, E-mail: willasa@163.com [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Xu, Ji-qu; Lv, Xin; Dong, Xu-yan [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Han, Xianlin [Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 (United States); College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053 (China); Quek, Siew-young [School of Chemical Science, The University of Auckland, Auckland 1142 (New Zealand); Huang, Feng-hong [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Chen, Hong, E-mail: chenhong@oilcrops.cn [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China)

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d{sub 0}-acetone) and deuterium-labeled acetone (d{sub 6}-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. - Highlights: • A novel isotope reagent acetone was explored for the derivatization of PEs. • The labeling reaction was carried out under mild conditions with high specificity. • Enhanced detection sensitivity of PEs was achieved after derivatization. • The ASID-DNLS-Shotgun MS/MS method was used to relative quantification of PEs.

  14. Multitracer Stable Isotope Quantification of Arginase and Nitric Oxide Synthase Activity in a Mouse Model of Pseudomonas Lung Infection

    Directory of Open Access Journals (Sweden)

    Hartmut Grasemann

    2014-01-01

    Full Text Available Cystic fibrosis airways are deficient for L-arginine, a substrate for nitric oxide synthases (NOSs and arginases. The rationale for this study was to quantify NOS and arginase activity in the mouse lung. Anesthetized unventilated mice received a primed constant stable isotope intravenous infusion containing labeled L-arginine, ornithine, and citrulline. The isotopic enrichment of each of the infused isotopomers and its product amino acids were measured in plasma and organ homogenates using liquid chromatography-tandem mass spectrometry. The effect of infection was studied three days after direct tracheal instillation of Pseudomonas-coated agar beads. In the infusion model, lung infection resulted in a significant (28-fold increase in NOS activity in lung but not in trachea, kidney, liver, or plasma. Absolute rates of arginase activity in solid tissues could not be calculated in this model. In an isolated lung perfusion model used for comparison increased NOS activity in infected lungs was confirmed (28.5-fold and lung arginase activity was increased 9.7-fold. The activity of L-arginine metabolizing enzymes can be measured using stable isotope conversion in the mouse. Accumulation of L-ornithine in the whole mouse model hindered the exact quantification of arginase activity in the lung, a problem that was overcome utilizing an isolated lung perfusion model.

  15. Isotope ratios as pollutant source and behaviour indicators

    International Nuclear Information System (INIS)

    1975-01-01

    Recent years have witnessed significant advances in isotope techniques for identifying origins and for studying the behaviour of trace contaminants and pollutants of the environment under actual existing environmental conditions. Improvements in the supply of stable isotopes and their labelled compounds, instrumental analysis and information on stable or radioactive isotopic ratios of existing environmental contaminants as a function of origin or behaviour have provided relatively new tools for the environmental scientist. While variations in natural or existing environmental stable and radioactive nuclides could be regarded as 'background noise' in conventional tracer experiments they promised unique information about sources and behaviour to those who listened carefully. (author)

  16. Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems

    International Nuclear Information System (INIS)

    Vysotskii, Vladimir I.; Kornilova, Alla A.

    2013-01-01

    Highlights: ► The phenomena of isotope transmutation in growing microbiological cultures were investigated. ► Transmutation in microbiological associations is 20 times more effective than in pure cultures. ► Transmutation of radioactive nuclei to stable isotopes in such associations was investigated. ► The most accelerated rate of Cs 137 to stable Ba 138 isotope transmutation was 310 days. ► “Microbiological deactivation” may be used for deactivation of Chernobyl and Fukushima areas. - Abstract: The report presents the results of qualifying examinations of stable and radioactive isotopes transmutation processes in growing microbiological cultures. It is shown that transmutation of stable isotopes during the process of growth of microbiological cultures, at optimal conditions in microbiological associations, is 20 times more effective than the same transmutation process in the form of “one-line” (pure) microbiological cultures. In the work, the process of direct, controlled decontamination of highly active intermediate lifetime and long-lived reactor isotopes (reactor waste) through the process of growing microbiological associations has been studied. In the control experiment (flask with active water but without microbiological associations), the “usual” law of nuclear decay applies, and the life-time of Cs 137 isotope was about 30 years. The most rapidly increasing decay rate, which occurred with a lifetime τ * ≈ 310 days (involving an increase in rate, and decrease in lifetime by a factor of 35 times) was observed in the presence of Ca salt in closed flask with active water contained Cs 137 solution and optimal microbiological association

  17. The conflict between cheetahs and humans on Namibian farmland elucidated by stable isotope diet analysis.

    Directory of Open Access Journals (Sweden)

    Christian C Voigt

    Full Text Available Large areas of Namibia are covered by farmland, which is also used by game and predator species. Because it can cause conflicts with farmers when predators, such as cheetahs (Acinonyx jubatus, hunt livestock, we assessed whether livestock constitutes a significant part of the cheetah diet by analysing the stable isotope composition of blood and tissue samples of cheetahs and their potential prey species. According to isotopic similarities, we defined three isotopic categories of potential prey: members of a C4 food web with high δ15N values (gemsbok, cattle, springhare and guinea fowl and those with low δ15N values (hartebeest, warthog, and members of a C3 food web, namely browsers (eland, kudu, springbok, steenbok and scrub hare. We quantified the trophic discrimination of heavy isotopes in cheetah muscle in 9 captive individuals and measured an enrichment for 15N (3.2‰ but not for 13C in relation to food. We captured 53 free-ranging cheetahs of which 23 were members of groups. Cheetahs of the same group were isotopically distinct from members of other groups, indicating that group members shared their prey. Solitary males (n = 21 and males in a bachelor groups (n = 11 fed mostly on hartebeest and warthogs, followed by browsers in case of solitary males, and by grazers with high δ15N values in case of bachelor groups. Female cheetahs (n = 9 predominantly fed on browsers and used also hartebeest and warthogs. Mixing models suggested that the isotopic prey category that included cattle was only important, if at all, for males living in bachelor groups. Stable isotope analysis of fur, muscle, red blood cells and blood plasma in 9 free-ranging cheetahs identified most individuals as isotopic specialists, focussing on isotopically distinct prey categories as their food.

  18. The Conflict between Cheetahs and Humans on Namibian Farmland Elucidated by Stable Isotope Diet Analysis

    Science.gov (United States)

    Voigt, Christian C.; Thalwitzer, Susanne; Melzheimer, Jörg; Blanc, Anne-Sophie; Jago, Mark; Wachter, Bettina

    2014-01-01

    Large areas of Namibia are covered by farmland, which is also used by game and predator species. Because it can cause conflicts with farmers when predators, such as cheetahs (Acinonyx jubatus), hunt livestock, we assessed whether livestock constitutes a significant part of the cheetah diet by analysing the stable isotope composition of blood and tissue samples of cheetahs and their potential prey species. According to isotopic similarities, we defined three isotopic categories of potential prey: members of a C4 food web with high δ15N values (gemsbok, cattle, springhare and guinea fowl) and those with low δ15N values (hartebeest, warthog), and members of a C3 food web, namely browsers (eland, kudu, springbok, steenbok and scrub hare). We quantified the trophic discrimination of heavy isotopes in cheetah muscle in 9 captive individuals and measured an enrichment for 15N (3.2‰) but not for 13C in relation to food. We captured 53 free-ranging cheetahs of which 23 were members of groups. Cheetahs of the same group were isotopically distinct from members of other groups, indicating that group members shared their prey. Solitary males (n = 21) and males in a bachelor groups (n = 11) fed mostly on hartebeest and warthogs, followed by browsers in case of solitary males, and by grazers with high δ15N values in case of bachelor groups. Female cheetahs (n = 9) predominantly fed on browsers and used also hartebeest and warthogs. Mixing models suggested that the isotopic prey category that included cattle was only important, if at all, for males living in bachelor groups. Stable isotope analysis of fur, muscle, red blood cells and blood plasma in 9 free-ranging cheetahs identified most individuals as isotopic specialists, focussing on isotopically distinct prey categories as their food. PMID:25162403

  19. Changes of stable isotopes carbon-13 and nitrogen-15 in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Yu Hongxia; Wu Wei; Yang Shuming

    2009-01-01

    Stable isotope analysis is a potential tool for tracing food origin. The stable carbon and nitrogen isotope composition in different tissues of two varieties of cattle under the same culture condition were investigated. δ 13 C and δ 15 N values of different defatted muscle and crude fat, cattle tail hair, blood, liver and feed were determined by isotope ratio mass spectrometry, and statistical analysis was carried out. The results showed that stable isotopes of carbon and nitrogen composition was not affected by cattle variety; the δ 13 C values between different defatted muscle, blood, liver and cattle hair were not significantly different, but δ 15 N value in the liver was much higher than other muscle and the δ 13 C values didn't show difference among all the crude fat samples. So these results indicated that isotope fractionation in the various tissue was discrepant. (authors)

  20. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    Science.gov (United States)

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.

  1. Preparation of labelled lipids by the use of plant cell cultures

    International Nuclear Information System (INIS)

    Mangold, H.K.

    1978-01-01

    The preparation of some radioacitvely labelled lipids by the use of plant cell cultures is discussed and further applications of the new method are suggested. Cell suspension cultures of rape (Brassica napus) and soya (Glycine max) have been used for the preparation of lipids labelled with radioisotopes. Radioactive acetic acid as well as various long-chain fatty acids are readily incorporated into the neutral and ionic lipids of plant cell cultures. In addition, 14 C-labelled glycerol, ethanolamine and choline are well utilized by the cells. Randomly labelled lipids have been obtained by incubating cell suspension cultures of rape and soya with [1- 14 C] acetic acid, and uniformly labelled lipids have been isolated from cultures that had been incubated with a mixture of [1- 14 C] acetic acid plus [2- 14 C] acetic acid. The use of techniques of plant cell cultures for the preparation of lipds labelled with stable or radioactive isotopesappears particularly rewarding because the uptake of precursors by the cells and their incorporation into various lipid compounds proceeds rapidly and often quanitatively.This new approach should be useful also for the biosynthesis of lipids whose acyl moieties contain a spn radical, a fluorescent group, or a light-sensitive label. Thus, plant cell cultures constitute valuable new tools for the biosynthetic preparation of a great variety of labelled lipids. (A.G.)

  2. [Non-invasive analysis of proteins in living cells using NMR spectroscopy].

    Science.gov (United States)

    Tochio, Hidehito; Murayama, Shuhei; Inomata, Kohsuke; Morimoto, Daichi; Ohno, Ayako; Shirakawa, Masahiro

    2015-01-01

    NMR spectroscopy enables structural analyses of proteins and has been widely used in the structural biology field in recent decades. NMR spectroscopy can be applied to proteins inside living cells, allowing characterization of their structures and dynamics in intracellular environments. The simplest "in-cell NMR" approach employs bacterial cells; in this approach, live Escherichia coli cells overexpressing a specific protein are subjected to NMR. The cells are grown in an NMR active isotope-enriched medium to ensure that the overexpressed proteins are labeled with the stable isotopes. Thus the obtained NMR spectra, which are derived from labeled proteins, contain atomic-level information about the structure and dynamics of the proteins. Recent progress enables us to work with higher eukaryotic cells such as HeLa and HEK293 cells, for which a number of techniques have been developed to achieve isotope labeling of the specific target protein. In this review, we describe successful use of electroporation for in-cell NMR. In addition, (19)F-NMR to characterize protein-ligand interactions in cells is presented. Because (19)F nuclei rarely exist in natural cells, when (19)F-labeled proteins are delivered into cells and (19)F-NMR signals are observed, one can safely ascertain that these signals originate from the delivered proteins and not other molecules.

  3. Stable isotopic analysis of fossil chironomids as an approach to environmental reconstruction: state of development and future challenges

    Directory of Open Access Journals (Sweden)

    Oliver Heiri

    2012-10-01

    Full Text Available Remains of chironomid larvae, especially their strongly sclerotized head capsules, can be found abundantly and well preserved in most lake sediment records. These remains mainly consist of chitin and proteins and, since their chemical composition does not seem to be strongly affected by decompositional processes, they can be used to develop palaeoenvironmental reconstructions based on their stable isotopic composition. Here we review available stable isotope studies based on fossil chironomids and indicate future research necessary to further develop this still relatively new research approach. Efforts to produce stable isotope records based on fossil chironomids have mainly examined the elements H, N, C, and O. They have focussed on (1 developing the methodology for preparing samples for isotopic analysis, (2 laboratory studies cultivating chironomid larvae under controlled conditions to determine the factors affecting their stable isotopic composition, (3 ecosystem-scale studies relating stable isotopic measurements of fossil chironomid assemblages to environmental conditions, and (4 developing first down-core records describing past changes in the stable isotopic composition of chironomid assemblages. These studies have shown that chemical sample pretreatment may affect the isotopic composition for some elements. Laboratory runs suggest that the diet of the larvae influences their stable isotopic composition for H, N, C and O, whereas stable isotopes in the ambient water also strongly influence their oxygen and to a lesser extent hydrogen isotopic composition. These experiments also indicate only minor offsets between the nitrogen and carbon isotopic composition of chironomid soft tissue and the fossilizing head capsules, whereas for hydrogen and oxygen this offset remains to be explored. Though few datasets have been published, the available ecosystem studies and developed down-core sediment records indicate that stable isotopes in

  4. Stable isotopes as tracers for radionuclides

    International Nuclear Information System (INIS)

    Giussani, A.; Bartolo, D. de; Cantone, M.C.; Zilker, T.; Greim, H.; Roth, P.; Werner, E.

    2000-01-01

    The assessment of internal dose after incorporation of radionuclides requires as input data the knowledge of the uptake into the systemic circulation, the distribution and retention in selected organs, the excretion pathways. Realistic biokinetic models are needed for reliable estimates, correct interpretation of bioassay measurements, appropriate decision-making in radiological emergencies. For many radionuclides, however, the biokinetic models currently recommended are often generic, with very few specific parameters, due to the lack of experimental human data. The use of stable isotopes as tracers enables to determine important biokinetic parameters such as the fractional uptake, the clearance from the transfer compartment, the excretion patterns under experimentally controlled conditions. The subjects investigated are not exposed to any radiation risk, so this technique enables to obtain biokinetic information also for sensitive groups of the population, such as children or pregnant women, and to determine age- and gender-specific model parameters. Sophisticated analytical method, able to discriminate and quantitate different isotopes of the same element in complex matrices such as biological fluids, have to be purposely developed and optimized. Activation analysis and mass spectrometry are the most proper techniques of choice. Experiments were conducted with molybdenum, tellurium, ruthenium and zirconium. Activation analysis with protons, thermal ionization mass spectrometry and inductively coupled mass spectrometry were employed for the determination of stable isotopes of these elements in blood plasma and urine samples. Several deviations from the predictions of the ICRP models were observed. For example, modifications to the current model for molybdenum have been suggested on the basis of these results. The dose coefficients to the target regions calculated with this proposed model are even of one order of magnitude different than the ICRP estimates

  5. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  6. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  7. Progresses in the stable isotope studies of microbial processes associated with wetland methane production

    International Nuclear Information System (INIS)

    Li Qing; Lin Guanghui

    2013-01-01

    Methane emissions from wetlands play a key role in regulating global atmospheric methane concentration, so better understanding of microbial processes for the methane emission in wetlands is critical for developing process models and reducing uncertainty in global methane emission inventory. In this review, we describe basic microbial processes for wetland methane production and then demonstrate how stable isotope fractionation and stable isotope probing can be used to investigate the mechanisms underlying different methanogenic pathways and to quantify microbial species involved in wetland methane production. When applying stable isotope technique to calculate contributions of different pathways to the total methane production in various wetlands, the technical challenge is how to determine isotopic fractionation factors for the acetate derived methane production and carbon dioxide derived methane production. Although the application of stable isotope probing techniques to study the actual functions of different microbial organisms to methane production process is significantly superior to the traditional molecular biology method, the combination of these two technologies will be crucial for direct linking of the microbial community and functional structure with the corresponding metabolic functions, and provide new ideas for future studies. (authors)

  8. Water stable isotopes: application to the water cycle and climate variations study

    International Nuclear Information System (INIS)

    Risi, C.

    2009-12-01

    The stable isotopic composition of water (H 2 16 , HDO, H 2 18 , H 2 17 ) is a promising tracer of the present day water cycle and past climates. While the isotopic composition recorded in polar ice core have long been used to reconstruct past temperatures, however, what controls the isotopic composition of the tropical precipitation is more complex. The goal of this thesis is thus to better understand the processes that affect the isotopic composition of tropical precipitation and atmospheric water, more particularly in the tropics. Since most of the tropical precipitation arises from atmospheric convection, and most isotopic archives are on land, we focus more particularly on the impact of convective and land surface processes. In turn, what can be learned about convection and land surface processes using isotopic measurements? Can they help constrain their representation in models? At the inter-annual to climate change scale, what information about the tropical climate variability is recorded in isotopic signals observed in archives? First, we investigate the influence of convection on water stable isotopes. We use both (1) numerical modeling, with a hierarchy of models (single column model, two-dimensional model of squall lines, general circulation model) and (2) data analysis, using isotopic data from rain collected in the Sahel during the African Monsoon Multidisciplinary Analysis campaign, at the event and intra-event scales. These studies highlight the strong impact of convection on the precipitation composition, and stress the importance of rain evaporation and convective or meso-scale subsidence in controlling the rain isotopic composition. Convection also plays an important role on isotopic profiles in the upper troposphere-lower stratosphere. Second, we study what information about climatic variability is recorded by water stable isotopes in precipitation. We analyze simulations of present day and past climates with LMDZ, and evaluate to what extent

  9. Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography–mass spectrometry and stable labeled isotope as internal standard

    International Nuclear Information System (INIS)

    Varlet, V.; Smith, F.; Froidmont, S. de; Dominguez, A.; Rinaldi, A.; Augsburger, M.; Mangin, P.; Grabherr, S.

    2013-01-01

    Graphical abstract: -- Highlights: •We developed a method for CO 2 analysis in cardiac samples and quantification by 13 CO 2 . •This method was fully validated by accuracy profile. •We have applied this method to perform CO 2 precise quantification for forensic applications. •Context of the death could be documented following CO 2 concentrations. -- Abstract: A novel approach to measure carbon dioxide (CO 2 ) in gaseous samples, based on a precise and accurate quantification by 13 CO 2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography–mass spectrometry (HS-GC–MS) method applicable in the routine determination of CO 2 . The main drawback of the GC methods discussed in the literature for CO 2 measurement is the lack of a specific internal standard necessary to perform quantification. CO 2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ( 13 CO 2 ) on the basis of the stoichiometric formation of CO 2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH 13 CO 3 ). This method allows a precise measurement of CO 2 concentration and was validated on various human postmortem gas samples in order to study its efficiency

  10. Kinetic isotope effects in reaction of ferment oxidation of tritium-labelled D-galactosamine

    International Nuclear Information System (INIS)

    Akulov, G.P.; Korsakova, N.A.

    1992-01-01

    Primary, secondary and intramolecular kinetic isotopic effects in reaction of ferment oxidation of D-galactosamine labelled by tritium in position 6, were measured. When comparing values of the effects with previously obtained results for similar reaction D-[6- 3 H]galactose, it was ascertained that the presence of aminogroup in galactopyranosyl mainly affects kinetics of substrate-ferment complex formation stage. The possibility to use kinetic isotope effects for increase in molar activity of D-galactosamine, labelled by tritium in position 6, is shown

  11. NMR-based stable isotope resolved metabolomics in systems biochemistry

    International Nuclear Information System (INIS)

    Fan, Teresa W-M.; Lane, Andrew N.

    2011-01-01

    An important goal of metabolomics is to characterize the changes in metabolic networks in cells or various tissues of an organism in response to external perturbations or pathologies. The profiling of metabolites and their steady state concentrations does not directly provide information regarding the architecture and fluxes through metabolic networks. This requires tracer approaches. NMR is especially powerful as it can be used not only to identify and quantify metabolites in an unfractionated mixture such as biofluids or crude cell/tissue extracts, but also determine the positional isotopomer distributions of metabolites derived from a precursor enriched in stable isotopes such as 13 C and 15 N via metabolic transformations. In this article we demonstrate the application of a variety of 2-D NMR editing experiments to define the positional isotopomers of compounds present in polar and non-polar extracts of human lung cancer cells grown in either [U– 13 C]-glucose or [U– 13 C, 15 N]-glutamine as source tracers. The information provided by such experiments enabled unambiguous reconstruction of metabolic pathways, which is the foundation for further metabolic flux modeling.

  12. Investigating Pathways of Nutrient and Energy Flows Through Aquatic Food Webs Using Stable Isotopes of Carbon and Nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hadwen, W. L.; Bunn, S. E. [Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan Campus, Brisbane, Queensland (Australia)

    2013-05-15

    Carbon and nitrogen stable isotopes can provide valuable insights into pathways of nutrient and energy flows in aquatic ecosystems. Carbon stable isotopes are principally used to trace pathways of organic matter transfer through aquatic food webs, particularly with regard to identifying the dominant sources of nutrition for aquatic biota. Stable isotopes of carbon have been widely used to answer one of the most pressing questions in aquatic food web ecology - to what degree do in-stream (autochthonous) and riparian (allochthonous) sources of energy fuel riverine food webs? In conjunction with carbon stable isotopes, nitrogen stable isotopes have been used to determine the trophic position of consumers and to identify the number of trophic levels in aquatic food webs. More recently, stable nitrogen isotopes have been recommended as indicators of anthropogenic disturbances. Specifically, agricultural land uses and/or sewage effluent discharge have been shown to significantly increase {delta}{sup 15}N signatures in primary producers and higher order consumers in freshwater, estuarine and marine environments. Together, carbon and nitrogen stable isotopes can be used to examine natural food web functions as well as the degree to which human modifications to catchments and aquatic environments can influence aquatic ecosystem function. (author)

  13. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin.

    Science.gov (United States)

    Shen, Xiaoli; Xu, Zemin; Zhang, Xichang; Yang, Fangxing

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from -29.0‰ to -26.5‰ in soil spiked with 2mg/kg lambda-cyhalothrin, and to -27.5‰ with 10mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as -2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose.

    Science.gov (United States)

    Loader, N J; Street-Perrott, F A; Daley, T J; Hughes, P D M; Kimak, A; Levanič, T; Mallon, G; Mauquoy, D; Robertson, I; Roland, T P; van Bellen, S; Ziehmer, M M; Leuenberger, M

    2015-01-06

    A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

  15. DNA-based stable isotope probing: a link between community structure and function

    International Nuclear Information System (INIS)

    Uhlik, Ondrej; Jecna, Katerina; Leigh, Mary Beth; Mackova, Martina; Macek, Tomas

    2009-01-01

    DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing 13C-labeled substrate to a microbial community and subsequent analyses of the 13C-DNA isolated from the community. Isopycnic centrifugation permits separating 13C-labeled DNA of organisms that utilized the substrate from 12C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.

  16. [Research progress on food sources and food web structure of wetlands based on stable isotopes].

    Science.gov (United States)

    Chen, Zhan Yan; Wu, Hai Tao; Wang, Yun Biao; Lyu, Xian Guo

    2017-07-18

    The trophic dynamics of wetland organisms is the basis of assessing wetland structure and function. Stable isotopes of carbon and nitrogen have been widely applied to identify trophic relationships in food source, food composition and food web transport in wetland ecosystem studies. This paper provided an overall review about the current methodology of isotope mixing model and trophic level in wetland ecosystems, and discussed the standards of trophic fractionation and baseline. Moreover, we characterized the typical food sources and isotopic compositions of wetland ecosystems, summarized the food sources in different trophic levels of herbivores, omnivores and carnivores based on stable isotopic analyses. We also discussed the limitations of stable isotopes in tra-cing food sources and in constructing food webs. Based on the current results, development trends and upcoming requirements, future studies should focus on sample treatment, conservation and trophic enrichment measurement in the wetland food web, as well as on combing a variety of methodologies including traditional stomach stuffing, molecular markers, and multiple isotopes.

  17. In Vivo Isotopic Labeling of Symbiotic Bacteria Involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer (Melolontha hippocastani).

    Science.gov (United States)

    Alonso-Pernas, Pol; Bartram, Stefan; Arias-Cordero, Erika M; Novoselov, Alexey L; Halty-deLeon, Lorena; Shao, Yongqi; Boland, Wilhelm

    2017-01-01

    The guts of insects harbor symbiotic bacterial communities. However, due to their complexity, it is challenging to relate a specific symbiotic phylotype to its corresponding function. In the present study, we focused on the forest cockchafer ( Melolontha hippocastani ), a phytophagous insect with a dual life cycle, consisting of a root-feeding larval stage and a leaf-feeding adult stage. By combining in vivo stable isotope probing (SIP) with 13 C cellulose and 15 N urea as trophic links, with Illumina MiSeq (Illumina-SIP), we unraveled bacterial networks processing recalcitrant dietary components and recycling nitrogenous waste. The bacterial communities behind these processes change between larval and adult stages. In 13 C cellulose-fed insects, the bacterial families Lachnospiraceae and Enterobacteriaceae were isotopically labeled in larvae and adults, respectively. In 15 N urea-fed insects, the genera Burkholderia and Parabacteroides were isotopically labeled in larvae and adults, respectively. Additionally, the PICRUSt-predicted metagenome suggested a possible ability to degrade hemicellulose and to produce amino acids of, respectively, 13 C cellulose- and 15 N urea labeled bacteria. The incorporation of 15 N from ingested urea back into the insect body was confirmed, in larvae and adults, by isotope ratio mass spectrometry (IRMS). Besides highlighting key bacterial symbionts of the gut of M. hippocastani , this study provides example on how Illumina-SIP with multiple trophic links can be used to target microorganisms embracing different roles within an environment.

  18. In Vivo Isotopic Labeling of Symbiotic Bacteria Involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer (Melolontha hippocastani

    Directory of Open Access Journals (Sweden)

    Pol Alonso-Pernas

    2017-10-01

    Full Text Available The guts of insects harbor symbiotic bacterial communities. However, due to their complexity, it is challenging to relate a specific symbiotic phylotype to its corresponding function. In the present study, we focused on the forest cockchafer (Melolontha hippocastani, a phytophagous insect with a dual life cycle, consisting of a root-feeding larval stage and a leaf-feeding adult stage. By combining in vivo stable isotope probing (SIP with 13C cellulose and 15N urea as trophic links, with Illumina MiSeq (Illumina-SIP, we unraveled bacterial networks processing recalcitrant dietary components and recycling nitrogenous waste. The bacterial communities behind these processes change between larval and adult stages. In 13C cellulose-fed insects, the bacterial families Lachnospiraceae and Enterobacteriaceae were isotopically labeled in larvae and adults, respectively. In 15N urea-fed insects, the genera Burkholderia and Parabacteroides were isotopically labeled in larvae and adults, respectively. Additionally, the PICRUSt-predicted metagenome suggested a possible ability to degrade hemicellulose and to produce amino acids of, respectively, 13C cellulose- and 15N urea labeled bacteria. The incorporation of 15N from ingested urea back into the insect body was confirmed, in larvae and adults, by isotope ratio mass spectrometry (IRMS. Besides highlighting key bacterial symbionts of the gut of M. hippocastani, this study provides example on how Illumina-SIP with multiple trophic links can be used to target microorganisms embracing different roles within an environment.

  19. Labelled compounds for agrochemical residue studies in developing countries

    International Nuclear Information System (INIS)

    1977-01-01

    Potential applications of stable and radioactive isotopic tracers for assessing undesirable contaminants in agriculture, fisheries and food are discussed as related to developing countries. Sources and types of residues are considered, and their local implications; also, the availability of suitably labelled compounds, including possible international cooperation to facilitate more centralized and economic preparation, and the distribution of labelled intermediates and compounds for use by local scientists. The provision of training courses and their syllabus are reviewed. Experience in the Joint FAO/IAEA chemical residue and pollution programme has indicated a need for longer-lived radioisotopically labelled pesticides (insecticides, acaricides, fungicides, herbicides, fumigants, etc.) for studying their behaviour. 15 N-, 13 C- or 2 H-labelled fertilizers and fertilizer additives such as nitrification inhibitors will shortly be needed, for studying the behaviour of fertilizer nitrogen residues, and their regulation and conservation, under conditions prevailing in the developing countries. Compounds labelled with stable isotopes are considered particularly valuable under field conditions. The report reviews the present situation and presents specific recommendations to the Directors General of FAO and IAEA

  20. Inferring foliar water uptake using stable isotopes of water.

    Science.gov (United States)

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  1. Development of versatile isotopic labeling reagents for profiling the amine submetabolome by liquid chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Zhou, Ruokun; Huan, Tao; Li, Liang

    2015-01-01

    Highlights: • Two new reagents were developed for chemical isotope labeling mass spectrometry (MS). • They could be used to label amine-containing metabolites in a metabolomic sample. • The labeled metabolites could be detected with much improved sensitivity in MS. • One of the reagents could also help generate useful MS/MS spectra for structural analysis. • These reagents should be useful for quantitative metabolomics. - Abstract: Metabolomic profiling involves relative quantification of metabolites in comparative samples and identification of the significant metabolites that differentiate different groups (e.g., diseased vs. controls). Chemical isotope labeling (CIL) liquid chromatography–mass spectrometry (LC–MS) is an enabling technique that can provide improved metabolome coverage and metabolite quantification. However, chemical identification of labeled metabolites can still be a challenge. In this work, a new set of isotopic labeling reagents offering versatile properties to enhance both detection and identification are described. They were prepared by a glycine molecule (or its isotopic counterpart) and an aromatic acid with varying structures through a simple three-step synthesis route. In addition to relatively low costs of synthesizing the reagents, this reaction route allows adjusting reagent property in accordance with the desired application objective. To date, two isotopic reagents, 4-dimethylaminobenzoylamido acetic acid N-hydroxylsuccinimide ester (DBAA-NHS) and 4-methoxybenzoylamido acetic acid N-hydroxylsuccinimide ester (MBAA-NHS), for labeling the amine-containing metabolites (i.e., amine submetabolome) have been synthesized. The labeling conditions and the related LC–MS method have been optimized. We demonstrate that DBAA labeling can increase the metabolite detectability because of the presence of an electrospray ionization (ESI)-active dimethylaminobenzoyl group. On the other hand, MBAA labeled metabolites can be fragmented

  2. Development of versatile isotopic labeling reagents for profiling the amine submetabolome by liquid chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ruokun; Huan, Tao; Li, Liang, E-mail: Liang.Li@ualberta.ca

    2015-06-30

    Highlights: • Two new reagents were developed for chemical isotope labeling mass spectrometry (MS). • They could be used to label amine-containing metabolites in a metabolomic sample. • The labeled metabolites could be detected with much improved sensitivity in MS. • One of the reagents could also help generate useful MS/MS spectra for structural analysis. • These reagents should be useful for quantitative metabolomics. - Abstract: Metabolomic profiling involves relative quantification of metabolites in comparative samples and identification of the significant metabolites that differentiate different groups (e.g., diseased vs. controls). Chemical isotope labeling (CIL) liquid chromatography–mass spectrometry (LC–MS) is an enabling technique that can provide improved metabolome coverage and metabolite quantification. However, chemical identification of labeled metabolites can still be a challenge. In this work, a new set of isotopic labeling reagents offering versatile properties to enhance both detection and identification are described. They were prepared by a glycine molecule (or its isotopic counterpart) and an aromatic acid with varying structures through a simple three-step synthesis route. In addition to relatively low costs of synthesizing the reagents, this reaction route allows adjusting reagent property in accordance with the desired application objective. To date, two isotopic reagents, 4-dimethylaminobenzoylamido acetic acid N-hydroxylsuccinimide ester (DBAA-NHS) and 4-methoxybenzoylamido acetic acid N-hydroxylsuccinimide ester (MBAA-NHS), for labeling the amine-containing metabolites (i.e., amine submetabolome) have been synthesized. The labeling conditions and the related LC–MS method have been optimized. We demonstrate that DBAA labeling can increase the metabolite detectability because of the presence of an electrospray ionization (ESI)-active dimethylaminobenzoyl group. On the other hand, MBAA labeled metabolites can be fragmented

  3. Geospatial modeling of plant stable isotope ratios - the development of isoscapes

    Science.gov (United States)

    West, J. B.; Ehleringer, J. R.; Hurley, J. M.; Cerling, T. E.

    2007-12-01

    Large-scale spatial variation in stable isotope ratios can yield critical insights into the spatio-temporal dynamics of biogeochemical cycles, animal movements, and shifts in climate, as well as anthropogenic activities such as commerce, resource utilization, and forensic investigation. Interpreting these signals requires that we understand and model the variation. We report progress in our development of plant stable isotope ratio landscapes (isoscapes). Our approach utilizes a GIS, gridded datasets, a range of modeling approaches, and spatially distributed observations. We synthesize findings from four studies to illustrate the general utility of the approach, its ability to represent observed spatio-temporal variability in plant stable isotope ratios, and also outline some specific areas of uncertainty. We also address two basic, but critical questions central to our ability to model plant stable isotope ratios using this approach: 1. Do the continuous precipitation isotope ratio grids represent reasonable proxies for plant source water?, and 2. Do continuous climate grids (as is or modified) represent a reasonable proxy for the climate experienced by plants? Plant components modeled include leaf water, grape water (extracted from wine), bulk leaf material ( Cannabis sativa; marijuana), and seed oil ( Ricinus communis; castor bean). Our approaches to modeling the isotope ratios of these components varied from highly sophisticated process models to simple one-step fractionation models to regression approaches. The leaf water isosocapes were produced using steady-state models of enrichment and continuous grids of annual average precipitation isotope ratios and climate. These were compared to other modeling efforts, as well as a relatively sparse, but geographically distributed dataset from the literature. The latitudinal distributions and global averages compared favorably to other modeling efforts and the observational data compared well to model predictions

  4. Stable-isotope analysis: a neglected tool for placing parasites in food webs.

    Science.gov (United States)

    Sabadel, A J M; Stumbo, A D; MacLeod, C D

    2018-02-28

    Parasites are often overlooked in the construction of food webs, despite their ubiquitous presence in almost every type of ecosystem. Researchers who do recognize their importance often struggle to include parasites using classical food-web theory, mainly due to the parasites' multiple hosts and life stages. A novel approach using compound-specific stable-isotope analysis promises to provide considerable insight into the energetic exchanges of parasite and host, which may solve some of the issues inherent in incorporating parasites using a classical approach. Understanding the role of parasites within food webs, and tracing the associated biomass transfers, are crucial to constructing new models that will expand our knowledge of food webs. This mini-review focuses on stable-isotope studies published in the past decade, and introduces compound-specific stable-isotope analysis as a powerful, but underutilized, newly developed tool that may answer many unresolved questions regarding the role of parasites in food webs.

  5. REDOR NMR of stable-isotope-labeled protein binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [Washington Univ., St. Louis, MO (United States)

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  6. Normalization Methods and Selection Strategies for Reference Materials in Stable Isotope Analyes. Review

    Energy Technology Data Exchange (ETDEWEB)

    Skrzypek, G. [West Australian Biogeochemistry Centre, John de Laeter Centre of Mass Spectrometry, School of Plant Biology, University of Western Australia, Crawley (Australia); Sadler, R. [School of Agricultural and Resource Economics, University of Western Australia, Crawley (Australia); Paul, D. [Department of Civil Engineering (Geosciences), Indian Institute of Technology Kanpur, Kanpur (India); Forizs, I. [Institute for Geochemical Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-07-15

    Stable isotope ratio mass spectrometers are highly precise, but not accurate instruments. Therefore, results have to be normalized to one of the isotope scales (e.g., VSMOW, VPDB) based on well calibrated reference materials. The selection of reference materials, numbers of replicates, {delta}-values of these reference materials and normalization technique have been identified as crucial in determining the uncertainty associated with the final results. The most common normalization techniques and reference materials have been tested using both Monte Carlo simulations and laboratory experiments to investigate aspects of error propagation during the normalization of isotope data. The range of observed differences justifies the need to employ the same sets of standards worldwide for each element and each stable isotope analytical technique. (author)

  7. Lifetime Stable isotopes profiles in whale earplug: assessment of foraging and migrations in the Northern Hemisphere

    Science.gov (United States)

    Mansouri, F.; Crain, D.; Winfield, Z.; Trumble, S.; Usenko, S.

    2017-12-01

    Whale earplugs, historically used for aging, were used to reconstruct lifetime stable isotope profiles for carbon (δ13C) and nitrogen (δ15N) for individual whales by delaminating lamina within the earplug. These stable isotope profile, which provide Continuous lifetime records of feeding, foraging ecology, and migration, were determined for 20 individuals from 4 baleen species including fin, minke, humpback, and blue whales spanning more than a century (1869 - 2014) using stable isotope analysis. Approximately 1 mg tissue from each lamina (n=1200) was analyzed for carbon and nitrogen stable isotope using continuous flow isotope ratio mass spectrometer (CF-IRMS). This research using whale earplugs have combined age estimates with stable isotope measurements to reconstruct lifetime foraging profiles with a 6-month resolution, providing an unprecedented opportunity to assess periods and trends in dietary fluctuations as well as migration between different foraging area which have distinct isotope values. Trends with these profiles suggest long-term changing in migration, while annual variability highlights seasonal fasting and feeding. Isotopic ratios were also used to identify subpopulations of Atlantic fin whales, which enabled us to assign unidentified humpback and minke whales to the Atlantic or Pacific Oceans. This historical archive of data provides us an unprecedented tool to assess long term marine ecosystem and subsequently marine organism transition to alternate foraging area and shed light on the whale's population status in the Northern hemisphere.

  8. Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons†

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Vieth, Andrea; Meckenstock, Rainer U.

    2002-01-01

    13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation. PMID:12324375

  9. Stable isotopes: essential tools in biological and medical research

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P. D.; Hachey, D. L.; Kreek, M. J.; Schoeller, D. A.

    1977-01-01

    Recent developments in the use of the stable isotopes, /sup 13/C, /sup 15/N, /sup 17/O, and /sup 18/O, as tracers in research studies in the fields of biology, medicine, pharmacology, and agriculture are briefly reviewed. (CH)

  10. Stable isotope paleoaltimetry and the evolution of landscapes and life

    Science.gov (United States)

    Mulch, Andreas

    2016-01-01

    Reconstructing topography of our planet not only advances our knowledge of the geodynamic processes that shape the Earth's surface; equally important it adds a key element towards understanding long-term continental moisture transport, atmospheric circulation and the distribution of biomes and biodiversity. Stable isotope paleoaltimetry exploits systematic decreases in the oxygen (δ18O) or hydrogen (δD) isotopic composition of precipitation along a mountain front when the interaction of topography and advected moist air masses induces orographic precipitation. These changes in δ18O or δD can be recovered from the geologic record and recent geochemical and modeling advances allow a broad range of proxy materials to be evaluated. Over the last 10 yr stable isotope paleoaltimetry has witnessed rapidly expanding research activities and has produced a broad array of fascinating tectonic and geomorphologic studies many of which have concentrated on determining the elevation history of continental plateau regions. These single-site studies have greatly expanded what used to be very sparse global paleoaltimetric data. The challenge now lies in disentangling the surface uplift component from the impact of climate change on δ18O and δD in precipitation. The robustness of stable isotope paleoaltimetry can be enhanced when high-elevation δ18O or δD data are referenced against low-elevation sites that track climate-modulated sea level δ18O or δD of precipitation through time (' δ- δ approach'). Analysis of central Andean paleosols documents that differences in δ18O of soil carbonate between the Subandean foreland and the Bolivian Altiplano are small between 11 and 7 Ma but rise rapidly to ca. 2.9‰ after 7 Ma, corroborating the magnitude of late Miocene change in δ18O on the Altiplano. Future advances in stable isotope paleoaltimetry will greatly benefit from addressing four key challenges: (1) Identifying topographically-induced changes in atmospheric

  11. Separation of polybrominated diphenyl ethers in fish for compound-specific stable carbon isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yan-Hong [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing, 100049 (China); Luo, Xiao-Jun, E-mail: luoxiaoj@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Hua-Shan; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2012-05-15

    A separation and isotopic analysis method was developed to accurately measure the stable carbon isotope ratios of polybrominated diphenyl ethers (PBDEs) with three to six substituted bromine atoms in fish samples. Sample extracts were treated with concentrated sulfuric acid to remove lipids, purified using complex silica gel column chromatography, and finally processed using alumina/silica (Al/Si) gel column chromatography. The purities of extracts were verified by gas chromatography and mass spectrometry (GC-MS) in the full-scan mode. The average recoveries of all compounds across the purification method were between 60% and 110%, with the exception of BDE-154. The stable carbon isotopic compositions of PBDEs can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . No significant isotopic fraction was found during the purification of the main PBDE congeners. A significant change in the stable carbon isotope ratio of BDE-47 was observed in fish carcasses compared to the original isotopic signatures, implying that PBDE stable carbon isotopic compositions can be used to trace the biotransformation of PBDEs in biota. - Highlights: Black-Right-Pointing-Pointer A method for the purification of PBDEs for CSIA was developed. Black-Right-Pointing-Pointer The {delta}{sup 13}C of PBDE congeners can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . Black-Right-Pointing-Pointer Common carp were exposed to a PBDE mixture to investigate debromination. Black-Right-Pointing-Pointer Ratios of the {delta}{sup 13}C values can be used to trace the debromination of PBDE in fish.

  12. Industrial scale production of stable isotopes employing the technique of plasma separation

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Bigelow, T.S.; Tarallo, F.J.

    2003-01-01

    Calutrons, centrifuges, diffusion and distillation processes are some of the devices and techniques that have been employed to produce substantial quantities of enriched stable isotopes. Nevertheless, the availability of enriched isotopes in sufficient quantities for industrial applications remains very restricted. Industries such as those involved with medicine, semiconductors, nuclear fuel, propulsion, and national defense have identified the potential need for various enriched isotopes in large quantities. Economically producing most enriched (non-gaseous) isotopes in sufficient quantities has so far eluded commercial producers. The plasma separation process is a commercial technique now available for producing large quantities of a wide range of enriched isotopes. Until recently, this technique has mainly been explored with small-scale ('proof-of-principle') devices that have been built and operated at research institutes. The new Theragenics TM facility at Oak Ridge, TN houses the only existing commercial scale PSP system. This device, which successfully operated in the 1980's, has recently been re-commissioned and is planned to be used to produce a variety of isotopes. Progress and the capabilities of this device and it's potential for impacting the world's supply of stable isotopes in the future is summarized. This technique now holds promise of being able to open the door to allowing new and exciting applications of these isotopes in the future. (author)

  13. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Analysis of stable isotope data to estimate vitamin A body stores

    International Nuclear Information System (INIS)

    2008-06-01

    Vitamin A deficiency (VAD) is a serious public health problem in most developing countries. Because of the detrimental effects of vitamin A deficiency on human health, accurate assessment of vitamin A status is necessary to develop and evaluate intervention programmes. The IAEA is providing technical support to its Member States to use stable isotope dilution techniques to develop and evaluate programmes aimed at reducing vitamin A deficiency in populations. The stable isotope dilution technique, in contrast to other methods, have the potential to provide a quantitative estimate of vitamin A concentration across the continuum of status, from deficient to excess vitamin A body stores. In 2004 the IAEA, the United States Agency for International Development (USAID) and HarvestPlus initiated the Vitamin A Tracer Task Force, made up of international experts. HarvestPlus is a Global Challenge Program of the Consultative Group on International Agricultural Research (CGIAR). It is coordinated by the Centro Internacional de Agricultura Tropical (CIAT), a not-for-profit organization that conducts socially and environmentally progressive research aimed at reducing hunger and poverty and preserving natural resources in developing countries, located in Colombia, and the International Food Policy Research Institute (IFPRI), located in the United States of America and whose mission is to provide policy solutions aimed at reducing hunger and malnutrition in developing countries. The role of the Vitamin A Tracer Task Force was to prepare three complementary publications on the use of stable isotope dilution techniques to assess vitamin A body stores. The first publication entitled 'Appropriate Use of Vitamin A Tracer (Stable Isotope) Methodology' was published in 2004 by USAID/International Life Sciences Institute (ILSI) through the Micronutrient Global Leadership (MGL) project with co-sponsorship of IAEA and HarvestPlus. The second handbook is on 'Vitamin A Tracer Dilution

  15. Enhanced understanding of ectoparasite: host trophic linkages on coral reefs through stable isotope analysis

    Science.gov (United States)

    Demopoulos, Amanda W. J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  16. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis

    Directory of Open Access Journals (Sweden)

    Amanda W.J. Demopoulos

    2015-04-01

    Full Text Available Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi and permanently parasitic cymothoids (Anilocra. To further track the transfer of fish-derived carbon (energy from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in 13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  17. Stable isotope sales: Mound Laboratory customer and shipment summaries, FY-1975

    International Nuclear Information System (INIS)

    Eck, C.F.

    1976-01-01

    A listing is given of Mound Laboratory's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, and sulfur for Fiscal Year 1975. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross reference index by location is included for domestic customers. Cross reference listings by isotope purchased are included for all customers

  18. Stable isotope sales: Mound Facility customer and shipment summaries, FY 1981

    International Nuclear Information System (INIS)

    Ruwe, A.H. Jr.

    1982-01-01

    A listing is given of Mound Facility's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for Fiscal Year 1981. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers

  19. Stable isotope sales; Mound Facility customer and shipment summaries, FY 1977

    International Nuclear Information System (INIS)

    Ruwe, A.H. Jr.

    1978-01-01

    A listing is given of Mound Facility's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for Fiscal Year 1977. Purchasers are listed alphabeticaly and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers

  20. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    Science.gov (United States)

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  1. Heating Isotopically Labeled Bernal Stacked Graphene: A Raman Spectroscopy Study

    Czech Academy of Sciences Publication Activity Database

    Ek Weis, Johan; da Costa, Sara; Frank, Otakar; Kalbáč, Martin

    2014-01-01

    Roč. 5, č. 3 (2014), s. 549-554 ISSN 1948-7185 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Bernal * graphene * isotopic labeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.458, year: 2014

  2. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  3. Isotopic labelling studies for a gold-catalysed skeletal rearrangement of alkynyl aziridines

    Directory of Open Access Journals (Sweden)

    Neil Spencer

    2011-06-01

    Full Text Available Isotopic labelling studies were performed to probe a proposed 1,2-aryl shift in the gold-catalysed cycloisomerisation of alkynyl aziridines into 2,4-disubstituted pyrroles. Two isotopomers of the expected skeletal rearrangement product were identified using 13C-labelling and led to a revised mechanism featuring two distinct skeletal rearrangements. The mechanistic proposal has been rationalised against the reaction of a range of 13C- and deuterium-labelled substrates.

  4. The 2-nd Conference on Isotopic and Molecular Processes. Abstracts

    International Nuclear Information System (INIS)

    Bogdan, Mircea

    2001-01-01

    The proceedings of the 2-nd Conference on Isotopic and Molecular Processes held on September 27 - 29, 2001 in Cluj - Napoca, Romania, contains contributions presented as: 11 plenary lectures, 24 oral presentations and 103 posters in two sections, namely, isotopic processes and molecular processes. The main topics treated in this conference were isotope production, separation and enrichment as well as stable isotope applications. Also, studies on isotope effects in different fields are reported. Besides reports on isotope effects, exchange and separation, new methods of preparation and labelling compounds used particularly in nuclear medicine are presented. Environmental studies by means of stable isotope and radon monitoring are described. Applications of radiation effects and different nuclear methods in medicine are also addressed

  5. Stable Isotope Technique to Assess Intake of Human Milk in Breastfed Infants

    International Nuclear Information System (INIS)

    2014-01-01

    This publication was developed by an international group of experts as an integral part of the IAEA’s efforts to contribute to the transfer of technology and knowledge in nutrition. Its aim is to assist Member States in their efforts to combat malnutrition by facilitating the use of relevant nuclear techniques. The stable (non-radioactive) isotope technique has been developed to assess intake of human milk in breastfed infants. The practical application of the stable isotope technique, based on analysis of deuterium by Fourier transform infrared spectrometry (FTIR), is presented in this book

  6. Application of 13C-stable isotope probing to identify RDX-degrading microorganisms in groundwater

    International Nuclear Information System (INIS)

    Cho, Kun-Ching; Lee, Do Gyun; Roh, HyungKeun; Fuller, Mark E.; Hatzinger, Paul B.; Chu, Kung-Hui

    2013-01-01

    We employed stable isotope probing (SIP) with 13 C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving 13 C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. Highlights: •SIP identified sixteen groundwater bacteria capable of using RDX and/or its metabolites as a carbon source. •The RDX degraders in groundwater are phylogenetically diverse and different from known RDX degraders. •Cheese whey induced community shift and altered diversity of the RDX-degrading microorganisms over time. -- RDX-degrading bacteria in contaminated groundwater, identified by SIP with 13 C-labeled RDX, are phylogenetically diverse and different from known RDX degraders

  7. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Xichang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research — UFZ, Leipzig 04318 (Germany)

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰.

  8. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    International Nuclear Information System (INIS)

    Shen, Xiaoli; Xu, Zemin; Zhang, Xichang; Yang, Fangxing

    2015-01-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰

  9. Identification of metabolically active bacteria in the gut of the generalist Spodoptera littoralis via DNA stable isotope probing using 13C-glucose.

    Science.gov (United States)

    Shao, Yongqi; Arias-Cordero, Erika M; Boland, Wilhelm

    2013-11-13

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction(1), boosting the immune response(2), pheromone production(3), as well as nutrition, including the synthesis of essential amino acids(4,) among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing (13)C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA(5). The incorporation of (13)C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled ((12)C) one. In the end, the (13)C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the (12)C-unlabeled similar one(6). Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The

  10. Inferring the source of evaporated waters using stable H and O isotopes

    Science.gov (United States)

    Stable isotope ratios of H and O are widely used to identify the source of water, e.g., in aquifers, river runoff, soils, plant xylem, and plant-based beverages. In situations where the sampled water is partially evaporated, its isotope values will have evolved along an evaporati...

  11. Stable isotopes dissect aquatic food webs from the top to the bottom

    NARCIS (Netherlands)

    Middelburg, J.J.

    2014-01-01

    Stable isotopes have been used extensively to study food-web functioning, that is, the flow of energy and matter among organisms. Traditional food-web studies are based on the natural variability of isotopes and are limited to larger organisms that can be physically separated from their environment.

  12. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    Pardoen, J.A.

    1986-01-01

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13 C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1 H NMR and 75 MHz 13 C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  13. An Investigation into the Relationship Between Distillate Yield and Stable Isotope Fractionation

    Science.gov (United States)

    Sowers, T.; Wagner, A. J.

    2016-12-01

    Recent breakthroughs in laser spectrometry have allowed for faster, more efficient analyses of stable isotopic ratios in water samples. Commercially available instruments from Los Gatos Research and Picarro allow users to quickly analyze a wide range of samples, from seawater to groundwater, with accurate isotope ratios of D/H to within ± 0.2 ‰ and 18O/16O to within ± 0.03 ‰. While these instruments have increased the efficiency of stable isotope laboratories, they come with some major limitations, such as not being able to analyze hypersaline waters. The Los Gatos Research Liquid Water Isotope Analyzer (LWIA) can accurately and consistently measure the stable isotope ratios in waters with salinities ranging from 0 to 4 grams per liter (0 to 40 parts per thousand). In order to analyze water samples with salinities greater than 4 grams per liter, however, it was necessary to develop a consistent method through which to reduce salinity while causing as little fractionation as possible. Using a consistent distillation method, predictable fractionation of δ 18O and δ 2 H values was found to occur. This fractionation occurs according to a linear relationship with respect to the percent yield of the water in the sample. Using this method, samples with high salinity can be analyzed using laser spectrometry instruments, thereby enabling laboratories with Los Gatos or Picarro instruments to analyze those samples in house without having to dilute them using labor-intensive in-house standards or expensive premade standards.

  14. Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography–mass spectrometry and stable labeled isotope as internal standard

    Energy Technology Data Exchange (ETDEWEB)

    Varlet, V., E-mail: vincent.varlet@chuv.ch [Toxicology and Forensic Chemistry Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Smith, F. [Toxicology and Forensic Chemistry Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Froidmont, S. de; Dominguez, A.; Rinaldi, A. [Forensic Medicine Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Augsburger, M. [Toxicology and Forensic Chemistry Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Mangin, P.; Grabherr, S. [Forensic Medicine Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland)

    2013-06-19

    Graphical abstract: -- Highlights: •We developed a method for CO{sub 2} analysis in cardiac samples and quantification by {sup 13}CO{sub 2}. •This method was fully validated by accuracy profile. •We have applied this method to perform CO{sub 2} precise quantification for forensic applications. •Context of the death could be documented following CO{sub 2} concentrations. -- Abstract: A novel approach to measure carbon dioxide (CO{sub 2}) in gaseous samples, based on a precise and accurate quantification by {sup 13}CO{sub 2} internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography–mass spectrometry (HS-GC–MS) method applicable in the routine determination of CO{sub 2}. The main drawback of the GC methods discussed in the literature for CO{sub 2} measurement is the lack of a specific internal standard necessary to perform quantification. CO{sub 2} measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ({sup 13}CO{sub 2}) on the basis of the stoichiometric formation of CO{sub 2} by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH{sup 13}CO{sub 3}). This method allows a precise measurement of CO{sub 2} concentration and was validated on various human postmortem gas samples in order to study its efficiency.

  15. Isotopic Analysis of Fingernails as a USGS Open House Demonstration of the Use of Stable Isotopes in Foodweb Studies

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Young, M. B.; Choy, D.

    2011-12-01

    The USGS Isotope Tracers Project uses stable isotopes and tritium to add a unique dimension of chemical information to a wide range of environmental investigations. The use and application of isotopes is usually an unfamiliar and even esoteric topic to the general public. Therefore during three USGS open house events, as a public outreach effort, we demonstrated the use of stable isotopes by analyzing nitrogen and carbon isotopes from very small fragments of fingernail from willing participants. We titled the exhibit "You Are What You Eat". The results from all participants were plotted on a graph indicating the general influence of different food groups on the composition of body tissues as represented by fingernails. All participants were assigned a number and no personal-identification information was collected. A subset of participants provided us with an estimate of the number of days a week various foods were eaten and if they were vegetarians, vegans or non-vegetarians. Volunteers from our research group were on hand to explain and discuss fundamental concepts such as how foods attain their isotopic composition, the difference between C3 and C4 plants, the effects of assimilation, trophic enrichment, and the various uses of stable isotopes in environmental studies. The results of the fingernail analyses showed the variation of the range of isotopic compositions among about 400 people at each event, the distinct influence of C4 plants (mainly corn and cane sugar) on our carbon isotopic composition, and the isotopic differences between vegetarians and non vegetarians among other details (http://wwwrcamnl.wr.usgs.gov/isoig/projects/fingernails/). A poll of visitors attending the open house event in 2006 indicated that "You Are What You Eat" was among the most popular exhibits. Following the first two open house events we were contacted by a group of researchers from Brazil who had completed a very similar study. Our collaboration resulted in a publication in

  16. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach

    International Nuclear Information System (INIS)

    Huang, Zhi-Yong; Xie, Hong; Cao, Ying-Lan; Cai, Chao; Zhang, Zhi

    2014-01-01

    Highlights: • Large amounts of exogenous Pb were found to distribute in reducible fractions. • Very few of exogenous Pb were found to distribute in acid-extractable fractions. • More than 60% of exogenous Pb in rhizosphere soils lost after planting. • Isotopic labeling method and SEP enable to explore Pb bioavailability in soil. -- Abstract: The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of 206 Pb, the contamination of exogenous Pb 2+ ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60–85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60–66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation

  17. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi-Yong, E-mail: zhyhuang@jmu.edu.cn [College of Bioengineering, Jimei University, Xiamen 361021 (China); Xie, Hong [College of Bioengineering, Jimei University, Xiamen 361021 (China); Shandong Vocational Animal Science and Veterinary College, Weifang 261061 (China); Cao, Ying-Lan [College of Bioengineering, Jimei University, Xiamen 361021 (China); Cai, Chao [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhang, Zhi [College of Bioengineering, Jimei University, Xiamen 361021 (China)

    2014-02-15

    Highlights: • Large amounts of exogenous Pb were found to distribute in reducible fractions. • Very few of exogenous Pb were found to distribute in acid-extractable fractions. • More than 60% of exogenous Pb in rhizosphere soils lost after planting. • Isotopic labeling method and SEP enable to explore Pb bioavailability in soil. -- Abstract: The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of {sup 206}Pb, the contamination of exogenous Pb{sup 2+} ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60–85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60–66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation.

  18. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    Science.gov (United States)

    Keiderling, Timothy A

    2017-12-01

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  19. Fluorescein-labeled stable neurotensin derivatives.

    Science.gov (United States)

    Maes, Veronique; Hultsch, Christina; Kohl, Suzann; Bergmann, Ralf; Hanke, Thomas; Tourwé, Dirk

    2006-08-01

    Neurotensin(8-13) analogs containing a glycine or 5-aminovaleroyl spacer were labeled with fluorescein through formation of an N-terminal thiourea function. The receptor binding was measured in HT-29 cell cultures and showed a substantial decrease in affinity, especially for the metabolically stabilized [MeArg(9), Tle(11)] analog. Using fluorescence microscopy, the internalization of the fluorescent neurotensin analogs into HT-29 cells was observed. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.

  20. Detecting intraannual dietary variability in wild mountain gorillas by stable isotope analysis of feces.

    Science.gov (United States)

    Blumenthal, Scott A; Chritz, Kendra L; Rothman, Jessica M; Cerling, Thure E

    2012-12-26

    We use stable isotope ratios in feces of wild mountain gorillas (Gorilla beringei) to test the hypothesis that diet shifts within a single year, as measured by dry mass intake, can be recovered. Isotopic separation of staple foods indicates that intraannual changes in the isotopic composition of feces reflect shifts in diet. Fruits are isotopically distinct compared with other staple foods, and peaks in fecal δ(13)C values are interpreted as periods of increased fruit feeding. Bayesian mixing model results demonstrate that, although the timing of these diet shifts match observational data, the modeled increase in proportional fruit feeding does not capture the full shift. Variation in the isotopic and nutritional composition of gorilla foods is largely independent, highlighting the difficulty for estimating nutritional intake with stable isotopes. Our results demonstrate the potential value of fecal sampling for quantifying short-term, intraindividual dietary variability in primates and other animals with high temporal resolution even when the diet is composed of C(3) plants.

  1. Stable isotope geochemistry of the Tongonan geothermal system, Leyte, Philippines

    International Nuclear Information System (INIS)

    Hulston, J.R.; Stewart, M.K.

    1982-01-01

    Stable isotope and geochemical data on samples from natural features, shallow wells and deep wells collected over a number of years from the Tongonan area of Leyte have been evaluated. The variations in the isotopic compositions of the thermal waters are used to describe natural processes occurring within the system. The effect of the ''excess enthalpy'' of the deep wells on the isotope data is formulated. Water from the deep Tongonan wells shows an oxygen-18 shift of 5 per mille, which is larger than at Wairakei and Broadlands, probably in part because of the high temperatures at Tongonan. Recent measurements indicate that the deuterium shift is very much smaller than previously thought. Isotopic measurements of methane in the gases suggests differing flows from the Eastern and Central Philippine faults

  2. Biogeochemistry of the stable hydrogen isotopes

    International Nuclear Information System (INIS)

    Estep, M.F.; Hoering, T.C.

    1980-01-01

    The fractionation of H isotopes between the water in the growth medium and the organically bonded H from microalgae cultured under conditions, where light intensity and wavelength, temperature, nutrient availability, and the H isotope ratio of the water were controlled, is reproducible and light dependent. All studies were based either on the H isotope ratios of the total organic H or on the lipids, where most of the H is firmly bonded to C. H bonded into other macromolecules, proteins, carbohydrates and nucleic acids, does not exchange with water, when algae are incubated in water enriched with deuterium. Only after the destruction of quaternary H bonds are labile hydrogens in macromolecules free to exchange with water. By growing algae (18 strains), including blue-green algae, green algae and diatoms, in continuous light, the isotope fractionations in photosynthesis were reproducibly -93 to -178 per thousand, depending on the organism tested. This fractionation was not temperature dependent. Microalgae grown in total darkness with an organic substrate did not show the isotope fractionation seen in cells grown in light. In both light- and dark-grown algae, however, additional depletion of deuterium (-30 to -60 per thousand) in cellular organic matter occurs during the metabolism of carbohydrates to form lipids. Plants from several natural populations also fractionated isotopes during photosynthesis by an average of -90 to -110 per thousand. In addition, the organically bonded H in nonsaponifiable lipids was further fractionated by -80 per thousand from that in saponifiable lipids, isolated from two geographically distinct populations of marsh plants. This difference between H isotope ratios of these two groups of lipids provides an endogenous isotopic marker. (author)

  3. Biogeochemistry of the stable hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Estep, M F; Hoering, T C [Carnegie Institution of Washington, DC (USA)

    1980-08-01

    The fractionation of H isotopes between the water in the growth medium and the organically bonded H from microalgae cultured under conditions, where light intensity and wavelength, temperature, nutrient availability, and the H isotope ratio of the water were controlled, is reproducible and light dependent. All studies were based either on the H isotope ratios of the total organic H or on the lipids, where most of the H is firmly bonded to C. H bonded into other macromolecules, proteins, carbohydrates and nucleic acids, does not exchange with water, when algae are incubated in water enriched with deuterium. Only after the destruction of quaternary H bonds are labile hydrogens in macromolecules free to exchange with water. By growing algae (18 strains), including blue-green algae, green algae and diatoms, in continuous light, the isotope fractionations in photosynthesis were reproducibly -93 to -178 per thousand, depending on the organism tested. This fractionation was not temperature dependent. Microalgae grown in total darkness with an organic substrate did not show the isotope fractionation seen in cells grown in light. In both light- and dark-grown algae, however, additional depletion of deuterium (-30 to -60 per thousand) in cellular organic matter occurs during the metabolism of carbohydrates to form lipids. Plants from several natural populations also fractionated isotopes during photosynthesis by an average of -90 to -110 per thousand. In addition, the organically bonded H in nonsaponifiable lipids was further fractionated by -80 per thousand from that in saponifiable lipids, isolated from two geographically distinct populations of marsh plants. This difference between H isotope ratios of these two groups of lipids provides an endogenous isotopic marker.

  4. The role of isotopes in the development of β-adrenoceptor blocking agents

    International Nuclear Information System (INIS)

    Allen, J.

    1987-01-01

    This chapter is devoted to the applications of labelled β-blocking agents in drug development and to the procedures which have been described in the literature for labelling this class of compounds with radioactive or stable isotopes. 149 refs.; 4 figs

  5. Disentangling drought-induced variation in ecosystem and soil respiration using stable carbon isotopes.

    Science.gov (United States)

    Unger, Stephan; Máguas, Cristina; Pereira, João S; Aires, Luis M; David, Teresa S; Werner, Christiane

    2010-08-01

    Combining C flux measurements with information on their isotopic composition can yield a process-based understanding of ecosystem C dynamics. We studied the variations in both respiratory fluxes and their stable C isotopic compositions (delta(13)C) for all major components (trees, understory, roots and soil microorganisms) in a Mediterranean oak savannah during a period with increasing drought. We found large drought-induced and diurnal dynamics in isotopic compositions of soil, root and foliage respiration (delta(13)C(res)). Soil respiration was the largest contributor to ecosystem respiration (R (eco)), exhibiting a depleted isotopic signature and no marked variations with increasing drought, similar to ecosystem respired delta(13)CO(2), providing evidence for a stable C-source and minor influence of recent photosynthate from plants. Short-term and diurnal variations in delta(13)C(res) of foliage and roots (up to 8 and 4 per thousand, respectively) were in agreement with: (1) recent hypotheses on post-photosynthetic fractionation processes, (2) substrate changes with decreasing assimilation rates in combination with increased respiratory demand, and (3) decreased phosphoenolpyruvate carboxylase activity in drying roots, while altered photosynthetic discrimination was not responsible for the observed changes in delta(13)C(res). We applied a flux-based and an isotopic flux-based mass balance, yielding good agreement at the soil scale, while the isotopic mass balance at the ecosystem scale was not conserved. This was mainly caused by uncertainties in Keeling plot intercepts at the ecosystem scale due to small CO(2) gradients and large differences in delta(13)C(res) of the different component fluxes. Overall, stable isotopes provided valuable new insights into the drought-related variations of ecosystem C dynamics, encouraging future studies but also highlighting the need of improved methodology to disentangle short-term dynamics of isotopic composition of R (eco).

  6. Distinguishing feral and managed honeybees (Apis mellifera) using stable carbon isotopes

    OpenAIRE

    Anderson , Lucy; Dynes , Travis; Berry , Jennifer; Delaplane , Keith; McCormick , Lydia; Brosi , Berry

    2014-01-01

    International audience; The ability to distinguish feral and managed honeybees (Apis mellifera) has applications in studies of population genetics, parasite transmission, pollination, interspecific interactions, and bee breeding. We evaluated a diagnostic test based on theoretical differences in stable carbon isotope ratios generated by supplemental feeding. We evaluated (1) if carbon isotope ratios can distinguish feral and managed honeybees and (2) the temporal persistence of the signal aft...

  7. Diets of introduced predators using stable isotopes and stomach contents

    Science.gov (United States)

    Meckstroth, A.M.; Miles, A.K.; Chandra, S.

    2007-01-01

    In a study of predation on ground-nesting birds at South San Francisco Bay (South Bay), California, USA, we analyzed stomach contents and stable isotopes of carbon and nitrogen to identify commonly consumed prey. We obtained the stomach contents from 206 nonnative red foxes (Vulpes vulpes regalis) collected in the South Bay area and Monterey County during 1995-2001 and from 68 feral cats (Felis silvestris) from the South Bay area during 2001-2002. We determined prey identity, biomass, and frequency, described seasonal diet trends, and derived an Index of Relative Importance. Avian species were the most frequent prey we found in the stomachs of red foxes from South Bay (61%), whereas small rodents were most frequent for red foxes from Monterey County (62%). Small rodents were the most frequent prey we found in feral cats (63%). Carbon and nitrogen isotopic signatures for foxes supported stomach content findings. However, isotope results indicated that cats received a majority of their energy from a source other than rodents and outside the natural system, which differed from the stomach content analysis. We demonstrated the utility of both stable isotope and stomach content analyses to establish a more complete understanding of predators' diets. This information aids natural resource managers in planning and evaluating future predator-removal programs and increases our understanding of the impacts of nonnative foxes and cats on native species.

  8. Magnesium absorption in human subjects from leafy vegetables, intrinsically labeled with stable 26Mg

    International Nuclear Information System (INIS)

    Schwartz, R.; Spencer, H.; Welsh, J.J.

    1984-01-01

    Collards, turnip greens, leaf lettuce, and spinach, grown in nutrient solution so that their Mg content was 80 to 90% 26 Mg, were tested in ambulant male volunteers stabilized on a constant metabolic diet. The freeze-dried vegetables were incorporated in bran muffins in which the vegetables replaced part of the bran. Bran muffins without vegetables were consumed for breakfast each day. They were also used as a standard test meal to which the vegetable muffins were compared. All subjects participated in three consecutive isotope absorption tests: one of the standard test meal and two of the vegetables. The standard test was carried out after at least 30 days on the controlled diet. Subsequent tests of vegetables followed at 4-wk intervals. Each test meal contained 30 microCi 28 MgCl2 and 50 mg stable 26 Mg, the latter either as the intrinsic label of a test vegetable or as 26 MgCl 2 in solution taken with the standard bran muffins. Net absorption of both isotopes was measured to establish exchangeability and to determine relative Mg absorption from the vegetables. Exchangeability was 90% or higher from all meals tested. Relative Mg absorption was highest from collards and least from the standard test meal. Net absorption values ranged from 40 to 60%

  9. A stable isotope-based approach to tropical dendroclimatology

    Science.gov (United States)

    Evans, Michael N.; Schrag, Daniel P.

    2004-08-01

    We describe a strategy for development of chronological control in tropical trees lacking demonstrably annual ring formation, using high resolution δ 18O measurements in tropical wood. The approach applies existing models of the oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brenna et al., 1998) to develop proxy chronological, rainfall and growth rate estimates from tropical trees lacking visible annual ring structure. Consistent with model predictions, pilot datasets from the temperate US and Costa Rica having independent chronological control suggest that observed cyclic isotopic signatures of several permil (SMOW) represent the annual cycle of local rainfall and relative humidity. Additional data from a plantation tree of known age from ENSO-sensitive northwestern coastal Peru suggests that the 1997-8 ENSO warm phase event was recorded as an 8‰ anomaly in the δ 18O of α-cellulose. The results demonstrate reproducibility of the stable isotopic chronometer over decades, two different climatic zones, and three tropical tree genera, and point to future applications in paleoclimatology.

  10. Stable isotope ratios in hair and teeth reflect biologic rhythms.

    Directory of Open Access Journals (Sweden)

    Otto Appenzeller

    Full Text Available Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals.

  11. Proceedings of the Conference on Isotopic and Molecular Processes

    International Nuclear Information System (INIS)

    Pamula, A.

    1999-01-01

    The proceedings of the Conference on Isotopic and Molecular Processes held on September 23 - 25, 1999 in Cluj - Napoca, Romania contains 8 plenary lectures, 12 oral presentations and 34 posters on isotopic processes (Section A) and 12 oral presentations plus 61 posters on molecular processes (Section B). The main topics treated in plenary lectures were isotope production, separation and enrichment as well as stable isotope applications. Also in this section studies on isotope effects in different fields are reported. In the section A, besides reports on isotope effects, exchange and separation, new methods of preparation and labelling compounds used particularly in nuclear medicine are presented. Also environmental studies by means of stable isotope and radon monitoring are described. In the section B several communications are treating the applications of radiation effects and different nuclear methods in medicine

  12. Measurement of organic carbon stable isotope composition of different soil types by EA-IRMS system

    International Nuclear Information System (INIS)

    Qi Biao; Ding Lingling; Cui Jiehua; Wang Yanhong

    2009-01-01

    Element analyzer-isotope ratio mass spectrometers (EA-IRMS) is a rapid and precise method for measuring stable carbon isotope. Pure CO 2 reference gas was calibrated via international standard-Urea, and the δ 13 C us PDB value of pure CO 2 is (-29.523 ± 0.0181)%. Stability and linearity of the EA-IRMS system, precision of δ 13 C measurement for samples were tested through experimental comparison. Moreover, determination method of organic carbon stable isotope in soil was based on the system. The EA-IRMS system had well linearity when ion intensity ranged from 1.0 to 7.0V, and it excelled the total linearity when the ion intensity was from 1.5 to 5.0V, and the accurate result of δ 13 C for sample analysis could be obtained with precision of 0.015%. If carbon content in sample is more than 5μg, the requirement for analyzing accurate result of δ 13 C could be achieved. The organic carbon stable isotope was measured in 18 different types soil samples, the average natural abundance of 13 C was 1.082%, and the organic carbon stable isotope composition was significantly different among different type soils. (authors)

  13. Grasland Stable Isotope Flux Measurements: Three Isotopomers of Carbon Dioxide Measured by QCL Spectroscopy

    Science.gov (United States)

    Zeeman, M. J.; Tuzson, B.; Eugster, W.; Werner, R. A.; Buchmann, N.; Emmenegger, L.

    2007-12-01

    To improve our understanding of greenhouse gas dynamics of managed ecosystems such as grasslands, we not only need to investigate the effects of management (e.g., grass cuts) and weather events (e.g., rainy days) on carbon dioxide fluxes, but also need to increase the time resolution of our measurements. Thus, for the first time, we assessed respiration and assimilation fluxes with high time resolution (5Hz) stable isotope measurements at an intensively managed farmland in Switzerland (Chamau, 400m ASL). Two different methods were used to quantify fluxes of carbon dioxide and associated fluxes of stable carbon isotopes: (1) the flux gradient method, and (2) the eddy covariance method. During a week long intensive measurement campaign, we (1) measured mixing ratios of carbon dioxide isotopomers (12C16O2, 12C16O18O, 13C16O2) with a Quantum Cascade Laser (QCL, Aerodyne Inc.) spectroscope and (2) collected air samples for isotope analyses (13C/12C) and (18O/16O) of carbon dioxide by Isotope Ratio Mass Spectrometry (IRMS, Finnigan) every two hours, concurrently along a height profile (z = 0.05; 0.10; 0.31; 2.15m). In the following week, the QCL setup was used for closed-path eddy covariance flux measurement of the carbon dioxide isotopomers, with the air inlet located next to an open-path Infra Red Gas Analyzers (IRGA, LiCor 7500) used simultaneously for carbon dioxide measurements. During this second week, an area of grass inside the footprint was cut and harvested after several days. The first results of in-field continuous QCL measurements of carbon dioxide mixing ratios and their stable isotopic ratios show good agreement with IRGA measurements and isotope analysis of flask samples by IRMS. Thus, QCL spectroscopy is a very promising tool for stable isotope flux investigations.

  14. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometry for trace analysis of bisphenol A in water sample

    International Nuclear Information System (INIS)

    Kawaguchi, Migaku; Hayatsu, Yoshio; Nakata, Hisao; Ishii, Yumiko; Ito, Rie; Saito, Koichi; Nakazawa, Hiroyuki

    2005-01-01

    We have developed a molecularly imprinted polymer (MIP) using a stable isotope labeled compound as the template molecule and called it the ''isotope molecularly imprinted polymer'' (IMIP). In this study, bisphenol A (BPA) was used as the model compound. None imprinted polymer (NIP), MIP, dummy molecularly imprinted polymer (DMIP) and IMIP were prepared by the suspension polymerization method using without template, BPA, 4-tert-butylphenol (BP) and bisphenol A-d 16 (BPA-d 16 ), respectively. The polymers were subjected to molecularly imprinted solid phase extraction (MI-SPE), and the extracted samples were subjected to liquid chromatography-mass spectrometry (LC-MS). Although the leakage of BPA-d 16 from the IMIP was observed and that of BPA was not observed. The selectivity factors of MIP and IMIP for BPA were 4.45 and 4.43, respectively. Therefore, IMIP had the same molecular recognition ability as MIP. When MI-SPE with IMIP was used and followed by LC-MS in the analysis of river water sample, the detection limit of BPA was 1 ppt with high sensitivity. Moreover, the average recovery was higher than 99.8% (R.S.D.: 3.7%) by using bisphenol A- 13 C 12 (BPA- 13 C 12 ) as the surrogate standard. In addition, the IMIP were employed in MI-SPE of BPA in river water sample by LC-MS. The concentration of BPA in the river water sample was determined to be 32 pg ml -1 . We confirmed that it was possible to measure trace amounts of a target analyte by MI-SPE using IMIP

  15. Pollen-based reconstruction of Holocene climate variability in the Eifel region evaluated with stable isotopes

    Science.gov (United States)

    Kühl, Norbert; Moschen, Robert; Wagner, Stefanie

    2010-05-01

    Pollen as well as stable isotopes have great potential as climate proxy data. While variability in these proxy data is frequently assumed to reflect climate variability, other factors than climate, including human impact and statistical noise, can often not be excluded as primary cause for the observed variability. Multiproxy studies offer the opportunity to test different drivers by providing different lines of evidence for environmental change such as climate variability and human impact. In this multiproxy study we use pollen and peat humification to evaluate to which extent stable oxygen and carbon isotope series from the peat bog "Dürres Maar" reflect human impact rather than climate variability. For times before strong anthropogenic vegetation change, isotope series from Dürres Maar were used to validate quantitative reconstructions based on pollen. Our study site is the kettle hole peat bog "Dürres Maar" in the Eifel low mountain range, Germany (450m asl), which grew 12m during the last 10,000 years. Pollen was analysed with a sum of at least 1000 terrestrial pollen grains throughout the profile to minimize statistical effects on the reconstructions. A recently developed probabilistic indicator taxa method ("pdf-method") was used for the quantitative climate estimates (January and July temperature) based on pollen. For isotope analysis, attention was given to use monospecific Sphagnum leaves whenever possible, reducing the potential of a species effect and any potential artefact that can originate from selective degradation of different morphological parts of Sphagnum plants (Moschen et al., 2009). Pollen at "Dürres Maar" reflect the variable and partly strong human impact on vegetation during the last 4000 years. Stable isotope time series were apparently not influenced by human impact at this site. This highlights the potential of stable isotope investigations from peat for climatic interpretation, because stable isotope series from lacustrine

  16. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  17. Applications of stable isotope tracers to air pollution problems

    International Nuclear Information System (INIS)

    Kelly, W.R.

    1985-01-01

    One of the fundamental environmental problems facing the United States is how to effect acid rain abatement in the northeast United States and southeastern Canada in a cost effective manner. There are several key scientific questions that must be addressed in order to design an effective strategy. These questions include the following: (1) where do pollutants from a specified source area go., (2) what chemical transformations occur during transport., and (3) where and how are these pollutants deposited. One approach to address these questions is the use of enriched stable isotopes as intentional tracers of aerosol and sulfur emissions. Isotopic tracers can determine the location and pathways of pollutants in the environment and trace pollutants back to their original source. For an element with n isotopes, it is possible to intentionally tag n-2 sources. (For example, Nd, which has seven isotopes, could be used to tag 5 different aerosol sources). To trace sulfur compounds, the two minor isotopes of sulfur, 33 S and 36 S, could be used. Methods developed at NBS using high precision mass spectrometry permits the detection of the small changes in isotopic composition brought about by the intentional tagging at a source. This may make possible the identification of a source at a particular sampling site

  18. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  19. Absolute quantification of NAD(P)H:quinone oxidoreductase 1 in human tumor cell lines and tissues by liquid chromatography–mass spectrometry/mass spectrometry using both isotopic and non-isotopic internal standards

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhiyuan; Wu, Mengqiu; Li, Yingchun; Zheng, Xiao; Liu, Huiying; Cheng, Xuefang [State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Xu, Lin [Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009 (China); Wang, Guangji, E-mail: guangjiwang@hotmail.com [State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Hao, Haiping, E-mail: hhp_770505@yahoo.com.cn [State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China)

    2013-04-15

    Highlights: ► The peptide fingerprint map of NQO1 has been defined by using TripleTOF. ► Signature peptide of NQO1 can be quickly quantified within 10 min. ► Analysis is performed with non-isotopic analog and compared with isotopic method. ► This method is adequate for NQO1 quantitation from human cancer cells and tissues. -- Abstract: NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase) is a prognostic biomarker and a potential therapeutic target for various tumors. Therefore, it is of significance to develop a robust method for the absolute quantification of NQO1. This study aimed to develop and validate a LC–MS/MS based method and to test the appropriateness of using non-isotopic analog peptide as the internal standard (IS) by comparing with a stable isotope labeled (SIL) peptide. The chromatographic performance and mass spectra between the selected signature peptide of NQO1 and the non-isotopic peptide were observed to be very similar. The use of the two internal standards was validated appropriate for the absolute quantification of NQO1, as evidenced by satisfactory validation results over a concentration range of 1.62–162 fmol μL{sup −1}. This method has been successfully applied to the absolute quantification of NQO1 expression in various tumor cell lines and tissues. NQO1 expression in human tumor tissues is much higher than that in the neighboring normal tissues in both the cases of lung and colon cancer. The quantitative results obtained from the isotopic and non-isotopic methods are quite similar, further supporting that the use of non-isotopic analog peptide as internal standard is appropriate and feasible for the quantification of NQO1. By comparing with a classical isotopic IS, the present study indicates that the use of a non-isotopic peptide analog to the proteotypic peptide as the internal standard can get equal accuracy and preciseness in measuring NQO1. The universal applicability of the non-isotopic IS approach for the

  20. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2004-01-01

    Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: thermometry, tracers, reaction mechanisms and chemostratigraphy. 52 refs., 11 figs., 2 tabs

  1. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  2. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  3. Production of stable isotopes at Urenco. 10 years of progress

    International Nuclear Information System (INIS)

    Mol, C.A.; Rakhorst, H.

    2003-01-01

    In the last ten years, Urenco has built its spin-off activity of stable isotopes in a multi-million dollar business. It is a high quality, ISO certified, client oriented and profitable European business with further growth potential. (author)

  4. Periodicity of the stable isotopes

    CERN Document Server

    Boeyens, J C A

    2003-01-01

    It is demonstrated that all stable (non-radioactive) isotopes are formally interrelated as the products of systematically adding alpha particles to four elementary units. The region of stability against radioactive decay is shown to obey a general trend based on number theory and contains the periodic law of the elements as a special case. This general law restricts the number of what may be considered as natural elements to 100 and is based on a proton:neutron ratio that matches the golden ratio, characteristic of biological and crystal growth structures. Different forms of the periodic table inferred at other proton:neutron ratios indicate that the electronic configuration of atoms is variable and may be a function of environmental pressure. Cosmic consequences of this postulate are examined. (author)

  5. Soil organic matter (SOM) dynamics determined by stable isotope techniques

    International Nuclear Information System (INIS)

    Gerzabek, M. H.

    1998-09-01

    Being aware of limitations and possible bias the 13 C natural abundance technique using the different 13 C enrichments in plants with differing photosynthetic pathways in a powerful tool to quantify turnover processes, both in long-term field studies and short-term laboratory experiments. Special care is needed in choosing reference plots and the proper number of replicate samples. The combination of 13 C and 14 C measurements has a high potential for a further improvement of isotope techniques in SOM studies. Natural abundance of 15 N is less powerful with respect to quantification of SOM processes than the isotope dilution technique. However its usefulness could be distinctly improved by introducing other stable isotopes into the studies.(author)

  6. Stable isotopes applied as water tracers for infiltration experiment

    International Nuclear Information System (INIS)

    Liu Xiaoyan; Chen Jiansheng; Sun Xiaoxu; Su Zhiguo

    2011-01-01

    The δD and δ 18 O vertical profiles of soil water were measured prior to and after a rainfall event. Mechanisms of soil water movement were deciphered by comparing the soil water isotope profiles with the isotopic composition of precipitation. The results show that evaporation at the upper depth led to enrichment of the heavy isotopes. Compared to the loess profile, the shallow soil water of sand profile is relatively enriched in D and 18 O due to macro-pore and low water-holding capacity. The precipitation is infiltrated into soil in piston mode, accompanied with significant mixing of older soil water. The preferential fluid flow in loess was observed at depths of 0-20 cm, caused by cracks in the depths. The hydrogen and oxygen isotopic compositions in outflow are close to the precipitation, which shows a mixing of the precipitation and old soil water, and indicates that the isotopic composition of outflow water is mainly controlled by that of the precipitation. The δD and δ 18 O in outflow decreased with time until stable δ values of outflow are close to those of the precipitation. (authors)

  7. Stable isotopes confirm a coastal diet for critically endangered Mediterranean monk seals.

    Science.gov (United States)

    Karamanlidis, Alexandros A; Curtis, P Jeff; Hirons, Amy C; Psaradellis, Marianna; Dendrinos, Panagiotis; Hopkins, John B

    2014-01-01

    Understanding the ecology and behaviour of endangered species is essential for developing effective management and conservation strategies. We used stable isotope analysis to investigate the foraging behaviour of critically endangered Mediterranean monk seals (Monachus monachus) in Greece. We measured carbon and nitrogen isotope ratios (expressed as δ(13)C and δ(15)N values, respectively) derived from the hair of deceased adult and juvenile seals and the muscle of their known prey to quantify their diets. We tested the hypothesis that monk seals primarily foraged for prey that occupy coastal habitats in Greece. We compared isotope values from seal hair to their coastal and pelagic prey (after correcting all prey for isotopic discrimination) and used these isotopic data and a stable isotope mixing model to estimate the proportion of coastal and pelagic resources consumed by seals. As predicted, we found that seals had similar δ(13)C values as many coastal prey species and higher δ(13)C values than pelagic species; these results, in conjunction with mean dietary estimates (coastal=61 % vs. pelagic=39 %), suggest that seals have a diverse diet comprising prey from multiple trophic levels that primarily occupy the coast. Marine resource managers should consider using the results from this study to inform the future management of coastal habitats in Greece to protect Mediterranean monk seals.

  8. Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes

    International Nuclear Information System (INIS)

    2009-01-01

    Stable isotope ratios of hydrogen and oxygen are tracers of choice for water cycle processes in hydrological, atmospheric and ecological studies. The use of isotopes has been limited to some extent because of the relatively high cost of isotope ratio mass spectrometers and the need for specialized operational skills. Here, the results of performance testing of a recently developed laser spectroscopic instrument for measuring stable hydrogen and oxygen isotope ratios of water samples are described, along with a procedure for instrument installation and operation. Over the last four years, the IAEA Water Resources Programme conducted prototype and production model testing of these instruments and this publication is the outcome of those efforts. One of the main missions of the IAEA is to promote the use of peaceful applications of isotope and nuclear methods in Member States and this publication is intended to facilitate the use of laser absorption based instruments for hydrogen and oxygen stable isotope analyses of liquid water samples for hydrological and other studies. The instrument uses off-axis integrated cavity output spectroscopy to measure absolute abundances of 2 HHO, HH 18 O, and HHO via laser absorption. Test results using a number of natural and synthetic water standards and samples with a large range of isotope values demonstrate adequate precision and accuracy (e.g. precisions of 1 per mille for δ 2 H and 0.2 per mille for δ 18 O). The laser instrument has much lower initial and maintenance costs than mass spectrometers and is substantially easier to operate. Thus, these instruments have the potential to bring about a paradigm shift in isotope applications by enabling researchers in all fields to measure isotope ratios by themselves. The appendix contains a detailed procedure for the installation and operation of the instrument. Using the procedure, new users should be able to install the instrument in less than two hours. It also provides step

  9. Differential quantitative proteomics of Porphyromonas gingivalis by linear ion trap mass spectrometry: Non-label methods comparison, q-values and LOWESS curve fitting

    Science.gov (United States)

    Xia, Qiangwei; Wang, Tiansong; Park, Yoonsuk; Lamont, Richard J.; Hackett, Murray

    2007-01-01

    Differential analysis of whole cell proteomes by mass spectrometry has largely been applied using various forms of stable isotope labeling. While metabolic stable isotope labeling has been the method of choice, it is often not possible to apply such an approach. Four different label free ways of calculating expression ratios in a classic "two-state" experiment are compared: signal intensity at the peptide level, signal intensity at the protein level, spectral counting at the peptide level, and spectral counting at the protein level. The quantitative data were mined from a dataset of 1245 qualitatively identified proteins, about 56% of the protein encoding open reading frames from Porphyromonas gingivalis, a Gram-negative intracellular pathogen being studied under extracellular and intracellular conditions. Two different control populations were compared against P. gingivalis internalized within a model human target cell line. The q-value statistic, a measure of false discovery rate previously applied to transcription microarrays, was applied to proteomics data. For spectral counting, the most logically consistent estimate of random error came from applying the locally weighted scatter plot smoothing procedure (LOWESS) to the most extreme ratios generated from a control technical replicate, thus setting upper and lower bounds for the region of experimentally observed random error.

  10. Utilization of carbon 13-labelled stable isotopes for studying drug toxicity on cellular metabolism

    International Nuclear Information System (INIS)

    Herve, M.; Wietzerbin, J.; Tran-Dinh, S.

    1994-01-01

    A new approach for studying the effects of two drugs, amphotericine B (AMB), an anti-fungal antibiotic, and 2-deoxy-D-glucose (DG), on the glucose metabolism in brewer yeast cells (Saccharomyces cerevisiae), is presented; AMB interacts with the membrane sterols, inducing formation of pores through which ions and small molecules can pass. DG may enter in the cytosol, where it is phosphoryled by hexokinase into deoxy-D-glucose 6-phosphate (DG6P) which disappears very slowly. DG slows down the glycolysis process and induces the formation of new substances. This paper shows the advantages of utilizing carbon 13-labelled substrates combined to the NMR-13C and NMR-1H techniques. 6 figs., 5 refs

  11. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  12. An attempt to characterize certain organic and mineral substances by their stable isotope composition

    International Nuclear Information System (INIS)

    Bricout, J.; Fontes, J.C.; Letolle, R.; Mariotti, A.; Merlivat, L.

    1975-01-01

    The determination of the relative abundance of various stable isotopes - deuterium, oxygen-18, carbon-13, nitrogen-15, sulphur-34 - can be used to characterize the origin of a water body and of an organic or mineral substance in the environment. This results from the discovery that isotopic fractioning by living organisms occurs. The stable isotope composition of any substance reflects, at least partly, the various stages of its formation. A number of examples supporting this hypothesis are given. The passage of water through plants, or alcoholic fermentation, substantially modifies the stable isotope composition of water. The assimilation of atmospheric carbon dioxide involves a reduction in the carbon-13 content which varies depending on the enzymatic mechanism of photosynthesis. The enzymatic reactions that cause the biosynthesis of various organic substances in higher plants are accompanied by partial exclusion of deuterium, an exclusion which is greater or smaller depending on the biosynthesis pathway followed. The bacterial reduction of sulphur compounds involves a high rate of isotopic fractioning. As a result, industrial sulphates obtained by oxidation of reduced sulphur associated with hydrocarbon deposits are depleted in 34 S in comparison with natural sulphates. Similarly, the authors have observed that nitrates produced by the plant biological cycle are rich in nitrogen-15 compared to synthesized nitrates

  13. The future of producing separated stable isotopes at Oak Ridge National Laboratory for accelerator applications

    International Nuclear Information System (INIS)

    Collins, E.D.

    1994-01-01

    Separated stable isotopes, produced in the calutrons at Oak Ridge National Laboratory, are essential target materials for production of numerous radioisotopes in accelerators and reactors. Recently, separated stable isotope production has been curtailed because government appropriations were discontinued and salts revenues decreased. The calutrons were placed in standby and the operating staff reduced to enable support by sales from existing inventories. Appeals were made to industry and government to preserve this national capability. Methods for providing volume-based price reductions were created to attract support from commercial isotope users. In 1994, the Department of Energy's Isotope Production and Distribution Program was restructured and a strategy produced to seek appropriated funding for the future production of rare, nonprofitable isotopes for research uses. This strategy, together with new demands for medical isotopes, will enable future operation of the calutrons. Moreover, production may be enhanced by complementing calutron capabilities with the Plasma Separation Process

  14. Clinical applications of cells labelling

    International Nuclear Information System (INIS)

    Gonzalez, B.M.

    1994-01-01

    Blood cells labelled with radionuclides are reviewed and main applications are described. Red blood cell labelling by both random and specific principle. A table with most important clinical uses, 99mTc labelling of RBC are described pre tinning and in vivo reduction of Tc, in vitro labelling and administration of labelled RBC and in vivo modified technique. Labelled leucocytes with several 99mTc-complex radiopharmaceuticals by in vitro technique and specific monoclonal s for white cells(neutrofiles). Labelled platelets for clinical use and research by in vitro technique and in vivo labelling

  15. Stable isotopes in speleothems as proxies of past environmental changes in the Alps

    International Nuclear Information System (INIS)

    Spoetl, C.; Burns, S.J.; Mangini, A.

    2002-01-01

    This short communication presents preliminary results and interpretations from an ongoing research project in the Obir Cave of southeast Austria. This cave system hosts abundant calcite dripstones many of which are actively forming today. The stable isotopic composition of a Holocene stalagmite dated by U-series TIMS techniques shows rather stable values throughout most of the last eight millennia, except for the last few hundred years when both C and O isotope values strongly increase (probably due to changes in the cave air circulation as a result of mining activity). (author)

  16. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  17. Performance of isobaric and isotopic labeling in quantitative plant proteomics

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit

    2012-01-01

    , and quantitation. In the present work, we have used LC-MS to compare an isotopic (ICPL) and isobaric (iTRAQ) chemical labeling technique to quantify proteins in the endosperm of Ricinus communis seeds at three developmental stages (IV, VI, and X). Endosperm proteins of each stage were trypsin-digested in...

  18. Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review

    International Nuclear Information System (INIS)

    Yin Runsheng; Feng Xinbin; Shi Wenfang

    2010-01-01

    With the improvement of analytical methods and the development of multiple-collector inductively coupled plasma-mass spectrometry (MC-ICP/MS), research on non-traditional stable isotope (Cu, Zn, Fe, Se, Mo, Cr, Hg) in geochemistry has made tremendous progress in the past decade. Recent studies have demonstrated that both organic and inorganic reactions may cause Hg isotope fractionation, and variations of Hg isotopic composition in the environment have been successfully employed to explain Hg pollution history, Hg sources and tracking Hg pathways in nature. Furthermore, Hg isotopic fractionation studies can be a powerful tool in the calibration of global Hg cycling models. Stable isotope geochemistry of Hg is therefore becoming a new frontier subject in earth sciences. Based on summarizing previous research, this paper outlines the main advances in the study of Hg stable isotopes with particular emphasis placed on a brief explanation of Hg isotope analytical techniques, possible Hg isotope fractionation mechanisms observed in both natural and experimental processes, Hg isotope composition variations in different environmental matrices, and the application prospects of the Hg stable isotopes in environmental geosciences.

  19. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.

    Science.gov (United States)

    Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita

    2008-01-01

    We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of

  20. Geochemistry of the stable isotopes of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Douthitt, C B [California Inst. of Tech., Pasadena (USA). Div. of Geological and Planetary Sciences

    1982-08-01

    One hundred thirty two new measurements of the relative abundances of the stable isotopes of silicon in terrestrial materials are presented. The total variation of delta/sup 30/Si found is 6.2 parts per thousand, centered on the mean of terrestrial mafic and ultramafic igneous rocks, delta/sup 30/Si = -0.4 parts per thousand. Igneous rocks show limited variation; coexisting minerals exhibit small, systematic silicon isotopic fractionations that are roughly 1/3 the magnitude of concomitant oxygen isotopic fractionations at 1150/sup 0/C. In both igneous minerals and rocks, delta/sup 30/Si shows a positive correlation with silicon content, as does delta/sup 18/O. Opal from both sponge spicules and sinters is light, with delta/sup 30/Si = -2.3 and -1.4 parts per thousand respectively. Large delta/sup 30/Si values of both positive and negative sign are reported for the first time from clay minerals, opaline phytoliths, and authigenic quartz. All highly fractionated samples were precipitated from solution at low temperatures; however, aqueous silicon is not measurably fractionated relative to quartz at equilibrium. A kinetic isotope fractionation of approximately 3.5 parts per thousand is postulated to occur during the low temperature precipitation of opal and, possibly, poorly ordered phyllosilicates, with the silicate phase being enriched in /sup 28/Si. This fractionation, coupled with a Rayleigh precipitation model, is capable of explaining most non-magmatic delta/sup 30/Si variations.