WorldWideScience

Sample records for stable hydride phases

  1. Magnesium hydrides and their phase transitions

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2016-01-01

    Roč. 41, č. 23 (2016), s. 9769-9773 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LD13069 Institutional support: RVO:68378271 Keywords : hydrogen * magnesium and transition metal hydrides * crystal structure stability * displacive phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.582, year: 2016

  2. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S.M., E-mail: sfilipek@unipress.waw.pl [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Paul-Boncour, V. [ICMPE-CMTR, CNRS-UPEC, 2-8 rue Henri Dunant, 94320 Thiais (France); Liu, R.S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Jacob, I. [Unit Nuclear Eng., Ben Gurion University of the Negev, Beer-Sheva (Israel); Tsutaoka, T. [Dept. of Sci. Educ., Grad. School of Educ., Hiroshima University, Hiroshima (Japan); Budziak, A. [Institute of Nuclear Physics PAS, 31-342 Kraków (Poland); Morawski, A. [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Sugiura, H. [Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Zachariasz, P. [Institute of Electron Technology Cracow Division, ul. Zablocie 39, 30-701 Krakow (Poland); Dybko, K. [Institute of Physics, PAS, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul. Ratuszowa 11, Warsaw (Poland)

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT{sub 2}, MeNi{sub 5}, Me{sub 7}T{sub 3}, Y{sub 6}Mn{sub 23} and YMn{sub 12} (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe{sub 2}H{sub 4} due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  3. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  4. Neutron scattering study of the phase transformation of LaNi3 induced by hydriding

    International Nuclear Information System (INIS)

    Ruan Jinghui; Zeng Xiangxin; Niu Shiwen

    1994-01-01

    The phase transformation of LaNi 3 induced by hydriding and de-hydriding is investigated using the neutron diffraction and the neutron inelastic scattering. The results show that the hydriding sample, LaNi 3 H x , is transformed from crystalline state of the LaNi 3 into amorphous state with a microcrystalline characteristic of LaNi 5 , and the de-hydriding sample produced by LaNi 3 H x dehydrated at 600 degree C is decomposed into new crystalline states composed by LaNi 5 -and La-hydrides. The procedure of phase transformation is that the result of the transformation of LaNi 3 induced by hydriding shows the properties of LaNi 5 -H 2 system

  5. On the thermodynamics of phase transitions in metal hydrides

    Science.gov (United States)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  6. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic flourescence spectrometry

    Science.gov (United States)

    Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydrid...

  7. Study on an innovative fast reactor utilizing hydride neutron absorber - Final report of phase I study

    International Nuclear Information System (INIS)

    Konashi, K.; Iwasaki, T.; Itoh, K.; Hirai, M.; Sato, J.; Kurosaki, K.; Suzuki, A.; Matsumura, Y.; Abe, S.

    2010-01-01

    These days, the demand to use nuclear resources efficiently is growing for long-term energy supply and also for solving the green house problem. It is indispensable to develop technologies to reduce environmental load with the nuclear energy supply for sustainable development of human beings. In this regard, the development of the fast breeder reactor (FBR) is preferable to utilize nuclear resources effectively and also to burn minor actinides which possess very long toxicity for more than thousands years if they are not extinguished. As one of the FBR developing works in Japan this phase I study started in 2006 to introduce hafnium (Hf) hydride and Gadolinium-Zirconium (Gd-Zr) hydride as new control materials in FBR. By adopting them, the FBR core control technology is improved by two ways. One is extension of control rod life time by using long life Hf hydride which leads to reduce the fabrication and disposal cost and the other is reduction of the excess reactivity by adopting Gd-Zr hydride which leads to reduce the number of control rods and simplifies the core upper structure. This three year study was successfully completed and the following results were obtained. The core design was performed to examine the applicability of the Hf hydride absorber to Japanese Sodium Fast Reactor (JSFR) and it is clarified that the control rod life time can be prolonged to 6 years by adopting Hf hydride and the excess reactivity of the beginning of the core cycle can be reduced to half and the number of the control rods is also reduced to half by using the Gd-Zr hydride burnable poison. The safety analyses also certified that the core safety can be maintained with the same reliability of JSFR Hf hydride and Gd-Zr hydride pellets were fabricated in good manner and their basic features for design use were measured by using the latest devices such as SEM-EDX. In order to reduce the hydrogen transfer through the stainless steel cladding a new technique which shares calorizing

  8. A quantitative phase field model for hydride precipitation in zirconium alloys: Part I. Development of quantitative free energy functional

    International Nuclear Information System (INIS)

    Shi, San-Qiang; Xiao, Zhihua

    2015-01-01

    A temperature dependent, quantitative free energy functional was developed for the modeling of hydride precipitation in zirconium alloys within a phase field scheme. The model takes into account crystallographic variants of hydrides, interfacial energy between hydride and matrix, interfacial energy between hydrides, elastoplastic hydride precipitation and interaction with externally applied stress. The model is fully quantitative in real time and real length scale, and simulation results were compared with limited experimental data available in the literature with a reasonable agreement. The work calls for experimental and/or theoretical investigations of some of the key material properties that are not yet available in the literature

  9. Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Henry; Guehne, Robin; Bertmer, Marko; Weber, Sebastian; Wenderoth, Patrick; Hansen, Thomas Christian; Haase, Jürgen; Kohlmann, Holger (Leipzig); (Saarland-MED); (ILL)

    2017-01-18

    Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å.

  10. Characterization of a U-Mo alloy subjected to direct hydriding of the gamma phase

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.

    2003-01-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has imposed the need to develop plate-type fuel elements based on high density uranium compounds, such as U-Mo alloys. One of the steps in the fabrication of the fuel elements is the pulverization of the fissile material. In the case of the U-Mo alloys, the pulverization can be accomplished through hydriding - dehydriding. Two alternative methods of the hydriding-dehydriding process, namely the selective hydriding in alpha phase (HS-alpha) and the massive hydriding in gamma phase (HM-gamma) are currently being studied at the Comision Nacional de Energia Atomica. The HM-gamma method was reproduced at laboratory scale starting from a U-7 wt % Mo alloy. The hydrided and dehydrided materials were characterized using metallographic techniques, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction. These results are compared with previous results of the HS-alpha method. (author)

  11. Hydride phase dissolution enthalpy in neutron irradiated Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abraham D.

    2003-01-01

    The differential calorimetric technique has been applied to measure the dissolution enthalpy, ΔH irrad δ→α , of zirconium hydrides precipitated in structural components removed from the Argentine Atucha 1 PHWR nuclear power plant after 10.3 EFPY. An average value of ΔH irrad δ→α = 5 kJ/mol H was obtained after the first calorimetric run. That value is seven times lower than the value of ΔH δ→α = 37.7 kJ/mol H recently determined in Zircaloy-4 specimens taken from similar unirradiated structural components using the same calorimetric technique, [1]. Post-irradiation thermal treatments gradually increase that low value towards the unirradiated value with increasing annealing temperature similar to that observed for TSSd irrad . Therefore the same H atom trapping mechanism during reactor operation already proposed to explain the evolution of TSSd irrad is also valid for Q irrad δ→α . As the ratio Q/ΔH is proportional to the number N H of H atoms precipitated as hydrides, the increment of Q irrad δ→α with the thermal treatment indicates that the value of N H also grows with the annealing reaching the value corresponding to the bulk H concentration when ΔH irrad δ→α ≅ 37 kJ/mol H. That is a direct indication that the post-irradiation thermal treatment releases the H atoms from their traps increasing the number of H atoms available to precipitate at the end of each calorimetric run and/or isothermal treatment. (author)

  12. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  13. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage.

    Science.gov (United States)

    Shinde, S S; Kim, Dong-Hyung; Yu, Jin-Young; Lee, Jung-Ho

    2017-06-01

    The rational design of stable, inexpensive catalysts with excellent hydrogen dynamics and sorption characteristics under realistic environments for reversible hydrogen storage remains a great challenge. Here, we present a simple and scalable strategy to fabricate a monodispersed, air-stable, magnesium hydride embedded in three-dimensional activated carbon with periodic synchronization of transition metals (MHCH). The high surface area, homogeneous distribution of MgH 2 nanoparticles, excellent thermal stability, high energy density, steric confinement by carbon, and robust architecture of the catalyst resulted in a noticeable enhancement of the hydrogen storage performance. The resulting MHCH-5 exhibited outstanding hydrogen storage performance, better than that of most reported Mg-based hydrides, with a high storage density of 6.63 wt% H 2 , a rapid kinetics loading in hydrogenation compared to that of commercial MgH 2 . The origin of the intrinsic hydrogen thermodynamics was elucidated via solid state 1 H NMR. This work presents a readily scaled-up strategy towards the design of realistic catalysts with superior functionality and stability for applications in reversible hydrogen storage, lithium ion batteries, and fuel cells.

  14. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  15. Metal hydride/chemical heat-pump development project. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  16. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.

    Science.gov (United States)

    Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  17. Elastoplastic phase-field modeling of ζ-hydride precipitation in zirconium alloy: dynamics evolution in inhomogeneous elasticity

    International Nuclear Information System (INIS)

    Oum, G.; Thuinet, L.; Legris, A.

    2015-07-01

    A phase-field (PF) model was developed within the framework of homogeneous and heterogeneous elasticity theory to study the precipitation of ζ-hydride in zirconium. By coupling crystal plasticity to PF we show that plastic strain participates in lowering the transformation stresses, and therefore induces changes in nucleation, growth and morphology evolution of the precipitates. (authors)

  18. Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN

    NARCIS (Netherlands)

    Bohnen, T.

    2010-01-01

    Chemical vapor deposition (CVD); hydride vapor phase epitaxy (HVPE); gallium nitride (GaN); indium gallium nitride (InGaN); scandium nitride (ScN); scandium aluminum nitride (ScAlN); semiconductors; thin films; nanowires; III nitrides; crystal growth - We studied the HVPE growth of different III

  19. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.

  20. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    International Nuclear Information System (INIS)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-01-01

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10 17  cm −3 to (2–5) × 10 14  cm −3 . The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10 13  cm −3 versus 2.9 × 10 16  cm −3 in the standard samples, with a similar decrease in the electron traps concentration

  1. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    Science.gov (United States)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  2. Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Hao-Ting Shen

    2016-06-01

    Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.

  3. Atypical magnetic phase diagrams of Ce.sub.2./sub.Fe.sub.17-x./sub.Mn.sub.x./sub. alloys and their hydrides

    Czech Academy of Sciences Publication Activity Database

    Kuchin, A. G.; Prokhnenko, O.; Arnold, Zdeněk; Kamarád, Jiří; Ritter, C.; Isnard, O.; Ivasechko, V.; Drulis, H.; Teplykh, A. E.; Khrabrov, V. I.; Medvedeva, I. V.; Lapina, T.P.

    2007-01-01

    Roč. 71, č. 11 (2007), s. 1615-1616 ISSN 1062-8738 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic phase diagram * hydrides * neutron diffraction * pressure effect Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Electrical, optical, and structural properties of GaN films prepared by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Polyakov, A.Y.; Smirnov, N.B.; Yakimov, E.B.; Usikov, A.S.; Helava, H.; Shcherbachev, K.D.; Govorkov, A.V.; Makarov, Yu N.; Lee, In-Hwan

    2014-01-01

    Highlights: • GaN films are prepared by hydride vapor phase epitaxy (HVPE). • Residual donors and deep traps show a minimum density versus growth temperature. • This minimum is located close to the HVPE growth temperature of 950 °C. • Good crystalline GaN with residual donor density < 10 16 cm −3 can be grown at 950 °C. - Abstract: Two sets of undoped GaN films with the thickness of 10–20 μm were prepared by hydride vapor phase epitaxy (HVPE) and characterized by capacitance–voltage (C–V) profiling, microcathodoluminescence (MCL) spectra measurements, MCL imaging, electron beam induced current (EBIC) imaging, EBIC dependence on accelerating voltage, deep levels transient spectroscopy, high resolution X-ray diffraction measurements. The difference in growth conditions was mainly related to the lower (850 °C, group 1) or higher (950 °C, group 2) growth temperature. Both groups of samples showed similar crystalline quality with the dislocation density close to 10 8 cm −2 , but very different electrical and optical properties. In group 1 samples the residual donors concentration was ∼10 17 cm −3 or higher, the MCL spectra were dominated by the band-edge luminescence, and the diffusion length of charge carriers was close to 0.1 μm. Group 2 samples had a 2–4.5 μm thick highly resistive layer on top, for which MCL spectra were determined by green, yellow and red defect bands, and the diffusion length was 1.5 times higher than in group 1. We also present brief results of growth at the “standard” HVPE growth temperature of 1050 °C that show the presence of a minimum in the net donor concentration and deep traps density as a function of the growth temperature. Possible reasons for the observed results are discussed in terms of the electrical compensation of residual donors by deep traps

  5. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  6. Gas phase thermal diffusion of stable isotopes

    International Nuclear Information System (INIS)

    Eck, C.F.

    1979-01-01

    The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes

  7. Effects of gas phase impurities on the topochemical-kinetic behaviour of uranium hydride development

    International Nuclear Information System (INIS)

    Bloch, J.; Brami, D.; Kremner, A.; Mintz, M.H.; Ben-Gurion Univ. of the Negev, Beersheba

    1988-01-01

    The hydriding kinetics of bulk uranium and U-0.1 wt.% Cr, in the presence of oxidizing gaseous impurities (oxygen and CO), were studied by combined rate measurements and metallographic examinations of partially reacted samples. The effect of the gaseous impurity (type and concentration) was examined metallographically, and the kinetic data were discussed in relation to these examinations. Below about 100 0 C the reaction of uranium with pure hydrogen consists of the following sequence of steps: (i) Surface nucleation; (ii) homogeneous growth (pitting); (iii) relatively fast lateral growth leading to the formation of a reaction front which penetrates into the sample at a constant rate. The effects of oxygen and CO on the hydriding kinetics were related to their abilities to block hydrogen penetration into the uranium. Thus, it was found that oxygen affects only the penetration through the oxide layer, whereas CO affects the penetration through both the oxide and hydride layers. (orig.)

  8. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  9. Flow analysis-hydride generation-gas phase derivative molecular absorption spectrophotometric determination of antimony in antileishmanial drugs

    Directory of Open Access Journals (Sweden)

    Máximo Gallignani

    2009-01-01

    Full Text Available In the present work, the development of a method based on the coupling of flow analysis (FA, hydride generation (HG, and derivative molecular absorption spectrophotometry (D-EAM in gas phase (GP, is described in order to determine total antimony in antileishmanial products. Second derivative order (D²224nm of the absorption spectrum (190 - 300 nm is utilized as measurement criterion. Each one of the parameters involved in the development of the proposed method was examined and optimized. The utilization of the EAM in GP as detection system in a continuous mode instead of atomic absorption spectrometry represents the great potential of the analytic proposal.

  10. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  11. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    International Nuclear Information System (INIS)

    Matar, S.F.; Nakhl, M.; Al Alam, A.F.; Ouaini, N.; Chevalier, B.

    2010-01-01

    Graphical abstract: Base centered orthorhombic YNiH X structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH 4 is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH 3 and YNiH 4 hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  12. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)

    2010-11-25

    Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  13. Stable Optical Phase Modulation With Micromirrors

    Science.gov (United States)

    2012-01-27

    to a voltage signal using a transimpedance amplifier with tranimpedance gain of Rf = 2 kΩ. The detected photocurrent of Iph = 0.6mA from 1.5mW of...the interferometer phase noise of δφmax = 4πrlδθmax/λ , which is then converted to the voltage noise at the output of the transimpedance amplifier by...The depth of modulation for a micromirror driven at mechanical resonance is amplified by the quality factor Q, enabling significant modulation with

  14. Structural stability of complex hydrides LiBH4 revisited

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Vegge, Tejs

    2004-01-01

    A systematic approach to study the phase stability of LiBH4 based on ab initio calculations is presented. Three thermodynamically stable phases are identified and a new phase of Cc symmetry is proposed for the first time for a complex hydride. The x-ray diffraction pattern and vibrational spectra...

  15. Lithium hydride doped intermediate connector for high-efficiency and long-term stable tandem organic light-emitting diodes.

    Science.gov (United States)

    Ding, Lei; Tang, Xun; Xu, Mei-Feng; Shi, Xiao-Bo; Wang, Zhao-Kui; Liao, Liang-Sheng

    2014-10-22

    Lithium hydride (LiH) is employed as a novel n-dopant in the intermediate connector for tandem organic light-emitting diodes (OLEDs) because of its easy coevaporation with other electron transporting materials. The tandem OLEDs with two and three electroluminescent (EL) units connected by a combination of LiH doped 8-hydroxyquinoline aluminum (Alq3) and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) demonstrate approximately 2-fold and 3-fold enhancement in current efficiency, respectively. In addition, no extra voltage drop across the intermediate connector is observed. Particularly, the lifetime (T75%) in the tandem OLED with two and three EL units is substantially improved by 3.8 times and 7.4 times, respectively. The doping effect of LiH into Alq3, the charge injection, and transport characteristics of LiH-doped Alq3 are further investigated by ultraviolet photoelectron spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).

  16. Superconductivity and the structural phase transitions in palladium hydride and palladium deuteride

    International Nuclear Information System (INIS)

    Standley, R.W.

    1980-01-01

    The results of two experimental studies of the superconducting transition temperature, T/sub c/, of palladium hydride, PdH/sub x/, and palladium deuteride, PdD/sub x/, are presented. In the first study, the superconducting transition temperature of PdH/sub x/(D/sub x/) is studied as a function of H(D) concentration, x, in the temperature range from 0.2 K to 4K. The data join smoothly with those reported previously by Miller and Satterthwaite at higher temperatures, and the composite data are described by the empirical relation T/sub c/ = 150.8 (x-x/sub o/) 2 244 , where x/sub o/ = 0.715 for hydride samples and 0.668 for deuteride samples. The results, when compared with the theoretical predictions of Klein and Papaconstantopoulos, et al., raise questions about the validity of their explanation of the reverse isotope effect, which is based solely on a difference in force constants. In the second study, the effect of the order-disorder structural transition associated with the 50 K anomaly on the superconductivity of PdH/sub x/(D/sub x/) is investigated. Samples were quenched to low temperatures in the disordered state, and their transition temperatures measured. The samples were then annealed just below the anomaly temperature, and the ordering process followed by monitoring the change in sample resistance. The transition temperatures in the ordered state were then measured

  17. Experimental determination of the phase diagram of the system sodium-sodium hydride up to 9000C and hydrogen pressures up to 800 bar

    International Nuclear Information System (INIS)

    Klostermeier, W.

    1978-01-01

    In the present work part of the sodium-sodium hydride system phase diagram has been studied at high temperatures (up to 900 0 C) and high hydrogen pressures (up to 1000 bar). The absorption isothermal curves recorded at temperatures between 650 0 C and 900 0 C show an increase in hydride solubility in sodium from 5.5 mol% at 650 0 to 19 mol% at 900 0 C. The melting point of sodium hydride has been measured giving the value 632 0 C with a hydrogen equilibrium pressure of 106 bar. In the mixing gap region the plateau equilibrium pressure, which is independent of composition, and his temperature dependence have been obtained. The enthalpy and entropy of melting are determined. (GSCH) [de

  18. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  19. Temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Kumagai, Yoshinao; Adachi, Hirokazu; Otake, Aya; Higashikawa, Yoshihiro; Togashi, Rie; Murakami, Hisashi; Koukitu, Akinori

    2010-01-01

    The temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy (HVPE) was investigated. N-polarity single-crystal InN layers were successfully grown at temperatures ranging from 400 to 500 C. The a and c lattice constants of InN layers grown at 450 C or below were slightly larger than those of InN layers grown above 450 C due to oxygen incorporation that also increased the carrier concentration. The optical absorption edge of the InN layer decreased from above 2.0 to 0.76 eV when the growth temperature was increased from 450 to 500 C. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy.

    Science.gov (United States)

    Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

    2018-01-25

    We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG ⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG ⧧ for hydride transfers from hydride donors to CO 2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG ⧧ ; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

  1. New stable phase in binary Fe-Nd

    International Nuclear Information System (INIS)

    Schneider, G.; Landgraf, F.J.G.; Villas-Boas, V.; Bezerra, G.H.; Missell, F.P.; Ray, A.E.

    1992-01-01

    An investigation of binary Fe-Nd alloys revealed the existence of an oxygen-free, stable Fe-rich phase A 2 , formed peritecticly in the range 750-800 deg C. EPMA shows this phase to contain 22.8 atomic percent Nd. This ferromagnetic phase has T c = 230 de C, but is magnetically soft. The X-ray diffraction pattern can be indexed using a hexagonal cell with a = 2.021 nm. and c = 1.235 nm. (author)

  2. Identification and characterization of a new Zirconium hydride

    International Nuclear Information System (INIS)

    Zhao, Z.

    2007-01-01

    In order to control the integrity of the fuel clad, alloy of zirconium, it is necessary to predict the behavior of zirconium hydrides in the environment (temperature, stress...), at a microscopic scale. A characterization study by TEM of hydrides has been realized. It shows little hydrides about 500 nm, in hydride Zircaloy 4. Then a more detailed study identified a new hydride phase presented in this paper. (A.L.B.)

  3. Tritium removal using vanadium hydride

    International Nuclear Information System (INIS)

    Hill, F.B.; Wong, Y.W.; Chan, Y.N.

    1978-01-01

    The results of an initial examination of the feasibility of separation of tritium from gaseous protium-tritium mixtures using vanadium hydride in cyclic processes is reported. Interest was drawn to the vanadium-hydrogen system because of the so-called inverse isotope effect exhibited by this system. Thus the tritide is more stable than the protide, a fact which makes the system attractive for removal of tritium from a mixture in which the light isotope predominates. The initial results of three phases of the research program are reported, dealing with studies of the equilibrium and kinetics properties of isotope exchange, development of an equilibrium theory of isotope separation via heatless adsorption, and experiments on the performance of a single heatless adsorption stage. In the equilibrium and kinetics studies, measurements were made of pressure-composition isotherms, the HT--H 2 separation factors and rates of HT--H 2 exchange. This information was used to evaluate constants in the theory and to understand the performance of the heatless adsorption experiments. A recently developed equilibrium theory of heatless adsorption was applied to the HT--H 2 separation using vanadium hydride. Using the theory it was predicted that no separation would occur by pressure cycling wholly within the β phase but that separation would occur by cycling between the β and γ phases and using high purge-to-feed ratios. Heatless adsorption experiments conducted within the β phase led to inverse separations rather than no separation. A kinetic isotope effect may be responsible. Cycling between the β and γ phases led to separation but not to the predicted complete removal of HT from the product stream, possibly because of finite rates of exchange. Further experimental and theoretical work is suggested which may ultimately make possible assessment of the feasibility and practicability of hydrogen isotope separation by this approach

  4. Phase Stable RF-over-fiber Transmission using Heterodyne Interferometry

    International Nuclear Information System (INIS)

    Wilcox, R.; Byrd, J.M.; Doolittle, L.; Huang, G.; Staples, J.W.

    2010-01-01

    New scientific applications require phase-stabilized RF distribution to multiple remote locations. These include phased-array radio telescopes and short pulse free electron lasers. RF modulated onto a CW optical carrier and transmitted via fiber is capable of low noise, but commercially available systems aren't long term stable enough for these applications. Typical requirements are for less than 50fs long term temporal stability between receivers, which is 0.05 degrees at 3GHz. Good results have been demonstrated for RF distribution schemes based on transmission of short pulses, but these require specialized free-space optics and high stability mechanical infrastructure. We report a method which uses only standard telecom optical and RF components, and achieves less than 20fs RMS error over 300m of standard single-mode fiber. We demonstrate stable transmission of 3GHz over 300m of fiber with less than 0.017 degree (17fs) RMS phase error. An interferometer measures optical phase delay, providing information to a feed-forward correction of RF phase.

  5. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Zhang, Weihong; Qi, Yuehan; Qin, Deyuan; Liu, Jixin; Mao, Xuefei; Chen, Guoying; Wei, Chao; Qian, Yongzhong

    2017-08-01

    Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydride generation atomic fluorescence spectrometry (HG-AFS). The separation of iAs from algae was first performed by nonpolar SPE sorbent using Br - for arsenic halogenation. Algae samples were extracted with 1% perchloric acid. Then, 1.5mL extract was reduced by 1% thiourea, and simultaneously reacted (for 30min) with 50μL of 10% KBr for converting iAs to AsBr 3 after adding 3.5mL of 70% HCl to 5mL. A polystyrene (PS) resin cartridge was employed to retain arsenicals, which were hydrolyzed, eluted from the PS resin with H 2 O, and categorized as iAs. The total iAs was quantified by HG-AFS. Under optimum conditions, the spiked recoveries of iAs in real algae samples were in the 82-96% range, and the method achieved a desirable limit of detection of 3μgkg -1 . The inter-day relative standard deviations were 4.5% and 4.1% for spiked 100 and 500μgkg -1 respectively, which proved acceptable for this method. For real algae samples analysis, the highest presence of iAs was found in sargassum fusiforme, followed by kelp, seaweed and laver. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Determination of phase boundaries and diffusion parameters in tantalum hydrides in pulsed NMR

    International Nuclear Information System (INIS)

    Hornung, P.A.

    1978-04-01

    Proton spin-lattice relaxation times T 1 were measured over a wide range of temperature (77 K to 470 K) and compositions (H/Ta = 0.155 to 0.677) in the tantalum-hydrogen system at a frequency of 40,000 MHz. In the high temperature solid solution α phase, the activation energy for hydrogen diffusion was found to be 0.140 +- 0.002 eV/atom, and the value of the jump rate (or its corresponding correlation time) was found to be essentially constant throughout the range of compositions studied. The conduction electron contribution to T 1 measured in the α phase agreed qualitatively with the trend shown by previously published susceptibility data. The single phase epsilon region and the α + epsilon two-phase region were particularly noted. It could also be concluded from the measurements that the hydrogen jump rate decreased by a factor of approximately 7.2 from the α phase to the ordered phases at low temperatures and slightly decreased further in the epsilon phase. Anomalous relaxation times were found in the low temperature range (77 K less than or equal to T less than or equal to K). In this region, T 1 remains essentially constant, and does not follow the usual temperature dependence for either motional or electronic relaxation. Two possible explanations for this behavior were considered. The first involves proton cross-relaxation to the 181 Ta nuclei which would sample the spectral density of magnetic fluctuations in the sample at several frequencies because of the probable very strong 181 Ta quadrupole interaction strength. The second explanation postulates that the hydrogen diffusional jump path involves an intermediate metastable state

  7. Superconducting phases of phosphorus hydride under pressure. Stabilization by mobile molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Tiange; Miller, Daniel P.; Shamp, Andrew; Zurek, Eva [Department of Chemistry, State University of New York, Buffalo, NY (United States)

    2017-08-14

    At 80 GPa, phases with the PH{sub 2} stoichiometry, which are composed of simple cubic like phosphorus layers capped with hydrogen atoms and layers of H{sub 2} molecules, are predicted to be important species contributing to the recently observed superconductivity in compressed phosphine. The electron-phonon coupling in these phases results from the motions of the phosphorus atoms and the hydrogen atoms bound to them. The role of the mobile H{sub 2} layers is to decrease the Coulomb repulsion between the negatively charged hydrogen atoms capping the phosphorus layers. An insulating PH{sub 5} phase, the structure and bonding of which is reminiscent of diborane, is also predicted to be metastable at this pressure. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Synthesis and HPLC evaluation of carboxylic acid phases on a hydride surface.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Gangakhedkar, Surekha; Siddiq, Rukhsana

    2006-04-01

    Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials.

  9. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.; Dixit, V. K.; Oak, S. M.; Sharma, T. K., E-mail: tarun@rrcat.gov.in [Semiconductor Physics and Devices Laboratory, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  10. Hydriding of metallic thorium

    International Nuclear Information System (INIS)

    Miyake, Masanobu; Katsura, Masahiro; Matsuki, Yuichi; Uno, Masayoshi

    1983-01-01

    Powdered thorium is usually prepared through a combination of hydriding and dehydriding processes of metallic thorium in massive form, in which the hydriding process consists of two steps: the formation of ThH 2 , and the formation of Th 4 H 15 . However, little has yet been known as to on what stage of hydriding process the pulverization takes place. It is found in the present study that the formation of Th 4 H 15 by the reaction of ThH 2 with H 2 is responsible for pulverization. Temperature of 70 deg C adopted in this work for the reaction of formation Th 4 H 15 seems to be much more effective for production of powdered thorium than 200 - 300 deg C in the literature. The pressure-composition-temperature relationships for Th-H system are determined at 200, 300, 350, and 800 deg C. From these results, a tentative equilibrium phase diagram for the Th-H system is proposed, attention being focused on the two-phase region of ThH 2 and Th 4 H 15 . Pulverization process is discussed in terms of the tentative phase diagram. (author)

  11. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  12. A model for arsenic anti-site incorporation in GaAs grown by hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, K. L.; Kuech, T. F. [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-12-28

    GaAs growth by hydride vapor phase epitaxy (HVPE) has regained interest as a potential route to low cost, high efficiency thin film photovoltaics. In order to attain the highest efficiencies, deep level defect incorporation in these materials must be understood and controlled. The arsenic anti-site defect, As{sub Ga} or EL2, is the predominant deep level defect in HVPE-grown GaAs. In the present study, the relationships between HVPE growth conditions and incorporation of EL2 in GaAs epilayers were determined. Epitaxial n-GaAs layers were grown under a wide range of deposition temperatures (T{sub D}) and gallium chloride partial pressures (P{sub GaCl}), and the EL2 concentration, [EL2], was determined by deep level transient spectroscopy. [EL2] agreed with equilibrium thermodynamic predictions in layers grown under conditions in which the growth rate, R{sub G}, was controlled by conditions near thermodynamic equilibrium. [EL2] fell below equilibrium levels when R{sub G} was controlled by surface kinetic processes, with the disparity increasing as R{sub G} decreased. The surface chemical composition during growth was determined to have a strong influence on EL2 incorporation. Under thermodynamically limited growth conditions, e.g., high T{sub D} and/or low P{sub GaCl}, the surface vacancy concentration was high and the bulk crystal was close to equilibrium with the vapor phase. Under kinetically limited growth conditions, e.g., low T{sub D} and/or high P{sub GaCl}, the surface attained a high GaCl coverage, blocking As adsorption. This competitive adsorption process reduced the growth rate and also limited the amount of arsenic that incorporated as As{sub Ga}. A defect incorporation model which accounted for the surface concentration of arsenic as a function of the growth conditions, was developed. This model was used to identify optimal growth parameters for the growth of thin films for photovoltaics, conditions in which a high growth rate and low [EL2] could be

  13. High-pressure phases of S, Se, and P hydrides and their superconducting properties. Predictions from ab-initio theory

    Energy Technology Data Exchange (ETDEWEB)

    Gross, E.K.U. [Max Planck Institute of Microstructure Physics, Halle (Saale) (Germany)

    2016-07-01

    The quest for novel high-temperature superconductors in the family of hydrogen-rich compounds has recently been crowned with the experimental discovery of a record critical temperature of 190 K in a hydrogen-sulfur compound at 200 GPa. In the present contribution, we investigate the phase diagram of the H-S system, comparing the stability of H{sub n}S (n = 1,2,3,4) by means of the minima hopping method for structure prediction. Our extensive crystal structure search confirms the H{sub 3}S stoichiometry as the most stable configuration at high pressure. Superconducting properties are calculated using the fully ab-initio parameter-free approach of density functional theory for superconductors. We find a T{sub c} of 180 K at 200 GPa, in excellent agreement with experiment. We also show that Se-H has a phase diagram similar to its sulfur counterpart. We predict H{sub 3}Se to be superconducting at temperatures higher than 120 K at 100 GPa. We furthermore investigate the phase diagram of PH{sub n} (n = 1,2,3,4,5,6). The results of our crystal-structure search do not support the existence of thermodynamically stable PH{sub n} compounds, which exhibit a tendency for elemental decomposition at high pressure. Although the lowest energy phases of PH{sub n=1,2,3} display T{sub c} values comparable to experiment, it remains uncertain if the measured values of T{sub c} can be fully attributed to a phase-pure compound of PH{sub n}.

  14. Stable Low Cloud Phase II: Nocturnal Event Study

    Science.gov (United States)

    Bauman, William H., III; Barrett, Joe, III

    2007-01-01

    This report describes the work done by the Applied Meteorology Unit (AMU) in developing a database of nights that experienced rapid (formation in a stable atmosphere, resulting in ceilings at the Shuttle Landing Facility (TTS) that violated Space Shuttle Flight Rules (FR). This work is the second phase of a similar AMU task that examined the same phenomena during the day. In the first phase of this work, the meteorological conditions favoring the rapid formation of low ceilings include the presence of any inversion below 8000 ft, high relative humidity (RH) beneath the inversion and a clockwise turning of the winds from the surface to the middle troposphere (-15000 ft). The AMU compared and contrasted the atmospheric and thermodynamic conditions between nights with rapid low ceiling formation and nights with low ceilings resulting from other mechanisms. The AMU found that there was little to discern between the rapidly-forming ceiling nights and other low ceiling nights at TTS. When a rapid development occurred, the average RH below the inversions was 87% while non-events had an average RH of 79%. One key parameter appeared to be the vertical wind profile in the Cape Canaveral, FL radiosonde (XMR) sounding. Eighty-three percent of the rapid development events had veering winds with height from the surface to the middle troposphere (-15,000 ft) while 61% of the non-events had veering winds with height. Veering winds indicate a warm-advection regime, which supports large-scale rising motion and ultimately cloud formation in a moist environment. However, only six of the nights (out of 86 events examined) with low cloud ceilings had an occurrence of rapidly developing ceilings. Since only 7% rapid development events were observed in this dataset, it is likely that rapid low cloud development is not a common occurrence during the night, or at least not as common as during the day. In the AMU work on the daytime rapid low cloud development (Case and Wheeler 2005), nearly

  15. Comminution by hydriding-dehydriding process of the U-Zr-Nb alloys stabilized at different phases by aging heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cantagalli, Natalia Mattar; Pais, Rafael Witter Dias; Braga, Daniel Martins; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Belo Horizonte, MG (Brazil)

    2011-07-01

    Powders of the U-Zr-Nb alloys are raw materials for obtaining plate-type dispersion fuel of high density and medium enrichment for research and test reactors as well as small power reactors. U-2.5Zr-7.5Nb and U-3Zr-9Nb (wt%) alloys, initially homogenized at high temperatures, were transformed at different phases by means aging heat treatments, and then comminuted by hydriding-dehydriding process to powder production. The phases transformations were obtained by the homogenization of the U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys at high temperatures (1000 deg C for 1 and 16 h), followed by aging heat treatment at 600 deg C, in times of 0.5 h, 3.0 h and 24h, and subsequently quenched in water to stabilize the desired phase. The comminution process was performed at 200 deg C for different times ranging from 20 minutes to 4 hours. The powders were then characterized by scanning electron microscopy, X-ray diffraction and determination of particle size distribution by means of laser equipment CILAS. One of the main objectives of this study was to verify the influence of the different phases in the characteristics of the obtained powders. It was found that alloys stabilized in gamma phase produced powders with smaller particles sizes than those with cellular structure of the {alpha} and {gamma} phases. Regardless of retained phases, the produced powders consist of agglomerates with irregular morphology. (author)

  16. Comminution by hydriding-dehydriding process of the U-Zr-Nb alloys stabilized at different phases by aging heat treatment

    International Nuclear Information System (INIS)

    Cantagalli, Natalia Mattar; Pais, Rafael Witter Dias; Braga, Daniel Martins; Santos, Ana Maria Matildes dos; Ferraz, Wilmar Barbosa

    2011-01-01

    Powders of the U-Zr-Nb alloys are raw materials for obtaining plate-type dispersion fuel of high density and medium enrichment for research and test reactors as well as small power reactors. U-2.5Zr-7.5Nb and U-3Zr-9Nb (wt%) alloys, initially homogenized at high temperatures, were transformed at different phases by means aging heat treatments, and then comminuted by hydriding-dehydriding process to powder production. The phases transformations were obtained by the homogenization of the U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys at high temperatures (1000 deg C for 1 and 16 h), followed by aging heat treatment at 600 deg C, in times of 0.5 h, 3.0 h and 24h, and subsequently quenched in water to stabilize the desired phase. The comminution process was performed at 200 deg C for different times ranging from 20 minutes to 4 hours. The powders were then characterized by scanning electron microscopy, X-ray diffraction and determination of particle size distribution by means of laser equipment CILAS. One of the main objectives of this study was to verify the influence of the different phases in the characteristics of the obtained powders. It was found that alloys stabilized in gamma phase produced powders with smaller particles sizes than those with cellular structure of the α and γ phases. Regardless of retained phases, the produced powders consist of agglomerates with irregular morphology. (author)

  17. The effect of thermal cycling on the movement of the αZr/ αZr hydride phase boundary in cold-worked Zr-2.5 wt% Nb alloy

    International Nuclear Information System (INIS)

    Cox, B.; Ling, V.C.

    1980-05-01

    A piece of CW Zr-2.5 wt% Nb alloy pressure tube was hydrided at one end in 40 g/L LiOH solution at 573 K (after nickel-plating that end). The result was a solid hydride layer 0.6 mm thick plus approximately 130 ppm hydrogen in the core under the nickel plate. Thermal cycling under conditions similar to those likely to be experienced during a reactor trip did not cause any significant movement of the α+hydridephase boundary along the tube for up to 2688 cycles from 573 to 523 K. Supercharging of the core was observed in the nickel-plated area. Some conclusions have been drawn concerning the origin of the hydrogen in the nickel-plated area, and the factors controlling the supercharging process. (auth)

  18. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo

    2005-01-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from γ-hydrides to δ-hydrides is likely to be a cause of this, based on Root's observation that the γ-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be δ-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or γ-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be δ-hydrides. When the δ-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the γ-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the γ- and δ-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the hydrogen concentration or .C between the bulk and the

  19. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from {gamma}-hydrides to {delta}-hydrides is likely to be a cause of this, based on Root's observation that the {gamma}-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be {delta}-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or {gamma}-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be {delta}-hydrides. When the {delta}-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the {gamma}-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the {gamma}- and {delta}-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the

  20. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  1. Erbium hydride decomposition kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  2. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  3. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  4. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  5. Predicting formation enthalpies of metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, A.

    2004-12-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formed by chemical reaction between hydrogen and metal and for the stable hydrides this is associated with release of heat ({delta}H{sub f} ). The more thermodynamically stable the hydride, the larger {delta}H{sub f}, and the higher temperature is needed in order to desorp hydrogen (reverse reaction) and vice versa. For practical application the temperature needed for desorption should not be too high i.e. {delta}H{sub f} should not be too large. If hydrogen desorption is to be possible below 100 deg C (which is the ultimate goal if hydrogen storage in metal hydrides should be used in conjunction with a PEM fuel cell), {delta}H{sub f} should not exceed -48 kJ/mol. Until recently only intermetallic metal hydrides with a storage capacity less than 2 wt.% H{sub 2} have met this criterion. However, discovering reversible hydrogen storage in complex metal hydrides such as NaAlH{sub 4} (5.5 wt. % reversible hydrogen capacity) have revealed a new group of potential candiates. However, still many combination of elements from the periodic table are yet to be explored. Since experimental determination of thermodynamic properties of the vast combinations of elements is tedious it may be advantagous to have a predictive tool for this task. In this report different ways of predicting {delta}H{sub f} for binary and ternary metal hydrides are reviewed. Main focus will be on how well these methods perform numerically i.e. how well experimental results are resembled by the model. The theoretical background of the different methods is only briefly reviewed. (au)

  6. Asymptotically stable phase synchronization revealed by autoregressive circle maps

    Science.gov (United States)

    Drepper, F. R.

    2000-11-01

    A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.

  7. Split degenerate states and stable p+ip phases from holography

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Zhang-Yu; Zeng, Hui [Kunming University of Science and Technology, Kunming (China); Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China); Pan, Qiyuan [Hunan Normal Univ., Key Lab. of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Dept. of Physics, Changsha (China); Zeng, Hua-Bi [Yangzhou University, College of Physics Science and Technology, Yangzhou, Jiangsu (China); National Central University, Department of Physics, Chungli (China)

    2017-02-15

    In this paper, we investigate the p+ip superfluid phases in the complex vector field holographic p-wave model. We find that in the probe limit, the p+ip phase and the p-wave phase are equally stable, hence the p and ip orders can be mixed with an arbitrary ratio to form more general p+λip phases, which are also equally stable with the p-wave and p+ip phases. As a result, the system possesses a degenerate thermal state in the superfluid region. We further study the case on considering the back-reaction on the metric, and we find that the degenerate ground states will be separated into p-wave and p+ip phases, and the p-wave phase is more stable. Finally, due to the different critical temperature of the zeroth order phase transitions from p-wave and p+ip phases to the normal phase, there is a temperature region where the p+ip phase exists but the p-wave phase does not. In this region we find the stable holographic p+ip phase for the first time. (orig.)

  8. Evidence of a stable binary CdCa quasicrystalline phase

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Jensen, C.H.; Rasmussen, A.R.

    2001-01-01

    Quasicrystals with a primitive icosahedral structure and a quasilattice constant of 5.1215 Angstrom have been synthesized in a binary Cd-Ca system. The thermal stability of the quasicrystal has been investigated by in situ high-temperature x-ray powder diffraction using synchrotron radiation. It ....... It is demonstrated that the binary CdCa quasicrystal is thermodynamic stable up to its melting temperature. The linear thermal expansion coefficient of the quasicrystal is 2.765x10(-5) K-1. (C) 2001 American Institute of Physics.......Quasicrystals with a primitive icosahedral structure and a quasilattice constant of 5.1215 Angstrom have been synthesized in a binary Cd-Ca system. The thermal stability of the quasicrystal has been investigated by in situ high-temperature x-ray powder diffraction using synchrotron radiation...

  9. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  10. Thermally stable electrolytes for rechargeable lithium batteries, phase 2

    Science.gov (United States)

    Dominey, L. A.; Goldman, J. L.; Koch, V. R.

    1989-09-01

    During the second year of research under NASA SBIR Contract NAS7-967, Covalent Associates and NASA contract monitors at the Jet Propulsion Laboratory agreed to perform an evaluation of the three best electrolytes developed during Phase 2. Due to the extensive period of time required to collect meaningful cycling data, we realized the study would extend well beyond the original formal end of the Phase 2 program (August 31, 1988). The substitution of this effort in lieu of an earlier proposed 20-cell final deliverable is formally documented in Modification No. 1 of Contract NAS7-967 as task 7. This Addendum contains the results of the cycling studies performed at Covalent Associates. In addition, sealed ampoules of each of these three electrolytes were delivered to the Jet Propulsion Laboratory Electrochemical Power Group. Their concurrent evaluation in a different test vehicle has also been recently concluded and their results are also summarized herein.

  11. Stable, metastable, and kinetically trapped amyloid aggregate phases.

    Science.gov (United States)

    Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin

    2015-01-12

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.

  12. Levels of acute phase proteins remain stable after ischemic stroke

    Directory of Open Access Journals (Sweden)

    Paik Myunghee C

    2006-10-01

    Full Text Available Abstract Background Inflammation and inflammatory biomarkers play an important role in atherosclerosis and cardiovascular disease. Little information is available, however, on time course of serum markers of inflammation after stroke. Methods First ischemic stroke patients ≥40 years old had levels of high-sensitivity C-reactive protein (hsCRP, serum amyloid A (SAA, and fibrinogen measured in plasma samples drawn at 1, 2, 3, 7, 14, 21 and 28 days after stroke. Levels were log-transformed as needed, and parametric and non-parametric statistical tests were used to test for evidence of a trend in levels over time. Levels of hsCRP and SAA were also compared with levels in a comparable population of stroke-free participants. Results Mean age of participants with repeated measures (n = 21 was 65.6 ± 11.6 years, and 13 (61.9% were men, and 15 (71.4% were Hispanic. Approximately 75% of patients (n = 15 had mild strokes (NIH Stroke Scale score 0–5. There was no evidence of a time trend in levels of hsCRP, SAA, or fibrinogen for any of the markers during the 28 days of follow-up. Mean log(hsCRP was 1.67 ± 1.07 mg/L (median hsCRP 6.48 mg/L among stroke participants and 1.00 ± 1.18 mg/L (median 2.82 mg/L in a group of 1176 randomly selected stroke-free participants from the same community (p = 0.0252. Conclusion Levels of hsCRP are higher in stroke patients than in stroke-free subjects. Levels of inflammatory biomarkers associated with atherosclerosis, including hsCRP, appear to be stable for at least 28 days after first ischemic stroke.

  13. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Roberts, C.B.

    1975-01-01

    A process is described for preparing beryllium hydride by the direct reaction of beryllium borohydride and aluminum hydride trimethylamine adduct. Volatile by-products and unreacted reactants are readily removed from the product mass by sublimation and/or evaporation. (U.S.)

  14. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Silakhori, Mahyar; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Baradaran, Saeid; Naghavi, Mohammad Sajad

    2014-01-01

    Highlights: • A novel phase change composite of palmitic acid–polypyrrole(PA–PPy) was fabricated. • Thermal properties of PA–PPy are characterized in different mass ratios of PA–PPy. • Thermal cycling test showed that form stable PCM had a favorable thermal reliability. - Abstract: In this study a novel palmitic acid (PA)/polypyrrole (PPy) form-stable PCMs were readily prepared by in situ polymerization method. PA was used as thermal energy storage material and PPy was operated as supporting material. Form-stable PCMs were investigated by SEM (scanning electron microscopy) and FTIR (Fourier transform infrared spectrometer) analysis that illustrated PA Particles were wrapped by PPy particles. XRD (X-ray diffractometer) was used for crystalline phase of PA/PPy composites. Thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) were used for investigating Thermal stability and thermal energy storage properties of prepared form-stable PCMs. According to the obtained results the form stable PCMs exhibited favorable thermal stability in terms of their phase change temperature. The form-stable PCMs (79.9 wt% loading of PA) were considered as the highest loading PCM with desirable latent heat storage of 166.3 J/g and good thermal stability. Accelerated thermal cycling tests also showed that form stable PCM had an acceptable thermal reliability. As a consequence of acceptable thermal properties, thermal stability and chemical stability, we can consider the new kind of form stable PCMs for low temperature solar thermal energy storage applications

  15. Hydride vapor phase epitaxy of high structural perfection thick AlN layers on off-axis 6H-SiC

    Science.gov (United States)

    Volkova, Anna; Ivantsov, Vladimir; Leung, Larry

    2011-01-01

    The employment of more than 10 μm thick AlN epilayers on SiC substrates for AlGaN/GaN high-electron-mobility transistors (HEMTs) substantially raises their performance in high-power energy-efficient amplifiers for 4G wireless mobile stations. In this paper, structural properties and surface morphology of thick AlN epilayers deposited by hydride vapor phase epitaxy (HVPE) on off-axis conductive 6H-SiC substrates are reported. The epilayers were examined in detail by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Nomarski differential interference contrast (DIC), scanning electron microscopy (SEM), and selective wet chemical etching. At optimal substrate preparation and growth conditions, a full width at half-maximum (FWHM) of the XRD rocking curve (RC) for the symmetric (00.2) reflex was very close to that of the substrate (less than 40 arcsec) suggesting low screw dislocation density in the epilayer (˜10 6 cm -2) and small in-plane tilt misorientation. Reciprocal space mapping around asymmetric reflexes and measured lattice parameters indicated a fully relaxed state of the epilayers. The unit-cell-high stepped areas of the epilayers with 0.5 nm root mean square (RMS) roughness over 1×1 μm 2 scan were alternated with step-bunching instabilities up to 350 nm in height. Low warp of the substrates makes them suitable for precise epitaxy of HEMT structures.

  16. Addition of Sb as a surfactant for the growth of nonpolar a-plane GaN by using mixed-source hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Ok, Jin Eun; Jo, Dong Wan; Yun, Wy Il; Han, Young Hun; Jeon, Hun Soo; Lee, Gang Suok; Jung, Se Gyo; Bae, Seon Min; Ahn, Hyung Soo; Yang, Min

    2011-01-01

    The influence of Sb as a surfactant on the morphology and on the structural and the optical characteristics of a-plane GaN grown on r-plane sapphire by using mixed-source hydride vapor phase epitaxy was investigated. The a-plane GaN:Sb layers were grown at various temperatures ranging from 1000 .deg. C to 1100 .deg. C, and the reactor pressure was maintained at 1 atm. The atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD) and photoluminescence(PL) results indicated that the surface morphologies and the structural and the optical characteristics of a-plane GaN were markedly improved, compared to the a-plane GaN layers grown without Sb, by using Sb as a surfactant. The addition of Sb was found to alter epitaxial lateral overgrowth (ELO) facet formation. The Sb was not detected from the a-plane-GaN epilayers within the detection limit of the energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) measurements, suggesting that Sb act as a surfactant during the growth of a-plane GaN by using mixed-source HVPE method.

  17. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  18. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  19. Blistering and hydride embrittlement

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    The effects of hydrogen on the mechanical properties of metals have been categorized into several groups. Two of the groups, hydrogen blistering and hydride embrittlement, are reasonably well understood, and problems relating to their occurrence may be avoided if that understanding is used as a basis for selecting alloys for hydrogen service. Blistering and hydride embrittlement are described along with several techniques of materials selection and used to minimize their adverse effects. (U.S.)

  20. Hydride generation coupled to microfunnel-assisted headspace liquid-phase microextraction for the determination of arsenic with UV-Vis spectrophotometry.

    Science.gov (United States)

    Hashemniaye-Torshizi, Reihaneh; Ashraf, Narges; Arbab-Zavar, Mohammad Hossein

    2014-12-01

    In this research, a microfunnel-assisted headspace liquid-phase microextraction technique has been used in combination with hydride generation to determine arsenic (As) by UV-Vis spectrophotometry. The method is based on the reduction of As to arsine (AsH3) in acidic media by sodium tetrahydroborate (NaBH4) followed by its subsequent reaction with silver diethyldithiocarbamate (AgDDC) to give an absorbing complex at 510 nm. The complexing reagent (AgDDC) has been dissolved in a 1:1 (by the volume ratio) mixture of chloroform/chlorobenzene microdroplet and exposed to the generated gaseous arsine via a reversed microfunnel in the headspace of the sample solution. Several operating parameters affecting the performance of the method have been examined and optimized. Acetonitrile solvent has been added to the working samples as a sensitivity enhancement agent. Under the optimized operating conditions, the detection limit has been measured to be 0.2 ng mL(-1) (based on 3sb/m criterion, n b = 8), and the calibration curve was linear in the range of 0.5-12 ng mL(-1). The relative standard deviation for eight replicate measurements was 1.9 %. Also, the effects of several potential interferences have been studied. The accuracy of the method was validated through the analysis of JR-1 geological standard reference material. The method has been successfully applied for the determination of arsenic in raw and spiked soft drink and water samples with the recoveries that ranged from 91 to 106 %.

  1. Theoretical study of hydrogen storage in metal hydrides.

    Science.gov (United States)

    Oliveira, Alyson C M; Pavão, A C

    2018-05-04

    Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.

  2. Thermal performance study of form-stable composite phase change material with polyacrylic

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Chee, Swee Yong; Sanmuggam, Shimalaa

    2017-04-01

    Phase change material (PCM) is one of the most popular and widely used as thermal energy storage material because it is able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. In this work, the form-stable composite PCM was prepared by blending of PMMA and myristic acid in different weight percentage. PMMA was used as a supporting material while myristic acid was used as PCM. Theoretically, PCM can be encapsulated in the support material after blending. However, a small amount of liquid PCMs can leak out from supporting material due to the volume change in phase change process. Therefore, a form-stable composite PCM with polyacrylic coating was studied. Leakage test was carried out to determine the leakage percentage of the form-stable composite PCM. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical compatibility of the form-stable PCM composite while differential scanning calorimetry (DSC) was used to study the melting, freezing point and the latent heat of melting and freezing for the form-stable composite PCM.

  3. Photoluminescence investigation of thick GaN films grown on Si substrates by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Yang, M.; Ahn, H. S.; Chang, J. H.; Yi, S. N.; Kim, K. H.; Kim, H.; Kim, S. W.

    2003-01-01

    The optical properties of thick GaN films grown by hydried vapor phase epitaxy (HVPE) using a low-temperature intermediate GaN buffer layer grown on a (111) Si substrate with a ZnO thin film were investigated by using photoluminescence (PL) measurement at 300 K and 77 K. The strong donor bound exciton (DBE) at 357 nm with a full width at half maximum (FWHM) of 15 meV was observed at 77 K. The value of 15 meV is extremely narrow for GaN grown on Si substrate by HVPE. An impurity-related peak was also observed at 367 nm. The origin of impurity was investigated using Auger spectroscopy.

  4. High H⁻ ionic conductivity in barium hydride.

    Science.gov (United States)

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  5. Intrinsically stable phase-modulated polarization encoding system for quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Liao Changjun [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)], E-mail: chliao@scnu.edu.cn; Mi Jinglong; Wang Jindong; Liu Songhao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2008-12-22

    We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.

  6. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  7. Simultaneous gettering of oxygen and chlorine and homogenization of the β phase by rare earth hydride additions to a powder metallurgy Ti–2.25Mo–1.5Fe alloy

    International Nuclear Information System (INIS)

    Yan, M.; Liu, Y.; Liu, Y.B.; Kong, C.; Schaffer, G.B.; Qian, M.

    2012-01-01

    A detailed transmission electron microscopy analysis has revealed that small additions of yttrium hydride to a powder metallurgy Ti–2.25Mo–1.5Fe alloy resulted in the formation of both chlorine-free yttrium oxides and essentially oxygen-free yttrium chlorides. The oxides and chlorides showed distinctly different morphologies and spatial distribution. Yttrium acted as a potent getter for both oxygen and chlorine. Additionally, the β-Ti phase was free of nanoscaled α-Ti in the presence of yttrium. These microstructural changes contribute to the substantially increased ductility (∼90%).

  8. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  9. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    International Nuclear Information System (INIS)

    Rico, A.; Martin-Rengel, M.A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F.J.

    2014-01-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found

  10. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H.M.; Daum, R.S.; Hiller, J.M.; Billone, M.C.

    2002-01-01

    Transmission electron microscopy (TEM) was used to examine Zircaloy fuel cladding, either discharged from several PWRs and a BWR after irradiation to fluence levels of 3.3 to 8.6 X 10 21 n cm -2 (E > 1 MeV) or hydrogen-charged and heat-treated under stress to produce radial hydrides; the goal was to determine the microstructural and crystallographic characteristics of hydride precipitation. Morphologies, distributions, and habit planes of various types of hydrides were determined by stereo-TEM. In addition to the normal macroscopic hydrides commonly observed by optical microscopy, small 'microscopic' hydrides are present in spent-fuel cladding in number densities at least a few orders of magnitude greater than that of macroscopic hydrides. The microscopic hydrides, observed to be stable at least up to 333 deg C, precipitate in association with -type dislocations. While the habit plane of macroscopic tangential hydrides in the spent-fuel cladding is essentially the same as that of unirradiated unstressed Zircaloys, i.e., the [107] Zr plane, the habit plane of tangential hydrides that precipitate under high tangential stress is the [104] Zr plane. The habit plane of radial hydrides that precipitate under tangential stress is the [011] Zr pyramidal plane, a naturally preferred plane for a cladding that has 30 basal-pole texture. Effects of texture on the habit plane and the threshold stress for hydride reorientation are also discussed. (authors)

  11. Study of critical dependence of stable phases in Nitinol on heat treatment using electrical resistivity probe

    International Nuclear Information System (INIS)

    Uchil, J.; Mohanchandra, K.P.; Kumara, K.G.; Mahesh, K.K.

    1998-01-01

    Phase transformations in 40% cold-worked Nitinol as a function of heat treatment have been studied using electrical resistivity variation with temperature. The stabilisation of austenitic, rhombohedral and martensitic phases is shown to critically depend on the temperatures of heat treatment by the analysis of temperature dependence of electrical resistivity in heating and cooling parts of the cycle. Characteristic values of electrical resistivity of the stable phases are determined. The R-phase has been found to form continuously with increasing heat-treatment temperature starting from room temperature and to suddenly disappear beyond heat-treatment at 683 K. The observed presence or absence of R-phase is confirmed by heat capacity measurements as a function of temperature. (orig.)

  12. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Balaji, M.; Claudel, A.; Fellmann, V.; Gélard, I.; Blanquet, E.; Boichot, R.; Pierret, A.

    2012-01-01

    Highlights: ► Growth of AlN Nucleation layers and its effect on high temperature AlN films quality were investigated. ► AlN nucleation layers stabilizes the epitaxial growth of AlN and improves the surface morphology of AlN films. ► Increasing growth temperature of AlN NLs as well as AlN films improves the structural quality and limits the formation of cracks. - Abstract: AlN layers were grown on c-plane sapphire substrates with AlN nucleation layers (NLs) using high temperature hydride vapor phase epitaxy (HT-HVPE). Insertion of low temperature NLs, as those typically used in MOVPE process, prior to the high temperature AlN (HT-AlN) layers has been investigated. The NLs surface morphology was studied by atomic force microscopy (AFM) and NLs thickness was measured by X-ray reflectivity. Increasing nucleation layer deposition temperature from 650 to 850 °C has been found to promote the growth of c-oriented epitaxial HT-AlN layers instead of polycrystalline layers. The growth of polycrystalline layers has been related to the formation of dis-oriented crystallites. The density of such disoriented crystallites has been found to decrease while increasing NLs deposition temperature. The HT-AlN layers have been characterized by X-ray diffraction θ − 2θ scan and (0 0 0 2) rocking curve measurement, Raman and photoluminescence spectroscopies, AFM and field emission scanning electron microscopy. Increasing the growth temperature of HT-AlN layers from 1200 to 1400 °C using a NL grown at 850 °C improves the structural quality as well as the surface morphology. As a matter of fact, full-width at half-maximum (FWHM) of 0 0 0 2 reflections was improved from 1900 to 864 arcsec for 1200 °C and 1400 °C, respectively. Related RMS roughness also found to decrease from 10 to 5.6 nm.

  13. Formation of gallium nitride templates and freestanding substrates by hydride vapor phase epitaxy for homoepitaxial growth of III-nitride devices

    Science.gov (United States)

    Williams, Adrian Daniel

    Gallium nitride (GaN) is a direct wide band gap semiconductor currently under heavy development worldwide due to interest in its applications in ultra-violet optoelectronics, power electronics, devices operating in harsh environments (high temperature or corrorsive), etc. While a number of devices have been demonstrated with this material and its related alloys, the unavailability of GaN substrates is seen as one of the current major bottlenecks to both material quality and device performance. This dissertation is concerned with the synthesis of high quality GaN substrates by the hydride vapor phase epitaxy method (HVPE). In this work, the flow of growth precursors in a home-built HVPE reactor was modeled by the Navier-Stokes equation and solved by finite element analysis to promote uniformity of GaN on 2'' sapphire substrates. Kinetics of growth was studied and various regimes of growth were identified to establish a methodology for HVPE GaN growth, independent of reactor geometry. GaN templates as well as bulk substrates were fabricated in this work. Realization of freestanding GaN substrates was achieved through discovery of a natural stress-induced method of separating bulk GaN from sapphire via mechanical failure of a low-temperature GaN buffer layer. Such a process eliminates the need for pre- or post-processing of sapphire substrates, as is currently the standard. Stress in GaN-on-sapphire is discussed, with the dominant contributor identified as thermal stress due to thermal expansion coefficient mismatch between the two materials. This thermal stress is analyzed using Stoney's equation and conditions for crack-free growth of thick GaN substrates were identified. An etch-back process for planarizing GaN templates was also developed and successfully applied to rough GaN templates. The planarization of GaN has been mainly addressed by chemo-mechanical polishing (CMP) methods in the literature, with notable shortcomings including the inability to effectively

  14. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Mirna, E-mail: msigrist@fiq.unl.edu.ar [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Albertengo, Antonela; Beldomenico, Horacio [Laboratorio Central, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2654-Piso 6, (3000) Santa Fe (Argentina); Tudino, Mabel [Laboratorio de Analisis de Trazas, Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria (1428), Buenos Aires (Argentina)

    2011-04-15

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH{sub 3} generation using 3.5 mol L{sup -1} HCl as carrier solution and 0.35% (m/v) NaBH{sub 4} in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl{sup -}, SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, HPO{sub 4}{sup 2-}, HCO{sub 3}{sup -} on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C{sub 6}H{sub 8}O{sub 6} solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 {mu}g L{sup -1} and 0.6 {mu}g L{sup -1} for As(III) and inorganic total As, respectively, were obtained for a 500 {mu}L sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h{sup -1}. The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species

  15. Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sigrist, Mirna; Albertengo, Antonela; Beldomenico, Horacio; Tudino, Mabel

    2011-01-01

    A simple and robust on-line sequential injection system based on solid phase extraction (SPE) coupled to a flow injection hydride generation atomic absorption spectrometer (FI-HGAAS) with a heated quartz tube atomizer (QTA) was developed and optimized for the determination of As(III) in groundwater without any kind of sample pretreatment. The method was based on the selective retention of inorganic As(V) that was carried out by passing the filtered original sample through a cartridge containing a chloride-form strong anion exchanger. Thus the most toxic form, inorganic As(III), was determined fast and directly by AsH 3 generation using 3.5 mol L -1 HCl as carrier solution and 0.35% (m/v) NaBH 4 in 0.025% NaOH as the reductant. Since the uptake of As(V) should be interfered by several anions of natural occurrence in waters, the effect of Cl - , SO 4 2- , NO 3 - , HPO 4 2- , HCO 3 - on retention was evaluated and discussed. The total soluble inorganic arsenic concentration was determined on aliquots of filtered samples acidified with concentrated HCl and pre-reduced with 5% KI-5% C 6 H 8 O 6 solution. The concentration of As(V) was calculated by difference between the total soluble inorganic arsenic and As(III) concentrations. Detection limits (LODs) of 0.5 μg L -1 and 0.6 μg L -1 for As(III) and inorganic total As, respectively, were obtained for a 500 μL sample volume. The obtained limits of detection allowed testing the water quality according to the national and international regulations. The analytical recovery for water samples spiked with As(III) ranged between 98% and 106%. The sampling throughput for As(III) determination was 60 samples h -1 . The device for groundwater sampling was especially designed for the authors. Metallic components were avoided and the contact between the sample and the atmospheric oxygen was carried to a minimum. On-field arsenic species separation was performed through the employ of a serial connection of membrane filters and

  16. Design and characterization of thick InxGa1-xAs metamorphic buffer layers grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.

    2014-03-01

    Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.

  17. Break Differed Induced by Hydrides (BDIH) in Zr-2,5Nb: Microstructure effect

    International Nuclear Information System (INIS)

    Mieza, J. Ignacio; Domizzi, Gladys; Vigna, Gustavo L

    2006-01-01

    The alloys of Zr-2,5%Nb are susceptible to be degraded for the incorporation of hydrogen in their matrix. One of the mechanisms of the damage by hydrogen known as Break Differed Induced by Hydrides (BDIH) consists of the evolution, in discreet steps, of a crack inside the matrix by the fragile break of the hydride phase. The parameter utilized to characterize the severity of the process of BDIH is the velocity of advance of the crack. The variables that affect to the velocity are the solicitations of external load, the thermal cycles, the content of hydrogen and the microstructure of the material. The Zr-2, 5% Nb of nuclear use is a two-phase alloy (α-β) constituted by the phase alpha (rich in Zr) and β-Zr (rich in Nb) retained since high temperature. In service, the phase metastable evolves toward the stable phase depending on the time and the temperature of operation. In this work the effects of the evolution of the phase β-Zr on the velocity of BDIH are studied, measure with emission acoustics. The microstructural characterization was done by means of obtained dust X-rays diffraction by anodic dissolution of the material. The results obtained show the decrease of the velocity of propagation of the crack with the degree of advance of the transformation toward the phase β-Nb, consistent effect with the differences observed in the coefficients of diffusion of each phase (AG)

  18. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Lowrance, B.R.

    1975-01-01

    A process is described for the preparation of beryllium hydride which comprises pyrolyzing, while in solution in a solvent inert under the reaction conditions, with respect to reactants and products and at a temperature in the range of about 100 0 to about 200 0 C, sufficient to result in the formation of beryllium hydride, a di-t-alkyl beryllium etherate wherein each tertiary alkyl radical contains from 4 to 20 carbon atoms. The pyrolysis is carried out under an atmosphere inert under the reaction conditions, with respect to reactants and products. (U.S.)

  19. Multiturn extraction and injection by means of adiabatic capture in stable islands of phase space

    Directory of Open Access Journals (Sweden)

    R. Cappi

    2004-02-01

    Full Text Available Recently a novel approach has been proposed for performing multiturn extraction from a circular machine. Such a technique consists of splitting the beam by means of stable islands created in transverse phase space by magnetic elements creating nonlinear fields, such as sextupoles and octupoles. Provided a slow time variation of the linear tune is applied, adiabatic with respect to the betatron motion, the islands can be moved in phase space and eventually charged particles may be trapped inside the stable structures. This generates a certain number of well-separated beamlets. Originally, this principle was successfully tested using a fourth-order resonance. In this paper the approach is generalized by considering other types of resonances as well as the possibility of performing multiple multiturn extractions. The results of numerical simulations are presented and described in detail. Of course, by time reversal, the proposed approach could be used also for multiturn injection.

  20. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Hareesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution of mechanical fields due to dislocations was found to have a non-negligible effect on such process.

  1. Internal friction study of hydrides in zirconium at low hydrogen contents

    International Nuclear Information System (INIS)

    Peretti, H.A.; Corso, H.L.; Gonzalez, O.A.; Fernandez, L.; Ghilarducci, A.A.; Salva, H.R.

    1999-01-01

    Full text: Internal friction and shear modulus measurements were carried out on crystal bar zirconium in the as received and hydride conditions using an inverted forced pendulum. Hydriding was achieved in two ways: inside and out of the pendulum. The final hydrogen content determined by fusion analysis in the 'in situ' hydride sample was of 36 ppm. Another sample was hydride by the cathodic charge method with 25 ppm. The thermal solid solubility (TSS) phase boundary presents hysteresis between the precipitation (TSSP) and the dissolution (TSSD) temperatures for the zirconium hydrides. During the first thermal cycling the anelastic effects could be attributed to the δ, ε and metastable γ zirconium hydrides. After 'in situ' annealing at 490 K, these peaks completely disappear in the electrolytically charged sample, while in the 'in situ' hydride, the peaks remain with decreasing intensity. This effect can be understood in terms of the different surface conditions of the samples. (author)

  2. Gaseous Phase and Electrochemical Hydrogen Storage Properties of Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu for Nickel Metal Hydride Battery Applications

    Directory of Open Access Journals (Sweden)

    Jean Nei

    2016-07-01

    Full Text Available Structural, gaseous phase hydrogen storage, and electrochemical properties of a series of the Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu metal hydride alloys were studied. X-ray diffraction (XRD and scanning electron microscopy (SEM revealed the multi-phase nature of all alloys, which were composed of a stoichiometric TiNi matrix, a hyperstoichiometric TiNi minor phase, and a Ti2Ni secondary phase. Improvement in synergetic effects between the main TiNi and secondary Ti2Ni phases, determined by the amount of distorted lattice region in TiNi near Ti2Ni, was accomplished by the substitution of an element with a higher work function, which consequently causes a dramatic increase in gaseous phase hydrogen storage capacity compared to the Ti50Zr1Ni49 base alloy. Capacity performance is further enhanced in the electrochemical environment, especially in the cases of the Ti50Zr1Ni49 base alloy and Ti50Zr1Ni44Co5 alloy. Although the TiNi-based alloys in the current study show poorer high-rate performances compared to the commonly used AB5, AB2, and A2B7 alloys, they have adequate capacity performances and also excel in terms of cost and cycle stability. Among the alloys investigated, the Ti50Zr1Ni44Fe5 alloy demonstrated the best balance among capacity (394 mAh·g−1, high-rate performance, activation, and cycle stability and is recommended for follow-up full-cell testing and as the base composition for future formula optimization. A review of previous research works regarding the TiNi metal hydride alloys is also included.

  3. Graphene/phase change material nanocomposites: light-driven, reversible electrical resistivity regulation via form-stable phase transitions.

    Science.gov (United States)

    Wang, Yunming; Mi, Hongyi; Zheng, Qifeng; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-04

    Innovative photoresponsive materials are needed to address the complexity of optical control systems. Here, we report a new type of photoresponsive nanomaterial composed of graphene and a form-stable phase change material (PCM) that exhibited a 3 orders of magnitude change in electrical resistivity upon light illumination while retaining its overall original solid form at the macroscopic level. This dramatic change in electrical resistivity also occurred reversibly through the on/off control of light illumination. This was attributed to the reversible phase transition (i.e., melting/recrystallization) behavior of the microscopic crystalline domains present in the form-stable PCM. The reversible phase transition observed in the graphene/PCM nanocomposite was induced by a reversible temperature change through the on/off control of light illumination because graphene can effectively absorb light energy and convert it to thermal energy. In addition, this graphene/PCM nanocomposite also possessed excellent mechanical properties. Such photoresponsive materials have many potential applications, including flexible electronics.

  4. Electrolytic hydriding and hydride distribution in zircaloy-4

    International Nuclear Information System (INIS)

    Gomes, M.H.L.

    1974-01-01

    A study has been made of the electrolytic hydriding of zircaloy-4 in the range 20-80 0 C, for reaction times from 5 to 30 hours, and the effect of potential, pH and dissolved oxygen has been investigated. The hydriding reaction was more sensitive to time and temperature conditions than to the electrochemical variables. It has been shown that a controlled introduction of hydrides in zircaloy is feasible. Hydrides were found to be plate like shaped and distributed mainly along grain-boundaries. It has been shown that hydriding kinetics do not follow a simple law but may be described by a Johnson-Mehl empirical equation. On the basis of this equation an activation energy of 9.400 cal/mol has been determined, which is close to the activation energy for diffusion of hydrogen in the hydride. (author)

  5. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  6. Thermodynamic calculation of the regions of stable existance of niobium nitride phases

    International Nuclear Information System (INIS)

    Chernyaev, V.V.; Mitrofanov, B.V.; Moiseev, G.K.; 6030000SU)

    1987-01-01

    Conditions of formation and stable existence of Nb 2 N and NbN niobium nitrides and the general picture of phase transformations in Nb-N system were determined in wide range of temperatures 1400-4000 K and pressures 10 -9 -10 MPa in result of thermodynamic analysis of Nb-N system using the program, realizing algorithm of total potential minimization. The sufficient nitrogen excess is necessary for formation of Nb 2 N and NbN especially. The temperature stability region and the temperature of NbN and Nb 2 N decomposition is shifted to high temperature region with pressure growth. Pressure region where niobium nitrides are stable, is shifted to high pressure region. The obtained calculation data correspond satisfactorily with experimental publication results. This testifies to possibility of using results of thermodynamic calculations for construction of p-T-diagrams of Nb-N system state

  7. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Y.; Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada); Cui, J.; Shek, G.K. [Kinetrics, Mississauga, ON (Canada); Daymond, M.R., E-mail: daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada)

    2016-11-15

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen. - Graphical abstract: STEM HAADF micrographs at low magnification showing the hydride structure in Zr-2.5Nb alloy.

  8. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Bergeron, C.R.; Baker, R.W.

    1975-01-01

    Beryllium hydride of high bulk density, suitable for use as a component of high-energy fuels, is prepared by the pyrolysis, in solution in an inert solvent, of a ditertiary-alkyl beryllium. An agitator introduces mechanical energy into the reaction system, during the pyrolysis, at the rate of 0.002 to 0.30 horsepower per gallon of reaction mixture. (U.S.)

  9. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  10. Experimental evidence of adiabatic splitting of charged particle beams using stable islands of transverse phase space

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2006-10-01

    Full Text Available Recently, a novel technique to perform multiturn extraction from a circular particle accelerator was proposed. It is based on beam splitting and trapping, induced by a slow crossing of a nonlinear resonance, inside stable islands of transverse phase space. Experiments at the CERN Proton Synchrotron started in 2002 and evidence of beam splitting was obtained by summer 2004. In this paper, the measurement results achieved with both a low- and a high-intensity, single-bunch proton beam are presented.

  11. Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes

    Science.gov (United States)

    Mengarelli, V.; Auvray, L.; Zeghal, M.

    2009-03-01

    We study the formation and structure of stable electrostatic complexes between oppositely charged polyelectrolytes, a long polymethacrylic acid and a shorter polyethylenimine, at low pH, where the polyacid is weakly charged. We explore the phase diagram as a function of the charge and concentration ratio of the constituents. In agreement with theory, turbidity and ζ potential measurements show two distinct regimes of weak and strong complexation, which appear successively as the pH is increased and are separated by a well-defined limit. Weak complexes observed by neutron scattering and contrast matching have an open, non-compact structure, while strong complexes are condensed.

  12. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P. [Dept. Combustibles Nucleares. Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2002-07-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable {gamma} (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  13. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P.

    2002-01-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  14. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    International Nuclear Information System (INIS)

    Wronski, Z.; Varin, R.A.; Chiu, C.; Czujko, T.; Calka, A.

    2007-01-01

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg 2 FeH 6 in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H 2 in a thermally programmed desorption experiment at the range 285-295 o C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the β-MgH 2 hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H 2 in the temperature range 329-340 o C in the differential scanning calorimetry experiment. The formation of MgH 2 was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H x , was formed in a mixture with nanometric MgB 2 . Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB 2

  15. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    International Nuclear Information System (INIS)

    Fang Yutang; Kang Huiying; Wang Weilong; Liu Hong; Gao Xuenong

    2010-01-01

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic.

  16. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  17. Hydridation of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Domizzi, G; Luppo, M.I; Ortiz, M; Vigna, G

    2004-01-01

    The production of Ti pieces or their alloys through powder metallurgy is an economical alternative that replaces the costly methods commonly used. The Ti-6AI-4V alloy is widely used in the aerospace, chemical and medical industries. The use of powder from the alloy instead of using more pure alloyed titanium powders, further simplifies the production process. The presence of V allows the phase β to stabilize at very low temperatures and both alloys alter the Ti-H equilibrium diagram. This work analyzes to what degree these effects influence the obtaining of powders from this alloy from that of hydridation and dehydridation. Although it has slower kinetics, powders can be produced in times similar to those found for grade 2 Ti since the distribution of hydrides in the sample is uniform and the material is fragile enough for concentrations of approximately 0.7 H/Ti (CW)

  18. C-Peptide Decline in Type 1 Diabetes Has Two Phases: An Initial Exponential Fall and a Subsequent Stable Phase.

    Science.gov (United States)

    Shields, Beverley M; McDonald, Timothy J; Oram, Richard; Hill, Anita; Hudson, Michelle; Leete, Pia; Pearson, Ewan R; Richardson, Sarah J; Morgan, Noel G; Hattersley, Andrew T

    2018-06-07

    The decline in C-peptide in the 5 years after diagnosis of type 1 diabetes has been well studied, but little is known about the longer-term trajectory. We aimed to examine the association between log-transformed C-peptide levels and the duration of diabetes up to 40 years after diagnosis. We assessed the pattern of association between urinary C-peptide/creatinine ratio (UCPCR) and duration of diabetes in cross-sectional data from 1,549 individuals with type 1 diabetes using nonlinear regression approaches. Findings were replicated in longitudinal follow-up data for both UCPCR ( n = 161 individuals, 326 observations) and plasma C-peptide ( n = 93 individuals, 473 observations). We identified two clear phases of C-peptide decline: an initial exponential fall over 7 years (47% decrease/year [95% CI -51%, -43%]) followed by a stable period thereafter (+0.07%/year [-1.3, +1.5]). The two phases had similar durations and slopes in patients above and below the median age at diagnosis (10.8 years), although levels were lower in the younger patients irrespective of duration. Patterns were consistent in both longitudinal UCPCR ( n = 162; ≤7 years duration: -48%/year [-55%, -38%]; >7 years duration -0.1% [-4.1%, +3.9%]) and plasma C-peptide ( n = 93; >7 years duration only: -2.6% [-6.7%, +1.5%]). These data support two clear phases of C-peptide decline: an initial exponential fall over a 7-year period, followed by a prolonged stabilization where C-peptide levels no longer decline. Understanding the pathophysiological and immunological differences between these two phases will give crucial insights into understanding β-cell survival. © 2018 by the American Diabetes Association.

  19. Zircaloy-4 hydridation

    International Nuclear Information System (INIS)

    Vizcaino, Pablo

    1997-01-01

    The objectives of this work can be summarized as: 1) To reproduce, by heat treatments, matrix microstructures and hydride morphologies similar to those observed in structural components of the CNA-1 and CNE nuclear power plants; 2) To study the evolution of the mechanical properties of the original material with different hydrogen concentrations, such as microhardness, and its capacity to distinguish these materials; 3) To find parameters that allow to estimate the hydrogen content of a material by quantitative metallographic techniques, to be used as complementary in the study of the radioactive materials from reactors

  20. Tritium immobilization and packaging using metal hydrides

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Yaraskavitch, J.M.

    1981-04-01

    Tritium recovered from CANDU heavy water reactors will have to be packaged and stored in a safe manner. Tritium will be recovered in the elemental form, T 2 . Metal tritides are effective compounds in which to immobilize the tritium as a stable non-reactive solid with a high tritium capacity. The technology necessary to prepare hydrides of suitable metals, such as titanium and zirconium, have been developed and the properties of the prepared materials evaluated. Conceptual designs of packages for containing metal tritides suitable for transportation and long-term storage have been made and initial testing started. (author)

  1. Hydride embrittlement in zircaloy components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Castagnet, Mariano, E-mail: rmlobo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Zirconium alloys are used in nuclear reactor cores under high-temperature water environment. During service, hydrogen is generated by corrosion processes, and it is readily absorbed by these materials. When hydrogen concentration exceeds the terminal solid solubility, the excess hydrogen precipitates as zirconium hydride (ZrH{sub 2}) platelets or needles. Zirconium alloys components can fail by hydride cracking if they contain large flaws and are highly stressed. Zirconium alloys are susceptible to a mechanism for crack initiation and propagation termed delayed hydride cracking (DHC). The presence of brittle hydrides, with a K{sub Ic} fracture toughness of only a few MPa{radical}m, results in a severe loss in ductility and toughness when platelet normal is oriented parallel to the applied stress. In plate or tubing, hydrides tend to form perpendicular to the thickness direction due to the texture developed during fabrication. Hydrides in this orientation do not generally cause structural problems because applied stresses in the through-thickness direction are very low. However, the high mobility of hydrogen in a zirconium lattice enables redistribution of hydrides normal to the applied stress direction, which can result in localized embrittlement. When a platelet reaches a critical length it ruptures. If the tensile stress is sufficiently great, crack initiation starts at some of these hydrides. Crack propagation occurs by repeating the same process at the crack tip. Delayed hydride cracking can degrade the structural integrity of zirconium alloys during reactor service. The paper focuses on the fracture mechanics and fractographic aspects of hydride material. (author)

  2. Boron hydride analogues of the fullerenes

    International Nuclear Information System (INIS)

    Quong, A.A.; Pederson, M.R.; Broughton, J.Q.

    1994-01-01

    The BH moiety is isoelectronic with C. We have studied the stability of the (BH) 60 analogue of the C 60 fullerene as well as the dual-structure (BH) 32 icosahedron, both of them being putative structures, by performing local-density-functional electronic calculations. To aid in our analysis, we have also studied other homologues of these systems. We find that the latter, i.e., the dual structure, is the more stable although the former is as stable as one of the latter's lower homologues. Boron hydrides, it seems, naturally form the dual structures used in algorithmic optimization of complex fullerene systems. Fully relaxed geometries are reported as well as electron affinities and effective Hubbard U parameters. These systems form very stable anions and we conclude that a search for BH analogues of the C 60 alkali-metal supeconductors might prove very fruitful

  3. Hydriding and dehydriding properties of CaSi

    International Nuclear Information System (INIS)

    Aoki, Masakazu; Ohba, Nobuko; Noritake, Tatsuo; Towata, Shin-ichi

    2005-01-01

    The hydriding and dehydriding properties of CaSi were investigated both theoretically and experimentally. First-principles calculations suggested that CaSiH n is thermodynamically stable. Experimentally, the p -c isotherms clearly demonstrated plateau pressures in a temperature range of 473-573 K and the maximum hydrogen content was 1.9 weight % (wt.%) under a hydrogen pressure of 9 MPa at 473 K. The structure of CaSiH n is different from those of ZrNi hydrides, although CaSi has the CrB-type structure as well as ZrNi

  4. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  5. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  6. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Selvaraj

    2015-11-01

    Full Text Available Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3 nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C employing barium dichloride (BaCl2 and titanium tetrachloride (TiCl4 as precursors and sodium hydroxide (NaOH as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula. SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  7. Understanding hydride formation in Zr-1Nb alloy through microstructural characterization

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Tewari, R.; Singh, R.N.; Dey, G.K.; De, P.K.; Banerjee, S.

    2003-07-01

    In this study the experimental results of hydride formation and their microstructure evolution in Zr-1Nb alloy is presented. This Zr-1Nb binary alloy and other Zr-1 Nb based ternary and quaternary alloys are being used as fuel tube materials and have the potential for meeting the requirement of high burn up fuel. Hydriding of Zr-1Nb alloy having a microstructure comprising equiaxed α grains and a uniform distribution of spherical particles of the β phase has been carried out in this study. The specimens have been hydrided by gaseous charging method to different hydrogen levels. The microstructures of hydrided samples were examined as a function of hydrogen content. The formation of δ hydride in slow cooled specimens and formation of γ hydride in rapidly cooled specimens has been studied with their morphology, habit plane and orientation relationship with the α matrix in view. The habit planes of either type of hydride phase has been determined and compared with those observed in other Zr-Nb alloys. The orientation relationship between the α matrix and the δ hydride was found to be the following: (0001) α // (111) δ and [1120] α // [110] δ . The orientation relationship between the α matrix and the γ hydride was of the following type: (0001) α // (111) γ and [1120] α // [110] γ . The internal structure of both types of hydride has been examined. The effect of the presence of the spherical β phase particles in the a matrix on the growth of the hydride plates has been investigated. (author)

  8. Generation of Phase-Stable Sub-Cycle Mid-Infrared Pulses from Filamentation in Nitrogen

    Directory of Open Access Journals (Sweden)

    Takao Fuji

    2013-02-01

    Full Text Available Sub-single-cycle pulses in the mid-infrared (MIR region were generated through a laser-induced filament. The fundamental (ω1 and second harmonic (ω2 output of a 30-fs Ti:sapphire amplifier were focused into nitrogen gas and produce phase-stable broadband MIR pulses (ω0 by using a four-wave mixing process (ω1 + ω1 - ω2 → ω0 through filamentation. The spectrum spread from 400 cm-1 to 5500 cm-1, which completely covered the MIR region. The low frequency components were detected by using an electro-optic sampling technique with a gaseous medium. The efficiency of the MIR pulse generation was very sensitive to the delay between the fundamental and second harmonic pulses. It was revealed that the delay dependence of the efficiency came from the interference between two opposite parametric processes, ω1 + ω1 - ω2 → ω0 and ω2 - ω1 - ω1 → ω0. The pulse duration was measured as 6.9 fs with cross-correlation frequency-resolved optical gating by using four-wave mixing in nitrogen. The carrier-envelope phase of the MIR pulse was passively stabilized. The instability was estimated as 154 mrad rms in 2.5 h.

  9. Right unitarity triangles, stable CP-violating phases and approximate quark-lepton complementarity

    International Nuclear Information System (INIS)

    Xing Zhizhong

    2009-01-01

    Current experimental data indicate that two unitarity triangles of the CKM quark mixing matrix V are almost the right triangles with α∼90 deg. We highlight a very suggestive parametrization of V and show that its CP-violating phase φ is nearly equal to α (i.e., φ-α∼1.1 deg.). Both φ and α are stable against the renormalizaton-group evolution from the electroweak scale M Z to a superhigh energy scale M X or vice versa, and thus it is impossible to obtain α=90 deg. at M Z from φ=90 deg. at M X . We conjecture that there might also exist a maximal CP-violating phase φ∼90 deg. in the MNS lepton mixing matrix U. The approximate quark-lepton complementarity relations, which hold in the standard parametrizations of V and U, can also hold in our particular parametrizations of V and U simply due to the smallness of |V ub | and |V e3 |.

  10. Multidimensional simulations of hydrides during fuel rod lifecycle

    International Nuclear Information System (INIS)

    Stafford, D.S.

    2015-01-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim. - Highlights: • We extend BISON fuel performance code to simulate lifecycle of fuel rods. • We model hydrogen evolution in cladding from reactor through dry storage. • We validate 1D simulations of hydrogen evolution against experiments. • We show results of 2D axisymmetric simulations predicting hydride formation. • We show how our model predicts formation of a hydride rim in the cladding.

  11. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill...

  12. Determination and Uncertainty Analysis of Inorganic Arsenic in Husked Rice by Solid Phase Extraction and Atomic Absorption Spectrometry with Hydride Generation.

    Science.gov (United States)

    Saxena, Sushil Kumar; Karipalli, Agnes Raju; Krishnan, Anoop A; Rangasamy, Rajesh; Malekadi, Praveen; Singh, Dhirendra P; Vasu, Vimesh; Singh, Vijay K

    2017-05-01

    This study enables the selective determination of inorganic arsenic (iAs) with a low detection limit using an economical instrument [atomic absorption spectrometer with hydride generation (HG)] to meet the regulatory requirements as per European Commission (EC) and Codex guidelines. Dry rice samples (0.5 g) were diluted using 0.1 M HNO3-3% H2O2 and heated in a water bath (90 ± 2°C) for 60 min. Through this process, all the iAs is solubilized and oxidized to arsenate [As(V)]. The centrifuged extract was loaded onto a preconditioned and equilibrated strong anion-exchange SPE column (silica-based Strata SAX 500 mg/6 mL), followed by selective and sequential elution of As(V), enabling the selective quantification of iAs using atomic absorption spectrometry with HG. In-house validation showed a mean recovery of 94% and an LOQ of 0.025 mg/kg. The repeatability (HorRatr) and reproducibility (HorRatR) values were <2, meeting the performance criteria mandated by the EC. The combined standard measurement uncertainty by this method was less than the maximum standard measurement uncertainty; thus, the method can be considered for official control purposes. The method was applied for the determination of iAs in husked rice samples and has potential applications in other food commodities.

  13. Punishment in public goods games leads to meta-stable phase transitions and hysteresis

    Science.gov (United States)

    Hintze, Arend; Adami, Christoph

    2015-07-01

    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can ‘tunnel’ into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can ‘nucleate’ such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.

  14. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  15. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering

  16. Developments in delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Puls, Manfred P.

    2008-01-01

    Delayed hydride cracking (DHC) is a process of diffusion assisted localized hydride embrittlement at flaws or regions of high stress. Models of DHC propagation and initiation have been developed that capture the essential elements of this phenomenon in terms of parameters describing processes occurring at the micro-scale. The models and their predictions of experimental results applied to Zr alloys are assessed. The propagation model allows rationalization of the effect of direction of approach to temperature and of the effect of the state and morphology of the beta phase in Zr-2.5Nb on DHC velocity. The K I dependence of the DHC velocity can only be approximately rationalized by the propagation models. This is thought to be because these models approximate the DHC velocity by a constant and shape-invariant rate of growth of the hydride at the flaw and have not incorporated a coupling between the applied stress field due to the flaw alone and the precipitated hydrides that would result in a variation of the shape and density of the hydrided region with K I . Separately, models have been developed for DHC initiation at cracks and blunt flaws. Expressions are obtained for the threshold stress intensity factor, K IH , for DHC initiation at a crack. A model for K IH has been used to rationalize the experimental result that DHC initiation is not possible above a certain temperature, even when hydrides can form at the crack tip. For blunt flaws with root radii in the μm range, and engineering process zone procedure has been derived to determine the initiation conditions requiring that both a critical stress and a critical flaw tip displacement must be achieved for hydride fracture. The engineering process zone procedure takes account of the dependence of DHC initiation on the flaw's root radius. Although all of the foregoing models are capable of describing the essential features of DHC, they are highly idealized and in need of further refinement. (author)

  17. Self-Assembling, Stable Photonic Bend-Gap Phases in Emulsions of Chiral Nematics with Isotropic Fluids

    Science.gov (United States)

    Huang, Chien-Yueh; Petschek, R. G.

    1998-03-01

    We investigate the possible mesophases in emulsions of chiral nematic liquid crystals with immiscible isotropic fluids and surfactants. The interactions between the orientational fields of the chiral nematics and the surfactant membranes together with the topological constraints affect stability of micellar geometries and produce a new phase diagram. We compare the free energies of various candidate phases. Appropriate, likely realizable conditions on the surfactant and the pitch of the liquid crystal result in thermodynamically stable blue-phase like phases for a relatively wide range of parameters. Processing such emulsions may result in materials with photonic band gaps.

  18. An energy-stable time-integrator for phase-field models

    KAUST Repository

    Vignal, Philippe

    2016-12-27

    We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.

  19. Stable and simple quantitative phase-contrast imaging by Fresnel biprism

    Science.gov (United States)

    Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram

    2018-03-01

    Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.

  20. An energy-stable time-integrator for phase-field models

    KAUST Repository

    Vignal, Philippe; Collier, N.; Dalcin, Lisandro; Brown, D.L.; Calo, V.M.

    2016-01-01

    We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.

  1. A gradient stable scheme for a phase field model for the moving contact line problem

    KAUST Repository

    Gao, Min

    2012-02-01

    In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.

  2. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  3. Observation of ferromagnetic ordering in a stable α -Co (OH) 2 phase grown on a Mo S2 surface

    Science.gov (United States)

    Debnath, Anup; Bhattacharya, Shatabda; Saha, Shyamal K.

    2017-12-01

    Because of the potential application of Co (OH) 2 in a magnetic cooling system as a result of its superior magnetocaloric effect many people have investigated magnetic properties of Co (OH) 2 . Unfortunately, most of the works have been carried out on the β -Co (OH) 2 phase due to the fact that the α -Co (OH) 2 phase is very unstable and continuously transformed into the stable β -Co (OH) 2 phase. However, in the present work, using a Mo S2 sheet as a two-dimensional template, we have been able to synthesize a stable α -Co (OH) 2 phase in addition to a β -Co (OH) 2 phase by varying the layer thickness. It is seen that for thinner samples the β phase, while for thicker samples α phase, is grown on the Mo S2 surface. Magnetic measurements are carried out for the samples over the temperature range from 2 to 300 K and it is seen that for the β phase, ferromagnetic ordering with fairly large coercivity (1271 Oe) at 2 K is obtained instead of the usual antiferromagnetism. The most interesting result is the observation of ferromagnetic ordering with a transition temperature (Curie temperature) more than 100 K in the α -Co (OH) 2 phase. Complete saturation in the hysteresis curve under application of very low field having coercivity of ˜162 Oe at 2 K and 60 Oe at 50 K is obtained. A thin stable α -Co (OH) 2 phase grown on Mo S2 surface with very soft ferromagnetic ordering will be very useful as the core material in electromagnets.

  4. A computer model for hydride blister growth in zirconium alloys

    International Nuclear Information System (INIS)

    White, A.J.; Sawatzky, A.; Woo, C.H.

    1985-06-01

    The failure of a Zircaloy-2 pressure tube in the Pickering unit 2 reactor started at a series of zirconium hydride blisters on the outside of the pressure tube. These blisters resulted from the thermal diffusion of hydrogen to the cooler regions of the pressure tube. In this report the physics of thermal diffusion of hydrogen in zirconium is reviewed and a computer model for blister growth in two-dimensional Cartesian geometry is described. The model is used to show that the blister-growth rate in a two-phase zirconium/zirconium-hydride region does not depend on the initial hydrogen concentration nor on the hydrogen pick-up rate, and that for a fixed far-field temperature there is an optimum pressure-type/calandria-tube contact temperature for growing blisters. The model described here can also be used to study large-scale effects, such as hydrogen-depletion zones around hydride blisters

  5. New ternary hydride formation in U-Ti-H system

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Kayano, Hideo; Yamawaki, Michio.

    1991-01-01

    Hydrogen absorption properties of two titanium-rich uranium alloys, UTi 2 and UTi 4 , were studied in order to prepare and identify the recently found ternary hydride. They slowly reacted with hydrogen of the initial pressure of 10 5 Pa at 873K to form the ternary hydride. The hydrogenated specimen mainly consisted of the pursued ternary hydride but contained also U(or UO 2 ), TiH x , and some transient phases. X-ray powder diffraction and Electron Probe Micro Analysis proved that it was the UTi 2 H x with the expected MgCu 2 structure, though all the X-ray peaks were broad probably because of inhomogeneity. This compound had extremely high resistance to powdering on its formation, which showed high potential utilities for a non-powdering tritium storage system or for other purposes. (author)

  6. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrophysics missions will require lightweight, thermally stable, submillimeter reflectors in sizes of 4m and greater. To date, graphite fiber reinforced...

  7. Mechanical properties and fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Koketsu, Hideyuki; Taniyama, Yoshihiro; Yonezu, Akio; Cho, Hideo; Ogawa, Takeshi; Takemoto, Mikio; Nakayama, Gen

    2006-01-01

    Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)

  8. A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model

    KAUST Repository

    Kou, Jisheng

    2017-09-30

    Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently, the phase equilibrium calculation at specified moles, volume and temperature (NVT-flash) becomes an attractive issue. In this paper, capillarity is incorporated into the phase equilibrium calculation at specified moles, volume and temperature. A dynamical model for such problem is developed for the first time by using the laws of thermodynamics and Onsager\\'s reciprocal principle. This model consists of the evolutionary equations for moles and volume, and it can characterize the evolutionary process from a non-equilibrium state to an equilibrium state in the presence of capillarity effect at specified moles, volume and temperature. The phase equilibrium equations are naturally derived. To simulate the proposed dynamical model efficiently, we adopt the convex-concave splitting of the total Helmholtz energy, and propose a thermodynamically stable numerical algorithm, which is proved to preserve the second law of thermodynamics at the discrete level. Using the thermodynamical relations, we derive a phase stability condition with capillarity effect at specified moles, volume and temperature. Moreover, we propose a stable numerical algorithm for the phase stability testing, which can provide the feasible initial conditions. The performance of the proposed methods in predicting phase properties under capillarity effect is demonstrated on various cases of pure substance and mixture systems.

  9. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  10. Approaches to understanding the semi-stable phase of litter decomposition

    Science.gov (United States)

    Preston, C. M.; Trofymow, J. A.

    2012-12-01

    The slowing or even apparent cessation of litter decomposition with time has been widely observed, but causes remain poorly understood. We examine the question in part through data from CIDET (the Canadian Intersite Decomposition Experiment) for 10 foliar litters at one site with MAT 6.7 degrees C. The initial rapid C loss in the first year for some litters is followed by a second phase (1-7y) with decay rates from 0.21-0.79/y, influenced by initial litter chemistry especially the ratio AUR/N (acid-unhydrolyzable residue, negative). By contrast, 10-23% of the initial litter C mass entered the semi-stable decay phase (>7 y) with modeled decay rates of 0.0021-0.0035/y. The slowing and convergence of k values was similar to trends in chemical composition. From 7-12 y, concentrations of Ca, Mg, K, P, Mn and Zn generally declined and became more similar among litters, and total N converged around 20 mg/g. Non-polar and water-soluble extractables and acid solubles continued to decrease slowly and AUR to increase. Solid-state C-13 NMR showed continuing slight declines in O- and di-O-alkyl C and increases in alkyl, methoxyl, aryl and carboxyl C. CIDET and other studies now clearly show that lignin is not selectively preserved, and that AUR is not a measure of foliar lignin as it includes components from condensed tannins and long-chain alkyl C. Interaction with soil minerals strongly enhances soil C stabilization, but what slows decomposition so much in organic horizons? The role of inherent "chemical recalcitrance" or possible formation of new covalent bonds is hotly debated in soil science, but increasingly complex or random molecular structures no doubt present greater challenges to enzymes. A relevant observation from soils and geochemistry is that decomposition results in a decline in individual compounds that can be identified from chemical analysis and a corresponding increase in the "molecularly uncharacterizable component" (MUC). Long-term declines in Ca, Mg, K

  11. Macrodefect-free, large, and thick GaN bulk crystals for high-quality 2–6 in. GaN substrates by hydride vapor phase epitaxy with hardness control

    Science.gov (United States)

    Fujikura, Hajime; Konno, Taichiro; Suzuki, Takayuki; Kitamura, Toshio; Fujimoto, Tetsuji; Yoshida, Takehiro

    2018-06-01

    On the basis of a novel crystal hardness control, we successfully realized macrodefect-free, large (2–6 in.) and thick +c-oriented GaN bulk crystals by hydride vapor phase epitaxy. Without the hardness control, the introduction of macrodefects including inversion domains and/or basal-plane dislocations seemed to be indispensable to avoid crystal fracture in GaN growth with millimeter thickness. However, the presence of these macrodefects tended to limit the applicability of the GaN substrate to practical devices. The present technology markedly increased the GaN crystal hardness from below 20 to 22 GPa, thus increasing the available growth thickness from below 1 mm to over 6 mm even without macrodefect introduction. The 2 and 4 in. GaN wafers fabricated from these crystals had extremely low dislocation densities in the low- to mid-105 cm‑2 range and low off-angle variations (2 in.: <0.1° 4 in.: ∼0.2°). The realization of such high-quality 6 in. wafers is also expected.

  12. Stable water isotope simulation by current land-surface schemes:Results of IPILPS phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A.; Fischer, M.; Aleinov, I.; McGuffie, K.; Riley, W.J.; Schmidt, G.A.; Sturm, K.; Yoshimura, K.; Irannejad, P.

    2005-10-31

    Phase 1 of isotopes in the Project for Intercomparison of Land-surface Parameterization Schemes (iPILPS) compares the simulation of two stable water isotopologues ({sup 1}H{sub 2} {sup 18}O and {sup 1}H{sup 2}H{sup 16}O) at the land-atmosphere interface. The simulations are off-line, with forcing from an isotopically enabled regional model for three locations selected to offer contrasting climates and ecotypes: an evergreen tropical forest, a sclerophyll eucalypt forest and a mixed deciduous wood. Here we report on the experimental framework, the quality control undertaken on the simulation results and the method of intercomparisons employed. The small number of available isotopically-enabled land-surface schemes (ILSSs) limits the drawing of strong conclusions but, despite this, there is shown to be benefit in undertaking this type of isotopic intercomparison. Although validation of isotopic simulations at the land surface must await more, and much more complete, observational campaigns, we find that the empirically-based Craig-Gordon parameterization (of isotopic fractionation during evaporation) gives adequately realistic isotopic simulations when incorporated in a wide range of land-surface codes. By introducing two new tools for understanding isotopic variability from the land surface, the Isotope Transfer Function and the iPILPS plot, we show that different hydrological parameterizations cause very different isotopic responses. We show that ILSS-simulated isotopic equilibrium is independent of the total water and energy budget (with respect to both equilibration time and state), but interestingly the partitioning of available energy and water is a function of the models' complexity.

  13. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Furdikova, Zuzana [Department of Environmental Chemistry and Technology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, CZ-61200 Brno (Czech Republic); Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic); Docekal, Bohumil [Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic)], E-mail: docekal@iach.cz

    2009-04-15

    Interference effects of co-generated hydrides of arsenic, antimony and bismuth on trapping behavior of selenium hydride (analyte) within an iridium-modified, transversely heated graphite tube atomizer (THGA) were investigated. A twin-channel hydride generation system was used for independent separate generation and introduction of analyte and interferent hydrides, i.e. in a simultaneous and/or sequential analyte-interferent and interferent-analyte mode of operation. The influence of the analyte and modifier mass, interferent amount, trapping temperature and composition of the gaseous phase was studied. A simple approach for the elimination of mutual interference effects by modification of the gaseous phase with oxygen in a substoichiometric ratio to chemically generated hydrogen is proposed and the suppression of these interference effects is demonstrated. A hypothesis on the mechanism of trapping and mutual interference effects is drawn.

  14. High-pressure hydriding of Zircaloy

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1996-01-01

    The hydriding characteristics of Zircaloy-2(Zry), sponge zirconium (as a liner on Zry plate), and crystal-bar zirconium exposed to pure H 2 at 0.1 MPa or 7 MPa and 400 C were determined in a thermogravimetric apparatus. The morphology of the hydrided specimens was also examined by optical microscopy. For all specimen types, the rate of hydriding in 7 MPa H 2 was two orders of magnitude greater than in 0.1 MPa H 2 . For Zry, uniform bulk hydriding was revealed by hydride precipitates at room temperature and on one occasion, a sunburst hydride. In addition, all specimen types exhibited a hydride surface layer. In a duplex Zry/sponge-Zr specimen, Zry is more heavily hydrided than the sponge Zr layer. (orig.)

  15. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  16. Determining the most stable breathing phase for respiratory gating using velocity deformable registration in patients with lung cancer

    International Nuclear Information System (INIS)

    Aarons, Y.; Wightman, F.; Roxby, P.; Kron, T.

    2011-01-01

    Full text: Respiratory gated radiotherapy is a high-precision technique where the treatment beam is turned on during a predetermined phase of the breathing cycle in order to minimise dose to surrounding healthy dose sensitive structures. We aim to compare inspiration and expiration phases to determine which is more stable in the breathing cycle to perform respiratory gating. Methods Nine patients underwent a planning time resolved 4DCT (Philips Brilliance 16-multislice widebore) and repeat 4DCT during weeks I, 3 and 5 of a radical course of radiotherapy for lung cancer. Inspiration scans were co-registered to the same phase image of the original planning CT using rigid and then deformable registration with Velocity software. The process was repeated for scans at exhalation phase. The deformation matrix for the diaphragm was used to compare the reproducibility of breathing phases. In the majority of patients (seven of nine) the expiration phase was found to be the more stable compared with inspiration. The maximum diaphragm displacement exceeded 3 cm in one case for the registered inhalation images while the deformation was typically half of that in the exhalation images. Interestingly, several patients showed significant differences in deformation for the left and right diaphragm. Conclusions In a group of lung cancer patients we found the expiration phase to be more reproducible for delivering respiratory gated RT, when compared with inspiration.

  17. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  18. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Science.gov (United States)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  19. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Ford, Denise C; Cooley, Lance D; Seidman, David N

    2013-01-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium–hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities. (paper)

  20. Development of transmutation technologies of radioactive waste by actinoid hydride

    International Nuclear Information System (INIS)

    Konashi, Kenji; Matsui, Hideki; Yamawaki, Michio

    2001-01-01

    Two waste treatment methods, geological disposal and transmutation, have been studied. The transmutation method changes long-lived radioactive nuclides to short-lived one or stabilizes them by nuclear transformation. The transmutation by actinoid hydride is exactly alike that transformation method from actinoid disposal waste to Pu fuel. For this object, OMEGA project is processing now. The transmutation is difficult by two causes such as large amount of long-lived radioactive nuclides and not enough development of control technologies of nuclear reaction except atomic reactor. The transmutation using actinoid hydride has merits that the amount of actinoid charged in the target increases and the effect of thermal neutrons on fuel decreases depending on homogeneous transmutation velocity in the target. Development of stable actinoid hydride under the conditions of reactor temperature and irradiation environment is important. The experimental results of U-ZrH 1.6 are shown in this paper. The irradiation experiment using Th hydride has been proceeding. (S.Y.)

  1. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    correlating the finite element stress-state results with the spatial distribution of hydride microstructures observed within the optical micrographs for each sample. Experiments showed that the hydride reorientation was enhanced as the stress biaxiality increased. The threshold stress decreased from 150 MPa to 80 MPa when stress biaxiality ratio increased from uniaxial tension to near-equibiaxial tension. This behavior was also predicted by classical nucleation theory based on the Gibbs free energy of transformation being assisted by the far-field stress. An analysis of in situ X-ray diffraction data obtained during a thermo-mechanical cycle typical of vacuum drying showed a complex lattice-spacing behavior of the hydride phase during the dissolution and precipitation. The in-plane hydrides showed bilinear lattice expansion during heating with the intrinsic thermal expansion rate of the hydrides being observed only at elevated temperatures as they dissolve. For radial hydrides that precipitate during cooling under stress, the spacing of the close-packed {111} planes oriented normal to the maximum applied stress was permanently higher than the corresponding {111} plane spacing in the other directions. This behavior is believed to be a result of a complex stress state within the precipitating plate-like hydrides that induces a strain component within the hydrides normal to its "plate" face (i.e., the applied stress direction) that exceeds the lattice spacing strains in the other directions. During heat-up, the lattice spacing of these same "plate" planes actually contract due to the reversion of the stress state within the plate-like hydrides as they dissolve. The presence of radial hydrides and their connectivity with in-plane hydrides was shown to increase the ductile-to-brittle transition temperature during tensile testing. This behavior can be understood in terms of the role of radial hydrides in promoting the initiation of a long crack that subsequently propagates under

  2. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  3. Hydrogen storage in complex hydrides

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A. R.; Misan, I.

    2005-01-01

    Full text: Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in mobile and stationary applications. A relevant role of the fuel cell powered vehicles on the market of the transportation systems will be achieved only if the research and development of on-board vehicular hydrogen storage are able to allow a driving range of at least 500 km. The on-board hydrogen storage systems are more challenging due to the space, weight and cost limitations. This range of autonomy between refueling requires materials able to store at least 6.5% weight hydrogen, available at moderate pressures, at the working temperature of the fuel cells and with acceptable cycling stability. The intensive research on the hydrogen storage in alloys and intermetallic of the LaNi 5 , FeTi or Laves phase type compounds, which started more than three decades ago did not resulted in materials of more than about 3% H storage capacities. The 7.5% H content of the Mg hydride is still of attracting interest but though the absorption has been achieved at lower temperatures by ball milling magnesium with various amounts of nickel, the desorption can not be attained at 1 bar H 2 below 280 deg. C and the kinetics of the process is too slow. In the last decade, the attention is focused on another class of compounds, the complex hydrides of aluminum with alkali metals (alanates), due to their high hydrogen content. It was found that doping with Ti-based catalysts improve the hydrogenation/dehydrogenation conditions of NaAlH 4 . Later on, it was shown that ball milling with solid state catalysts greatly improve the hydrogen desorption kinetics of NaAlH 4 , and this also helps to the rehydriding process. The hydrogen desorption from NaAlH 4 occurs in three steps, it shows a reversible storage capacity of 5.5% H and this led to further research work for a better knowledge of its application relating properties. In this work, ball milling experiments on Na

  4. Development of high resolution Michelson interferometer for stable phase-locked ultrashort pulse pair generation.

    Science.gov (United States)

    Okada, Takumi; Komori, Kazuhiro; Goshima, Keishiro; Yamauchi, Shohgo; Morohashi, Isao; Sugaya, Takeyoshi; Ogura, Mutsuo; Tsurumachi, Noriaki

    2008-10-01

    We developed a high resolution Michelson interferometer with a two-frequency He-Ne laser positioning system in order to stabilize the relative phase of a pulse pair. The control resolution corresponded to a 12 as time resolution or a phase of 1.5 degrees at 900 nm. This high resolution Michelson interferometer can generate a phase-locked pulse pair either with a specific relative phase such as 0 or pi radians or with an arbitrary phase. Coherent control of an InAs self-assembled quantum dot was demonstrated using the high resolution Michelson interferometer with a microspectroscopy system.

  5. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ≥ 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ≥ 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space

  6. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  7. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model

    Science.gov (United States)

    Guillén-González, F.; Tierra, G.

    2018-02-01

    Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.

  8. Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material

    International Nuclear Information System (INIS)

    Cai, Yibing; Hu, Yuan; Song, Lei; Kong, Qinghong; Yang, Rui; Zhang, Yinping; Chen, Zuyao; Fan, Weicheng

    2007-01-01

    A kind of form stable phase change material (PCM) based on high density polyethylene (HDPE), paraffin, organophilic montmorillonite (OMT) and intumescent flame retardant (IFR) hybrids is prepared by using a twin screw extruder technique. This kind of form stable PCM is made of paraffin as a dispersed phase change material and HDPE as a supporting material. The structure of the montmorillonite (MMT) and OMT is characterized by X-ray diffraction (XRD) and high resolution electron microscopy (HREM). The analysis indicates that the MMT is a kind of lamellar structure, and the structure does not change after organic modification. However, the structure of the hybrid is evidenced by the XRD and scanning electronic microscope (SEM). Its thermal stability, latent heat and flame retardant properties are given by the Thermogravimetry analysis (TGA), differential scanning calorimeter (DSC) method and cone calorimeter, respectively. Synergy is observed between the OMT and IFR. The XRD result indicates that the paraffin intercalates into the silicate layers of the OMT, thus forming a typically intercalated hybrid. The SEM investigation and DSC result show that the additives of OMT and IFR have hardly any effect on the HDPE/paraffin three dimensional netted structure and the latent heat. In TGA curves, although the onset of weight loss of flame-retardant form stable PCMs occur at a lower temperature than that of form stable PCM, flame-retardant form stable PCMs produce a large amount of char residue at 700 o C. The synergy between OMT and IFR leads to the decrease of the heat release rate (HRR), contributing to improvement of the flammability performance

  9. Structural isotopic effect of the α/β-phase transition in the vanadium hydride and its influence on the equilibrium coefficient of separation of hydrogen isotopes in the gas-solid system

    International Nuclear Information System (INIS)

    Magomedbekov, Eh.P.; Bochkarev, A.V.

    1999-01-01

    Equilibrium coefficient of hydrogen isotope separation (α H-D ) in the system of vanadium hydride VH n (solid, n ∼ 0.7)-H 2 (g) is measured by the counterbalancing method in a circulation facility and by the method of laser desorption at 298, 373, and 437 K. It is shown that the combination of highly anharmonic potential in the lattice octahedral sites and in significant difference in the energy of hydrogen atom coordination for tetra- and octahedral sites is the reason for unusual behaviour of the hydrogen isotope separation coefficient and the difference in crystal structures of vanadium hydride and deuteride [ru

  10. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Chen, Keping; Yu, Xuejiang; Tian, Chunrong; Wang, Jianhua

    2014-01-01

    Highlights: • Paraffin/polyurethane composite as form-stable phase change material was prepared by bulk polymerization. • Paraffin/polyurethane composite possesses typical character of dual phase transition. • Total latent heat of n-eicosane/PUPCM is as high as 141.2 J/g. • Maximum encapsulation ratio for n-octadecane/PUPCM composites is 25% w/w. - Abstract: Polyurethane phase change material (PUPCM) has been demonstrated to be effective solid–solid phase change material for thermal energy storage. However, the high cost and complex process on preparation of PUPCMs with high enthalpy and broad phase transition temperature range can prohibit industrial-scale applications. In this work, a series of novel form-stable paraffin/PUPCMs composites (n-octadecane/PUPCM, n-eicosane/PUPCM and paraffin wax/PUPCM) with high enthalpy and broad phase transition temperature range (20–65 °C) were directly synthesized via bulk polymerization. The composites were prepared at different mass fractions of n-octadecane (10, 20, 25, 30% w/w). The results indicated that the maximum encapsulation ratio for n-octadecane/PUPCM10000 composites was around 25% w/w. The chemical structure and crystalline properties of these composites were characterized by Fourier transform infrared spectroscopy (FT-IR), polarizing optical microscopy (POM), wide-angle X-ray diffraction (WAXD). Thermal properties and thermal reliability of the composites were determined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). From DSC analysis, the composites showed a typical dual phase change temperature. The enthalpy for the composite with 25% w/w n-eicosane was as high as 141.2 J/g. TGA analysis indicated that the composites degraded at considerably high temperatures. The process of preparation of PUPCMs and their composites was very simple, inexpensive, environmental friendly and easy to process into desired shapes, which could find the promising applications in solar

  11. Influence of temperature on δ-hydride habit plane in α-Zirconium

    International Nuclear Information System (INIS)

    Singh, R. N.; Stahle, P.; Banerjee, S.; Ristmanaa, Matti; Sauramd, K.

    2008-01-01

    Dilute Zr-alloy with hcp α-Zr as major phase is used as pressure boundary for hot coolant in CANDU, PHWR and RBMK reactors. Hydrogen / deuterium ingress during service makes the pressure boundary components like pressure tubes of the aforementioned reactors susceptible to hydride embrittlement. Hydride acquires plate shaped morphology and the broad face of the hydride plate coincides with certain crystallographic plane of α-Zr crystal, which is called habit plane. Hydride plate oriented normal to tensile stress significantly increases the degree of embrittlement. Thus key to mitigating the damage due to hydride embrittlement is to avoid the formation of hydride plates normal to tensile stress. Two different theoretical approaches are used to determine the habit plane of precipitates viz., geometrical and solid mechanics. For the geometrical approach invariant plane and invariant-line criteria have been applied successfully and for the solid mechanics approach strain energy minimization criteria have been used successfully. Solid mechanics approach using strain energy computed by FEM technique has been applied to hydride precipitation in Zr-alloys, but the emphasis has been to understand the solvus hysteresis. The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25, 300, 400 and 450 .deg. C. using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out

  12. Optimization of o-phtaldialdehyde/2-mercaptoethanol postcolumn reaction for the hydrophilic interaction liquid chromatography determination of memantine utilizing a silica hydride stationary phase.

    Science.gov (United States)

    Douša, Michal; Pivoňková, Veronika; Sýkora, David

    2016-08-01

    A rapid procedure for the determination of memantine based on hydrophilic interaction chromatography with fluorescence detection was developed. Fluorescence detection after postcolumn derivatization with o-phtaldialdehyde/2-mercaptoethanol was performed at excitation and emission wavelengths of 345 and 450 nm, respectively. The postcolumn reaction conditions such as reaction temperature, derivatization reagent flow rate, and reagents concentration were studied due to steric hindrance of amino group of memantine. The derivatization reaction was applied for the hydrophilic interaction liquid chromatography method which was based on Cogent Silica-C stationary phase with a mobile phase consisting of a mixture of 10 mmol/L citric acid and 10 mmol/L o-phosphoric acid (pH 6.0) with acetonitrile using an isocratic composition of 2:8 v/v. The benefit of the reported approach consists in a simple sample pretreatment and a quick and sensitive hydrophilic interaction chromatography method. The developed method was validated in terms of linearity, accuracy, precision, and selectivity according to the International Conference on Harmonisation guidelines. The developed method was successfully applied for the analysis of commercial memantine tablets. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator

    Science.gov (United States)

    Wassermann, Florian; Hecker, Daniel; Jung, Bernd; Markl, Michael; Seifert, Avi; Grundmann, Sven

    2013-03-01

    In this work, the phase-resolved internal flow of a bi-stable fluidic oscillator was measured using phase-locked three-dimensional three-components magnetic resonance velocimetry (3D3C-MRV), also termed as 4D-MRV. A bi-stable fluidic oscillator converts a continuous inlet-mass flow into a jet alternating between two outlet channels and, as a consequence provides an unsteady, periodic flow. This actuator can therefore be used as flow-control actuator. Since data acquisition in a 3D volume takes up to several minutes, only a small portion of the data is acquired in each flow cycle for every time point of the flow cycle. The acquisition of the entire data set is segmented over many cycles of the periodic flow. This procedure allows to measure phase-averaged 3D3C velocity fields with a certain temporal resolution. However, the procedure requires triggering to the periodic nature of the flow. Triggering the MR scanner precisely on each flow cycle is one of the key issues discussed in this manuscript. The 4D-MRV data are compared to data measured using phase-locked laser Doppler anemometry and good agreement between the results is found. The validated 4D-MRV data is analyzed and the fluid-mechanic features and processes inside the fluidic oscillator are investigated and described, providing a detailed description of the internal jet-switching mechanism.

  14. PAC and μSr investigations of light interstitial diffusion in intermetallic hydrides

    International Nuclear Information System (INIS)

    Boyer, P.; Baudry, A.

    1988-01-01

    Specific aspects of the Perturbed Angular Correlation (PAC) of gamma rays concerning its application to the study of atomic diffusion in solids are presented. PAC results recently obtained on the 181 Ta probe in several crystalline and amorphous phases of Zr 2 Ni hydrides are briefly summarized. Preliminary μSR results relative to these intermetallic hydrides are presented and compared to the PAC data

  15. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  16. Synthesis, properties, and assimilation methods of aluminium hydride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2013-01-01

    We have discovered a new source of aluminium hydride-conversion of tetrahydrofurane under influence of halogenous alkyls. We have proposed the chlorbenzene method of synthesis of AlH 3 , which excludes adhesion and ensure high quality of the product with respect to its purity, thermal stability, habits of crystals (round shape), and granulometric composition. We determined capability of benzyl chloride to fix AlH 4 -groups by the way of complexes formation. This allows increasing efficient concentration of AlH 3 solutions and their productivity. We have carried out 'direct' crystallization of aluminium hydride in one stage using interaction of binary metal hydride with aluminium chloride in the medium of ether-toluene at 60-100 d ig C a nd using solvent distillation. In the reaction of Li H with AlCl 3 , we achieved output of pure crystal AlH 3 of hexagonal modification, which was close to quantitative. We have discovered the assimilation methods of aluminium hydride in carrying out of solid-phase chemical reactions. (author)

  17. ON THE CHEMISTRY OF HYDRIDES OF N ATOMS AND O{sup +} IONS

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Zainab [Astronomy, Space Science, and Meteorology Department, Faculty of Science, Cairo University, Giza (Egypt); Viti, Serena; Williams, David A., E-mail: zma@sci.cu.edu.eg [Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel /HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H{sub 2} formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O{sup +} ions detected by Herschel /HIFI that are present along many sight lines in the Galaxy. The O{sup +} hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion–molecule reactions.

  18. On the Chemistry of Hydrides of N Atoms and O+ Ions

    Science.gov (United States)

    Awad, Zainab; Viti, Serena; Williams, David A.

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H2 formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O+ ions detected by Herschel/HIFI that are present along many sight lines in the Galaxy. The O+ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  19. Chemically and Thermally Stable High Energy Density Silicone Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal energy storage systems with 300 -- 1000 kJ/kg energy density through either phase changes or chemical heat absorption are sought by NASA. This proposed...

  20. Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations

    Science.gov (United States)

    2015-05-01

    vapor bubbles may generate near blades [40]. This is the phenomenon of cavitation and it is still a limiting factor for ship propeller design. Phase...van der Waals theory with hydrodynamics [39]. The fluid equations based on the van der Waals theory are called the Navier-Stokes-Korteweg equations... cavitating flows, the liquid- vapor phase transition induced by pressure variations. A potential challenge for such a simulation is a proper design of open

  1. Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells.

    Science.gov (United States)

    Marronnier, Arthur; Roma, Guido; Boyer-Richard, Soline; Pedesseau, Laurent; Jancu, Jean-Marc; Bonnassieux, Yvan; Katan, Claudine; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Even, Jacky

    2018-04-24

    Hybrid organic-inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI 3 , whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI 3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI 3 (γ, δ, β) and show that avoiding the order-disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin-orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.

  2. Phase-sensitive optical coherence tomography-based vibrometry using a highly phase-stable akinetic swept laser source

    Energy Technology Data Exchange (ETDEWEB)

    Applegate, Brian E.; Park, Jesung; Carbajal, Esteban [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States); Oghalai, John S. [Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California (United States)

    2015-12-31

    Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex user developed hardware/software solutions to restore phase sensitivity. Here we present recent results using a prototype swept laser that overcomes these issues. The akinetic swept laser is electronically tuned and precisely controls sweeps without any mechanical movement, which results in high phase stability. We have developed an optical fiber based PhOCT system around the akinetic laser source that had a 1550 nm center wavelength and a sweep rate of 140 kHz. The stability of the system was measured to be 4.4 pm with a calibrated reflector, thus demonstrating near shot noise limited performance. Using this PhOCT system, we have acquired structural and vibratory measurements of the middle ear in a mouse model, post mortem. The quality of the results suggest that the akinetic laser source is a superior laser source for PhOCT with many advantages that greatly reduces the required complexity of the imaging system.

  3. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  4. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  5. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  6. Synthesis and fundamental properties of stable Ph(3)SnSiH(3) and Ph(3)SnGeH(3) hydrides: model compounds for the design of Si-Ge-Sn photonic alloys.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, Andrew V G; Groy, Thomas L; Kouvetakis, John

    2009-07-06

    The compounds Ph(3)SnSiH(3) and Ph(3)SnGeH(3) (Ph = C(6)H(5)) have been synthesized as colorless solids containing Sn-MH(3) (M = Si, Ge) moieties that are stable in air despite the presence of multiple and highly reactive Si-H and Ge-H bonds. These molecules are of interest since they represent potential model compounds for the design of new classes of IR semiconductors in the Si-Ge-Sn system. Their unexpected stability and high solubility also makes them a safe, convenient, and potentially useful delivery source of -SiH(3) and -GeH(3) ligands in molecular synthesis. The structure and composition of both compounds has been determined by chemical analysis and a range of spectroscopic methods including multinuclear NMR. Single crystal X-ray structures were determined and indicated that both compounds condense in a Z = 2 triclinic (P1) space group with lattice parameters (a = 9.7754(4) A, b = 9.8008(4) A, c = 10.4093(5) A, alpha = 73.35(10)(o), beta = 65.39(10)(o), gamma = 73.18(10)(o)) for Ph(3)SnSiH(3) and (a = 9.7927(2) A, b = 9.8005(2) A, c = 10.4224(2) A, alpha = 74.01(3)(o), beta = 65.48(3)(o), gamma = 73.43(3)(o)) for Ph(3)SnGeH(3). First principles density functional theory simulations are used to corroborate the molecular structures of Ph(3)SnSiH(3) and Ph(3)SnGeH(3), gain valuable insight into the relative stability of the two compounds, and provide correlations between the Si-Sn and Ge-Sn bonds in the molecules and those in tetrahedral Si-Ge-Sn solids.

  7. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  8. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    Choi, H. J.; Lee, H. S.; Kim, K. R.; Cheong, H. S.; Ahn, D. H.; Lee, S. H.; Paek, S. W.; Kang, H. S.; Kim, J. G.

    2001-01-01

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  9. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  10. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  11. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Tomassetti, G.

    2014-01-01

    Roč. 19, č. 7 (2014), s. 2313-2333 ISSN 1531-3492 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:61388998 Keywords : metal-hydrid phase transformation * hydrogen diffusion * swelling Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2014 http://aimsciences.org/journals/pdfs.jsp?paperID=10195&mode=full

  12. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  13. The existence of a stable noncollinear phase in a Heisenberg model with complex structure

    Energy Technology Data Exchange (ETDEWEB)

    Shopova, Diana V.; Boyadjiev, Todor L

    2003-05-19

    We have analyzed the properties of a noncollinear magnetic phase obtained in the mean-field analysis of the model of two coupled Heisenberg subsystems. The domain of its existence and stability is narrow and depends on the ratio between the averaged over nearest neighbours microscopic exchange parameters.

  14. Experimental Study of Stable Surfaces for Anti-Slug Control in Multi-phase Flow

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2014-01-01

    -phase flow dynamics, the slug can be avoided or eliminated by proper facility design and control of operational conditions. Based on a testing facility which can emulate a pipeline-riser or a gas-lifted production well in a scaled-down manner, this paper experimentally studies the correlations of key...

  15. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  16. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  17. Liquid phase mass production of air-stable black phosphorus/phospholipids nanocomposite with ultralow tunneling barrier

    Science.gov (United States)

    Zhang, Qiankun; Liu, Yinan; Lai, Jiawei; Qi, Shaomian; An, Chunhua; Lu, Yao; Duan, Xuexin; Pang, Wei; Zhang, Daihua; Sun, Dong; Chen, Jian-Hao; Liu, Jing

    2018-04-01

    Few-layer black phosphorus (FLBP), a recently discovered two-dimensional semiconductor, has attracted substantial attention in the scientific and technical communities due to its great potential in electronic and optoelectronic applications. However, reactivity of FLBP flakes with ambient species limits its direct applications. Among various methods to passivate FLBP in ambient environment, nanocomposites mixing FLBP flakes with stable matrix may be one of the most promising approaches for industry applications. Here, we report a simple one-step procedure to mass produce air-stable FLBP/phospholipids nanocomposite in liquid phase. The resultant nanocomposite is found to have ultralow tunneling barrier for charge carriers which can be described by an Efros-Shklovskii variable range hopping mechanism. Devices made from such mass-produced FLBP/phospholipids nanocomposite show highly stable electrical conductivity and opto-electrical response in ambient conditions, indicating its promising applications in both electronic and optoelectronic applications. This method could also be generalized to the mass production of nanocomposites consisting of other air-sensitive 2D materials, such as FeSe, NbSe2, WTe2, etc.

  18. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    International Nuclear Information System (INIS)

    Sun, Zhiming; Zhang, Yuzhong; Zheng, Shuilin; Park, Yuri; Frost, Ray L.

    2013-01-01

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value

  19. Development of form stable Poly(methyl methacrylate) (PMMA) coated thermal phase change material for solar water heater applications

    Science.gov (United States)

    Munusamy, Y.; Shanmugam, S.; Shi-Ying, Kee

    2018-04-01

    Phase change material (PCM) is one of the most popular and widely used thermal energy storage material in solar water heater because it able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. However the practical application of PCM is limited by two major issues; 1) leakage which leads to material loss and corrosion of tank and 2) large volume change during phase change process which cause pressure build up in the tank. In this work, form-stable PCM was prepared by coating myristic acid with Poly(methyl methacrylate) (PMMA) to prevent leakage of PCM. PMMA was mixed with different weight percentage (0.1, 0.2, 0.3, 0.4 and 0.5 wt%) of dicumyl peroxide (DCP). The purpose of adding DCP to PMMA is to crosslink the polymer and to increase the mechanical strength of PMMA to hold the myristic acid content inside the coating during the phase change process. Leakage test results showed that PMMA mixed with 0.1% DCP exhibit 0% leakage. This result is further supported by Field Emission Scanning Electron Microscopy (FESEM) images and Fourier transform infrared spectroscopy (FTIR) analysis results, where a compact and uniform coating without cracks were formed for PCM coated with PMMA with 0.1% DCP. Differential scanning calorimetry (DSC) results shows that the melting point of form-stable PCM is 55°C, freezing point is 50°C, the latent heat of melting and freezing is 67.59 J/g.

  20. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Yuzhong [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Park, Yuri [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-04-20

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

  1. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and

  2. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  3. Compact and highly stable quantum dots through optimized aqueous phase transfer

    Science.gov (United States)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  4. Using the electrochemical dimension to build water/Ru(0001) phase diagram

    Science.gov (United States)

    Lespes, Nicolas; Filhol, Jean-Sébastien

    2015-01-01

    The water monolayer/Ru(0001) electrochemical phase diagram as a function of surface potential and temperature is built using a DFT approach. The monolayer structure with temperature is extracted following the zero-charge line in good agreement with experiments. Below 140 K, a mix of oppositely charged hydroxyl/water and hydride/water domains is found stable; above 140 K, water molecules desorb from the hydride phase leading to a mixture of oppositely charged surface hydride and hydroxyl/water phases; above 280 K, all the residual adsorbed water desorbs. For undissociated water, a Chain structure is found stable and desorbs above 150 K. The observed nano-sized domains are suggested to be the balance between hydroxyl/hydride repulsion that tends to create two well separated domains and opposite charging that tends to favor a domain mix. An isotopic effect is computed to reduce by a factor of 160 the kinetic rate of D2O dissociation (compared to H2O) and is linked to the reduction of the ZPE in the transition state caused by a proton transport chain. Water monolayer/Ru(0001) has a specific reactivity and its organization is highly sensitive to the surface potential suggesting that under electrochemical conditions, the potential is not only tuning directly the chemical reactivity but also indirectly through the solvent structure.

  5. Phase behavior and structure of stable complexes between a long polyanion and a branched polycation

    Science.gov (United States)

    Mengarelli, Valentina; Zeghal, Mehdi; Auvray, Loïc; Clemens, Daniel

    2011-08-01

    The association between oppositely charged branched polyethylenimine (BPEI) and polymethacrylic acid (PMA) in the dilute regime is investigated using turbidimetric titration and electrophoretic mobility measurements. The complexation is controlled by tuning continuously the pH-sensitive charge of the polyacid in acidic solution. The formation of soluble and stable positively charged complexes is a cooperative process characterized by the existence of two regimes of weak and strong complexation. In the regime of weak complexation, a long PMA chain overcharged by several BPEI molecules forms a binary complex. As the charge of the polyacid increases, these binary complexes condense at a well defined charge ratio of the mixture to form large positively charged aggregates. The overcharging and the existence of two regimes of complexation are analyzed in the light of recent theories. The structure of the polyelectrolytes is investigated at higher polymer concentration by small angle neutron scattering. Binary complexes of finite size present an open structure where the polyacid chains connecting a small number of BPEI molecules have shrunk slightly. In the condensed complexes, BPEI molecules, wrapped by polyacid chains, form networks of stretched necklaces.

  6. An energy-stable convex splitting for the phase-field crystal equation

    KAUST Repository

    Vignal, P.; Dalcin, L.; Brown, D. L.; Collier, N.; Calo, V. M.

    2015-01-01

    Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.

  7. An energy-stable convex splitting for the phase-field crystal equation

    KAUST Repository

    Vignal, P.

    2015-10-01

    Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.

  8. SU(2 and SU(1,1 Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms

    Directory of Open Access Journals (Sweden)

    Maurice R. Kibler

    2010-07-01

    Full Text Available We propose a group-theoretical approach to the generalized oscillator algebra Aκ recently investigated in J. Phys. A: Math. Theor. 2010, 43, 115303. The case κ ≥ 0 corresponds to the noncompact group SU(1,1 (as for the harmonic oscillator and the Pöschl-Teller systems while the case κ < 0 is described by the compact group SU(2 (as for the Morse system. We construct the phase operators and the corresponding temporally stable phase eigenstates for Aκ in this group-theoretical context. The SU(2 case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices.

  9. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Vernieres, Jerome, E-mail: Jerome.vernieres@oist.jp; Benelmekki, Maria; Kim, Jeong-Hwan; Grammatikopoulos, Panagiotis; Diaz, Rosa E. [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Bobo, Jean-François [Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4 (France); Sowwan, Mukhles, E-mail: Mukhles@oist.jp [Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495 (Japan); Nanotechnology Research Laboratory, Al-Quds University, P.O. Box 51000, East Jerusalem, Palestine (Country Unknown)

    2014-11-01

    Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO{sub 3} phase) and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g) and low coercivity (less than 20 Oe) at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  10. Mechanism of n-butane hydrogenolysis promoted by Ta-hydrides supported on silica

    KAUST Repository

    Pasha, Farhan Ahmad; Cavallo, Luigi; Basset, Jean-Marie

    2014-01-01

    (III)H is rapidly trapped by molecular hydrogen to form the more stable tris-hydride (≡ Si-O-) 2Ta(V)H3. Loading of n-butane to the Ta-center occurs through C-H activation concerted with elimination of molecular hydrogen (σ-bond metathesis). Once the Ta

  11. Modeling of hydrogen isotopes separation in a metal hydride bed

    International Nuclear Information System (INIS)

    Charton, S.; Corriou, J.P.; Schweich, D.

    1999-01-01

    A predictive model for hydrogen isotopes separation in a non-isothermal bed of unsupported palladium hydride particles is derived. It accounts for the non-linear adsorption-dissociation equilibrium, hydrodynamic dispersion, pressure drop, mass transfer kinetics, heat of sorption and heat losses at the bed wall. Using parameters from the literature or estimated with classical correlations, the model gives simulated curves in agreement with previously published experiments without any parameter fit. The non-isothermal behavior is shown to be responsible for drastic changes of the mass transfer rate which is controlled by diffusion in the solid-phase lattice. For a feed at 300 K and atmospheric pressure, the endothermic hydride-to-deuteride exchange is kinetically controlled, whereas the reverse exothermic exchange is nearly at equilibrium. Finally, a simple and efficient thermodynamic model for the dissociative equilibrium between a metal and a diatomic gas is proposed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    Science.gov (United States)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  13. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    Directory of Open Access Journals (Sweden)

    T. S. N. Sales

    2017-05-01

    Full Text Available In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2 nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM with electron back scattering diffraction (EBSD, and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%.

  14. Manufacture of titanium and zirconium hydrides

    International Nuclear Information System (INIS)

    Mares, F.; Hanslik, T.

    1973-01-01

    A method is described of manufacturing titanium and zirconium hydrides by hydrogenation of said metals characterized by the reaction temperature ranging between 250 to 500 degC, hydrogen pressure of 20 to 300 atm and possibly by the presence of a hydride of the respective metal. (V.V.)

  15. Hydride effect on crack instability of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)

    2014-04-01

    Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.

  16. Obtaining zircaloy powder through hydriding

    International Nuclear Information System (INIS)

    Dupim, Ivaldete da Silva; Moreira, Joao M.L.

    2009-01-01

    Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)

  17. Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on transportation of hydrogen in the form of metallic hydride; 1974-1980 nendo kinzoku suisokabutsu ni yoru suiso no yuso gijutsu no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report concerns the transportation and storage of hydrogen using metallic hydrides that perform absorption and desorption of hydrogen. Alloys useable for this purpose have to be capable of reversibly absorbing and desorbing hydrogen within a certain temperature range. In the absence of guidelines to follow in the quest for such alloys, the efforts at discovering them turned out to be a continual series of trials and errors. Researches were conducted into the hydrogenation reaction of Mg and Mg-based alloys and into hydrides of V-based alloys, and into Zr-based alloy hydrides such as the ZrMn{sub 2} hydride, ZrNiMn hydride, Zr(Fe{sub x}Mn{sub 1-x}){sub 2} hydrides, TiZrFe{sub 2} hydride, Zr{sub x}Ti{sub 1-x}(Fe{sub y}Mn{sub 1-y}) hydrides, etc. Also studied were the electronics of hydrogen in metallic hydrides, rates of reaction between Mg-Ni-based alloys and hydrogen systems, endurance tests for hydrides of Mg-Ni-based alloys, effects exerted by absorbed gas molecules during the storage of hydrogen in Mg-Ni-based alloys, effective thermal conductivity in a layer filled with a metallic hydride, metallic hydride-aided hydrogen transportation systems, chemical boosters, etc. (NEDO)

  18. Zirconium hydride containing explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  19. A NOVEL METHOD OF THE HYDRIDE SEPARATION FOR THE DETERMINATION OF ARSENIC AND ANTIMONY BY AAS

    Directory of Open Access Journals (Sweden)

    Ganden Supriyanto

    2010-06-01

    Full Text Available A novel method is proposed for the hydride separation when determinining of arsenic and antimony by AAS. A chromatomembrane cell was used as preconcentration-, extraction- and separation-manifold instead of the U-tube phase separator, which is normally fitted in continuous flow vapour systems generating conventionaly the hydrides. The absorbances of the hydrides produced were measured by an atomic absorption spectrophotometer at 193.7 nm and 217.6 nm. Under optimized analytical conditions, the calibration plot for arsenic was linear from 50 to 500 ng.mL-1 (r2 = 0.9982. The precision for three subsequent measurements of 500 ng.mL-1 arsenic gave rise to a relative standard deviation of 0.4%. The detection limit was 15 ng.mL-1, which is much lower compared with that of the conventional hydride system (2000 ng.mL-1. A similar result was observed in case of antimony: the detection limit was 8 ng.mL-1 when the proposed method was applied. Consequently, the sensitivity of the novel method surpasses systems with conventional hydride generation, i.e. the precision and the acuracy increase whereas the standard deviation and the detection limit decrease. The proposed method was applied in pharmacheutial analysis and the certified As-content of a commercial product was very sufficiently confirmed.   Keywords: Chromatomembrane Cell, Hydride separation, Arsenic detection, Antimony detection, AAS

  20. Influence of Zircaloy cladding composition on hydride formation during aqueous hydrogen charging

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhara, S. [Intel Corporation, 2501 NW 229th Av., Hillsboro, OR 97124 (United States); Kotula, P.G.; Enos, D.G.; Doyle, B.L. [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); Clark, B.G., E-mail: blyclar@sandia.gov [Sandia National Laboratories, Albuquerque, NM, 87185 (United States)

    2017-06-15

    Although hydrogen uptake in Zirconium (Zr) based claddings has been a topic of many studies, hydrogen uptake as a function of alloy composition has received little attention. In this work, commercial Zr-based cladding alloys (Zircaloy-2, Zircaloy-4 and ZIRLO™), differing in composition but with similar initial textures, grain sizes, and surface roughness, were aqueously charged with hydrogen for 100, 300, and 1000 s at nominally 90 °C to produce hydride layers of varying thicknesses. Transmission electron microscope characterization following aqueous charging showed hydride phase and orientation relationship were identical in all three alloys. However, elastic recoil detection measurements confirmed that surface hydride layers in Zircaloy-2 and Zircaloy-4 were an order of magnitude thicker relative to ZIRLO™. - Highlights: •Aqueous charging was performed to produce a layer of zirconium hydride for three different Zr-alloy claddings. •Hydride thicknesses were analyzed by elastic recoil detection and transmission electron microscopy. •Zircaloy-2 and Zircaloy-4 formed thicker hydride layers than ZIRLO™ for the same charging durations.

  1. Modeling of hydrogen storage in hydride-forming materials : statistical thermodynamics

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Rey, W.J.J.; Notten, P.H.L.

    2006-01-01

    A new lattice gas model has been developed, describing the hydrogen storage in hydride-forming materials. This model is based on the mean-field theory and Bragg-Williams approximation. To describe first-order phase transitions and two-phase coexistence regions, a binary alloy approach has been

  2. An energy stable evolution method for simulating two-phase equilibria of multi-component fluids at constant moles, volume and temperature

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu; Wang, Xiuhua

    2016-01-01

    In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick

  3. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang Guiyin; Li Hui; Liu Xu

    2010-01-01

    Form-stable lauric acid (LA)/silicon dioxide (SiO 2 ) composite phase change materials were prepared using sol-gel methods. The LA was used as the phase change material for thermal energy storage, with the SiO 2 acting as the supporting material. The structural analysis of these form-stable LA/SiO 2 composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR). The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the LA was well dispersed in the porous network of SiO 2 . The DSC results indicated that the melting latent heat of the form-stable composite phase change material is 117.21 kJ kg -1 when the mass percentage of the LA in the SiO 2 is 64.8%. The results of the TGA showed that these materials have good thermal stability. The form-stable composite phase change materials can be used for thermal energy storage in waste heat recovery and solar heating systems.

  4. Epoxy-Based Organogels for Thermally Reversible Light Scattering Films and Form-Stable Phase Change Materials.

    Science.gov (United States)

    Puig, Julieta; Dell' Erba, Ignacio E; Schroeder, Walter F; Hoppe, Cristina E; Williams, Roberto J J

    2017-03-29

    Alkyl chains of β-hydroxyesters synthesized by the capping of terminal epoxy groups of diglycidylether of bisphenol A (DGEBA) with palmitic (C16), stearic (C18), or behenic (C22) fatty acids self-assemble forming a crystalline phase. Above a particular concentration solutions of these esters in a variety of solvents led to supramolecular (physical) gels below the crystallization temperature of alkyl chains. A form-stable phase change material (FS-PCM) was obtained by blending the ester derived from behenic acid with eicosane. A blend containing 20 wt % ester was stable as a gel up to 53 °C and exhibited a heat storage capacity of 161 J/g, absorbed during the melting of eicosane at 37 °C. Thermally reversible light scattering (TRLS) films were obtained by visible-light photopolymerization of poly(ethylene glycol) dimethacrylate-ester blends (50 wt %) in the gel state at room temperature. The reaction was very fast and not inhibited by oxygen. TRLS films consisted of a cross-linked methacrylic network interpenetrated by the supramolecular network formed by the esters. Above the melting temperature of crystallites formed by alkyl chains, the film was transparent due to the matching between refractive indices of the methacrylic network and the amorphous ester. Below the crystallization temperature, the film was opaque because of light dispersion produced by the organic crystallites uniformly dispersed in the material. Of high significance for application was the fact that the contrast ratio did not depend on heating and cooling rates.

  5. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  6. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  7. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  8. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver

    2010-01-01

    strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused...

  9. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    Science.gov (United States)

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+).

  10. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  11. Structural and magnetic transformations in NdMn2Hx hydrides

    International Nuclear Information System (INIS)

    Budziak, A.; Zachariasz, P.; Pełka, R.; Figiel, H.; Żukrowski, J.; Woch, M.W.

    2012-01-01

    Highlights: ► Full structural phase diagram is presented for the NdMn 2 H x (2.0 ≤ x ≤ 4.0) hydrides in the temperature range of 70–385 K. ► For samples x = 2.0, 2.5, and 4.0 a splitting into two phases with different hydrogen concentrations are observed. ► Only for samples with x = 3.0 and 3.5 no spinodal decompositions are detected. ► The effects of hydrogen absorption on structural properties are shown to be reflected in magnetic behavior. ► A huge jump of magnetic ordering temperatures from ∼104 K for host NdMn 2 to above 200 K for its hydrides is observed or anticipated. - Abstract: X-ray powder diffraction and bulk magnetization measurements were used to study structural and magnetic properties of hydrides NdMn 2 H x (2.0 ≤ x ≤ 4.0). The X-ray investigations performed in the temperature range 70–385 K have revealed many structural transformations at low temperatures. In particular, a transformation from the hexagonal to the monoclinic phase and spinodal decompositions were observed. The magnetic behavior of the hydrides is correlated with the structural transitions. A tentative structural diagram is presented. The obtained results are compared with the properties of other cubic and hexagonal RMn 2 H x hydrides.

  12. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  13. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should

  14. Well-Defined Silica Supported Aluminum Hydride: Another Step Towards the Utopian Single Site Dream?

    KAUST Repository

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Sofack-Kreutzer, Julien; Jedidi, Abdesslem; Abou-Hamad, Edy; Cavallo, Luigi; Basset, Jean-Marie

    2015-01-01

    Reaction of triisobutylaluminum with SBA15700 at room temperature occurs by two parallel pathways involving either silanol or siloxane bridges. It leads to the formation of a well-defined bipodal [(≡SiO)2Al-CH2CH(CH3)2] 1a, silicon isobutyl [≡Si-CH2CH(CH3)2] 1b and a silicon hydride [≡Si-H] 1c. Their structural identity was characterized by FT-IR and advance solid-state NMR spectroscopies (1H, 13C, 29Si, 27Al and 2D multiple quantum), elemental and gas phase analysis, and DFT calculations. The reaction involves the formation of a highly reactive monopodal intermediate: [≡SiO-Al-[CH2CH(CH3)2]2], with evolution of isobutane. This intermediate undergoes two parallel routes: Transfer of either one isobutyl fragment or of one hydride to an adjacent silicon atom. Both processes occur by opening of a strained siloxane bridge, ≡Si-O-Si≡ but with two different mechanisms, showing that the reality of “single site” catalyst may be an utopia: DFT calculations indicate that isobutyl transfer occurs via a simple metathesis between the Al-isobutyl and O-Si bonds, while hydride transfer occurs via a two steps mechanism, the first one is a ß-H elimination to Al with elimination of isobutene, whereas the second is a metathesis step between the formed Al-H bond and a O-Si bond. Thermal treatment of 1a (at 250 °C) under high vacuum (10-5 mbar) generates Al-H through a ß-H elimination of isobutyl fragment. These supported well-defined Al-H which are highly stable with time, are tetra, penta and octa coordinated as demonstrated by IR and 27Al–1H J-HMQC NMR spectroscopy. All these observations indicate that surfaces atoms around the site of grafting play a considerable role in the reactivity of a single site system.

  15. Well-Defined Silica Supported Aluminum Hydride: Another Step Towards the Utopian Single Site Dream?

    KAUST Repository

    Werghi, Baraa

    2015-07-17

    Reaction of triisobutylaluminum with SBA15700 at room temperature occurs by two parallel pathways involving either silanol or siloxane bridges. It leads to the formation of a well-defined bipodal [(≡SiO)2Al-CH2CH(CH3)2] 1a, silicon isobutyl [≡Si-CH2CH(CH3)2] 1b and a silicon hydride [≡Si-H] 1c. Their structural identity was characterized by FT-IR and advance solid-state NMR spectroscopies (1H, 13C, 29Si, 27Al and 2D multiple quantum), elemental and gas phase analysis, and DFT calculations. The reaction involves the formation of a highly reactive monopodal intermediate: [≡SiO-Al-[CH2CH(CH3)2]2], with evolution of isobutane. This intermediate undergoes two parallel routes: Transfer of either one isobutyl fragment or of one hydride to an adjacent silicon atom. Both processes occur by opening of a strained siloxane bridge, ≡Si-O-Si≡ but with two different mechanisms, showing that the reality of “single site” catalyst may be an utopia: DFT calculations indicate that isobutyl transfer occurs via a simple metathesis between the Al-isobutyl and O-Si bonds, while hydride transfer occurs via a two steps mechanism, the first one is a ß-H elimination to Al with elimination of isobutene, whereas the second is a metathesis step between the formed Al-H bond and a O-Si bond. Thermal treatment of 1a (at 250 °C) under high vacuum (10-5 mbar) generates Al-H through a ß-H elimination of isobutyl fragment. These supported well-defined Al-H which are highly stable with time, are tetra, penta and octa coordinated as demonstrated by IR and 27Al–1H J-HMQC NMR spectroscopy. All these observations indicate that surfaces atoms around the site of grafting play a considerable role in the reactivity of a single site system.

  16. First principles characterisation of brittle transgranular fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Olsson, Pär A.T.; Mrovec, Matous; Kroon, Martin

    2016-01-01

    In this work we have studied transgranular cleavage and the fracture toughness of titanium hydrides by means of quantum mechanical calculations based on density functional theory. The calculations show that the surface energy decreases and the unstable stacking fault energy increases with increasing hydrogen content. This is consistent with experimental findings of brittle behaviour of titanium hydrides at low temperatures. Based on Griffith-Irwin theory we estimate the fracture toughness of the hydrides to be of the order of 1 MPa⋅m"1"/"2, which concurs well with experimental data. To investigate the cleavage energetics, we analyse the decohesion at various crystallographic planes and determine the traction-separation laws based on the Rose's extended universal binding energy relation. The calculations predict that the peak stresses do not depend on the hydrogen content of the phases, but it is rather dependent on the crystallographic cleavage direction. However, it is found that the work of fracture decreases with increasing hydrogen content, which is an indication of hydrogen induced bond weakening in the material.

  17. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    Botzung, Maxime; Chaudourne, Serge; Perret, Christian; Latroche, Michel; Percheron-Guegan, Annick; Marty Philippe

    2006-01-01

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  18. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  19. The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition

    Science.gov (United States)

    Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika

    2018-04-01

    Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not

  20. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  1. A procedure for preparing alkali metal hydrides

    International Nuclear Information System (INIS)

    Lemieux, R.U.; Sanford, C.E.; Prescott, J.F.

    1976-01-01

    A plain low cost, procedure for the continuous, low temperature preparation of sodium or potassium hydrides using cheap reagents is presented. Said invention is especially concerned with a process of purifying of a catalytic exchange liquid used for deuterium enrichment, in which an alkali metal hydride is produced as intermediate product. The procedure for producing the sodium and potassium hydrides consists in causing high pressure hydrogen to be absorbed by a mixture of at least a lower monoalkylamine and an alkylamide of an alkali metal from at least one of said amines [fr

  2. Hydride observations using the neutrography technique

    International Nuclear Information System (INIS)

    Meyer, G.; Baruj, A.; Borzone, E.M.; Cardenas, R.; Szames, E.; Somoza, J.; Rivas, S.; Sanchez, F.A.; Marin, J.

    2012-01-01

    Neutron radiography observations were performed at the RA-6 experimental nuclear facility in Bariloche. Images from a prototype of a hydride-based hydrogen storage device have been obtained. The technique allows visualizing the inner hydride space distribution. The hydride appeared compacted at the lower part of the prototype after several cycles of hydrogen charge and discharge. The technique has also been applied to the study of Zr/ZrH 2 samples. There is a linear relation between the sample width/hydrogen concentration and the photograph grey scale. This information could be useful for the study of nuclear engineering materials and to determine their possible degradation by hydrogen pick up (author)

  3. Decomposition kinetics of plutonium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J.M.; Stakebake, J.L.

    1979-01-01

    Kinetic data for decomposition of PuH/sub 1/ /sub 95/ provides insight into a possible mechanism for the hydriding and dehydriding reactions of plutonium. The fact that the rate of the hydriding reaction, K/sub H/, is proportional to P/sup 1/2/ and the rate of the dehydriding process, K/sub D/, is inversely proportional to P/sup 1/2/ suggests that the forward and reverse reactions proceed by opposite paths of the same mechanism. The P/sup 1/2/ dependence of hydrogen solubility in metals is characteristic of the dissociative absorption of hydrogen; i.e., the reactive species is atomic hydrogen. It is reasonable to assume that the rates of the forward and reverse reactions are controlled by the surface concentration of atomic hydrogen, (H/sub s/), that K/sub H/ = c'(H/sub s/), and that K/sub D/ = c/(H/sub s/), where c' and c are proportionality constants. For this surface model, the pressure dependence of K/sub D/ is related to (H/sub s/) by the reaction (H/sub s/) reversible 1/2H/sub 2/(g) and by its equilibrium constant K/sub e/ = (H/sub 2/)/sup 1/2//(H/sub s/). In the pressure range of ideal gas behavior, (H/sub s/) = K/sub e//sup -1/(RT)/sup -1/2/ and the decomposition rate is given by K/sub D/ = cK/sub e/(RT)/sup -1/2/P/sup 1/2/. For an analogous treatment of the hydriding process with this model, it can be readily shown that K/sub H/ = c'K/sub e//sup -1/(RT)/sup -1/2/P/sup 1/2/. The inverse pressure dependence and direct temperature dependence of the decomposition rate are correctly predicted by this mechanism which is most consistent with the observed behavior of the Pu--H system.

  4. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion

    International Nuclear Information System (INIS)

    Wu, Wenhao; Huang, Xinyu; Li, Kai; Yao, Ruimin; Chen, Renjie; Zou, Ruqiang

    2017-01-01

    Graphical abstract: The thermal conductivity of PU was enhanced to 43 times of the pristine value by encapsulation in a PGF, PU@PGF can be used for highly efficient electro-to-heat energy conversion and storage with the highest energy storage efficiency up to 85%. - Highlights: • The composite exhibits an in-situ solid-solid phase change behavior. • The enthalpy of polyurethane is enhanced within the matrix. • The thermal conductivity of the composite is 43 times as much as that of the polyurethane. • Supercooling of polyurethane is greatly reduced. • The composite is applied to cold protection as a wear layer. - Abstract: A novel solid-to-solid phase change composite brick was prepared by combination of polyurethane (PU) and pitch-based graphite foam (PGF). The carbonaceous support, which can be used for mass production, not only greatly improves the thermal conductivity but promote electro-to-heat conversion efficiency of organic phase change materials (PCMs). Our composite retained the enthalpy of PCM and exhibited a greatly reduced supercooling temperature. The novel composite was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The enthalpy of polyurethane has increased about 8.6% after infiltrating into graphite foam. The composite was very stable during thermal cycle test, and the electro-to-heat conversion efficiency achieves to 85% at lower voltages (1.5–1.8 V), which can vastly reduce energy consumption. The as-prepared composite was used in a wear layer to test its performance comparing with normal fabric.

  5. Hydriding and structural characteristics of thermally cycled and cold-worked V-0.5 at.%C alloy

    International Nuclear Information System (INIS)

    Chandra, Dhanesh; Sharma, Archana; Chellappa, Raja; Cathey, William N.; Lynch, Franklin E.; Bowman, Robert C.; Wermer, Joseph R.; Paglieri, Stephen N.

    2008-01-01

    High pressure hydrides of V 0.995 C 0.005 were thermally cycled between β 2 - and γ-phases hydrides for potential use in cryocoolers/heat pumps for space applications. The effect of addition of carbon to vanadium, on the plateau enthalpies of the high pressure β 2 + γ region is minimal. This is in contrast to the calculated plateau enthalpies for low pressure (α + β 1 ) mixed phases which showed a noticeable lowering of the values. Thermal cycling between β 2 -and γ-phase hydrides increased the absorption pressures but desorption pressure did not change significantly and the free energy loss due to hysteresis also increased. Hydriding of the alloy with prior cold-work increased the pressure hysteresis significantly and lowered the hydrogen capacity. In contrast to the alloy without any prior straining (as-cast), desorption pressure of the alloy with prior cold-work also decreased significantly. Microstrains, 2 > 1/2 , in the β 2 -phase lattice of the thermally cycled hydrides decreased after 778 cycles and the domain sizes increased. However, in the γ-phase, both the microstrains and the domain sizes decreased after thermal cycling indicating no particle size effect. The dehydrogenated α-phase after 778 thermal cycles also showed residual microstrains in the lattice, similar to those observed in intermetallic hydrides. The effect of thermal cycling (up to 4000 cycles between β 2 - and γ-phases) and cold working on absorption/desorption pressures, hydrogen storage capacity, microstrains, long-range strains, and domain sizes of β 2 - and γ-phase hydrides of V 0.995 C 0.005 alloys are presented

  6. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  7. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  8. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  9. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4

    International Nuclear Information System (INIS)

    Racine, A.

    2005-09-01

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  10. Study on thermal property of lauric–palmitic–stearic acid/vermiculite composite as form-stable phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2015-09-01

    Full Text Available The form-stable composite phase change material of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite was prepared by vacuum impregnation method for thermal energy storage. The maximum mass fraction of lauric–palmitic–stearic acid ternary eutectic mixture retained in vermiculite was determined as 50 wt% without melted phase change material seepage from the composite phase change material. Fourier transformation infrared spectroscope and scanning electron microscope were used to characterize the structure and morphology of the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material, and the results indicate that lauric–palmitic–stearic acid ternary eutectic mixture was well confined into the layer porous structure of vermiculite by physical reaction. The melting and freezing temperatures and latent heats were measured by differential scanning calorimeter as 31.4°C and 30.3°C, and 75.8 and 73.2 J/g, respectively. Thermal cycling test showed that there was no significant change in the thermal properties of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material after 1000 thermal cycles. Moreover, 2 wt% expanded graphite was added to improve the thermal conductivity of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material. All results indicated that the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material had suitable thermal properties and good thermal reliability for the application of thermal energy storage in building energy efficiency.

  11. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H. M.; Strain, R. V.; Billone, M. C.

    2000-01-01

    The morphology, number density, orientation, distribution, and crystallographic aspects of Zr hydrides in Zircaloy fuel cladding play important roles in fuel performance during all phases before and after discharge from the reactor, i.e., during normal operation, transient and accident situations in the reactor, temporary storage in a dry cask, and permanent storage in a waste repository. In the past, partly because of experimental difficulties, hydriding behavior in irradiated fuel cladding has been investigated mostly by optical microscopy (OM). In the present study, fundamental metallurgical and crystallographic characteristics of hydride precipitation and reorientation were investigated on the microscopic level by combined techniques of OM and transmission electron and scanning electron microscopy (TEM and SEM) of spent-fuel claddings discharged from several boiling and pressurized water reactors (BWRs and PWRs). Defueled sections of standard and Zr-lined Zircaloy-2 fuel claddings, irradiated to fluences of ∼3.3 x 10 21 n cm -2 and ∼9.2 x 10 21 n cm -2 (E > 1 MeV), respectively, were obtained from spent fuel rods discharged from two BWRs. Sections of standard and low-tin Zircaloy-4 claddings, irradiated to fluences of ∼4.4 x 10 21 n cm -2 , ∼5.9 x 10 21 n cm -2 , and ∼9.6 x 10 21 n cm -2 (E > 1 MeV) in three PWRs, were also obtained. Microstructural characteristics of hydrides were analyzed in as-irradiated condition and after gas-pressurization-burst or expanding-mandrel tests at 292-325 C in Ar for some of the spent-fuel claddings. Analyses were also conducted of hydride habit plane, morphology, and reorientation characteristics on unirradiated Zircaloy-4 cladding that contained dense radial hydrides. Reoriented hydrides in the slowly cooled unirradiated cladding were produced by expanding-mandrel loading

  12. Hydrogen isotope exchange in a metal hydride tube

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.

  13. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused by...... to irradiation-induced swelling....

  14. Interface Enthalpy-Entropy Competition in Nanoscale Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Nicola Patelli

    2018-01-01

    Full Text Available We analyzed the effect of the interfacial free energy on the thermodynamics of hydrogen sorption in nano-scaled materials. When the enthalpy and entropy terms are the same for all interfaces, as in an isotropic bi-phasic system, one obtains a compensation temperature, which does not depend on the system size nor on the relative phase abundance. The situation is different and more complex in a system with three or more phases, where the interfaces have different enthalpy and entropy. We also consider the possible effect of elastic strains on the stability of the hydride phase and on hysteresis. We compare a simple model with experimental data obtained on two different systems: (1 bi-phasic nanocomposites where ultrafine TiH2 crystallite are dispersed within a Mg nanoparticle and (2 Mg nanodots encapsulated by different phases.

  15. Kinetics of the isothermal decomposition of zirconium hydride: terminal solid solubility for precipitation and dissolution

    Science.gov (United States)

    Denisov, E. A.; Kompaniets, T. N.; Voyt, A. P.

    2018-05-01

    The hydrogen permeation technique in the surface-limited regime (SLR) was first used to study the isothermal decomposition of zirconium hydride. It is shown that under isothermal conditions, the hydrogen terminal solid solubility in the α-phase for hydride precipitation (TSSp) and dissolution (TSSd) differ only by 6%, in contrast to the 20-30% indicated in the available literature. It is demonstrated that even the minimum heating/cooling rate (1 C/min) used in the traditional methods of studying TSSp and TSSd is too high to exclude the effect of kinetics on the results obtained.

  16. Modifications of the hydriding kinetics of a metallic surface, using ion implantation

    International Nuclear Information System (INIS)

    Crusset, D.

    1992-10-01

    Uranium reacts with hydrogen to form an hydride: this reaction leads to the total destruction of the material. To modify the reactivity of an uranium surface towards hydrogen, ion implantation was selected, among surface treatments techniques. Four elements (carbon, nitrogen, oxygen, sulfur) were implanted to different doses. The results show a modification of the hydriding mechanism and a significant increase in the reaction induction times, notably at high implantation doses. Several techniques (SIMS, X-rays phases analysis and residual stresses determination) were used to characterize the samples and understand the different mechanisms involved

  17. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Surrey, Alexander, E-mail: a.surrey@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Schultz, Ludwig [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Rellinghaus, Bernd, E-mail: b.rellinghaus@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-04-15

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH{sub 2}, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  18. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    International Nuclear Information System (INIS)

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-01

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH_2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  19. Phenolic composition of pomegranate peel extracts using an LC-MS approach with silica hydride columns

    Science.gov (United States)

    The peels of different pomegranate cultivars (Molla Nepes, Parfianka, Purple Heart, Wonderful and Vkunsyi) were compared in terms of phenolic composition and total phenolics. Analyses were performed on two silica hydride-based stationary phases: phenyl and undecenoic acid columns. Quantitation was ...

  20. Manufacturing and investigation of U-Mo LEU fuel granules by hydride-dehydride processing

    International Nuclear Information System (INIS)

    Stetskiy, Y.A.; Trifonov, Y.I.; Mitrofanov, A.V.; Samarin, V.I.

    2002-01-01

    Investigations of hydride-dehydride processing for comminution of U-Mo alloys with Mo content in the range 1.9/9.2% have been performed. Some regularities of the process as a function of Mo content have been determined as well as some parameters elaborated. Hydride-dehydride processing has been shown to provide necessary phase and chemical compositions of U-Mo fuel granules to be used in disperse fuel elements for research reactors. Pin type disperse mini-fuel elements for irradiation tests in the loop of 'MIR' reactor (Dmitrovgrad) have been fabricated using U-Mo LEU fuel granules obtained by hydride-dehydride processing. Irradiation tests of these mini-fuel elements loaded to 4 g U tot /cm 3 are planned to start by the end of this year. (author)

  1. Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity.

    Science.gov (United States)

    Noya, Yoichi; Seki, Koh-Ichi; Asano, Hiroshi; Mai, Yosuke; Horinouchi, Takahiro; Higashi, Tsunehito; Terada, Koji; Hatate, Chizuru; Hoshi, Akimasa; Nepal, Prabha; Horiguchi, Mika; Kuge, Yuji; Miwa, Soichi

    2013-12-06

    Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0μM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration

  2. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    Science.gov (United States)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  3. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  4. Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-05-31

    The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from February 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and

  5. Economic analysis of hydride fueled BWR

    International Nuclear Information System (INIS)

    Ganda, F.; Shuffler, C.; Greenspan, E.; Todreas, N.

    2009-01-01

    The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 x 10 hydride fuel bundles instead of 10 x 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the 'per volume base' fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.

  6. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    Science.gov (United States)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  7. PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity

    International Nuclear Information System (INIS)

    Tang, Bingtao; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-01-01

    The thermal conductivity of form-stable PEG/SiO 2 phase change material (PCM) was enhanced by in situ doping of Al 2 O 3 using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO 2 –Al 2 O 3 reached 124 J g −1 , and thermal conductivity improved by 12.8% for 3.3 wt% Al 2 O 3 in the PCM compared with PEG/SiO 2 . The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO 2 –Al 2 O 3 hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects

  8. PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change materials with enhanced thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bingtao, E-mail: tangbt@dlut.edu.cn; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-03-01

    The thermal conductivity of form-stable PEG/SiO{sub 2} phase change material (PCM) was enhanced by in situ doping of Al{sub 2}O{sub 3} using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO{sub 2}–Al{sub 2}O{sub 3} reached 124 J g{sup −1}, and thermal conductivity improved by 12.8% for 3.3 wt% Al{sub 2}O{sub 3} in the PCM compared with PEG/SiO{sub 2}. The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects.

  9. Experimental investigation of strain, damage and failure of hydrided zircaloy-4 with various hydride orientations

    International Nuclear Information System (INIS)

    Racine, A; Catherine, C.S.; Cappelaere, C.; Bornert, M.; Caldemaison, D.

    2005-01-01

    This experimental investigation is devoted to the influence of the orientation of hydrides on the mechanical response of Zircaloy-4. Ring tensile tests are performed on unirradiated CWSR Zircaloy-4, charged with about 200 or 500wppm hydrogen. Hydrides are oriented either parallel ('tangential'), or perpendicular ('radial') to the circumferential tensile direction. Tangential hydrides are usually observed in cladding tubes, however, hydrides can be reoriented after cooling under stress to become radial and then trigger brittle behavior. In this investigation, we perform, 'macroscopic' or SEM in-situ tensile tests on smooth rings, at room temperature. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. The results lead to the following conclusions: neither the tensile stress-strain response nor the strain modes are affected by hydrogen content or hydride orientation, but the failure modes are. Indeed, only 200wppm radial hydrides embrittle Zy-4: sample fails in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases samples reach at least 750 MPa before failure, with ductile or brittle mode. (authors)

  10. Virtual histology study of atherosclerotic plaque composition in patients with stable angina and acute phase of acute coronary syndromes without ST segment elevation

    Directory of Open Access Journals (Sweden)

    Ivanović Miloš

    2013-01-01

    Full Text Available Introduction. Rupture of vulnerable atherosclerotic plaques is the cause of most acute coronary syndromes (ACS. Postmortem studies which compared stable coronary lesions and atherosclerotic plaques in patients who have died because of ACS indicated high lipid-core content as one of the major determinants of plaque vulnerability. Objective. Our primary goal was to assess the potential relations of plaque composition determined by IVUS-VH (Intravascular Ultrasound - Virtual Histology in patients with stable angina and subjects in acute phase of ACS without ST segment elevation. Methods. The study comprised of 40 patients who underwent preintervention IVUS examination. Tissue maps were reconstructed from radio frequency data using IVUS-VH software. Results. We analyzed 53 lesions in 40 patients. Stable angina was diagnosed in 24 patients (29 lesions, while acute phase of ACS without ST elevation was diagnosed in 16 patients (24 lesions. In the patients in acute phase of ACS without ST segment elevation IVUS-VH examination showed a significantly larger area of the necrotic core at the site of minimal lumen area and a larger mean of the necrotic core volume in the entire lesion comparing to stable angina subjects (1.84±0.90 mm2 vs. 0.96±0.69 mm2; p<0.001 and 20.94±15.79 mm3 vs. 11.54±14.15 mm3; p<0.05 respectively. Conclusion. IVUS-VH detected that the necrotic core was significantly larger in atherosclerotic lesions in patients in acute phase of ACS without ST elevation comparing to the stable angina subjects and that it could be considered as a marker of plaque vulnerability.

  11. The growth of crystals of erbium hydride

    International Nuclear Information System (INIS)

    Grimshaw, J.A.; Spooner, F.J.; Wilson, C.G.; McQuillan, A.D.

    1981-01-01

    Crystals of the rare-earth hydride ErH 2 have been produced with face areas greater than a square millimetre and corresponding volumes exceeding those of earlier crystals by orders of magnitude. The hydride, which was produced in bulk polycrystalline form by hydriding erbium metal at 950 0 C, has been examined by optical and X-ray techniques. For material of composition ErH 2 and ErHsub(1.8) the size of the grains and their degree of strain appears to depend more on oxygen contamination during formation and on the subsequent cooling procedure, than on the size of erbium metal crystals in the starting material. (author)

  12. Mathematical modeling of the nickel/metal hydride battery system

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Blaine Kermit [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1995-09-01

    A group of compounds referred to as metal hydrides, when used as electrode materials, is a less toxic alternative to the cadmium hydroxide electrode found in nickel/cadmium secondary battery systems. For this and other reasons, the nickel/metal hydride battery system is becoming a popular rechargeable battery for electric vehicle and consumer electronics applications. A model of this battery system is presented. Specifically the metal hydride material, LaNi{sub 5}H{sub 6}, is chosen for investigation due to the wealth of information available in the literature on this compound. The model results are compared to experiments found in the literature. Fundamental analyses as well as engineering optimizations are performed from the results of the battery model. In order to examine diffusion limitations in the nickel oxide electrode, a ``pseudo 2-D model`` is developed. This model allows for the theoretical examination of the effects of a diffusion coefficient that is a function of the state of charge of the active material. It is found using present data from the literature that diffusion in the solid phase is usually not an important limitation in the nickel oxide electrode. This finding is contrary to the conclusions reached by other authors. Although diffusion in the nickel oxide active material is treated rigorously with the pseudo 2-D model, a general methodology is presented for determining the best constant diffusion coefficient to use in a standard one-dimensional battery model. The diffusion coefficients determined by this method are shown to be able to partially capture the behavior that results from a diffusion coefficient that varies with the state of charge of the active material.

  13. Ultra-Stable Zero-CTE HoneySiC and H2CMN Mirror Support Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA MSFC, GSFC and JPL are interested in Ultra-Stable Mirror Support Structures for Exoplanet Missions. Telescopes with Apertures of 4-meters or larger and using an...

  14. Experimental and numerical investigation of form-stable dodecane/hydrophobic fumed silica composite phase change materials for cold energy storage

    International Nuclear Information System (INIS)

    Chen, Jiajie; Ling, Ziye; Fang, Xiaoming; Zhang, Zhengguo

    2015-01-01

    Highlights: • Form-stable dodecane/fumed silica composite for cold storage is prepared. • A suggesting hypothesis that explains infiltration mechanism is proposed. • The performance of the composite phase change material is investigated. • Numerical simulation of system is carried out and results fit well. - Abstract: A kind of form-stable composite phase change materials used for cold thermal energy storage is prepared by absorbing dodecane into the hydrophobic fumed silica. With relatively suitable pore diameter and hydrophobic groups, hydrophobic fumed silica is beneficial to the penetration and infiltration of dodecane and the leakage problem solving. Scanned by electron micrographs and Fourier transformation infrared, the composite phase change material is characterized to be just physical penetration. Besides, the differential scanning calorimeter and thermo gravimetric analysis reveals the high enthalpy, good thermal stability and cycling performance of this composite phase change material. What’s more, Hot-Disk thermal constants analyzer demonstrates that the composite phase change material has low thermal conductivity which is desired in cold storage application. In the experiment, a cold energy storage system is set up and the results from the experiment show that the system has excellent performance of cold storage by incorporating composite phase change material. Apart from that, the experimental data is found to have a great agreement with the numerical simulation which is carried out by using the commercial computational fluid dynamics software FLUENT.

  15. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  16. A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2017-01-01

    Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently

  17. Structure of the novel ternary hydrides Li4Tt2D (Tt=Si and Ge)

    International Nuclear Information System (INIS)

    Wu Hui; Rush, J.J.; Maryland Univ., College Park, MD; Hartman, M.R.; Oregon State Univ., Corvallis, OR; Udovic, T.J.; Zhou Wei; Pennsylvania Univ., Philadelphia, PA; Bowman, R.C. Jr.; Vajo, J.J.

    2007-01-01

    The crystal structures of newly discovered Li 4 Ge 2 D and Li 4 Si 2 D ternary phases were solved by direct methods using neutron powder diffraction data. Both structures can be described using a Cmmm orthorhombic cell with all hydrogen atoms occupying Li 6 -octahedral interstices. The overall crystal structure and the geometry of these interstices are compared with those of other related phases, and the stabilization of this novel class of ternary hydrides is discussed. (orig.)

  18. δ-hydride habit plane determination in α-zirconium by strain energy minimization technique at 25 and 300 deg C

    International Nuclear Information System (INIS)

    Singh, R.N.; Stahle, P.; Sairam, K.; Ristmana, Matti; Banerjee, S.

    2008-01-01

    The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25 and 300 deg C using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors of zirconium and its hydride were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out using materials properties reported at 25 and 300 deg C. Contrary to several habit planes reported in literature for δ-hydrides precipitating in α-Zr crystal the total accommodation energy minima suggests only basal plane i.e. (0001) as the habit plane. (author)

  19. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter Andrew; Clark, Blythe; Glazoff, Michael V.; Homer, Eric R.

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  20. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Yiran li

    2013-10-01

    Full Text Available This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs, based on eutectic mixtures as phase change materials (PCMs for thermal energy storage and high-density polyethylene (HDPE-ethylene-vinyl acetate (EVA polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD–capric acid (CA, TD–lauric acid (LA, and TD–myristic acid (MA, which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC. The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD–CA PCM, 24.53 °C/24.92 °C (FS TD–LA PCM, and 33.15 °C/30.72 °C (FS TD–MA PCM, respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM and Fourier-transform infrared (FT-IR spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP. It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  1. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.

    Science.gov (United States)

    Huang, Jingyu; Lu, Shilei; Kong, Xiangfei; Liu, Shangbao; Li, Yiran

    2013-10-22

    This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs), based on eutectic mixtures as phase change materials (PCMs) for thermal energy storage and high-density polyethylene (HDPE)-ethylene-vinyl acetate (EVA) polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD)-capric acid (CA), TD-lauric acid (LA), and TD-myristic acid (MA), which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC). The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD-CA PCM), 24.53 °C/24.92 °C (FS TD-LA PCM), and 33.15 °C/30.72 °C (FS TD-MA PCM), respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP). It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  2. In situ hydride formation in titanium during focused ion milling.

    Science.gov (United States)

    Ding, Rengen; Jones, Ian P

    2011-01-01

    It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.

  3. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    Science.gov (United States)

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  4. Pressure-induced transformations of molecular boron hydride

    International Nuclear Information System (INIS)

    Nakano, Satoshi; Hemley, Russell J; Gregoryanz, Eugene A; Goncharov, Alexander F; Mao, Ho-kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV

  5. Pressure-induced transformations of molecular boron hydride

    CERN Document Server

    Nakano, S; Gregoryanz, E A; Goncharov, A F; Mao Ho Kwang

    2002-01-01

    Decaborane, a molecular boron hydride, was compressed to 131 GPa at room temperature to explore possible non-molecular phases in this system and their physical properties. Decaborane changed its colour from transparent yellow to orange/red above 50 GPa and then to black above 100 GPa, suggesting some transformations. Raman scattering and infrared (IR) absorption spectroscopy reveal significant structural changes. Above 100 GPa, B-B skeletal, B-H and B-H-B Raman/IR peaks gradually disappeared, which implies a transformation into a non-molecular phase in which conventional borane-type bonding is lost. The optical band gap of the material at 100 GPa was estimated to be about 1.0 eV.

  6. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali; Onal, Adem

    2008-01-01

    Fatty acids such as stearic acid (SA), palmitic acid (PA), myristic acid (MA) and lauric acid (LA) are promising phase change materials (PCMs) for latent heat thermal energy storage (LHTES) applications, but high cost is the major drawback of them, limiting their utility area in thermal energy storage. The use of fatty acids as form stable PCMs will increase their feasibilities in practical applications due to the reduced cost of the LHTES system. In this regard, a series of styrene maleic anhydride copolymer (SMA)/fatty acid composites, SMA/SA, SMA/PA, SMA/MA, and SMA/LA, were prepared as form stable PCMs by encapsulation of fatty acids into the SMA, which acts as a supporting material. The encapsulation ratio of fatty acids was as much as 85 wt.% and no leakage of fatty acid was observed even when the temperature of the form stable PCM was over the melting point of the fatty acid in the composite. The prepared form stable composite PCMs were characterized using optic microscopy (OM), viscosimetry and Fourier transform infrared (FT-IR) spectroscopy methods, and the results showed that the SMA was physically and chemically compatible with the fatty acids. In addition, the thermal characteristics such as melting and freezing temperatures and latent heats of the form stable composite PCMs were measured by using the differential scanning calorimetry (DSC) technique, which indicated they had good thermal properties. On the basis of all the results, it was concluded that form stable SMA/fatty acid composite PCMs had important potential for practical LHTES applications such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard or floors impregnated with a form stable PCM due to their satisfying thermal properties, easy preparation in desired dimensions, direct usability without needing additional encapsulation thereby eliminating the thermal resistance caused by the shell and, thus, reducing the cost of

  7. Formation of stable and metastable phases in reciprocal systems PbSe + MI2 = MSe + PbI2 (M = Hg, Mn, Sn)

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.; Gapanovich, M.V.

    2004-01-01

    Using data of differential thermal, X-ray phase and microstructural analyses, phase diagrams of reciprocal systems PbSe + MI 2 = MSe + PbI 2 (M=Hg (1), Mn (2), Sn (3)) were constructed. It was ascertained that the HgSe-PbI 2 diagonal in system 1 is stable. Transformations leading to crystallization of metastable ternary compound formed in the system PbSe-PbI 2 and metastable polytypes of lead iodide in systems 1 and 2 in the range of temperatures from 620 to 685 K were studied. New intermediate metastable phases in systems 1, 2 and 3 were prepared by melt quenching. Crystal lattice parameters of the phases crystallizing in the CdCl 2 structural type were defined [ru

  8. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)

    2013-08-15

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.

  9. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  10. Characterisation of hydrides in a zirconium alloy, by EBSD

    International Nuclear Information System (INIS)

    Ubhi, H.S.; Larsen, K.

    2012-01-01

    Zirconium alloys are used in nuclear reactors owing to their low capture cross-section for thermal neutrons and good mechanical and corrosion properties. However, they do suffer from delayed hydrogen cracking (DHC) due to formation of hydride particles. This study shows how the electron back-scatter diffraction (EBSD) technique can be used to characterise hydrides and their orientation relationship with the matrix. Hydrided EB weld specimens were prepared by electro-polishing, characterised using Oxford instruments AZtecHKL EBSD apparatus and software attached to a FEG SEM. Hydrides were found to exist as fine intra granular plates and having the Blackburn orientation relationship, i.e. (0002)Zr//(111)hydride and (1120)Zr//(1-10)hydride. The hydrides were also found to contain sigma 3 boundaries as well as local misorientations. (author)

  11. Hydride formation on deformation twin in zirconium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Seong [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Kim, Sung-Dae [Korea Institute of Material Science (KIMS), 797 Changwondaero, Changwon, Gyeongnam, 642-831 (Korea, Republic of); Yoon, Jonghun, E-mail: yooncsmd@gmail.com [Department of Mechanical Engineering, Hanyang University, 1271 Sa3-dong, Sangrok-gu, Ansan-si, Gyeonggi-do, 426-791 (Korea, Republic of)

    2016-12-15

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  12. A Study on the Radial Hydride Assisted Delayed Hydride Cracking of Zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin-Ho; Lee, Ji-Min; Kim, Yong-Soo [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Extensive studies have been done on understanding of DHC(Delayed hydride cracking) phenomenon since several zirconium alloy pressure tubes failed in nuclear reactor in the 1970s. Recently, long-term dry storage strategy has been considered seriously in order to manage spent nuclear fuel in Korea and other countries around the world. Consequentially, many researches have been investigated the degradation mechanisms which will threaten the spent fuel integrity during dry storage and showed that hydrogen related phenomenon such as hydride reorientation and DHC are the critical factors. Especially, DHC is the direct cracking mechanism which can cause not only a through-wall defect but also a radiation leak to the environment. In addition, DHC can be enhanced by radial hydride as reported by Kim who demonstrate that radial hydrides clearly act as crack linkage path. This phenomenon is known as the radial hydride assisted DHC (RHA-DHC). Therefore, study on DHC is essential to ensure the safety of spent fuel. Finite element analysis will be carried out for the stress gradient evaluation around notch tip. A variation in thermal cycle which leads to change in hydrogen solid solution trajectory may be required. If the radial hydride precipitates at notch tip, we will investigate what conditions should be met. Ultimately, we will suggest the regulation criteria for long-term dry storage of spent nuclear fuel.

  13. Electron and nuclear magnetic resonances in compounds and metallic hydrides

    International Nuclear Information System (INIS)

    Brasil Filho, N.

    1985-11-01

    Proton pulsed Nuclear Magnetic Resonance measurements were performed on the metallic hydrides ZrCr 2 H x (x = 2, 3, 4) and ZrV 2 H y (y = 2, 3, 4, 5) as a function of temperature between 180 and 400K. The ultimate aim was the investigation of the relaxation mechanisms in these systems by means of the measurement of both the proton ( 1 H) spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation times and to use these data to obtain information about the diffusive motion of the hydrogen atoms. The diffusional activation energies, the jump frequencies and the Korringa constant, C k , related with the conduction electron contribution to the 1 H relaxation were determined for the above hydrides as a function of hydrogen concentration. Our results were analysed in terms of the relaxation models described by Bloembergen, Purcell and Pound (BPP model) and by Torrey. The Korringa type relaxation due to the conduction electrons in metallic systems was also used to interpret the experimental results. We also present the Electron Paramagnetic Ressonance (EPR) study of Gd 3+ , Nd 3+ and Er 3+ ions as impurities in several AB 3 intermetallic compounds where A = LA, Ce, Y, Sc, Th, Zr and B = Rh, Ir, Pt. The results were analysed in terms of the multiband model previously suggested to explain the behaviour of the resonance parameter in AB 2 Laves Phase compounds. (author) [pt

  14. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  15. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  16. Microchip power compensated calorimetry applied to metal hydride characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda, A.; Lopeandia, A.F.; Domenech-Ferrer, R.; Garcia, G.; Pi, F.; Rodriguez-Viejo, J. [Nanomaterials and Microsystems Group, Physics Department, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Munoz, F.J. [Instituto de Microelectronica de Barcelona, Centro Nacional de Microelectronica, Campus UAB, 08193 Bellaterra (Spain)

    2008-06-15

    In this work, we show the suitability of the thin film membrane-based calorimetric technique to measure kinetically limited phase transitions such as the dehydrogenation of metallic hydrides. Different compounds such as Mg, Mg/Al and Mg{sub 80}Ti{sub 20} have been deposited over the active area of the microchip by electron beam evaporation. After several hydrogenation treatments at different temperatures to induce the hydride formation, calorimetric measurements on the dehydrogenation process of those thin films, either in vacuum or in air, are performed at a heating rate of 10 C/min. We observe a significant reduction in the onset of dehydrogenation for Mg{sub 80}Ti{sub 20} compared with pure Mg or Mg/Al layers, which confirms the beneficial effect of Ti on dehydrogenation. We also show the suitability of the membrane-based nanocalorimeters to be used in parallel with optical methods. Quantification of the energy released during hydrogen desorption remains elusive due to the semi-insulating to metallic transition of the film which affects the calorimetric trace. (author)

  17. Method for preparation of uranium hydride

    International Nuclear Information System (INIS)

    Gorski, M.S.; Goncalves, Miriam; Mirage, A.; Lima, W. de.

    1985-01-01

    A method for preparation of Uranium Hydride starting from Hidrogen and Uranium is described. In the temperature range of 250 0 up to 350 0 C, and pressures above 10torr, Hydrogen reacts smoothly with Uranium turnings forming a fine black or dark gray powder (UH 3 ). Samples containing a significant amount of oxides show a delay before the reaction begging. (Author) [pt

  18. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  19. Are RENiAl hydrides metallic?

    Czech Academy of Sciences Publication Activity Database

    Eichinger, K.; Havela, L.; Prokleška, J.; Stelmakhovych, O.; Daniš, S.; Šantavá, Eva; Miliyanchuk, K.

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1200-1202 ISSN 1862-5282 Grant - others:GA ČR(CZ) GA202/07/0418 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare earth metals * magnetism * hydrides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  20. Lithium hydride hydrolysis: experimental and kinetic study

    International Nuclear Information System (INIS)

    Charton, S.; Maupoix, C.; Brevet, A.; Delaunay, F.; Heintz, O.; Saviot, L.

    2006-01-01

    In this work has been studied the contribution of various analyses techniques in the framework, on the one hand of revealing the mechanisms implied in lithium hydride hydrolysis, and on the other hand of studying the kinetics of hydrogen production. Among the methods recently investigated, Raman spectroscopy, XPS and SIMS seem to be particularly attractive. (O.M.)

  1. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masashi

    2005-07-01

    This work is a part of the research program performed in the Department of Energy Systems, Institute for Energy Technology (Kjeller, Norway), which is focused on the development of the advanced hydrogen storage materials. The activities are aimed on studies of the mechanisms of hydrogen interactions with intermetallic alloys with focus on establishing an interrelation between the crystal structure, thermodynamics and kinetics of the processes in the metal-hydrogen systems, on the one hand, and hydrogen storage properties (capacity, rates of desorption, hysteresis). Many of the materials under investigation have potential to be applied in applications, whereas some already have been commercialised in the world market. A number of metals take up considerable amounts of hydrogen and form chemical compounds with H, metal hydrides. Unfortunately, binary hydrides are either very stable (e.g. for the rare earth metals [RE], Zr, Ti, Mg: metal R) or are formed at very high applied pressures of hydrogen gas (e.g. for the transition metals, Ni, Co, Fe, etc.: Metal T). However, hydrogenation process becomes easily reversible at very convenient from practical point of view conditions, around room temperature and at H2 pressures below 1 MPa for the two-component intermetallic alloys R{sub x}T{sub y}. This raised and maintains further interest to the intermetallic hydrides as solid H storage materials. Materials science research of this thesis is focused on studies of the reasons staying behind the beneficial effect of two non-transition elements M(i.e., In and Sn) contributing to the formation of the ternary intermetallic alloys R{sub x}T{sub y}M{sub 2}., on the hydrogen storage behaviours. Particular focus is on two aspects where the remarkable improvement of ordinary metal hydrides is achieved via introduction of In and Sn: a) Increase of the volume density of stored hydrogen in solid materials to the record high level. b) Improvement of the kinetics of hydrogen charge and

  2. Construction of a stable and homogeneous magnetic field at 10 milligauss for neutron electric dipole moment measurements: preparatory phase

    Energy Technology Data Exchange (ETDEWEB)

    Gravador, E.; Yoshiki, Hajime; Feizeng, H. [Ibaraki Univ., Mito (Japan)

    1996-08-01

    A superthermal UCN edm measuring machine is currently under construction at KEK. It utilizes a magnetically shielded superconducting solenoid at liquid helium temperature to generate a stable and homogeneous magnetic field at 10 milligauss. The design of the magnetic shield and solenoid and preliminary evaluation of shielding effectiveness is presented. (author)

  3. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites

    International Nuclear Information System (INIS)

    Cai Yibing; Wei Qufu; Huang Fenglin; Gao Weidong

    2008-01-01

    The halogen-free flame retardant form-stable phase change materials (PCM) based on paraffin/high density polyethylene (HDPE) composites were prepared by using twin-screw extruder technique. The structures and properties of the form-stable PCM composites based on intumescent flame retardant system with expandable graphite (EG) and different synergistic additives, such as ammonium polyphosphate (APP) and zinc borate (ZB) were characterized by scanning electronic microscope (SEM), thermogravimetric analyses (TGA), dynamic Fourier-transform infrared (FTIR) spectra, differential scanning calorimeter (DSC) and Cone calorimeter test. The TGA results showed that the halogen-free flame retardant form-stable PCM composites produced a larger amount of charred residue at 700 deg. C, although the onset of weight loss of the halogen-free flame retardant form-stable PCM composites occurred at a lower temperature due to the thermal decomposition of flame retardant. The DSC measurements indicated that the additives of flame retardant had little effect on the thermal energy storage property, and the temperatures of phase change peaks and the latent heat of the paraffin showed better occurrence during the freezing process. The dynamic FTIR monitoring results revealed that the breakdowns of main chains (HDPE and paraffin) and formations of various residues increased with increasing thermo-oxidation temperature. It was also found from the Cone calorimeter tests that the peak of heat release rate (PHRR) decreased significantly. Both the decrease of the PHRR and the structure of charred residue after combustion indicated that there was a synergistic effect between the EG and APP, contributing to the improved flammability of the halogen-free flame retardant form-stable PCM composites

  4. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  5. Toward stable nickel catalysts for aqueous phase reforming of biomass-derived feedstock under reducing and alkaline conditions

    NARCIS (Netherlands)

    Haasterecht, van T.; Ludding, C.C.I.; Jong, de K.P.; Bitter, J.H.

    2014-01-01

    Nickel nanoparticles supported on carbon nanofibers (CNF) can be stabilized in aqueous phase processes at elevated temperatures and pressures by tuning the reaction conditions to control Ni oxidation and leaching. As a showcase, Ni/CNF was used for the production of hydrogen via aqueous phase

  6. Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, David A; Adriaan Sachtler, J.W. J.; Low, John J; Jensen, Craig M; Ozolins, Vidvuds; Siegel, Don; Harmon, Laurel

    2011-02-14

    alanate from alkali hydride, Al and hydrogen, was hampering reversibility. The reverse reaction was then studied for the same phase diagram, starting with LiH, NaH, and MgH2, and Al. The study was extended to phase diagrams including KH and CaH2 as well. The observed hydrogen storage capacity in the Al hexahydrides was less than 4 wt. %, well short of DOE targets. The HT assay came on line and after certification with studies on NaAlH4, was first applied to the LiNH2 - LiBH4 - MgH2 phase diagram. The 60-point study elucidated trends within the system locating an optimum material of 0.6 LiNH2 0.3 MgH2 0.1 LiBH4 that stored about 4 wt. % H2 reversibly and operated below 220 °C. Also present was the phase Li4(NH2)3BH4, which had been discovered in the LiNH2 -LiBH4 system. This new ternary formulation performed much better than the well-known 2 LiNH2MgH2 system by 50 °C in the HT assay. The Li4(NH2)3BH4 is a low melting ionic liquid under our test conditions and facilitates the phase transformations required in the hydrogen storage reaction, which no longer relies on a higher energy solid state reaction pathway. Further study showed that the 0.6 LiNH2 0.3 MgH2 0.1 LiBH4 formulation was very stable with respect to ammonia and diborane desorption, the observed desorption was from hydrogen. This result could not have been anticipated and was made possible by the efficiency of HT combinatorial methods. Investigation of the analogous LiNH2 LiBH4 CaH2 phase diagram revealed new reversible hydrogen storage materials 0.625 LiBH4 + 0.375 CaH2 and 0.375 LiNH2 + 0.25 LiBH4 + 0.375 CaH2 operating at 1 wt. % reversible hydrogen below 175 °C. Powder x-ray diffraction revealed a new structure for the spent materials which had not been previously observed. While the storage capacity was not impressive, an important aspect is that it boron appears to participate in a low temperature reversible reaction. The last major area of study also focused on activating boron-based materials in

  7. An energy stable evolution method for simulating two-phase equilibria of multi-component fluids at constant moles, volume and temperature

    KAUST Repository

    Kou, Jisheng

    2016-02-25

    In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick’s law of diffusion for multi-component fluids and the Peng-Robinson equation of state. The mobility is obtained from diffusion coefficients by relating the gradient of chemical potential to the gradient of molar density. The evolution equation for moles of each component is derived using the discretization of diffusion equations, while the volume evolution equation is constructed based on the mechanical mechanism and the Peng-Robinson equation of state. It is proven that the proposed evolution system can well model the VT-flash problem, and moreover, it possesses the property of total energy decay. By using the Euler time scheme to discretize this evolution system, we develop an energy stable algorithm with an adaptive choice strategy of time steps, which allows us to calculate the suitable time step size to guarantee the physical properties of moles and volumes, including positivity, maximum limits, and correct definition of the Helmhotz free energy function. The proposed evolution method is also proven to be energy-stable under the proposed time step choice. Numerical examples are tested to demonstrate efficiency and robustness of the proposed method.

  8. A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-10-10

    Thiols and phosphines are the most widely used organic ligands to attain atomically precise metal nanoclusters (NCs). Here, we used simple hydrides (e.g., H–) as ligands along with phosphines, such as triphenylphosphine (TPP), 1,2-bis(diphenylphosphino)ethane [DPPE], and tris(4-fluorophenyl)phosphine [TFPP] to design and synthesize a new class of hydride-rich silver NCs. This class includes [Ag18H16(TPP)10]2+, [Ag25H22(DPPE)8]3+, and [Ag26H22(TFPP)13]2+. Our work reveals a new family of atomically precise NCs protected by H– ligands and labile phosphines, with potentially more accessible active metal sites for functionalization and provides a new set of stable NC sizes with simpler ligand–metal bonding for researchers to explore both experimentally and computationally.

  9. Phase Transformation and Hydrogen Storage Properties of an La7.0Mg75.5Ni17.5 Hydrogen Storage Alloy

    Directory of Open Access Journals (Sweden)

    Lin Hu

    2017-10-01

    Full Text Available X-ray diffraction showed that an La7.0Mg75.5Ni17.5 alloy prepared via inductive melting was composed of an La2Mg17 phase, an LaMg2Ni phase, and an Mg2Ni phase. After the first hydrogen absorption/desorption process, the phases of the alloy turned into an La–H phase, an Mg phase, and an Mg2Ni phase. The enthalpy and entropy derived from the van’t Hoff equation for hydriding were −42.30 kJ·mol−1 and −69.76 J·K−1·mol−1, respectively. The hydride formed in the absorption step was less stable than MgH2 (−74.50 kJ·mol−1 and −132.3 J·K−1·mol−1 and Mg2NiH4 (−64.50 kJ·mol−1 and −123.1 J·K−1·mol−1. Differential thermal analysis showed that the initial hydrogen desorption temperature of its hydride was 531 K. Compared to Mg and Mg2Ni, La7.0Mg75.5Ni17.5 is a promising hydrogen storage material that demonstrates fast adsorption/desorption kinetics as a result of the formation of an La–H compound and the synergetic effect of multiphase.

  10. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  11. Peculiarities of formation of zirconium aluminides in hydride cycle mode

    International Nuclear Information System (INIS)

    Muradyan, G.N.

    2016-01-01

    The zirconium aluminides are promising structural materials in aerospace, mechanical engineering, chemical industry, etc. They are promising for manufacturing of heat-resistant wires, that will improve the reliability and efficiency of electrical networks. In the present work, the results of study of zirconium aluminides formation in the Hydride Cycle (HC) mode, developed in the Laboratory of high-temperature synthesis of the Institute of Chemical Physics of NAS RA, are described. The formation of zirconium aluminides in HC proceeded according to the reaction xZrH_2+(1-x)Al → alloy Zr_xAl(1-x)+H_2↑. The samples were certified using: chemical analysis to determine the content of hydrogen (pyrolysis method); differential thermal analysis (DTA, derivatograph Q-1500, T_heating = 1000°C, rate 20°C/min); X-ray analysis (XRD, diffractometer DRON-0.5). The influences of the ratio of powders ZrH_2/Al in the reaction mixture, compacting pressure, temperature and heating velocity on the characteristics of the synthesized aluminides were determined. In HC, the solid solutions of Al in Zr, single phase ZrAl_2 and ZrAl_3 aluminides and Zr_3AlH_4.49 hydride were synthesized. Formation of aluminides in HC mode took place by the solid-phase mechanism, without melting of aluminum. During processing, the heating of the initial charge up to 540°C resulted in the decomposition of zirconium hydride (ZrH_2) to HCC ZrH_1.5, that interacted with aluminum at 630°C forming FCC alumohydride of zirconium. Further increase of the temperature up to 800°C led to complete decomposition of the formed alumohydride of zirconium. The final formation of the zirconium aluminide occurred at 1000-1100°C in the end of HC process. Conclusion: in the synthesis of zirconium aluminides, the HC mode has several significant advantages over the conventional modes: lower operating temperatures (1000°C instead of 1800°C); shorter duration (1.5-2 hours instead of tens of hours); the availability of

  12. Multi-scale characterization of nanostructured sodium aluminum hydride

    Science.gov (United States)

    NaraseGowda, Shathabish

    instruments were utilized for this work and their data collection and analysis are reported. Quasielastic neutron scattering experiments were conducted at NIST Center for Neutron Research to characterize atomic hydrogen diffusion in bulk and nano-confined NaAlH4. It was observed that upon confinement of NaAlH4, a significantly higher fraction of hydrogen atoms were involved in diffusive motion on the pico-second to nano-second timescales. However, the confinement had no impact on the lattice diffusivities (jump/hopping rates) of atomic hydrogen, indicating that the improved hydrogen release rates were not due to any kinetic destabilization effects. Instead, the investigation strongly suggested thermodynamic destabilization as the major effect of nano-confinement. The local interaction of the metal sites in metal organic frameworks with the infiltrated hydride was studied using extended x-ray absorption spectroscopy technique. The experiments were conducted at Center for Advanced Microstructures and Devices at Louisiana State University. The metal sites were found to be chemically un-altered, hence ruling out any catalytic role in the dehydrogenation at room temperatures. The fractal morphology of NaAlH4 was characterized by ultra-small angle x-ray scattering experiments performed at Argonne National Lab. The studies quantitatively estimated the extent of densification in the course of one desorption cycle. The particle sizes were found to increase two-fold during heat treatment. Also, the nano-confinement procedure was shown to produce dense mass fractals as opposed to pristine NaAlH4, exhibiting a surface fractal morphology. Based on this finding, a new method to identify confined material from un-confined material in nano-composites was developed and is presented. Preliminary results of modeling and correlating multi-scale phenomena using a phase-field approach are also presented as the foundation for future work.

  13. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  14. SYNTHESIS AND STRUCTURE OF BIS(PHENYLTETRAMETHYLCYCLOPENTADIENYL)TITANIUM(III) HYDRIDE - THE FIRST MONOMERIC BIS(CYCLOPENTADIENYL)TITANIUM(III) HYDRIDE : The First Monomeric Bis(cyclopentadienyl)titanium(III) Hydride

    NARCIS (Netherlands)

    de Wolf, J.M.; Meetsma, A.; Teuben, J.H

    1995-01-01

    The first structurally characterized monomeric bis(cyclopentadienyl)titanium(III) hydride, (C(5)PhMe(4))(2)TiH (4), was synthesized by hydrogenolysis of (C(5)PhMe(4))(2)TiMe (5). Hydride 4 was found to be a monomeric bent sandwich by X-ray diffraction methods, and the pentamethylcyclopentadienyl

  15. Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems.

    Science.gov (United States)

    Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K

    2017-12-19

    Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is  algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.

  16. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  17. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  18. Pressure and high-Tc superconductivity in sulfur hydrides.

    Science.gov (United States)

    Gor'kov, Lev P; Kresin, Vladimir Z

    2016-05-11

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

  19. Hydrides and Borohydrides of Light Elements

    Science.gov (United States)

    1947-12-04

    Troy, Attn: Inst. of Naval Science (30) Solar Aircraft Cu,, San Diego, Attn: Dr. M. A. Williamson " (31) INSMAT. N. J. for Itandard Oil Co., Esso Lab...with the other# iLD F.Re p. 8 ilt -ms" #61ggSotod that.. ir addition to thc impurity in the t~y..thr, an impurkty, prosumably aluminum hydride, in

  20. Facile Synthesis of Permethyl Yttrocene Hydride

    NARCIS (Netherlands)

    Haan, Klaas H. den; Teuben, Jan H.

    1984-01-01

    A convenient three step synthesis of (Cp*2YH)n (Cp* = C5Me5) is described starting with YCl3.3thf, in which Cp*2YCl.thf and Cp*2YCH(SiMe3)2 are intermediates, which could be isolated and characterized. The hydride is active in the activation of sp2 and sp3 C-H bonds as was demonstrated by the H-D

  1. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  2. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  3. Identification of the zirconium hydrides metallography in zircaloy-2

    International Nuclear Information System (INIS)

    Garcia Gonzalez, F.

    1968-01-01

    Technique for the Identification of the zirconium hydrides in metallographic specimens have been developed. Microhardness, quantitative estimation and relative orientation of the present hydrides as well as grain size determination of the different Zircaloy-2 tube specimens have also been made. The specimens used were corrosion- tested in water during various periods of time at 300 degree castrating, prior to the metallographic examination. Reference specimens, as received, and heavily hydride specimens in a hydrogen atmosphere at 800 degree centigrees, have been used in the previous stages of the work. No difficulties have been met in this early stage of acquaintanceship with the zirconium hydrides. (Author) 5 refs

  4. Liquid structure as a guide for phase stability in the solid state: Discovery of a stable compound in the Au-Si alloy system

    International Nuclear Information System (INIS)

    Tasci, Emre S.; Sluiter, Marcel H.F.; Pasturel, Alain; Villars, Pierre

    2010-01-01

    A new crystalline ground state was discovered in the Au-Si system through first-principles electronic structure calculations. The new structure was found using the experimentally and theoretically determined local atomic structure in the liquid as a guide for the solid state. Local atomic structure in the liquid was matched with that for all known crystal structures as compiled in the Pauling File structural database. The best matching crystalline structures were then explicitly calculated using first-principles methods. Most candidate crystal structures were found to be close, but above the enthalpy of a composition weighted average of the face-centered cubic Au and diamond structure Si terminal phases, but one crystal structure was more stable than the terminal phases by about 10 meV atom -1 at T = 0 K. As first-principles simulations of local structure are feasible for most liquid alloys, the present methodology is applicable to other alloys lying near a eutectic composition.

  5. Stable phase-shift despite quasi-rhythmic movements: a CPG-driven dynamic model of active tactile exploration in an insect

    Directory of Open Access Journals (Sweden)

    Nalin eHarischandra

    2015-08-01

    Full Text Available An essential component of autonomous and flexible behaviour in animals is active exploration of the environment, allowing for perception-guided planning and control of actions. An important sensory system involved is active touch. Here, we introduce a general modelling framework of Central Pattern Generators (CPGs for movement generation in active tactile exploration behaviour. The CPG consists of two network levels: (i phase-coupled Hopf oscillators for rhythm generation, and (ii pattern formation networks for capturing the frequency and phase characteristics of individual joint oscillations. The model captured the natural, quasi-rhythmic joint kinematics as observed in coordinated antennal movements of walking stick insects. Moreover, it successfully produced tactile exploration behaviour on a three-dimensional skeletal model of the insect antennal system with physically realistic parameters. The effect of proprioceptor ablations could be simulated by changing the amplitude and offset parameters of the joint oscillators, only. As in the animal, the movement of both antennal joints was coupled with a stable phase difference, despite the quasi-rhythmicity of the joint angle time courses. We found that the phase-lead of the distal scape-pedicel joint relative to the proximal head-scape joint was essential for producing the natural tactile exploration behaviour and, thus, for tactile efficiency. For realistic movement patterns, the phase-lead could vary within a limited range of 10 to 30 degrees only. Tests with artificial movement patterns strongly suggest that this phase sensitivity is not a matter of the frequency composition of the natural movement pattern. Based on our modelling results, we propose that a constant phase difference is coded into the CPG of the antennal motor system and that proprioceptors are acting locally to regulate the joint movement amplitude.

  6. The plasma centrifuge: A compact, low cost, stable isotope separator. Phase 2 final technical report, September 15, 1991 - September 14, 1995

    International Nuclear Information System (INIS)

    Guss, W.

    1996-01-01

    Enriched stable isotopes are required for production of radionuclides as well as for research and diagnostic uses. Science Research Laboratory (SRL) has developed a plasma centrifuge for moderate throughput of enriched stable isotopes, such as 13 C, 17 O, 18 O, and 203 Tl, for medical as well as other applications. Dwindling isotope stocks have restricted the use of enriched isotopes and their associated labeled organic molecules in medical imaging to very few research facilities because of high costs of isotope separation. With the introduction of the plasma centrifuge separator, the cost per separated gram of even rarely occurring isotopes (≤ 1% natural abundance) is potentially many times lower than with other separation technologies (cryogenic distillation and calutrons). The centrifuge is a simple, robust, pulsed electrical discharge device that has successfully demonstrated isotope separation of small (mg) quantities of 26 Mg. Based on the results of the Phase 2 program, modest enhancements to the power supplies and cooling systems, a centrifuge separator will have high repetition rate (60 pps) and high duty cycle (60%) to produce in one month kilogram quantities of highly enriched stable isotopes. The centrifuge may be used in stand-alone operation or could be used as a high-throughput pre-separation stage with calutrons providing the final separation

  7. Preparation and characterization of form-stable paraffin/polycaprolactone composites as phase change materials for thermal energy storage

    Directory of Open Access Journals (Sweden)

    Aludin M.S.

    2017-01-01

    Full Text Available Paraffin is Phase Change Materials (PCM that possesses desirable properties such as high thermal energy storage and thermal stability to make it suitable for thermal energy storage applications. However, paraffin has been reported to leak out during the melting process. In this study, composites were prepared by dissolving paraffin and polycaprolactone (PCL at varied mass percent compositions in chloroform and then purified through precipitation techniques. The leakage test was conducted by placing the composite samples on a set of four-layer filter papers and left in a furnace at 90°C for 1 hour. By incorporating PCL into paraffin phase, the leakage mass percentage was drastically reduced. The PCL polymer matrix in the composites may have trapped the paraffin molecules during melting process thus prevent it from leaking.

  8. Nanoscale Tapered Pt Bottom Electrode Fabricated by FIB for Low Power and Highly Stable Operations of Phase Change Memory

    International Nuclear Information System (INIS)

    Shi-Long, Lv; Zhi-Tang, Song; Yan, Liu; Song-Lin, Feng

    2010-01-01

    Phase change random access memory (PC-RAM) based on Si 2 Sb 2 Te 5 with a Pt tapered heating electrode (Pt-THE), which is fabricated using a focus ion beam (FIB), is investigated. Compared with the tungsten electrode, the Pt-THE facilitates the temperature rise in phase change material, which causes the decrease of reset voltage from 3.6 to 2.7 V. The programming region of the cell with the Pt-THE is smaller than that of the cell with a cylindrical tungsten heating electrode. The improved performance of the PC-RAM with a Pt-THE is attributed to the higher resistivity and lower thermal conductivity of the Pt electrode, and the reduction of the programming region, which is also verified by thermal simulation. (cross-disciplinary physics and related areas of science and technology)

  9. Initiation of delayed hydride cracking in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Shalabi, A.F.; Meneley, D.A.

    1990-01-01

    Delayed hydride cracking in zirconium alloys is caused by the repeated precipitation and cracking of brittle hydrides. The growth kinetic of the hydrides have been measured to evaluate the critical hydride length for crack initiation. Hydride growth leading to crack initiation follows an approximate (time) 1/3 law on the average; crack propagation proceeds in a stepwise fashion. The critical length of hydride for crack initiation increases with stress and temperature. The fracture criterion for crack initiation predicts the critical hydride length at a give stress level and temperature. The fracture initiation mechanism of the hydride confirms the temperature effects for heating and cooling cycles under services loads. (orig.)

  10. Stable, low-cost phase change material for building applications: The eutectic mixture of decanoic acid and tetradecanoic acid

    International Nuclear Information System (INIS)

    Kahwaji, Samer; Johnson, Michel B.; Kheirabadi, Ali C.; Groulx, Dominic; White, Mary Anne

    2016-01-01

    Highlights: • Decanoic/tetradecanoic acid eutectic at 0.82 ± 0.02 mole fraction (78 ± 2 mass%) decanoic acid. • Melting of eutectic at 20.5 ± 1.5 °C, useful for building applications. • High enthalpy change, 153 ± 15 J g"−"1, is promising. • Negligible change in stability after 3000 melt–freeze cycles. - Abstract: We present a thorough characterization of the thermal properties and thermal reliability of the eutectic mixture of decanoic acid with tetradecanoic acid, as a phase change material (PCM) of potential interest for passive temperature control in buildings. From the temperature-composition binary phase diagram we found that the eutectic composition is 0.82 ± 0.02 mole fraction (78 ± 2 mass%) decanoic acid. We thoroughly characterized the thermal properties of the eutectic mixture. The eutectic composition has a high latent heat of fusion Δ_f_u_sH = 153 ± 15 J g"−"1 and a melting temperature T_o_n_s_e_t = 20.5 ± 1.5 °C. The heat capacity measured as a function of temperature for the solid and liquid phases just below and above the melting point is 1.9 and 2.1 ± 0.2 J K"−"1 g"−"1, respectively. The average value of the thermal conductivity of the solid phase measured between −33 and 9 °C is κ_s = 0.20 ± 0.02 W m"−"1 K"−"1 and for the liquid phase, the thermal conductivity is κ_l = 0.23 ± 0.03 W m"−"1 K"−"1 for 28 and 38 °C. The mixture has a good long-term thermal stability as indicated by negligible changes in Δ_f_u_sH and T_o_n_s_e_t after 3000 melt–freeze cycles. The parameters determined in this work allow more accurate modeling and optimization of the behavior of the eutectic mixture in preparation for implementation as a thermal energy storage PCM.

  11. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2004-01-01

    This paper deals with the preparation of paraffin/high density polyethylene (HDPE) composites as form-stable, solid-liquid phase change material (PCM) for thermal energy storage and with determination of their thermal properties. In such a composite, the paraffin (P) serves as a latent heat storage material and the HDPE acts as a supporting material, which prevents leakage of the melted paraffin because of providing structural strength. Therefore, it is named form-stable composite PCM. In this study, two kinds of paraffins with melting temperatures of 42-44 deg. C (type P1) and 56-58 deg. C (type P2) and latent heats of 192.8 and 212.4 J g -1 were used. The maximum weight percentage for both paraffin types in the PCM composites without any seepage of the paraffin in the melted state were found as high as 77%. It is observed that the paraffin is dispersed into the network of the solid HDPE by investigation of the structure of the composite PCMs using a scanning electronic microscope (SEM). The melting temperatures and latent heats of the form-stable P1/HDPE and P2/HDPE composite PCMs were determined as 37.8 and 55.7 deg. C, and 147.6 and 162.2 J g -1 , respectively, by the technique of differential scanning calorimetry (DSC). Furthermore, to improve the thermal conductivity of the form-stable P/HDPE composite PCMs, expanded and exfoliated graphite (EG) by heat treatment was added to the samples in the ratio of 3 wt.%. Thereby, the thermal conductivity was increased about 14% for the form-stable P1/HDPE and about 24% for the P2/HDPE composite PCMs. Based on the results, it is concluded that the prepared form-stable P/HDPE blends as composite type PCM have great potential for thermal energy storage applications in terms of their satisfactory thermal properties and improved thermal conductivity. Furthermore, these composite PCMs added with EG can be considered cost effective latent heat storage materials since they do not require encapsulation and extra cost to enhance

  12. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    Science.gov (United States)

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-04

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C.

  13. Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70)

    International Nuclear Information System (INIS)

    Wu Qiaoli; Liu Zhen; Jiao Huan

    2009-01-01

    Stabled hexagonal phase Sr 1-x Ba x Al 2 O 4 :Eu 2+ (x=0.37-0.70) was prepared by solid-state method. Result revealed that the structure behavior of the SrAl 2 O 4 :Eu 2+ calcined at 1350 deg. C in a reducing atmosphere for 5 h strongly depended on the Ba 2+ concentration. With increasing Ba 2+ concentration, a characteristic hexagonal phase can be observed. When 37-70% of the strontium is replaced by barium, the structure of the prepared sample is pure hexagonal. Photoluminescence and excitation spectra of the samples with different x and doped with 2% Eu 2+ were investigated. Changes in the emission spectra were observed in the two different phases. The green emission at 505 nm from Eu 2+ was found to be quite strong in the hexagonal phase. The intensity and peak position of the green luminescence from Eu 2+ changed with increasing content of Ba 2+ . The strongest green emission was obtained from Sr 0.61 Ba 0.37 Al 2 O 4 :Eu 2+ . The decay characteristics of Sr 1-x Ba x Al 2 O 4 :Eu 2+ (x=0.37-0.70) showed that the life times also varied with the value of x. Furthermore, the emission colors and decay times varying with x could be ascribed to the variation of crystal lattice.

  14. Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation

    International Nuclear Information System (INIS)

    Gambacurta, D.; Grasso, M.; Catara, F.

    2012-01-01

    The low-lying dipole strength distributions of 40 CaCa and 48 Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle −2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle −1 hole nature and its transition densities.

  15. Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation

    Science.gov (United States)

    Gambacurta, D.; Grasso, M.; Catara, F.

    2012-10-01

    The low-lying dipole strength distributions of 40CaCa and 48Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.

  16. Hydriding and dehydriding characteristics of small-scale DU and ZrCo beds

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dongyou; Lee, Jungmin; Koo, Daeseo [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Chung, Hongsuk, E-mail: hschung1@kaeri.kr [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Ki Hwan [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kang, Hyun-Goo; Chang, Min Ho [National Fusion Research Institute, 113 Gwahakro, Yuseong, Daejeon 305-333 (Korea, Republic of); Camp, Patrick [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jung, Ki Jung; Cho, Seungyon; Yun, Sei-Hun; Kim, Chang Shuk [National Fusion Research Institute, 113 Gwahakro, Yuseong, Daejeon 305-333 (Korea, Republic of); Yoshida, Hiroshi [Fusion Science Consultant, 3288-10 Sakado-cho, Mito-shi 310-0841, Ibakaki-ken (Japan); Paek, Seungwoo; Lee, Hansoo [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    Highlights: • We have designed and fabricated a twosome small-scale getter bed for a comparison of ZrCo with DU on the hydriding/dehydriding properties. • We provide preliminary experimental results of our ZrCo and DU beds. -- Abstract: With the development of fusion technology, it will be necessary to store large amounts of tritium during the nuclear fusion fuel cycle. Stable metal tritides are viewed as potential candidates for the high-density storage of tritium. Metal tritide formers offer a safe and convenient method for tritium storage. For the storage, supply, and recovery of hydrogen isotopes, zirconium cobalt (ZrCo) and depleted uranium (DU) have been extensively proposed. Thus, we have designed and fabricated two identical small-scale getter beds for a comparison of ZrCo with DU on the hydriding/dehydriding properties. After the powderization of the metals, the hydriding/dehydriding performance at different stoichiometries of ZrCo and DU was measured. We provide preliminary experimental results of our ZrCo and DU beds.

  17. Mechanism of n-butane hydrogenolysis promoted by Ta-hydrides supported on silica

    KAUST Repository

    Pasha, Farhan Ahmad

    2014-06-06

    The mechanism of hydrogenolysis of alkanes, promoted by Ta-hydrides supported on silica via 2 ≡ Si-O- bonds, has been studied with a density functional theory (DFT) approach. Our study suggests that the initial monohydride (≡ Si-O-)2Ta(III)H is rapidly trapped by molecular hydrogen to form the more stable tris-hydride (≡ Si-O-) 2Ta(V)H3. Loading of n-butane to the Ta-center occurs through C-H activation concerted with elimination of molecular hydrogen (σ-bond metathesis). Once the Ta-alkyl species is formed, the C-C activation step corresponds to a β-alkyl transfer to the metal with elimination of an olefin. According to these calculations, an α-alkyl transfer to the metal to form a Ta-carbene species is of higher energy. The olefins formed during the C-C activation step can be rapidly hydrogenated by both mono- and tris-Ta-hydride species, making the overall process of alkane cracking thermodynamically favored. © 2014 American Chemical Society.

  18. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    International Nuclear Information System (INIS)

    Fang, Guiyin; Li, Hui; Cao, Lei; Shan, Feng

    2012-01-01

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 °C with a latent heat of 84.48 kJ kg −1 and solidify at 56.86 °C with a latent heat of 78.79 kJ kg −1 when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: ► Form-stable PA/active aluminum oxide composites as PCMs were prepared. ► Chemical structure, crystalloid phase and microstructure of composites were determined. ► Thermal properties and thermal stability of the composites were investigated. ► Expanded graphite can improve thermal conductivity of the composites.

  19. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    Science.gov (United States)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  20. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  1. Pyrophoric behaviour of uranium hydride and uranium powders

    Science.gov (United States)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (Oxidation mechanisms are proposed.

  2. Electrocatalytic hydride-forming compounds for rechageable batteries

    NARCIS (Netherlands)

    Notten, P.H.L.; Einerhand, R.E.F.

    1991-01-01

    Non-toxic intermetallic hydride-forming compounds are attractive alternatives to cadmium as the negative electrode materials in the new generation of Ni/metal hydride rechargeable batteries. High exchange currents and discharge efficiencies even at low temperatures can be achieved using highly

  3. Ultra-sonic observation in niobium hydride precipitation

    International Nuclear Information System (INIS)

    Florencio, O.; Pinatti, Dyonisio G.

    1982-01-01

    The hidrogen embrittlement of exothermic ocluders, had been considered as due to applied stress induced hydride precipitates leading to brittle fracture. The results of simultaneous measurements of macroscopic deformation and elastic change due to hydride precipitation, using the ultrasonic pulse-echo technique are showed. THen it was tested the possibility of kinectis precipitation parameters evoluation. (Author) [pt

  4. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  5. XPS study of influence of exposure to air on thermal stability and kinetics of hydrogen decomposition of MgH{sub 2} films obtained by direct hydrogenation from gaseous phase of metallic Mg

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolsky, V.D., E-mail: dobersh@ipms.kiev.ua; Khyzhun, O.Y.; Sinelnichenko, A.K.; Ershova, O.G.; Solonin, Y.M.

    2017-02-15

    Highlights: • Air influence on thermal stability of MgH{sub 2} have been studied by XPS. • XPS spectra of MgH{sub 2} films obtained at different hydrogen pressures have been studied. • Changes in the chemical state of MgH{sub 2} films depending on time of exposure to air are analyzed. • Correlation exists between chemical surface condition of MgH{sub 2} films and their thermal stableness. • Process of hydrogen desorption from MgH{sub 2} films is studied using TDS for model samples. - Abstract: Mechanism of influence of exposure to air on thermal stability of MgH{sub 2} obtained by direct hydrogenation from the gas phase, the nature of the hydride sensitivity to the negative impact of air and the role of its surface chemical state have not been studied enough. The present article presents data of X-ray photoelectron spectroscopy (XPS) measurements of the Mg 2s, O 1s, C 1s core-level spectra of surface of hydride MgH{sub 2} films derived by gas phase hydrogenation of model samples of metallic Mg, and the evolution of changes in the chemical state of the surface of the hydride films depending on the time of exposure to air and formation conditions (hydrogen pressure and hydrogenation regime). Based on results of XPS, X-ray diffraction (XRD), and thermodesorption spectroscopy (TDS), the existence of a relationship (correlation) between chemical surface condition of hydride MgH{sub 2} films obtained at different hydrogen pressures (3.0 MPa and 11.5 MPa) and their thermal stableness and temperature of the beginning of hydride decomposition has been established.

  6. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  7. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  8. Minimizing hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Coleman, C.E.; Cheadle, B.A.; Ambler, J.F.R.; Eadie, R.L.

    1985-01-01

    Zirconium alloy components can fail by hydride cracking if they contain large flaws and are highly stressed. If cracking in such components is suspected, crack growth can be minimized by following two simple operating rules: components should be heated up from at least 30K below any operating temperature above 450K, and when the component requires cooling to room temperature from a high temperature, any tensile stress should be reduced as much and as quickly as is practical during cooling. This paper describes the physical basis for these rules

  9. Low-frequency excitations in zirconium hydrides

    International Nuclear Information System (INIS)

    Radulescu, A.; Padureanu, I.; Rapeanu, S.N.; Beldiman, A.; Kozlov, Zh.A.; Semenov, V.A.

    1999-01-01

    The slow inelastic neutron scattering (INS) on ZrH x systems (x = 0.38, 0.52) revealed new excitations located within the energy range 2-10 MeV. Besides the acoustic vibrations specific to α-HCP Zr and γ-FCO Zr hydride the fine structure of these excitations is clearly observed. The origin of the new observed peaks is not very clear but a proton tunneling or a resonance effect in α-Zr lattice could be taken into account

  10. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Lizhen [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China); Chen, Qirong [Beijing Center for Physical and Chemical Analysis (BCPCA) (China); Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu, E-mail: xfmeng@cnu.edu.cn [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China)

    2015-05-15

    High-temperature phase-stable rice-like anatase TiO{sub 2} nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N{sub 2} adsorption–desorption isotherms. The results showed that TiO{sub 2} nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m{sup 2}/g. Unexpectedly, the rice-like TiO{sub 2} nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO{sub 2} nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO{sub 2} nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  11. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO2 nanocrystals

    Science.gov (United States)

    Lv, Lizhen; Chen, Qirong; Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu

    2015-05-01

    High-temperature phase-stable rice-like anatase TiO2 nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N2 adsorption-desorption isotherms. The results showed that TiO2 nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m2/g. Unexpectedly, the rice-like TiO2 nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO2 nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO2 nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  12. Incorporating an Electrode Modification Layer with a Vertical Phase Separated Photoactive Layer for Efficient and Stable Inverted Nonfullerene Polymer Solar Cells.

    Science.gov (United States)

    Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Li, Jinyan; Bai, Yiming; Wang, Fuzhi; Bian, Xingming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-20

    For bulk heterojunction polymer solar cells (PSCs), the donors and acceptors featuring specific phase separation and concentration distribution within the electron donor/acceptor blends crucially affect the exciton dissociation and charge transportation. Herein, efficient and stable nonfullerene inverted PSCs incorporating a phase separated photoactive layer and a titanium chelate electrode modification layer are demonstrated. Water contact angle (WCA), scanning kelvin probe microscopy (SKPM), and atomic force microscopy (AFM) techniques are implemented to characterize the morphology of photoactive layers. Compared with the control conventional device, the short-circuit current density (J sc ) is enhanced from 14.74 to 17.45 mAcm -2 . The power conversion efficiency (PCE) for the inverted PSCs with a titanium (diisopropoxide)-bis-(2,4-pentanedionate) (TIPD) layer increases from 9.67% to 11.69% benefiting from the declined exciton recombination and fairly enhanced charge transportation. Furthermore, the nonencapsulated inverted device with a TIPD layer demonstrates the best long-term stability, 85% of initial PCE remaining and an almost undecayed open-circuit voltage (V oc ) after 1440 h. Our results reveal that the titanium chelate is an excellent electrode modification layer to incorporate with a vertical phase separated photoactive layer for producing high-efficiency and high-stability inverted nonfullerene PSCs.

  13. Phased implementation of spaced clinic visits for stable HIV-positive patients in Rwanda to support Treat All.

    Science.gov (United States)

    Nsanzimana, Sabin; Remera, Eric; Ribakare, Muhayimpundu; Burns, Tracy; Dludlu, Sibongile; Mills, Edward J; Condo, Jeanine; Bucher, Heiner C; Ford, Nathan

    2017-07-21

    In 2016, Rwanda implemented "Treat All," requiring the national HIV programme to increase antiretroviral (ART) treatment coverage to all people living with HIV. Approximately half of the 164,262 patients on ART have been on treatment for more than five years, and long-term retention of patients in care is an increasing concern. To address these challenges, the Ministry of Health has introduced a differentiated service delivery approach to reduce the frequency of clinical visits and medication dispensing for eligible patients. This article draws on key policy documents and the views of technical experts involved in policy development to describe the process of implementation of differentiated service delivery in Rwanda. Implementation of differentiated service delivery followed a phased approach to ensure that all steps are clearly defined and agreed by all partners. Key steps included: definition of scope, including defining which patients were eligible for transition to the new model; definition of the key model components; preparation for patient enrolment; considerations for special patient groups; engagement of implementing partners; securing political and financial support; forecasting drug supply; revision, dissemination and implementation of ART guidelines; and monitoring and evaluation. Based on the outcomes of the evaluation of the new service delivery model, the Ministry of Health will review and strategically reduce costs to the national HIV program and to the patient by exploring and implementing adjustments to the service delivery model.

  14. Ethograms indicate stable well-being during prolonged training phases in rhesus monkeys used in neurophysiological research.

    Science.gov (United States)

    Hage, Steffen R; Ott, Torben; Eiselt, Anne-Kathrin; Jacob, Simon N; Nieder, Andreas

    2014-01-01

    Awake, behaving rhesus monkeys are widely used in neurophysiological research. Neural signals are typically measured from monkeys trained with operant conditioning techniques to perform a variety of behavioral tasks in exchange for rewards. Over the past years, monkeys' psychological well-being during experimentation has become an increasingly important concern. We suggest objective criteria to explore whether training sessions during which the monkeys work under controlled water intake over many days might affect their behavior. With that aim, we analyzed a broad range of species-specific behaviors over several months ('ethogram') and used these ethograms as a proxy for the monkeys' well-being. Our results show that monkeys' behavior during training sessions is unaffected by the duration of training-free days in-between. Independently of the number of training-free days (two or nine days) with ad libitum food and water supply, the monkeys were equally active and alert in their home group cages during training phases. This indicates that the monkeys were well habituated to prolonged working schedules and that their well-being was stably ensured during the training sessions.

  15. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibin; Wang, Jun; Wang, Yan

    2011-01-01

    Highlights: → Form-stable PMMA/PEG/AlN PCMs were prepared by in situ polymerization method. → AlN additive effectively enhanced the heat transfer property of composite PCMs. → The composites exhibited desirable thermal performance and electric insulativity. → The composites were available for the thermal management of electronic device. - Abstract: This work was focused on the preparation and characterization of a new type of form-stable phase change material (PCM) employed in thermal management. Using the method of in situ polymerization, polyethylene glycol (PEG) acting as the PCM and aluminum nitride (AlN) serving as the thermal conductivity promoter were uniformly encapsulated and embedded inside the three-dimensional network structure of PMMA matrix. When the mass fraction of PEG was below 70%, the prepared composite PCMs remained solid without leakage above the melting point of the PEG. XRD and FT-IR results indicated that the PEG was physically combined with PMMA matrix and AlN additive and did not participate in the polymerization. Thermal analysis results showed that the prepared composite PCMs possess available latent heat capacity and thermal stability, and the AlN additive was able to effectively enhance the heat transfer property of organic PCM. Moreover, the volume resistivity of composite achieved (5.92 ± 0.16) x 10 10 Ω cm when the mass ratio of AlN was 30%. To sum up, the prepared form-stable PCMs were competent for the thermal management of electronic device due to their acceptable thermal performance and electric insulativity.

  16. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials

    International Nuclear Information System (INIS)

    Lv, Peizhao; Liu, Chenzhen; Rao, Zhonghao

    2016-01-01

    Highlights: • Different particle sizes of kaolin were employed to load paraffin. • The effects and reasons of particle size on thermal conductivity were studied. • Thermal property and thermal stability of the composites were investigated. • The leakage and thermal storage and release rate of the composites were studied. • The effect of vacuum impregnation method on thermal conductivity was investigated. - Abstract: In this paper, different particle sizes of kaolin were employed to incorporate paraffin via vacuum impregnation method. The paraffin/kaolin composites were characterized by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeter (DSC) and Thermogravimetry (TG). The results showed that the paraffin/kaolin composite with the largest particle size of kaolin (K4) has the highest thermal conductivity (0.413 W/(m K) at 20 °C) among the diverse composites. The latent heat capacity of paraffin/K4 is 119.49 J/g and the phase change temperature is 62.4 °C. In addition, the thermal properties and thermal conductivities of paraffin/K4 with different mass fraction of K4 (0–60%) were investigated. The thermal conductivities of the composites were explained in microcosmic field. The phonon mean free path determines the thermal conductivity, and it can be significantly affected by temperature and the contact surface area. The leaks, thermal storage and release properties of pure paraffin and paraffin/kaolin composites were investigated and the composites presented good thermal stabilities.

  17. Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2018-01-01

    In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager's reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.

  18. Entropy stable modeling of non-isothermal multi-component diffuse-interface two-phase flows with realistic equations of state

    KAUST Repository

    Kou, Jisheng

    2018-02-25

    In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager\\'s reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.

  19. Quantitation of (R)- and (S)-linalool in beer using solid phase microextraction (SPME) in combination with a stable isotope dilution assay (SIDA).

    Science.gov (United States)

    Steinhaus, Martin; Fritsch, Helge T; Schieberle, Peter

    2003-11-19

    A stable isotope dilution assay (SIDA) was developed for the quantitation of both linalool enantiomers using synthesized [2H(2)]R/S-linalool as the internal standard. For enrichment of the target compound from beer, a solid phase microextraction method (SPME) was developed. In comparison to the more time-consuming extraction/distillation cleanup of the beer samples, the results obtained by SPME/SIDA were very similar, even under nonequilibration conditions. Analysis of five different types of beer showed significant differences in the linalool concentrations, which were clearly correlated with the intensity of the hoppy aroma note as evaluated by a sensory panel. In addition, significant differences in the R/S ratios were measured in the beers. The SPME/SIDA yielded exact data independently from headspace sampling parameters, such as exposure time or ionic strength of the solution.

  20. Intensity effects in the formation of stable islands in phase space during the multi-turn extraction process at the CERN PS

    CERN Document Server

    Machida, Shinji; Prior, Chris; Gilardoni, Simone; Giovannozzi, Massimo; Hirlander, Simon; Huschauer, Alexander

    2016-01-01

    The CERN PS utilises a Multi-Turn Extraction (MTE) scheme to stretch the beam pulse length to optimise the filling process of the SPS. MTE is a novel technique to split a beam in transverse phase space into nonlinear stable islands. The recent experimental results indicate that the positions of the islands depend on the total beam intensity. Particle simulations have been performed to understand the detailed mechanism of the intensity dependence. The analysis carried out so far suggests space charge effects through image charges and image currents on the vacuum chamber and the magnets iron cores dominate the observed behaviour. In this talk, the latest analysis with realistic modelling of the beam environment is discussed and it is shown how this further improves the understanding of intensity effects in MTE.

  1. Conversion From Twice-Daily Tacrolimus Capsules to Once-Daily Extended-Release Tacrolimus (LCPT): A Phase 2 Trial of Stable Renal Transplant Recipients

    Science.gov (United States)

    Gaber, A. Osama; Alloway, Rita R.; Bodziak, Kenneth; Kaplan, Bruce; Bunnapradist, Suphamai

    2013-01-01

    Background LCP-Tacro is an extended-release formulation of tacrolimus designed for once-daily dosing. Phase 1 studies demonstrated greater bioavailability to twice-daily tacrolimus capsules and no new safety concerns. Methods In this phase 2 study, adult stable kidney transplant patients on tacrolimus capsules (Prograf) twice-daily were converted to tacrolimus tablets (LCP-Tacro) once-daily; patients continued on LCP-Tacro once-daily for days 8 to 21; trough levels were to be maintained between 5 and 15 ng/mL; 24-hr pharmacokinetic assessments were done on days 7 (baseline pre-switch), 14, and 21. Results Forty-seven patients completed LCP-Tacro dosing per protocol. The mean conversion ratio was 0.71. Pharmacokinetic data demonstrated consistent exposure (AUC) at the lower conversion dose. Cmax (P=0.0001), Cmax/Cmin ratio (P<0.001), percent fluctuation (P<0.0001), and swing (P=0.0004) were significantly lower and Tmax significantly (P<0.001) longer for LCP-Tacro versus Prograf. AUC24 and Cmin correlation coefficients after 7 and 14 days of therapy were 0.86 or more, demonstrating a robust correlation between LCP-Tacro tacrolimus exposure and trough levels. There were three serious adverse events; none were related to study drug and all were resolved. Conclusions Stable kidney transplant patients can be safely converted from Prograf twice-daily to LCP-Tacro. The greater bioavailability of LCP-Tacro allows for once-daily dosing and similar (AUC) exposure at a dose approximately 30% less than the total daily dose of Prograf. LCP-Tacro displays flatter kinetics characterized by significantly lower peak-trough fluctuations. PMID:23715050

  2. Towards a new classification of stable phase schizophrenia into major and simple neuro-cognitive psychosis: Results of unsupervised machine learning analysis.

    Science.gov (United States)

    Kanchanatawan, Buranee; Sriswasdi, Sira; Thika, Supaksorn; Stoyanov, Drozdstoy; Sirivichayakul, Sunee; Carvalho, André F; Geffard, Michel; Maes, Michael

    2018-05-23

    Deficit schizophrenia, as defined by the Schedule for Deficit Syndrome, may represent a distinct diagnostic class defined by neurocognitive impairments coupled with changes in IgA/IgM responses to tryptophan catabolites (TRYCATs). Adequate classifications should be based on supervised and unsupervised learning rather than on consensus criteria. This study used machine learning as means to provide a more accurate classification of patients with stable phase schizophrenia. We found that using negative symptoms as discriminatory variables, schizophrenia patients may be divided into two distinct classes modelled by (A) impairments in IgA/IgM responses to noxious and generally more protective tryptophan catabolites, (B) impairments in episodic and semantic memory, paired associative learning and false memory creation, and (C) psychotic, excitation, hostility, mannerism, negative, and affective symptoms. The first cluster shows increased negative, psychotic, excitation, hostility, mannerism, depression and anxiety symptoms, and more neuroimmune and cognitive disorders and is therefore called "major neurocognitive psychosis" (MNP). The second cluster, called "simple neurocognitive psychosis" (SNP) is discriminated from normal controls by the same features although the impairments are less well developed than in MNP. The latter is additionally externally validated by lowered quality of life, body mass (reflecting a leptosome body type), and education (reflecting lower cognitive reserve). Previous distinctions including "type 1" (positive)/"type 2" (negative) and DSM-IV-TR (eg, paranoid) schizophrenia could not be validated using machine learning techniques. Previous names of the illness, including schizophrenia, are not very adequate because they do not describe the features of the illness, namely, interrelated neuroimmune, cognitive, and clinical features. Stable-phase schizophrenia consists of 2 relevant qualitatively distinct categories or nosological entities with SNP

  3. Development of low angle grain boundaries in lightly deformed superconducting niobium and their influence on hydride distribution and flux perturbation

    Science.gov (United States)

    Sung, Z.-H.; Wang, M.; Polyanskii, A. A.; Santosh, C.; Balachandran, S.; Compton, C.; Larbalestier, D. C.; Bieler, T. R.; Lee, P. J.

    2017-05-01

    This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (residual resistivity ratio ≥ 200) superconducting radio frequency (SRF)-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb1-xHx). Nb1-xHx is detrimental to SRF Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemical surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after an 800 °C/2 h anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at an LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800 °C annealing.

  4. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  5. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  6. Filling the gap in Ca input-output budgets in base-poor forest ecosystems: The contribution of non-crystalline phases evidenced by stable isotopic dilution

    Science.gov (United States)

    van der Heijden, Gregory; Legout, Arnaud; Mareschal, Louis; Ranger, Jacques; Dambrine, Etienne

    2017-07-01

    In terrestrial ecosystems, plant-available pools of magnesium and calcium are assumed to be stored in the soil as exchangeable cations adsorbed on the surface of mineral and/or organic particles. The pools of exchangeable magnesium and calcium are measured by ion-exchange soil extractions. These pools are sustained in the long term by the weathering of primary minerals in the soil and atmospheric inputs. This conceptual model is the base of input-output budgets from which soil acidification and the sustainability of soil chemical fertility is inferred. However, this model has been questioned by data from long-term forest ecosystem monitoring sites, particularly for calcium. Quantifying the contribution of atmospheric inputs, ion exchange and weathering of both primary, secondary and non-crystalline phases to tree nutrition in the short term is challenging. In this study, we developed and applied a novel isotopic dilution technique using the stable isotopes of magnesium and calcium to study the contribution of the different soil phases to soil solution chemistry in a very acidic soil. The labile pools of Mg and Ca in the soil (pools in equilibrium with the soil solution) were isotopically labeled by spraying a solution enriched in 26Mg and 44Ca on the soil. Labeled soil columns were then percolated with a dilute acid solution during a 3-month period and the isotopic dilution of the tracers was monitored in the leaching solution, in the exchangeable (2 sequential 1 mol L-1 ammonium acetate extractions) and non-crystalline (2 sequential soil digestions: oxalic acid followed by nitric acid) phases. Significant amounts of Mg and Ca isotope tracer were recovered in the non-crystalline soil phases. These phases represented from 5% to 25% and from 24% to 50%, respectively, of the Mg and Ca labile pools during the experiment. Our results show that non-crystalline phases act as both a source and a sink of calcium and magnesium in the soil, and contribute directly to soil

  7. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-01-01

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  8. A study of stress reorientation of hydrides in zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Yourong, Jiang; Bangxin, Zhou [Nuclear Power Inst. of China, Chengdu, SC (China)

    1994-10-01

    Under the conditions of circumferential tensile stress from 70 to 180 MPa for Zircaloy tubes or the tensile stress from 55 to 180 MPa for Zircaloy-4 plates and temperature cycling between 150 and 400 degree C, the effects of stress and the number of temperature cycling on hydride reorientation in Zircaloy-4 tubes and plates and Zircaloy-2 tubes containing about 220 {mu}g/g hydrogen have been investigated. With the increase of stress and/or the number of temperature cycling, the level of hydride reorientation increases. When hydride reorientation takes place, there is a threshold stress concerned with the number of temperature cycling. Below the threshold stress, hydride reorientation is not obvious. When applied stress is higher than the threshold stress, the level of hydride reorientation increases with the increase of stress and the number of temperature cycling. Hydride reorientation in Zircaloy-4 tubes develops gradually from the outer surface to inner surface. It might be related to the difference of texture between outer surface and inner surface. The threshold stress is affected by both the texture and the value of B. So controlling texture could still restrict hydride reorientation under tensile stress.

  9. Analysis of Ni-HYDRIDE Thin Film after Surface Plasmon Generation by Laser Technique

    Science.gov (United States)

    Violante, V.; Castagna, E.; Sibilia, C.; Paoloni, S.; Sarto, F.

    2005-12-01

    A nickel hydride thin film was studied by the attenuated total reflection method. The differences in behavior between a "black" film, and a pure nickel film "blank," are shown. The black nickel hydride film has been obtained by a short electrolysis with 1 M Li2SO4 electrolyte in light water, A shift in the minimum of the observed reflected light occurs, together with a change in the minimum shape (i.e. its half-height width increases). These two phenomenon are due to the change in the electronic band structure of the metal induced by electrons added to the lattice by hydrogen. The change of the electronic structure, revealed by the laser coupling conditions, leads us to consider that a hydride phase was created. Both the blank (not hydrogenated) and black (hydrogenated) specimens were taken under He-Ne laser beam at the reflectance minimum angle for about three hours. A SIMS analysis was also implemented to reveal differences in the isotopic composition of Cu, as marker element between the blank and black films, in order to study the coupled effect of electrolysis and plasmon-polariton excitation on LENR processes in condensed matter.

  10. The role of chemical free energy and elastic strain in the nucleation of zirconium hydride

    International Nuclear Information System (INIS)

    Barrow, A.T.W.; Toffolon-Masclet, C.; Almer, J.; Daymond, M.R.

    2013-01-01

    In this work a combination of synchrotron X-ray diffraction and thermodynamic modelling has been used to study the dissolution and precipitation of zirconium hydride in α-Zr establishing the role of elastic misfit strain and chemical free energy in the α → α + δ phase transformation. The nucleation of zirconium hydride is dominated by the chemical free energy where the chemical driving force for hydride precipitation is proportional to the terminal-solid solubility for precipitation and can be predicted by a function that is analogous to the universal nucleation parameter for the bainite transformation in ferrous alloys. The terminal-solid solubility for precipitation was found to be kinetically limited ⩾287 °C at a cooling rate of 5 °C min −1 or greater. The terminal solubilities were established using an offset method applied to the lattice strain data where a resolution of ∼10 wppm H can be achieved in the 〈c〉-direction. This is aided by the introduction of intra-granular strains in the 〈c〉-direction during cooling as a result of the thermal expansion anisotropy which increases the anisotropy associated with the misfitting H atoms within the α-Zr lattice

  11. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  12. Develop improved metal hydride technology for the storage of hydrogen. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.

    1998-12-04

    The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

  13. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    Science.gov (United States)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  14. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  15. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  16. Investigation process of alcoholysis of hydride aluminium-adobe

    International Nuclear Information System (INIS)

    Numanov, M.I.; Normatov, I.Sh.; Mirsaidov, U.M.

    2001-01-01

    Considering of that process of acid treatment of aluminium-adobe hydride realizes in the ethyl alcohol media it was necessary study the process of alcoholysis of AlH 3 and aluminium additives. In the end of article authors became to conclusion that deficiency of spontaneous alcoholysis of AlH 3 in adobe caused by protective action of fiber; solvate ability of LiCl and alkoxy aluminium hydride of lithium-LiCl·CO 2 H 5 OH, Li Al(OC 2 H 5 ) 4 ·nC 2 H 5 OH decreasing the expectancy of responding of alcohol with aluminium hydride

  17. The Separation of Hydrogen Tritium and Tritium Hydride by Gas Chromatography; Separation de l'hydrogene, du tritium et de l'hydrure de tritium par chromatographic en phase gazeuse; Razdelenie vodoroda, tritiya i gidrida tritiya posredstvom gazovoj khromatografii; Separacion del hidrogeno, tritio e hidruro de tritio por cromatografia de gases

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H A; Carter, Jr, E H [University of Tennessee, Knoxville, TN (United States)

    1962-01-15

    Now that successful separation of hydrogen, deuterium and hydrogen deuteride has been achieved by gas chromatography, similar studies are being made dealing with mixtures of hydrogen, tritium and tritium hydride. Since tritium is used in tracer quantities the usual katharometer cannot be employed for its detection. This difficulty has been overcome by providing immediately following the katharometer a vibrating reed electrometer equipped with a high resistance leak which allows continuous monitoring of the activity of any tritium or tritium hydride emerging from the column by means of synchronized recorders. Separation of such mixtures has been tested with columns packed with palladium on silica, silica, alumina, and alumina coated with chromium oxide or ferric oxide. No effective separation was obtained with the palladium on silica column. Good separation was achieved with the plain silica column where hydrogen was employed as the carrier gas, but helium failed to elute the isotopes. Satisfactory results were obtained with the coated, partially deactivated alumina packing when helium or neon was the carrier gas, but the best separation was found with a column packing of uncoated activated alumina. Calibration with helium-tritium mixtures of known activity plus equilibrated hydrogen-tritium mixtures also of known activity allows quantitative estimation of tritium and tritium hydride. (author) [French] La separation de l'hydrogene, du deuterium et du deuterure d'hydrogene par chromatographic en phase gazeuse ayant ete realisee, on procede maintenant a des etudes semblables sur des melanges d'hydrogene de tritium et d'hydrure de tritium. Comme le tritium n'est present qu'en quantites infimes, on ne peut utiliser le catharometre ordinaire pour le detecter. On a surmonte cette difficulte en faisant suivre le catharometre d'un electrometre a lame vibrante, muni d'une fuite haute resistance, qui permet de mesurer, a l'aide d'enregistreurs synchronises, l'activite de

  18. Development of delayed hydride cracking resistant-pressure tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kwon, Sang Chul; Kim, S. S.; Yim, K. S

    2000-10-01

    For the first time, we demonstrate that the pattern of nucleation and growth of a DHC crack is governed by the precipitation of hydrides so that the DHC velocity and K{sub IH} are determined by an angle of the cracking plane and the hydride habit plane 10.7. Since texture controls the distribution of the 10.7 habit plane in Zr-2.5Nb pressure tube, we draw a conclusion that a textural change in Zr-2.5Nb tube from a strong tangential texture to the radial texture shall increase the threshold stress intensity factor, K{sub IH}, and decrease the delayed hydride cracking velocity. This conclusion is also verified by a complimentary experiment showing a linear dependence of DHCV and K{sub IH} with an increase in the basal component in the cracking plane. On the basis of the study on the DHC mechanism and the effect of manufacturing processes on the properties of Zr-2.5Nb tube, we have established a manufacturing procedure to make pressure tubes with improved DHC resistance. The main features of the established manufacturing process consist in the two step-cold pilgering process and the intermediate heat treatment in the {alpha} + {beta} phase for Zr-2.5Nb alloy and in the {alpha} phase for Zr-1Nb-1.2Sn-0.4Fe alloy. The manufacturing of DHC resistant-pressure tubes of Zr-2.5Nb and Zr-1N-1.2Sn-0.4Fe was made in the ChMP zirconium plant in Russia under a joint research with Drs. Nikulina and Markelov in VNIINM (Russia). Zr-2.5Nb pressure tube made with the established manufacturing process has met all the specification requirements put by KAERI. Chracterization tests have been jointly conducted by VNIINM and KAERI. As expected, the Zr-2.5Nb tube made with the established procedure has improved DHC resistance compared to that of CANDU Zr-2.5Nb pressure tube used currently. The measured DHC velocity of the Zr-2.5Nb tube meets the target value (DHCV <5x10{sup -8} m/s) and its other properties also were equivalent to those of the CANDU Zr-2.5Nb tube used currently. The Zr-1Nb-1

  19. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  20. Process for production of a metal hydride

    Science.gov (United States)

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  1. Hydrogen storage properties of metallic hydrides

    International Nuclear Information System (INIS)

    Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Nowadays, energy needs are mainly covered by fossil energies leading to pollutant emissions mostly responsible for global warming. Among the different possible solutions for greenhouse effect reduction, hydrogen has been proposed for energy transportation. Indeed, H 2 can be seen as a clean and efficient energy carrier. However, beside the difficulties related to hydrogen production, efficient high capacity storage means are still to be developed. Many metals and alloys are able to store large amounts of hydrogen. This latter solution is of interest in terms of safety, global yield and long term storage. However, to be suitable for applications, such compounds must present high capacity, good reversibility, fast reactivity and sustainability. In this paper, we will review the structural and thermodynamic properties of metallic hydrides. (authors)

  2. IAEA co-ordinated research program. 'Round Robin' on measuring the velocity of delayed hydride cracking (DHC)

    International Nuclear Information System (INIS)

    Grigoriev, V.; Jakobsson, R.

    1999-09-01

    The International Atomic Agency (IAEA) has initiated a new Co-ordinated Research Programme (CRP) on Hydrogen and hydride induced degradation of the mechanical and physical properties of Zirconium-based alloys. In the first phase of this CRP the methodology for measuring the velocity of Delayed Hydride Cracking (DHC) should be established and participating laboratories from about nine countries around the world carry out identical tests in 'round robin'. The objective of the present work is to establish at Studsvik laboratory the method of a constant load cracking test on unirradiated Zr-2.5Nb and attain a comparison of results between laboratories. Constant load tests are performed on specimens cut from unirradiated CANDU Zr-2.5Nb pressure tube and the rate of crack propagation is determined in each test. Pre-hydrided specimens for testing are supplied from the host laboratory. Six specimens have been tested for delayed hydride cracking (DHC) at 250 deg C. The axial crack growth velocities measured in the tests are within the interval of 8.62x10 -8 - 1.06x10 -7 m/s. The results obtained agree well with the earlier published data for similar materials and test conditions

  3. Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Department of Physics, Pollachi Institute of Engineering and Technology, Pollachi 642 205 (India); Ananthapadmanabhan, P.V.; Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Vision for Wisdom, Temple of Consciousness, Aliyar 642 101 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Suresh, G. [Department of Physics, Park College of Engineering and Technology, Coimbatore 641 659 (India); Su, L.T.; Tok, A.I.Y. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2013-06-15

    Pure zirconium oxide powders with particle size 2–33 nm are synthesized by reactive plasma processing. Transmission electron microscopy investigation of these particles revealed size dependent behavior for their phase stabilization. The monoclinic phase is found to be stable when particle size is ≥20 nm; Tetragonal is found to be stabilized in the range of 7–20 nm and as the particle size decreases to 6 nm and less, the cubic phase is stabilized. - Highlights: ► Direct conversion of micron-sized zirconium hydride powder to single crystal ZrO{sub 2} nanopowder. ► Size dependent stabilization of cubic, tetragonal and monoclinic phases in the reactive plasma synthesized ZrO{sub 2} nanopowder. ► Transmission electron microscopic investigation to identify particles of different sizes and their corresponding phase structure.

  4. Artificial exomuscle investigations for applications-metal hydride

    International Nuclear Information System (INIS)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane

    2007-01-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  5. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  6. Electrochemical modeling of hydrogen storage in hydride-forming electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2009-01-01

    An electrochemical kinetic model (EKM) is developed, describing the electrochemical hydrogen storage in hydride-forming materials under equilibrium conditions. This model is based on first principles of electrochemical reaction kinetics and statistical thermodynamics and describes the complex,

  7. Development of zirconium hydride highly effective moderator materials

    International Nuclear Information System (INIS)

    Yin Changgeng

    2005-10-01

    The zirconium hydride with highly content of hydrogen and low density is new efficient moderator material for space nuclear power reactor. Russia has researched it to use as new highly moderator and radiation protection materials. Japanese has located it between the top of pressure vessel and the main protection as a shelter, the work temperature is rach to 220 degree C. The zirconium hydride moderator blocks are main parts of space nuclear power reactor. Development of zirconium hydride moderator materials have strength research and apply value. Nuclear Power Research and Design Instituteoh China (NPIC) has sep up the hydrogenation device and inspect systems, and accumurate a large of experience about zirconium hydride, also set up a strict system of QA and QC. (authors)

  8. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  9. Reactions of zinc hydride and magnesium hydride with pyridine; synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes are described. Zinc hydride and magnesium hydride dissolve in and react with pyridine, and the reaction has been studied in detail in the case of zinc hydride. Evaporation of the solvent after 1–2 hours at 0°C

  10. Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage

    International Nuclear Information System (INIS)

    Cai Yibing; Ke Huizhen; Lin Liang; Fei Xiuzhu; Wei Qufu; Song Lei; Hu Yuan; Fong Hao

    2012-01-01

    Highlights: ► Electrospun binary fatty acid eutectics/PET ultrafine composite fibers were prepared. ► Fatty acid eutectics had appropriate phase transition temperature and heat enthalpy. ► Their morphological structures and thermal properties were different from each other. ► Composite fibers could be innovative form-stable PCMs for thermal energy storage. - Abstract: The ultrafine composite fibers based on the composites of binary fatty acid eutectics and polyethylene terephthalate (PET) with varied fatty acid eutectics/PET mass ratios (50/100, 70/100, 100/100 and 120/100) were fabricated using the technique of electrospinning as form-stable phase change materials (PCMs). The five binary fatty acid eutectics including LA–MA, LA–PA, MA–PA, MA–SA and PA–SA were prepared according to Schrader equation, and then were selected as an innovative type of solid–liquid PCMs. The results characterized by differential scanning calorimeter (DSC) indicated that the prepared binary fatty acid eutectics with low phase transition temperatures and high heat enthalpies for climatic requirements were more suitable for applications in building energy storage. The structural morphologies, thermal energy storage and thermal stability properties of the ultrafine composite fibers were investigated by scanning electron microscope (SEM), DSC and thermogravimetric analysis (TGA), respectively. SEM images revealed that the electrospun binary fatty acid eutectics/PET ultrafine composite fibers possessed the wrinkled surfaces morphologies compared with the neat PET fibers with cylindrical shape and smooth surfaces; the grooves or ridges on the corrugated surface of the ultrafine composite fibers became more and more prominent with increasing fatty acid eutectics amount in the composite fibers. The fibers with the low mass ratio maintained good structural morphologies while the quality became worse when the mass ratio is too high (more than 100/100). DSC measurements

  11. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  12. Spectroscopy of helium hydride and triatomic hydrogen molecules

    International Nuclear Information System (INIS)

    Ketterle, W.

    1986-07-01

    Helium hydride and triatomic hydrogen has been produced by charge exchange between fast mass selected beams of molecular ions and alkali vapor. Using this method, the first discrete spectra of helium hydride were obtained. Fine electronic transitions with resolved rotational structure were observed in the visible and near infrared. Four isotopic mixtures were studied. Furthermore the first lifetime measurement of triatomic hydrogen states were performed and compared to theoretical predictions. (orig.)

  13. Proton location in metal hydrides using electron spin resonance

    International Nuclear Information System (INIS)

    Venturini, E.L.

    1979-01-01

    Electron spin resonance (ESR) of dilute paramagnetic ions establishes the site symmetry of these ions. In the case of metal hydrides the site symmetry is determined by the number and location of neighboring protons. Typical ESR spectra for trivalent erbium in scandium and yttrium hydrides are presented and analyzed, and this technique is shown to be a versatile microscopic probe of the location, net charge and occupation probability of nearby protons

  14. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  15. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    International Nuclear Information System (INIS)

    Ogawa, Hiroshi

    2015-01-01

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation

  16. Hydrogen storage in lithium hydride: A theoretical approach

    Science.gov (United States)

    Banger, Suman; Nayak, Vikas; Verma, U. P.

    2018-04-01

    First principles calculations have been carried out to analyze structural stability of lithium hydride (LiH) in NaCl phase using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Calculations have been extended to physiosorbed H-atom compounds LiH·H2, LiH·3H2 and LiH·4H2. The obtained results are discussed in the paper. The results for LiH are in excellent agreement with earlier reported data. The obtained direct energy band gap of LiH is 3.0 eV which is in excellent agreement with earlier reported theoretical band gap. The electronic band structure plots of the hydrogen adsorbed compounds show metallic behavior. The elastic constants, anisotropy factor, shear modulus, Young's modulus, Poisson's ratio and cohesive energies of all the compounds are calculated. Calculation of the optical spectra such as the real and imaginary parts of dielectric function, optical reflectivity, absorption coefficient, optical conductivity, refractive index, extinction coefficient and electron energy loss are performed for the energy range 0-15 eV. The obtained results for LiH·H2, LiH·3H2 and LiH·4H2, are reported for the first time. This study has been made in search of materials for hydrogen storage. It is concluded that LiH is a promising material for hydrogen storage.

  17. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibing; Wang, Jun; Wang, Yan

    2012-01-01

    Graphite nanoplatelets (GnPs), obtained by sonicating the expanded graphite, were employed to simultaneously enhance the thermal (k) and electrical (σ) conductivity of organic form-stable phase change materials (FSPCMs). Using the method of in situ polymerization upon ultrasonic irradiation, GnPs serving as the conductive fillers and polyethylene glycol (PEG) acting as the phase change material (PCM) were uniformly dispersed and embedded inside the network structure of polymethyl methacrylate (PMMA), which contributed to the well package and self-supporting properties of composite FSPCMs. X-ray diffraction and Fourier transform infrared spectroscopy results indicated that the GnPs were physically combined with PEG/PMMA matrix and did not participate in the polymerization. The GnPs additives were able to effectively enhance the k and σ of organic FSPCM. When the mass ratio of GnP was 8%, the k and σ of FSPCM changed up to 9 times and 8 orders of magnitude over that of PEG/PMMA matrix, respectively. The improvements in both k and σ were mainly attributed to the well dispersion and large aspect ratio of GnPs, which were endowed with benefit of forming conducting network in polymer matrix. It was also confirmed that all the prepared specimens possessed available thermal storage density and thermal stability. -- Highlights: ► GnPs were employed to simultaneously enhance the k and σ of organic FSPCMs. ► PEG/PMMA/GnPs composite FSPCMs were prepared by in situ polymerization method. ► The composite FSPCMs exhibited well package and self-supporting properties. ► GnPs additives effectively enhanced the k and σ of composite FSPCMs. ► All the composites possessed available thermal storage density and thermal stability.

  18. Analysis of South Atlantic Anomaly perturbations on Sentinel-3A Ultra Stable Oscillator. Impact on DORIS phase measurement and DORIS station positioning

    Science.gov (United States)

    Jalabert, Eva; Mercier, Flavien

    2018-07-01

    DORIS measurements rely on the precise knowledge of the embedded oscillator which is called the Ultra Stable Oscillator (DORIS USO). The important radiations in the South Atlantic Anomaly (SAA) perturb the USO behavior by causing rapid frequency variations when the satellite is flying through the SAA. These variations are not taken into account in standard DORIS processing, since the USO is modelled as a third degree polynomial over 7-10 days. Therefore, there are systematic measurements errors when the satellite passes through SAA. In standard GNSS processing, the clock is directly estimated at each epoch. On Sentinel-3A, the GPS receiver and the DORIS receiver use the same USO. It is thus possible to estimate the behavior of the USO using GPS measurements. This estimated USO behavior can be used in the DORIS processing, instead of the third degree polynomial, hence allowing an estimation of the orbit sensitivity to these USO anomalies. This study shows two main results. First, the SAA effect on the DORIS USO is observed well using GPS measurements. Second, the USO behavior observed with GPS can be used to mitigate the SAA effect. Indeed, when used in Sentinel-3A processing, the resulting DORIS orbit shows improved phase measurements and station positioning for stations inside the SAA (Arequipa and Cachoeira). The phase measurements residuals are improved by up to 10 cm, and station vertical positioning (i.e. on the estimated Up component in the North-East-Up station frame) is improved by up to a few centimeters. However, the orbit itself is not sensitive to the correction because only two stations (out of almost 60) are SAA-sensitive on Sentinel-3A.

  19. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method

    International Nuclear Information System (INIS)

    Li, Min; Wu, Zhishen; Tan, Jinmiao

    2012-01-01

    Highlights: ► Paraffin/SiO 2 /EG composite PCM was prepared with sol–gel method. ► The thermal conductivity of SiO 2 /paraffin/EG is 94.7% higher than paraffin. ► The latent heat of paraffin/SiO 2 /EG composite is 104.4 J/g. -- Abstract: A form-stable paraffin/silicon dioxide (SiO 2 )/expanded graphite (EG) composite phase change material (PCM) was prepared by sol–gel method. Silica gel acts as the supporting material and EG is used to increase the thermal conductivity. The mass fractions of silicon oxide and graphite are 20.8% and 7.2%, respectively. The composite PCM was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR) method. Thermal properties and thermal stability of the composite PCM were studied using differential scanning calorimetry (DSC). The result shows that paraffin was well dispersed in the network of silica gel and there is no chemical reaction between them. The phase change temperature of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 27.53 °C and 27.72 °C, respectively. The latent heat of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 112.8 J/g and 104.4 J/g, respectively. The thermal conductivity of the SiO 2 /paraffin composite and the SiO 2 /paraffin/EG composite are 28.2% and 94.7% higher than that of paraffin.

  20. Preparation and chemical crystallographic study of new hydrides and hydro-fluorides of ionic character; Preparation et etude cristallochimique de nouveaux hydrures et fluorohydrures a caractere ionique

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung-Ho

    1988-07-22

    Within the context of a growing interest in the study of reversible hydrides with the perspective of their application in hydrogen storage, this research thesis more particularly addressed the case of ternary hydrides and fluorides, and of hydro-fluorides. The author reports the development of a method of preparation of alkaline hydrides, of alkaline earth hydrides and of europium hydride, and then the elaboration of ternary hydrides. He addresses the preparation of caesium fluorides and of calcium or nickel fluorides, of Europium fluorides, and of ternary fluorides. Then, he addresses the preparation of hydro-fluorides (caesium, calcium, europium fluorides, and caesium and nickel fluorides). The author presents the various experimental techniques: chemical analysis, radio-crystallographic analysis, volumetric mass density measurement, magnetic measurements, ionic conductivity measurements, Moessbauer spectroscopy, and nuclear magnetic resonance. He reports the crystallographic study of some ternary alkaline and alkaline-earth hydrides (KH-MgH{sub 2}, RbH-CaH{sub 2}, CsH-CaH{sub 2}, RbH-MgH{sub 2} and CsH-MgH{sub 2}) and of some hydro-fluorides (CsCaF{sub 2}H, EuF{sub 2}H, CsNiF{sub 2}H) [French] Dans une premiere partie, de nouveaux hydrures ternaires ont ete prepares et caracterises. Les systemes etudies sont AH-MH 2 (A = K, Rb, Cs et M = Mg, Ca). Dans les systemes AH-MgH 2 l'evolution structurale a ete discutee en fonction du caractere iono-covalent de la liaison magnesium-hydrogene. Dans une deuxieme partie, plusieurs nouveaux fluorohydrures ont ete mis en evidence. L'effet de la substitution de l'hydrogene au fluor dans ces phases a ete etudiee en utilisant la RMN, la spectroscopie Moessbauer, la conductivite ionique et les mesures magnetiques.

  1. Electronic structure, bonding and chemisorption in metallic hydrides

    International Nuclear Information System (INIS)

    Ward, J.W.

    1980-01-01

    Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d > 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems

  2. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  3. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  4. Quantification of 2-acetyl-1-pyrroline in rice by stable isotope dilution assay through headspace solid-phase microextraction coupled to gas chromatography-tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Maraval, Isabelle [UMR Qualisud, CIRAD, 73 Rue J. F. Breton, 34398 Montpellier Cedex 5 (France); UMR Qualisud, Universite Montpellier 2, place E. Bataillon, 34095 Montpellier Cedex 5 (France); Sen, Kemal [Department of Food Engineering, Faculty of Agriculture, University of Cukurova, 01330 Adana (Turkey); Agrebi, Abdelhamid; Menut, Chantal; Morere, Alain [UMR 5247, Institut des Biomolecules Max Mousseron (IBMM), CNRS, Universites Montpellier 2 et 1, Ecole Nationale Superieure de Chimie de Montpellier, 8 Rue de l' Ecole Normale, 34296 Montpellier Cedex 5 (France); Boulanger, Renaud [UMR Qualisud, CIRAD, 73 Rue J. F. Breton, 34398 Montpellier Cedex 5 (France); Gay, Frederic [CIRAD, DORAS Centre, Research and Development Building, Kasetsart University, Bangkok 10900 (Thailand); Mestres, Christian [UMR Qualisud, CIRAD, 73 Rue J. F. Breton, 34398 Montpellier Cedex 5 (France); Gunata, Ziya, E-mail: zgunata@univ-montp2.fr [UMR Qualisud, Universite Montpellier 2, place E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2010-08-24

    A new and convenient synthesis of 2-acetyl-1-pyrroline (2AP), a potent flavor compound in rice, and its ring-deuterated analog, 2-acetyl-1-d{sub 2}-pyrroline (2AP-d{sub 2}), was reported. A stable isotope dilution assay (SIDA), involving headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-positive chemical ionization-ion trap-tandem mass spectrometry (GC-PCI-IT-MS-MS), was developed for 2AP quantification. A divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was used for HS-SPME procedure and parameters affecting analytes recovery, such as extraction time and temperature, pH and salt, were studied. The repeatability of the method (n = 10) expressed as relative standard deviation (RSD) was 11.6%. A good linearity was observed from 5.9 to 779 ng of 2AP (r{sup 2} = 0.9989). Limits of detection (LOD) and quantification (LOQ) for 2AP were 0.1 and 0.4 ng g{sup -1} of rice, respectively. The recovery of spiked 2AP from rice matrix was almost complete. The developed method was applied to the quantification of 2AP in aerial parts and grains of scented and non-scented rice cultivars.

  5. Synthesis and stable isotope dilution assay of ethanethiol and diethyl disulfide in wine using solid phase microextraction. Effect of aging on their levels in wine.

    Science.gov (United States)

    Belancic Majcenovic, Andrea; Schneider, Rémi; Lepoutre, Jean-Paul; Lempereur, Valérie; Baumes, Raymond

    2002-11-06

    Ethanethiol and diethyl disulfide (DEDS) most often occurred at levels above their olfactive threshold in wines with nauseous sulfur-linked smells. As ethanethiol is very oxidizable and chemically reactive, a stable isotopic dilution analysis of both ethanethiol and its disulfide in wines using solid phase microextraction and GC-MS was developed. The latter involved the determination of the proportion of DEDS formed by oxidation of the thiol during the analysis conditions, which was obtained by the use of two differently labeled disulfide standards. An original synthesis of labeled ethanethiol standards in conditions minimizing oxidation was developed, and the corresponding labeled diethyl disulfides were obtained from these thiols. This analytical method was used to follow the levels of these sulfur compounds during aging in a young red wine spiked with ethanethiol and added with enological tannins, with or without oxygen addition. The total levels of these two sulfur compounds were shown to decrease steadily after 60 days of aging, up to 83%. The effect of oxygen sped this decrease, but the effect of enological tannins was very slight. Residual ethanethiol was detected in its disulfide form from approximately 36% in the nonoxygenated wines to 69% in the oxygenated samples.

  6. Preparation and thermal properties of mineral-supported polyethylene glycol as form-stable composite phase change materials (CPCMs) used in asphalt pavements.

    Science.gov (United States)

    Jin, Jiao; Lin, Feipeng; Liu, Ruohua; Xiao, Ting; Zheng, Jianlong; Qian, Guoping; Liu, Hongfu; Wen, Pihua

    2017-12-05

    Three kinds of mineral-supported polyethylene glycol (PEG) as form-stable composite phase change materials (CPCMs) were prepared to choose the most suitable CPCMs in asphalt pavements for the problems of asphalt pavements rutting diseases and urban heat islands. The microstructure and chemical structure of CPCMs were characterized by SEM, FT-IR and XRD. Thermal properties of the CPCMs were determined by TG and DSC. The maximum PEG absorption of diatomite (DI), expanded perlite (EP) and expanded vermiculite (EVM) could reach 72%, 67% and 73.6%, respectively. The melting temperatures and latent heat of CPCMs are in the range of 52-55 °C and 100-115 J/g, respectively. The results show that PEG/EP has the best thermal and chemical stability after 100 times of heating-cooling process. Moreover, crystallization fraction results show that PEG/EP has slightly higher latent heats than that of PEG/DI and PEG/EVM. Temperature-adjusting asphalt mixture was prepared by substituting the fine aggregates with PEG/EP CPCMs. The upper surface maximum temperature difference of temperature-adjusting asphalt mixture reaches about 7.0 °C in laboratory, and the surface peak temperature reduces up to 4.3 °C in the field experiment during a typical summer day, indicating a great potential application for regulating pavement temperature field and alleviating the urban heat islands.

  7. An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities

    Science.gov (United States)

    Gong, Yuezheng; Zhao, Jia; Wang, Qi

    2017-10-01

    A quasi-incompressible hydrodynamic phase field model for flows of fluid mixtures of two incompressible viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle, which warrants the variational structure, the mass conservation and energy dissipation law. We recast the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization scheme for the DAE system, where the mass conservation and the energy dissipation law are once again preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show the convergence property as well as the accuracy and efficiency of the new scheme.

  8. Unconditionally stable methods for simulating multi-component two-phase interface models with Peng-Robinson equation of state and various boundary conditions

    KAUST Repository

    Kou, Jisheng

    2015-03-01

    In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.

  9. A new approach to establish both stable and metastable phase equilibria for fcc ordered/disordered phase transition: application to the Al–Ni and Ni–Si systems

    International Nuclear Information System (INIS)

    Yuan Xiaoming; Zhang Lijun; Du Yong; Xiong Wei; Tang Ying; Wang Aijun; Liu Shuhong

    2012-01-01

    Both two-sublattice (2SL) and four-sublattice (4SL) models in the framework of the compound energy formalism can be used to describe the fcc ordered/disordered transitions. When transferring the parameters of 2SL disregarding the metastable ordered states into those of 4SL, inconsistence in either stable or metastable phase diagrams could appear, as detected in both Al–Ni and Ni–Si systems. To avoid such a kind of drawback, this behavior was analyzed and investigated in the Ni–Si and Al–Ni systems with the aid of first–principle calculations. Furthermore, a new approach considering both the stable and metastable fcc ordered phase equilibria deduced from the first–principles calculations was proposed to perform a reliable thermodynamic modeling for the fcc ordered/disordered transition. The Ni–Si system was then thermodynamically assessed using the presently proposed approach. The good agreement between the calculation and experiments demonstrates the reliability of the proposed approach. It is expected that the approach is valid for other systems showing complex ordered/disordered transitions. - Highlights: ► We discuss the drawbacks of order/disorder modeling in the Ni–Si and Al–Ni systems. ► We perform ab initio calculation of thermodynamic properties in the Ni–Si system. ► A CALPHAD–type approach is proposed to model the fcc ordered/disordered transition. ► The Ni–Si system was thermodynamically assessed using the new approach.

  10. Kinetics of hydrogen evolution in the thermal dissociation of the hydride ZrNiH /SUB 2.8/

    International Nuclear Information System (INIS)

    Chernavskii, P.A.; Lunin, V.V.

    1985-01-01

    The kinetics of hydrogen evolution in the thermal decomposition of ZrNiH /SUB 2.8/ has been studied. The kinetic curve has two rate maxima. It is presumed that the second maximum is related to the phenomenon of critical inhibition that accompanies the phase transition. Apparent activation energies were determined for hydrogen evolution in argon and argon-ethylene atmospheres. The apparent energy increases in the argon-ethylene mixture. On the basis of the activation energy measurements it is presumed that the rate-determining step in hydrogen evolution is either the formation of hydrogen molecules from atoms on the surface of the lateral diffusion of atomic hydrogen. In the region of hydrogen concentration in the hydride corresponding to the phase transition, the rate-determining step is hydrogen diffusion in the hydride

  11. Transmission Electron Microscopy Studies on Titanium-doped Sodium Aluminum Hydride

    Science.gov (United States)

    Culnane, Lance F.

    Hydrogen fuel cells play an important role in today's diverse and blossoming alternative energy industry. One of the greatest technological barriers for vehicular applications is the storage of hydrogen (which is required to power hydrogen fuel cells). Storing hydrogen as a gas is not volume efficient, and storing it as a liquid is not cost effective, therefore solid-state storage of hydrogen, such as in metal hydrides offers the most potential for success since many metal hydrides have attractive qualities for hydrogen storage such as: high volumetric capacity, cost efficiency, weight efficiency, low refueling times, and most importantly, high safety. Unfortunately, a compound has not been discovered which contains all of the attractive hydrogen storage qualities for vehicular applications. Sodium aluminum hydride (NaAlH 4) is one of the few compounds which is close to meeting requirements for car manufacturers, and has perhaps been researched the most extensively out of all metal hydrides in the last 15 years. This arises from the remarkable discovery by Bogdanovic who found that doping NaAlH4 with Ti dopants enabled the reversible dehydrogenation and hydrogenation of NaAlH 4 at mild conditions. Various evidence and theories have been proposed to suggest explanations for the enhanced kinetic effect that Ti-doping and ball-milling provide. However, the research community has not reached a consensus as to the exact role of Ti-dopants. If the role of titanium in the NaAlH4 dehydrogenation/hydrogenation mechanism could be understood, then more attractive metal hydrides could be designed. To this end, we conducted Transmission Electron Microscopy (TEM) studies to explain the role of the Ti dopants. The first known thorough particle size analysis of the NaAlH4 system was conducted, as well as TEM-EELS (Electron Energy Loss Spectroscopy), TEM-EDS (Energy Dispersive X-ray Spectroscopy), and in-situ imaging studies. Preparation methods were found to be important for the

  12. Influence of disorder on phonon resistivity of ion-implanted nickel hydride

    International Nuclear Information System (INIS)

    Brossard, L.; Bernas, H.; Thome, L.; Traverse, A.; Nedellec, P.

    1982-01-01

    Metastable nickel hydride NiHsub(1.00) is produced by low energy proton implantation into thin nickel films at 6 K. After annealing at different temperatures (125, 185 K), the sample resistivity-temperature dependence is studied by cycling between 4.2 K and the annealing temperature. The temperature-dependent term in the resistivity is thus determined - for the first time - in an implanted system. A T 3 -dependence is found, in contrast to the T 5 -dependence of the ordered NiH β-phase obtained by electrolytic charging. This result is ascribed to implantation induced disorder. Isochronal annealing experiments are discussed elsewhere. (author)

  13. Control of microstructure to increase the tolerance of zirconium alloys to hydride cracking

    International Nuclear Information System (INIS)

    Coleman, C.E.; Sagat, S.; Amouzouvi, K.F.

    1987-12-01

    The microstructure of Zr-2.5 Nb has been altered in three ways in attempts to increase the alloy's tolerance to delayed hydride cracking, namely by breaking up the β-phase which reduces diffusivity of hydrogen and decreases crack velocity, by means of a gettering element (yttrium) which reduces susceptibility to cracking although the yttrium alloy has low toughness and poor corrosion resistance, and by reducing the number of basal plane normals in the main stressing direction which improves resistance to crack growth

  14. Oriented xenon hydride molecules in the gas phase

    Czech Academy of Sciences Publication Activity Database

    Buck, U.; Fárník, Michal

    2006-01-01

    Roč. 25, č. 4 (2006), s. 583-612 ISSN 0144-235X Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB 357 Institutional research plan: CEZ:AV0Z40400503 Keywords : photofragment translational spectroscopy * charge transfer molecules * low temperature matrices * neutral rare-gas Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.036, year: 2006

  15. Electrolytic hydriding of LaFe{sub 13-x}Si{sub x} alloys for energy efficient magnetic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P. [Department of Materials, Imperial College London (United Kingdom); Cohen, Lesley F. [Department of Physics, Imperial College London (United Kingdom)

    2012-04-17

    An effective, low-temperature and readily available electrochemical method for tuning the operation temperature of LaFe{sub 13-x}Si{sub x}-type alloys is demonstrated. Electrolytically hydrided materials have the same high level magnetic properties as in high temperature gas-phase processed materials and offer an advantage of higher hydrogen absorption rate in the ferromagnetic state. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Hydrogenation of cyclohexene with LaNi5−xAlxHn metal hydrides suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  17. Hydrogenation of cyclohexene with LaNi@#5@#-@#x@#Al@#x@#Hn metal hydrides, suspended in cyclohexane or ethanol

    NARCIS (Netherlands)

    Snijder, E.D.; Snijder, E.D.; Versteeg, Geert; van Swaaij, Willibrordus Petrus Maria

    1993-01-01

    The hydrogenation of cyclohexene on the metal hydride forming alloys LaNi4.8Al0.2, LaNi4.9Al0.1 and LaNi5, all suspended in cyclohexane and LaNi5 suspended in ethanol, has been investigated. Two sources for hydrogen are recognized: hydrogen supplied by the gas phase and hydrogen which is available

  18. Delayed Hydride Cracking in Zr-2.5Nb Tubes with the Direction of An Approach to Temperature

    International Nuclear Information System (INIS)

    Kim, Young Suk; Im, Kyung Soo; Kim, Kang Soo; Ahn, Sang Bok; Cheong, Yong Moo

    2006-01-01

    One of the unique features of delayed hydride cracking (DHC) of zirconium alloys is that the DHC velocity (DHCV) of zirconium alloys strongly depends on the path to the test temperature. Ambler reported that the DHCV of Zr-2.5Nb tubes at temperatures above 180 .deg. C depended upon the direction of an approach to the test temperatures, and reported on a presence of the DHC arrest temperature or TDAT above which the DHCV decreased upon an approach to the test temperature by a heating. Ambler proposed a hydrogen transfer from the bulk to the crack tip assuming that the hydrides formed at the crack tip and in the bulk region are fully constrained and partially constrained at the crack tip, respectively. In other words, the terminal solid solubility (TSS) of hydrogen would be governed by elastic strain energy induced by the precipitating hydrides, leading to a higher TSS in the bulk region than that at the crack tip. In a sense, his assumption that the hydrogen concentration is higher in the bulk region than that at the crack tip due to a higher TSS in the bulk region is, in a way, similar to Kim's DHC model. Even though Ambler assumed a different strain energy of the matrix hydrides with the direction of an approach to the test temperature, the peak temperature, hydrogen concentration and the hydride phase, a feasible rationale for this assumption is yet to be given. In this study, a path dependence of DHC velocity of Zr-2.5Nb tubes will be investigated using Kim's DHC model where a driving force for DHC is the supersaturated hydrogen concentration between the crack tip and the bulk region. To this ends, the furnace cooled and water-quenched Zr-2.5Nb specimens were subjected to DHC tests at different test temperatures that were approached by a heating or by a cooling. Kim's DHC model predicts that the water-quenched Zr- 2.5Nb will have DHC crack growth even at temperatures above 180 .deg. C where the furnace-cooled Zr-2.5Nb will not. This experiment will provide

  19. Delayed Hydride Cracking in Zr-2.5Nb Tubes with the Direction of An Approach to Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Im, Kyung Soo; Kim, Kang Soo; Ahn, Sang Bok; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    One of the unique features of delayed hydride cracking (DHC) of zirconium alloys is that the DHC velocity (DHCV) of zirconium alloys strongly depends on the path to the test temperature. Ambler reported that the DHCV of Zr-2.5Nb tubes at temperatures above 180 .deg. C depended upon the direction of an approach to the test temperatures, and reported on a presence of the DHC arrest temperature or TDAT above which the DHCV decreased upon an approach to the test temperature by a heating. Ambler proposed a hydrogen transfer from the bulk to the crack tip assuming that the hydrides formed at the crack tip and in the bulk region are fully constrained and partially constrained at the crack tip, respectively. In other words, the terminal solid solubility (TSS) of hydrogen would be governed by elastic strain energy induced by the precipitating hydrides, leading to a higher TSS in the bulk region than that at the crack tip. In a sense, his assumption that the hydrogen concentration is higher in the bulk region than that at the crack tip due to a higher TSS in the bulk region is, in a way, similar to Kim's DHC model. Even though Ambler assumed a different strain energy of the matrix hydrides with the direction of an approach to the test temperature, the peak temperature, hydrogen concentration and the hydride phase, a feasible rationale for this assumption is yet to be given. In this study, a path dependence of DHC velocity of Zr-2.5Nb tubes will be investigated using Kim's DHC model where a driving force for DHC is the supersaturated hydrogen concentration between the crack tip and the bulk region. To this ends, the furnace cooled and water-quenched Zr-2.5Nb specimens were subjected to DHC tests at different test temperatures that were approached by a heating or by a cooling. Kim's DHC model predicts that the water-quenched Zr- 2.5Nb will have DHC crack growth even at temperatures above 180 .deg. C where the furnace-cooled Zr-2.5Nb will not. This experiment

  20. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  1. Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure

    International Nuclear Information System (INIS)

    Ito, Masato; Setoyama, Daigo; Matsunaga, Junji; Muta, Hiroaki; Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    2006-01-01

    Bulk titanium, yttrium, and zirconium hydrides, which have the same structure as that of fluorite-type fcc C 1, were produced and their mechanical properties were investigated. With an increase in the hydrogen content, the lattice parameters of titanium and zirconium hydrides increased, whereas those of yttrium hydride decreased. The elastic moduli of titanium and zirconium hydrides decreased by hydrogen addition, whereas those of yttrium hydride increased. There are linear relations between the electronegativities and hydrogen content dependence of the properties. Therefore, the mechanical properties of the metal hydrides are considered to be determined by a common rule based on the electronegativity

  2. Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to Afford Silene Hydride Complexes.

    Science.gov (United States)

    Price, Jeffrey S; Emslie, David J H; Britten, James F

    2017-05-22

    Reaction of the ethylene hydride complex trans-[(dmpe) 2 MnH(C 2 H 4 )] (1) with Et 2 SiH 2 at 20 °C afforded the silylene hydride [(dmpe) 2 MnH(=SiEt 2 )] (2 a) as the trans-isomer. By contrast, reaction of 1 with Ph 2 SiH 2 at 60 °C afforded [(dmpe) 2 MnH(=SiPh 2 )] (2 b) as a mixture of the cis (major) and trans (minor) isomers, featuring a Mn-H-Si interaction in the former. The reaction to form 2 b also yielded [(dmpe) 2 MnH 2 (SiHPh 2 )] (3 b); [(dmpe) 2 MnH 2 (SiHR 2 )] (R=Et (3 a) and Ph (3 b)) were accessed cleanly by reaction of 2 a and 2 b with H 2 , and the analogous reactions with D 2 afforded [(dmpe) 2 MnD 2 (SiHR 2 )] exclusively. Both 2 a and 2 b engaged in unique reactivity with ethylene, generating the silene hydride complexes cis-[(dmpe) 2 MnH(R 2 Si=CHMe)] (R=Et (4 a), Ph (4 b)). Compounds trans-2 a, cis-2 b, 3 b, and 4 b were crystallographically characterized, and bonding in 2 a, 2 b, 4 a, and 4 b was probed computationally. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of hydridation on structure of amorphous and amorphous-crystalline Fe40Ni40B20 and Co70Fe5Si15B10 bands

    International Nuclear Information System (INIS)

    Il'inskij, A.G.; Brovko, A.P.; Zelinskaya, G.M.; Kosenko, N.S.; Khristenko, T.M.; Kobzenko, G.F.; Shkola, A.A.

    1988-01-01

    The structure of amorphous and amorphous-crystaliline Fe 40 Ni 40 B 20 and Co 70 Fe 5 Si-1 5 B 10 alloys, exposed to hydridation at different temperatures, is studied by X-ray diffraction technique. The presence of crystalline constituent in amorphous bands was determined on DRON-3 device and by method of small-angle scattering. The experimental data obtained verify, that hydridation does not only prevent the formation of crystalline phases at annealing, but leads, as well, to disappearance of band crystalline constituent in case of its presence

  4. Dehydriding and re-hydriding properties of high-energy ball milled LiBH{sub 4}+MgH{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Kyle; Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT 06269 (United States)

    2010-07-15

    Here we report the first investigation of the dehydriding and re-hydriding properties of 2LiBH{sub 4} + MgH{sub 2} mixtures in the solid state. Such a study is made possible by high-energy ball milling of 2LiBH{sub 4}+MgH{sub 2} mixtures at liquid nitrogen temperature with the addition of graphite. The 2LiBH{sub 4}+MgH{sub 2} mixture ball milled under this condition exhibits a 5-fold increase in the released hydrogen at 265 C when compared with ineffectively ball milled counterparts. Furthermore, both LiBH{sub 4} and MgH{sub 2} contribute to hydrogen release in the solid state. The isothermal dehydriding/re-hydriding cycles at 265 C reveal that re-hydriding is dominated by re-hydriding of Mg. These unusual phenomena are explained based on the formation of nanocrystalline and amorphous phases, the increased defect concentration in crystalline compounds, and possible catalytic effects of Mg,MgH{sub 2} and LiBH{sub 4} on their dehydriding and re-hydriding properties. (author)

  5. Computer x-ray powder diffraction patterns and densities for corundum, aluminium, zirconium, delta-UZr2 and the zirconium hydrides

    International Nuclear Information System (INIS)

    Ferguson, I.F.

    1976-11-01

    The computer-calculated X-ray powder diffraction patterns and theoretical densities of α-Al 2 O 3 ; Al; α-Zr; β-Zr; delta-UZr 2 ; γ, delta - and epsilon-zirconium hydrides are presented. Brief comments are given on some of the published X-ray powder diffraction data on these phases. (author)

  6. New Promising Hydride Based on the Cu-Li-Mg System

    Energy Technology Data Exchange (ETDEWEB)

    Braga, M H; Acatrinei, A; Hartl, M; Vogel, S; Proffen, Th; Daemen, L, E-mail: mbraga@lanl.gov

    2010-11-01

    We investigated the ternary Cu-Li-Mg system, in particular the CuLi{sub x}Mg{sub 2-x} (x = 0.08) for hydrogen storage. Instead of crystallizing in an orthorhombic phase, as CuMg2, this phase presents a hexagonal structure very similar to that of NiMg{sub 2} and NiMg{sub 2}H{sub 0.3}. In this work we will discuss the structure of CuLi{sub x}Mg{sub 2-x} by the analysis of the neutron scattering data and first principles calculations. The first results for a hydride (deuteride) phase will also mentioned since preliminary studies at LANSCE showed that CuLi{sub x}Mg{sub 2-x} might absorb approximately 5.3 to 6 wt% of H at an equilibrium pressure of approximately 27 bar at 200 deg. C. If these results are confirmed in future work, this will mean that, not only CuLi{sub x}Mg{sub 2-x} absorbs a considerable amount of hydrogen (close to DOE's expectations for hydrogen storage materials), but also will probably release it at a temperature in the range of 50 to 150 deg. C, where applications are easier to develop. Hence it should be possible to use this alloy with fuel cells or in batteries. Another important observation is that cycling has a strong effect on the structure of the hydride.

  7. Hydrogen in niobium, tantalum, and vanadium: Structures, phase diagrams, and morphologies

    International Nuclear Information System (INIS)

    Schober, T.

    1978-07-01

    The paper discusses basic aspects of the reactions between the metals niobium, tantalum, vanadium, and hydrogen or deuterium. After an introduction to problems of preparation experimental technqiues for the investigation of hydrides are presented. The possible hydride structures are discussed. With vanadium, there are great differences between the structures of hydrides and deuterides. Detailed mention is also made of recent measurements of the NGH, TaH, VH, and VD phase diagrams. (orig./WBU) [de

  8. Preparation, thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly(ethylene-co-vinyl acetate)/organophilic montmorillonite nanocomposites/paraffin compounds

    International Nuclear Information System (INIS)

    Cai Yibing; Song Lei; He Qingliang; Yang Dandan; Hu Yuan

    2008-01-01

    The paraffin is one of important thermal energy storage materials with many desirable characteristics (i.e., high heat of fusion, varied phase change temperature, negligible supercooling, self-nucleating, no phase segregation and cheap, etc.), but has low thermal stability and flammable. Hence, a novel form-stable phase change materials (PCM) based on high density polyethylene (HDPE)/poly(ethylene-co-vinyl acetate) (EVA)/organophilic montmorillonite (OMT) nanocomposites and paraffin are prepared by twin-screw extruder technique. The structures of the HDPE-EVA/OMT nanocomposites and the form-stable PCM are evidenced by the X-ray diffraction (XRD), transmission electronic microscopy (TEM) and scanning electronic microscope (SEM). The results of XRD and TEM show that the HDPE-EVA/OMT nanocomposites form the ordered intercalated nanomorphology. The form-stable PCM consists of the paraffin, which acts as a dispersed phase change material and the HDPE-EVA/OMT nanocomposites, which acts as the supporting material. The paraffin disperses in the three-dimensional net structure formed by HDPE-EVA/OMT nanocomposites. The thermal stability, latent heat and flammability properties are characterized by thermogravimetry analysis (TGA), dynamic Fourier-transform infrared (FTIR), differential scanning calorimeter (DSC) and cone calorimeter, respectively. The TGA and dynamic FTIR analyses indicate that the incorporation of suitable amount of OMT into the form-stable PCM increase the thermal stability. The DSC results show that the latent heat of the form-stable PCM has a certain degree decrease. The cone calorimeter shows that the heat release rate (HRR) has remarkably decreases with loading of OMT in the form-stable PCM, contributing to the improved flammability properties

  9. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  10. Metastable and stable magnetic phases in as-cast and annealed Pr80Fe15(B1-xCx)5 alloys (0.0≤x≤1.0)

    International Nuclear Information System (INIS)

    Sanchez Llamazares, J.L.; Lopez, G.; Fidler, J.

    1998-01-01

    In as-cast Pr 80 Fe 15 (B 1-x C x ) 5 , samples metastable A 1 (T c =225 C) was the predominant magnetic phase in the whole composition range, with intrinsic properties that were not affected with increasing C content. Up to x=0.75 this phase coexists with an additional minor magnetic phase having T c =263 C which has been labelled by us to as A 3 . Upon annealing at 600 C A 1 dissolves and the following stable phases were observed: (a) Pr 2 Fe 14 B and A 3 for 0.0≤x≤0.75, and; (b) an unknown stable phase D 1 with coercivity around 2.1 kOe and Curie temperature of 230 C for x=1.0. D 1 is the predominant phase for annealing times less than 8 h while for 8 and 16 h annealing an additional phase with T c =17 C appears. The latter has been tentatively identified as Pr 2 Fe 17 . SEM and X-ray microanalysis studies were performed on Pr 80 Fe 15 C 5 samples in the as-cast state and after 16 h of annealing. The as-cast sample shows large Pr-rich grains immersed in a fine eutectic microstructure consisting of Pr and Fe. In annealed samples, both large square or polygonal grains and a needle-like phase are formed. The latter is believed to be D 1 . (orig.)

  11. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  12. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  13. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  14. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometry for trace analysis of bisphenol A in water sample

    International Nuclear Information System (INIS)

    Kawaguchi, Migaku; Hayatsu, Yoshio; Nakata, Hisao; Ishii, Yumiko; Ito, Rie; Saito, Koichi; Nakazawa, Hiroyuki

    2005-01-01

    We have developed a molecularly imprinted polymer (MIP) using a stable isotope labeled compound as the template molecule and called it the ''isotope molecularly imprinted polymer'' (IMIP). In this study, bisphenol A (BPA) was used as the model compound. None imprinted polymer (NIP), MIP, dummy molecularly imprinted polymer (DMIP) and IMIP were prepared by the suspension polymerization method using without template, BPA, 4-tert-butylphenol (BP) and bisphenol A-d 16 (BPA-d 16 ), respectively. The polymers were subjected to molecularly imprinted solid phase extraction (MI-SPE), and the extracted samples were subjected to liquid chromatography-mass spectrometry (LC-MS). Although the leakage of BPA-d 16 from the IMIP was observed and that of BPA was not observed. The selectivity factors of MIP and IMIP for BPA were 4.45 and 4.43, respectively. Therefore, IMIP had the same molecular recognition ability as MIP. When MI-SPE with IMIP was used and followed by LC-MS in the analysis of river water sample, the detection limit of BPA was 1 ppt with high sensitivity. Moreover, the average recovery was higher than 99.8% (R.S.D.: 3.7%) by using bisphenol A- 13 C 12 (BPA- 13 C 12 ) as the surrogate standard. In addition, the IMIP were employed in MI-SPE of BPA in river water sample by LC-MS. The concentration of BPA in the river water sample was determined to be 32 pg ml -1 . We confirmed that it was possible to measure trace amounts of a target analyte by MI-SPE using IMIP

  15. Cu Nanoparticles Improved Thermal Property of Form-Stable Phase Change Materials Made with Carbon Nanofibers and LA-MA-SA Eutectic Mixture.

    Science.gov (United States)

    Song, Xiaofei; Cai, Yibing; Huang, Cong; Gu, Ying; Zhang, Junhao; Qiao, Hui; Wei, Qufu

    2018-04-01

    A novel form-stable phase change materials (FSPCMs) was fabricated by incorporating fatty acid eutectics with electrospun carbon nanofibers (CNFs) surface-attached with copper (Cu) nanoparticles. Three different Cu/CNFs mats were made through combining the technique and principle of electrospinning, pre-oxidation/carbonization and in-situ reduction, while lauric-myristic-stearic acid (LA-MA-SA) ternary eutectic mixture was prepared as the model PCM. The morphology and crystal structure of Cu/CNFs were characterized by Fourier transfer infrared (FT-IR) spectra, Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive spectroscopy (EDS), respectively. The results showed that Cu nanoparticles dispersed uniformly on the surface of CNFs mats without agglomeration, and Cu/CNFs mats could provide the mechanical support for FSPCMs and effectively prevent the flow/leakage of molten fatty acid. Morphological structures, as well as the properties of thermal energy storage and thermal energy storage/retrieval rates, of the resulting FSPCMs were investigated by SEM, Differential scanning calorimetry (DSC), and measurement of melting/freezing times, respectively. The results indicated that the fabricated FSPCMs exhibited desired structural morphology, and LA-MA-SA well dispersed in three-dimensional porous structure of Cu/CNFs mats. The melting and crystallization enthalpies of the fabricated FSPCMs were in the range of 117.1-140.7 kJ/kg and 117.2-142.4 kJ/kg, respectively. In comparison with melting/freezing times of LA-MA-SA ternary eutectic mixture, the melting/freezing times of fabricated FSPCMs were respectively decreased ~27.0-49.2% and ~44.1-63.0%. The fabricated FSPCMs possessed good thermal energy storage/retrieval property, and might have great potential for renewable energy storage applications.

  16. Preparation and properties of 1-tetradecanol/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol gelatinous form-stable phase change materials

    International Nuclear Information System (INIS)

    Tian, Tuo; Song, Jian; Niu, Libo; Feng, Rongxiu

    2013-01-01

    Graphical abstract: The 1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol can self-assemble to form three-dimensional network and immobilized the 1-tetradecanol. As a result, the gel-to-sol transition temperature of the composite PCM increased and the 1-tetradecanol leakage decreased. Highlights: ► First used of 1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol in alcohol-based PCMs. ► A new method of doping with exfoliated graphite is presented. ► A possible mechanism for decreasing leakage has been proposed based on SEM results. ► The prepared composite PCMs showed a high-energy storage density. ► The addition of exfoliated graphite enhanced the thermal conductivity of the PCMs. - Abstract: A 1-tetradecanol (TD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol (DMDBS) composite was prepared as a novel form-stable phase change material (PCM), and the properties of the composites such as the gel-to-sol transition temperature, the latent heat, the microstructure and the thermal storage performance were characterized. The composite was prepared by impregnating DMDBS into TD and the maximum feasible weight percentage of TD was determined to be 94.2 wt%. The gel-to-sol transition temperature of the composite PCM was 158.3–180.0 °C, which is well above the melting point of 1-tetradecanol. Differential scanning calorimeter (DSC) was used to determine the melting and freezing enthalpies of 1-tetradecanol in the composite PCM and the values are 218.5 and 215.3 J g −1 , respectively. Scanning electron microscopy (SEM) results showed that 1-tetradecanol dispersed in the three-dimensional network formed by DMDBS. The relationship between the amount of DMDBS additive and the leakage was also discussed. The thermal conductivity of the composite PCM was improved by doping with exfoliated graphite

  17. Permeation rates for RTF metal hydride vessels

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 x 10 -3 μCi/cc. To reduce tritium activity in the NH and CS, a stripper or ''getter'' bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks

  18. Hydriding and neutron irradiation in zircaloy-4

    International Nuclear Information System (INIS)

    Ramos, Ruben Fortunato; Martin, Juan Ezequiel; Orellano, Pablo; Dorao, Carlos; Analia Soldati; Ghilarducci, Ada Albertina; Corso, Hugo Luis; Peretti, Hernan Americo; Bolcich, Juan Carlos

    2003-01-01

    The composition of Zircaloy-4 for nuclear applications is specified by the ASTM B350 Standard, that fixes the amount of alloying elements (Sn, Fe, Cr) and impurities (Ni, Hf, O, N, C, among others) to optimize good corrosion and mechanical behavior.The recycling of zircaloy-4 scrap and chips resulting from cladding tube fabrication is an interesting issue.However, changes in the final composition of the recycled material may occur due to contamination with tool pieces, stainless steel chips, turnings, etc. while scrap is stored and handled. Since the main components of the possible contaminants are Fe, Cr and Ni, it arises the interest in studying up to what limit the Fe, Ni and Cr contents could be exceeded beyond the standard specification without affecting significantly the alloy properties.Zircaloy-4 alloys elaborated with Fe, Cr and Ni additions and others of standard composition in use in nuclear plants are studied by tensile tests, SEM observations and EDS microanalysis.Some samples are tested in the initial condition and others after hydriding treatments and neutron irradiation in the RA6

  19. Optical and photoemission studies of lanthanum hydrides

    International Nuclear Information System (INIS)

    Peterman, D.J.; Peterson, D.T.; Weaver, J.H.

    1980-01-01

    The results of optical absorptivity and photoemission measurements on lanthanum hydrides, LaH/sub x/ (1.98 less than or equal to x less than or equal to 2.89) are reported. The low energy (hν less than or equal to 0.5 eV) optical features in LaH/sub x/ are attributed to the filling of octahedral sites. Higher energy interband absorption involves states within the d-band complex, analogous to other dihydrides. As x increases above 2.0, the optical features change rapidly due to the increase in the number of occupied octahedral sites. Various band structure studies suggest that LaH 3 might be a semiconductor. Photoemission results show that as x increases, the d-derived states at E/sub F/ are drawn down and that for LaH 2 89 only very weak valence band emission is observed. The hydrogen-derived bonding bands are shown centered approx. 5 eV below E/sub F/. Observed chemical shifts in the La 5p/sub 1/2 3/2/ cores are discussed for 1.98 less than or equal to x less than or equal to 2.89

  20. Moisture stable Ni-Zn MOF/g-C3N4 nanoflowers: A highly efficient adsorbent for solid-phase microextraction of PAHs.

    Science.gov (United States)

    Zhang, Ning; Huang, Chuanhui; Tong, Ping; Feng, Zunmei; Wu, Xiaoping; Zhang, Lan

    2018-06-29

    Volatile polycyclic aromatic hydrocarbons (PAHs) in water and soil are associated with status in the human body. Development of simple, efficient detection method is challenging due to the coating could be attacked by the abundance of water in the direct-immersion solid-phase microextraction. The stability of coating is essential to the analysis results. In this paper, a stable Ni-Zn MOF/g-C 3 N 4 (MG NFs) nanoflowers with cavity traps structure was firstly reported and acted as solid-phase microextraction (SPME) adsorbent for PAHs. Markedly enhanced moisture and acid stability of the MG NFs was obtained through the doping the hydrophobic graphitic carbon nitride (g-C 3 N 4 ) and metal ions into metal organic frameworks (MOFs). The aperture environment and ambient environment of MG NFs were changed by the doping of the Ni and the g-C 3 N 4, respectively. The moisture and acid stability of MG NFs were prominently increased under the dual protection. Compared to commonly used commercial coatings, the MG NFs own large surface area, unique nanoflowers structure and numerous open metal sites on the nanosheets, which demonstrated significant extraction superiority for PAHs. The MG NFs coated fiber was used for the SPME preconcentration of PAHs and couped with GC-MS for detecting PAHs. It presented low detection limits (0.1-3.0 ng L -1 ), wide linearity (0.3-5000.0 ng L -1 ) and good linearity (the correlation coefficient >0.9951). The inter-day and intra-day relative standard deviation (RSD) (n = 3) for three replicate extractions using one fiber was 3.8%-9.1%, and 3.5%-9.2%, respectively. The fiber-to-fiber reproducibility (n = 3) was 4.2-11.8%. The coupling method was successfully applied in the analysis of real water and soil samples with satisfactory recoveries of 82.9-109.2%, 84.2-106.4%, and the corresponding RSDs were 2.4-11.3%, 3.6-10.8%, respectively. The results indicated the effectiveness of NG NFs coated fiber in further practical application

  1. Hybrid functional calculations of potential hydrogen storage material: Complex dimagnesium iron hydride

    KAUST Repository

    Ul Haq, Bakhtiar

    2014-06-01

    By employing the state of art first principles approaches, comprehensive investigations of a very promising hydrogen storage material, Mg 2FeH6 hydride, is presented. To expose its hydrogen storage capabilities, detailed structural, elastic, electronic, optical and dielectric aspects have been deeply analysed. The electronic band structure calculations demonstrate that Mg2FeH6 is semiconducting material. The obtained results of the optical bandgap (4.19 eV) also indicate that it is a transparent material for ultraviolet light, thus demonstrating its potential for optoelectronics application. The calculated elastic properties reveal that Mg2FeH6 is highly stiff and stable hydride. Finally, the calculated hydrogen (H2) storage capacity (5.47 wt.%) within a reasonable formation energy of -78 kJ mol-1, at room temperature, can be easily achievable, thus making Mg2FeH6 as potential material for practical H2 storage applications. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  2. CO Reduction to CH3OSiMe3: Electrophile-Promoted Hydride Migration at a Single Fe Site.

    Science.gov (United States)

    Deegan, Meaghan M; Peters, Jonas C

    2017-02-22

    One of the major challenges associated with developing molecular Fischer-Tropsch catalysts is the design of systems that promote the formation of C-H bonds from H 2 and CO while also facilitating the release of the resulting CO-derived organic products. To this end, we describe the synthesis of reduced iron-hydride/carbonyl complexes that enable an electrophile-promoted hydride migration process, resulting in the reduction of coordinated CO to a siloxymethyl (L n Fe-CH 2 OSiMe 3 ) group. Intramolecular hydride-to-CO migrations are extremely rare, and to our knowledge the system described herein is the first example where such a process can be accessed from a thermally stable M(CO)(H) complex. Further addition of H 2 to L n Fe-CH 2 OSiMe 3 releases CH 3 OSiMe 3 , demonstrating net four-electron reduction of CO to CH 3 OSiMe 3 at a single Fe site.

  3. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  4. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  5. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  6. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  7. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  8. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  9. Influence of metallurgical variables on the velocity of crack propagation by delayed hydride cracking (DHC) in Zr-Nb

    International Nuclear Information System (INIS)

    Cirimelo, Pablo G.

    2002-01-01

    In the present thesis work the propagation of cracks due to the delayed hydride cracking (DHC) mechanism in Zr-2,5 % Nb pressure tubes is analyzed. For this purpose two different type of tubes of different origin were used: CANDU type (Canada) and RBMK type (Russia). The analyzed figurative parameters were: critical temperature Tc (highest temperature at which DHC phenomenon could occur) and crack propagation velocity by DHC, Vp, in the axial direction. The influence of the memory effect (phenomenon proper of hydride precipitation) was studied, as well as the type of cracks (fatigue or DHC) on Tc. However, no influence of these effects was found. Instead, it was found that Tc varies with the hydrogen content of the specimen, in agreement with previous works. Samples obtained from tubes with different microstructures and similar amounts of hydrogen presented similar Tc values. It was also shown that DHC propagation could occur without precipitated hydrides in the volume. Besides, Vp determinations were performed in temperature ranges and hydrogen amounts of technological importance. Two techniques were set up in order to determine Vp at different temperatures in a single specimen, thus saving time and material. An Arrhenius type variation was found for Vp vs. temperature, for temperatures lower than that corresponding to precipitation. For higher temperatures, but lower than the critical one, velocity decreases with temperature. Determination of Vp vs. temperature was performed for the two above-mentioned materials, whose microstructure and hardness were previously characterized. For RBMK material, which presents a spheroidal β phase, the velocity was lower than the corresponding to CANDU material, in which β phase is formed by continuous plates. In addition, yield stress σ Y is lower in RBMK material, which presents lower Vp. However, it is considered that the effect of microstructure is more important on Vp since it highly affects diffusion of hydrogen from the

  10. Calorimetric determination of the δ hydride dissolution enthalpy in Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abraham D.

    2003-01-01

    In this work, the dissolution enthalpy, ΔH δ→α , of the δ hydride phase in the αZr matrix in Zircaloy-4 has been determined with a differential scanning calorimeter (DSC) in two different ways: by means of a vant Hoff equation, measuring the terminal solubility temperature in dissolution, TSSd, and by direct measurement of the dissolution heat, Q δ→α , as the area between the base line and the calorimetric curve. The application of the DSC technique to the hydride dissolution heat measurements, a transformation which covers an extended temperature range, is completely original and requires a special treatment of the calorimetric curve. These measurements were done on samples, which practically cover the whole solubility range of hydrogen in αZr phase (80-640 ppm). The values obtained, 36.9 kJ/mol H and 39.3 kJ/mol H respectively, are self-consistent and in good agreement with the values of the more recent revisions, but reduces considerably the scatter of the literature data. (author)

  11. Zr - based alloys as hydride electrodes in Ni-MH batteries

    International Nuclear Information System (INIS)

    Biris, A.R.; Biris, A.S.; Misan, I.; Lupu, D.

    1999-01-01

    Hydrogen storage alloys, MH, are already used in Ni-MH alkaline batteries conquering an important share of the rechargeable nickel-cadmium battery market. This remarkable success is due not only to the replacement of the toxic material, cadmium, by metal hydrides but also to an increased specific energy, which makes them attractive for electric vehicles. Many research groups are concerned in the improvement of the hydride electrode characteristics: hydrogen storage capacity, high-rate discharge ability, increased cycle life. These properties can be modified by substitution of the base components of a given alloy. A comparison of two types of alloys suitable for MH electrodes LaNi 5 able to store 1.36 w/o hydrogen with Zr(Ti)-Ni alloys of the AB 2 Laves phase type structure showed that the latter could absorb higher amounts of hydrogen. We report part of studies on Zr-V-Cr-Ni of the 15 C type Laves phase structure using our original procedure for pasted electrodes. The substitution of Cr for V atoms in ZrV 0.5 Ni 1 . 5 did not increase the discharge capacity. However, it proved to have a remarkable effect on the discharge capacity C at low temperatures. C at - 12 deg. C as compared to 20 deg.C increases up to ∼ 65 % for Cr containing alloys. (authors)

  12. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  13. Infrared diode laser spectroscopy of lithium hydride

    International Nuclear Information System (INIS)

    Yamada, C.; Hirota, E.

    1988-01-01

    The fundamental and hot bands of the vibration--rotation transitions of 6 LiH, 7 LiH, 6 LiD, and 7 LiD were observed by infrared diode laser spectroscopy at Doppler-limited resolution. Lithium hydride molecules were produced by the reaction of the Li vapor with hydrogen at elevated temperatures. Some 40 transitions were observed and, after combined with submillimeter-wave spectra reported by G. M. Plummer et al. [J. Chem. Phys. 81, 4893 (1984)], were analyzed to yield Dunham-type constants with accuracies more than an order of magnitude higher than those published in the literature. It was clearly demonstrated that the Born--Oppenheimer approximation did not hold, and some parameters representing the breakdown were evaluated. The Born--Oppenheimer internuclear distance r/sup BO//sub e/ was derived to be 1.594 914 26 (59) A, where a new value of Planck's constant recommended by CODATA was employed. The relative intensity of absorption lines was measured to determine the ratio of the permanent dipole moment to its first derivative with respect to the internuclear distance: μ/sub e/ [(partialμpartialr)/sub e/ r/sub e/ ] = 1.743(86). The pressure broadening parameter Δν/sub p/ P was determined to be 6.40 (22) MHzTorr by measuring the linewidth dependence on the pressure of hydrogen, which was about four times larger than the value for the dipole--quadrupole interaction estimated by Kiefer and Bushkovitch's theory

  14. A fractographic distinction between hydride cracking and stress corrosion cracking in zircaloys

    International Nuclear Information System (INIS)

    Cox, B.

    1978-06-01

    The fractographic details of SCC and delayed hydride failures are compared by scanning and replica electron microscopy. It is shown that there are distinct features ascribable to the fracture of hydride platelets which are absent from SCC fractures and which distinguish them from fractures produced by delayed hydride cracking. (author)

  15. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  16. Hydrides and deuterides of lithium and sodium. Pt. 1

    International Nuclear Information System (INIS)

    Haque, E.

    1990-01-01

    An interionic potential model is developed for lighter and heavier alkali hydrides and deuterides. The method uses a combination of theoretical techniques, empirical fit, and a few plausible assumptions. An assessment of the derived potentials is made by calculating the lattice statics and dynamics of the crystals and by comparing both with experiment (where available) and with other calculations. The potentials are found to describe the elastic and dielectric properties reasonably well. The phonon dispersion curves of hydride and deuteride of sodium are compared with the calculations of Dyck and Jex based on force constant model approach and the results are discussed. The need for further experiments on heavier hydrides and deuterides is stressed. (author)

  17. Research in Nickel/Metal Hydride Batteries 2017

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2018-02-01

    Full Text Available Continuing from a special issue in Batteries in 2016, nineteen new papers focusing on recent research activities in the field of nickel/metal hydride (Ni/MH batteries have been selected for the 2017 Special Issue of Ni/MH Batteries. These papers summarize the international joint-efforts in Ni/MH battery research from BASF, Wayne State University, Michigan State University, FDK Corp. (Japan, Institute for Energy Technology (Norway, Central South University (China, University of Science and Technology Beijing (China, Zhengzhou University of Light Industry (China, Inner Mongolia University of Science and Technology (China, Shenzhen Highpower (China, and University of the Witwatersrand (South Africa from 2016–2017 through reviews of AB2 metal hydride alloys, Chinese and EU Patent Applications, as well as descriptions of research results in metal hydride alloys, nickel hydroxide, electrolyte, and new cell type, comparison work, and projections of future works.

  18. Stable, Extreme Temperature, High Radiation, Compact. Low Power Clock Oscillator for Space, Geothermal, Down-Hole & other High Reliability Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient and stable clock signal generation requirements at extreme temperatures (-180C to +450C)and radiation (>250 Krad TID) are not met with the current...

  19. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  20. Stable Tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris [Fermilab

    2018-04-13

    For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  1. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  2. Microcapsulated rare earth - nickel hydride-forming materials

    International Nuclear Information System (INIS)

    Ishikawa, H.; Oguro, K.; Kato, A.; Suzuki, H.; Ishii, E.

    1985-01-01

    Fine particles of hydride-forming alloys such as LaNi/sub 5/ and MmNi/sub 4.5/Mn/sub 0.5/ (MM : mischmetal) were coated with metallic copper thin layer by chemical plating method. Hydrogen storage capacities of alloys were not appreciably affected by the plating treatment. The capsulated alloy powders were easily pressed into pellets. The pellets obtained had high thermal conductivity and porosity enough to permeate hydrogen, leading to fast reaction kinetics. These were able to withstand more than 5,000 repeated hydriding-dehydriding cycles without disintegrating

  3. Thermophysical properties of solid lithium hydride and its isotopic modifications

    International Nuclear Information System (INIS)

    Mel'nikova, T.N.

    1981-01-01

    The theory of the anharmonic lattice is used to calculate the thermophysical properties (thermal expansivity, lattice constant, compressibility, and elastic moduli) of all the isotopic modifications of solid lithium hydride sup(6,7)Li(H,D,T) at temperatures up to the melting point. A general analysis of isotopic effects is carried out; in particular the reverse isotopic effect in the lattice constant is explained and the isotopic effect in melting is discussed. The results of the calculations agree with available experimental data and can be used for those isotopic modifications of lithium hydride for which there exist no experimental results. (author)

  4. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  5. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  6. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2014-07-01

    Full Text Available Li4FeH6, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li4FeH6 is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li4FeH6 at moderate pressures. Li4FeH6 can be recovered at ambient conditions where Li4FeH6 is metastable.

  7. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  8. A comparison of the smeared-dislocation and super-dislocation description of a hydrided region in the context of modelling delayed hydride cracking initiation

    International Nuclear Information System (INIS)

    Smith, E.

    1994-01-01

    In quantifying the stress distribution within a hydrided region in the context of modelling delayed hydride cracking (DHC) initiation in zirconium alloys, this paper highlights the desirability of accounting for image effects, i.e. the interaction between the hydrided region and any free surface, for example a sharp crack, blunt notch or planar surface. The super-dislocation representation of a finite thickness hydrided region is ideal for accounting for image effects. It also adequately accounts for the finite thickness, t, of a hydrided region provided, as is the case in practice, we are concerned with the stress value within the hydride at distances ≥ 0.25 t from an end of the region. (Author)

  9. X-ray investigation of intermetallides and their hydrides under hydrogen pressure in H2-LaNi5 system

    International Nuclear Information System (INIS)

    Karonik, V.V.; Tsypin, M.I.; Prokof'ev, M.V.; Kazakov, D.N.

    1983-01-01

    X-ray phase analysis has been used to investigate phase composition of LaNi 5 -H 2 system; comparison of X-ray diffraction data with the results of plotting absorption and desorption isotherms is conducted. Technique of the X-ray diffraction study of intermetallide-hydrogen system using special X-ray chamber to diffractometer DRON-1.5 (GUR-5) is worked out. The parameters of elementary cell of the LaNisub(5)Hsub(6.2) hydride are determined: a=0.541(2) pm, c=0.430(2) nm, c/a=0.795, V=0.109 nm 3 (hexagonal syngony)

  10. Formation of palladium hydrides in low temperature Ar/H_2-plasma

    International Nuclear Information System (INIS)

    Wulff, H.; Quaas, M.; Deutsch, H.; Ahrens, H.; Fröhlich, M.; Helm, C.A.

    2015-01-01

    20 nm thick Pd coatings deposited on Si substrates with 800 nm SiO_2 and 1 nm Cr buffer layers were treated in a 2.45 GHz microwave plasma source at 700 W plasma power and 40 Pa working pressure without substrate heating. For obtaining information on the effect of energy influx due to ion energy on the palladium films the substrate potential was varied from U_s_u_b = 0 V to − 150 V at constant gas flow corresponding to mean ion energies E_i from 0.22 eV ∙ cm"−"2 ∙ s"−"1 to 1.28 eV ∙ cm"−"2 ∙ s"−"1. In contrast to high pressure reactions with metallic Pd, under plasma exposure we do not observe solid solutions over a wide range of hydrogen concentration. The hydrogen incorporation in Pd films takes place discontinuously. At 0 V substrate voltage palladium hydride is formed in two steps to PdH_0_._1_4 and PdH_0_._5_7. At − 50 V substrate voltage PdH_0_._5_7 is formed directly. However, substrate voltages of − 100 V and − 150 V cause shrinking of the unit cell. We postulate the formation of two fcc vacancy palladium hydride clusters PdH_V_a_c(I) and PdH_V_a_c(II). Under longtime plasma exposure the fcc PdH_V_a_c(II) phase forms cubic PdH_1_._3_3. The fcc PdH_0_._5_7 phase decomposes at temperatures > 300 °C to form metallic fcc Pd. The hydrogen removal causes a decrease of lattice defects. In situ high temperature diffractometry measurements also confirm the existence of PdH_V_a_c(II) as a palladium hydride phase. Stoichiometric relationship between cubic PdH_1_._3_3 and fcc PdH_V_a_c(II) becomes evident from XR measurements and structure considerations. We assume both phases have the chemical composition Pd_3H_4. Up to 700 °C we observe phase transformation between both the fcc PdH_V_a_c(II) and cubic PdH_1_._3_3 phases. These phase transformations could be explained analog to a Bain distortion by displacive solid state structural changes. - Highlights: • Thin Pd films were treated under low pressure conditions by an Ar/H_2-plasma. • The

  11. Formation of palladium hydrides in low temperature Ar/H{sub 2}-plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, H., E-mail: wulff@uni-greifswald.de [University of Greifswald, Institute of Physics, Felix-Hausdorff-Straße 6, 17487 Greifswald (Germany); Quaas, M. [LITEC-LP, Brandteichstraße 20, 17489 Greifswald (Germany); Deutsch, H.; Ahrens, H. [University of Greifswald, Institute of Physics, Felix-Hausdorff-Straße 6, 17487 Greifswald (Germany); Fröhlich, M. [Leibniz Institute for Plasma Science and Technology e.V., Felix-Hausdorff-Straße 2 (Germany); Helm, C.A. [University of Greifswald, Institute of Physics, Felix-Hausdorff-Straße 6, 17487 Greifswald (Germany)

    2015-12-01

    20 nm thick Pd coatings deposited on Si substrates with 800 nm SiO{sub 2} and 1 nm Cr buffer layers were treated in a 2.45 GHz microwave plasma source at 700 W plasma power and 40 Pa working pressure without substrate heating. For obtaining information on the effect of energy influx due to ion energy on the palladium films the substrate potential was varied from U{sub sub} = 0 V to − 150 V at constant gas flow corresponding to mean ion energies E{sub i} from 0.22 eV ∙ cm{sup −2} ∙ s{sup −1} to 1.28 eV ∙ cm{sup −2} ∙ s{sup −1}. In contrast to high pressure reactions with metallic Pd, under plasma exposure we do not observe solid solutions over a wide range of hydrogen concentration. The hydrogen incorporation in Pd films takes place discontinuously. At 0 V substrate voltage palladium hydride is formed in two steps to PdH{sub 0.14} and PdH{sub 0.57}. At − 50 V substrate voltage PdH{sub 0.57} is formed directly. However, substrate voltages of − 100 V and − 150 V cause shrinking of the unit cell. We postulate the formation of two fcc vacancy palladium hydride clusters PdH{sub Vac}(I) and PdH{sub Vac}(II). Under longtime plasma exposure the fcc PdH{sub Vac}(II) phase forms cubic PdH{sub 1.33}. The fcc PdH{sub 0.57} phase decomposes at temperatures > 300 °C to form metallic fcc Pd. The hydrogen removal causes a decrease of lattice defects. In situ high temperature diffractometry measurements also confirm the existence of PdH{sub Vac}(II) as a palladium hydride phase. Stoichiometric relationship between cubic PdH{sub 1.33} and fcc PdH{sub Vac}(II) becomes evident from XR measurements and structure considerations. We assume both phases have the chemical composition Pd{sub 3}H{sub 4}. Up to 700 °C we observe phase transformation between both the fcc PdH{sub Vac}(II) and cubic PdH{sub 1.33} phases. These phase transformations could be explained analog to a Bain distortion by displacive solid state structural changes. - Highlights: • Thin Pd films

  12. Thermodynamic behavior of very stable binary compounds with a wide homogeneity range: Their influence in the liquid phase in ternary and higher component systems in the solid state

    International Nuclear Information System (INIS)

    Hoch, M.

    1988-01-01

    The Hoch-Arpshofen model is combined with the Schottky-Wagner disorder model to describe first binary liquid systems, where a very stable solid protrudes into the liquid. We analyze the systems K-I 2 , Cs-I 2 , U-UO 3 , Ag-S and Al-Sb. The system Al-Sb can be described as Al-Sb and as Al-AlSb-Sb. Then we examine the Al-Co, Al-Ni, and Al-Fe systems to describe the stable compounds CoAl, NiAl, and FeAl, which all have a wide homogeneity range in the solid state. Here the Schottky-Wagner model is sufficient. Finally we describe a model which treats the influence of these stable binary compounds in ternary and larger systems such as Al-Cr-Ni and Al-Cr-Fe, again in the solid state. (orig./IHOE) [de

  13. In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N., E-mail: cinbizmn@ornl.gov [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Koss, Donald A., E-mail: koss@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Motta, Arthur T., E-mail: atm2@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Park, Jun-Sang, E-mail: parkjs@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States); Almer, Jonathan D., E-mail: almer@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States)

    2017-04-15

    The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. These experimental results can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix. - Highlights: •The δ{111} d-spacings aligned with the hydride plate edges exhibit a bi-linear thermal expansion. •Stress state reversal is predicted with the onset of hydride dissolution. •During dissolution, the δ{111} planes oriented parallel to the hydride plate face initially contract upon heating. •Hydride d-spacings indicate that both in-plane (circumferential) and out-of-plane (radial) hydrides are in the same strain-state and likely in the same stress state as well.

  14. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  15. DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

    International Nuclear Information System (INIS)

    Al Alam, A.F.

    2009-06-01

    This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen: (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magneto-volume and chemical interactions (metal-H) effects within the following hydrided systems: binary Laves (e.g. ScFe 2 ) and Haucke (e.g. LaNi 5 ) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U 2 Ni 2 Sn) alloys on the other hand. (author)

  16. A Novel Zr-1Nb Alloy and a New Look at Hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; James I. Cole; Assel Aitkaliyeva

    2013-09-01

    A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys.

  17. Studies on displacement behavior between hydrogen and deuterium in hydride column

    International Nuclear Information System (INIS)

    Lu Guangda; Li Gan; Jiang Guoqiang

    2001-01-01

    A series displacement experiments between hydrogen and deuterium in ZrCo, LaNi 5 , LaNi 4.7 Al 0.3 and Pd hydride column had been conducted at room temperature about. Results indicate that displacement characteristics related to factors such as temperature, gas flow rate, ratio surface area of solid phase and hydrogen isotope separation factor of the metal-hydrogen system. The palladium hydride have the best displacement characteristics, and LaNi 5 , LaNi 4.7 Al 0.3 and ZrCo are in the next places. Theoretical study reveals that the rule of the exchange reaction of hydrogen isotopes in gas-solid interface determines the displacement behavior and the displacing efficiency depends on exchange rate. The ideal stage mode could be used to describe the displacement breakthrough curve. The height equivalent to theoretical place (HETP) indicates the displacing effects. Also, the separation factor has a serious influence to HETP under the same condition

  18. A system of hydrogen powered vehicles with liquid organic hydrides

    International Nuclear Information System (INIS)

    Taube, M.

    1981-07-01

    A motor car system based on the hydrogen produced by nuclear power stations during the night in the summer, and coupled with organic liquid hydride seems to be a feasible system in the near future. Such a system is discussed and the cost is compared with gasoline. (Auth.)

  19. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  20. Cascades for hydrogen isotope separation using metal hydrides

    International Nuclear Information System (INIS)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes

  1. Deiodination reactions using tributyltin hydride for potential labelling experiments

    International Nuclear Information System (INIS)

    Zippi, E.M.; Plourde, G.W. II; Satyamurthy, N.

    1995-01-01

    2,6-Dinitro-1-iodobenzene and 2,4-dinitro-1-iodobenzene were deiodinated with tributylin hydride at different temperatures using various addition modes. The product ratios of 1,3-dinitrobenzene and the corresponding tributylstannyldinitrobenzene compounds were determined by NMR in order to evaluate the optimum conditions for impending tritiation experiments. (Author)

  2. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented Electrochemical Kinetic Model (EKM), describing the electrochemical hydrogen storage in hydride-forming materials, has been extended by the description of the solid/electrolyte interface, i.e. the charge transfer kinetics and electrical double layer charging. A complete set of

  3. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented electrochemical kinetic model, describing the electrochemical hydrogen storage in hydride-forming materials, was extended by the description of the solid/electrolyte interface, i.e., the charge-transfer kinetics and electrical double-layer charging. A complete set of equations

  4. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  5. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  6. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    OpenAIRE

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Jr., Cláudio; Victor, Maurício M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride®) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring.

  7. Diastereoselectivity in the reduction of bicyclic enones with hindered hydrides

    International Nuclear Information System (INIS)

    Camozzato, Andreza C.; Tenius, Beatriz S. M.; Oliveira, Eduardo R. de; Viegas Junior, Claudio; Victor, Mauricio M.; Silveira, Leandro G. da

    2008-01-01

    Reduction of five substituted octalones employing lithium tri-sec-butylborohydride (L-selectride R ) in THF and ethyl ether led to allylic alcohols with moderate diastereoselectivity. The stereoselectivity of addition of bulky hydrides showed to be different from most examples in the literature and was strongly influenced by substitution on the octalone ring. (author)

  8. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  9. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  10. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  11. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  12. Cascades for hydrogen isotope separation using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)

    1983-02-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  13. Diffusion model of delayed hydride cracking in zirconium alloys

    NARCIS (Netherlands)

    Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK

    2004-01-01

    We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack.

  14. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  15. The Properties of Some Simple Covalent Hydrides: An Ab Initio ...

    African Journals Online (AJOL)

    Some properties of the monomeric binary hydrides of the elements of the first two rows of the periodic table have been determined using ab initio molecular orbital theory. The properties in question are the energetic, structural, electronic, topological and vibrational characteristics. In general, a gradual convergence towards ...

  16. Tellurium Stable Isotopes as a Paleoredox Proxy

    Science.gov (United States)

    Wasserman, N.; Johnson, T. M.

    2017-12-01

    Despite arguments for variably-oxygenated shallow waters and anoxic deep marine waters, which delayed animal development until the Neoproterozoic Oxidation Event, the magnitude of atmospheric oxygen during the Proterozoic is still uncertain [1]. The evidence for low pO2 (<0.1-1% PAL) is based on geochemical and isotopic proxies, which track the mobilization of Fe and Mn on the continents. For example, large chromium isotope shifts occur at the Neoproterozoic Oxidation Event due to the initiation of Cr redox cycling, but this proxy is insensitive to fluctuations in the lower-pO2 conditions at other times during the Proterozoic. Tellurium, a metalloid with a lower threshold to oxidation, may be sensitive to pO2 shifts in a lower range. In the reduced forms, Te(-II) and Te(0), the element is insoluble and immobile. However, in the more oxidized phases, Te(IV) and Te(VI), Te can form soluble oxyanions (though it tends to adsorb to Fe-oxyhydroxides and clays) [2]. Te stable isotopes have been shown to fractionate during abiotic or biologic reduction of Te(VI) or Te(IV) to elemental Te(0) [3, 4]. Utilizing hydride generation MC-ICP-MS, we are able to obtain high precision (2σ 0.04‰) measurements of δ128Te/125Te for natural samples containing < 10 ng of Te. A suite of Phanerozoic and Proterozoic ironstones show significant variation in δ128Te/125Te (<0.5‰), suggesting that the Te redox cycle was active during the Proterozoic. Future directions will include Te isotope measurements of Precambrian paleosols to determine natural isotope variation before the Great Oxidation Event and experiments to determine fractionation during adsorption to Fe-oxyhydroxides. [1] Planavsky et al. (2014) Science 346 (6209), pp. 635-638 [2] Qin et al. (2017) Environmental Science and Technology 51 (11), pp 6027-6035 [3] Baesman et al. (2007) Applied Environmental Microbiology 73 (7), pp 2135-2143 [4] Smithers and Krause (1968) Canadian Journal of Chemistry 46(4): pp 583-591

  17. Effect of Crack Tip Stresses on Delayed Hydride Cracking in Zr-2.5Nb Tubes

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Moo

    2007-01-01

    Delayed hydride cracking (DHC) tests have shown that the DHC velocity becomes faster in zirconium alloys with a higher yield stress. To account for this yield stress effect on the DHC velocity, they suggested a simple hypothesis that increased crack tip stresses due to a higher yield stress would raise the difference in hydrogen concentration between the crack tip and the bulk region and accordingly the DHC velocity. This hypothesis is also applied to account for a big leap in the DHC velocity of zirconium alloys after neutron irradiation. It should be noted that this is based on the old DHC models that the driving force for DHC is the stress gradient. Puls predicted that an increase in the yield stress of a cold worked Zr-2.5Nb tube due to neutron irradiation by about 300 MPa causes an increase of its DHC velocity by an order of magnitude or 2 to 3 times depending on the accommodation energy values. Recently, we proposed a new DHC model that a driving force for DHC is not the stress gradient but the concentration gradient arising from the stress-induced precipitation of hydrides at the crack tip. Our new DHC model and the supporting experimental results have demonstrated that the DHC velocity is governed primarily by hydrogen diffusion at below 300 .deg. C. Since hydrogen diffusion in Zr-2.5Nb tubes is dictated primarily by the distribution of the β-phase, the DHC velocity of the irradiated Zr-2.5Nb tube must be determined mainly by the distribution of the β-phase, not by the increased yield stress, which is in contrast with the hypothesis of the previous DHC models. In short, a controversy exists as to the effect on the DHC velocity of zirconium alloys of a change in the crack tip stresses by irradiation hardening or cold working or annealing. The aim of this study is to resolve this controversy and furthermore to prove the validity of our DHC model. To this end, we cited Pan et al.'s experiment where the delayed hydride cracking velocity, the tensile strengths

  18. Ca2Cr0.5Ga1.5O5—An extremely redox-stable brownmillerite phase

    International Nuclear Information System (INIS)

    Luo, Kun; Amano Patino, Midori; Hayward, Michael A.

    2015-01-01

    Investigation of the Ca 2 Cr x Ga 2−x O 5 compositional series reveals a maximum chromium solubility of 25%. The most chromium rich composition, Ca 2 Cr 0.5 Ga 1.5 O 5 , adopts a brownmillerite-type anion deficient perovskite structure described in space group Pnma (a=5.368 Å, b=14.547 Å, c=5.593 Å). Neutron powder diffraction data reveals rigorous B-site cation order, with all of the tetrahedral coordination sites occupied exclusively by gallium and the octahedral coordination sites occupied by gallium or chromium. Annealing studies reveals Ca 2 Cr 0.5 Ga 1.5 O 5 is stable in both oxidizing (100% O 2 ) and reducing (5% H 2 in N 2 ) conditions up to 800 °C, suggesting it could find application as a stable host lattice for fuel cell electrodes or electrolytes with suitable doping to enhance catalytic behaviour and/or anionic conductivity. - Graphical abstract: Ca 2 Cr 0.5 Ga 1.5 O 5 , adopts a brownmillerite-type anion deficient perovskite structure yet it is stable in both oxidizing (100% O 2 ) and reducing (5% H 2 in N 2 ) conditions up to 800 °C. - Highlights: • Anion deficient oxide stable to both oxidation and reduction up to 800 °C. • Cation-ordered brownmillerite structure determined by powder neutron diffraction. • Low solubility of Cr 3+ in framework due to spherical d 3 electron configuration

  19. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    International Nuclear Information System (INIS)

    Tournier, Robert F.

    2014-01-01

    An undercooled liquid is unstable. The driving force of the glass transition at T g is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change −V m ×Δp at T g where V m is the molar volume. A stable glass–liquid transition model predicts the specific heat jump of fragile liquids at T≤T g , the Kauzmann temperature T K where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between T K and T g , the maximum nucleation rate at T K of superclusters containing magic atom numbers, and the equilibrium latent heats at T g and T K . Strong-to-fragile and strong-to-strong liquid transitions at T g are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid–liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at T K of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at T g without stable-glass formation while a strong glass is stable after transition

  20. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free analyte atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    D'Ulivo, Alessandro; Dedina, Jiri

    2002-01-01

    The mechanism at the origin of double peaks formation in quartz hydride atomizers were investigated by continuous flow hydride generation atomic absorption spectrometry. Arsenic and selenium were used as model analytes. The effect of atomization mode (flame-in-gas-shield (FIGS), miniature diffusion flame and double flame (DF)) and some experimental parameters as oxygen supply rate for microflame and the distance from atomization to free atoms detection point, were investigated on the shape of both analytical signals and calibration graphs. Rollover of calibration graphs and double peak formation are strictly related each to the other and could be observed only in FIGS atomizer mode under some particular conditions. A mechanism based on incomplete atomization of hydrides cannot explain the collected experimental evidences because the microflame of FIGS is able to produce quantitative atomization of large amount of hydrides even at supply rate of oxygen close to extinction threshold of microflame. The heterogeneous gas-solid reactions between finely dispersed particles, formed by free atom recombination, and the free atoms in the gaseous phase are at the origin of double peak formation