WorldWideScience

Sample records for stable charcoal product

  1. TAXATION IN CHARCOAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Christian Rainier Imaña

    2015-03-01

    Full Text Available In past decades, the Brazilian tax burden has been the subject of discussion and analysis in the academic, political and social arena. In 2008, Brazilian tax burden reached the tax level from OECD countries, although the social issue in Brazil is in lower level than those countries. This paper has analyzed the tax burden from charcoal production. Eleven kinds of taxes were analyzed: IRPJ, ITR, CSLL, COFINS, PIS, TF, TCFA, TFAMG, ECRRA, INSS and FGTS. The tax burden for the production of charcoal was 9.76%. There was no municipal tax for charcoal. State taxes accounted 10% of the tax burden, the rest are federal taxes. COFINS was responsible for the largest tax burden: 3%, which confirms the Brazilian tax system is very non progressive. In Minas Gerais, Brazilian tax on goods and services (ICMS is deferred, the charcoal buyer has the obligation to collect this tax. This means the steel company accounts for the total burden of ICMS.

  2. Zambian charcoal production

    International Nuclear Information System (INIS)

    Chidumayo, E.N.

    1993-01-01

    The recovery of miombo woodlands following clearance for woodfuel is being monitored at four sites in central Zambia. Charcoal production removes 50% of the total woody biomass and the woodland regenerates from a pool of stunted old seedlings and stumps of cut trees. Productivity is correlated to tree density before felling. Clearing of successive regrowth miombo does not appear to affect productivity. Annual wood biomass increment in unmanaged regrowth miombo is estimated at 2-3 t/ha pa of which about 1.1 t is cord wood suitable for charcoal production. However, the charcoal spots within the deforested area are severely impacted by the carbonization process which destroys soil structure, seedlings and root stocks. Woodland regeneration on such spots is protracted. Fortunately, charcoal spots only cover 2-3% of the deforested area. The concern about land degradation due to deforestation caused by woodfuel harvesting for urban charcoal in the miombo woodland region of central and southern Africa is not supported by the results of this study. (author)

  3. Charcoal production and environmental degradation

    International Nuclear Information System (INIS)

    Hosier, R.H.

    1993-01-01

    This paper examines the environmental impacts of continued tree harvesting for charcoal production to supply the urban areas in Tanzania. Woodlands appear to recover relatively well following harvesting for charcoal production. Selective harvesting, where the high quality, low cost fuel production species and specimens are culled first from a piece of land, serves to maintain the viability of the woodlands resource while providing charcoal. This recovery period can be prolonged through any number of human induced activities, such as heavy grazing, multiple burns and extended cultivation periods. At the same time, post-harvest management techniques, such as coppice management, sprout protection and fertilization, can also improve the ability of woodlands to recover following harvesting. The environmental history of a given area determines why certain areas continue to be strong suppliers of woodfuel while others are not. For example, Shinyanga started from a low productivity base and has been degraded by successive waves of tree harvesting compounded by heavy grazing pressure. It is this multiple complex of pressures over a long period of time on land which is intrinsically of low productivity, and not the harvesting of woodlands for fuels, which has led to the environmental degradation in these areas. (author)

  4. Forestry policy and charcoal production in Senegal

    International Nuclear Information System (INIS)

    Ribot, J.C.

    1993-01-01

    This paper examines the historical, social and political-economic dynamics of environmental policy implementation in Senegal's charcoal market. It explores the relationship between urban demand for charcoal and its rural environmental consequences. It focuses on the ways in which the social and political-economic relations within the market and between the market and state shape production, exchange, regulation, and ultimately the social and econological consequences of charcoal production and use. The article begins by characterizing the patterns of woodfuel supply and use in Senegal and by recounting the historical perception and response to environmental problems associated with the woodfuel trade. It describes the social and economic organization of production and exchange, followed by an analysis of policy implementation. It also shows that where social relations dominate production and exchange, environmental policy making and implementation will be an iterative process. Sustainable resource management is not implemented once and for ever, but will come and go. (author)

  5. Stable carbon isotope ratios from archaeological charcoal as palaeoenvironmental indicators

    CSIR Research Space (South Africa)

    Hall, G

    2008-01-01

    Full Text Available specific pyrolysis products, mostly furans and pyrans, and released (Steinbeiss et al., 2006). The removal of these compounds is driven by their relative chemical stability and strength of molecular cross bonds. Differences between how... to simulate natural burning conditions and left until completely charred. This produced charcoal under oxidizing (O2-rich) conditions. This process took less than 15 min for the largest disc (60 mm in diameter) and about five minutes for the smallest (30...

  6. Production of charcoal briquettes from biomass for community use

    Science.gov (United States)

    Suttibak, S.; Loengbudnark, W.

    2018-01-01

    This article reports of a study on the production of charcoal briquettes from biomass for community use. Manufacture of charcoal briquettes was done using a briquette machine with a screw compressor. The aim of this research was to investigate the effects of biomass type upon the properties and performance of charcoal briquettes. The biomass samples used in this work were sugarcane bagasse (SB), cassava rhizomes (CR) and water hyacinth (WH) harvested in Udon Thani, Thailand. The char from biomass samples was produced in a 200-liter biomass incinerator. The resulting charcoal briquettes were characterized by measuring their properties and performance including moisture content, volatile matter, fixed carbon and ash contents, elemental composition, heating value, density, compressive strength and extinguishing time. The results showed that the charcoal briquettes from CR had more favorable properties and performance than charcoal briquettes from either SB or WH. The lower heating values (LHV) of the charcoal briquettes from SB, CR and WH were 26.67, 26.84 and 16.76 MJ/kg, respectively. The compressive strengths of charcoal briquettes from SB, CR and WH were 54.74, 80.84 and 40.99 kg/cm2, respectively. The results of this research can contribute to the promotion and development of cost-effective uses of agricultural residues. Additionally, it can assist communities in achieving sustainable self-sufficiency, which is in line with our late King Bhumibol’s economic sufficiency philosophy.

  7. Trace metal contents in barbeque (BBQ) charcoal products

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Ehsanul [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Kim, Ki-Hyun, E-mail: khkim@sejong.ac.kr [Department of Environment and Energy, Sejong University, 98 Goon Ja Dong, Seoul 143-747 (Korea, Republic of); Yoon, H.O. [Korea Basic Science Institute, Seoul Center, Seoul 136-701 (Korea, Republic of)

    2011-01-30

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 {mu}g kg{sup -1} (As) to 118 mg kg{sup -1} (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  8. Trace metal contents in barbeque (BBQ) charcoal products

    International Nuclear Information System (INIS)

    Kabir, Ehsanul; Kim, Ki-Hyun; Yoon, H.O.

    2011-01-01

    In this study, the concentrations of trace elements contained in solid barbeque (BBQ) charcoal products have been investigated. Eleven brands of charcoal products were analyzed, consisting of both Korean (3 types) and imported products (eight types from three countries) commonly available in the Korean market places. The concentrations of trace metals in solid charcoal varied widely across metal types and between samples with the overall range of 5 μg kg -1 (As) to 118 mg kg -1 (Zn). The patterns of metal distribution between different products appeared to be affected by the properties of raw materials and/or the processes involved in their production. Although concentrations of certain trace metals were significantly high in certain charcoal samples, their emission concentrations were below legislative guidelines (e.g., the permissible exposure limit (PEL) set by the Occupational Safety and Health Administration (OSHA)). In light of the potential harm of grilling activities, proper regulation should be considered to control the use of BBQ charcoal from a toxicological viewpoint to help reduce the potential health risks associated with its use.

  9. Determinants of Charcoal Production Efficiency in Ibarapa North ...

    African Journals Online (AJOL)

    The data obtained were analyzed using descriptive statistics (percentage and frequency and stochastic frontier production function. The study revealed that mean age of producers was 36 years; 96.9% were males and 3.1 were females. Majority of the producers (76.9%) had no formal training on how to produce charcoal, ...

  10. Production of charcoal from woods and bamboo in a small natural draft carbonizer

    Energy Technology Data Exchange (ETDEWEB)

    Tippayawong, Nakorn; Saengow, Nakarin; Chaiya, Ekarin

    2010-07-01

    There is a strong domestic market for charcoal in Thailand and many developing countries. Charcoal is usually made from biomass materials in small scale, simple kilns. Traditional charcoal making kilns adopts a process that is very inefficient, and damaging to the environment. In this work, an alternative charcoal reactor based on natural draft, pyrolysis gas burning concept was proposed and demonstrated. Tests with longan woods and bamboo showed that good quality charcoal can be produced in shorter time with lower pollution emissions, compared with traditional kilns. The proposed carbonizer proved to be suitable for small scale, charcoal production in rural area.

  11. Research report: Charcoal type used for hookah smoking influences CO production.

    Science.gov (United States)

    Medford, Marlon A; Gasier, Heath G; Hexdall, Eric; Moffat, Andrew D; Freiberger, John J; Moon, Richard E

    2015-01-01

    A hookah smoker who was treated for severe carbon monoxide poisoning with hyperbaric oxygen reported using a different type of charcoal prior to hospital admission, i.e., quick-light charcoal. This finding led to a study aimed at determining whether CO production differs between charcoals commonly used for hookah smoking, natural and quick-light. Our hypothesis was that quick-light charcoal produces significantly more CO than natural charcoal. A medium-sized hookah, activated charcoal filter, calibrated syringe, CO gas analyzer and infrared thermometer were assembled in series. A single 9-10 g briquette of either natural or quick-light charcoal was placed atop the hookah bowl and ignited. CO output (ppm) and temperature (degrees C) were measured in three-minute intervals over 90 minutes. The mean CO levels produced by quick-light charcoal over 90 minutes was significantly higher (3728 ± 2028) compared to natural charcoal (1730 ± 501 ppm, p = 0.016). However, the temperature was significantly greater when burning natural charcoal (292 ± 87) compared to quick-light charcoal (247 ± 92 degrees C, p = 0.013). The high levels of CO produced when using quick-light charcoals may be contributing to the increase in reported hospital admissions for severe CO poisoning.

  12. The Marginalization of Sustainable Charcoal Production in the Policies of a Modernizing African Nation

    Directory of Open Access Journals (Sweden)

    Nike Doggart

    2017-06-01

    Full Text Available Charcoal is the main cooking fuel for urban populations in many African countries. Urbanization and population growth are driving an increase in demand for charcoal, whilst deforestation reduces biomass stocks. Given increasing demand for charcoal, and decreasing availability of biomass, policies are urgently needed that ensure secure energy supplies for urban households and reduce deforestation. There is potential for charcoal to be produced sustainably in natural woodlands, but this requires supportive policies. Previous research has identified policy issues that have contributed to the charcoal sector remaining informal and environmentally destructive. In this paper, we describe how national policies in Tanzania on energy, forests, agriculture, land, and water, consider charcoal, and the degree to which they do, and do not, support sustainable charcoal production. The paper identifies policy gaps and a cross-sector tendency to marginalize natural forest management. By adopting a nexus approach, the paper highlights the inter-connections between sustainable charcoal production, ecosystem services, and trade-offs in the allocation of land, labor, and net primary production. In conclusion, sustainable charcoal production has been marginalized in multiple national policies. As a result, potential benefits of sustainable charcoal production are lost to multiple sectors.

  13. The influence of production conditions, starting material and deposition environment on charcoal alteration in a tropical biome.

    Science.gov (United States)

    Ascough, Philippa; Bird, Michael; Meredith, Will; Large, David; Snape, Colin; Manion, Corinne

    2014-05-01

    Natural and anthropogenic burning events are a key link in the global carbon cycle, substantially influencing atmospheric CO2 levels, and consuming c.8700 teragrams yr-1 of dry biomass [1,2,3]. An important result of this process is charcoal, when lignocellulosic structures in biomass (e.g. wood) are converted to aromatic domains with high chemical stability. Charcoal is therefore not readily re-oxidized to CO2, with estimates of 5-7 ky for the half-life of charcoal carbon in soils [3,4]. Charcoal's high carbon content coupled with high environmental resistance has led to the concept of biochar as a valuable means of global carbon sequestration, capable of carbon offsets comparable to annual anthropogenic fuel emissions [5,6,7]. Charcoal is not, however, an environmentally inert substance, and at least some components of charcoal are susceptible to alteration in depositional environments. Despite the importance of charcoal in global carbon cycling, the mechanisms by which charcoal is altered in the environment remain, as yet, poorly understood. This fact limits our ability to properly incorporate both natural environmental charcoal and biochar into global carbon budgets. This study aimed to improve understanding of charcoal alteration in the environment by examining the influence of production conditions, starting material and deposition environment on the physical and chemical characteristics of charcoal at a field site in the Daintree rainforest. These factors have been identified as critical in determining the dynamics of charcoal in depositional environments [8,9] and climatic conditions at the field site (in Tropical Queensland, Australia) are likely to result in extensive alteration of charcoal. Charcoal from wood (Nothofagus spp.), algae (Enteromorpha spp.), and sugarcane (Saccharum spp.) biomass was produced at temperatures over 300-500°C and exposed to conditions of varying pH and vegetation cover. The effect of these variables on charcoal chemistry

  14. Charcoal production technologies: Environmental and socio-economic impacts with Brazilian examples

    International Nuclear Information System (INIS)

    Paula Fernandes, M. de.

    1991-01-01

    The indirect use of solar energy through photosynthesis, wood and charcoal requires reforestation with fast-growing species to supply continuously charcoal for industrial and domestic needs. This concept, sometimes referred to as an energy farms, is the conversion of sunshine into food, fibre, furniture, paper and pulp products. It the charcoal production uses primitive, low-yield technologies, it endangers the economic viability of the wood energy source and causes negative environmental impacts. 19 refs, 4 figs, 3 tabs

  15. Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration.

    Science.gov (United States)

    Wu, Mengxiong; Yang, Min; Han, Xingguo; Zhong, Ting; Zheng, Yunfei; Ding, Pin; Wu, Weixiang

    2016-01-01

    Recalcitrant charcoal application is predicted to decelerate global warming through creating a long-term carbon sink in soil. Although many studies have showed high stability of charcoal derived from woody materials, few have focused on the dynamics of straw-derived charcoal in natural environment on a long timescale to evaluate its potential for agricultural carbon sequestration. Here, we examined straw-derived charcoal in an ancient paddy soil dated from ~3700 calendar year before present (cal. year BP). Analytical results showed that soil organic matter consisted of more than 25% of charcoal in charcoal-rich layer. Similarities in morphology and molecular structure between the ancient and the fresh rice-straw-derived charcoal indicated that ancient charcoal was derived from rice straw. The lower carbon content, higher oxygen content, and obvious carbonyl of the ancient charcoal compared with fresh rice straw charcoal implied that oxidation occurred in the scale of thousands years. However, the dominant aromatic C of ancient charcoal indicated that rice-straw-derived charcoal was highly stable in the buried paddy soil due to its intrinsic chemical structures and the physical protection of ancient paddy wetland. Therefore, it may suggest that straw charcoal application is a potential pathway for C sequestration considering its longevity.

  16. The Impact of Charcoal Production on Forest Degradation: a Case Study in Tete, Mozambique

    Science.gov (United States)

    Sedano, F.; Silva. J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.

    2016-01-01

    Charcoal production for urban energy consumption is a main driver of forest degradation in sub-Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multi-temporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.

  17. Determination of the suitability of certain deciduous species for production of furfural and charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, P.

    1979-01-01

    Determination of the suitability of chips of certain deciduous species for production of furfural and charcoal is discussed. The results of determination of suitability of unpeeled chips from cut branches (beech, birch, alder) and oak chips from wastes of production of furfural and also the suitability of cellolignin obtained from these chips for the production of charcoal are cited. An industrial unit of Swedish make equipped with a continuous hydrolyzer was used in hydrolysis tests of the deciduous chips. Unstripped birch, beech, and alder chips and oak chips from the wastes of wood processing contained 17-20 percent pentozanes and are suitable for industrial production of furfural. The content of substances soluble in an alcohol-benzene mixture in cellolignin from this feedstock was 21.1-30.5 percent. The amount of cellolignin obtained from chips of these species satisfied the demands of charcoal production. The charcoal yield was approximately 20 percent relative to the dry mass of carbonized cellolignin.

  18. Production of active charcoal and characteristic of volatile organic compounds in condensate

    International Nuclear Information System (INIS)

    Lalik, V.; Knoskova, L.

    2005-01-01

    In the last decade a production of charcoal and products from charcoal has been taking on an important position in a field of environmental technologies. Technological process of the production of charcoal is accompanied by formation of fluid and gaseous elements. These elements are ranked as pollutants from the legal point of view. There are mainly carbon dioxide and carbon monoxide and other oxide compounds from the chemical point of view. Particularly acetic acid, methanol, 2-furaldehyde. Then aliphatic alcohols, phenols, aldehydes, ketones, esters and other groups of substances. Law limits the quantity and concentration of these essentials emitted into the open air. This matter has to be taken care of during the production of charcoal. It is usually solved by condensation cooling and following burning gases and steams. Condensate is industrially processed or smaller technologies handle with it similar to taking care of wastewater. (authors)

  19. Development of a Metal Kiln for the Production of Charcoal from ...

    African Journals Online (AJOL)

    African Journal of Sustainable Development ... The study established that the design upon modification would be environmentally safe, viable and an economic alternative for ... Keywords: Production, Smoking, Charcoal, Kiln, Design ...

  20. Socio-economic impacts of charcoal production in Oke-Ogun area of Oyo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Olasimbo Olarinde

    2018-04-01

    Full Text Available Many households in developing countries experience low energy consumption and this make them depend upon wood fuels for their energy. This study examined socio-economic impacts of charcoal production in Oke-Ogun, Oyo State, Nigeria. Two Local Government Areas were selected based on the accessibility and the availability of charcoal farmers among ten Local Government Areas. Results show that 74% of the respondents were male while 26% were female that are into production of charcoal in the study area. 37.5% of the age range (41–50 of respondent produces more charcoal than other age range. The respondent did not go beyond primary school educationally and they are all married. However, respondents with over 11–20 years of experience in the production of charcoal have higher percentage of frequency. Some of the problem faced by the producers of charcoal in Oke Ogun area are scarcity of trees, wildfire, government disturbance and transportation. Trees commonly used for production are from inherited farms and most of the trees used are Butyrosopermum paradoxium, Dialium guineense, Terminalia glaucencens, Khaya ivorensis. Production is once in a month and later exported. Energy provision is a basic human need and consumption is closely related to the level of a country’s development.

  1. Bio-charcoal production from municipal organic solid wastes

    Science.gov (United States)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  2. Utilization of maize cob biochar and rice husk charcoal as soil amendments for improving acid soil fertility and productivity

    Directory of Open Access Journals (Sweden)

    Nurhidayati

    2014-10-01

    Full Text Available The decline in soil fertility in agricultural land is a major problem that causes a decrease in the production of food crops. One of the causes of the decline in soil fertility is declining soil pH that caused the decline in the availability of nutrients in the soil. This study aimed to assess the influence of alternative liming materials derived from maize cob biochar and rice husk charcoal compared to conventional lime to improve soil pH, soil nutrient availability and maize production. The experiment used a factorial complete randomized design which consisting of two factors. The first factor is the type of soil amendment which consists of three levels (calcite lime, rice husk charcoal and cob maize biochar. The second factor is the application rates of the soil amendment consisted of three levels (3, 6 and 9 t/ha and one control treatment (without soil amendment. The results of this study showed that the application of various soil amendment increased soil pH, which the pH increase of the lime application was relatively more stable over time compared to biochar and husk charcoal. The average of the soil pH increased for each soil amendment by 23% (lime, 20% (rice husk charcoal and 23% (biochar as compared with control. The increase in soil pH can increase the availability of soil N, P and K. The greatest influence of soil pH on nutrient availability was shown by the relationship between soil pH and K nutrient availability with R2 = 0.712, while for the N by R2 = 0.462 and for the P by R2 = 0.245. The relationship between the availability of N and maize yield showed a linear equation. While the relationship between the availability of P and K with the maize yield showed a quadratic equation. The highest maize yield was found in the application of biochar and rice husk charcoal with a dose of 6-9 t/ha. The results of this study suggested that biochar and husk charcoal could be used as an alternative liming material in improving acid soil

  3. Environmental impact assessment of the charcoal production and utilization system in central Zambia

    International Nuclear Information System (INIS)

    Serenje, W.; Chidumayo, E.N.; Chipuwa, J.H.; Egneus, H.; Ellegaard, A.

    1994-01-01

    The present study is the outcome of the Zambia Charcoal Utilization Programme, which is based on cooperation that started in 1989 between the Department of Energy, Ministry of Energy and Water Development (then Ministry of Power, Transport and Communications) and the Stockholm Environmental Institute (SEI). The programme, which is funded by the Swedish International Development Authority (SIDA), consists of a number of studies focusing on different aspects of the wood and charcoal industry in Zambia. Selection of this energy system for detailed study was based on the fact that wood provides the largest contribution to total energy supply in Zambia, and the fact that wood is a renewable resource that could be exploited on a sustainable basis if properly managed. The studies therefore range from those that look at sustainability of the natural forests exploited for charcoal, to those that deal with transportation and health aspects of charcoal production and use. The present report focuses on the environmental and socio-economic effects of charcoal production and use. 72 refs., 20 figs., 38 tabs

  4. The Utilization of Bottom Ash Coal for Briquette Products by Adding Teak Leaves Charcoal, Coconut Shell Charcoal, and Rice Husk Charcoal

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2015-01-01

    Full Text Available The limitations of the availability of energy sources especially fuel oil has become a serious threat for the society. The use of coal for energy source as the replacement of fuel oil, in one hand, is very profitable, but on the other hand, will cause problem which is the coal ash residue. This coal ash is a by-product of coal combustion. This coal ash contains bottom ash. Through this observation, the bottom ash can be processed to be charcoal if added by teak leaves, coconut shell, and rice husk. Also, this observation needs to add binder materials for further processing in order to form briquette. It can be used as alternative fuel, the utilization of bottom ash and biomass will give positive impact to the environment. This observation was conducted by using compositions such as bottom ash, teak leaves, coconut shell, and rice husk. The treatment was using comparison 100%:0% ; 80%:20% ; 60%:40% ; 50%:50% ; 40%:60% ; 20%:80% ; 0%:100%. The result that the best briquette was on the composition of 20% bottom ash : 80% coconut shell. The characteristic values from that composition were moisture content of 3.45%, ash content of 17,32%, calorific value of 7.945,72 Cal/gr, compressive strength of 2,18 kg/cm2, level of CO of 105 mg/m3, and heavy metals Cu of 29,83 µg/g and  Zn 32,99 µg/g. The characteristic value from each briquette composition treatment showed that the increasing usage proportion of biomass as added material for briquette was able to increase its moisture content and calorific value. Besides, it is also able to decrease its ash content and compressive strength

  5. Production of charcoal briquettes from cotton stalk in malawi: methodology for feasibility studies using experiences in Sudan

    NARCIS (Netherlands)

    Onaji, P.B.; Siemons, R.V.

    1993-01-01

    The feasibility of charcoal production from cotton stalks in Malawi was studied based on experience from Sudan. The country relies considerably on biomass fuels. Of the total energy consumption in Malawi of 2.376 MTOE in 1989, 92% was met by biomass (fuelwood: 83.6% and charcoal: 8.3% Petroleum

  6. Unsustainable charcoal production as a contributing factor to woodland fragmentation in southeast Kenya

    Directory of Open Access Journals (Sweden)

    Ruuska, Eeva

    2013-06-01

    Full Text Available Drawing from a holistic research approach, this paper contributes to the studies of land cover change and sustainable development in Kenya, and to the planning of sustainable future in Dakatcha Woodland, SE Kenya. As an un-protected global hotspot for biodiversity, Dakatcha Woodland has suffered from unsustainable forest resource use. The relation of charcoal production to land cover change and its socio-economic impact are studied in detail. A supervised land cover classification formed using four SPOT satellite images from 2005/06 and 2011 revealed that the woodland is fragmenting and the Important Bird Area (IBA demarcation should be reconsidered. Through in-situ observation, household questionnaires and semi-structured expert interviews it was found that more than half of the 90 households assessed are involved in charcoal production which is higher figure than peer studies have suggested, and that the charcoal network offers income to many, but bears an negative impact on the environment. It was discovered that, like in Kenya, in Dakatcha Woodland, too, the demand for woodfuels (charcoal and fuelwood is one of the key drivers of deforestation and land degradation. As such, woodfuel energy is a cross cutting issue, tying together forest resources, livelihoods and sustainable development, and thus demands further research. Forest management of Dakatcha Woodland must be planned in accordance with all stakeholders in a sustainable manner, drawing from agroforestry and participatory forest management systems, and keeping environmental factors in mind for the maintenance of ecosystem services.

  7. Activated Charcoal

    Science.gov (United States)

    Common charcoal is made from peat, coal, wood, coconut shell, or petroleum. “Activated charcoal” is similar to common charcoal, but is made especially for use as a medicine. To make activated charcoal, manufacturers heat common ...

  8. Diagnostic of the charcoal's productive and commercialize in the Pinar del Río's Integral Forest Company by matrix SWOT

    Directory of Open Access Journals (Sweden)

    Van Anh Thi Nguyen

    2014-06-01

    Full Text Available This study aimed to diagnose the situation productive of charcoal in Pinar del Río EFI by SWOT matrix (weaknesses, threats, strengths and opportunities which consists of the collection of information from different sources related to the production of charcoal and thus a screening of ideas and through the technical working group with the presence of specialists proceeded develop the matrix with all components was performed. The results of the assessment of the productive situation of charcoal indicate an unfavorable position, resulting in a strategy of adaptive type, conditioned by economic, political and cultural factors.

  9. Environmentally friendly production of charcoal from empty fruit bunches using pilot plant

    International Nuclear Information System (INIS)

    Normah Mulop; Mohd Suffian Abdul Rahim

    2000-01-01

    Empty fruit bunches (EFB) from palm oil milling process are classified as palm oil waste. The EFB can be turned into valuable product such as charcoal, which can be processed further to activated carbon in order to solve some of the disposal problems. In this project, raw EFB was converted to charcoal by means of a pilot plant. A burner generating indirect heat controls the temperature of the process. The carbonization process was carried out in the absence of air at various temperatures and durations to find the optimum carbonization parameters. The study shows that the optimum operating, temperature for carbonization of EFB is 500 o C for the duration of 11/2 hours. The average fixed carbon content of the charcoal is 61.08. The high percentage of volatile matter is prevented from escaping into the air by trapping them in a series of cyclones. The double layered cyclones using water as the cooling medium, condense more volatile matter and reduces smoke exhaust. 50.7 % of ,gaseous product is condensed and 49.2 % is emitted to the atmosphere. The result is an environmental friendly pilot plant. (author)

  10. Does Management Matter?: Using MISR to Assess the Effects of Charcoal Production and Management on Woodland Regeneration

    Science.gov (United States)

    Wurster, K.

    2008-12-01

    In much of Sub-Saharan Africa, more than 75 percent of a rapidly growing urban population depends on charcoal as their primary source of energy for cooking. The high demand for charcoal has led many to believe that charcoal harvesting catalyzes widespread deforestation. The Senegalese government and international donors have initiated projects within protected areas to combat deforestation and created land management plans to sustainably harvest charcoal. To date, the effects of forest management techniques on forest sustainability are still in question. This research uses a multiphase approach integrating satellite analysis with field surveys to assess the effect of varying forest management strategies on forest regeneration and sustainability after charcoal harvesting. Phase I involved testing the Multiangle Imaging SpectroRadiometer (MISR) satellites capability in detecting structural changes in vegetative cover caused by charcoal harvesting and production. Analysis of the MISR derived k(red) parameter showed MISR can consistently differentiate between forest cover types and successfully differentiates between sites at pre- and post-charcoal harvest stages. Phase II conducted forestry and social surveys comparing and contrasting local effects of land management, land use, and charcoal production on forest regeneration. Phase III uses the local surveys to validate and train the regional remote sensing data to assess the effectiveness of land management in promoting forest regeneration and sustainability after charcoal harvesting. Combining detailed local knowledge with the regional capabilities of MISR provide valuable insight into the factors that control woodland regeneration and sustainability. Preliminary results from phases II and III indicate that both field and remotely sensed variations in forest cover, tree regeneration, and land use change does not vary when compared against land management type. Final results will provide managers with additional

  11. Producing charcoal from wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, V.A.

    1983-01-01

    Experimental works to use wood wastes for producing charcoal are examined, which are being conducted in the Sverdlovsk assembly and adjustment administration of Soyuzorglestekhmontazh. A wasteless prototype installation for producing fine charcoal is described, along with its subsequent briqueting, which is made on the basis of units which are series produced by the factories of the country. The installation includes subassemblies for preparing and drying the raw material and for producing the charcoal briquets. In the opinion of specialists, the charcoal produced from the wastes may be effectively used in ferrous and nonferrous metallurgy and in the production of pipes.

  12. Production and Composition of Dissolved Black Carbon from Various Biochars and Environmentally-aged Charcoals

    Science.gov (United States)

    Bostick, K. W.; Zimmerman, A. R.; Hatcher, P.; Mitra, S.; Wozniak, A. S.

    2016-12-01

    Pyrogenic organic matter, or black carbon (BC), is the solid carbonaceous product of biomass pyrolysis. While solid BC represents a long-lived portion of the C cycle, it releases pyrogenic dissolved organic matter (py-DOM) which may be more susceptible to mineralization and transformation. This py-DOM may impact environmental and public health and likely controls exchange between terrestrial and aquatic BC pools. Benzene polycarboxylic acids (BPCAs), produced by acid digestion of samples, are used as molecular markers for pyrogenic organic matter. Yet, we currently have a poor understanding of the controls on the production of py-DOM and its yield of BPCA compounds. In response, aqueous leaching time series experiments were carried out using a series of laboratory-made biochars and environmentally-aged charcoals. While non-charred oak biomass released 31.8 mg C/g (45% C loss), oak biochars prepared at low temperatures (250 and 400ºC), produced 9.9 and 2.6 mg C/g (11 and 2.3% C loss), respectively. Oak chars prepared at a higher temperatures (650ºC) leached only 1.85 mg C/g (1.5% C loss). In contrast, an environmentally-aged charcoal (30 y old cypress charcoal) leached 10.9% of its C. On average, 59% (ranging 38-80%) of oak pyrogenic DOC was converted into BPCAs, suggesting that oak py-DOM has a variably condensed aromatic proportion. However, much less BPCAs were generated by BC parent solids. In addition, trace amounts of BPCA were generated from non-pyrolyzed grass, oak wood, and compost leachates; these lend concern to the use of BPCAs as exclusive pyrogenic molecular markers. As expected, BPCA molecular distribution showed that condensation increased with pyrolysis temperature of solid biochars and their corresponding leachates. The comparison of these findings to 13C and 1H NMR spectra of charcoal parent solids and their leachates will further elucidate the chemistry and production mechanisms of py-DOM.

  13. Charcoal and charcoal-based dentifrices: A literature review.

    Science.gov (United States)

    Brooks, John K; Bashirelahi, Nasir; Reynolds, Mark A

    2017-09-01

    Sales of charcoal dentifrices and powders have rapidly emerged into the Internet marketplace. The authors conducted a literature review to examine the efficacy and safety of charcoal and charcoal-based dentifrices. The authors searched the MEDLINE and Scopus databases for clinical studies on the use of charcoal and charcoal-based dentifrices and laboratory investigations on the bioactivity or toxicity of charcoal and charcoal-based dentifrices, published through February 2017. The authors used a defined search strategy to identify randomized, controlled clinical trials with a follow-up duration of 3 months or longer. In addition, the authors selected the first 50 consecutive charcoal dentifrices from Google.com and Amazon.com for ascertainment of product assortment and advertising promotions. The authors' literature search identified 118 potentially eligible articles. Thirteen studies reported brushing the teeth with raw charcoal or soot; however, none of these studies met the inclusion criteria. Two studies offered nonspecific caries reductions, 3 studies reported deleterious outcomes (increased caries, enamel abrasion, nonquantified negative impact), and 1 study indicated only that brushing with raw charcoal had no adverse effects on oral hygiene. Seven other studies reported only on the use of charcoal for oral hygiene. Internet advertisements included unsubstantiated therapeutic claims-such as antibacterial, antifungal, antiviral, and oral detoxification, as well as potentially misleading product assertions. One-third of the charcoal dentifrices contained bentonite clay, and 1 contained betel leaves. The results of this literature review showed insufficient clinical and laboratory data to substantiate the safety and efficacy claims of charcoal and charcoal-based dentifrices. Larger-scale and well-designed studies are needed to establish conclusive evidence. Dental clinicians should advise their patients to be cautious when using charcoal and charcoal

  14. Vegetable Charcoal and Pyroligneous Acid: Technological, Economical and Legal Aspects of its Production and Commerce

    Directory of Open Access Journals (Sweden)

    Doriana Daroit

    2013-04-01

    Full Text Available The production of vegetable charcoal generates atmospheric emissions, which can be controlled by the instalation of collectors for the condensation of such emissions, forming the pyroligneous acid. The development of collectors for the condensations and characterization of the acid for commerce can contribute with the local sustainable development. This study intends to investigate the technological, economical and legal aspects of the production and commerce of the pyroligneous acid. The chosen method was case study in Presidente Lucena/RS, Brazil, with use of surveys, interviews with producers and responsible government sectors’ representatives. The results indicate that the pyroligneous acid extraction technique is little-known and little used by the producers, that the current market does not absorb the pyroligneous acid offering and the ruling is not relevant.

  15. Production of activated charcoal beads or green moldnings useful in stationary or fluidized bed uses rotary stirrer(s) for mixing carbonaceous powder with binder

    DEFF Research Database (Denmark)

    2000-01-01

    In the production of activated charcoal beads or green moldings by mixing carbonaceous powder with a binder, mixing is carried out in a stirred vessel with rotary stirrer(s).......In the production of activated charcoal beads or green moldings by mixing carbonaceous powder with a binder, mixing is carried out in a stirred vessel with rotary stirrer(s)....

  16. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production

    Science.gov (United States)

    Cornelissen, Gerard; Pandit, Naba Raj; Taylor, Paul; Pandit, Bishnu Hari; Sparrevik, Magnus; Schmidt, Hans Peter

    2016-01-01

    Flame Curtain Biochar Kilns Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. Biochar Characteristics A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2 g-1), low EPA16—PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Gas Emission Factors Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10) = 11 ± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. Implications With benefits such as high quality biochar, low emission

  17. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    Science.gov (United States)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  18. Passivation of fluorinated activated charcoal

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C x F to carbon and ammonium fluoride, NH 4 F. The charcoal laden with NH 4 F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH 4 F as a mixture of NH 3 and HF, which would primarily recombine as NH 4 F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH 3 concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information, results of laboratory tests

  19. Passivation of fluorinated activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Trowbridge, L.D.; Simmons, D.W.; Williams, D.F.; Toth, L.M.

    1997-10-01

    The Molten Salt Reactor Experiment (MSRE), at the Oak Ridge National Laboratory has been shut down since 1969 when the fuel salt was drained from the core into two Hastelloy N tanks at the reactor site. In 1995, a multiyear project was launched to remediate the potentially hazardous conditions generated by the movement of fissile material and reactive gases from the storage tanks into the piping system and an auxiliary charcoal bed (ACB). The top 12 in. of the ACB is known by gamma scan and thermal analysis to contain about 2.6 kg U-233. According to the laboratory tests, a few feet of fluorinated charcoal are believed to extend beyond the uranium front. The remainder of the ACB should consist of unreacted charcoal. Fluorinated charcoal, when subjected to rapid heating, can decompose generating gaseous products. Under confined conditions, the sudden exothermic decomposition can produce high temperatures and pressures of near-explosive characteristics. Since it will be necessary to drill and tap the ACB to allow installation of piping and instrumentation for remediation and recovery activities, it is necessary to chemically convert the reactive fluorinated charcoal into a more stable material. Ammonia can be administered to the ACB as a volatile denaturing agent that results in the conversion of the C{sub x}F to carbon and ammonium fluoride, NH{sub 4}F. The charcoal laden with NH{sub 4}F can then be heated without risking any sudden decomposition. The only consequence of heating the treated material will be the volatilization of NH{sub 4}F as a mixture of NH{sub 3} and HF, which would primarily recombine as NH{sub 4}F on surfaces below 200 C. The planned scheme for the ACB denaturing is to flow diluted ammonia gas in steps of increasing NH{sub 3} concentration, 2% to 50%, followed by the injection of pure ammonia. This report summarizes the planned passivation treatment scheme to stabilize the ACB and remove the potential hazards. It also includes basic information

  20. The wood charcoal production in the kingdom of Córdoba at the end of the Middle Ages: an example of exploitation of the Mediterranean mountain

    Directory of Open Access Journals (Sweden)

    Javier López Rider

    2016-12-01

    Full Text Available The aim of this research is to investigate and explain, the practice of wood charcoal production in the kingdom of Córdoba during the Middle Ages Period. In the absence of anthracological studies; the documentary sources reveal the typology of existing charcoals, how this raw material was obtained, which its uses were, how it was transported to the city and in wich ways it was commercialized. Thanks to all this information we come to understand the importance of wood charcoal production for our ancestors, who have left us a carboniferous legacy we still use.

  1. The charcoal storage disaster. The Lusaka charcoal supply stabilization project

    International Nuclear Information System (INIS)

    Kalumiana, O.S.; Hibajene, S.H.; Ellegaard, A.

    1998-01-01

    government could accept certain losses for social reasons. In a longer perspective, charcoal prices have been virtually stable, and with the reduction in quality of charcoal in storage it is not possible to store for longer periods. It is further questionable whether the government or parastatal organisations have the necessary flexibility to enter into charcoal trade without unnecessarily disrupting a market that, during most of the time, supplies necessities to low-income households at an affordable price. Thus the policy of storing charcoal in order to stabilize supply in the urban markets needs to be revised. If the government wants to reduce the seasonal price fluctuations in order to protect low income groups in urban areas, storage is likely to become a costly measure. Intervention to support the current traders by improved transportation infrastructure in rural areas may be more effective and less costly in the long run 8 refs, 7 figs, 13 tabs

  2. The charcoal storage disaster. The Lusaka charcoal supply stabilization project

    Energy Technology Data Exchange (ETDEWEB)

    Kalumiana, O.S. [Department of Energy (Zambia); Hibajene, S.H. [Ministry of Energy and Water Development (Zambia); Ellegaard, A. [Stockholm Environment Inst. (Sweden)

    1998-12-31

    government could accept certain losses for social reasons. In a longer perspective, charcoal prices have been virtually stable, and with the reduction in quality of charcoal in storage it is not possible to store for longer periods. It is further questionable whether the government or parastatal organisations have the necessary flexibility to enter into charcoal trade without unnecessarily disrupting a market that, during most of the time, supplies necessities to low-income households at an affordable price. Thus the policy of storing charcoal in order to stabilize supply in the urban markets needs to be revised. If the government wants to reduce the seasonal price fluctuations in order to protect low income groups in urban areas, storage is likely to become a costly measure. Intervention to support the current traders by improved transportation infrastructure in rural areas may be more effective and less costly in the long run 8 refs, 7 figs, 13 tabs

  3. Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production

    Directory of Open Access Journals (Sweden)

    J. M. Marton

    2006-03-01

    Full Text Available Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite, each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it

  4. Methane production from stable manures

    Energy Technology Data Exchange (ETDEWEB)

    Poch, M

    1955-04-01

    A brief description of the methane-bacteria is given, their classification, biochemistry, and ecology, and a table of gas production expected from a dozen waste materials. Descriptions of three fermentation systems are given. The Ducellier-Isman, Massaux consists of 2 or 3 tanks of 6 to 14 m/sup 3/ capacity which daily produces 5 to 17 m/sup 3/ gas. Rotted manure is placed in the tanks, covered with water and liquid manure, and allowed to ferment for 3 months. The older tanks are unmixed, but the newest have provision for breaking the scum layer. Gas production virtually ceases during the winter, much manual labor is involved, and high losses of organic matter are caused by use of already rotted manure. The Darmstadt system, developed by Reinhold and similar to the systems of Harnisch and Mueller, consists of a 15 m/sup 3/ covered pit into which farm wastes and household wastes are fed through piping. The tank is heated and stirred, solids making their way from one end of the tank to the outlet in a matter of weeks, from which they are shoveled and stacked. Gas production is 0.3 to 0.5 m/sup 3/ gas/m/sup 3/ tank daily. A good deal of manual labor is involved, and losses of nutrients occur after the solids are extracted from the tank and piled. A fully mechanized Schmidt-Egersgluess system, the Biological Humus Gasworks (Bihugas), consists of heated (30/sup 0/ to 35/sup 0/), mixed tanks, gas compressor, gas storage tank, and effluent storage tank. Three m/sup 3/ tank capacity are required per head of cattle and gas production is 2 to 2.5 m/sup 3//livestock unit/day. Straw is stored to be ready for use as fermentation feedstock when the cattle are in the fields. The length of digestion in the process is 18 to 20 days.

  5. Occurrence and exposure to polycyclic aromatic hydrocarbons in kindling-free-charcoal grilled meat products in Taiwan.

    Science.gov (United States)

    Kao, Tsai Hua; Chen, Shaun; Huang, Chun Wei; Chen, Chia Ju; Chen, Bing Huei

    2014-09-01

    This study aimed to determine the contents of 16 PAHs in kindling-free-charcoal grilled meat and seafood products by GC-MS coupled with a QuEChERS method, and estimate the potential risk associated with consumption of those products in Taiwan. Results showed that the total PAHs contents ranged from 6.3±0.9 to 238.8±8.3 ng/g in poultry meat, 0.1±0.0-547.5±12.2 ng/g in red meat, and 6.6±1.4-249.7±6.4 ng/g in seafood products. Among various PAHs, the highly carcinogenic benzo[a]pyrene was detected in chicken breast grilled at 84°C (30 min), chicken heart at 100°C (26 min), chicken drumstick at 74°C (20 min), duck drumstick at 85°C (40 min), and lamb steak at 88°C (12 min), with its level amounting to 1.3±0.0, 2.4±0.1, 4.0±1.3, 3.1±0.0, and 5.8±0.5 ng/g, respectively. The generation of PAHs was associated with grilling time, temperature and fat content. Risk assessment of dietary exposure to PAHs revealed toxicity equivalent to range from ND - 6.174±0.505 μg/g and margin of exposure was >10,000, which agreed with the EFSA's definition of low public health concern. The lifelong average daily PAHs intake was higher for adults than for elderly people in Taiwan, however, consumption of kindling-free-charcoal grilled meat should not be a public health concern based on cancer risk potency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Back to charcoal?

    International Nuclear Information System (INIS)

    Areklett, Ivar

    2002-01-01

    The ferro-alloy industry is currently evaluating the feasibility of using charcoal rather than fossil coal and coke. This is to avoid the emission of climate gases. Ferro-alloys are used in a wide variety of important products. However, the climate gas carbon dioxide is formed during their production. Oxides are the raw material in the production of these alloys. For the Norwegian company Elkem, the starting point is quartz, SiO 2 . The only reducing agent strong enough to break the bond between silicon and oxygen is solid carbon, which reacts with oxygen to form carbon dioxide, the climate gas. Cleaning the waste gases is too expensive to be relevant, as they are very voluminous and have low concentration of CO 2 . The carbon source currently used by the ferro-alloy industry is fossil coal or coke, which can be replaced by charcoal by burning what is not carbon in the wood so that the result is coal with a high carbon fraction. Although the burning of charcoal is not free of CO 2 emission, biological material containing carbon will over time emit CO 2 to the atmosphere anyhow. Thus, CO 2 emission from biomass does not count in the climate accounts. With rational forest management, the use of biomass implies sustainable climate policy. The ferro-alloy industry is currently exempt from climate taxes, but this situation may not last long, which is why the sector is now considering biomass

  7. Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii

    Directory of Open Access Journals (Sweden)

    Solange Inês Mussatto

    2005-05-01

    Full Text Available Xylitol was produced by Candida guilliermondii from charcoal-treated and untreated rice straw hemicellulosic hydrolysate with or without nutrients (ammonium sulphate, calcium chloride, rice bran extract. Both, xylitol yield and volumetric productivity decreased significantly when the nutrients were added to treated and untreated hydrolysates. In the treated hydrolysate, the efficiency of xylose conversion to xylitol was 79% when the nutrients were omitted. The results demonstrated that rice straw hemicellulosic hydrolysate treated with activated charcoal was a cheap source of xylose and other nutrients for xylitol production by C. guilliermondii. The non-necessity of adding nutrients to the hydrolysate media would be very advantageous since the process becomes less costly.Este trabalho avaliou a produção de xilitol pela levedura Candida guilliermondii, a partir de hidrolisado hemicelulósico de palha de arroz não tratado e tratado com carvão ativo, ambos suplementados ou não com nutrientes (sulfato de amônio, cloreto de cálcio e extrato de farelo de arroz. Os resultados mostraram que tanto o rendimento como a produtividade volumétrica em xilitol diminuíram quando os nutrientes foram adicionados em ambos hidrolisados, tratado e não tratado. Em hidrolisado tratado, a eficiência de conversão de xilose em xilitol foi de 79% quando em ausência de nutrientes. Estes resultados mostram que o hidrolisado hemicelulósico de palha de arroz tratado com carvão ativo é uma fonte barata de xilose e outros nutrientes, para a produção de xilitol por Candida guilliermondii. A não necessidade de adicionar nutrientes ao meio a base de hidrolisado é muito vantajosa, uma vez que o processo se torna mais econômico.

  8. Concentration of stable elements in food products

    International Nuclear Information System (INIS)

    Montford, M.A.; Shank, K.E.; Hendricks, C.; Oakes, T.W.

    1980-01-01

    Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentration of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed

  9. CHARCOAL-PRODUCING INDUSTRIES IN NORTHEASTERN BRAZIL

    Science.gov (United States)

    Charcoal workers in northeastern Brazil: Occupational risks and effects of exposure to wood smokeABSTRACTBrazil has the largest production of charcoal in the world, which is used mostly in the iron and steel industries. In most of the production sites, the process is ba...

  10. Optimization of Charcoal Production Process from Woody Biomass Waste: Effect of Ni-Containing Catalysts on Pyrolysis Vapors

    Directory of Open Access Journals (Sweden)

    Jon Solar

    2018-05-01

    Full Text Available Woody biomass waste (Pinus radiata coming from forestry activities has been pyrolyzed with the aim of obtaining charcoal and, at the same time, a hydrogen-rich gas fraction. The pyrolysis has been carried out in a laboratory scale continuous screw reactor, where carbonization takes place, connected to a vapor treatment reactor, at which the carbonization vapors are thermo-catalytically treated. Different peak temperatures have been studied in the carbonization process (500–900 °C, while the presence of different Ni-containing catalysts in the vapor treatment has been analyzed. Low temperature pyrolysis produces high liquid and solid yields, however, increasing the temperature progressively up to 900 °C drastically increases gas yield. The amount of nickel affects the vapors treatment phase, enhancing even further the production of interesting products such as hydrogen and reducing the generated liquids to very low yields. The gases obtained at very high temperatures (700–900 °C in the presence of Ni-containing catalysts are rich in H2 and CO, which makes them valuable for energy production, as hydrogen source, producer gas or reducing agent.

  11. Long and Short-Term Effects of Fire on Soil Charcoal of a Conifer Forest in Southwest Oregon

    Directory of Open Access Journals (Sweden)

    Brett Morrissette

    2012-06-01

    Full Text Available In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method. The abrupt, short-term fire event caused O horizon charcoal C to increase by a factor of ten to >200 kg C ha−1. The thinned wildfire treatment produced less charcoal C than unthinned wildfire and thinned prescribed fire treatments. The charcoal formation rate was 1 to 8% of woody fuels consumed, and this percentage was negatively related to woody fuels consumed, resulting in less charcoal formation with greater fire severity. Charcoal C averaged 2000 kg ha−1 in 0–3 cm mineral soil and may have decreased as a result of fire, coincident with convective or erosive loss of mineral soil. Charcoal C in 3–15 cm mineral soil was stable at 5500 kg C ha−1. Long-term soil C sequestration in the Siskiyou LTEP soils is greatly influenced by the contribution of charcoal C, which makes up 20% of mineral soil organic C. This research reiterates the importance of fire to soil C in a southwestern Oregon coniferous forest ecosystem.

  12. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M; Iglesias, J; Casas, J; Saviron, J M; Quintanilla, M

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  13. Determination of the suitability of chips from selected hardwoods for the production of furfural and charcoal. [Birches, beeches, oaks, alders

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, Z

    1979-01-01

    Debarked, cut beech, birch, alder, and oak residues from forestry and woodworking operations contain 16.56-19.73% pentosans and as such can be used for hydrolysis to furfural (I). The hydrolytic residue (mostly lignocellulose) can be carbonized at 400 degrees to charcoal. The hydrolysis is carried out continuously with steam at 250-300 degrees and 1.18 MPa. The residue chips are first soaked in water at 90 degrees for 4 hours and then fed into the hydrolyzer countercurrently to the steam. The yields of I are 5-6% and the yields of charcoal are approximately 20% on the chip weight.

  14. Production of high quality adsorbent charcoal from Phil. Wood II. Granulated activated carbon

    International Nuclear Information System (INIS)

    Arida, V.P.; Atienza, O.G.; Quilao, T.A.; Caballero, A.R.; Laxamana, J.S.; Pugal, D.L.; Guce, C.P.

    1992-01-01

    Two Philippine wood species out of twelve earlier studied in part I namely ''ipil-ipil'' Leucaena leucocephala (Lann) de Wit and coconut coir dust were selected for the production of good quality granulated activated carbon. Fluidization method was used in the study. The conditions for the granulation of the carbonized chars using molasses were established. An optimum ratio of 1:0.5 and 1:0.8 (char:binder) was used in the granulation process for ''ipil-ipil'' and coir dust, respectively. Carbonization was done at gradually increasing temperature of 3 0 C/min at 600 0 C. Carbonized granules with particle sizes ranging from 0.5-2.0 mm were used for the activation study. The produced granules were activated in an external heat type stainless steel reactor as mentioned in Part I using steam as activating agent. The physical properties and adsorptive capacity of the activated granular products obtained at varying activation were determined and correlated. Methylene blue adsorption and internal surface area obtained at varying conditions were determined and correlated. Maximum values obtained for methylene blue adsorption and internal surface area are 290 mg/g AC and 1,200m 2 /g AC at 900 0 C, respectively for ''ipil-ipil'' and 390 mg/g AC and 1,000m 2 g AC at 850 0 C respectively for coir dust. Gas adsorption tests done using benzene acetone and carbon tetrachloride for both ''ipil-ipil'' and coir dust activated granular char products showed that both exhibited maximum absorbability at 900 0 C. Results of the study have shown that good quality granulated activated carbon can be produced from ''ipil-ipil'' and coir dust which find suitable applications in various adsorption processes such as organic solvent adsorption, gas adsorption, water purification, oil and sugar refining, among others. (auth.). 3 refs.; 4 tabs.; 14 figs

  15. Charcoal Increases Microbial Activity in Eastern Sierra Nevada Forest Soils

    Directory of Open Access Journals (Sweden)

    Zachary W. Carter

    2018-02-01

    Full Text Available Fire is an important component of forests in the western United States. Not only are forests subjected to wildfires, but fire is also an important management tool to reduce fuels loads. Charcoal, a product of fire, can have major impacts on carbon (C and nitrogen (N cycling in forest soils, but it is unclear how these effects vary by dominant vegetation. In this study, soils collected from Jeffrey pine (JP or lodgepole pine (LP dominated areas and amended with charcoal derived from JP or LP were incubated to assess the importance of charcoal on microbial respiration and potential nitrification. In addition, polyphenol sorption was measured in unamended and charcoal-amended soils. In general, microbial respiration was highest at the 1% and 2.5% charcoal additions, but charcoal amendment had limited effects on potential nitrification rates throughout the incubation. Microbial respiration rates decreased but potential nitrification rates increased over time across most treatments. Increased microbial respiration may have been caused by priming of native organic matter rather than the decomposition of charcoal itself. Charcoal had a larger stimulatory effect on microbial respiration in LP soils than JP soils. Charcoal type had little effect on microbial processes, but polyphenol sorption was higher on LP-derived than JP-derived charcoal at higher amendment levels despite surface area being similar for both charcoal types. The results from our study suggest that the presence of charcoal can increase microbial activity in soils, but the exact mechanisms are still unclear.

  16. Utilization of Bamboo Charcoal as Additives in Cakes

    Directory of Open Access Journals (Sweden)

    Ronald O. Ocampo

    2015-12-01

    Full Text Available Charcoal has been used for healing various diseases, as antidote to poisoning and as purifying agent to filtered water. This study is conducted to utilize charcoal as additives in making cakes. Specifically, it is intended to determine the acceptable level of charcoal when used as additives in the production of brownies, dark brown chocolate, and chiffon cakes. It can be concluded that an addition of 1 tablespoon of bamboo charcoal gave the highest sensory evaluation to brownies and 3 tablespoon to dark brown chocolate .The control ( no charcoal added is still the best treatment for chiffon cake.

  17. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions.

    Directory of Open Access Journals (Sweden)

    Tuhin Subhra Sarkar

    Full Text Available M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction.

  18. Domestic fuel question and the charcoal solution

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Rao, E G

    1981-06-01

    Domestic fuel for cooking forms one of the basic needs of human society. In India, the pressure of this need has exceeded the regeneration potential of the growing forests which supply a large proportion of this basic need. The pressure can be greatly relieved by converting wood to charcoal before it reaches the consumer. The present paper examines this aspect and reviews the modern methods of charcoal production on fuelwood resources. Besides being a choice domestic fuel, charcoal is a valuable raw material in various industries. Charcoal making industry can be established as a rural based industry (as part of community forestry projects) and would generate much needed cash income at grassroot level. The strategy would be important in dealing with the problem of chronic poverty at this level. (Refs. 5).

  19. Different carbonization process of bamboo charcoal using Gigantochloa Albociliata

    Science.gov (United States)

    Isa, S. S. M.; Ramli, M. M.; Halin, D. S. C.; Anhar, N. A. M.; Hambali, N. A. M. A.

    2017-09-01

    Bamboo charcoal has attracted a lot of interests due to their microporous structure, high surface area and great adsorption properties. Some of the applications utilizing this material focused on these advantages such as water purification, electromagnetic wave absorber and blood purification. However, these advantages really depend on the carbonization and activation process of bamboo charcoal. The production must be carried out in properly control environment with precise temperatures and timing. This paper report the production of bamboo charcoal using Gigantochloa Albociliata in controlled environment at 500 °C for 1 hour (lab-prepared). Then the material was characterized for their dispersibility and adsorption behaviour. Furthermore, the bamboo charcoal that was produced commercially, by company, was also characterized and compared. The results show, bamboo charcoal produced by lab-prepared has similar qualities with the commercial bamboo charcoal.

  20. Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance

    International Nuclear Information System (INIS)

    Soloiu, Valentin; Lewis, Jeffery; Yoshihara, Yoshinobu; Nishiwaki, Kazuie

    2011-01-01

    the charcoal is thought to have a paramount role in helping the diffusion type combustion and diminishing the particulate matter formation. As the load was increased, the amount of time it took to notice a decline in engine efficiency decreased. This was due to the injector sticking open which was seen by a sharp increase in the exhaust temperature. The internal flow into the injector had the tendency to form deposits on the injector's seat that were critical to the functionality of the injector. In order to alleviate this problem, a reduced charcoal particle size together with a new injector design were produced resulting in stable engine efficiency at 50% load for a period of 90 min without injector sticking. Even with improvements, the needle's seat into the injector body showed an accelerated wear 4-8 times faster than that in normal operation with diesel fuel and this cannot be sustained for long operational cycles. The investigations have proven that the new charcoal-diesel slurry can produce adequate sprays and burn with very good results in a direct injection diesel engine. The critical aspect of operation is the internal flow into the injector with the tendency to form deposits and wear in the injector. -- Highlights: → Investigations have proven the slurry fuel produces adequate sprays and burns with promising results in a diesel engine. → Pyrolysis of wood was used for the production of charcoal, which was successfully emulsified with diesel oil resulting in low viscosity slurry fuel. → Less smoke produced using the slurry fuel, and the NO x emissions of slurry fuel were improved after injection timing optimization. → Reduced charcoal particle size and new injector design produced stable engine efficiency without injector sticking.

  1. Charcoal from paper sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M

    1980-03-06

    Paper sludge containing less than or equal to 50% water is mixed with coffee shells and greater than or equal to 1 almond shells, orange skin, walnut shells, or bean jam waste, compacted, and dry distilled at 300-600 degrees to prepare charcoal. Thus, 1 ton of paper sludge was mixed with 100 kg each of coffee shells, almond shells, orange skin, and walnut shells; compacted and dry distilled 24 hours at approximately 450 degrees. The calorific value of the charcoal produced was approximately 7300 kcal/kg.

  2. Charcoal filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-08-01

    In this very brief, informal presentation, a representative of the US Nuclear Regulatory Commission outlines some problems with charcoal filter testing procedures and actions being taken to correct the problems. Two primary concerns are addressed: (1) the process to find the test method is confusing, and (2) the requirements of the reference test procedures result in condensation on the charcoal and causes the test to fail. To address these problems, emergency technical specifications were processed for three nuclear plants. A generic or an administrative letter is proposed as a more permanent solution. 1 fig.

  3. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans

    Science.gov (United States)

    Rudolf Jaffe; Yan Ding; Jutta Niggemann; Anssi V. Vahatalo; Aron Stubbins; Robert G. M. Spencer; John Campbell; Thorsten Dittmar

    2013-01-01

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent...

  4. Short-Term Changes in Physical and Chemical Properties of Soil Charcoal Support Enhanced Landscape Mobility

    Science.gov (United States)

    Pyle, Lacey A.; Magee, Kate L.; Gallagher, Morgan E.; Hockaday, William C.; Masiello, Caroline A.

    2017-11-01

    Charcoal is a major component of the stable soil organic carbon reservoir, and the physical and chemical properties of charcoal can sometimes significantly alter bulk soil properties (e.g., by increasing soil water holding capacity). However, our understanding of the residence time of soil charcoal remains uncertain, with old measured soil charcoal ages in apparent conflict with relatively short modeled and measured residence times. These discrepancies may exist because the fate of charcoal on the landscape is a function not just of its resistance to biological decomposition but also its physical mobility. Mobility may be important in controlling charcoal landscape residence time and may artificially inflate estimates of its degradability, but few studies have examined charcoal vulnerability to physical redistribution. Charcoal landscape redistribution is likely higher than other organic carbon fractions owing to charcoal's low bulk density, typically less than 1.0 g/cm3. Here we examine both the physical and chemical properties of soil and charcoal over a period of two years following a 2011 wildfire in Texas. We find little change in properties with time; however, we find evidence of enhanced mobility of charcoal relative to other forms of soil organic matter. These data add to a growing body of evidence that charcoal is preferentially eroded, offering another explanation for variations observed in its environmental residence times.

  5. Production and use of stable isotopes in France

    International Nuclear Information System (INIS)

    Roth, E.; Letolle, R.

    1991-01-01

    This paper can not cover the field of production and use of stable isotopes in France exhaustively within six pages. We have chosen to concentrate on highlights of the subject and on recent work, and to give references for further reading. 26 refs

  6. Formation of stable products from cluster-cluster collisions

    International Nuclear Information System (INIS)

    Alamanova, Denitsa; Grigoryan, Valeri G; Springborg, Michael

    2007-01-01

    The formation of stable products from copper cluster-cluster collisions is investigated by using classical molecular-dynamics simulations in combination with an embedded-atom potential. The dependence of the product clusters on impact energy, relative orientation of the clusters, and size of the clusters is studied. The structures and total energies of the product clusters are analysed and compared with those of the colliding clusters before impact. These results, together with the internal temperature, are used in obtaining an increased understanding of cluster fusion processes

  7. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development of Laser Application Technology for Stable Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-04-15

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed.

  9. Development of Laser Application Technology for Stable Isotope Production

    International Nuclear Information System (INIS)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee

    2007-04-01

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed

  10. Charcoal anatomy of forest species

    Directory of Open Access Journals (Sweden)

    Graciela Inés Bolzon de Muñiz1

    2012-09-01

    Full Text Available Vegetal charcoal retains the anatomical structure of the wood and may permit its botanical identification, which depends on species characteristics, the charcoal fragments size and preservation state. Anatomical characterization of ten forest species charcoal was done envisaging the identification and control of illegal charcoal. Differences between gymnosperms and angiosperms are evident in carbonized wood. Vessel diameter was statistically different between wood and charcoal in Vatairea guianensis, Mezilaurus itauba, Calophyllum brasiliense e Qualea cf. acuminata, and vessel frequency in Vatairea guianensis, Manilkara huberi, Qualea cf. acuminata e Simarouba amara. The anatomical structure from wood, in general aspects, is constant during carbonization process using temperature of 450°C, being possible to identify the material by using its cellular components.

  11. Effects of Charcoal Addition on the Properties of Carbon Anodes

    Directory of Open Access Journals (Sweden)

    Asem Hussein

    2017-03-01

    Full Text Available Wood charcoal is an attractive alternative to petroleum coke in production of carbon anodes for the aluminum smelting process. Calcined petroleum coke is the major component in the anode recipe and its consumption results in a direct greenhouse gas (GHG footprint for the industry. Charcoal, on the other hand, is considered as a green and abundant source of sulfur-free carbon. However, its amorphous carbon structure and high contents of alkali and alkaline earth metals (e.g., Na and Ca make charcoal highly reactive to air and CO2. Acid washing and heat treatment were employed in order to reduce the reactivity of charcoal. The pre-treated charcoal was used to substitute up to 10% of coke in the anode recipe in an attempt to investigate the effect of this substitution on final anode properties. The results showed deterioration in the anode properties by increasing the charcoal content. However, by adjusting the anode recipe, this negative effect can be considerably mitigated. Increasing the pitch content was found to be helpful to improve the physical properties of the anodes containing charcoal.

  12. Search for stable stau production at the LHC

    International Nuclear Information System (INIS)

    Kaschube, Kolja

    2011-10-01

    In this thesis, a search for heavy stable charge particle production, in particular a quasistable supersymmetric tau lepton (''stau'') arising in gauge-mediated supersymmetry breaking (GMSB) models, is presented. This stable stau would cross detectors without decaying, resembling a muon, and produce signatures of high momentum or high ionization energy loss. The energy loss measurement represents a direct handle on the particle mass via the Bethe-Bloch formula. Proton-proton collisions at 7 TeV center-of-mass energy produced by the Large Hadron Collider and recorded by the CMS detector are investigated. Low-momentum collision data tracks are used to predict the background of highly ionizing tracks at high momenta. A high signal-to-background ratio is achieved by separating the search into channels with differing muon or stau multiplicities and by using the transverse momentum and energy loss measurement as the discriminating variables. Using 35.8 pb -1 of data recorded in the 2010 LHC run, no excess is observed with respect to the expected Standard Model background. As a result, upper limits on the mass of stable status are derived within the context of the investigated GMSB models. (orig.)

  13. Search for stable stau production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kaschube, Kolja

    2011-10-15

    In this thesis, a search for heavy stable charge particle production, in particular a quasistable supersymmetric tau lepton (''stau'') arising in gauge-mediated supersymmetry breaking (GMSB) models, is presented. This stable stau would cross detectors without decaying, resembling a muon, and produce signatures of high momentum or high ionization energy loss. The energy loss measurement represents a direct handle on the particle mass via the Bethe-Bloch formula. Proton-proton collisions at 7 TeV center-of-mass energy produced by the Large Hadron Collider and recorded by the CMS detector are investigated. Low-momentum collision data tracks are used to predict the background of highly ionizing tracks at high momenta. A high signal-to-background ratio is achieved by separating the search into channels with differing muon or stau multiplicities and by using the transverse momentum and energy loss measurement as the discriminating variables. Using 35.8 pb{sup -1} of data recorded in the 2010 LHC run, no excess is observed with respect to the expected Standard Model background. As a result, upper limits on the mass of stable status are derived within the context of the investigated GMSB models. (orig.)

  14. Constructed wetland using corncob charcoal substrate: pollutants removal and intensification.

    Science.gov (United States)

    Liu, Mao; Li, Boyuan; Xue, Yingwen; Wang, Hongyu; Yang, Kai

    2017-09-01

    To investigate the feasibility of using corncob charcoal substrate in constructed wetlands, four laboratory-scale vertical flow constructed wetlands (VFCWs) were built. Effluent pollutant (chemical oxygen demand (COD), NH 4 + -N, total phosphorus (TP)) concentrations during the experiment were determined to reveal pollutant removal mechanisms and efficiencies at different stages. In the stable stage, a VFCW using clay ceramisite substrate under aeration attained higher COD (95.1%), and NH 4 + -N (95.1%) removal efficiencies than a VFCW using corncob charcoal substrate (91.5% COD, 91.3% NH 4 + -N) under aeration, but lower TP removal efficiency (clay ceramisite 32.0% and corncob charcoal 40.0%). The VFCW with raw corncob substrate showed stronger COD emissions (maximum concentration 3,108 mg/L) than the corncob charcoal substrate (COD was lower than influent). The VFCW using corncob charcoal substrate performed much better than the VFCW using clay ceramisite substrate under aeration when the C/N ratio was low (C/N = 1.5, TN removal efficiency 36.89%, 4.1% respectively). These results suggest that corncob charcoal is a potential substrate in VFCWs under aeration with a unique self -supplying carbon source property in the denitrification process.

  15. Browns Ferry charcoal adsorber incident

    International Nuclear Information System (INIS)

    Mays, G.T.

    1979-01-01

    The article reviews the temperature excursion in the charcoal adsorber beds of the Browns Ferry Unit 3 off-gas system that occurred on July 17, 1977. Significant temperature increases were experienced in the charcoal adsorber beds when charcoal fines were ignited by the ignition of a combustible mixture of hydrogen and oxygen in the off-gas system. The Browns Ferry off-gas system is described, and events leading up to and surrounding the incident are discussed. The follow-up investigation by Tennessee Valley Authority and General Electric Company personnel and their recommendations for system and operational modifications are summarized

  16. Preparation Of Charcoal Using Agricultural Wastes | Bogale ...

    African Journals Online (AJOL)

    Conclusion: As compared to wood charcoal the charcoal briquette produced from agricultural wastes are economical, environmentally friendly, healthy (no smoke at all) and reduce impact of deforestation. Key words: Pollution, deforestation, extruder, carbonizer, wood charcoal, briquette charcoal, agricultural wastes, ...

  17. Quality and energetic evaluation of the charcoal made of babassu nut residues used in the steel industry

    OpenAIRE

    Protásio, Thiago de Paula; Trugilho, Paulo Fernando; Mirmehdi, Seyedmohammad; Silva, Marcela Gomes da

    2014-01-01

    Brazil is the only country in the world that uses large scale charcoal in steel-making blast furnaces. Meantime, the monoculture plantations of Eucalyptus are not able to meet the demand for charcoal from the steel industries.Therefore, research is necessary, in order to use lignocellulosic residues for the production of charcoal with technological properties which are suitable for the reduction of iron ore. Given the above, the objective of this study was to evaluate the quality of charcoal ...

  18. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans.

    Science.gov (United States)

    Jaffé, Rudolf; Ding, Yan; Niggemann, Jutta; Vähätalo, Anssi V; Stubbins, Aron; Spencer, Robert G M; Campbell, John; Dittmar, Thorsten

    2013-04-19

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent transport to the ocean. The global flux of soluble charcoal accounts to 26.5 ± 1.8 million tons per year, which is ~10% of the global riverine flux of dissolved organic carbon (DOC). We suggest that the mobilization of charcoal and DOC out of soils is mechanistically coupled. This study closes a major gap in the global charcoal budget and provides critical information in the context of geoengineering.

  19. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  20. Determination of the attrition resistance of granular charcoals

    International Nuclear Information System (INIS)

    Dietz, V.R.

    1979-01-01

    A laboratory procedure has been developed to evaluate the attrition of granular adsorbent charcoals on passing an air flow through the bed. Two factors observed in plant operations were selected as relevant: (1) the characteristic structural vibrations in plant scale equipment (motors, fans, etc.) that are transmitted to charcoal particles and cause the particles to move and rub each other, and (2) the rapid air flow that results in the movement of the attrited dust. In the test a container for charcoal [50 mm diameter and 50 mm high] was vibrated at a frequency of 60 Hz and at a constant energy input manually controlled using a vibration meter in the acceleration mode. Simultaneously, air was applied and exited through glass fiber filter paper. The quantity of dust trapped on the exit filter was then determined, either optically or gravimetrically. The dust formed per minute (attrition coefficient) was found to approach a constant value. The plateau-values from sequential determinations varied with the source of the charcoal; a 5-fold difference was found among a large variety of commercial products. The first testing of a sample released the excess dust accumulated in previous handling of the charcoal. The plateau values were then attained in the succeeding tests and these were characteristic of the material. The results were compared with those obtained for the same charcoals using older test methods such as the Ball and Pan Hardness Test described in RDTM16-1T

  1. Interaction of atomic hydrogen with charcoal at 77 K

    International Nuclear Information System (INIS)

    Gorodetsky, A.E.; Vnukov, S.P.; Zalavutdinov, R.Kh.; Zakharov, A.P.; Buryak, A.K.; Ulyanov, A.V.; Federici, G.; Day, Chr.

    2005-01-01

    Charcoal is a working material of sorption cryopumps in the ITER project. The interaction of thermal hydrogen molecules and atoms with charcoal has been analyzed by TDS (77-300 K) and sorption measurements at 77 K. A stream quartz reactor with an H 2 RF discharge was used for the production of H atoms. The ratio of H and H 2 in the gas mixture in the afterglow zone was ∼10 -4 , hydrogen flow and inlet pressure were 6.9 sccm and 30 Pa, respectively. After exposure in the H/H 2 mixture during 1 hour the marked change in the shape of the TD spectra and decrease of the charcoal sorption capacity for hydrogen and nitrogen were detected. A wide spectrum of hydrocarbon fragments formed at 77 K was registered by mass-spectrometry at charcoal heating up to 700 K. The specific adsorption volume of charcoal, which was measured by N 2 adsorption at 77 K, decreased directly as amount of H atoms passed through the section with charcoal. (author)

  2. Briquetting of Charcoal from Sesame Stalk

    Directory of Open Access Journals (Sweden)

    Alula Gebresas

    2015-01-01

    Full Text Available Due to the easy availability of wood in Ethiopia, wood charcoal has been the main source fuel for cooking. This study has been started on sesame stalk biomass briquetting which can potentially solve the health problems and shortage of energy, which consequently can solve deforestation. The result of the data collection shows that, using 30% conversion efficiency of carbonizer, it was found that more than 150,000 tonnes of charcoal can be produced from the available sesame stalk in Humera, a place in north Ethiopia. The clay binders that are mixed with carbonized sesame stalk were found to have 69 liquid limits; thus, the optimum amount of clay that should be added as a binder is 15%, which results in better burning and heat holding capacity and better heating time. The developed briquetting machine has a capacity of producing 60 Kg/hr but the carbonization kiln can only carbonize 3.1 Kg in 2 : 40 hours; hence, it is a bottle neck for the briquette production. The hydrocarbon laboratory analysis showed that the calorific value of the charcoal produced with 15% clay content is 4647.75 Cal/gm and decreases as clay ratio increases and is found to be sufficient energy content for cooking.

  3. Charcoal anatomy of Brazilian species. I. Anacardiaceae.

    Science.gov (United States)

    Gonçalves, Thaís A P; Scheel-Ybert, Rita

    2016-01-01

    Anthracological studies are firmly advancing in the tropics during the last decades. The theoretical and methodological bases of the discipline are well established. Yet, there is a strong demand for comparative reference material, seeking for an improvement in the precision of taxonomic determination, both in palaeoecological and palaeoethnobotanical studies and to help preventing illegal charcoal production. This work presents descriptions of charcoal anatomy of eleven Anacardiaceae species from six genera native to Brazil (Anacardium occidentale, Anacardium parvifolium, Astronium graveolens, Astronium lecointei, Lithrea molleoides, Schinus terebenthifolius, Spondias mombin, Spondias purpurea, Spondias tuberosa, Tapirira guianensis, and Tapirira obtusa). They are characterized by diffuse-porous wood, vessels solitary and in multiples, tyloses and spiral thickenings sometimes present; simple perforation plates, alternate intervessel pits, rounded vessel-ray pits with much reduced borders to apparently simple; parenchyma paratracheal scanty to vasicentric; heterocellular rays, some with radial canals and crystals; septate fibres with simple pits. These results are quite similar to previous wood anatomical descriptions of the same species or genera. Yet, charcoal identification is more effective when unknown samples are compared to charred extant equivalents, instead of to wood slides.

  4. Charcoal anatomy of Brazilian species. I. Anacardiaceae

    Directory of Open Access Journals (Sweden)

    THAÍS A.P. GONÇALVES

    Full Text Available ABSTRACT Anthracological studies are firmly advancing in the tropics during the last decades. The theoretical and methodological bases of the discipline are well established. Yet, there is a strong demand for comparative reference material, seeking for an improvement in the precision of taxonomic determination, both in palaeoecological and palaeoethnobotanical studies and to help preventing illegal charcoal production. This work presents descriptions of charcoal anatomy of eleven Anacardiaceae species from six genera native to Brazil (Anacardium occidentale, Anacardium parvifolium, Astronium graveolens, Astronium lecointei, Lithrea molleoides, Schinus terebenthifolius, Spondias mombin, Spondias purpurea, Spondias tuberosa, Tapirira guianensis, and Tapirira obtusa. They are characterized by diffuse-porous wood, vessels solitary and in multiples, tyloses and spiral thickenings sometimes present; simple perforation plates, alternate intervessel pits, rounded vessel-ray pits with much reduced borders to apparently simple; parenchyma paratracheal scanty to vasicentric; heterocellular rays, some with radial canals and crystals; septate fibres with simple pits. These results are quite similar to previous wood anatomical descriptions of the same species or genera. Yet, charcoal identification is more effective when unknown samples are compared to charred extant equivalents, instead of to wood slides.

  5. Production of stable isotopes utilizing the plasma separation process

    Science.gov (United States)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  6. Commercial Charcoal Characterisation For Water Purification

    International Nuclear Information System (INIS)

    Saryati; Sumardjo; Sutisna; Handayani, Ari; Suprapti, Siti

    2001-01-01

    In order to provide a drinking water purification substance, has been studied the charcoal characterisation that based on a porous profile and an adsorption properties of the charcoal. There were using the commercial charcoal like wood charcoals, coconut shell charcoals and activated charcoals. The porous profile was studied by using an electron microscope SEM-EDX and the adsorption properties was studied by using the water sample simulation that contains several metal ions. The concentration of all ions was ten times greater that the maximum ions concentration that permissible in the drinking water. From the grain surface microscopic analysis was shown that the pore structure of the wood charcoal was more regular than the coconut shell charcoal. Mean while the activated charcoal has pore more than wood and coconut shell charcoal. Grains size was not an adsorption parameter. The absorptivitas charcoal was affected by pH solution, but this effect was not linear proportion. There are no significant deference in the adsorptivitas among the tree charcoals that has been studied for Al 3 + , Cr 3+ , Ag 1 +, and Pb 2+ ions the adsorption was large enough (> 60%), for Mn 2+ , Fe 3+ , Se 4+ , Cd 2+ and Ba 2+ ions was 20%-60% dan for Mg 2+ , Na 1+ , Ca 2+ , and Zn 2+ ions was less than 20 %. Generally the wood and coconut shell charcoal absorptivity in the pH 4 solutions was lower than in the pH 5-7 solutions

  7. Charcoal as an alternative energy carrier. Pt. 2: Conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Holstad, A

    1978-12-01

    Terrestrial biomass, residues from forestry, agriculture and farming can be converted by biochemical or thermochemical techniques to fuels. The charcoal yield depends on the raw materials, moisture contents, the temperature of carbonisation and the processing equipment. The yield is reduced by 2 - 3% when using softwood and furthermore with higher temperature of carbonisation. Generally charcoal contains 80 - 90% carbon, 0,5 - 10% ash and 7 - 30% volatile matter. Theoretically the following products are obtained when pyrolising wood: 34,7% Charcoal, 24,9% H/sub 2/O, 10,9% CO/sub 2/, 4,15 CO, 1,6% Methanol, 5,9% Acetic Acid and 17,9% Tar. Units for production of charcoal are large and small kilns, transportable Thomas retorts and Cornell retorts with a production of 1,3 - 6 tons charcoal/day, and the large Lambiotte retort, multiple-hearth furnaces and fluidized-bed reactors. Interesting is also the new equipment of Skogens Kol in Sweden. These large units have a production capacity of 16 - 80 tons charcoal/day. Important production parameters include charcoal yield, labour requirements, air pollution and cost. Based on these parameters the Cornell retort is considered the best unit for production of small quantities of charcoal and Skogens Kol seems to be the most interesting large unit. 17 drawings, 14 tables.

  8. Processo sustentável de produção de carvão vegetal quanto aos aspectos: ambiental, econômico, social e cultural Sustainable charcoal production process focusing the environmental, economical, social and cultural aspects

    Directory of Open Access Journals (Sweden)

    Sueli de Fátima de Oliveira Miranda Santos

    2012-04-01

    Full Text Available O Brasil produz aproximadamente 1/3 da produção mundial de carvão vegetal e sua quase totalidade é destinada à produção brasileira de ferro-gusa, ferro ligas e silício metálico. Quase 75% desse carvão ainda é produzido artesanalmente, utilizando-se principalmente a lenha de mata nativa. A pressão por sistemas produtivos sustentáveis tem dirigido a busca por tecnologias mais limpas e eficientes. A partir de pesquisa numa unidade industrial produtora de carvão vegetal pelo processo de carbonização em cilindros metálicos verticais, localizada no Paraná, este artigo objetiva mostrar que os aspectos de sustentabilidade deste processo estão no atendimento aos requisitos básicos de ser ecologicamente correto, economicamente viável, socialmente justo e culturalmente aceito. Este processo mostrou um potencial de economizar em torno de 25% de lenha, o atendimento à legislação trabalhista vigente e o atendimento aos anseios da sociedade, ao proporcionar aos trabalhadores condições dignas de trabalho e inserção social, quando comparado ao processo artesanal.Brazil accounts for approximately one third of the world's charcoal production, and around ninety percent of that is destined to the Brazilian production of pig-iron, alloys iron, pure silicon, among others. Almost 75% of the charcoal is still produced through the traditional handcraft method, and almost half of firewood still derives from native forests. The pressure for ecologically-right, socially fair and economically feasible production has driven the search for cleaner and more efficient technologies. Researching a metallic vertical cylinder at an industrial charcoal production unit and a traditional handcraft unit, both located on the State of Parana, this paper intends to show that the industrial production process can replace the traditional one. According to the sustainability pillars, this industrial process may enable the saving of 25% of firewood, pointing to

  9. A new intermediate for the production of flexible stable polymers

    Science.gov (United States)

    Webster, J. A.

    1973-01-01

    Method of incorporating ether linkages into perfluoroalkylene segment of a dianydride intermediate yields intermediate that may be used in synthesis of flexible, stable polyimides for use as high-temperature, solvent-resistant sealants.

  10. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-09-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

  11. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-01-01

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F 2 ) and uranium hexafluoride (UF 6 ) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F 2 and UF 6 to the charcoal bed were the possibility of explosive reactions between the charcoal and F 2 , the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F 2 -UF 6 gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined

  12. Modeling the Effects of Future Growing Demand for Charcoal in the Tropics

    NARCIS (Netherlands)

    Ferreira Dos Santos, M.J.; Dekker, S.C.; Daioglou, Vasileios; Braakhekke, M.C.; van Vuuren, Detlef

    Global demand for charcoal is increasing mainly due to urban population in developing countries. More than half the global population now lives in cities, and urban-dwellers are restricted to charcoal use because of easiness of production, access, transport, and tradition. Increasing demand for

  13. A case of recurrence-mimicking charcoal granuloma in a breast cancer patient: Ultrasound,CT, PET/CT and breast-specific gamma imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Woong; Park, Ji Yeon; Park, Noh Hyuck; Kim, Seon Jeong; Shin, Hyuck Jai; Lee, Jeong Ju [Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Yi, Seong Yoon [Div. of Hematology-Oncology, Dept. of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang (Korea, Republic of)

    2016-07-15

    Charcoal remains stable without causing a foreign body reaction and it may be used for preoperative localization of a non-palpable breast mass. However, cases of post-charcoal-marking granuloma have only rarely been reported in the breast, and a charcoal granuloma can be misdiagnosed as malignancy. Herein, we report the ultrasound, computed tomography (CT), 18F-fluorodeoxyglucose-positron emission tomography/CT, and breast-specific gamma imaging findings of recurrence-mimicking charcoal granuloma after breast conserving surgery, following localization with charcoal in a breast cancer patient.

  14. Implications of Charcoal Briquette Produced by Local Communities on Livelihoods and Environment in Nairobi- Kenya

    Directory of Open Access Journals (Sweden)

    M. Njenga

    2013-02-01

    Full Text Available The residents of Nairobi, Kenya, use 700 tonnes of charcoal per day, producing about88 tonnes of charcoal dust that is found in most of the charcoal retailing stalls that is disposed of inwater drainage systems or in black garbage heaps. The high costs of cooking fuel results in poorhouseholds using unhealthy materials such as plastic waste. Further, poor households are opting tocook foods that take a short time to prepare irrespective of their nutritional value. This articlepresents experiences with community self-help groups producing charcoal fuel briquettes fromcharcoal dust in poorer nieghbourhoods of Nairobi for home use and sale. Households thatproduced charcoal fuel briquettes for own use and those that bought them saved 70% and 30% ofmoney spent on cooking energy respectively. The charcoal fuel briquettes have been found to beenvironmentally beneficial since they produce less smoke and increase total cooking energy bymore than 15%, thereby saving an equivalent volume of trees that would be cut down for charcoal.Charcoal briquette production is a viable opportunity for good quality and affordable cooking fuel.Bioenergy and waste management initiatives should promote recovery of organic by-products forcharcoal briquette production.

  15. Production of stable isotopes at Urenco. 10 years of progress

    International Nuclear Information System (INIS)

    Mol, C.A.; Rakhorst, H.

    2003-01-01

    In the last ten years, Urenco has built its spin-off activity of stable isotopes in a multi-million dollar business. It is a high quality, ISO certified, client oriented and profitable European business with further growth potential. (author)

  16. Activated charcoal alone or after gastric lavage

    DEFF Research Database (Denmark)

    Christophersen, A B; Levin, D; Høgberg, Lotte Christine Groth

    2002-01-01

    AIMS: Activated charcoal is now being recommended for patients who have ingested potentially toxic amounts of a poison, where the ingested substance adsorbs to charcoal. Combination therapy with gastric lavage and activated charcoal is widely used, although clinical studies to date have not provi......AIMS: Activated charcoal is now being recommended for patients who have ingested potentially toxic amounts of a poison, where the ingested substance adsorbs to charcoal. Combination therapy with gastric lavage and activated charcoal is widely used, although clinical studies to date have...... kg(-1) in 125 mg tablets to mimic real-life, where several factors, such as food, interfere with gastric emptying and thus treatment. The interventions were activated charcoal after 1 h, combination therapy of gastric lavage followed by activated charcoal after 1 h, or activated charcoal after 2 h.......6--34.4). CONCLUSIONS: These results suggest that combination treatment may be no better than activated charcoal alone in patients presenting early after large overdoses. The effect of activated charcoal given 2 h post ingestion is substantially less than at 1 h, emphasizing the importance of early intervention....

  17. Direct search for pair production of heavy stable charged particles in Z decays

    International Nuclear Information System (INIS)

    Soderstrom, E.; McKenna, J.A.; Abrams, G.S.; Adolphsen, C.E.; Averill, D.; Ballam, J.; Barish, B.C.; Barklow, T.; Barnett, B.A.; Bartelt, J.; Bethke, S.; Blockus, D.; Bonvicini, G.; Boyarski, A.; Brabson, B.; Breakstone, A.; Bulos, F.; Burchat, P.R.; Burke, D.L.; Cence, R.J.; Chapman, J.; Chmeissani, M.; Cords, D.; Coupal, D.P.; Dauncey, P.; DeStaebler, H.C.; Dorfan, D.E.; Dorfan, J.M.; Drewer, D.C.; Elia, R.; Feldman, G.J.; Fernandes, D.; Field, R.C.; Ford, W.T.; Fordham, C.; Frey, R.; Fujino, D.; Gan, K.K.; Gero, E.; Gidal, G.; Glanzman, T.; Goldhaber, G.; Gomez Cadenas, J.J.; Gratta, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Hanson, G.; Harr, R.; Harral, B.; Harris, F.A.; Hawkes, C.M.; Hayes, K.; Hearty, C.; Heusch, C.A.; Hildreth, M.D.; Himel, T.; Hinshaw, D.A.; Hong, S.J.; Hutchinson, D.; Hylen, J.; Innes, W.R.; Jacobsen, R.G.; Jaros, J.A.; Jung, C.K.; Kadyk, J.A.; Kent, J.; King, M.; Koetke, D.S.; Komamiya, S.; Koska, W.; Kowalski, L.A.; Kozanecki, W.; Kral, J.F.; Kuhlen, M.; Labarga, L.; Lankford, A.J.; Larsen, R.R.; Le Diberder, F.; Levi, M.E.; Litke, A.M.; Lou, X.C.; Lueth, V.; Matthews, J.A.J.; Mattison, T.; Milliken, B.D.; Moffeit, K.C.; Munger, C.T.; Murray, W.N.; Nash, J.; Ogren, H.; O'Shaughnessy, K.F.; Parker, S.I.; Peck, C.; Perl, M.L.; Petradza, M.; Pitthan, R.; Porter, F.C.; Rankin, P.; Riles, K.; Rouse, F.R.; Rust, D.R.; Sadrozinski, H.F.W.; Schaad, M.W.; Schumm, B.A.; Seiden, A.; Smith, J.G.; Snyder, A.; Stoker, D.P.; Stroynowski, R.; Swartz, M.; Thun, R.; Trilling, G.H.; Van Kooten, R.; Voruganti, P.; Wagner, S.R.; Watson, S.; Weber, P.; Weinstein, A.J.; Weir, A.J.; Wicklund, E.; Woods, M.; Wu, D.Y.; Yurko, M.; Zaccardelli, C.; von Zanthie, C.

    1990-01-01

    A search for pair production of stable charged particles from Z decay has been performed with the Mark II detector at the SLAC Linear Collider. Particle masses are determined from momentum, ionization energy loss, and time-of-flight measurements. A limit excluding pair production of stable fourth-generation charged leptons and stable mirror fermions with masses between the muon mass and 36.3 GeV/c 2 is set at the 95% confidence level. Pair production of stable supersymmetric scalar leptons with masses between the muon mass and 32.6 GeV/c 2 is also excluded

  18. Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI

    Directory of Open Access Journals (Sweden)

    Ameer Khusro

    2016-07-01

    Conclusions: The cellulase-free xylanase showed an alkali-tolerant and thermo-stable property with potentially applicable nature at industrial scale. This statistical approach established a major contribution in enzyme production from the isolate by optimizing independent factors and represents a first reference on the enhanced production of thermo-alkali stable cellulase-free xylanase from B. tequilensis.

  19. Charcoal as a capture material for silver nanoparticles in the aquatic environment

    Science.gov (United States)

    McGillicuddy, Eoin; Morrison, Liam; Cormican, Martin; Morris, Dearbháile

    2017-04-01

    Background: The reported antibacterial activity of silver nanoparticles (AgNPs) has led to their incorporation into numerous consumer products including; textiles, domestic appliances, food containers, cosmetics, paints, medical and medicinal products. The AgNPs incorporated into these products can be released into the environment and aquatic system during their production, use and end of life disposal. In the aquatic environment, uncertainties surround the concentration, fate and effects of AgNPs. The aim of this project is to examine charcoal as a potential material for capture of silver nanoparticles from the aquatic environment. Material/methods: Activated charcoal is a commonly used filter material and was selected for this project to determine its suitability as a capture material for AgNPs in water samples. Activated charcoal (Norit® CA1 (Sigma-Aldrich)) was exposed to 100 ppb, 25 nm PVP coated AgNPs (nanoComposix) prepared in Milli-Q water. These solutions were exposed to unaltered charcoal granules for 20 hours after which the decrease of silver in the solution was measured using ICP-MS. In order to improve the removal, the surface area of the charcoal was increased firstly by grinding with a pestle and mortar and secondly by milling the charcoal. The milled charcoal was prepared using an agate ball mill running at 500 rpm for 5 minutes. The activated charcoal was then exposed to samples containing 10 ppb AgNPs. Results: In the initial tests, approximately 10% of the silver was removed from the water samples using the unaltered activated charcoal granules. Further experiments were carried out to compare the unaltered granules with the ground and milled charcoal. These tests were carried out similarly to the previous test however lower concentration of 10 ppb was used. After 20 hours of exposure the granule samples, as previously, showed approximately a 10% reduction in silver content with the ground charcoal giving approximately 30% reduction in silver

  20. Possibilities for the production of non-stable isotopes

    International Nuclear Information System (INIS)

    Benlliure, J.; Enqvist, T.; Junghans, A.R.; Ricciardi, V.; Schmidt, K.H.; Farget, F.

    1999-04-01

    The production of neutron-rich isotopes is discussed in terms of the two main reaction mechanisms leading to the formation of these nuclei, projectile fragmentation and fission. Production cross sections are calculated for cold-fragmentation and fission. The expected yields are estimated taking into account different technical approaches actually discussed for the production of radioactive beams. (orig.)

  1. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 kg...

  2. Effects of weathering on impregnated charcoal performance

    International Nuclear Information System (INIS)

    Deitz, V.R.

    1977-10-01

    Commercial activated charcoals have been exposed to known contaminants under controlled laboratory conditions and also to large volumes of outdoor air and each sample then evaluated for methyl iodide penetration. There is strong evidence that the interaction of water vapor and the charcoal is a significant factor in the degradation of the charcoals when the relative humidity is 70% and greater. The laboratory air mixtures studied were water vapor, water vapor and sulfur dioxide, water vapor and ozone, and water vapor and carbon monoxide. The charcoal in each of the four 0.5-in. layers making up the 2-in. test bed was degraded by the contaminants, but the first layer was influenced most. For the same charcoal the cumulative effect during one, two, and three months of weathering with outdoor air led to a progressive increase in methyl iodide penetration. The experimentation is being extended to additional commercial charcoals and to additional contaminant species in the laboratory experiments

  3. Technology for production of shelf stable fruit cubes

    International Nuclear Information System (INIS)

    Mishra, B.B.; Jain, M.P.; Sharma, A.

    2009-01-01

    A technology has been developed for the production of intermediate moisture fruit cubes using a combination of osmotic dehydration and infrared drying. Fruits like pineapple, papaya, mango, banana and apple can be successfully converted into intermediate moisture products in the form of fruit cubes using this technology. The fruit cubes can blend very well as natural nutritious supplements with breakfast cereals and in certain food preparations like ice creams, milk shakes, jellies and custards. The product is microbiologically safe for consumption and can be stored at ambient storage condition for more than six months. This technology is an effective alternative for post harvest processing and preservation of ripened fruits. Fruit jam is an additional by-product generated by the process. This technology has been transferred to TT and CD, BARC

  4. The role of activated charcoal in plant tissue culture.

    Science.gov (United States)

    Thomas, T Dennis

    2008-01-01

    Activated charcoal has a very fine network of pores with large inner surface area on which many substances can be adsorbed. Activated charcoal is often used in tissue culture to improve cell growth and development. It plays a critical role in micropropagation, orchid seed germination, somatic embryogenesis, anther culture, synthetic seed production, protoplast culture, rooting, stem elongation, bulb formation etc. The promotary effects of AC on morphogenesis may be mainly due to its irreversible adsorption of inhibitory compounds in the culture medium and substancially decreasing the toxic metabolites, phenolic exudation and brown exudate accumulation. In addition to this activated charcoal is involved in a number of stimulatory and inhibitory activities including the release of substances naturally present in AC which promote growth, alteration and darkening of culture media, and adsorption of vitamins, metal ions and plant growth regulators, including abscisic acid and gaseous ethylene. The effect of AC on growth regulator uptake is still unclear but some workers believe that AC may gradually release certain adsorbed products, such as nutrients and growth regulators which become available to plants. This review focuses on the various roles of activated charcoal in plant tissue culture and the recent developments in this area.

  5. Stable isotope separation; Separations physicochimiques d'isotopes stables realisations et etudes de petites productions

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F; Molinari, Ph; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    which cooling water circulates. Studies are going forward to increase the separation factor of the cascade by using an auxiliary gas. Isotopic Exchange: A series of experiments has been performed to determine the isotopic separation factor between a lithium amalgam and an organic solvent containing a lithium salt. The various parameters which may enter into this exchange were studied: the influence of the type of solvent (the two solvents used were dimethylformamide and tetrahydrofurane), of the temperature, of the concentration and of the nature of the associated halogen. Solutions of Li metal and liquid NH{sub 3} were studied also. A number of tests were carried out to see whether there was a difference between the isotopic compositions of the Li present in the two liquid layers obtained by the dissolution of Li metal in ammonia. No difference was observed between the Li isotopic ratios in the two phases. This was also true in the case of a layer of of Li in liquid NH{sub 3} and a layer of Li I in a similar solvent. Electromigration: The method of counter current electro Migration in fused salts is a powerful isotopic enrichment technique. It can be used successfully to separate the isotopes of elements with strongly metallic character. In the case of alkalis, small quantities of isotopically pure {sup 7}Li have been obtained, while the enrichment factors obtained for potassium are of the order of 10. With regard to the alkaline earths, it has been possible to produce small quantities of calcium enriched 5 times in {sup 46}Ca. However considerable technological difficulties rise up in the way of production on a semi-industrial scale. (authors) [French] Nous avons effectue Ia separation de deuterium pur, a partir de melanges gazeux d'hydrogene et de deuterium, par chromatographie de deplacement de bande sur colonnes de palladium supporte. Les meilleures performances ont ete obtenues par des colonnes de Pd sur fritte d'alumine {alpha}. Avec une colonne de ce type, de

  6. ECONOMICAL PLANS EFFECTS ON CHARCOAL PRICES

    Directory of Open Access Journals (Sweden)

    José Luiz Pereira Rezende

    2007-06-01

    Full Text Available Energy is essential for human needs satisfaction. With the evolution of machinery, man becomes more and more dependent on the energy stocked in fossil fuels, comparatively to the primitive economy. Wood charcoal is a thermal-reducer used in Brazilian pig iron and steel industries, and its price is formed in an oligopsonic market. Over time, the charcoal prices have varied in function of endogenous and exogenous factors, needing, therefore, to be deflated so that they can be compared in two or more points in time. This work analyzed the variations of charcoal real prices, in national currency; compared and analyzed the real charcoal price in nominal and in real US Dollar and; analyzed the real prices of charcoal, comparatively to the real oil prices. The analyses were accomplished in the period from January 1975 to December 2002. The time series of charcoal prices, in domestic currency were deflated using IGP-DI, considering august, 1994=100, and charcoal prices were also converted to American dollar and deflated using CPI, considering the period 1982-84=100. It was compared, then, the real and nominal charcoal prices. It concluded that the real charcoal prices in Brazilian domestic currency, or in American dollar, presented a decreasing tendency along time. The inflationary disarray, in the 80´s and the first half of the 90 ´s, provoked a big price variation in the period; from the beginning the XXI century, charcoal prices were more influenced by the exchange rate; in the energy crisis period, charcoal prices suffered big changes that, however, did not persist along time.

  7. Adsorption of methyl iodide on charcoal

    International Nuclear Information System (INIS)

    Hidajat, K.; Aracil, J.; Kenney, C.N.

    1990-01-01

    The adsorption of non-radioactive methyl iodide has been measured experimentally over a range of conditions of concentration, and temperature on an activated charcoal. This is of interest since methyl iodide is formed from iodine fission products in gas cooled nuclear reactors. A mathematical model has also been developed which describes the rate of adsorption, under isothermal and linear adsorption isotherm conditions in a recycle adsorber. This model takes into account the resistance to adsorption caused by the surface adsorption, as well as the external and internal mass transfer resistances. The solution to the model for the recycle adsorber was obtained using a semidiscretisation method to reduce the partial differential equations to a system of stiff ordinary differential equations, and the resulting differential equations solved by a standard numerical technique. (author)

  8. Soil charcoal from the plains to tundra in the Colorado Front Range

    Science.gov (United States)

    Sanford, R. L.; Licata, C.

    2010-12-01

    Throughout the forests of the central Rockies, soil charcoal from Holocene wildfires has been produced in response to wildland natural fire regimes. The extent and spatial distribution of soil charcoal production is poorly documented in this region, especially with regard to forests and shrublands at different elevations. Soil charcoal is a super-passive C pool derived from woody biomass that can be sequestered for millennia in forest soils. Recent research indicates that soil charcoal may promote enhanced soil fertility. Additionally, soil charcoal is an often overlooked component of soil C mass and flux. We hypothesize that differences in forest and shrubland fire regimes over the millennia have resulted in different soil charcoal amounts. Geospatial data were used to locate random sample plots in foothills shrublands (Cercocarpus montanus), and four forest types; ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta) and spruce-fir (Picea engelmannii - Abies lasiocarpa). Sample plots were stratified to occur with the mid 200 m elevation band of each vegetation type with east aspect, and 10-30% slope. Soils were sampled widely at 0-10 cm depth and analyzed for total soil C and soil charcoal C via chemical digestion and dry combustion techniques. Overall, soil charcoal is four times more abundant in spruce-fir forests than in foothills shrublands (1.9 +/- 0.92 Mg C/ha versus 0.54 +/- 0.44 Mg C/ha). Soil charcoal is also abundant in lodgepole pine and ponderosa pine soils (1.4 +/- 1.02 Mg C/ha and 1.4 +/- 0.54 Mg C/ha respectively) but is less plentiful in Douglas-fir soils (1.0 +/- 0.67). Spruce-fir forests have the most above ground biomass, slower decomposition rates and a less frequent mean fire return interval than the other four forests, hence it makes sense that high per-fire rates of charcoal production would occur in the spruce-fir zone, given large amounts of surface fuels at the time of fire. In contrast

  9. Effects of impregnation of Eucalyptus grandis wood with fire-retardant salt on the production and quality of its charcoal; Efeito da impregnacao da madeira de Eucalyptus grandis com sais ignifugos na producao e na qualidade do carvao

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Marcia Macedo Ladeira; Vital, Benedito Rocha; Gomide, Jose Livio; Della Lucia, Ricardo Marius; Leite, Helio Garcia [Vicosa Univ., MG (Brazil). Dept. de Engenharia Florestal

    1998-12-31

    The present work was carried out to investigate the effects of impregnating Eucalyptus grandis wood fire retardant salts on the production and quality of its charcoal. The wood used came from a commercial stand of 72-month old Eucalyptus grandis planted at an initial 3.0 x 2.0 m spacing, established in Vicosa, Minas Gerais, Brazil. This wood was transformed in chips, treated with some fire-retardant salts and carbonized. results were evaluated through multivariate analysis. The difference among the 34 treatments, evaluated on the wood characteristics, based on group analysis, and using the distance D{sup 2} of Mahalanobis and the Tocher method, showed distinct group and subgroup formations. Based on technological data, treatment with ammonium sulphate at 15% concentration was classified as being the most promising one. The use of canonic variables analysis showed that the treatment with ammonium sulphate at a concentration of 5% was the best, and was given preference because of its lower sulphur content. (author) 12 refs., 1 fig., 7 tabs.

  10. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  11. Stable production of the antimalarial drug artemisinin in the moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Binti Khairul Ikram, Nur Kusaira; Kashkooli, Arman Beyraghdar; Peramuna, Anantha Vithakshana

    2017-01-01

    study shows that P. patens can be a sustainable and efficient production platform of artemisinin that without further modifications allow for industrial scale production. A stable supply of artemisinin will lower the price of artemisinin-based treatments, hence become more affordable to the lower income...

  12. Analysis of the thermal profiles and the charcoal gravimetric yield in three variations of rectangular brick

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rogerio Lima Mota de; Alves Junior, Edson; Mulina, Bruno Henrique Oliveira; Borges, Valerio Luiz; Carvalho, Solidonio Rodrigues de [Federal University of Uberlandia - UFU, MG (Brazil). School of Mechanical Engineering - FEMEC], e-mails: rogerio@mecanica.ufu.br, edson@mec.ufu.br, vlborges@mecanica.ufu.br, srcarvalho@mecanica.ufu.br

    2010-07-01

    Charcoal assumes a major role in Brazilian economic scenario. The procedure for obtaining charcoal consists in carbonization of wood at certain specific temperatures in kilns. This ancient process has a few joined technologies and the kilns for such practice do not have any control instruments, in their great majority, becoming dependent on the ability of its operators. However, in recent decades several studies have been developed to improve the practice as well as the equipment that involve and control the stages of charcoal production. In this sense, this work proposes the analysis of the thermal profiles and the gravimetric yield in three variations of a rectangular brick kiln called RAC220: traditional (without any type of instrumentation), instrumented with thermal sensors (RTD PT100) and adapted with gasifier. The goal is to correlate temperature, gravimetric yield and quality of the produced charcoal. Immediate analyses were performed to determine the amount of fixed carbon, volatile gases and ashes contents in charcoal. Through such measurement procedures, together with statistical analysis, the aim is to identify an important tool to reduce the time of charcoal production and also contributes to minimize losses and to increase the thermal efficiency of the production process. (author)

  13. Progresses in the stable isotope studies of microbial processes associated with wetland methane production

    International Nuclear Information System (INIS)

    Li Qing; Lin Guanghui

    2013-01-01

    Methane emissions from wetlands play a key role in regulating global atmospheric methane concentration, so better understanding of microbial processes for the methane emission in wetlands is critical for developing process models and reducing uncertainty in global methane emission inventory. In this review, we describe basic microbial processes for wetland methane production and then demonstrate how stable isotope fractionation and stable isotope probing can be used to investigate the mechanisms underlying different methanogenic pathways and to quantify microbial species involved in wetland methane production. When applying stable isotope technique to calculate contributions of different pathways to the total methane production in various wetlands, the technical challenge is how to determine isotopic fractionation factors for the acetate derived methane production and carbon dioxide derived methane production. Although the application of stable isotope probing techniques to study the actual functions of different microbial organisms to methane production process is significantly superior to the traditional molecular biology method, the combination of these two technologies will be crucial for direct linking of the microbial community and functional structure with the corresponding metabolic functions, and provide new ideas for future studies. (authors)

  14. Development of the charcoal adsorption technique for determination of radon content in natural gas

    International Nuclear Information System (INIS)

    Paewpanchon, P.; Chanyotha, S.

    2017-01-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. (authors)

  15. DEVELOPMENT OF THE CHARCOAL ADSORPTION TECHNIQUE FOR DETERMINATION OF RADON CONTENT IN NATURAL GAS.

    Science.gov (United States)

    Paewpanchon, P; Chanyotha, S

    2017-11-01

    A technique for the determination of the radon concentration in natural gas using charcoal adsorption has been developed to study the effects of parameters that influence the adsorption efficiency of radon onto activated charcoal. Several sets of experiments were conducted both in the laboratory and in an actual natural gas field for comparison. The results show that the adsorption capability of radon onto activated charcoal varies inversely with temperature, hydrocarbon concentration and the humidity contained within the natural gas. A technique utilizing dry ice as a coolant was found to be the most effective for trapping radon in natural gas samples at the production site. A desiccant can be used to remove moisture from the sampling gas. The technique described here increases the adsorption efficiency of activated charcoal by 10-20% compared to our previous study. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Latest developments at GANIL for stable and radioactive ion beam production

    International Nuclear Information System (INIS)

    Jardin, P.; Barue, C.; Bajeat, O.; Canet, C.; Clement, E.; Cornell, J. C.; Delahaye, P.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Fraanberg, H.; Frigot, R.; Leboucher, C.; Lecesne, N.; Lecomte, P.; Leherissier, P.; Lemagnen, F.; Leroy, R.; Maunoury, L.; Mery, A.

    2010-01-01

    In the frame of the SPIRAL II (Systeme de Production d'Ions Radioactifs Acceleres en Ligne Partie II) project, several developments of stable and radioactive ion production systems have been started up. In parallel, GANIL has the ambition to preserve the existing stable and radioactive beams and also to increase its range by offering new ones. In order to identify the best directions for this development, a new group called GANISOL has been formed. Its preliminary conclusions and the latest developments at GANIL are presented.

  17. Modeling the Effects of Future Growing Demand for Charcoal in the Tropics

    Directory of Open Access Journals (Sweden)

    M. J. Santos

    2017-06-01

    Full Text Available Global demand for charcoal is increasing mainly due to urban population in developing countries. More than half the global population now lives in cities, and urban-dwellers are restricted to charcoal use because of easiness of production, access, transport, and tradition. Increasing demand for charcoal, however, may lead to increasing impacts on forests, food, and water resources, and may even create additional pressures on the climate system. Here we assess how different charcoal scenarios based on the Shared Socio-economic Pathways (SSP relate to potential biomass supply. For this, we use the energy model TIMER to project the demand for fuelwood and charcoal for different socio-economic pathways for urban and rural populations, globally, and for four tropical regions (Central America, South America, Africa and Indonesia. Second, we assess whether the biomass demands for each scenario can be met with current and projected forest biomass estimated with remote sensing and modeled Net Primary Productivity (NPP using a Dynamic Global Vegetation Model (LPJ-GUESS. Currently one third of residential energy use is based on traditional bioenergy, including charcoal. Globally, biomass needs by urban households by 2100 under the most sustainable scenario, SSP1, are of 14.4 mi ton biomass for charcoal plus 17.1 mi ton biomass for fuelwood (31.5 mi ton biomass in total. Under SSP3, the least sustainable scenario, we project a need of 205 mi tons biomass for charcoal plus 243.8 mi ton biomass for fuelwood by 2100 (total of 450 mi ton biomass. Africa and South America contribute the most for this biomass demand, however, all areas are able to meet the demand. We find that the future of the charcoal sector is not dire. Charcoal represents a small fraction of the energy requirements, but its biomass demands are disproportionate and in some regions require a large fraction of forest. This could be because of large growing populations moving to urban areas

  18. Apparatus for producing charcoal from fine lignocellulose wastes

    Energy Technology Data Exchange (ETDEWEB)

    Babicki, R; Perzynski, B

    1979-05-15

    A continuous retort for the production of charcoal from sawdust, nut shells, wood chips, etc. consists of a cylindrical tower separated from the top into the drying, pyrolyzing, and cooling sections. Dry feed is introduced at the top where it is spread by stirrer blades on 2 trays kept at 120 degrees and 160 degrees by external heating. The feed falls through discharge slots into a 2nd section where it is contacted with a limited supply of hot air while the temperature rises to about 600 degrees. Hot charcoal is swept by stirrer blades toward discharge slots and falls into a 3rd section where it is cooled and discharged. Off gases are used for predrying the incoming feed, scrubbed, and vented through a stack.

  19. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability.

    Science.gov (United States)

    Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua

    2014-02-15

    With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 3D-nuclear heat generation in PCC-charcoal filter in TAPP-3 and 4

    International Nuclear Information System (INIS)

    Kaushal, Manish; Pradhan, A.S.; Kumar, A.N.

    2006-01-01

    This paper deals with the calculations of 3D nuclear heat generation profile in the charcoal filter and subsequently the commencement time of Primary Containment Cleanup (PCC) system of 540MWe Pressurized Heavy Water Reactor (PHWR). Fuel failure is predicted due to overheating of the fuel under loss of Coolant Accident (LOCA) without Emergency Core Cooling System (LOCA without ECCS). Subsequently fission product gasses along with water vapours are released to Reactor Building (RB) atmosphere. Plate-out and water trapping mechanism stabilizes the concentration of significant fission products i.e. radioiodines in about 4 hours before being circulated through charcoal filters of Containment Cleanup system. After cleaning up the RB atmosphere, it is discharged to outside atmosphere through stack. The isotopes of radioiodine emit beta and gamma radiations. Gamma radiations are partly stopped within the charcoal and heat is generated. The part of gamma radiations escaping the bed produce heat in the adjacent beds also. PCC system can be operated, after 4 hours of LOCA, based on radioiodine concentration in RB atmosphere. During iodine removal, the iodine concentration in the charcoal filter goes through a peak value. Maximum heat is generated in the filter if PCC fans stops eventually when iodine concentration in the filter is maximum. Analysis done by TRAFIC code indicates that the system can be commenced after 7 hrs of LOCA so that desorption temperature of charcoal is not reached. Accuracy in estimating heat generation rates in charcoal helps in deciding commencement of the system after LOCA

  1. Development of shelf stable, processed, low acid food products using heat-irradiation combination treatments

    International Nuclear Information System (INIS)

    Minnaar, A.

    1998-01-01

    The amount of ionizing irradiation needed to sterilize low acid vegetable and starch products (with and without sauces) commercially impairs their sensorial and nutritive qualities, and use of thermal processes for the same purpose may also have an adverse effect on the product quality. A systematic approach to the establishment of optimized combination parameters was developed for heat-irradiation processing to produce high quality, shelf stable, low acid food products. The effects of selected heat, heat-irradiation combination and irradiation treatments on the quality of shelf stable mushrooms in brine and rice, stored at ambient temperature, were studied. From a quality viewpoint, use of heat-irradiation combination treatments favouring low irradiation dose levels offered a feasible alternative to thermally processed or radappertized mushrooms in brine. However, shelf stable rice produced by heat-irradiation combination treatments offered a feasible alternative only to radappertized rice from the standpoint of quality. The technical requirements for the heat and irradiation processing of a long grain rice cultivar from the United States of America oppose each other directly, thereby reducing the feasibility of using heat-irradiation combination processing to produce shelf stable rice. The stability of starch thickened white sauces was found to be affected severely during high dose irradiation and subsequent storage at ambient temperature. However, use of pea protein isolate as a thickener in white sauces was found to have the potential to maintain the viscosity of sauces for irradiated meat and sauce products throughout processing and storage. (author)

  2. Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Jiayi Wang

    2017-07-01

    Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.

  3. Has the woodfuel crisis returned? Urban charcoal consumption in Tanzania and its implications to present and future forest availability

    International Nuclear Information System (INIS)

    Mwampamba, Tuyeni Heita

    2007-01-01

    By lumping together charcoal and firewood consumption to determine the threats to forests from widespread use of woodfuel energy in sub-Sahara African, studies have greatly underestimated the individual impact of charcoal. Where high consumption levels are coupled with poor forest management and negligible regulation of the charcoal trade, the threat of an impending crisis caused by charcoal alone needs to be revisited. This study uses a survey of 244 households in six Tanzanian cities to determine whether current consumption levels, charcoal production techniques and forest management practices are sufficient to meet present and future charcoal demand. Projections to year 2100 were made to determine whether forests can continue to meet future demand under 24 scenarios that capture the numerous uncertainties that exist of converting charcoal consumption into forest needed. The findings suggest that the scenarios containing median consumption levels, low kiln efficiencies and low replenishment of harvested forests could deplete forests on public land by 2028. Best-case scenarios occurred when the opposite conditions existed. The study concludes that charcoal consumption is a real threat to the long-term persistence of forests in Tanzania and proposes policy interventions for alleviating forest loss

  4. Evaluation of usher wood and karkadeh stem for charcoal in Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Khristova, P. (Khartoum Univ. (Sudan)); Vergnet, L. (CTFT, 94 - Nogent s/Marne (France). Energie Div.)

    1993-01-01

    Two unusual biomass materials Hibiscus sabdariffa var. sabdariffa (karkadeh) stem and Calotropis procera (usher) wood were investigated in the laboratory as potential raw materials for charcoal making in Sudan. The materials were characterised physically and chemically and despite the low density and high bark-to-wood ratio by volume, good yields and quality of charcoal were predicted. The carbonization trials with a laboratory retort at conditions close to those of field metal kiln gave very good charcoal yields (35% for karkadeh and 38% for usher) with high energy transformation (58% and 62%, respectively). The karkadeh charcoal, except for a somewhat high ash content, was good for domestic uses (79% fixed carbon and 30.3 MJ kg[sup -1] heat value). The usher charcoal was better with respect to fixed carbon (86.5%) and gross heat value (32.4 MJ kg[sup -1]). Both charcoals were of low density (140-160 kg m[sup -3]) and further assessment of their economic suitability should be carried out under field conditions. The carbonization by-products were also collected and characterized by means of gas chromatography. (author)

  5. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    Science.gov (United States)

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  6. In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn.

    Science.gov (United States)

    Ramos, Araceli M; Gally, Marcela; Szapiro, Gala; Itzcovich, Tatiana; Carabajal, Maira; Levin, Laura

    Macrophomina phaseolina is a polyphagous phytopathogen, causing stalk rot on many commercially important species. Damages caused by this pathogen in soybean and maize crops in Argentina during drought and hot weather have increased due its ability to survive as sclerotia in soil and crop debris under non-till practices. In this work, we explored the in vitro production of plant cell wall-degrading enzymes [pectinases (polygalacturonase and polymethylgalacturonase); cellulases (endoglucanase); hemicellulases (endoxylanase) and the ligninolytic enzyme laccase] by several Argentinean isolates of M. phaseolina, and assessed the pathogenicity of these isolates as a preliminary step to establish the role of these enzymes in M. phaseolina-maize interaction. The isolates were grown in liquid synthetic medium supplemented with glucose, pectin, carboxymethylcellulose or xylan as carbon sources and/or enzyme inducers and glutamic acid as nitrogen source. Pectinases were the first cell wall-degrading enzymes detected and the activities obtained (polygalacturonase activity was between 0.4 and 1.3U/ml and polymethylgalacturonase between 0.15 and 1.3U/ml) were higher than those of cellulases and xylanases, which appeared later and in a lesser magnitude. This sequence would promote initial tissue maceration followed by cell wall degradation. Laccase was detected in all the isolates evaluated (activity was between 36U/l and 63U/l). The aggressiveness of the isolates was tested in maize, sunflower and watermelon seeds, being high on all the plants assayed. This study reports for the first time the potential of different isolates of M. phaseolina to produce plant cell wall-degrading enzymes in submerged fermentation. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. The medical effects of radioactive fall-out: role of stable end-products

    International Nuclear Information System (INIS)

    Burrows, B.A.; Cardarelli, J.C.; Boling, E.A.; Sinex, F.M.

    1980-01-01

    To summarize, from preliminary observations on the possible effects of radioactive fall-out, it may be inferred that in addition to the secondary products of ionizing irradiation per se, the stable end-products of the transmutation of certain radionuclides may adversely influence cellular metabolism, including mutagenesis. The discussion of the possible role of intracellular barium as an end-product of 137Cs decay is offered as an example of an unpredictable number of broad ecological, as well as the more limited medical, effects that may be of both clinical and climatological significance

  8. Force production during squats performed with a rotational resistance device under stable versus unstable conditions.

    Science.gov (United States)

    Moras, Gerard; Vázquez-Guerrero, Jairo

    2015-11-01

    [Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases.

  9. Performance study of coal-base charcoals for removing radioiodine

    International Nuclear Information System (INIS)

    Huang Yuying; Wu Yanwei; Guo Liangtian; Jia Ming; Lu Xueshi; Zhang Hong

    1988-01-01

    In authos' laboratory sveral types of domestic coal-base charcoals are selected and impregnated and examined for their main physical and chemical performances. The results show that under the test conditions the iodine-removing efficiencies of these impregnated coal-base charcoals charcoals are not poorer than that of the impregnated fruit-shell base charcoals (such as coconut shell charcoal) and most of their physical properties can satisfy the requirements of the nuclear grade charcoals assigned in USA standards. More detailed studies will be made in the next programme

  10. Nexusing Charcoal in South Mozambique: A Proposal To Integrate the Nexus Charcoal-Food-Water Analysis With a Participatory Analytical and Systemic Tool

    Directory of Open Access Journals (Sweden)

    Ricardo Martins

    2018-06-01

    Full Text Available Nexus analysis identifies and explores the synergies and trade-offs between energy, food and water systems, considered as interdependent systems interacting with contextual drivers (e.g., climate change, poverty. The nexus is, thus, a valuable analytical and policy design supporting tool to address the widely discussed links between bioenergy, food and water. In fact, the Nexus provides a more integrative and broad approach in relation to the single isolated system approach that characterizes many bioenergy analysis and policies of the last decades. In particular, for the South of Mozambique, charcoal production, food insecurity and water scarcity have been related in separated studies and, thus, it would be expected that Nexus analysis has the potential to provide the basis for integrated policies and strategies focused on charcoal as a development factor. However, to date there is no Nexus analysis focused on charcoal in Mozambique, neither is there an assessment of the comprehensiveness and relevance of Nexus analysis when applied to charcoal energy systems. To address these gaps, this work applies the Nexus to the charcoal-food-water system in Mozambique, integrating national, regional and international studies analysing the isolated, or pairs of, systems. This integration results in a novel Nexus analysis graphic for charcoal-food-water relationship. Then, to access the comprehensiveness and depth of analysis, this Nexus analysis is critically compared with the 2MBio-A, a systems analytical and design framework based on a design tool specifically developed for Bioenergy (the 2MBio. The results reveal that Nexus analysis is “blind” to specific fundamental social, ecological and socio-historical dynamics of charcoal energy systems. The critical comparison also suggests the need to integrate the high level systems analysis of Nexus with non-deterministic, non-prescriptive participatory analysis tools, like the 2MBio-A, as a means to

  11. The charcoal-degradation nexus: contested 'fuelscapes' in the sub-Saharan drylands of northern Kenya

    Science.gov (United States)

    Bergmann, Christoph; Petersen, Maike; Roden, Paul; Nüsser, Marcus

    2017-04-01

    Charcoal ranks amongst the most commercialized but least regulated commodities in sub-Saharan Africa. Despite its prevalence as an energy source for cooking and heating, localized environmental and livelihood impacts of charcoal production are poorly understood so far. The identified research deficit is amplified by widespread negative views of this activity as a poverty-driven cause of deforestation and land degradation. However, the charcoal-degradation nexus is apparently more complicated, not least because the extraction of biomass from already degraded woodlands can also be interpreted as an appropriate option under given management regimes. In order to better calibrate existing research agendas to site-specific geographies of charcoal production, we propose a re-conceptualization of such energy landscapes as 'fuelscapes' with complex material and social dimensions. The concept is tested with reference to a case study in Central Pokot, northern Kenya, where charcoal production only began in the early 1990's. Based on the assumption that the fine line between sustainable land management and degradation in dryland energy landscapes is not only highly variable but also increasingly contested, our study combines the knowledge input of different stakeholders with longitudinal time series of remote sensing data. Based on the results of our interdisciplinary analyses, we outline an integrated tool for the co-operative monitoring and management of prevailing degradation processes against the background of diversified livelihood activities in sub-Saharan drylands.

  12. Charcoal from biomass residues of a Cryptomeria plantation and analysis of its carbon fixation benefit in Taiwan

    International Nuclear Information System (INIS)

    Lin, Yu-Jen; Hwang, Gwo-Shyong

    2009-01-01

    Charcoal production as an age-old industry not only supplies fuel in developing countries, in recent decades, it has also become a means of supplying new multifunctional materials for environmental improvement and agricultural applications in developed countries. These include air dehumidification and deodorization, water purification, and soil improvement due to charcoal's excellent adsorption capacity. Paradoxically, charcoal production might also help curb greenhouse gas emissions. In this study, we made charcoal from discarded branches and tops of wood from a Cryptomeria plantation after thinning using a still-operational earthen kiln. Woody biomass was used as the carbonization fuel. The effect of carbonization on carbon fixation was calculated and its benefits evaluated. The results showed that the recovered fixed carbon reached 33.2%, i.e., one-third of the biomass residual carbon was conserved as charcoal which if left on the forest ground would decompose and turn into carbon dioxide, and based on a net profit of US$1.13 kg -1 for charcoal, an annual net profit of US$14,665 could be realized. Charcoaling thus appears to be a feasible alternative to promote reutilization of woody resides which would not only reduce greenhouse gas emissions, but also provide potential benefits to regional economies in developing countries.

  13. Stable isotope separation in calutrons: Forty years of production and distribution

    International Nuclear Information System (INIS)

    Bell, W.A.; Tracy, J.G.

    1987-11-01

    The stable isotope separation program, established in 1945, has operated continually to provide enriched stable isotopes and selected radioactive isotopes, including the actinides, for use in research, medicine, and industrial applications. This report summarizes the first forty years of effort in the production and distribution of stable isotopes. Evolution of the program along with the research and development, chemical processing, and production efforts are highlighted. A total of 3.86 million separator hours has been utilized to separate 235 isotopes of 56 elements. Relative effort expended toward processing each of these elements is shown. Collection rates (mg/separator h), which vary by a factor of 20,000 from the highest to the lowest ( 205 Tl to 46 Ca), and the attainable isotopic purity for each isotope are presented. Policies related to isotope pricing, isotope distribution, and support for the enrichment program are discussed. Changes in government funding, coupled with large variations in sales revenue, have resulted in 7-fold perturbations in production levels

  14. Perioperative plasma concentrations of stable nitric oxide products are predictive of cognitive dysfunction after laparoscopic cholecystectomy.

    LENUS (Irish Health Repository)

    Iohom, G

    2012-02-03

    In this study our objectives were to determine the incidence of postoperative cognitive dysfunction (POCD) after laparoscopic cholecystectomy under sevoflurane anesthesia in patients aged >40 and <85 yr and to examine the associations between plasma concentrations of i) S-100beta protein and ii) stable nitric oxide (NO) products and POCD in this clinical setting. Neuropsychological tests were performed on 42 ASA physical status I-II patients the day before, and 4 days and 6 wk after surgery. Patient spouses (n = 13) were studied as controls. Cognitive dysfunction was defined as deficit in one or more cognitive domain(s). Serial measurements of serum concentrations of S-100beta protein and plasma concentrations of stable NO products (nitrate\\/nitrite, NOx) were performed perioperatively. Four days after surgery, new cognitive deficit was present in 16 (40%) patients and in 1 (7%) control subject (P = 0.01). Six weeks postoperatively, new cognitive deficit was present in 21 (53%) patients and 3 (23%) control subjects (P = 0.03). Compared with the "no deficit" group, patients who demonstrated a new cognitive deficit 4 days postoperatively had larger plasma NOx at each perioperative time point (P < 0.05 for each time point). Serum S-100beta protein concentrations were similar in the 2 groups. In conclusion, preoperative (and postoperative) plasma concentrations of stable NO products (but not S-100beta) are associated with early POCD. The former represents a potential biochemical predictor of POCD.

  15. Possibility of hypothetical stable micro black hole production at future 100 TeV collider

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, A.V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Lomonosov Moscow State University, Physics Department, Moscow (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Pshirkov, M.S. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow (Russian Federation); Pushchino Radio Astronomy Observatory, P.N. Lebedev Physical Institute, Pushchino (Russian Federation)

    2017-12-15

    We study the phenomenology of TeV-scale black holes predicted in theories with large extra dimensions, under the further assumption that they are absolutely stable. Our goal is to present an exhaustive analysis of safety of the proposed 100 TeV collider, as it was done in the case of the LHC. We consider the theories with different number of extra dimensions and identify those for which a possible accretion to macroscopic size would have timescales shorter than the lifetime of the Solar system. We calculate the cross sections of the black hole production at the proposed 100 TeV collider, the fraction of the black holes trapped inside the Earth and the resulting rate of capture inside the Earth via an improved method. We study the astrophysical consequences of stable micro black holes existence, in particular its influence on the stability of white dwarfs and neutron stars. We obtain constraints for the previously unexplored range of higher-dimensional Planck mass values. Several astrophysical scenarios of the micro black hole production, which were not considered before, are taken into account. Finally, using the astrophysical constraints we consider the implications for future 100 TeV terrestrial experiments. We exclude the possibility of the charged stable micro black holes production. (orig.)

  16. Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis.

    Science.gov (United States)

    Zywicki, Marek; Bakowska-Zywicka, Kamilla; Polacek, Norbert

    2012-05-01

    The exploration of the non-protein-coding RNA (ncRNA) transcriptome is currently focused on profiling of microRNA expression and detection of novel ncRNA transcription units. However, recent studies suggest that RNA processing can be a multi-layer process leading to the generation of ncRNAs of diverse functions from a single primary transcript. Up to date no methodology has been presented to distinguish stable functional RNA species from rapidly degraded side products of nucleases. Thus the correct assessment of widespread RNA processing events is one of the major obstacles in transcriptome research. Here, we present a novel automated computational pipeline, named APART, providing a complete workflow for the reliable detection of RNA processing products from next-generation-sequencing data. The major features include efficient handling of non-unique reads, detection of novel stable ncRNA transcripts and processing products and annotation of known transcripts based on multiple sources of information. To disclose the potential of APART, we have analyzed a cDNA library derived from small ribosome-associated RNAs in Saccharomyces cerevisiae. By employing the APART pipeline, we were able to detect and confirm by independent experimental methods multiple novel stable RNA molecules differentially processed from well known ncRNAs, like rRNAs, tRNAs or snoRNAs, in a stress-dependent manner.

  17. Soil quality in a cropland soil treated with wood ash containing charcoal

    Science.gov (United States)

    Omil, Beatriz; Balboa, Miguel A.; Fonturbel, M. Teresa; Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Vega, Jose A.; Merino, Agustin

    2014-05-01

    The strategy of the European Union "Europe 2020" states that by 2020, 20% of final energy consumption must come from renewables. In this scenario, there is an increasing use of biomass utilization for energy production. Indeed, it is expected that the production of wood-ash will increase in coming years. Wood ash, a mixture of ash and charcoal, generated as a by-product of biomass combustion in power plants, can be applied to soil to improve the soil quality and crop production. Since the residue contains significant content of charcoal, the application of mixed wood ash may also improve the SOM content and soil quality in the long term, in soils degraded as a consequence of intensive management. The objective of this study was asses the changes in SOM quality and soil properties in a degraded soils treated with wood ash containing charcoal. The study was carried out in a field devoted to cereal crops during the last decades. The soil was acidic (pH 4.5) with a low SOC content (3 %) and fine texture. The experiment was based on a randomised block design with four replicates. Each block included the following four treatments: Control, 16 Mg fly wood ash ha-1, 16 Mg mixed wood ash ha-1 (16 Mg) and 32 Mg mixed wood ash ha-1 (32 Mg). The application was carried out once. The ash used in the study was obtained from a thermal power plant and was mainly derived from the combustion of Pinus radiata bark and branches. The wood ash is highly alkaline (pH= 10), contains 10 % of highly condensed black carbon (atomic H/C ratio solid state 13C CPMAS NMR and Differential Scanning Calorimetry (DSC). These techniques were applied in bulk samples and aggregates of different sizes. The changes in microbial activity were studied by analysis of microbial biomass C and basal respiration. The soil bacterial community was studied by the Biolog method. Several physical properties, such soil aggregate distribution, hydraulic conductivity and available water contente were also determined

  18. Macro-particle charcoal C content following prescribed burning in a mixed-conifer forest, Sierra Nevada, California.

    Science.gov (United States)

    Wiechmann, Morgan L; Hurteau, Matthew D; Kaye, Jason P; Miesel, Jessica R

    2015-01-01

    Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load and type on charcoal carbon produced by biomass combusted in a prescribed burn under different thinning treatments and to identify more easily measured predictors of charcoal carbon mass in a historically frequent-fire mixed-conifer forest. We hypothesized that charcoal carbon produced from coarse woody debris (CWD) during prescribed burning would be greater than that produced from fine woody debris (FWD). We visually quantified post-treatment charcoal carbon content in the O-horizon and the A-horizon beneath CWD (> 30 cm diameter) and up to 60 cm from CWD that was present prior to treatment. We found no difference in the size of charcoal carbon pools from CWD (treatment means ranged from 0.3-2.0 g m-2 of A-horizon and 0.0-1.7 g m-2 of O-horizon charcoal) and FWD (treatment means ranged from 0.2-1.7 g m-2 of A-horizon and 0.0-1.5 g m-2 of O-horizon charcoal). We also compared treatments and found that the burn-only, understory-thin and burn, and overstory-thin and burn treatments had significantly more charcoal carbon than the control. Charcoal carbon represented 0.29% of total ecosystem carbon. We found that char mass on CWD was an important predictor of charcoal carbon mass, but only explained 18-35% of the variation. Our results help improve our understanding of the effects forest restoration treatments have on ecosystem carbon by providing additional information about charcoal carbon content.

  19. Assessment of household charcoal consumption in urban areas: the ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... respondents used charcoal as their main source of energy for cooking followed by gas (16.9%). ... sources of energy in order to reduce pressure on natural forests for the supply of charcoal.

  20. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 2. Animal products.

    Science.gov (United States)

    Inácio, Caio T; Chalk, Phillip M

    2017-01-02

    In this review, we examine the variation in stable isotope signatures of the lighter elements (δ 2 H, δ 13 C, δ 15 N, δ 18 O, and δ 34 S) of tissues and excreta of domesticated animals, the factors affecting the isotopic composition of animal tissues, and whether stable isotopes may be used to differentiate organic and conventional modes of animal husbandry. The main factors affecting the δ 13 C signatures of livestock are the C3/C4 composition of the diet, the relative digestibility of the diet components, metabolic turnover, tissue and compound specificity, growth rate, and animal age. δ 15 N signatures of sheep and cattle products have been related mainly to diet signatures, which are quite variable among farms and between years. Although few data exist, a minor influence in δ 15 N signatures of animal products was attributed to N losses at the farm level, whereas stocking rate showed divergent findings. Correlations between mode of production and δ 2 H and δ 18 O have not been established, and only in one case of an animal product was δ 34 S a satisfactory marker for mode of production. While many data exist on diet-tissue isotopic discrimination values among domesticated animals, there is a paucity of data that allow a direct and statistically verifiable comparison of the differences in the isotopic signatures of organically and conventionally grown animal products. The few comparisons are confined to beef, milk, and egg yolk, with no data for swine or lamb products. δ 13 C appears to be the most promising isotopic marker to differentiate organic and conventional production systems when maize (C4) is present in the conventional animal diet. However, δ 13 C may be unsuitable under tropical conditions, where C4 grasses are abundant, and where grass-based husbandry is predominant in both conventional and organic systems. Presently, there is no universal analytical method that can be applied to differentiate organic and conventional animal products.

  1. Charcoal and siderurgy in Brazilian Amazonia: what environmental improvement paths? Example of the Carajas pole

    International Nuclear Information System (INIS)

    Piketty, Marie-Gabrielle; Fonseca Morello, Thiago; Bouillet, Jean-Pierre; Laclau, Jean-Paul; Behling, Maurel; Caldeira Pires, Armando; Oliveira Rodrigues, Thiago; Rousset, Patrick; Dufour, Thomas; Durieux, Laurent; Sist, Plinio; Vieira, Paulo; Lemenager, Tiphaine; Ernst, Guillaume

    2011-05-01

    The pig iron sector of Carajas, in the Brazilian Amazon, uses charcoal which is strongly criticized because of the charcoal production direct and indirect impacts on deforestation and forests degradation. This publication identifies and analyzes some alternatives to decrease the charcoal production environmental negative externalities and the main technical, economic and institutional factors that may limit their adoption. Several alternatives are possible, based on more efficient carbonization technologies, reforestation or afforestation of degraded lands, and, to a lesser extent, the use of reduced impact logging residues. Some of the alternatives are cost-efficient in the long term and financing support is available to promote their adoption. Land tenure and environmental regularization is a necessary pre-requisite for their expansion. (authors)

  2. Guides to manufacturing and marketing charcoal in the Northeastern States

    Science.gov (United States)

    Fred C. Simmons

    1957-01-01

    Charcoal manufacture has become the subject of a tremendous new interest in the Northeast in the past few years. In many communities, retailers have been unable to find enough charcoal to fill the demands - even though in the same localities there are large supplies of surplus wood that could be used in making charcoal. As a result of this unfilled demand, we have...

  3. Effect of charcoal on water purification

    OpenAIRE

    Suzuki, Hirotaka; Kawahigashi, Tatsuo

    2014-01-01

    [Abstract] A natural basin system purifies water through self-purification, but the water pollution load of a river might exceed its self-purification capacity. Charcoal, which is used for other uses aside from heating, such as air purification, was evaluated experimentally for water quality purification. The experiment described herein is based on simple water quality measurements. Some experimentally obtained results are discussed.

  4. Charcoal cuts the CO2-emissions

    International Nuclear Information System (INIS)

    Aakervik, Anne Lise.

    1999-01-01

    According to this article, bio carbon, or charcoal, may be the way out for the Norwegian processing industry in attempting to reduce the emission of carbon dioxide. Norwegian ferro-alloy plants emit 3 million ton carbon dioxide per year, which comes from the use of coal and coke as reducing agents in the smelting process. If the fraction of bio carbon is increased by 15%, the emission of CO 2 may be reduced by about 1/2 million tonne per year. But the price of charcoal is much greater than that of fix C from coal and coke. Research is in progress on trying to produce bio carbon cheaper. Charcoal can be produced from all types of forest by pyrolysis. Waste heat from the pyrolysis can be sold and used for district heating. The most expensive part in the use of bio carbon will be timber felling and transport to the log pile. Small-scale and large-scale tests will be made to see if it is possible to make adequate charcoal from subarctic timber

  5. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products.

    Science.gov (United States)

    Inácio, Caio Teves; Chalk, Phillip Michael; Magalhães, Alberto M T

    2015-01-01

    Among the lighter elements having two or more stable isotopes (H, C, N, O, S), δ(15)N appears to be the most promising isotopic marker to differentiate plant products from conventional and organic farms. Organic plant products vary within a range of δ(15)N values of +0.3 to +14.6%, while conventional plant products range from negative to positive values, i.e. -4.0 to +8.7%. The main factors affecting δ(15)N signatures of plants are N fertilizers, biological N2 fixation, plant organs and plant age. Correlations between mode of production and δ(13)C (except greenhouse tomatoes warmed with natural gas) or δ(34)S signatures have not been established, and δ(2)H and δ(18)O are unsuitable markers due to the overriding effect of climate on the isotopic composition of plant-available water. Because there is potential overlap between the δ(15)N signatures of organic and conventionally produced plant products, δ(15)N has seldom been used successfully as the sole criterion for differentiation, but when combined with complementary analytical techniques and appropriate statistical tools, the probability of a correct identification increases. The use of organic fertilizers by conventional farmers or the marketing of organic produce as conventional due to market pressures are additional factors confounding correct identification. The robustness of using δ(15)N to differentiate mode of production will depend on the establishment of databases that have been verified for individual plant products.

  6. Freedom: a transient fission-product release model for radioactive and stable species

    International Nuclear Information System (INIS)

    Macdonald, L.D.; Lewis, B.J.; Iglesias, F.C.

    1989-05-01

    A microstructure-dependent fission-gas release and swelling model (FREEDOM) has been developed for UO 2 fuel. The model describes the transient release behaviour for both the radioactive and stable fission-product species. The model can be applied over the full range of operating conditions, as well as for accident conditions that result in high fuel temperatures. The model accounts for lattice diffusion and grain-boundary sweeping of fusion products to the grain boundaries, where the fission gases accumulate in grain-face bubbles as a result of vacancy diffusion. Release of fission-gas to the free void of the fuel element occurs through the interlinkage of bubbles and cracks on the grain boundaries. This treatment also accounts for radioactive chain decay and neutron-induced transmutation effects. These phenomena are described by mass balance equations which are numerically solved using a moving-boundary, finite-element method with mesh refinement. The effects of grain-face bubbles on fuel swelling and fuel thermal conductivity are included in the ELESIM fuel performance code. FREEDOM has an accuracy of better than 1% when assessed against an analytic solution for diffusional release. The code is being evaluated against a fuel performance database for stable gas release, and against sweep-gas and in-cell fission-product release experiments at Chalk River for active species

  7. Characterization of the region and year of production of wines by stable isotopes and elemental analyses

    Directory of Open Access Journals (Sweden)

    M. Day

    1995-06-01

    Full Text Available Stable isotope and elemental analyses were applied to the study of wines produced from the Cabernet Franc vine variety cultivated during several years (1982 to 1990 on specific parts of the Saumur-Champigny vineyard dedicated to the « terroir » experiment of INRA. The purpose of this work was to describe the behaviour or 2H, 13C and 18O isotopes in the water and ethanol of wines in terms of the meteorological conditions (temperature, precipitation and insolation which govern vine growing. Since the « terroir » concept involves a synergy between the c1imate and the soil, the distribution of typical metallic elements was also determined by flame and electrothermal ionization atomic absorption. About twenty parcels, carefully described from the geological and pedological point of view were considered in this study which demonstrated the ability of Sr, Al and Rb to discriminate between wines from the same year but grown on adjacent parcels. The content in trace elements of the wines was also shown to be correlated with the geological nature of the soil. As far as stable isotopes are considered, it appears that the climate of the year of production of a given region has a drastic influence on the isotope ratios of water and ethanol of wines and good correlations way be computed between these parameters and temperature and precipitations. From a more basic aspect, it is also shown that the nature of the soil which governs, at least in a part, the water use efficiency of vine, induces typical variations in the isotopic composition of wines. The results of this study demonstrate also the ability of stable isotope and elemental analyses to determine the geographical origin of a wine, and when the region of production is known, to infer the year of production from meteorological data. This method might prove to be an alternative method to radio carbon analysis for the next vintages.

  8. Theory and practice of radon monitoring with charcoal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L; Cohen, E S

    1983-08-01

    Because of interest in charcoal adsorption as an inexpensive radon monitoring technique that may be suitable for mass data collection, the theory of radon adsorption from air by a charcoal bed is developed, giving numerical estimates at all stages. The method is practical down to air concentrations of about 0.1 pCi/l. A simple charcoal bed is limited by the fact that its response is highly sensitive to the time interval before termination of the exposure, but two simple methods of avoiding this problem are developed. Simple methods for determining the diffusion constant for the charcoal being used, and for optimizing the depth of the charcoal bed, are presented.

  9. The charcoal trap: Miombo forests and the energy needs of people

    Directory of Open Access Journals (Sweden)

    Muchinda Maurice

    2011-08-01

    Full Text Available Abstract Background This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a miombo woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies. Results The measurements at Kataba compared protected area (3 plots with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4 was around 150 t ha-1, while the disturbed plot only contained 24 t ha-1. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m-2 y-1, in the first and 90 ± 16 g C m-2 in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the miombo woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO2 y-1. This is due to poor forest regeneration, although the resilience of miombo woodlands is high. Better post-harvest management could change this situation. Conclusions We argue that protection of miombo woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y-1 of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country

  10. The charcoal trap: Miombo forests and the energy needs of people.

    Science.gov (United States)

    Kutsch, Werner L; Merbold, Lutz; Ziegler, Waldemar; Mukelabai, Mukufute M; Muchinda, Maurice; Kolle, Olaf; Scholes, Robert J

    2011-08-19

    This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a miombo woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies. The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha-1, while the disturbed plot only contained 24 t ha-1. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m-2 y-1, in the first and 90 ± 16 g C m-2 in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the miombo woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO2 y-1. This is due to poor forest regeneration, although the resilience of miombo woodlands is high. Better post-harvest management could change this situation. We argue that protection of miombo woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y-1 of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other

  11. Development of safe and shelf-stable Intermediate Moisture (IM) convenience meat products through radiation processing

    International Nuclear Information System (INIS)

    Ramesh Chander; Kanatt, S.R.; Chawla, S.P.; Bongirwar, D.R.

    2001-01-01

    Ready-to-use shelf stable mutton and chicken sheek kababs, and chicken chilly were developed by reducing the water activity either by grilling or by hot air drying, vacuum packing and irradiation. Microbiological analysis revealed a dose dependent reduction in total viable count and in Staphylococcus species on irradiation treatment ( 2.5, 5.0 and 10.0 kGy). The products subjected to irradiation at 10 kGy showed absence of viable micro-organisms and also had high sensory acceptability up to 9 months at ambient temperature. (author)

  12. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    Science.gov (United States)

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  13. Conceptual Analysis: The Charcoal-Agriculture Nexus to Understand the Socio-Ecological Contexts Underlying Varied Sustainability Outcomes in African Landscapes

    Directory of Open Access Journals (Sweden)

    Miyuki Iiyama

    2017-06-01

    Full Text Available The production of charcoal is an important socio-economic activity in sub-Saharan Africa (SSA. Charcoal production is one of the leading drivers of rural land-use changes in SSA, although the intensity of impacts on the multi-functionality of landscapes varies considerably. Within a given landscape, charcoal production is closely interconnected to agriculture production both as major livelihoods, while both critically depend on the same ecosystem services. The interactions between charcoal and agricultural production systems can lead to positive synergies of impacts, but will more often result in trade-offs and even vicious cycles. Such sustainability outcomes vary from one site to another due to the heterogeneity of contexts, including agricultural production systems that affect the adoption of technologies and practices. Trade-offs or cases of vicious cycles occur when one-off resource exploitation of natural trees for charcoal production for short-term economic gains permanently impairs ecosystem functions. Given the fact that charcoal, as an important energy source for the growing urban populations and an essential livelihood for the rural populations, cannot be readily substituted in SSA, there must be policies to support charcoal production. Policies should encourage sustainable technologies and practices, either by establishing plantations or by encouraging regeneration, whichever is more suitable for the local environment. To guide context-specific interventions, this paper presents a new perspective—the charcoal-agriculture nexus—aimed at facilitating the understanding of the socio-economic and ecological interactions of charcoal and agricultural production. The nexus especially highlights two dimensions of the socio-ecological contexts: charcoal value chains and tenure systems. Combinations of the two are assumed to underlie varied socio-economic and ecological sustainability outcomes by conditioning incentive mechanisms to affect

  14. Emissions of air toxics from a simulated charcoal kiln. Final report, October 1997--September 1998

    International Nuclear Information System (INIS)

    Lemieux, P.M.

    1999-06-01

    The report gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutants from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In addition, other pollutants, including methanol, volatile organic compounds, semivolatile organic compounds, and particle emission rates and size distributions were measured using various techniques. Emissions of all pollutants are reported in units of grams emitted per unit mass of initial wood converted to charcoal. Two burn conditions--slow and fast--were examined. High levels of methanol, benzene, and fine particulate were emitted in all tests. The estimated emissions from the fast burn conditions were significantly higher than those from the slow burn conditions

  15. Improving the palatability of activated charcoal in pediatric patients.

    Science.gov (United States)

    Cheng, Adam; Ratnapalan, Savithiri

    2007-06-01

    To compare the taste preference and ease of swallowing of activated charcoal among healthy teenagers when mixed separately with 3 different additives: chocolate milk, Coca-Cola, and water. Healthy volunteers between 14 to 19 years of age were selected for the study. Five grams of activated charcoal (25 mL of 0.2 g/mL of Charcodote [Pharma Science, Montreal, Canada]) was mixed with 25 mL of chocolate milk, Coca-Cola, or water individually to make up 50 mL. The volunteers drank the 3 cups of the charcoal-additive mixture separately and then rated taste and ease of swallowing on a 10-cm visual analogue scale. The subjects then indicated their preferred charcoal-additive mixture if he/she had to drink 9 more portions of charcoal (this would estimate the dose of charcoal for a 50-kg child). A total of 44 subjects were recruited (25 boys and 19 girls). The mean scores for taste preference for chocolate milk, Coca-Cola, and water mixtures of charcoal were 5.5, 6.3, and 2.0, respectively, on a 10-cm visual analogue scale. Thus, subjects preferred the taste of charcoal mixed with chocolate milk or Coca-Cola over charcoal mixed with water (P = 0.0003 for both comparisons). The subjects did not show a statistically significant difference for ease of swallowing between the 3 charcoal-additive mixtures. Overall, 48% preferred the chocolate milk mixture, 45% preferred the Coca-Cola mixture, and 7% preferred charcoal mixed with water. Healthy teenaged subjects identified that activated charcoal (Charcodote) mixed with chocolate milk or Coca-Cola (in a 1:1 ratio) improved taste but had no significant effect on improving ease of swallowing. Overall, the addition of chocolate milk or coke improves the palatability of charcoal and is favored over charcoal mixed with water alone.

  16. Cosmic-ray-produced stable nuclides: various production rates and their implications

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1981-01-01

    The rates for a number of reactions producing certain stable nuclides, such as 3 He and 4 He, and fission in the moon are calculated for galactic-cosmic-ray particles and for solar protons. Solar-proton-induced reactions with bromine usually are not an important source of cosmogenic Kr isotopes. The 130 Ba(n,p) reaction cannot account for the undercalculation of 130 Xe production rates. Calculated production rates of 15 N, 13 C, and 2 H agree fairly well with rates inferred from measured excesses of these isotopes in samples with long exposure ages. Cosmic-ray-induced fission of U and Th can produce significant amounts of fission tracks and of 86 Kr, 134 Xe, and 136 Xe, especially in samples with long exposures to cosmic-ray particles

  17. Design, Fabrication and Installation of the Charcoal Filter Housing in RIPF

    International Nuclear Information System (INIS)

    Kim, Min Jin; Lim, I. C.; Bang, H. S.

    2008-05-01

    In the Hot Cell Bank 3 of the Radioisotope Production Facility, production and dispense of I-131 solution and capsule that are used for the diagnosis and treatment of thyroid cancer are made. The original charcoal filter housings installed in 1994 and were utilized until the leakage of a very small amount of radio-iodine was found due to the erroneous installation of the charcoal filter in the filter housing. Thus the production of I-131 was discontinued until the repair and performance testing of the filter housing and the inspection by the regulatory body were finished. Although the production of I-131 was resumed, there was a desire for installing the brand-new charcoal filter housing which has an intrinsically safe design and no possibility of leakage. This report describes the design, fabrication and installation of brand-new charcoal filter housing. And also were described the dismantlement of the old housings, the assessment of the structural integrity of the shielding concrete wall and the installation of the shielding doors

  18. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel

    Science.gov (United States)

    Charcoal rot disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methodologies available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient ...

  19. Production of Nitrous Oxide from Nitrite in Stable Type II Methanotrophic Enrichments.

    Science.gov (United States)

    Myung, Jaewook; Wang, Zhiyue; Yuan, Tong; Zhang, Ping; Van Nostrand, Joy D; Zhou, Jizhong; Criddle, Craig S

    2015-09-15

    The coupled aerobic-anoxic nitrous decomposition operation is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-), (2) NO2(-) reduction to N2O, and (3) N2O conversion to N2 with energy production. Here, we demonstrate that type II methanotrophic enrichments can mediate step two by coupling oxidation of poly(3-hydroxybutyrate) (P3HB) to NO2(-) reduction. Enrichments grown with NH4(+) and NO2(-) were subject to alternating 48-h aerobic and anoxic periods, in which CH4 and NO2(-) were added together in a "coupled" mode of operation or separately in a "decoupled mode". Community structure was stable in both modes and dominated by Methylocystis. In the coupled mode, production of P3HB and N2O was low. In the decoupled mode, significant P3HB was produced, and oxidation of P3HB drove reduction of NO2(-) to N2O with ∼ 70% conversion for >30 cycles (120 d). In batch tests of wasted cells from the decoupled mode, N2O production rates increased at low O2 or high NO2(-) levels. The results are significant for the development of engineered processes that remove nitrogen from wastewater and for understanding of conditions that favor environmental production of N2O.

  20. Use of Stable Isotopes and Incubation Studies to Characterize Methane Production Mechanism in Northern Wetlands

    Science.gov (United States)

    Chanton, J. P.; Fields, D.; Hines, M. E.; Rooney-Varga, J.

    2003-12-01

    Arctic and boreal ecosystems are important since they occupy greater than 1/5 of the Earth's terrestrial surface, they are sensitive to subtle climate changes, and they have significant effects on the atmosphere. Methanogenesis is dominated by two major pathways, acetotrophic (i.e., acetoclastic) methanogenesis in which acetate is the immediate precursor of CH4 (and CO2), and H2/CO2 methanogenesis in which CH4 is a product of H2 oxidation coupled with CO2 reduction. Recent studies suggest that acetotrophic methanogenesis does not occur widely in the northern wetlands and acetate can accumulate to high levels (Duddleston et al., 2002; Hines et al., 2001a). Methanogenesis at these sites is dominated by the H2/CO2 pathway and the importance of acetate as a precursor of CH4 seems to decrease with decreasing temperature and increasing oligotrophy. We surveyed a transect across Alaska from Deadhorse to Anchorage and used stable isotope distributions of DIC, CH4 and H2O to discern the relative importance of differing methane production mechanisms. These results compared favorably to incubation studies. Vegetation type was found to be a strong indicator of methane production mechanism, with Carex indicating acetotrophic methaneogenesis and sphagnum being an indicator of a lack of acetate methaneogenesis. The effects of production pathway variation on the dD of methane will also be presented.

  1. Production technology status and development trend of stable isotopes C, N and O

    International Nuclear Information System (INIS)

    Li Hulin

    2011-01-01

    It has been over half a century since the successful separation of table isotopes carbon, nitrogen and oxygen. The production capacity achieved three levels improvements from the laboratory-scale of one hundred grams, to the pilot production of several kilo- grams, and mass production of one hundred kilograms. The separation technologies also achieved three generation progress. The first generation of separation technology was represented by thermal diffusion method, chromatography, and ion exchange; the second generation of separation technology was represented by chemical exchange, distillation; the third generation of separation technology was characterized by the techniques innovation of material recycling, energy coupling, energy saving, and large-scale production capacity. At present, "1"3C is wholly produced by cryogenic distillation method, "1"5N is produced by NO/HNO_3 chemical exchange and NO cryogenic distillation method, and "1"80 is manufactured by distillation of water, and cryogenic distillation of NO and O_2. The same features of these separation methods are achieving energy coupling, materials recycling, large-scale producing, and energy conservation in the process. In the future, it will be the theme of stable isotope industry to develop environment-friendly, raw materials available, energy saving, low-cost, and large-scale manufacturing technology through continuous technological innovation. (authors)

  2. Stable Production of the Antimalarial Drug Artemisinin in the Moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Nur Kusaira Binti Khairul Ikram

    2017-08-01

    Full Text Available Malaria is a real and constant danger to nearly half of the world’s population of 7.4 billion people. In 2015, 212 million cases were reported along with 429,000 estimated deaths. The World Health Organization recommends artemisinin-based combinatorial therapies, and the artemisinin for this purpose is mainly isolated from the plant Artemisia annua. However, the plant supply of artemisinin is irregular, leading to fluctuation in prices. Here, we report the development of a simple, sustainable, and scalable production platform of artemisinin. The five genes involved in artemisinin biosynthesis were engineered into the moss Physcomitrella patens via direct in vivo assembly of multiple DNA fragments. In vivo biosynthesis of artemisinin was obtained without further modifications. A high initial production of 0.21 mg/g dry weight artemisinin was observed after only 3 days of cultivation. Our study shows that P. patens can be a sustainable and efficient production platform of artemisinin that without further modifications allow for industrial-scale production. A stable supply of artemisinin will lower the price of artemisinin-based treatments, hence become more affordable to the lower income communities most affected by malaria; an important step toward containment of this deadly disease threatening millions every year.

  3. Confirmatory research program: effects of atmospheric contaminants on commercial charcoals

    International Nuclear Information System (INIS)

    Bellamy, R.R.; Dietz, V.R.

    1979-01-01

    The increased use of activated charcoals in engineered-safety-feature and normal ventilation systems of nuclear power stations to continually remove radioiodine from flowing air prior to release to the environment has added importance to the question of the effect of atmospheric contaminants on the useful life of the charcoal. In January of 1977 the Naval Research Laboratory (NRL) began an investigation to determine the extent to which atmospheric contaminants in ambient concentrations degrade the efficiency of various commercially-available charcoals for removing methyl iodide. The approach employed by NRL is two-fold. First, charcoal samples are exposed to unmodified outdoor air for periods of one to nine months, then examined for methyl iodide retention, increase in weight, and the pH of water extract. The atmospheric contaminants are identified by the NRL Air Quality Monitoring Station, and concentrations of the various contaminants (ozone, SO 2 , NO 2 , CO 2 , methane and total hydrocarbons) are also available. Second, additional charcoal samples are exposed to the same pollutants under controlled laboratory conditions in various pollutant combinations. Results indicate that the water vapor-charcoal interaction is an important factor in the degradation of the commercial charcoals. Laboratory results indicate the pollutant sulfur dioxide plus water vapor can result in significant charcoal deterioration, as did ozone plus water vapor. Conversely, carbon monoxide did not appear to affect the charcoal. Also, differences were observed for various charcoals

  4. Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan - A stable isotope approach

    International Nuclear Information System (INIS)

    Miller, Todd W.; Omori, Koji; Hamaoka, Hideki; Shibata, Jun-ya; Hidejiro, Onishi

    2010-01-01

    The Seto Inland Sea (SIS) receives waste runoff from ∼24% of Japan's total population, yet it is also important in regional fisheries, recreation and commerce. During August 2006 we measured carbon and nitrogen stable isotopes of particulate organic matter (POM) and zooplankton across urban population gradients of the SIS. Results showed a consistent trend of increasing δ 15 N in POM and zooplankton from the western to eastern subsystems of the SIS, corresponding to increasing population load. Principal components analysis of environmental variables indicated high positive loadings of δ 15 N and δ 13 C with high chlorophyll-a and surface water temperatures, and negative loadings of low salinities related to inputs from large rivers and high urban development in the eastern SIS. Anthropogenic nitrogen was therefore readily integrated into the SIS food web from primary production to copepods, which are a critical food source for many commercially important fishes.

  5. Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan--a stable isotope approach.

    Science.gov (United States)

    Miller, Todd W; Omori, Koji; Hamaoka, Hideki; Shibata, Jun-ya; Hidejiro, Onishi

    2010-10-01

    The Seto Inland Sea (SIS) receives waste runoff from ∼24% of Japan's total population, yet it is also important in regional fisheries, recreation and commerce. During August 2006 we measured carbon and nitrogen stable isotopes of particulate organic matter (POM) and zooplankton across urban population gradients of the SIS. Results showed a consistent trend of increasing δ(15)N in POM and zooplankton from the western to eastern subsystems of the SIS, corresponding to increasing population load. Principal components analysis of environmental variables indicated high positive loadings of δ(15)N and δ(13)C with high chlorophyll-a and surface water temperatures, and negative loadings of low salinities related to inputs from large rivers and high urban development in the eastern SIS. Anthropogenic nitrogen was therefore readily integrated into the SIS food web from primary production to copepods, which are a critical food source for many commercially important fishes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Quality and energetic evaluation of the charcoal made of babassu nut residues used in the steel industry

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2014-10-01

    Full Text Available Brazil is the only country in the world that uses large scale charcoal in steel-making blast furnaces. Meantime, the monoculture plantations of Eucalyptus are not able to meet the demand for charcoal from the steel industries.Therefore, research is necessary, in order to use lignocellulosic residues for the production of charcoal with technological properties which are suitable for the reduction of iron ore. Given the above, the objective of this study was to evaluate the quality of charcoal which was made with babassu nut shell and designed for utilization in the steel industry in the function of the final carbonization temperature. All three layers of babassu nut shell (epicarp, mesocarp and endocarp were used together. The initial temperature of the test was 100ºC and the final temperatures were: 450ºC, 550ºC, 650ºC, 750ºC and 850ºC. For the charcoals produced, the following properties were determined: apparent relative density, energy density and fixed carbon stock, in addition to chemical compositions (immediate and elemental and heating values (higher and lower. Charcoal made of babassu nut shell showed high values of apparent density and energy density, and has a potential to replace coal and wood charcoal in the steel industry. The effect of the final carbonization temperature was expressed for all characteristics evaluated, except for the nitrogen content. Babassu nut shell must be carbonized at temperatures higher than 550ºC, so that the charcoal produced can be used in steel-making blast furnaces.

  7. Studies on entrained DNPPA separation by charcoal adsorption from aqueous solutions generated during uranium recovery from strong phosphoric acid

    International Nuclear Information System (INIS)

    Singh, D.K.; Vijayalakshmi, R.; Singh, H.

    2010-01-01

    During the separation of metal ions by solvent extraction technique in hydrometallurgical operations, organic solvents either get entrained or dissolved in various types of aqueous streams, which need to be separated out to prevent environmental pollution and solvent loss. Generally entrained solvents are separated on plant scale by parallel plate separators or by froth floatation cells, while the dissolved solvents are recovered either by organic diluent wash or by charcoal adsorption. A novel process has been developed to recover uranium from merchant grade phosphoric acid (MGA) employing synergistic mixture of DNPPA (di-nonyl phenyl phosphoric acid ) and TOPO (tri-n-octyl phosphine oxide) dissolved in petrofin. After recovery of uranium, MGA has to be returned to the host company for the production of fertilizer. This MGA has to be free from any contamination due to DNPPA and TOPO. Separation of DNPPA and TOPO from MGA by diluent wash method has been reported. There is no information available in literature for the separation of DNPPA and TOPO from such aqueous streams by carbon adsorption. The present investigation describes the methodology based on charcoal adsorption study (batch and continuous column operation) to separate DNPPA from MGA. Three different types of charcoal namely coconut shell based, coal based and pelletized charcoal were evaluated for DNPPA separation from MGA containing 100 mg/L DNPPA. It was found that the % DNPPA adsorptions in single contact (0.5g C/50 ml) were 57, 34 and 10 in coconut shell, coal based and pelletised charcoal respectively. Based on the results, the coconut shell based charcoal was selected for further study. Adsorption of DNPPA by coconut shell based charcoal was investigated by carrying out the experiments with 50 ml MGA containing 770 mg/L DNPPA by adding 1 to 7 g charcoal respectively in separate beakers

  8. The addition of charcoals to broiler diets did not alter the recovery of Salmonella Typhimurium during grow-out.

    Science.gov (United States)

    Wilson, K M; Bourassa, D V; Davis, A J; Freeman, M E; Buhr, R J

    2016-03-01

    recovery from breast skin (charcoals 5+/60 compared to control 8+/20). While the addition of charcoals to broilers feed did not significantly affect Salmonella recovery during production (from litter or ceca samples) there was a lower Salmonella recovery from breast skin following scalding and defeathering. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Remediation of cadmium contaminated vertisol mediated by Prosopis charcoal and coir pith

    Directory of Open Access Journals (Sweden)

    Palaninaicker Senthilkumar

    2015-01-01

    Full Text Available Metal contamination of soil due to industrial and agricultural activities is increasingly becoming a global problem, thereby affecting animal and human life, thus rendering soil unsuitable for agricultural purposes. Remediation of cadmium (Cd contaminated soil (Vertisol using agricultural by products as source of organic amendments, Coir pith- a by-product of the coir industry and Prosopis charcoal- prepared by burning Prosopis plant wood (Prosopis juliflora L. was investigated. The alleviation potential of Prosopis charcoal and Coir pith on the negative effects of Cd in soil was evaluated in pot culture experiments with Vigna radiata as the test plant, a Cd accumulator. Cadmium addition to soil resulted in accumulation of Cd in all plant parts of V. radiata predominantly in roots. The influence of Cd in the presence and absence of organic amendments on the various biological and chemical parameters of the soil, on the levels of Cd accumulation and on the growth attributes of V. radiata has been assessed. Among the organic amendments, Prosopis charcoal was found to be more effective in reducing the bioavailable levels of Cd in the soil artificially spiked with Cd in graded concentrations of 0, 5, 10, 20, 40, 60, 80 and 100 µg g-1 and its accumulation in V. radiata, thus resulting in an increase in the root, leaf and stem biomass. Coir pith, however, was effective in increasing the total mycorrhizal colonization of roots and second in reducing Cd levels in plants. Therefore, Prosopis charcoal was considered best for stabilization of Cd in soil.

  10. Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis.

    Science.gov (United States)

    Chen, Po Ting; Chiang, Chung-Jen; Chao, Yun-Peng

    2007-01-01

    Bacillus subtilis (B. subtilis) is widely accepted as an excellent host cell for the secretory production of recombinant proteins. In this study, a shuttle vector was constructed by fusion of Staphylococcus aureus (S. aureus) plasmid pUB110 with Escherichia coli (E. coli) plasmid pUC18 and used for the expression of nattokinase in B. subtilis. The pUB110/pUC-based plasmid was found to exhibit high structural instability with the identification of a DNA deletion between two repeated regions. An initial attempt was made to eliminate the homologous site in the plasmid, whereas the stability of the resulting plasmid was not improved. In an alternative way, the pUC18-derived region in this hybrid vector was replaced by the suicidal R6K plasmid origin of E. coli. As a consequence, the pUB110/R6K-based plasmid displayed full structural stability, leading to a high-level production of recombinant nattokinase in the culture broth. This was mirrored by the detection of a very low level of high molecular weight DNAs generated by the plasmid. Moreover, 2-fold higher nattokinase production was obtained by B. subtilis strain carrying the pUB110/R6K-based plasmid as compared to the cell with the pAMbeta1-derived vector, a plasmid known to have high structural stability. Overall, it indicates the feasibility of the approach by fusing two compatible plasmid origins for stable and efficient production of recombinant nattokinase in B. subtilis.

  11. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  12. The Charcoal Trap: Miombo woodlands versus the energy needs of people

    Science.gov (United States)

    Merbold, Lutz; Maurice, Muchinda; Mukufute M, Mukelabai; J, Scholes Robert; Waldemar, Ziegler; L, Kutsch Werner

    2010-05-01

    Miombo woodlands cover the transition zone between the dry open savannas and the moist forests in Southern Africa and occupy the vast area of 2.7 Mio km2. These ecosystems are highly disturbed by deforestation, mostly for charcoal production. Charcoal has become the largest source to satisfy urban energy demands. Even though when charcoal is a less energy-efficient fuel compared to firewood but by having higher energy densities and thus being cheaper to transport. Over the last decades, charcoal production has become a full-time employment for migrant workers, resulting in very different and no longer sustainable deforestation patterns. Strategies to reduce the pressure on the miombo woodlands have to take aspects of employment and energy demand into account. The objectives of the study were to examine above- and belowground carbon losses from an intact miombo woodland (protected forest reserve) in comparison to a highly disturbed surrounding area due to charcoal production. Detection of changes in carbon concentrations and stocks were made possible by applying biomass- and soil inventories as well as the eddy-covariance method. These local results were up-scaled to countrywide estimates of carbon lost to the atmosphere by deforestation in addition to carbon losses fossil fuel combustion. The results show, that in the worst case scenario which does not assume any regeneration, a developing country as Zambia, can easily emit as much carbon per capita as a developed Western world country such as France, when deforestation is included in the national inventory (up to 9.1 t of CO2 per capita). However, regeneration is very probably when post-harvest disturbance is low. Further studies on miombo regeneration are highly demanded.

  13. Research on removal of radioiodine by charcoal

    International Nuclear Information System (INIS)

    Li Wangchang; Huang Yuying; Wu Yianwei; Jia Ming; Guo Liangtian

    1993-01-01

    The major R and D work carried out in the CIRP laboratory on removal of radioiodine is introduced, which involves the adsorption performances of various kinds of fruit shell base and coal base charcoal impregnated with chemicals, the influence of various parameters, the technique of non-destructive test for commercial scale iodine adsorber, and the iodine samplers for both gross iodine and iodine in different forms. The experimental results have been applied to the design and test of iodine adsorber and the monitoring of airborne radioiodine

  14. Effect of starch binder on charcoal briquette properties

    Science.gov (United States)

    Borowski, Gabriel; Stępniewski, Witold; Wójcik-Oliveira, Katarzyna

    2017-10-01

    The paper shows the results of a study on the effect of starch binder on the mechanical, physical and burning properties of charcoal briquettes. Two types of binders were repeatedly used to make briquettes of native wheat starch and modified wheat starch, at 8% of the whole. Briquetting was performed in a roller press unit, and pillow-shaped briquettes were made. The moisture of the mixed material ranged from 28 to 32%. The product, whether the former or the latter, was characterized by very good mechanical properties and satisfactory physical properties. Moreover, the type of starch binder had no effect on toughness, calorific heating value, volatiles, fixed carbon content and ash content. However, the combustion test showed quite different burning properties. As briquettes should have short firing up time and lower smokiness, as well as high maximum temperature and long burning time, we have concluded that briquettes with native wheat starch as a binder are more appropriate for burning in the grill.

  15. Evaluation of Eucalyptus clones in different places seeking to the production of vegetal charcoal Avaliação de clones de Eucalyptus em diferentes locais visando à produção de carvão vegetal

    Directory of Open Access Journals (Sweden)

    Thiago Andrade Neves

    2011-12-01

    Full Text Available

    This research aim to evaluate the wood and charcoal quality of three Eucalyptus clones planted at different places and to verify the existent functional relations between the basic density and the depth of penetration of the Pilodyn pin. Three Eucalyptus clones were evaluated and four trees were sample for each clone and place. It was determined the depth of penetration of a Pilodyn pin at 1.30 m of height of the soil (DBH, average basic density (DBm, the basic density at DBH, the calorific value, lignin, total extractive, ashes and holocellulose contents and elemental chemical analysis (C, H, N and O. The wood was carbonized and the charcoal produced was evaluated quantitatively and qualitatively. In the evaluation of the wood characteristics a completely randomized design disposed in a factorial scheme 3 x 2 was used. A linear model was adjusted between DBm and the depth of penetration of the Pilodyn pin. It was possible to conclude that the clones present potential to be used for energy. The charcoal produced may be used in siderurgy. The linear model adjusted between DBm and the penetration of the Pilodyn pin was satisfactory.

    doi: 10.4336/2011.pfb.31.68.319

    Os objetivos desse trabalho foram avaliar a qualidade da madeira e do carvão vegetal de três clones de Eucalyptus plantados em diferentes locais e verificar a relação funcional existente entre a densidade básica e a profundidade de penetração do pino do Pilodyn. Foram avaliados três clones de Eucalyptus e amostradas quatro árvores por clone em cada local. Determinou-se a profundidade de penetração de um pino de aço do Pilodyn a 1,30 m de altura do solo (DAP, a densidade básica média (DBm, a densidade básica no DAP, o poder calorífico superior e os teores de lignina, extrativos totais, cinzas, holocelulose e a análise química elementar (C, H, N e O. A madeira foi carbonizada e o carvão produzido foi avaliado quantitativamente e qualitativamente. Na avalia

  16. Structural, morphological, and thermal characterization of kraft lignin and its charcoals obtained at different heating rates

    Science.gov (United States)

    Rodrigues Brazil, Tayra; Nunes Costa, Rogeria; Massi, Marcos; Cerqueira Rezende, Mirabel

    2018-04-01

    Biomass is a renewable resource that is becoming more import due to environmental concerns and possible oil crisis. Thus, optimizing its use is a current challenge for many researchers. Lignin, which is a macromolecule with complex chemical structure, valuable physicochemical properties, and varied chemical composition, is available in large quantities in pulp and paper companies. The objective of this work is the physicochemical characterization of two Kraft lignin samples with different purities, and the study of its thermal conversion into charcoal. The lignin characterization was based on chemical, TGA, DSC, FT-IR, particle sizes, and FEG-SEM analyses. These analyses show that the lignins are mainly composed of guaiacyl and syringyl units, with residues of 30–36 wt.%, in inert atmosphere, depending on the lignin purity. From these results, the more purified lignin with higher carbon yield (%C) was selected for charcoal production. The heat treatment (HT) for carbonization of lignin, at different times (90, 180, and 420 min), resulted in different %C (41–44 wt.%). Longer HT resulted in higher %C and in charcoals with smaller pore sizes. Nanopores (∼50 nm) are observed for the charcoal obtained with the longest HT.

  17. Radiocarbon ages of soil charcoals from the southern Alps, Ticino, Switzerland

    International Nuclear Information System (INIS)

    Hajdas, Irka; Schlumpf, Nadia; Minikus-Stary, Nicole; Hagedorn, Frank; Eckmeier, Eileen; Schoch, Werner; Burga, Conradin; Bonani, Georges; Schmidt, Michael W.I.; Cherubini, Paolo

    2007-01-01

    Radiocarbon dating of macroscopic charcoal is a useful tool for paleoclimatic and paleoecologic reconstructions. Here we present results of 14 C dating of charcoals found in charcoal-rich soils of Ticino and the Misox Valley (southern Switzerland) which indicate that the Late Glacial and early Holocene fires coincided with warm phases in the North Atlantic region and low lake levels in the Central Europe. Late Holocene charcoals found in these soils document an earlier than believed presence of sweet chestnut (Castanea sativa Mill.) in southern Switzerland. Sweet chestnut trees play a key role in Mediterranean woodlands, and for longer than two millennia have been used as a food source. Based on palynological evidence it is commonly believed that in southern Switzerland C. sativa was first introduced 2000 years ago by the Romans, who cultivated it for wood and fruit production. Our results indicate that this tree species was present on the southern slopes of the Alps ∼1500 years earlier than previously assumed, and therefore was likely introduced independently from cultivation by the Romans

  18. Volatile compounds and odor preferences of ground beef added with garlic and red wine, and irradiated with charcoal pack

    International Nuclear Information System (INIS)

    Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun

    2012-01-01

    Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC–MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added. - Highlights: ► Garlic and red wine were added to ground beef and irradiated at 5 kGy in the presence of charcoal pack. ► When the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly and it affected sensory score. ► Thus, addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation. ► This effect was consistent when additives, such as garlic and red wine, were added into ground beef.

  19. Remediation of cadmium contaminated vertisol mediated by Prosopis charcoal and coir pith

    OpenAIRE

    Palaninaicker Senthilkumar; Duraisamy Prabha; Subpiramaniyan Sivakumar; Chandra Venkatasamy Subbhuraam

    2015-01-01

    Metal contamination of soil due to industrial and agricultural activities is increasingly becoming a global problem, thereby affecting animal and human life, thus rendering soil unsuitable for agricultural purposes. Remediation of cadmium (Cd) contaminated soil (Vertisol) using agricultural by products as source of organic amendments, Coir pith- a by-product of the coir industry and Prosopis charcoal- prepared by burning Prosopis plant wood (Prosopis juliflora L.) was investigated. The allevi...

  20. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry

    International Nuclear Information System (INIS)

    Esteban, N.V.; Loughlin, T.; Yergey, A.L.; Zawadzki, J.K.; Booth, J.D.; Winterer, J.C.; Loriaux, D.L.

    1991-01-01

    Growth retardation as well as the development of Cushingoid features in adrenally insufficient patients treated with the currently accepted replacement dose of cortisol (33-41 mumol/day.m2; 12-15 mg/m2.day) prompted us to reevaluate the cortisol production rate (FPR) in normal subjects and patients with Cushing's syndrome, using a recently developed thermospray liquid chromatography-mass spectrometry method. The stable isotope [9,12,12-2H3]cortisol was infused continuously for 31 h at about 5% of the anticipated FPR. Blood samples were obtained at 20-min intervals for 24 h, spun, and pooled in 4-h groups. Tracer dilution in plasma was determined by liquid chromatography/mass spectrometry. The method was validated with controlled infusions in 6 patients with adrenal insufficiency. Results from 12 normal volunteers revealed a FPR of 27.3 +/- 7.5 mumol/day (9.9 +/- 2.7 mg/day) or 15.7 mumol/day.m2; 5.7 mg/m2. day. A previously unreported circadian variation in FPR was observed. Patients with Cushing's syndrome demonstrated unequivocal elevation of FPR and cortisol concentration correlated during each sample period in normal volunteers, indicating that cortisol secretion, rather than metabolism, is mainly responsible for changes in plasma cortisol. Our data suggest that the FPR in normal subjects may be lower than previously believed

  1. Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology.

    Science.gov (United States)

    Vakarelova, Martina; Zanoni, Francesca; Lardo, Piergiovanni; Rossin, Giacomo; Mainente, Federica; Chignola, Roberto; Menin, Alessia; Rizzi, Corrado; Zoccatelli, Gianni

    2017-04-15

    Astaxanthin is a carotenoid known for its strong antioxidant and health-promoting characteristics, but it is also highly degradable and thus unsuited for several applications. We developed a sustainable method for the extraction and the production of stable astaxanthin microencapsulates. Nearly 2% astaxanthin was extracted by high-pressure homogenization of dried Haematococcus pluvialis cells in soybean oil. Astaxanthin-enriched oil was encapsulated in alginate and low-methoxyl pectin by Ca 2+ -mediated vibrating-nozzle extrusion technology. The 3% pectin microbeads resulted the best compromise between sphericity and oil retention upon drying. We monitored the stability of these astaxanthin beads under four different conditions of light, temperature and oxygen exposition. After 52weeks, the microbeads showed a total-astaxanthin retention of 94.1±4.1% (+4°C/-light/+O 2 ), 83.1±3.2% (RT/-light/-O 2 ), 38.3±2.2% (RT/-light/+O2), and 57.0±0.4% (RT/+light/+O 2 ), with different degradation kinetics. Refrigeration, therefore, resulted the optimal storage condition to preserve astaxanthin stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    Science.gov (United States)

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow.

  3. Avaliação de diferentes tipos de carvão ativo na destoxificação de hidrolisado de palha de arroz para produção de xilitol Evaluation of different kinds of activated charcoal used for rice straw hydrolysate detoxification for xylitol production

    Directory of Open Access Journals (Sweden)

    Solange Inês Mussatto

    2004-03-01

    Full Text Available O hidrolisado hemicelulósico de palha de arroz foi tratado com cinco tipos de carvão ativo (pó e granulado com o objetivo de remover, por adsorção, compostos tóxicos que podem agir como inibidores no processo de bioconversão de xilose em xilitol, por Candida guilliermondii. Os valores máximos de fator de rendimento em xilitol (Y P/S = 0,67g g-1 e produtividade volumétrica (Q P = 0,61g L-1 h-1 foram atingidos quando o hidrolisado foi tratado com carvão ativo em pó de partículas de tamanho pequeno (0,043mm, baixa granulometria (32% retidos em peneira de 325mesh e grande área superficial (860m² g-1, características as quais favoreceram a adsorção dos compostos tóxicos.Rice straw hemicellulosic hydrolysate was treated with five kinds of activated charcoal (powdered and granulated in order to remove, by adsorption, toxic compounds that can be act as inhibitors in the bioconversion of xylose to xylitol, by Candida guilliermondii. Maximum values of xylitol yield factor (Y P/S= 0.67g g-1 and volumetric productivity (Q P=0.61g L-1h-1 were provided by powdered activated charcoal with small particles size (0.043mm, low granulometry (32% restrained in 325mesh and large surface area (860m² g-1, characteristics which favoured the toxic compounds adsorption.

  4. Chemical analysis and potential health risks of hookah charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Yehya, E-mail: yelsayed@aus.edu; Dalibalta, Sarah, E-mail: sdalibalta@aus.edu; Abu-Farha, Nedal

    2016-11-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  5. Chemical analysis and potential health risks of hookah charcoal

    International Nuclear Information System (INIS)

    Elsayed, Yehya; Dalibalta, Sarah; Abu-Farha, Nedal

    2016-01-01

    Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography–mass spectrometry (TD-GC–MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified. - Highlights: • Hookah charcoals, mainly synthetic brands, contains trace/heavy metals in concentrations exceeding those in cigarettes. • The concentration of lead in synthetic charcoal briquettes may impose adverse effects on human health. • The amount of nitrogen in synthetic charcoal is comparable to that reported in cigarettes. • Chemical profiling of smoke emitted from hookah charcoal reveals many compounds associated with potential health risks.

  6. Behavior of highly radioactive iodine on charcoal in moist air

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Manning, S.R.; Martin, W.J.

    1976-01-01

    The behavior of highly radioactive iodine adsorbed on charcoal exposed to moist air (110 torr water vapor partial pressure) was investigated in a series of six experiments. The amount of radioactive 130 I on the well-insulated 28-cm 3 bed ranged from 50 to 570 Ci, and the relative humidity was 47 percent at the bed inlet temperature of 70 0 C. Radioactive iodine was released from the test beds at a continuous fractional release rate of approximately 7 x 10 -6 /hr for all types of charcoal tested. The chemical form of the released iodine was such that it was very highly penetrating with respect to the nine different types of commercial impregnated charcoals tested in backup collection beds. Two types of silver-nitrate-coated adsorption materials behaved similarly to the charcoals. Silver-exchanged type 13-X molecular sieve adsorbers were 20 to 50 times more efficient for adsorbing the highly penetrating iodine, but not as efficient as normally found for collecting methyl iodide. The chemical form of the highly penetrating iodine was not determined. When the moist air velocity was decreased from 28.5 fpm (25 0 C) to as low as 0.71 fpm (25 0 C), the charcoal bed temperature rose slowly and reached the ignition temperature in three of the experiments. At 0.71 fpm (25 0 C) the ignited charcoal beds reached maximum temperatures of 430 to 470 0 C because of the limited oxygen supply. The charcoal exposed for four years at Oak Ridge ignited at 283 0 C compared with 368 0 C for unused charcoal from the same batch. Two of the experiments used charcoal containing 1 or 2 percent TEDA (triethylene-diamine) and a proprietary flame retardant. The oxidation and ignition behavior of these charcoals did not appear to be affected adversely by the presence of the TEDA

  7. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    Directory of Open Access Journals (Sweden)

    Ai-Hsiang Chou

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 has caused several epidemics of hand, foot and mouth diseases (HFMD in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. PRINCIPAL FINDING: In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration, a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice

  8. Pilot scale production of highly efficacious and stable enterovirus 71 vaccine candidates.

    Science.gov (United States)

    Chou, Ai-Hsiang; Liu, Chia-Chyi; Chang, Cheng-Peng; Guo, Meng-Shin; Hsieh, Shih-Yang; Yang, Wen-Hsueh; Chao, Hsin-Ju; Wu, Chien-Long; Huang, Ju-Lan; Lee, Min-Shi; Hu, Alan Yung-Chi; Lin, Sue-Chen; Huang, Yu-Yun; Hu, Mei-Hua; Chow, Yen-Hung; Chiang, Jen-Ron; Chang, Jui-Yuan; Chong, Pele

    2012-01-01

    Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. These

  9. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada). Dept. of Earth and Ocean Sciences

    1998-09-01

    The chemical and physical characteristics of laboratory produced charcoals, natural charcoals, fungal decayed woods and inertinite from a variety of Western Canadian coals were investigated using FTIR and standard petrologic techniques. The studies confirm and extend earlier work in showing that almost all inertinite macerals can be attributed to wildfire in peat swamps, and that variation in the petrological characteristics of inertinite are a product of temperature, duration of heating and the nature of the initial plant material. The relationships between reflectance and temperature, as well as heating duration of charcoal formation are established as a reference for the examination of inertinite, and the probable temperature of inertinite precursor (fossil charcoal) formation in paleo-widlfire. Fungi do not directly contribute to the formation of charcoal and inertinite apart from the fungal bodies themselves (funginite: sclerotia and hyphae) and perhaps by increasing the extent of shrinkage and cracking (increasing surface area) of the plant materials and thus susceptibility to charring. Evidence of fungal activity progressively decreases with increasing degree of charing in response to duration of heating or increased charing temperature. The reflectance values and FTIR spectral characteristics of inertinites in Western Canadian coal suggest that most inertinite formed by wildfires at temperatures over 400{degree}C. The great abundance of semifusinite in Western Canadian coal may reflect frequent but short duration wildfires in precursor peat swamps. 44 refs., 16 figs., 6 tabs.

  10. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    Science.gov (United States)

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  11. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1997-01-01

    The Oak Ridge national laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the isotope enrichment facility (IEF)fwill be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies. (orig.)

  12. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    Science.gov (United States)

    Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.

  13. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 years. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; SIO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capabilities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies

  14. Detecting animal by-product intake using stable isotope ratio mass spectrometry (IRMS).

    Science.gov (United States)

    da Silva, D A F; Biscola, N P; Dos Santos, L D; Sartori, M M P; Denadai, J C; da Silva, E T; Ducatti, C; Bicudo, S D; Barraviera, B; Ferreira, R S

    2016-11-01

    Sheep are used in many countries as food and for manufacturing bioproducts. However, when these animals consume animal by-products (ABP), which is widely prohibited, there is a risk of transmitting scrapie - a fatal prion disease in human beings. Therefore, it is essential to develop sensitive methods to detect previous ABP intake to select safe animals for producing biopharmaceuticals. We used stable isotope ratio mass spectrometry (IRMS) for 13 C and 15 N to trace animal proteins in the serum of three groups of sheep: 1 - received only vegetable protein (VP) for 89 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets with 30% bovine meat and bone meal (MBM) added to a vegetable diet (from days 16-89 in the AVP group and until day 49 in the AVPR group, when MBM was removed). The AVPR group showed 15 N equilibrium 5 days after MBM removal (54th day). Conversely, 15 N equilibrium in the AVP group occurred 22 days later (76th day). The half-life differed between these groups by 3.55 days. In the AVPR group, 15 N elimination required 53 days, which was similar to this isotope's incorporation time. Turnover was determined based on natural 15 N signatures. IRMS followed by turnover calculations was used to evaluate the time period for the incorporation and elimination of animal protein in sheep serum. The δ 13 C and δ 15 N values were used to track animal protein in the diet. This method is biologically and economically relevant for the veterinary field because it can track protein over time or make a point assessment of animal feed with high sensitivity and resolution, providing a low-cost analysis coupled with fast detection. Isotopic profiles could be measured throughout the experimental period, demonstrating the potential to use the method for traceability and certification assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Stable isotope composition of environmental water and food products as a tracer of origin

    International Nuclear Information System (INIS)

    Wierzchnicki, R.; Owczarczyk, A.; Soltyk, W.

    2004-01-01

    The paper is the review of Institute of Nuclear Chemistry and Technology (INCT) activity in application of stable isotope ratios (especially D/H and 18 O/ 16 O) for environmental studies and food origin control. INCT has at disposal since 1998, a high class instrument - Isotope Ratio Mass Spectrometer, Delta Plus, Finnigan MAT, Germany - suitable to perform such measurements. (author)

  16. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres.

    Science.gov (United States)

    Li, Shu-Xian; Chen, Chang-Zhou; Li, Ming-Fei; Xiao, Xiao

    2018-02-01

    Corncob was torrefied under nitrogen and carbon dioxide atmospheres at 220-300 °C, obtaining solid products with mass yields of 69.38-95.03% and 67.20-94.99% and higher heating values of 16.58-24.77 MJ/kg and 16.68-24.10 MJ/kg, respectively. The changes of physicochemical properties of the charcoal was evaluated by many spectroscopies, contact angle determination, and combustion test. Hemicelluloses were not detected for the torrefaction under the hard conditions. As the severity increased, C concentration raised while H and O concentrations reduced. Combustion test showed that the burnout temperature of charcoal declined with the elevation of reaction temperature, and torrefaction at a high temperature shortened the time for the whole combustion process. Base on the data, torrefaction at 260 °C under carbon dioxide was recommended for the torrefaction of corncob. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of service aging on iodine retention of activated charcoals

    International Nuclear Information System (INIS)

    Evans, A.G.

    1976-01-01

    The Savannah River reactor confinement systems are continuously operated offgas cleanup systems whose components include moisture separators, HEPA filters, and halogen adsorber beds of activated charcoal. Charcoal is removed from the system periodically and subjected to a variety of physical, chemical, and iodine penetration tests to ensure that the system will perform within specification in the event of an accidental release of activity from the reactor. Tests performed on the charcoals include pH measurement of water extracts, particle size distribution, ignition temperature, high-temperature (180 0 C) iodine penetration, and iodine penetration in an intense radiation field at high humidity. Charcoals used in the systems include carbon Types 416 (unimpregnated), G-615 (impregnated with 2 percent TEDA and 2 percent KI), and GX-176 (impregnated with 1 percent TEDA and 2 percent KI). Performance data are presented and compared

  18. Effect of humidity on thoron adsorption in activated charcoal bed

    International Nuclear Information System (INIS)

    Sudeep Kumara, K.; Karunakara, N.; Yashodhara, I.; Sapra, B.K.; Sahoo, B.K.; Gaware, J.J.; Kanse, S.D.; Mayya, Y.S.

    2014-01-01

    Activated charcoal is a well-known adsorber of 222 Rn and 220 Rn gases. This property can be effectively used for remediation of these gases in the workplaces of uranium and thorium processing facilities. However, the adsorption on charcoal is sensitive to variation in temperature and humidity. The successful designing and characterization of adsorption systems require an adequate understanding of these sensitivities. The study has been carried out towards this end, to delineate the effect of relative humidity on the efficacy of 220 Rn mitigations in a charcoal bed. Air carrying 220 Rn from a Pylon source was passed through a column filled with coconut shell-based granular activated charcoal. The relative humidity of the air was controlled, and the transmission characteristics were examined at relative humidity varying from 45% to 60%. The mitigation factor was found to decrease significantly with an increase of humidity in the air. (author)

  19. The analysis of charcoal in peat and organic sediments

    Directory of Open Access Journals (Sweden)

    S.D. Mooney

    2011-03-01

    Full Text Available The abundance of charcoal in sediments has been interpreted as a ‘fire history’ at about 1,000 sites across the globe. This research effort reflects the importance of fire in many ecosystems, and the diversity of processes that can be affected by fire in many landscapes. Fire appears to reflect climate through the intermediary of vegetation, but arguably responds faster than vegetation to climate change or variability. Fire and humans are also intricately linked, meaning that the activity of fire in the past is also of relevance to prehistoric and historic human transitions and to contemporary natural resource management. This article describes recent advances in the analysis of charcoal in peat and other sediments, and offers a simple method for the quantification of larger charcoal fragments (>100 µm and a standardised method for the quantification of microscopic charcoal on pollen slides. We also comment on the challenges that the discipline still faces.

  20. The forbidden fuel: Charcoal, urban woodfuel demand and supply dynamics, community forest management and woodfuel policy in Malawi

    International Nuclear Information System (INIS)

    Zulu, Leo Charles

    2010-01-01

    This article examines woodfuel policy challenges and opportunities in Malawi two decades after woodfuel-crisis narratives and counter-narratives. A nuanced examination of woodfuel supply, demand, use, and markets illuminated options to turn stagnant policies based on charcoal 'bans' and fuel-substitution into proactive, realistic ones acknowledging woodfuel dominance and its socio-economic importance. Findings revealed growing, spatially differentiated woodfuel deficits in southern and central Malawi and around Blantyre, Zomba and Lilongwe cities. Poverty, limited electricity access, reliability and generation exacerbated by tariff subsidies, and complex fuel-allocation decisions restricted energy-ladder transitions from woodfuels to electricity, producing an enduring urban-energy mix dominated by charcoal, thereby increasing wood consumption. Diverse socio-political interests prevented lifting of the charcoal 'ban' despite progressive forest laws. Despite implementation challenges, lessons already learnt, efficiency and poverty-reduction arguments, limited government capacity, growing illegal production of charcoal in forest reserves, and its staying power, make targeted community-based forest management (CBFM) approaches more practical for regulated, commercial production of woodfuels than the status quo. New differentiated policies should include commercial woodfuel production and licensing for revenue and ecological sustainability under CBFM or concessions within and outside selected reserves, an enterprise-based approaches for poverty reduction, smallholder/private tree-growing, woodfuel-energy conserving technologies, improved electricity supply and agricultural productivity.

  1. The forbidden fuel. Charcoal, urban woodfuel demand and supply dynamics, community forest management and woodfuel policy in Malawi

    Energy Technology Data Exchange (ETDEWEB)

    Zulu, Leo Charles [Michigan State University, Department of Geography, 103 Geography Building, East Lansing, MI 48823 (United States)

    2010-07-15

    This article examines woodfuel policy challenges and opportunities in Malawi two decades after woodfuel-crisis narratives and counter-narratives. A nuanced examination of woodfuel supply, demand, use, and markets illuminated options to turn stagnant policies based on charcoal 'bans' and fuel-substitution into proactive, realistic ones acknowledging woodfuel dominance and its socio-economic importance. Findings revealed growing, spatially differentiated woodfuel deficits in southern and central Malawi and around Blantyre, Zomba and Lilongwe cities. Poverty, limited electricity access, reliability and generation exacerbated by tariff subsidies, and complex fuel-allocation decisions restricted energy-ladder transitions from woodfuels to electricity, producing an enduring urban-energy mix dominated by charcoal, thereby increasing wood consumption. Diverse socio-political interests prevented lifting of the charcoal 'ban' despite progressive forest laws. Despite implementation challenges, lessons already learnt, efficiency and poverty-reduction arguments, limited government capacity, growing illegal production of charcoal in forest reserves, and its staying power, make targeted community-based forest management (CBFM) approaches more practical for regulated, commercial production of woodfuels than the status quo. New differentiated policies should include commercial woodfuel production and licensing for revenue and ecological sustainability under CBFM or concessions within and outside selected reserves, an enterprise-based approaches for poverty reduction, smallholder/private tree-growing, woodfuel-energy conserving technologies, improved electricity supply and agricultural productivity. (author)

  2. The forbidden fuel: Charcoal, urban woodfuel demand and supply dynamics, community forest management and woodfuel policy in Malawi

    Energy Technology Data Exchange (ETDEWEB)

    Zulu, Leo Charles, E-mail: zulu@msu.ed [Michigan State University, Department of Geography, 103 Geography Building, East Lansing, MI 48823 (United States)

    2010-07-15

    This article examines woodfuel policy challenges and opportunities in Malawi two decades after woodfuel-crisis narratives and counter-narratives. A nuanced examination of woodfuel supply, demand, use, and markets illuminated options to turn stagnant policies based on charcoal 'bans' and fuel-substitution into proactive, realistic ones acknowledging woodfuel dominance and its socio-economic importance. Findings revealed growing, spatially differentiated woodfuel deficits in southern and central Malawi and around Blantyre, Zomba and Lilongwe cities. Poverty, limited electricity access, reliability and generation exacerbated by tariff subsidies, and complex fuel-allocation decisions restricted energy-ladder transitions from woodfuels to electricity, producing an enduring urban-energy mix dominated by charcoal, thereby increasing wood consumption. Diverse socio-political interests prevented lifting of the charcoal 'ban' despite progressive forest laws. Despite implementation challenges, lessons already learnt, efficiency and poverty-reduction arguments, limited government capacity, growing illegal production of charcoal in forest reserves, and its staying power, make targeted community-based forest management (CBFM) approaches more practical for regulated, commercial production of woodfuels than the status quo. New differentiated policies should include commercial woodfuel production and licensing for revenue and ecological sustainability under CBFM or concessions within and outside selected reserves, an enterprise-based approaches for poverty reduction, smallholder/private tree-growing, woodfuel-energy conserving technologies, improved electricity supply and agricultural productivity.

  3. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.

    Science.gov (United States)

    Singh, Satbir; Bajaj, Bijender Kumar

    2016-10-02

    Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728 U ml(-1)), which was followed by gram husk (714 U ml(-1)), mustard cake (680 U ml(-1)), and soybean meal (653 U ml(-1)). Plackett-Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020 U ml(-1)). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.

  4. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.

    Science.gov (United States)

    Li, Kecheng; Liu, Song; Xing, Ronge; Yu, Huahua; Qin, Yukun; Li, Pengcheng

    2015-05-20

    This study describes liquid phase adsorption characteristics of inulin-type fructan onto activated charcoal. Batch mode experiments were conducted to study the effects of pH, contact time, temperature and initial concentration of inulin. Nearly neutral solution (pH 6-8) was favorable to the adsorption and the equilibrium was attained after 40 min with the maximum adsorption Qmax 0.182 g/g (adsorbate/adsorbent) at 298 K. The experimental data analysis indicated that the adsorption process fitted well with the pseudo-second-order kinetic model (R(2) = 1) and Langmuir isotherms model (R(2) > 0.99). Thermodynamic parameters revealed that the adsorption process was spontaneous and exothermic with a physical nature. Inulin desorption could reach 95.9% using 50% ethanol solution and activated charcoal could be reused without significant losses in adsorption capacity. These results are of practical significance for the application of activated charcoal in the production and purification of inulin-type fructan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  6. Industrial scale production of stable isotopes employing the technique of plasma separation

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Bigelow, T.S.; Tarallo, F.J.

    2003-01-01

    Calutrons, centrifuges, diffusion and distillation processes are some of the devices and techniques that have been employed to produce substantial quantities of enriched stable isotopes. Nevertheless, the availability of enriched isotopes in sufficient quantities for industrial applications remains very restricted. Industries such as those involved with medicine, semiconductors, nuclear fuel, propulsion, and national defense have identified the potential need for various enriched isotopes in large quantities. Economically producing most enriched (non-gaseous) isotopes in sufficient quantities has so far eluded commercial producers. The plasma separation process is a commercial technique now available for producing large quantities of a wide range of enriched isotopes. Until recently, this technique has mainly been explored with small-scale ('proof-of-principle') devices that have been built and operated at research institutes. The new Theragenics TM facility at Oak Ridge, TN houses the only existing commercial scale PSP system. This device, which successfully operated in the 1980's, has recently been re-commissioned and is planned to be used to produce a variety of isotopes. Progress and the capabilities of this device and it's potential for impacting the world's supply of stable isotopes in the future is summarized. This technique now holds promise of being able to open the door to allowing new and exciting applications of these isotopes in the future. (author)

  7. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.

    Science.gov (United States)

    Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves

    2017-08-10

    To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Volatile compounds and odor preferences of ground beef added with garlic and red wine, and irradiated with charcoal pack

    Science.gov (United States)

    Lee, Kyung Haeng; Yun, Hyejeong; Lee, Ju Woon; Ahn, Dong Uk; Lee, Eun Joo; Jo, Cheorun

    2012-08-01

    Irradiation is the most efficient non-thermal technology for improving hygienic quality and extending the shelf-life of food products. One of the adverse effects of food irradiation, however, is off-flavor production, which significantly affects the sensory preferences for certain foods. In this study, garlic (5%, w/w) and red wine (1:1, w/w) were added to ground beef to increase the radiation sensitivity of pathogens and improve meat odor/flavor. Samples were irradiated at 0 or 5 kGy in the presence of charcoal pack. SPME-GC-MS analysis was performed to measure the changes in the volatile compounds and sensory characteristics of the samples. The amount of total volatile compounds produced from ground beef was greater when the sample was irradiated. When garlic and red wine were added to the ground beef, the amount of volatile compounds significantly increased, and the amount of volatile compounds increased even further after irradiation. However, when the samples were irradiated with charcoal pack, the amount of volatile compounds decreased significantly. Sensory evaluation indicated that charcoal pack significantly increased the odor preferences for both irradiated and non-irradiated ground beef added with garlic. These results indicated that addition of charcoal pack to ground beef could reduce off-odor problems induced by irradiation, and this effect was consistent even when certain additives such as garlic and red wine were added.

  9. Penelitian Pembuatan Arang Bambu (Bamboo Charcoal pda Suhu Rendah untuk Produk Kerajinan

    Directory of Open Access Journals (Sweden)

    Dwi Suheryanto

    2016-04-01

    C, which are made from barrel with 35 cm of diameters. There are 3 tipes of bamboo used in this research, namely: Cendani, Petung, and Legi Bamboo, also semi-finished bamboo products. The procedures are: material preparation (cutting and selection, drying, and measurement of initial water content, charcoal formation process, observation of the process and success rate identification. The objective of this research is for to know the influence the factor of a charcoal formation process at low and medium temperature From the measurement, the initial water content of those 3 tipes of bamboo is under 15%. Meanwhile, from the observation and identification, it obtained that in the charcoal formation process using Furnace Tipe-1, the average highest  temperatures reached is 107,4°C during 5 hours, with success rate between 60% - 90%, or 73 in average. In Furnace Tipe-2, the average highest temperature is 112,8°C during 3,5 hours, with success rate between 50% - 90% or 81% in average. Keywords: bamboo charcoal (bamboo charcoal, charcoal formation process, temperature, furnace 

  10. The use of chitosan as bioadhesive and its property improvement by radiation treatment for water-stable shrimp feed production

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Nguyen Duy; Hung, Nguyen Manh; Quynh, Tran Minh; Diep, Tran Bang; Binh, Nguen Van [Vietnam Atomic Energy Commission, Institute for Nuclear Science and Techniques, Caugiay, Hanoi (Viet Nam); Dung, Vu [Ministry of Fisheries, Research Institute of Marine Product, Haiphong (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Among marine polysaccharides, only chitosan with small content in feed (0.48-0.75%) could be selected to prepare shrimp feed-pellet having so high water-stability that meet the Standard of Vietnam Ministry of Fisheries 28-TCN 102/1997. Solid-state radiation treatment of chitosan with dose ranging from 10 to 200 kGy not only increased its solubility in solvents of dilute acid, but also improved the water-stability of feed-pellet product. Radiation treatment at sterilization doses (20-40 kGy) was evaluated as the most practical technology because irradiated chitosan with reduced content of 0.34% has capacity to be prepared feed-pellets stable as comparable to imported products. Results from feeding trials shown that chitosan containing feed did not affect the growth response and feed utilization efficiency such as weight gain (WG), feed conversion ratio (FCR) and productivity at harvest. (author)

  11. Antibiotics-free stable polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria.

    Science.gov (United States)

    Akiyama, Hideo; Okuhata, Hiroshi; Onizuka, Takuo; Kanai, Shozo; Hirano, Masahiko; Tanaka, Satoshi; Sasaki, Ken; Miyasaka, Hitoshi

    2011-12-01

    A practical antibiotics-free plasmid expression system in cyanobacteria was developed by using the complementation of cyanobacterial recA null mutation with the EscherichiacolirecA gene on the plasmid. This system was applied to the production of polyhydroxyalkanoate (PHA), a biodegradable plastic, and the transgenic cyanobacteria stably maintained the pha genes for PHA production in the antibiotics-free medium, and accumulated up to 52% cell dry weight of PHA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. COMBUSTION OF BIOMASS AND CHARCOAL MADE FROM BABASSU NUTSHELL

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2017-03-01

    Full Text Available In recent years, studies have examined the use of lignocellulosic wastes for energy generation. However, there is a lack of information on the combustibility of the residual biomass, especially the bark and charcoal of babassu nut. In this study, thermogravimetric analysis (TGA, differential thermal analysis (DTA and differential scanning calorimetry (DSC were used to achieve the following objectives: to evaluate the combustion of the residual biomass from the babassu nut; to evaluate the combustion of charcoal produced from this biomass, considering different final carbonization temperatures; and to determine the effect of the final carbonization temperature on the thermal stability of charcoal and on its performance in combustion. Thermal analyses were performed in synthetic air. In order to evaluate the characteristics of charcoal combustion and fresh biomass, the ignition temperature (Ti, the burnout temperature (Tf, characteristic combustion index (S, ignition index (Di, time corresponding to the maximum combustion rate (tp, and ignition time (tig were considered. The combustion of the babassu nutshell occurred in three phases and it was observed that this lignocellulosic material is suitable for the direct generation of heat. The increase in the final carbonization temperature caused an increase in the ignition temperature, as well as in the burnout temperature, the ignition time and the time corresponding to the maximum combustion rate. The results indicate that the increase in the carbonization temperature causes a decrease in combustion reactivity and, consequently, the charcoals produced at lower temperatures are easier to ignite and exhibit better performance in ignition.

  13. Stable acetate production in extreme-thermophilic (70°C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    Science.gov (United States)

    Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.

    2014-06-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.

  14. Liquid phase mass production of air-stable black phosphorus/phospholipids nanocomposite with ultralow tunneling barrier

    Science.gov (United States)

    Zhang, Qiankun; Liu, Yinan; Lai, Jiawei; Qi, Shaomian; An, Chunhua; Lu, Yao; Duan, Xuexin; Pang, Wei; Zhang, Daihua; Sun, Dong; Chen, Jian-Hao; Liu, Jing

    2018-04-01

    Few-layer black phosphorus (FLBP), a recently discovered two-dimensional semiconductor, has attracted substantial attention in the scientific and technical communities due to its great potential in electronic and optoelectronic applications. However, reactivity of FLBP flakes with ambient species limits its direct applications. Among various methods to passivate FLBP in ambient environment, nanocomposites mixing FLBP flakes with stable matrix may be one of the most promising approaches for industry applications. Here, we report a simple one-step procedure to mass produce air-stable FLBP/phospholipids nanocomposite in liquid phase. The resultant nanocomposite is found to have ultralow tunneling barrier for charge carriers which can be described by an Efros-Shklovskii variable range hopping mechanism. Devices made from such mass-produced FLBP/phospholipids nanocomposite show highly stable electrical conductivity and opto-electrical response in ambient conditions, indicating its promising applications in both electronic and optoelectronic applications. This method could also be generalized to the mass production of nanocomposites consisting of other air-sensitive 2D materials, such as FeSe, NbSe2, WTe2, etc.

  15. Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Natsui, Keisuke; Iwakawa, Hitomi; Ikemiya, Norihito [Department of Chemistry, Keio University, Yokohama (Japan); Nakata, Kazuya [Photocatalysis International Research Center, Tokyo University of Science, Chiba (Japan); Einaga, Yasuaki [Department of Chemistry, Keio University, Yokohama (Japan); JST-ACCEL, Yokohama (Japan)

    2018-03-01

    High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO{sub 2}). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO{sub 2} to HCOOH was investigated in a flow cell using boron-doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m{sup -2} s{sup -1} at a current density of 15 mA cm{sup -2} with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes.

    Science.gov (United States)

    Natsui, Keisuke; Iwakawa, Hitomi; Ikemiya, Norihito; Nakata, Kazuya; Einaga, Yasuaki

    2018-03-01

    High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO 2 ). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO 2 to HCOOH was investigated in a flow cell using boron-doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m -2  s -1 at a current density of 15 mA cm -2 with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development and quality characteristics of shelf-stable soy-agushie: a residual by-product of soymilk production.

    Science.gov (United States)

    Nti, Christina A; Plahar, Wisdom A; Annan, Nana T

    2016-03-01

    A process was developed for the production of a high-protein food ingredient, soy-agushie, from the residual by-product of soymilk production. The product, with a moisture content of about 6%, was evaluated for its quality characteristics and performance in traditional dishes. The protein content was about 26% with similar amino acids content as that of the whole soybean. Lysine remained high in the dehydrated product (6.57 g/16 g N). While over 60% of the original B vitamins content in the beans was extracted with the milk, high proportions of the minerals were found to be retained in the residual by-product. The process adequately reduced the trypsin inhibitor levels in the beans from 25 to 1.5 mg/g. High sensory scores were obtained for recipes developed with soy-agushie in traditional dishes. The scope of utilization of the soy-agushie could be widened to include several traditional foods and bakery products for maximum nutritional benefits.

  18. Stable carbon isotope analysis (δ13C values) of polybrominated diphenyl ethers and their UV-transformation products

    International Nuclear Information System (INIS)

    Rosenfelder, Natalie; Bendig, Paul; Vetter, Walter

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are frequently detected in food and environmental samples. We used compound specific isotope analysis to determine the δ 13 C values of individual PBDEs in two technical mixtures. Within the same technical product (DE-71 or DE-79), BDE congeners were the more depleted in 13 C the higher brominated they were. In contrast, the products of light-induced hydrodebromination of BDE 47 and technical DE-79 were more enriched in 13 C because of more stable bonds between 13 C and bromine. As a result, the δ 13 C values of the irradiated solution progressed diametrically compared to those of the technical synthesis. The ratio of the δ 13 C values of BDE 47 to BDE 99 and of BDE 99 to BDE 153 are thus suggested as indicators to distinguish native technical products from transformation products. Ratios 1) is typical of transformation products. - Highlights: → δ 13 C values of PBDEs were determined by means of compound specific isotope analysis. → PBDEs in technical mixtures were the more depleted in 13 C the higher they were brominated. → Solutions of individual PBDEs and technical PBDE mixtures were irradiated by UV light. → δ 13 C values of irradiated PBDEs and technical PBDEs progressed diametrically. → Ratios of the δ 13 C values were used to distinguish native from transformed PBDEs. - Diametrically progressing δ 13 C values in technical mixtures and UV-transformation products of DE-79 may be useful for source appointment of PBDEs in environmental samples

  19. Unbiased Spontaneous Solar Fuel Production using Stable LaFeO3 Photoelectrode.

    Science.gov (United States)

    Pawar, Govinder S; Tahir, Asif A

    2018-02-22

    Photoelectrochemical (PEC) water splitting to produce solar fuel (hydrogen) has long been considered as the Holy Grail to a carbon-free hydrogen economy. The PEC concept to produce solar fuel is to emulate the natural photosynthesis using man made materials. The bottle-neck in realising the concept practically has been the difficulty in identifying stable low-cost semiconductors that meet the thermodynamic and kinetic criteria for photoelectrolysis. We have fabricated a novel p-type LaFeO 3 photoelectrode using an inexpensive and scalable spray pyrolysis method. Our nanostructured LaFeO 3 photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied. Moreover, the photoelectrode has a faradaic efficiency of 30% and showed excellent stability over 21 hours. From optical and impedance data, the constructed band diagram showed that LaFeO 3 can straddle the water redox potential with the conduction band at -1.11 V above the reduction potential of hydrogen. We have fabricated a low cost LaFeO 3 photoelectrode that can spontaneously produce hydrogen from water using sunlight, making it a strong future candidate for renewable hydrogen generation.

  20. Performance improvements on passive activated charcoal 222Rn samplers

    International Nuclear Information System (INIS)

    Wei Suxia

    1996-01-01

    Improvements have been made on passive activated charcoal 222 Rn samplers with sintered metal filters. Based on the samplers of good adaptability to temperature and humidity developed before, better charcoal was selected to further improve their performance in radon absorption ability and moisture-resistance. And charcoal quantity in samplers was strictly controlled. The integration time constant of the improved samplers was about 4.3 days. As the sampler was combined with gamma spectrometer to measure radon concentration, the calibration factor was 0.518 min -1 ·Bq -1 ·m 3 for samplers of 7 days exposure time, and the minimum detectable concentration 0.28 Bq·m -3 if counting time for both background and sample is 1000 minutes. The improved samplers are suited to accurately determine the indoor and outdoor average radon concentration under conditions of great variation in temperature and humidity

  1. Generation of Triple-Transgenic Forsythia Cell Cultures as a Platform for the Efficient, Stable, and Sustainable Production of Lignans.

    Science.gov (United States)

    Murata, Jun; Matsumoto, Erika; Morimoto, Kinuyo; Koyama, Tomotsugu; Satake, Honoo

    2015-01-01

    Sesamin is a furofuran lignan biosynthesized from the precursor lignan pinoresinol specifically in sesame seeds. This lignan is shown to exhibit anti-hypertensive activity, protect the liver from damages by ethanol and lipid oxidation, and reduce lung tumor growth. Despite rapidly elevating demand, plant sources of lignans are frequently limited because of the high cost of locating and collecting plants. Indeed, the acquisition of sesamin exclusively depends on the conventional extraction of particular Sesamum seeds. In this study, we have created the efficient, stable and sustainable sesamin production system using triple-transgenic Forsythia koreana cell suspension cultures, U18i-CPi-Fk. These transgenic cell cultures were generated by stably introducing an RNAi sequence against the pinoresinol-glucosylating enzyme, UGT71A18, into existing CPi-Fk cells, which had been created by introducing Sesamum indicum sesamin synthase (CYP81Q1) and an RNA interference (RNAi) sequence against pinoresinol/lariciresinol reductase (PLR) into F. koreanna cells. Compared to its transgenic prototype, U18i-CPi-Fk displayed 5-fold higher production of pinoresinol aglycone and 1.4-fold higher production of sesamin, respectively, while the wildtype cannot produce sesamin due to a lack of any intrinsic sesamin synthase. Moreover, red LED irradiation of U18i-CPi-Fk specifically resulted in 3.0-fold greater production in both pinoresinol aglycone and sesamin than production of these lignans under the dark condition, whereas pinoresinol production was decreased in the wildtype under red LED. Moreover, we developed a procedure for sodium alginate-based long-term storage of U18i-CPi-Fk in liquid nitrogen. Production of sesamin in U18i-CPi-Fk re-thawed after six-month cryopreservation was equivalent to that of non-cryopreserved U18i-CPi-Fk. These data warrant on-demand production of sesamin anytime and anywhere. Collectively, the present study provides evidence that U18i-CP-Fk is an

  2. Generation of Triple-Transgenic Forsythia Cell Cultures as a Platform for the Efficient, Stable, and Sustainable Production of Lignans.

    Directory of Open Access Journals (Sweden)

    Jun Murata

    Full Text Available Sesamin is a furofuran lignan biosynthesized from the precursor lignan pinoresinol specifically in sesame seeds. This lignan is shown to exhibit anti-hypertensive activity, protect the liver from damages by ethanol and lipid oxidation, and reduce lung tumor growth. Despite rapidly elevating demand, plant sources of lignans are frequently limited because of the high cost of locating and collecting plants. Indeed, the acquisition of sesamin exclusively depends on the conventional extraction of particular Sesamum seeds. In this study, we have created the efficient, stable and sustainable sesamin production system using triple-transgenic Forsythia koreana cell suspension cultures, U18i-CPi-Fk. These transgenic cell cultures were generated by stably introducing an RNAi sequence against the pinoresinol-glucosylating enzyme, UGT71A18, into existing CPi-Fk cells, which had been created by introducing Sesamum indicum sesamin synthase (CYP81Q1 and an RNA interference (RNAi sequence against pinoresinol/lariciresinol reductase (PLR into F. koreanna cells. Compared to its transgenic prototype, U18i-CPi-Fk displayed 5-fold higher production of pinoresinol aglycone and 1.4-fold higher production of sesamin, respectively, while the wildtype cannot produce sesamin due to a lack of any intrinsic sesamin synthase. Moreover, red LED irradiation of U18i-CPi-Fk specifically resulted in 3.0-fold greater production in both pinoresinol aglycone and sesamin than production of these lignans under the dark condition, whereas pinoresinol production was decreased in the wildtype under red LED. Moreover, we developed a procedure for sodium alginate-based long-term storage of U18i-CPi-Fk in liquid nitrogen. Production of sesamin in U18i-CPi-Fk re-thawed after six-month cryopreservation was equivalent to that of non-cryopreserved U18i-CPi-Fk. These data warrant on-demand production of sesamin anytime and anywhere. Collectively, the present study provides evidence that U18i

  3. Enhanced Production and Characterization of a Solvent Stable Amylase from Solvent Tolerant Bacillus tequilensis RG-01: Thermostable and Surfactant Resistant

    Directory of Open Access Journals (Sweden)

    Soni Tiwari

    2014-01-01

    Full Text Available Ten bacterial strains isolated from the soil samples in the presence of cyclohexane were screened for amylase production. Among them, culture RG-01 was adjudged as the best amylase producer and was identified as Bacillus tequilensis from MTCC, Chandigarh. The isolate showed maximum amylase production (8100 U/mL in the presence of starch, peptone, and Ca2+ ions at 55°C pH 7.0 within 24 h of incubation. The enzyme was stable in the presence of n-dodecane, isooctane, n-decane, xylene, toluene, n-hexane, n-butanol, and cyclohexane, respectively. The presence of benzene, methanol, and ethanol marginally reduced the amylase stability, respectively. The enzyme was showed it 100% activity at 55°C and pH 7.0 with 119% and 127% stability at 55°C and pH 7.0, respectively. The enzyme was also stable in the presence of SDS, Tween-40, Tween-60, and Tween-80 (1% and was found stimulatory effect, respectively. Only Triton-X-100 showed a moderate inhibitory effect (5% on amylase activity. This isolate (Bacillus tequilensis RG-01 may be useful in several industrial applications owing to its thermotolerant and organic solvents and surfactants resistance characteristics.

  4. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste.

    Science.gov (United States)

    Bhange, Khushboo; Chaturvedi, Venkatesh; Bhatt, Renu

    2016-06-01

    The present study is an attempt to optimize simultaneous production of keratinolytic protease, amylase and biosurfactant from feather meal, potato peel and rape seed cake in a single media by response surface methodology to evaluate their biochemical properties for detergent additive. The optimization was carried out using 20 run, 3 factor and 5-level of central composite design on design expert software which resulted in a 1.2, 0.84 and 2.28 fold increase in protease, amylase and biosurfactant production. The proteolytic activity was found to be optimum at pH 9.0 and 60 °C while optimum amylolytic activity was recorded at pH 6.0 and 70 °C respectively. Both enzymes were found to be stable in the presence of organic solvents, ionic and commercial detergent and oxidizing agents. The biosurfactant was extracted with chloroform and was found to be stable at varying pH and temperature; however a reduction in the activity was observed at temperature higher than 70 °C. The isolated enzymes and biosurfactants may find applications in the effective removal of stains.

  5. Adsorption Properties and Potential Applications of Bamboo Charcoal: A Review

    Directory of Open Access Journals (Sweden)

    Isa S.S.M.

    2016-01-01

    Full Text Available Bamboo charcoal was produced by pyrolysis or carbonization process with extraordinary properties such as high conductivity, large surface area and adsorption property. These properties can be improved by activation process that can be done thermally or chemically. In this paper, carbonization and activation process of bamboo, its structural and adsorption properties will be presented. Herein, the adsorption properties of bamboo charcoal that has fully utilized in solar cell as the electrode, adsorbent for water purification and electromagnetic wave absorber are reviewed.

  6. Surface changes of enamel after brushing with charcoal toothpaste

    Science.gov (United States)

    Pertiwi, U. I.; Eriwati, Y. K.; Irawan, B.

    2017-08-01

    The aim of this study was to determine the surface roughness changes of tooth enamel after brushing with charcoal toothpaste. Thirty specimens were brushed using distilled water (the first group), Strong® Formula toothpaste (the second group), and Charcoal® Formula toothpaste for four minutes and 40 seconds (equivalent to one month) and for 14 minutes (equivalent to three months) using a soft fleece toothbrush with a mass of 150 gr. The roughness was measured using a surface roughness tester, and the results were tested with repeated ANOVA test and one-way ANOVA. The value of the surface roughness of tooth enamel was significantly different (penamel.

  7. Stable and High Ajmalicine or Serpentine Production of Gamma Radiation Induction Mutant Catharantus Roseus

    International Nuclear Information System (INIS)

    Sumaryati Syukur

    2004-01-01

    Catharantus roseus Mutant have been selected by gamma irradiation with 20 krad doses of radiation and characterized as biochemical mutant with anti-feed back inhibition mechanism of tritophan decarboxylase (TDR) enzyme in biosynthetic path way of indole alkaloid. Production of indole alkaloid mainly ajmalicine with high economical values as a pharmaceutical drug for heart attack have been studied by using cell suspension cultures with several variation of medium, elicitors and stress osmosis. This treatment produced variation of indole alkaloid ajmalicine and serpentine. Several induction methods using Murashige and Skoog (MS) medium and polyethylene glycol PEG (6000) 1 to 7%, with hormones concentration of 2,4-D and kinetin as (10 : 1), showed optimal results of ajmalicine range between 20 and 50 nmol/gFW, and serpentine 10 to 60 nmol/gFW. This production increases ten time in mutant (20 Krad) by stress osmotic condition and performed long term stability in culture without subculture. In this paper explanation in detail about the selection methods, stability of mutant and the production of indole alkaloid ajmalicine and serpentine during growth phase, such as adaptation, log, and stationar in suspention culture of mutan cells. (author)

  8. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts

    International Nuclear Information System (INIS)

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Liu, Changye; Yan, Beibei

    2015-01-01

    Highlights: • Novel heterogeneous animal bone-based catalysts were developed. • The optimum catalyst is 30K/HAP-600. • Maximum biodiesel yield of 96.4% was achieved using the novel catalyst. • The novel catalyst can achieve a desirable recyclability. • Little deactivation was found due to K + ions leaching to the product. - Abstract: In the present study, calcined waste pig bone (CB, a solid waste from animal) derived hydroxyapatite (HAP) was served as the support for K 2 CO 3 to prepare a cost-effective solid base catalyst for biodiesel production. The catalysts were characterized by XRD, FTIR, SEM–EDS, N 2 adsorption–desorption and the Hammett indicator method. The effects of catalyst preparation conditions (such as the loading of K 2 CO 3 on the CB and the calcination temperature), reaction conditions (such as reaction time, methanol/oil molar ratio and catalyst loading) and the catalyst reusability were studied in detail. The experimental results revealed that the highest biodiesel yield of 96.4% was obtained using the 30K/HAP-600 catalyst under the optimum reaction condition (reaction time of 1.5 h, catalyst loading of 8 wt.% and methanol/oil molar ratio of 9:1) due to its highest total basicity. Moreover, after reused for more than 8 cycles, the catalyst can still possess a rather high biodiesel yield (above 90%). A little deactivation was found due to K + ions leaching to the product

  9. Optimizing cropland cover for stable food production in Sub-Saharan Africa using simulated yield and Modern Portfolio Theory

    Science.gov (United States)

    Bodin, P.; Olin, S.; Pugh, T. A. M.; Arneth, A.

    2014-12-01

    Food security can be defined as stable access to food of good nutritional quality. In Sub Saharan Africa access to food is strongly linked to local food production and the capacity to generate enough calories to sustain the local population. Therefore it is important in these regions to generate not only sufficiently high yields but also to reduce interannual variability in food production. Traditionally, climate impact simulation studies have focused on factors that underlie maximum productivity ignoring the variability in yield. By using Modern Portfolio Theory, a method stemming from economics, we here calculate optimum current and future crop selection that maintain current yield while minimizing variance, vs. maintaining variance while maximizing yield. Based on simulated yield using the LPJ-GUESS dynamic vegetation model, the results show that current cropland distribution for many crops is close to these optimum distributions. Even so, the optimizations displayed substantial potential to either increase food production and/or to decrease its variance regionally. Our approach can also be seen as a method to create future scenarios for the sown areas of crops in regions where local food production is important for food security.

  10. Determination of burnup in irradiated nuclear fuels by the method of stable 148Nd fission products

    International Nuclear Information System (INIS)

    Souza Sarkis, J.E. de.

    1982-01-01

    A method is described for the isotopic analysis and determination of burnup in irradiated nuclear fuel by mass spectrometric technique. The burnup is calculed from the determination of the concentration of uranium, plutonium and the fission product 148 Nd in the samples of UO 2 irradiated fuel from a P.W.R. type reactor. The method involves the separation of fractions of uranium, plutonium and neodimium from the dissolved irradiated fuel by ion exchange technique. The determination of uranium, plutonium and the fission product 148 Nd is carried out by isotope diluition mass spectrometry technique using as isotope tracers the nuclides 233 U, 242 Pu and 150 Nd. For the chemical processing and handling of the irradiated sample a Hot Chemistry Laboratory was mounted. It consists of glove boxes and equipments for radiation monitoring and protection. The results obtained indicate an atom percent burnup of 2.181 + - 0.035% wich corresponds an 20.937 + - 0.739 Gwd/ton of thermal energy produced. (Author) [pt

  11. Stable carbon isotopes in high-productive littoral areas of Lake Constance

    International Nuclear Information System (INIS)

    Chondrogianni, C.

    1992-01-01

    The investigation attempted to extend understanding of C fractionation in aquatic systems and to facilitate the interpretation of palaeolimnological isotope data. Particular interest was taken in the aspect of bicarbonate assimilation at high productivity and in the exchange processes between water and atmosphere. Littoral areas of lakes were chosen as areas of investigation as they offer a high-productivity environment with large populations of submersed macrophytes and periphytes. To get a better picture of the factors influencing C fractionation, litteral and pellagial regions were compared on the one hand and a mesotrophic (Ueberlingersee) and a eutrophic (Gnadensee) lake section on the other hand. Further factors of differentiation between the two lake parts were: Volume, the proportional share of the litteral area, and water exchange. Two main fields of interest were investigated: - Determination of the C isotope ratio (δ 13 C) in the dissolved bicarbonate of water in the sediments of a single year for the purpose of calibrating its fractionation in the basis of the present chemical and physical status of the lake water (water programme). - Determination of δ 13 C in selected carbonate components from sedimentary cores in order to find out about palaeolimnological events in the areas of investigation (sediment programme). (orig.) [de

  12. Quality of charcoal produced using micro gasification and how the new cook stove works in rural Kenya

    Science.gov (United States)

    Njenga, Mary; Mahmoud, Yahia; Mendum, Ruth; Iiyama, Muyiki; Jamnadass, Ramni; Roing de Nowina, Kristina; Sundberg, Cecilia

    2016-09-01

    Wood based energy is the main source of cooking and heating fuel in Sub-Saharan Africa. Its use rises as the population increases. Inefficient cook stoves result in fuel wastage and health issues associated with smoke in the kitchen. As users are poor women, they tend not to be consulted on cook stove development, hence the need for participatory development of efficient woodfuel cooking systems. This paper presents the findings of a study carried out in Embu, Kenya to assess energy use efficiency and concentrations of carbon monoxide and fine particulate matter from charcoal produced using gasifier cook stoves, compared to conventional wood charcoal. Charcoal made from Grevillea robusta prunings, Zea mays cob (maize cob) and Cocos nucifera (coconut shells) had calorific values of 26.5 kJ g-1, 28.7 kJ g-1 and 31.7 kJ g-1 respectively, which are comparable to conventional wood charcoal with calorific values of 33.1 kJ g-1. Cooking with firewood in a gasifier cook stove and use of the resultant charcoal as by-product to cook another meal in a conventional charcoal stove saved 41% of the amount of fuel compared to cooking with firewood in the traditional three stone open fire. Cooking with firewood based on G. robusta prunings in the traditional open fire resulted in a concentration of fine particulate matter of 2600 μg m-3, which is more than 100 times greater than from cooking with charcoal made from G. robusta prunings in a gasifier. Thirty five percent of households used the gasifier for cooking dinner and lunch, and cooks preferred using it for food that took a short time to prepare. Although the gasifier cook stove is energy and emission efficient there is a need for it to be developed further to better suit local cooking preferences. The energy transition in Africa will have to include cleaner and more sustainable wood based cooking systems.

  13. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system

    KAUST Repository

    Lu, Xuefei

    2016-08-22

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through evaporation would improve the management of increasingly limited water resources. In this study, we examined the partitioning of evapotranspiration (ET) over a field of forage sorghum (Sorghum bicolor), which was under evaluation as a potential biofuel feedstock, based on isotope measurements of three irrigation cycles at the vegetative stage. This study employed customized transparent chambers coupled with a laser-based isotope analyzer to continuously measure near-surface variations in the stable isotopic composition of evaporation (E, δ), transpiration (T, δ) and ET (δ) to partition the total water flux. Due to the extreme heat and aridity, δ and δ were very similar, which makes this system highly unusual. Contrary to an expectation that the isotopic signatures of T, E, and ET would become increasingly enriched as soils became drier, our results showed an interesting pattern that δ, δ, and δ increased initially as soil water was depleted following irrigation, but decreased with further soil drying in mid to late irrigation cycle. These changes are likely caused by root water transport from deeper to shallower soil layers. Results indicate that about 46% of the irrigated water delivered to the crop was used as transpiration, with 54% lost as direct evaporation. This implies that 28 − 39% of the total source water was used by the crop, considering the typical 60 − 85% efficiency of flood irrigation. The stable isotope technique provided an effective means of determining surface partitioning of irrigation water in this unusually harsh production environment. The results suggest the potential to further minimize unproductive water losses in these production systems.

  14. Potency of bio-charcoal briquette from leather cassava tubers and industrial sludge

    Science.gov (United States)

    Citrasari, Nita; Pinatih, Tety A.; Kuncoro, Eko P.; Soegianto, Agoes; Salamun, Irawan, Bambang

    2017-06-01

    The purpose of this study was to determine the quality of the bio-charcoal briquette with materials from leather cassava tubers and sludge of wastewater treatment plant. The first, bio-charcoal briquette analized stability test and compressive strength. Then, bio-charcoal briquette with best value analyzed for parameter including moisture content, ash content, calorific content, and burned test. The result briquette quality based on compressive strength for bio-charcoal briquettes carbonated water content between 3.8%-4.5% and non-carbonated bio-charcoal briquettes between 5.2%-7.6%. Bio-charcoal carbonation briquette ash content was between 5.30%-7.40% and non-carbonated bio-charcoal briquettes was between 6.86%-7.46%. Bio-charcoal carbonation levels briquettes heated between 578.2 calories/g-1837.7 calories/g and non carbonatedbio-charcoal briquettes between 858.1 calories/g-891.1 calories/g. Carbonated bio-charcoal burned test was between 48-63 minutes and non-carbonated bio-charcoal was between 22-42 minutes. Emissions resulted from the bio-charcoal briquettes for carbonated and non carbonated composition according to the government regulations ESDM No. 047 of 2006 which, at 128 mg/Nm3 and 139 mg/Nm3.

  15. Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R.

    Science.gov (United States)

    Mechri, Sondes; Kriaa, Mouna; Ben Elhoul Berrouina, Mouna; Omrane Benmrad, Maroua; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bouacem, Khelifa; Bouanane-Darenfed, Amel; Chebbi, Alif; Sayadi, Sami; Chamkha, Mohamed; Bejar, Samir; Jaouadi, Bassem

    2017-08-01

    In this study, we aimed to optimize the cultural and nutritional conditions for protease production by Lysinibacillus fusiformis strain C250R in submerged fermentation process using statistical methodology. The most significant factors (gruel, wheat bran, yeast extract, and FeSO 4 ) were identified by Plackett-Burman design. Response surface methodology (RSM) was used to determine the optimum levels of the screened factors and their interaction. Under the optimized conditions, protease yield 3100U/mL was 4.5 folds higher than those obtained by the use of the initial conditions (680U/mL). Additionally, a new extracellular 51kDa-protease, designated SAPLF, was purified and biochemically characterized from strain C250R. It shows optimum activity at 70°C and pH 10. Its half-life times at 70 and 80°C were 10 and 6-h, respectively. Irreversible inhibition of enzyme activity of SAPLF with serine protease inhibitors demonstrated that it belongs to the serine protease family. Interestingly, its catalytic efficiency was higher than that of SPVP from Aeribacillus pallidus strain VP3 and Alcalase Ultra 2.5L from Bacillus licheniformis. This study demonstrated that SAPLF has a high detergent compatibility and an excellent stain removal compared to Alcalase Ultra 2.5L; which offers an interesting potential for its application in the laundry detergent industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fabrication and characterization of rice husk charcoal bio briquettes

    Science.gov (United States)

    Suryaningsih, S.; Nurhilal, O.; Yuliah, Y.; Salsabila, E.

    2018-02-01

    Rice husk is the outermost part of the rice seed which is a hard layer and a waste material from rice milling. Rice husk includes biomass that can be exploited for various requirements such as industrial raw materials as well as energy sources or fuel but only a small group of people use it. This research is conducted utilizing the rice husk as an alternative fuel by making it as a charcoal briquette. To make the treatment easy, firstly the rice husk biomass was converted into charcoal powder by carbonization method using two kinds of furnace which have different heating behavior. The best carbonization results are obtained from the furnace, which has a constant temperature heating behavior. The process of making briquettes is prepared by adding tapioca starch of 6% concentration by weight as charcoal adhesive and then printed with the aid of pressing tools using loads at 1,000 kg/cm2. The resulting briquette has a calorific value about 3.126 cal/g, mass density is 0.86 g/cm3 and compressive strength is about 2.02 kg/cm2, so that the bio-briquette of charcoal produced can be used as alternative energy to replace the fossil fuel for domestic or household purposes.

  17. Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids

    NARCIS (Netherlands)

    Koelmans, A.A.; Meulman, B.; Meijer, T.; Jonker, M.T.O.

    2009-01-01

    Strong sorption to black carbon may limit the environmental risks of organic pollutants, but interactions with cosorbing humic acid (HA) may interfere. We studied the attenuative effect of HA additions on the sorption of polychlorinated biphenyls (PCBs) to a charcoal. "Intrinsic" sorption to

  18. Effect of activated charcoal, abscisic acid and polyethylene glycol on ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Generation of horse chestnut somatic embryos is commonly achieved by transferring embryo- genic tissue onto an ABA, PEG and manitol-containing maturation media (Capuana and Deberg, 1997). Activated charcoal is commonly used in tissue culture media to darken the immediate media surroundings ...

  19. Turbidity removal: Gravel and charcoal as roughing filtration media

    Directory of Open Access Journals (Sweden)

    Josiah A. Adeyemo

    2010-10-01

    Full Text Available Roughing filtration is an important pre-treatment process for wastewater, because it efficiently separates fine solid particles over prolonged periods, without the addition of chemicals. For this study, a pilot plant was designed at Delmas Coal Mine in the Mpumalanga province of South Africa. The design and sizing of the pilot plant was guided by Wegelin’s design criteria. Gravel was used as a control medium because it is one of the most commonly used roughing filter media and because it was used in developing the criteria. We compared the performance of gravel as a filter medium to that of another locally available material, charcoal, for the removal of turbidity in wastewater. The pilot plant was monitored continuously for 90 days from commissioning until the end of the project. The overall performance of the roughing filter in turbidity removal, using gravel or charcoal, was considered efficient for the pre-treatment of waste water. Charcoal performed slightly better than gravel as a filter medium for the removal of turbidity, possibly because charcoal has a slightly higher specific surface area and porosity than gravel, which could enhance sedimentation and other filtration processes, such as adsorption, respectively.

  20. Dose Determination of Activated Charcoal in Management of ...

    African Journals Online (AJOL)

    Purpose: To assess the doses of activated charcoal currently used in the management of acute amitriptyline-induced drug poisoning and explore the possibility of using lower doses. Methods: Albino male Wistar rats, weighing 200 ± 20 g, were used for the study. The animals were divided into four groups of eight animals ...

  1. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    -dependent discrimination against 202Hg relative to 198Hg. G. sulfurreducens PCA and D. desulfuricans ND132 have similar kinetic reactant/product Hg fractionation factors. Using the Hg isotope data, we showed that there are multiple intra- and/or extracellular pools provide substrate inorganic Hg for methylation.

  2. Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance

    Energy Technology Data Exchange (ETDEWEB)

    Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.; Sawakuchi, Henrique O.; Da Cunha, Alan C.; Neu, Vania; Brito, Daimio C.; Da Silva Less, Diani F.; Diniz, Joel E. M.; De Matos Valerio, Aline; Kampel, Milton; Krusche, Alex V.; Richey, Jeffrey E.

    2017-02-07

    The Amazon River outgasses nearly an equivalent amount of CO2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO2 production since the recognition of a persistent state of CO2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capable of both decomposing high amounts of organic matter at lower trophic levels, driving CO2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O218O-O2) and O2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m3 d-1 at high water and 1.02 ± 0.55 g O m3 d-1 at low water. This translates to 41 ± 24% of the rate of O2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than

  3. The ageing and poisoning of charcoal used in nuclear plant air cleaning systems

    International Nuclear Information System (INIS)

    Broadbent, D.

    1986-01-01

    Ageing and Poisoning are terms which are used to describe the in-service deterioration or weathering of activated charcoals used to remove radioiodine from air cleaning systems. This paper describes an investigation aimed at identifying the relative importance of the two effects and at comparing the resistance to weathering of potassium iodide (KI) impregnated charcoal with triethylene diamine (TEDA) impregnated charcoal. Some preliminary results are given on the rates of oxidative ageing of charcoals as a function of temperature and relative humidity. The effect on charcoal performance of organic poisons has been examined by measuring the index of performance (k-factor) of charcoals preloaded with a range of organic solvents. Finally the combined effect of oxidative ageing and organic poisoning has been measured using realistic operating conditions of temperature and relative humidity. The in-service deterioration of charcoal in air cleaning systems can be accounted for by a combination of oxidative ageing and poisoning by airborne organic solvents. (author)

  4. Reproducing the organic matter model of anthropogenic dark earth of Amazonia and testing the ecotoxicity of functionalized charcoal compounds

    Directory of Open Access Journals (Sweden)

    Carolina Rodrigues Linhares

    2012-05-01

    Full Text Available The objective of this work was to obtain organic compounds similar to the ones found in the organic matter of anthropogenic dark earth of Amazonia (ADE using a chemical functionalization procedure on activated charcoal, as well as to determine their ecotoxicity. Based on the study of the organic matter from ADE, an organic model was proposed and an attempt to reproduce it was described. Activated charcoal was oxidized with the use of sodium hypochlorite at different concentrations. Nuclear magnetic resonance was performed to verify if the spectra of the obtained products were similar to the ones of humic acids from ADE. The similarity between spectra indicated that the obtained products were polycondensed aromatic structures with carboxyl groups: a soil amendment that can contribute to soil fertility and to its sustainable use. An ecotoxicological test with Daphnia similis was performed on the more soluble fraction (fulvic acids of the produced soil amendment. Aryl chloride was formed during the synthesis of the organic compounds from activated charcoal functionalization and partially removed through a purification process. However, it is probable that some aryl chloride remained in the final product, since the ecotoxicological test indicated that the chemical functionalized soil amendment is moderately toxic.

  5. Characterization And Composition Liquid Smoke-charcoal-compost Bamboo Sawdust As Natural Pesticide

    Directory of Open Access Journals (Sweden)

    Mohammad Wijaya M

    2012-02-01

    Full Text Available The research goal is to produce liquid smoke through pyrolisis process and to get fractions of potential chemical components from bamboo wastes. Results of this research are expected to give benefits as follows: (1 Liquid smoke produced from wood and bamboo waste through pyrolisis process is able to diversify preservative products, (2 Rate reaction from value rate constanta by pyrolitic kinetic model resulted from this process can be used to find expected compounds in large quantities. Results of pyrolisis bamboo dust have the highest yield of liquid smokes as much as 18.18% in pyrolitic temperature of 200 C. The highest acid content of results of pyrolisis of bamboo dust with electrical reactor resulted at pyrolitic temperature of 400 C was 7,89%, whereas, in pyrolisis result of bamboo dust with electrical reactor was shown ar pyrolitic temperature of 500 C. In terms of the charcoal produced from pyrolisis process containing the highest yield was bamboo dust (33,28%. Identification of GC-MS of bamboo dust could provide compounds that mostly derived from acid group and was dominated by aceton, acetic acid, 3 hidroksi 2 butanone, icocyanat acid and n butana. Change kinetic model of bamboo wastes is energy activasi bamboo. The technology of integrated bamboo vinegar-charcoal-compost production hence deserved its dissemination throughout Indonesia, as pesticide natural.

  6. Biogas from mesophilic digestion of cow dung using charcoal and gelatin as additives

    Science.gov (United States)

    Islam, Md Rashedul; Salam, Bodius; Rahman, Md Mizanur; Mamun, Abdullah Al

    2017-06-01

    Biogas, a source of renewable energy is produced from bacteria in the process of biodegradation of organic matter under anaerobic conditions. A research work was performed to find out the production of biogas from cow dung using charcoal and gelatin as additives. Five laboatory scale experimental set-up were constructed using 0, 0.2, 0.4, 0.6 and 0.8% gelatin with cow dung as additive to perform the research work. For all the set-up 0.5% charcoal was also added. All the set-ups were made from 1-liter capacity conical flask. The amount of water and cow dung was used respectively 382 gm. and 318 gm. in every set-up. Total solid content was maintained 8% throughout all set-ups. The digesters were operated at ambient temperature of 26°-32°C. The total gas yield without using gelatin additive was found to be 12 L/kg cow dung. The maximum gas yield was found from 0.2% gelatin additive and 23% more as compared to without gelatin gas production. The retention time varied from 28 to 79 days for the experiments.

  7. Stratigraphic charcoal analysis on petrographic thin sections: Application to fire history in northwestern Minnesota

    Science.gov (United States)

    Clark, James S.

    1988-07-01

    Results of stratigraphic charcoal analysis from thin sections of varved lake sediments have been compared with fire scars on red pine trees in northwestern Minnesota to determine if charcoal data accurately reflect fire regimes. Pollen and opaque-spherule analyses were completed from a short core to confirm that laminations were annual over the last 350 yr. A good correspondence was found between fossil-charcoal and fire-scar data. Individual fires could be identified as specific peaks in the charcoal curves, and times of reduced fire frequency were reflected in the charcoal data. Charcoal was absent during the fire-suppression era from 1920 A.D. to the present. Distinct charcoal maxima from 1864 to 1920 occurred at times of fire within the lake catchment. Fire was less frequent during the 19th century, and charcoal was substantially less abundant. Fire was frequent from 1760 to 1815, and charcoal was abundant continuously. Fire scars and fossil charcoal indicate that fires did not occur during 1730-1750 and 1670-1700. Several fires occurred from 1640 to 1670 and 1700 to 1730. Charcoal counted from pollen preparations in the area generally do not show this changing fire regime. Simulated "sampling" of the thin-section data in a fashion comparable to pollen-slide methods suggests that sampling alone is not sufficient to account for differences between the two methods. Integrating annual charcoal values in this fashion still produced much higher resolution than the pollen-slide method, and the postfire suppression decline of charcoal characteristic of my method (but not of pollen slides) is still evident. Consideration of the differences in size of fragments counted by the two methods is necessary to explain charcoal representation in lake sediments.

  8. Stable-carbon isotope ratios for sourcing the nerve-agent precursor methylphosphonic dichloride and its products.

    Science.gov (United States)

    Moran, James J; Fraga, Carlos G; Nims, Megan K

    2018-08-15

    The ability to connect a chemical threat agent to a specific batch of a synthetic precursor can provide a fingerprint to contribute to effective forensic investigations. Stable isotope analysis can leverage intrinsic, natural isotopic variability within the molecules of a threat agent to unlock embedded chemical fingerprints in the material. Methylphosphonic dichloride (DC) is a chemical precursor to the nerve agent sarin. DC is converted to methylphosphonic difluoride (DF) as part of the sarin synthesis process. We used a suite of commercially available DC stocks to both evaluate the potential for δ 13 C analysis to be used as a fingerprinting tool in sarin-related investigations and to develop sample preparation techniques (using chemical hydrolysis) that can simplify isotopic analysis of DC and its synthetic products. We demonstrate that natural isotopic variability in DC results in at least three distinct, isotope-resolved clusters within the thirteen stocks we analyzed. Isotopic variability in the carbon feedstock (i.e., methanol) used for DC synthesis is likely inherited by the DC samples we measured. We demonstrate that the hydrolysis of DC and DF to methylphosphonic acid (MPA) can be used as a preparative step for isotopic analysis because the reaction does not impart a significant isotopic fractionation. MPA is more chemically stable, less toxic, and easier to handle than DC or DF. Further, the hydrolysis method we demonstrated can be applied to a suite of other precursors or to sarin itself, thereby providing a potentially valuable forensic tool. Copyright © 2018. Published by Elsevier B.V.

  9. Production of an {sup 15}O beam using a stable oxygen ion beam for in-beam PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Akram, E-mail: mohammadi.akram@qst.go.jp; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-21

    In advanced ion therapy, the {sup 15}O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an {sup 15}O beam by projectile fragmentation of a stable {sup 16}O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors’ group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of {sup 15}O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of {sup 15}O fragments. The highest production rate of {sup 15}O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the {sup 16}O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the {sup 15}O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the {sup 16}O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is

  10. Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging

    Science.gov (United States)

    Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga

    2017-03-01

    In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also

  11. Takano bamboo industry: The style material for the residence where bamboo charcoal was used; Takano chikuko: chikutan wo tsukatta jutakuyo choshitsuzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-30

    Takano bamboo industry sold the style material 'Takebayashi, Saga' for the residence where bamboo charcoal was used. It is said that it can get equal effect in the amount of about 1 in three minutes even if it is compared with charcoal by the thing which it made use of the nature of the bamboo charcoal which it begins to vomit if water is inhaled and it is low for if humidity is pure. A back with the bamboo charcoal 1kg is laid 6 per 1m. It is laid under the floor of the house residence and the condominium, and it can be used easily in the errand, the existent residence as well. It was the space when the air humidity was 40-90%, and indoor humidity showed the numerical value, which faced though there was a change and which became stable in 60-70% as a result of actually doing an experiment in the house residence condominium. (translated by NEDO)

  12. From Farming to Charcoal Production: Agricultural Decline, Food ...

    African Journals Online (AJOL)

    Since the mid-1980s, rural livelihoods in Tanzania have rapidly transformed and ... stagnation in agricultural technology and practises, livestock diseases, and the shift ... As the local forest resources are already depleted, and the food security ...

  13. Impact of Charcoal Production on the Sustainable Development of ...

    African Journals Online (AJOL)

    African Research Review. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 7, No 2 (2013) >. Log in or Register to get access to full text downloads.

  14. Development of charcoal retort pilot plant in Zambia. African Energy Programme research report series no. 4

    International Nuclear Information System (INIS)

    Yamba, F.D.

    1988-01-01

    The technical report discusses the theoretical and experimental work which has been undertaken in the design, construction, testing and evaluation of charcoal retort model prototypes. Optimum operating conditions have been established at an initial temperature of 350 deg. C and stabilisation time of 5 hours. From the technical point of view, the project is viable since as per set objectives, charcoal is being produced at a higher conversion efficiency of around 40% and the by-products in the form of pyroligenous liquor and tar are recovered. As expected, the analysis shows that the model is uneconomic since the technological price of the products exceeds that of the selling price of products. However, the increase in the size of the retort chamber by eighteen renders the prototype economically viable. The report also discusses further work such as continuation of the testing of the retort to establish concretely the optimum operating conditions, determination of the reliability and durability of the retort and evaluation of the quality of charcoal produced, which has been recommended. Based on the results from the retort model and preliminary financial analysis, an economic analysis on the value of by-products from wood distillation is undertaken. The analysis shows that there is a reasonable market of by-products, (acetone, methanol and acetic acid) to warrant processing of the pyroligenous liquor, and subsequent setting up of a small scale distillation plant. Using the same results from the retort model, a charcoal retort plant with a 10m 3 retort chamber capacity is designed. In the design of the retort chamber, various considerations are undertaken such as stress calculations of the retort chamber on the support legs, furnace, piping and distribution chamber design, and their associated heat losses. Basing on the amount of heat required to complete the carbonisation process and heat losses from the system, a suitable furnace size and air blower are selected

  15. ENERGY CONVERSION FROM WOODY BIOMASS STUFF: POSSIBLE MANUFACTURE OF BRIQUETTED CHARCOAL FROM SAWMILL-GENERATED SAWDUST

    Directory of Open Access Journals (Sweden)

    Han Roliadi

    2006-07-01

    Full Text Available There are three dominant kinds of wood industries in Indonesia which consume huge amount of  wood materials as well as generate considerable amount of  woody waste stuffs, i.e. sawmills, plywood, and pulp/paper. For the two latest industries, their wastes to great extent have been reutilized in the remanufacturing process, or burnt under controlled condition to supplement their energy needs in the corresponding factories, thereby greatly alleviating environmental negative impacts.  However, wastes from sawmills (especially sawdust still often pose a serious environmental threat, since they as of this occasion are merely dumped on sites, discarded to the stream, or merely burnt, hence inflicting dreadful stream as well as air pollutions. One way to remedy those inconveniences is by converting the sawdust into useful product, i.e. briquetted charcoal, as has been experimentally tried. The charcoal was at first prepared by carbonizing the sawdust wastes containing a mixture of the ones altogether from the sawing of seven particular Indonesia's wood species, and afterwards was shaped into the briquette employing various concentrations of starch binder at two levels (3.0 and 5.0 % and also various hydraulic pressures (1.0, 2.5, and 5.0 kg/cm2.  Further, the effect of those variations was examined on the yield and qualities of the resulting briquetted charcoal. The results revealed that the most satisfactory yield and qualities of the briquetted sawdustcharcoal were acquired at 3 % starch binder concentration with 5.0 kg/cm2 hydraulic pressure. As such, the briquette qualities were as follows: density at 0.60 gram/cm3, tensile strength 15.27 kg/cm2, moisture content 2.58 %, volatile matter 23.35 %, ash content 4.10 %, fixed carbon 72.55 %, and calorific value 5,426 cal/gram. Those qualities revealed that the experimented briquetted sawdust charcoal could be conveniently used as biomass-derived fuel.

  16. Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production.

    Science.gov (United States)

    Peng, Qing; Wang, Xu; Shang, Meng; Huang, Jinjin; Guan, Guohua; Li, Ying; Shi, Bo

    2014-01-04

    Lipolytic enzymes are commonly used to produce desired flavors in lipolyzed milkfat (LMF) manufacturing processes. However, the choice of enzyme is critical because it determines the final profile of fatty acids released and the consequent flavor of the product. We previously constructed a metagenomic library from marine sediments, to explore the novel enzymes which have unique properties useful in flavor-enhancing LMF. A novel lipase Est_p6 was isolated from a metagenomic library and was expressed highly in E.coli. Bioinformatic analysis indicated that Est_p6 belongs to lipolytic enzyme family IV, the molecular weight of purified Est_p6 was estimated at 36 kDa by SDS-PAGE. The hydrolytic activity of the enzyme was stable under alkaline condition and the optimal temperature was 50°C. It had a high specific activity (2500 U/mg) toward pNP butyrate (pNP-C4), with K(m) and V(max) values of 1.148 mM and 3497 μmol∙min⁻¹∙mg⁻¹, respectively. The enzyme activity was enhanced by DTT and was not significantly inhibited by PMSF, EDTA or SDS. This enzyme also showed high hydrolysis specificity for myristate (C14) and palmitate (C16). It seems that Est_p6 has safety for commercial LMF flavor production and food manufacturing processes. The ocean is a vast and largely unexplored resource for enzymes. According the outstanding alkaline-stability of Est_p6 and it produced myristic acid and palmitic acid more efficiently than other free fatty acids in lipolyzed milkfat. This novel lipase may be used to impart a distinctive and desirable flavor and odor in milkfat flavor production.

  17. Activated charcoal-alum-zeolite improve the water quality

    International Nuclear Information System (INIS)

    Saryati; Sutisna; Sumarjo; ZL, Wildan; Wahyuningsih; Suprapti, Siti

    2002-01-01

    The composite of charcoal-tawas-zeolite has been studied to improve a drinking water quality. This study was doing to find the optimum composition in preparation of a simple technology og bath and small volume drinking treatment this treatment consist of coagulation, floculation, precipitation, ion exchange and adsorption. The improvement of water quality has been observed from a turbidity, a permanganate number and a quality of Cu, Cd, Pb, Al ions and coli bactery containing in the water after processing. It has been concluded that the composite materials has an ability to decrease the turbidity more than its components. The starch addition in the composite can be accelerate water clarity process. By this composite the turbidity, the permanganate number and the coli bacteria in the water can be decreased significantly. The optimum composite composition is 1000 mg activated charcoal, 1000 mg zeolite, 60 mg tawas, 40 mg natrium bicarbonate and 50 mg starch with grains size less than 80 mesh

  18. Opportunities to enhance and interpret nutrient fluxes and imbalances in animal production systems by use of stable isotopes

    International Nuclear Information System (INIS)

    Jarvis, S.C.

    2002-01-01

    key areas in which there is a need for improved understanding. Methods are being developed for understanding and controlling balances and of the processes involved. Increasingly, stable isotopes are being used to help develop this understanding. Examples are given of the way that enriched sources, and particularly natural abundance levels of N are being used to determine the way that controls over the flows of N at various physical scales within particular ecosystems are operating. By way of example, three case studies are taken to illustrate opportunities to employ stable isotopes of N to better understand fluxes, provide improved model description and predictive capability and ultimately to improve the management and outputs from the farm The first is an intensively managed 76 ha temperate dairy system, in SW of England; the second is 2 farming systems in the highlands of E. Kenya where traditional soil fertility practices cannot be maintained with an increasing population and land scarcity, and the final case study is that of a balanced, productive and environmentally sound integrated farming system in which modest amounts of external inputs are used to supplement recycled nutrients within a semi-intensive, agriculture- aquaculture management in Asia. The particular general areas within livestock systems which require further definition to enable improved N utilisation and which can be probed by δ 15 N studies include: impact of dietary quality on N utilisation and partitioning into excreta, the dynamics of N turnover from excreta, plant residues and soil organic matter and effects of changes in local husbandry/management practices, spatial and temporal effects of excretal return (either at grazing or after storage/application), interactions between N, other nutrients and water availability, N sources and rates of transformation and transfers into loss pathways and construction of soil and systems nutrient balances and the identification and determination of

  19. Measurements of 222Rn flux with charcoal coanisters

    International Nuclear Information System (INIS)

    Countess, R.J.

    1977-01-01

    Methods used to measure the 222 Rn flux from the ground are discussed. The most common method is the direct accumulation of radon in a closed container resting on the soil surface. An aliquot of the air is transferred from the accumulator either to an ionization chamber or to an alpha scintillation flask for radon analysis. An alternate method consists of entraining the radon emanating from a small area of the ground in an airstream moving in a closed system through a charcoal trap or cold trap. At the end of the sampling period, the trap is sealed and returned to the laboratory where the radon is transferred into an evacuated scintillation flask for analysis. Still another method consists of adsorbing radon in a layer of granular, activated charcoal spread directly on the ground. For analysis, the charcoal is bagged and the 0.61-MeV gamma activity of 214 Bi (RaC) is measured in a gamma spectrometer. These last two methods have the disadvantage that some radon may be lost in transfer prior to analysis. In an improved method, which is simpler than the preceding methods and eliminates this transfer problem, a modified U.S. Army M11 gas mask canister containing activated charcoal is placed directly in contact with the emanating surface and after an exposure period from several hours to several days, depending on the anticipated flux density, the canister is removed from the surface and counted directly in a gamma spectrometer. In addition to precluding losses in sample transfer, a major advantage is that numerous measurements can be made inexpensively due to the low cost of the canisters and their ease of deployment and recovery

  20. A survey of the effect of explants type, plant growth regulators and activated charcoal on callus induction in Papaver bracteatum

    Directory of Open Access Journals (Sweden)

    Bahman Hosseini

    2015-09-01

    Full Text Available Callus culture is necessary for production of suspension cell culture in plant breeding programs. Regarding to the application of Papaver bracteatum as an important medicinal plant in production of benzophenantridine alkaloids, this study was performed to find the most suitable hormone combination and explant type for achieving to high percentage of callus induction fresh weight and somatic embryogenesis in this plant. For this purpose, hypocotyl explants were cultured in ½MS media containing active charcoal (2 and 4 mgL-1 in combination of different concentrations of NAA, 2,4-D (0, 1, 2, 3 and 5 mgL-1 and BA (0, 0.1 and 0.5 mgL-1. The seed explants were cultured in same treatments without active charcoal. Also, somatic embryogesis induction using seed explants in ½MS media containing different concentrations of NAA and 2,4-D (0, 0.5, 1 and 2 mgL-1 with BA 0.5 mgL-1 were investigated. The results showed that the highest percentage of callus induction (43.6%, 54% in hypocotyls explants were obtained in the ½MS media containing 2 mgL-1 active charcoal and 2 mgL-1 2,4-D and 5 mgL-1 NAA in companion with BA 0.5 mgL-1 respectively. The maximum callus induction (84% was obtained in ½MS medium with 1 mgL-1 2,4-D without active charcoal. The highest callus fresh weight (0.35% was obtained in MS media with 0.5 mgL-1 2,4-D andthe maximum rate of somatic embryogenesis induction (77% was observed in ½MS media containing 1 mgL-1 2,4-D with 0.5 mgL-1 BA.

  1. Ashes to ashes, charcoal to dust: micromorphological evidence for ash-induced disintegration of charcoal in Early Neolithic (LBK) soil features in Elsloo (The Netherlands)

    NARCIS (Netherlands)

    Huisman, D.J.; Braadbaart, F.; Wijk, I.M. van; Os, B.J.H. van

    2012-01-01

    Charcoal and other forms of charred organic material e an important part of the archaeological record e consist of benzenoids. Such components are unstable in basic or alkaline conditions. Since ashes are alkaline, this means that archaeological charcoal may have been disintegrated and lost if

  2. Development and Evaluation of Charcoal-Powered Bread Baking Oven

    Directory of Open Access Journals (Sweden)

    Alimasunya E

    2016-10-01

    Full Text Available Charcoal-powered bread baking oven was developed and evaluated with functional efficiencies of 91.2% and 92.1% for baking dough of mass 0.5kg and 1.5 kg to bread at BP of 27.7minutes, 35.9 minutes with the baking temperature (BT of 153.8 oC and 165.9 oC respectively. Baking temperature-heating interval of the oven as computed at 100 oC at 20 minutes at charcoal emitted heat of 861000 KJ. The oven has the capacity of generating 455.9 oC at 270 minutes time interval. The oven has bread baking capacities of 56, 36, 28, 22 and 18 pieces of bread per batch operation using dough mass of 0.5kg, 0.75kg, 1.00kg, 1.250kg and 1.500kg respectively. It is sensitive to the baking time and temperature in relation to dough mass with resolution value of 0.22. Charcoal-powered oven, is cheap and efficient and can be used both in the rural and urban settlement for domestic consumption and smallscale business.

  3. Development and application of charcoal sorbents for cryopumping fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Sedgley, D.W. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

    1989-06-01

    Progress has been made in defining the capabilities of charcoal as the most promising absorbent to be used in cryopumps for fusion power application. The capabilities of alternative methods of cryopumping helium have been examined in a literature survey and by test, and the results are described here. Considerations include pumping speed, capacity to accumulate pumped gas, ease of reconditioning, use of alternative materials and tolerance to the fusion environment. Vacuum pumps for future fusion devices must handle large quantities of helium/hydrogen isotopes and other impurities. Cryopumps or turbomolecular pumps have demonstrated the capability on a small scale, and each has an important advantage: TMPs do not accumulate gases; cryopumps can separate helium from other effluents. This paper includes a review of a method for selecting charcoals for helium cryopumping, testing of a continuously operating cryopump system, and definition of a design that is based on the requirements of the Next European Torus. Tritium limits are satisfied. The pump design incorporates the charcoal sorbent system that has been recently developed and is based on a reasonable extrapolation of current state-of-the-art. Evaluation of alternative methods of separating helium and other gases led to selection of a movable barrier as the preferred solution. (orig.).

  4. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria

    Science.gov (United States)

    Saeb, Amr T. M.; Alshammari, Ahmad S.; Al-Brahim, Hessa; Al-Rubeaan, Khalid A.

    2014-01-01

    Aims. To synthesize, characterize, and analyze antimicrobial activity of AgNPs of Escherichia hermannii (SHE), Citrobacter sedlakii (S11P), and Pseudomonas putida (S5). Methods. The synthesized AgNPs were examined using ultraviolet-visible spectroscopy (UV-vis) and, zeta potential, and the size and the morphology obtained from the three different isolates were also confirmed by TEM. Results. Among the three isolates tested, SHE showed the best antimicrobial activity due to the presence of small (4–12 nm) and stable (−22 mV) AgNPs. Stability of AgNPs was also investigated and found to be dependent on the nature of isolates. Conclusion. Produced AgNPs showed particle stability and antimicrobial efficacy up to 90 days of production. Our AgNPs exhibited greater antimicrobial activity compared with gentamicin against P. aeruginosa isolates and vancomycin against S. aureus and MRSA isolates at very low concentration (0.0002 mg per Microliters). PMID:25093206

  6. Using aerial photography to estimate wood suitable for charcoal in managed oak forests

    Science.gov (United States)

    Ramírez-Mejía, D.; Gómez-Tagle, A.; Ghilardi, A.

    2018-02-01

    Mexican oak forests (genus Quercus) are frequently used for traditional charcoal production. Appropriate management programs are needed to ensure their long-term use, while conserving the biodiversity and ecosystem services, and associated benefits. A key variable needed to design these programs is the spatial distribution of standing woody biomass. A state-of-the-art methodology using small format aerial photographs was developed to estimate the total aboveground biomass (AGB) and aboveground woody biomass suitable for charcoal making (WSC) in intensively managed oak forests. We used tree crown area (CAap) measurements from very high-resolution (30 cm) orthorectified small format digital aerial photographs as the predictive variable. The CAap accuracy was validated using field measurements of the crown area (CAf). Allometric relationships between: (a) CAap versus AGB, and (b) CAap versus WSC had a high significance level (R 2 > 0.91, p < 0.0001). This approach shows that it is possible to obtain sound biomass estimates as a function of the crown area derived from digital small format aerial photographs.

  7. Comparison of the adsorption capacities of an activated-charcoal--yogurt mixture versus activated-charcoal--water slurry in vivo and in vitro

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Christophersen, Anne-Bolette; Christensen, Hanne Rolighed

    2005-01-01

    BACKGROUND: An activated charcoal--yogurt mixture was evaluated in vivo to determine the effect on the gastrointestinal absorption of paracetamol, as compared to activated-charcoal--water slurry. The potential advantage of the activated-charcoal--yogurt mixture is a better palatability and general...... acceptance by the patients without loss of efficacy. In addition, paracetamol adsorption studies were carried out in vitro to calculate the maximum adsorption capacity of paracetamol to activated-charcoal--yogurt mixture. METHODS: In vivo: A randomized crossover study on 15 adult volunteers, using...... paracetamol 50 mg/kg as a simulated overdose. Each study day volunteers were given a standard meal 1 h before paracetamol, then 50 g activated charcoal 1 h later in either of two preparations: standard water slurry or mixed with 400 mL yogurt. Paracetamol serum concentrations were measured using HPLC...

  8. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects.

    Science.gov (United States)

    Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Terhalle, Jens; Wolbert, Jens-Benjamin; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C

    2017-10-01

    The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    2018-02-01

    Full Text Available Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L containing 33% whole and 67% filtered (0.2 μm seawater were amended with dissolved inorganic nitrogen (N and phosphorous (P in low (3 vessels; 5 μM N, 0.3 μM P, moderate (3 vessels; 25 μM N, 1.6 μM P, and high amounts (3 vessels; 50 μM N, 3.1 μM P. The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis. Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide (HCO3-:CO2. While the relative proportion of HCO3- to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We

  10. Soil particles reworking evidences by AMS 14C dating of charcoal

    International Nuclear Information System (INIS)

    Carcaillet, C.

    2001-01-01

    Soil charcoal dating is a time proxy for soil pedogenesis. I test the stratification hypothesis by AMS 14 C dating of charcoal fragments from soil profiles between 1700 and 1900 m with respect to altitude within the Alps. The charcoal fragments are around 1 mm in size. There is no age/depth relationship for charcoal particles of the size millimeter. The results are discussed in light of the role of soil fauna, up-rooting and colluvial processes. Although biotic pedoturbation is poorly described in mountain and sub-alpine elevation, I hypothesize that this process is very active and plays a major role on the soil functioning. (author)

  11. Evaluation of activated charcoal for dynamic adsorption of krypton and xenon

    International Nuclear Information System (INIS)

    Khan, A.A.; Deshingkar, D.S.; Ramarathinam, K.; Kishore, A.G.

    1975-01-01

    From the standpoint of radiation safety, the release of radioactive krypton and xenon from power reactors should be kept as low as practicable. The decay of shortlived isotopes of krypton and xenon by adsorptive delay on activated charcoal has shown promising results for this purpose. The delay provided by activated charcoal is proportional to the dynamic adsorption coefficients of these gases which are characteristic of the adsorbent. These coefficients were determined for krypton and xenon on indigenous gas-adsorbing activated charcoal at different moisture contents of carrier air stream and activated charcoal, concentrations of krypton around ambient temperatures, to find its suitability for designing adsorber columns. (author)

  12. Spatial analysis of charcoal kiln remains in the former royal forest district Tauer (Lower Lusatia, North German Lowlands)

    Science.gov (United States)

    Raab, Alexandra; Schneider, Anna; Bonhage, Alexander; Takla, Melanie; Hirsch, Florian; Müller, Frank; Rösler, Horst; Heußner, Karl-Uwe

    2016-04-01

    Archaeological excavations have revealed more than thousand charcoal kiln remains (CKRs) in the prefield of the active opencast lignite mine Jänschwalde, situated about 150 km SE of Berlin (SE Brandenburg, Germany). The charcoal was mainly produced for the ironwork Peitz nearby, which operated from the 16th to the mid-19th centuries. In a first approach, to estimate the dimension of the charcoal production, CKRs were mapped on shaded-relief maps (SRMs) derived from high-resolution LiDAR data (Raab et al. 2015). Subsequently, for a selected test area, identified CKRs on the SRMs were compared with archaeologically excavated CKRs in the field. This survey showed a considerably number of falsely detected sites. Therefore, the data was critically re-evaluated using additional relief visualisations. Further, we extended the CKR mapping to areas which are not archaeologically investigated. The study area, the former royal forest district Tauer, consists of two separate areas: the Tauersche Heide (c. 96 km2 area) N of Peitz and the area Jänschwalde (c. 32 km2 area) NE of Peitz. The study area is characterized by a flat topography. Different former and current anthropogenic uses (e.g., military training, solar power plant, forestry measures) have affected the study area, resulting in extensive disturbances of the terrain surface. The revised CKR abundance in the study area Jänschwalde was considerably smaller than the numbers produced by our first approach. Further, the CKR mapping revealed, that a total record of the CKRs is not possible for various reasons. Despite these limitations, a solid database can be provided for a much larger area than before. Basic statistic parameters of the CKR diameters and all comparative statistical tests were calculated using SPSS. To detect underlying spatial relationships in the CKR site distribution, we applied the Getis-Ord Gi* statistic, a method to test for local spatial autocorrelation between neighbouring sites. The test is

  13. Adsorption of krypton from helium by low temperature charcoal

    International Nuclear Information System (INIS)

    Cooper, M.H.; Simmons, C.R.; Taylor, G.R.

    1975-01-01

    Adsorption of krypton from helium by charcoal at temperatures from -100 0 C to -140 0 C was experimentally investigated to verify adsorption system design methods and to determine effects of regeneration for the Gas Purification System of the Liquid-Metal Fast Breeder Reactor. Helium with two krypton concentrations, traced by krypton-85 at 0.0044 μCi/cm 3 , was passed through a 1/2-inch diameter, three-inch long trap packed with coconut charcoal. Breakthrough curves were measured by continuously recording the activity of the effluent gas using a sampler with a krypton-85 detection limit of about 5 x 10 -7 μCi/cm 3 . Experimental breakthrough curves with continuous feed for both concentrations and for superficial gas velocities of 5 to 28 cm/sec were closely fitted when the pore diffusion term was omitted from the Anzelius linear equilibrium adsorption model indicating that the adsorption process for this system was controlled by gas phase mass transport kinetics. Adsorption capacities determined in these experiments at -140 0 C agreed closely with published data. A discontinuity, however, was observed in the krypton adsorption coefficient between -100 and -120 0 C. This discontinuity may be caused by capillary condensation of krypton in the charcoal pores. Breakthrough times for pulse experiments at 400 ppM (vol.) krypton concentration were several times greater than breakthrough for continuous feed experiments at equivalent conditions. The differences in breakthrough times indicate that the adsorption isotherms are non-linear in this concentration range. Regeneration experiments showed that purging with helium at room temperature for 16 hours was inadequate, since lower breakthrough times were obtained after this treatment. Regeneration under vacuum at 100 0 C or 200 0 C for 16 hours resulted in satisfactory regeneration (i.e., no reduction in breakthrough times occurred in subsequent runs). (U.S.)

  14. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  15. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  16. Radon determination by activated charcoal adsorption and liquid scintillation measurement

    International Nuclear Information System (INIS)

    Lopez, F.O.; Canoba, A.C.

    1998-01-01

    A passive diffusion method for the determination of radon concentration has been optimised and calibrated. The device consists of a scintillation vial containing activated charcoal, a diffusion barrier and a desiccant agent. The response to diverse atmospheric humidity and variable exposure intervals was studied. The result is a detector, which is independent of atmospheric humidity for at least (up to) 7 days of exposure. The method was compared with electret detectors (US EPA) with very satisfactory results. The advantages of this method are its simplicity, low cost, low detection limit, the total automatization of the measurement and its total independence of humidity to measure in a wide range of radon concentrations. (author) [es

  17. The adsorption of argon, krypton and xenon on activated charcoal

    International Nuclear Information System (INIS)

    Underhill, D.W.

    1996-01-01

    Charcoal adsorption beds are commonly used to remove radioactive noble gases from contaminated gas streams. The design of such beds requires the adsorption coefficient for the noble gas. Here an extension of the Dubinin-Radushkevich theory of adsorption is developed to correlate the effects of temperature, pressure, concentration, and carrier gas on the adsorption coefficients of krypton, xenon, and argon on activated carbon. This model is validated with previously published adsorption measurements. It accurately predicts the equilibrium adsorption coefficient at any temperature and pressure if the potential energies of adsorption, the micropore volume, and the van der Waals constants of the gases are known. 18 refs., 4 figs

  18. A passive integrating charcoal detector for indoor radon survey

    International Nuclear Information System (INIS)

    Lin Lianqing; Ren Tianshan; Li Guiyun

    1986-01-01

    This paper describes the principle, design, calibration and characteristics of a passive integrating charcoal detector for measuring average radon concentration indoors. The uncertainties of the detector are also evaluated. Under conditions of room temperature at 17 deg C and relative humidity at 30%, the minimum limit of detection is 0.16 pCi/1 for 72 hours exposure. Besides higher sensitivity, the other advantages of this detector are passive, simple and less expensive. It requires no power and makes no noise and gives no interference to daily activities of the residents of dwellings being surveyed. Therefore the detector is suitable for a large-scale survey of radon levels indoors

  19. Density-optimized efficiency for magneto-optical production of a stable molecular Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, Matt [Helsinki Institute of Physics, PL 64, FIN-00014 Helsingin yliopisto (Finland); Collin, Anssi [Helsinki Institute of Physics, PL 64, FIN-00014 Helsingin yliopisto (Finland); Suominen, Kalle-Antti [Helsinki Institute of Physics, PL 64, FIN-00014 Helsingin yliopisto (Finland); Javanainen, Juha [Department of Physics, University of Connecticut, Storrs, CT 06269-3046 (United States)

    2003-08-01

    Although photoassociation and the Feshbach resonance are feasible means in principle for creating a molecular Bose-Einstein condensate (MBEC) from an already quantum-degenerate gas of atoms, collision-induced mean-field shifts and irreversible decay place practical constraints on the efficient Raman delivery of stable molecules. Focusing on stimulated Raman adiabatic passage, we propose that the efficiency of both mechanisms for producing a stable MBEC can be improved by treating the density of the initial atom condensate as an optimization parameter.

  20. Consumer Preferences for Coconut Shell Charcoal in Suburban Indonesia

    Directory of Open Access Journals (Sweden)

    Pitri Yandri

    2013-08-01

    Full Text Available Suburbs in Indonesia are not only characterized by the presence of residential areas, but also trading activities. These activities exist in order to support the needs of residents for goods and/or services. The complicated process that involves pull and push factors causes the suburbs to be well-known as economically potential areas, especially for micro, small, medium and large enterprises. One example of the trading subsectors is restaurants, both micro enterprises with traditional management and franchises patterns with professional management. Most of these restaurants provide barbequed menus which consume shell coconut charcoal. Then the question arises, is the quality of those commodity is the only reason for the restaurants in using it? This paper presents the elaboration of the research on consumer preferences in a suburban area of the consumption of coconut shell charcoal. By using the Fishbein Model, it is concluded that the aspect of belief and price attribute are in the first rank, which shows that those commodity is an expensive fuel, while the second rank is quality. The rest are models and after-sales service, respectively. From the aspect of evaluation, the respondents believe that quality is in the first rank that should be improved in the future. The second is price and the rest are after-sales service, packaging and models, respectively.

  1. Consumer Preferences for Coconut Shell Charcoal in Suburban Indonesia

    Directory of Open Access Journals (Sweden)

    Pitri Yandri

    2013-08-01

    Full Text Available Suburbs in Indonesia are not only characterized by the presence of residential areas, but also trading activities. These activities exist in order to support the needs of residents for goods and/or services. The complicated process that involves pull and push factors causes the su-burbs to be well-known as economically potential areas, especially for micro, small, medium and large enterprises. One example of the trading subsectors is restaurants, both micro enterprises with traditional management and franchises patterns with professional management. Most of these restaurants provide barbequed menus which consume shell coconut charcoal. Then the question arises, is the quality of those commodity is the only reason for the restaurants in using it? This paper presents the elaboration of the research on consumer preferences in a suburban area of the consumption of coconut shell charcoal. By using the Fishbein Model, it is concluded that the aspect of belief and price attribute are in the first rank, which shows that those commodity is an expensive fuel, while the second rank is quality. The rest are models and after-sales service, respectively. From the aspect of evaluation, the respondents believe that quality is in the first rank that should be improved in the future. The second is price and the rest are after-sales service, packaging and models, respectively.

  2. Radon removal from gaseous xenon with activated charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Liu, J.; Martens, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); and others

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity v{sub Rn} of radon and v{sub Xe} of xenon in the trap with v{sub Rn}/v{sub Xe}=(0.96{+-}0.10) Multiplication-Sign 10{sup -3} at -85 Degree-Sign C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  3. Iodox process tests in a transuranium element production campaign

    International Nuclear Information System (INIS)

    Collins, E.D.; Benker, D.E.

    1978-01-01

    The Iodox process removes gaseous iodine from air by oxidation of organic iodides and by hydrolysis-oxidation of free iodine to the stable iodate form. An Iodox system for treatment of the 10 -4 m 3 /s dissolver off-gas (DOG) stream was installed and is used for initial removal of radioiodine, this allowing the Hopcalite-charcoal to serve as a backup system in TRU. During a recent TRU production campaign, three dissolver runs were made to test the Iodox process

  4. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Science.gov (United States)

    Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C) measurements could play in understanding that adaptation with a series of three Ecostat (i.e...

  5. Ready-to-use parenteral amiodarone : A feasibility study towards a long-term stable product formulation

    NARCIS (Netherlands)

    Jacobs, Maartje S.; Luinstra, Marianne; Moes, Jan Reindert; Chan, Tiffany C. Y.; Minovic, Isidor; Frijlink, Henderik W.; Woerdenbag, Herman J.

    Objectives To determine the feasibility of preparing a long-term stable ready-to-use parenteral amiodarone formulation using cyclodextrins as dissolution enhancer. Methods A preformulation study was performed with different molar ratios of hydroxypropyl-beta-cyclodextrin (HP-BCD) or

  6. Rapid spread of suicide by charcoal burning from 2007 to 2011 in Korea.

    Science.gov (United States)

    Lee, Ah-Rong; Ahn, Myung Hee; Lee, Tae Yeop; Park, Subin; Hong, Jin Pyo

    2014-11-30

    Despite rapid increase of suicide by charcoal burning within 5 years, little is known about the characteristics of charcoal burning suicide in Korea. This study aimed to examine the trends and risk factors in the spread of suicide using this method. We identified an association between media reporting of suicide by charcoal burning and its incidence. Data on suicide from 2007 to 2011 were obtained from the Korean National Statistical Office. Cross-correlation analysis was used. Increasing incidence of suicide by charcoal burning was correlated with higher education levels, male sex, and the latter half of the year. Victims of charcoal burning suicide were more likely to be young, male, single, highly educated, professional, urban-based, and to die between October and December. Internet reports of suicide via charcoal burning tended to precede the increased incidence of suicide using this method, but only during the early period of the suicide epidemic. Our findings suggest that one episode of heavy media coverage of a novel method, such as charcoal burning, is sufficient to increase the prevalence of suicide by that method even after media coverage decreases. These findings are expected to contribute to the prevention of increasing rates of suicide by charcoal burning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Sorption and desorption behaviors of diuron in soils amended with charcoal.

    Science.gov (United States)

    Yu, Xiang-Yang; Ying, Guang-Guo; Kookana, Rai S

    2006-11-01

    Charcoal derived from the partial combustion of vegetation is ubiquitous in soils and sediments and can potentially sequester organic contaminants. To examine the role of charcoal in the sorption and desorption behaviors of diuron pesticide in soil, synthetic charcoals were produced through carbonization of red gum (Eucalyptus spp.) wood chips at 450 and 850 degrees C (referred to as charcoals BC450 and BC850, respectively, in this paper). Pore size distribution analyses revealed that BC850 contained mainly micropores (pores approximately 0.49 nm mean width), whereas BC450 was essentially not a microporous material. Short-term equilibration (diuron in a soil amended with various amounts of charcoals of both types. The sorption coefficients, isotherm nonlinearity, and apparent sorption-desorption hysteresis markedly increased with increasing content of charcoal in the soil, more prominently in the case of BC850, presumably due to the presence of micropores and its relatively higher specific surface area. The degree of apparent sorption-desorption hystersis (hysteresis index) showed a good correlation with the micropore volume of the charcoal-amended soils. This study indicates that the presence of small amounts of charcoal produced at high temperatures (e.g., interior of wood logs during a fire) in soil can have a marked effect on the release behavior of organic compounds. Mechanisms of this apparent hysteretic behavior need to be further investigated.

  8. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Directory of Open Access Journals (Sweden)

    Irene Criscuoli

    Full Text Available The addition of pyrogenic carbon (C in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2 with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2. After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  9. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Pei-Hsing Huang

    2014-01-01

    Full Text Available This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis- based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon.

  10. Dermal exposure assessment to benzene and toluene using charcoal cloth pads

    NARCIS (Netherlands)

    Wendel de Joode, B. van; Tielemans, E.; Vermeulen, R.; Wegh, H.; Kromhout, H.

    2005-01-01

    Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and

  11. Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Streptomyces but with different species in BLAST analysis. This study indicates that the selected actinomycetes have the potential for PGP and control of charcoal-rot disease in sorghum. Key words: Antagonistic actinomycetes, biocontrol, charcoal-rot, Macrophomina phaseolina. INTRODUCTION.

  12. Charcoal and activated carbon as adsorbate of phytotoxic compounds - a comparative study.

    NARCIS (Netherlands)

    Hille, M.G.; Ouden, den J.

    2005-01-01

    This study compares the potential of natural charcoal from Scots pine (Pinus sylvestris L.) and activated carbon to improve germination under the hypothesis that natural charcoal adsorbs phytotoxins produced by dwarf-shrubs, but due to it's chemical properties to a lesser extent than activated

  13. Rational synthesis of zerovalent iron/bamboo charcoal composites with high saturation magnetization

    Science.gov (United States)

    Mingshan Wu; Jianfeng Ma; Zhiyong Cai; Genlin Tian; Shumin Yang; Youhong Wang; Xing' e Liu

    2015-01-01

    The synthesis of magnetic biochar composites is a major new research area in advanced materials sciences. A series of magnetic bamboo charcoal composites (MBC800, MBC1000 and MBC1200) with high saturation magnetization (Ms) was fabricated in this work by mixing bamboo charcoal powder with an aqueous ferric chloride solution and subsequently...

  14. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils

    Science.gov (United States)

    Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei

    2011-04-01

    The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r = 0.957 **, P isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation ( DT50) in soils greatly extended when the rate of added charcoal inceased from 0 to 50 g kg - 1 (for Paddy soil, DT50 values increased from 54.6 to 71.4 days; for Alfisol, DT50 from 16.0 to 136 days; and for Vertisol, DT50 from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.

  15. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Science.gov (United States)

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2)) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2)). After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  16. The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor.

    Science.gov (United States)

    Kim, Tae Gwan; Yun, Jeonghee; Cho, Kyung-Suk

    2015-10-01

    The up-flow anaerobic sludge blanket (UASB) reactor is a promising method for the treatment of high-strength industrial wastewaters due to advantage of its high treatment capacity and settleable suspended biomass retention. Molasses wastewater as a sugar-rich waste is one of the most valuable raw material for bioenergy production due to its high organic strength and bioavailability. Interpretation for complex interactions of microbial community structures and operational parameters can help to establish stable biogas production. RNA-based approach for biogas production systems is recommended for analysis of functionally active community members which are significantly underestimated. In this study, methane production and active microbial community were characterized in an UASB reactor using molasses wastewater as feedstock. The UASB reactor achieved a stable process performance at an organic loading rate of 1.7~13.8-g chemical oxygen demand (COD,·L(-1) day(-1); 87-95 % COD removal efficiencies), and the maximum methane production rate was 4.01 L-CH4·at 13.8 g-COD L(-1) day(-1). Lactococcus and Methanosaeta were comprised up to 84 and 80 % of the active bacterial and archaeal communities, respectively. Network analysis of reactor performance and microbial community revealed that Lactococcus and Methanosaeta were network hub nodes and positively correlated each other. In addition, they were positively correlated with methane production and organic loading rate, and they shared the other microbial hub nodes as neighbors. The results indicate that the close association between Lactococcus and Methanosaeta is responsible for the stable production of methane in the UASB reactor using molasses wastewater.

  17. Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal.

    Science.gov (United States)

    Arnal, Pablo Maximiliano

    2015-01-01

    Charcoals have been widely used by scientist to research the removal of contaminants from water and air. One key feature of charcoal is that it keeps macropores from the parent material - though anisotropically contracted - and can even develop meso- and micropores. However, the controlled thermochemical conversion of biomass into charcoal at laboratory scale normally requires special setups which involve either vacuum or inert gas. Those setups may not be affordable in research groups or educational institutions where the research of charcoals would be highly welcome. In this work, I propose a simple and effective method to steer the thermochemical process that converts sunflower hulls (SFH) into charcoal with basic laboratory resources. The carbonization method: •Place SFH in an airtight aluminum envelope.•Thermally treat SFH within the envelope in a common laboratory oven.•Open the envelope to obtain the carbonized sunflower hulls.

  18. Theoretical and experimental study of radon measurement with designing and calibration domestic canister with active charcoal

    International Nuclear Information System (INIS)

    Urosevic, V.; Nikezic, D.; Zekic, R.

    2005-01-01

    Radon concentration in air may change significantly large variation due to atmospheric variation. Measurement with active charcoal can be inaccurate because the variation in radon concentration. We made model to simulate radon measurements with active charcoal in order to optimize and improve integration characteristic. A numerical method and computer code based on the method of finite elements is developed for the case of variable radon concentration in air. This program simulates radon adsorption by the activated charcoal bed, enabling determination of sensitivity. The dependence of sensitivity on different parameters, such as temperature, thickness of the charcoal, etc. was studied using this program. Using results of theoretical investigation we designed and calibrated our canister with active charcoal for radon measurements. (author)

  19. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 2): Development, characterization, and performance evaluation.

    Science.gov (United States)

    Sudeep Kumara, K; Sahoo, B K; Gaware, J J; Sapra, B K; Mayya, Y S; Karunakara, N

    2017-06-01

    Exposure due to thoron ( 220 Rn) gas and its decay products in a thorium fuel cycle facility handling thorium or 232 U/ 233 U mixture compounds is an important issue of radiological concern requiring control and mitigation. Adsorption in a flow-through charcoal bed offers an excellent method of alleviating the release of 220 Rn into occupational and public domain. In this paper, we present the design, development, and characterization of a Thoron Mitigation System (TMS) for industrial application. Systematic experiments were conducted in the TMS for examining the 220 Rn mitigation characteristics with respect to a host of parameters such as flow rate, pressure drop, charcoal grain size, charcoal mass and bed depth, water content, and heat of the carrier gas. An analysis of the experimental data shows that 220 Rn attenuation in a flow through charcoal bed is not exponential with respect to the residence time, L/U a (L: bed depth; U a : superficial velocity), but follows a power law behaviour, which can be attributed to the occurrence of large voids due to wall channeling in a flow through bed. The study demonstrates the regeneration of charcoal adsorption capacity degraded due to moisture adsorption, by hot air blowing technique. It is found that the mitigation factor (MF), which is the ratio of the inlet 220 Rn concentration (C in ) to the outlet 220 Rn concentration (C out ), of more than 10 4 for the TMS is easily achievable during continuous operation (>1000 h) at a flow rate of 40 L min -1 with negligible (evaluated for its long-term performance and overall effectiveness in mitigating 220 Rn levels in the workplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Development of a Curriculum for Renewable Energy: A Case Study of Charcoal Briquettes from Agricultural Residues for Environmental Literacy of Secondary School Students at Samaki Wittaya Municipality School

    Science.gov (United States)

    Klakayan, Jagree; Singseewo, Adisak

    2016-01-01

    This research aimed to (1) design a curriculum on Production of Charcoal Briquettes from Agricultural Residues, (2) implement the designed curriculum, and (3) study and compare the learning achievements of Matthayomsuksa 3 students at Samakee Wittaya Municipality School in terms of knowledge, learning skills, and participation in the production of…

  1. A comparative study on production of stable carbon nano tube dispersions using gum arabic and sodium dodecyl sulphate

    International Nuclear Information System (INIS)

    Rashmi, W.; Ismail, A.F.; Jameel, A.T.; Yusof, F.; Khalid, M.; Mubarak, N.M.

    2009-01-01

    Full text: Improvements on the stability of carbon nano tube (CNT)-water suspensions are necessary to enhance the performance of CNT nano fluids. CNTs are usually packed into crystalline ropes that form strong networks due to Van der Waals attraction. Aggregation of these CNTs is obstacle to most of the applications which diminished its special properties. Thus, this paper aims to produce stable CNT dispersion using Gum Arabic (GA) and Sodium dodecyl sulphate (SDS) as dispersants. The CNT concentration is varied from 0.01-0.1 wt% while the concentration of dispersants is varied from 1-12 wt%, respectively. This work gives detailed information on effect of CNT concentration, dispersant concentration and sonication time on stability of CNT dispersions. UV-Vis Spectrophotometer was used to measure the concentration of CNTs with respect to sedimentation time. CNT-GA suspensions were found to be more stable compared to CNT-SDS suspensions. The homogeneous suspension of CNT-GA is stable for several months. (author)

  2. Large angle production of stable particles heavier than the proton and a search for quarks at the CERN intersecting storage rings

    CERN Document Server

    Alper, B; Booth, P; Bulos, F; Carroll, L J; Damgaard, G; Duff, Brian G; Heymann, Franz F; Jackson, J N; Jarlskog, G; Jönsson, L B; Klovning, A; Leistam, L; Lillethun, E; Lynch, G; Manning, Geoffrey; Prentice, M; Quarrie, D; von Dardel, Guy F; Weiss, J M

    1973-01-01

    Measurements have been performed on production of particles with mass >1.5 GeV/c/sup 2/ and charge >or=2/3 for theta /sub lab/=62.5 degrees and square root s=53 GeV. At p/sub T/=0.7 GeV/c the relative rate of production of antideuterons to pi /sup -/ is (5+or-1)*10/sup -5/. The deuteron to antideuteron ratio is 3.7+or-1.2. No new stable particle has been seen amongst 0.7*10/sup 8/ charged particles entering our detector. (7 refs).

  3. Stable acetate production in extreme-thermophilic (70ºC) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens

    NARCIS (Netherlands)

    Zhang, F.; Zhang, Y.; Ding, J.; Dai, K.; Van Loosdrecht, M.C.M.; Zeng, R.J.

    2014-01-01

    The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in

  4. Hydraulic retention time affects stable acetate production from tofu processing wastewater in extreme-thermophilic (70°C) mixed culture fermentation.

    Science.gov (United States)

    Chen, Yun; Zhang, Fang; Wang, Ting; Shen, Nan; Yu, Zhong-Wei; Zeng, Raymond J

    2016-09-01

    Acetate is an important industrial chemical and its production from wastes via mixed culture fermentation (MCF) is economic. In this work, the effect of hydraulic retention time (HRT) on acetate production from tofu processing wastewater (TPW) in extreme-thermophilic (70°C) MCF was first investigated. It was found that long HRT (>3days) could lead to less acetate production while stable acetate production was achieved at short HRT (3days) with the yield of 0.57g-COD/g-CODTPW. The microbial community analysis showed that hydrogenotrophic methanogens (mainly Methanothermobacter) occupied up to 90% of archaea at both HRTs of 3 and 5days. However, Coprothermobacter, the main acetate-degraders, decreased from 35.74% to 10.58% of bacteria when HRT decreased from 5 to 3days, supporting the aggravation of syntrophic acetate oxidation in long HRT. This work demonstrated that HRT was a crucial factor to maintain stable acetate production from TPW in extreme-thermophilic MCF. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Produção de carvão a partir de resíduo de erva-mate para a remoção de contaminantes orgânicos de meio aquoso Production of charcoal from maté waste to remove organic contaminants from aqueous solution

    Directory of Open Access Journals (Sweden)

    Maraísa Gonçalves

    2007-10-01

    Full Text Available Neste trabalho, apresenta-se um novo material adsorvente, obtido a partir da pirólise de resíduos da erva-mate. O carvão resultante demonstrou elevada área superficial específica quando comparado com outros materiais pirolisados e elevada capacidade de remoção de contaminantes orgânicos de soluções aquosas. Os valores de área específica apresentados pelos materiais foram de 344, 191 e ~0,5 m² g-1, para o carvão Mate 1, Mate 2 e Mate 3, respectivamente. As isotermas de adsorção mostraram que os carvões apresentam potencial para utilização como adsorvente para compostos orgânicos, tais como: o corante têxtil vermelho reativo, o corante azul de metileno e para o herbicida atrazina, sendo que os máximos de adsorção utilizando o carvão Mate 1 foram de 16, 230 e 30 mg g-1, respectivamente.In this work we present a new adsorbent material, obtained by maté waste pyrolisis. The resulting charcoal presented high specific area when compared with other pyrolized materials and also high capacity to remove organic contaminants from aqueous solution. The charcoal showed specific area of 344, 191 and ~0.3 m² g-1 for sample Mate 1, Mate 2 and Mate 3, respectively. According to the corresponding adsorption isotherm these materials present good adsorption capacity for reactive textile and methylene blue dyes and the herbicide atrazine. Adsorption maxima were respectively 16, 230 and 35 mg g-1 for such substances, when sample Mate 1 was used.

  6. Salicylate removal by charcoal heamoperfusion in experimental intoxication in dogs

    International Nuclear Information System (INIS)

    Brookings, C.H.; Ramsey, J.D.

    1975-01-01

    The removal of salicylate by extracorporeal circulation of blood through a column of encapsulated charcoal (haemoperfusion) has been studied experimentally in intoxicated dogs (greyhounds). The average time taken to reduce the whole blood salicylate level to one-half of the initial equilibrium level in 30 kg dogs was 2 hrs. A half-life of 3 hrs is predicted for salicylate removal by haemoperfusion in a 70 kg man and this rate of removal is shown to be comparable to that reported for haemodialysis. No unacceptable adverse physiological, biochemical, or haematological effects were found to result from haemoperfusion. The possible use of this technique in the management of severe salicylate poisoning in man is discussed. Haemoperfusion is foreseen as providing a method of rapid removal of salicylate in circumstances where forced diuresis is contra-indicated or inadequate and haemodialysis is not readily available. (orig.) [de

  7. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-01-01

    Highlights: ► Vero cell-based HPAI H5N1 vaccine with stable high yield. ► Stable high yield derived from the YNVa H3N2 backbone. ► H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  8. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  9. Cow dung: a potential biomass substrate for the production of detergent-stable dehairing protease by alkaliphilic Bacillus subtilis strain VV.

    Science.gov (United States)

    Vijayaraghavan, Ponnuswamy; Vijayan, Aija; Arun, Arumugaperumal; Jenisha, John Kennady; Vincent, Samuel Gnana Prakash

    2012-01-01

    Cow dung, a cheap and easily available source of energy, was used as the substrate for the production of alkaline protease by solid-state fermentation using the Bacillus subtilis strain VV. In order to achieve the maximum yield of this enzyme, the following optimum process parameters are needed: fermentation period (72 h), pH (10.0), moisture content (140%), inoculum (25%), temperature (30-40°C), carbon source (2% (w/w) maltose) and nitrogen source (1% (w/w) urea). The protease was stable over a broad temperature range (30-50°C) and pH (8.0-10.0), with maximum activity at 50°C and pH 10.0. Among the divalent ions tested, Ca(2+) (0.01 M) increased enzyme activity. The purified protease, after being subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was found to have a molecular mass of 38.5 kDa. The enzyme was solvent-and surfactant-stable and showed activity even after 24 h incubation along with various commercially available detergents. This enzyme possessed dehairing properties for animal hide after 16 h of incubation at room temperature. From these results it is evident that cow dung is a potential substrate for the production of a detergent-stable, dehairing protease by B. subtilis. This enzyme has a lot of potential applications in the detergent and leather-processing industries.

  10. Performance Evaluation of Waste Heat Recovery in a Charcoal Stove using a Thermo-Electric Module

    Directory of Open Access Journals (Sweden)

    Nnamdi Judges Ajah

    2018-03-01

    Full Text Available Charcoal stoves have widespread use among the poorer households and outdoor food vendors in Nigeria. In order to improve the efficiency of charcoal stoves, various researches have tried integrating a thermoelectric module in the charcoal stove. The researches, however did not exploit the performance of the thermoelectric modules at different ambient temperatures. To evaluate the performance of thermoelectric integrated charcoal stoves in the sub-Saharan Africa, a self-powered, forced air induced thermoelectric charcoal stove experiment was carried out at five different ambient temperatures of 36ºC, 33ºC, 32ºC, 30ºC and 29ºC and an average fuel hotbed temperature of 1023.75ºC. The thermoelectric charcoal stove generated a maximum voltage of 5.25V at an ambient temperature of 29ºC. The least maximum voltage was generated at the highest ambient temperature of 36ºC. It was observed that the maximum voltage increased with decreasing ambient temperature, this could be attributed to the ambient air being used to cool the thermoelectric generator. Therefore, it could be said that the performance of a forced draft thermoelectric charcoal stove increases with decrease in ambient temperature.

  11. Measurement of radon-222 concentration in environment sampled within short time using charcoal detector

    International Nuclear Information System (INIS)

    Yamasaki, Tadashi; Sekiyama, Shigenobu; Tokin, Mina; Nakayasu, Yumiko; Watanabe, Tamaki.

    1994-01-01

    The concentration of 222 Rn in air sampled within a very short period of time was measured using activated charcoal as the adsorber. The detector is the plastic canister containing mixture of the activated charcoal and the silica gel. The radon gas was adsorbed in the charcoal in the radon chamber at the temperature of 25degC. A little amount of liquid scintillation cocktail was added into the vial of liquid scintillation counter with the canister. The radon in the charcoal was extracted in the liquid scintillation cocktail. Alpha particles emitted from radon and its daughter nuclei in the cocktail were detected using the liquid scintillation counter. Present method has advantages of not only short sampling time of air but also adsorption of radon in charcoal under a constant temperature. The concentration of radon in air down to 2 Bq/m 3 could be detected. A kinetic model for adsorption of radon in the charcoal is also presented. The ratio of radon concentration in the charcoal to that in air under the equilibrium state of adsorption was estimated to be from 6.1 to 6.8 m 3 /kg at the temperature of 25degC. (author)

  12. Production of stable superhydrophilic surfaces on 316L steel by simultaneous laser texturing and SiO2 deposition

    Science.gov (United States)

    Rajab, Fatema H.; Liu, Zhu; Li, Lin

    2018-01-01

    Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method

  13. The immobilized NaHSO4·H2O on activated charcoal: a highly efficient promoter system for N-formylation of amines with ethyl formate

    Directory of Open Access Journals (Sweden)

    Behzad Zeynizadeh

    2016-03-01

    Full Text Available The immobilized NaHSO4·H2O on activated charcoal was used as a highly efficient promoter system for facile N-formylation of amines with ethyl formate. All reactions were carried out in refluxing ethyl formate (54 ºC under mild conditions within 10-100 min to afford the product formamides in high to excellent yields (80-94%.

  14. Elucidation of oxidation and degradation products of oxygen containing fuel components by combined use of a stable isotopic tracer and mass spectrometry.

    Science.gov (United States)

    Frauscher, Marcella; Besser, Charlotte; Allmaier, Günter; Dörr, Nicole

    2017-11-15

    In order to reveal the degradation products of oxygen-containing fuel components, in particular fatty acid methyl esters, a novel approach was developed to characterize the oxidation behaviour. Combination of artificial alteration under pressurized oxygen atmosphere, a stable isotopic tracer, and gas chromatography electron impact mass spectrometry (GC-EI-MS) was used to obtain detailed information on the formation of oxidation products of (9Z), (12Z)-octadecadienoic acid methyl ester (C18:2 ME). Thereby, biodiesel simulating model compound C18:2 ME was oxidized in a rotating pressurized vessel standardized for lubricant oxidation tests (RPVOT), i.e., artificially altered, under 16 O 2 as well as 18 O 2 atmosphere. Identification of the formed degradation products, mainly carboxylic acids of various chain lengths, alcohols, ketones, and esters, was performed by means of GC-EI-MS. Comparison of mass spectra of compounds under both atmospheres revealed not only the degree of oxidation and the origin of oxygen atoms, but also the sites of oxidative attack and bond cleavage. Hence, the developed and outlined strategy based on a gas-phase stable isotopic tracer and mass spectrometry provides insight into the degradation of oxygen-containing fuels and fuel components by means of the accurate differentiation of oxygen origin in a degradation product. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Salts of the iodine oxyacids in the impregnation of adsorbent charcoal for trapping radioactive methyliodide

    International Nuclear Information System (INIS)

    1980-01-01

    A method of removing methyliodide 131 gas from the effluent of a reactor, comprises passing the effluent gas through a charcoal sorbent formed by first contacting charcoal with a liquid containing a hypoiodite obtained when an aqueous mixture of a first component comprising a salt of an iodine oxyacid selected from periodate, iodate and hypoiodite and a second component selected from iodine and/or an iodide salt is adjusted to a pH of about 10 by the addition of an inorganic base, and then contacting the resulting impregnated charcoal with a tertiary amine. (author)

  16. Study of adsorption properties of impregnated charcoal for airborne iodine and methyl iodide

    International Nuclear Information System (INIS)

    Qi-dong, L.; Sui-yuang, H.

    1985-01-01

    The adsorption characteristics of airborne radioiodine and methyl iodide on impregnated charcoal were investigated. The activated charcoal tested was made from home-made oil-palm shells, and KI and TEDA were used as impregnants. A new technique was used to plot the dynamic partial adsorption isotherm at challenge concentrations (concentration range of iodine: 1-20 ppm v/v). Some adsorption properties of the impregnated charcoal were estimated with the dynamic partial adsorption isotherm. The dependences of the adsorption capacity and penetration behavior for airborne iodine and methyl iodide on the ambient conditions (temperature, relative humidity, and superficial velocity) were studied

  17. Study of properties of active charcoal used for measuring of low radon activities

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.

    2011-01-01

    We used the German charcoal Silicarbon for adsorption of radon from the air. From the column with activated carbon arranged in a row, we obtain cut-off dependence of radon on activated carbon at various temperatures, cooling and also at different speeds, drawing radon air through activated charcoal. From information we have chosen the most appropriate combination of temperature and cooling flow in order to maximize capture efficiency of radon in the first column of active charcoal. To change active carbon and optimization of operation allows us to measure the radon exhalation rate from various materials up to the level of 3·10 -9 Bq/s. (authors)

  18. Effects of insulin-free plasma on the charcoal-separation method for radioimmunoassay of insulin

    Energy Technology Data Exchange (ETDEWEB)

    Frayn, K N [Medical Research Council, Carshalton (UK). Toxicology Unit

    1976-03-01

    Radioimmunoassay of insulin in rat plasma using a popular method involving charcoal-separation of free and antibody-bound insulin was found to be unsatisfactory despite inclusion in standard tubes of insulin-free plasma prepared in either of two ways. Insulin-free plasma and untreated plasma had different effects on adsorption of free insulin to the charcoal. It was concluded that separation with charcoal is very sensitive to any prior treatment of the plasma. Particular care must be taken to ensure that hormone-free plasma is identical in all other respects to untreated plasma.

  19. Dose-dependent adsorptive capacity of activated charcoal for gastrointestinal decontamination of a simulated paracetamol overdose in human volunteers

    DEFF Research Database (Denmark)

    Gude, Anne-Bolette Jill; Hoegberg, Lotte Christine Groth; Riis Angelo, Helle

    2010-01-01

    The amount of activated charcoal needed to treat drug overdoses has arbitrarily been set at a charcoal-drug ratio of 10:1. Recent in vitro studies have shown a larger adsorptive capacity for activated charcoal when used in a model of paracetamol overdose. In the present study, we investigated...... whether this reserve capacity exists in vivo. This is clinically relevant in cases of large overdoses or if the full standard dose of 50 g activated charcoal cannot be administered. We performed a randomized, cross-over study (n = 16). One hour after a standard breakfast, 50 mg/kg paracetamol...... was administered, followed 1 hr later by an activated charcoal-Water slurry containing 50 (control), 25 or 5 g activated charcoal. The areas under the serum concentration-time curve (AUC) for paracetamol were used to estimate the efficacy of each activated charcoal dose. The AUC of the 25-g dose was found...

  20. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  1. Wheat bran as a substrate for thermo stable alpha-amylase production by gamma irradiated bacillus megaterium in solid state fermentation

    International Nuclear Information System (INIS)

    ElVatal, A.I.; Khalaf, M.A.

    2003-01-01

    Thermo stable alpha-amylase (EC 3.2.1.1) production from cheap agriculture-industrial waste wheat bran (WB) medium by superior potent gamma irradiated locally isolated strain of Bacillus megaterium in solid state fermentation (SSF) was studied. A highly yielding, stable enhanced isolated strain of bacillus megaterium in solid state fermentation (SSF) was studied. A highly yielding stable enhanced isolate B. megaterium- gamma 21F derived from the 10 kGy, treatment, exhibited the highest alpha-amylase activity under SSF, with 2.8 fold more enzyme titer as compared to the unirradiated wild strain. A vancomycin (Vm) resistant gamma irradiated enhanced isolate B. megaterium-gamma 21F2 (which was selected throughout the subsequent work) secreted (1.27 and 3.58) folds superior titers of alpha-amylase than the gamma irradiated parent isolate (B.megaterium -gamma21F) and unirradiated wild strain, respectively under SSF process. The effects of various parameters, such as moistening agent, initial moisture content level, initial ph, incubation temperature, inoculum size and incubation time on thermo stable alpha-amylase production by B.megaterium-gamma 21F2 under SSF were studied. Maximum enzyme production was recorded in WB medium moistened with (1:2, w/v) distilled water at initial ph (7.0) and inoculated with (2.24 x 10 8 cells/g WB) after 48 h incubation at 40 C degree. Between different solvents used for enzyme extraction from fermented WB mass, distilled water at ph (7.0) was the superior efficient leaching solvent. The specific activity of the precipitated partially purified crude thermo stable enzyme was (258.7 U/mg protein) with ph optima (6.5-7.0), at optimal temperatures (65-70 c degree) and it retained about 53% of its maximum activity after 12 h incubation at 70 c degree. The partially purified crude enzyme was used for starch digestion (5%0 under optimized reaction conditions, wherein (98.2%) starch hydrolysis was attained after 6 h

  2. Review of the sustainability of the forest sector to produce charcoal from planted forests; Analise da sustentabilidade do setor florestal para producao de carvao vegetal a partir de florestas plantadas

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Thiago Oliveira [Fundacao de Tecnologia Florestal e Geoprocessamento (NUPA/FUNTEC), Brasilia, DF (Brazil). Nucleo de Projetos Ambientais

    2008-07-01

    Brazil is the world's greater producer of charcoal and most of this production takes care of to the siderurgical sector. Thus, one understands that the Brazilian steel is produced of sustainable form. However, such sustainability is not based only on a renewable energy source. The origin of the wood for the carbonization, if proceeding from planted forests or native bushes, is crucial factor in this analysis. Beyond the ambient dimension, the sustainability of the charcoal segment also is influenced by its social, economic and technological aspects. In this context, the present article searches, through the construction and the analysis of the diagnosis of the charcoal in Brazil, to evaluate the sustainability of the sector and to consider alternatives to reach it. The current model of production of charcoal in the country is unsustainable. The main adopted systems of carbonization in Brazil are low level technological with consequent decrease production. The activity is unhealthy, beyond having many cases of enslaved and infantile work. The coal of native forests is much cheaper and the fiscalization is poor, fact that discourages its production from planted forests. But if the vegetal coal will be understood as an energy solution for the siderurgical sector measures can be taken to search a model of sustainable production. (author)

  3. Methyl iodide trapping efficiency of aged charcoal samples from Bruce-A emergency filtered air discharge systems

    International Nuclear Information System (INIS)

    Wren, J.C.; Moore, C.J.; Rasmussenn, M.T.; Weaver, K.R.

    1999-01-01

    Charcoal filters are installed in the emergency filtered air discharge system (EFADS) of multiunit stations to control the release of airborne radioiodine in the event of a reactor accident. These filters use highly activated charcoal impregnated with triethylenediamine (TEDA). The TEDA-impregnated charcoal is highly efficient in removing radioiodine from flowing airstreams. The iodine-removal efficiency of the charcoal is presumed to deteriorate slowly with age, but current knowledge of this effect is insufficient to predict with confidence the performance of aged charcoal following an accident. Experiments were performed to determine the methyl iodide removal efficiency of aged charcoal samples taken from the EFADS of Ontario Hydro's Bruce-A nuclear generating station. The charcoal had been in service for ∼4 yr. The adsorption rate constant and capacity were measured under post-loss-of-coolant accident conditions to determine the efficiency of the aged charcoal. The adsorption rate constants of the aged charcoal samples were observed to be extremely high, yielding a decontamination factor (DF) for a 20-cm-deep bed of the aged charcoal >1 X 10 15 . The results show that essentially no CH 3 I would escape from a 20-cm-deep bed of the aged charcoal and that the requirement for a DF of 1000 for organic iodides in the EFADS filters would be exceeded by a tremendous margin. With such high DFs, the release of iodine from a 20-cm-deep bed would be virtually impossible to detect. The adsorption capacities observed for the aged charcoal samples approach the theoretical chemisorption capacity of 5 wt% TEDA charcoal, indicating that aging in the EFADS for 4 yr has had a negligible impact on the adsorption capacity. The results indicate that the short- and long-term performances of the aged charcoal in the EFADS of Bruce-A following an accident would still far exceed performance requirements. (author)

  4. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system

    KAUST Repository

    Lu, Xuefei; Liang, Liyin L.; Wang, Lixin; Jenerette, G. Darrel; McCabe, Matthew; Grantz, David A.

    2016-01-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through

  5. Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK.

    Science.gov (United States)

    Kiran, Kondepudi Kanthi; Chandra, T S

    2008-01-01

    A moderately halophilic alkalitolerant Bacillus sp. Strain TSCVKK, with an ability to produce extracellular halophilic, alkalitolerant, surfactant, and detergent-stable alpha-amylase was isolated from soil samples obtained from a salt-manufacturing industry in Chennai. The culture conditions for higher amylase production were optimized with respect to NaCl, substrate, pH, and temperature. Maximum amylase production of 592 mU/ml was achieved in the medium at 48 h with 10% NaCl, 1% dextrin, 0.4% yeast extract, 0.2% tryptone, and 0.2% CaCl(2) at pH 8.0 at 30 degrees C. The enzyme activity in the culture supernatant was highest with 10% NaCl at pH 7.5 and 55 degrees C. The amylase that was partially purified by acetone precipitation was highly stable in various surfactants and detergents. Glucose, maltose, and maltooligosaccharides were the main end products of starch hydrolysis indicating that it is an alpha-amylase.

  6. BIO-PCI, Charcoal injection in Blast Furnaces: State of the art and economic perspectives

    Directory of Open Access Journals (Sweden)

    Feliciano-Bruzual, C.

    2013-12-01

    Full Text Available The injection of grinded particles of charcoal through the tuyeres in Blast Furnaces, here coined Bio-PCI, presents as an attractive and plausible alternative to significantly reduce the CO2 emissions generated during hot metal production. In this contribution a summary of the technological fundaments, benefits and limitations of the incorporation of Bio-PCI is presented. Additionally the principal economic challenges of renewables fuel in ironmaking are exposed, with especial interest in the main productions costs of charcoal making. In this sense, a strategic question arises: can the residual biomass drive the emergence of Bio-PCI?, our analysis leads to conclude that the use of residual biomass (e.g. agricultural and forestry residues may significantly reduce the production cost in 120-180 USD/t in comparison to primary woods sources, this naturally increment the economical attractiveness of Bio-PCI substitution.La inyección de carbón vegetal por toberas en Altos Hornos, aqui denominada Bio-PCI, se presenta como una forma atractiva y realista de reducir significativamente las emisiones de CO2 generadas durante la producción de arrabio. En esta contribución se presenta un resumen de los fundamentos tecnológicos, los beneficios y las limitaciones de la incorporación de la tecnología del Bio-PCI. Adicionalmente se exponen los retos económicos que enfrentan los combustibles renovables a los fósiles, con especial interés en los principales costos de producción del carbón vegetal. En este sentido se plantea una pregunta estratégica: ¿puede la biomasa residual impulsar el desarrollo de la Bio-PCI?. Nuestro análisis conlleva a concluir que la utilización de biomasa residual (residuos forestales y agrícolas puede reducir sensiblemente el costo del carbón vegetal entre 120-180 USD/t en comparación con biomasa primaria, incrementando su competitividad frente al carbón mineral.

  7. Desulphurization characteristics of bamboo charcoal from sulfur solution

    Directory of Open Access Journals (Sweden)

    Shengbo Ge

    2017-01-01

    Full Text Available Sulfur powder and sulfur dioxide (SO2 often floated in air, produced acid rain and algal blooms, and could cause diseases. Bamboo charcoal could have adsorption and filtration properties. In order to figure out the optimal adsorption condition and the intrinsic change of the bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. Fe2(SO43’s, Na2SO4’s, Na2S2O8’s, S’s, and Na2SO3’s optimal adsorption condition was the concentration of 19 g/1000 g and stir time of 20 min, 21 g/1000 g and stir time of 60 min, 7 g/1000 g and stir time of 120 min, 11 g/1000 g and stir time of 120 min, 21 g/1000 g and stir time of 60 min, respectively. FT-IR spectra showed that for FT-IR spectra of Fe2(SO43, the transmissivity of the peaks at 3435 cm−1 and 2925 cm−1 achieved the maximum for 60 min and the concentration was 19 g/1000 g, the transmissivity of the peaks at 1630 cm−1, 1060 cm−1 and 660 cm−1 achieved the maximum for 60 min and the concentration was 7 g/1000 g. For FT-IR spectra of Na2SO4, the transmissivity of the peaks at 1630 cm−1, 1060 cm−1 and 660 cm−1 achieved the maximum for 20 min and the concentration was 13 g/1000 g. For FT-IR spectra of Na2S2O8, the transmissivity of the peaks at 3435 cm−1, 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 120 min and the concentration was 19 g/1000 g. For FT-IR spectra of S, the transmissivity of the peaks at 3435 cm−1, 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 20 min and the concentration was 11 g/1000 g, 17 g/1000 g and 21 g/1000 g. For FT-IR spectra of Na2SO3, the transmissivity of the peaks at 3435 cm−1 achieved the maximum for 120 min and the concentration was 5 g/1000 g, the transmissivity of the peaks at 2925 cm−1, 1630 cm−1 and 1060 cm−1 achieved the maximum for 120 min and the concentration was 11 g/1000 g. In these states, the

  8. A Stable, Magnetic, and Metallic Li3O4 Compound as a Discharge Product in a Li-Air Battery.

    Science.gov (United States)

    Yang, Guochun; Wang, Yanchao; Ma, Yanming

    2014-08-07

    The Li-air battery with the specific energy exceeding that of a Li ion battery has been aimed as the next-generation battery. The improvement of the performance of the Li-air battery needs a full resolution of the actual discharge products. Li2O2 has been long recognized as the main discharge product, with which, however, there are obvious failures on the understanding of various experimental observations (e.g., magnetism, oxygen K-edge spectrum, etc.) on discharge products. There is a possibility of the existence of other Li-O compounds unknown thus far. Here, a hitherto unknown Li3O4 compound as a discharge product of the Li-air battery was predicted through first-principles swarm structure searching calculations. The new compound has a unique structure featuring the mixture of superoxide O2(-) and peroxide O2(2-), the first such example in the Li-O system. The existence of superoxide O2(-) creates magnetism and hole-doped metallicity. Findings of Li3O4 gave rise to direct explanations of the unresolved experimental magnetism, triple peaks of oxygen K-edge spectra, and the Raman peak at 1125 cm(-1) of the discharge products. Our work enables an opportunity for the performance of capacity, charge overpotential, and round-trip efficiency of the Li-air battery.

  9. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  10. Activated charcoal and baking soda to reduce odor associated with extensive blistering disorders.

    Science.gov (United States)

    Chakravarthi, Arun; Srinivas, C R; Mathew, Anil C

    2008-01-01

    Skin disease leading to extensive blistering and loss of skin is associated with a characteristic smell. Odor can cause physiologic disturbances such as increase in heart rate and respiratory rate. It can also cause nausea and vomiting and is disturbing to bystanders. To test odor reducing capability of activated charcoal. In this blinded experimental study we used putrefied amniotic membrane to produce odor and studied the effectiveness of activated charcoal and soda-bi-carbonate to reduce odor. Statistical analysis with Kruskal Wall's Chi Square Test and Man Whitney U test showed significant reduction of odor using activated charcoal by itself or along with soda-bi-carbonate. We recommend the usage of activated charcoal with/without soda bicarbonate as an inexpensive practical measure to reduce foul odor associated with extensive skin loss.

  11. Activated charcoal and baking soda to reduce odor associated with extensive blistering disorders

    Directory of Open Access Journals (Sweden)

    Chakravarthi Arun

    2008-01-01

    Full Text Available Background: Skin disease leading to extensive blistering and loss of skin is associated with a characteristic smell. Odor can cause physiologic disturbances such as increase in heart rate and respiratory rate. It can also cause nausea and vomiting and is disturbing to bystanders. Aims: To test odor reducing capability of activated charcoal. Methods: In this blinded experimental study we used putrefied amniotic membrane to produce odor and studied the effectiveness of activated charcoal and soda-bi-carbonate to reduce odor. Results: Statistical analysis with Kruskal Wall′s Chi Square Test and Man Whitney U test showed significant reduction of odor using activated charcoal by itself or along with soda-bi-carbonate. Conclusion: We recommend the usage of activated charcoal with/without soda bicarbonate as an inexpensive practical measure to reduce foul odor associated with extensive skin loss.

  12. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  13. An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis.

    Directory of Open Access Journals (Sweden)

    Masaharu Tsuji

    Full Text Available Milk fat curdle in sewage is one of the refractory materials for active sludge treatment under low temperature conditions. For the purpose of solving this problem by using a bio-remediation agent, we screened Antarctic yeasts and isolated SK-4 strain from algal mat of sediments of Naga-ike, a lake in Skarvsnes, East Antarctica. The yeast strain showed high nucleotide sequence homologies (>99.6% to Mrakia blollopis CBS8921(T in ITS and D1/D2 sequences and had two unique characteristics when applied on an active sludge; i.e., it showed a potential to use various carbon sources and to grow under vitamin-free conditions. Indeed, it showed a biochemical oxygen demand (BOD removal rate that was 1.25-fold higher than that of the control. We considered that the improved BOD removal rate by applying SK-4 strain was based on its lipase activity and characteristics. Finally, we purified the lipase from SK-4 and found that the enzyme was quite stable under wide ranges of temperatures and pH, even in the presence of various metal ions and organic solvents. SK-4, therefore, is a promising bio-remediation agent for cleaning up unwanted milk fat curdles from dairy milk wastewater under low temperature conditions.

  14. Seasonal and spatial trends in production and stable isotope signatures of primary producers in Alberta oil sands reclamation wetlands

    International Nuclear Information System (INIS)

    Boutsivongsakd, M; Chen, H.; Legg, A.; Farwell, A.; Dixon, G.

    2010-01-01

    Oil sands processing produces large amounts of waste water that contains polycyclic aromatic hydrocarbons (PAHs) and naphthenic acids (NAs). This study investigated the effects of exposure to PAHs and NA in aquatic organisms. The carbon and nitrogen dynamics in primary producers using stable isotopes in process-affected and reference wetlands were studied. Plankton and periphytic samples from artificial wetland substrates were collected and analyzed. Periphyton was collected in 14 to 20 day intervals for 5 different time periods in 2007 and 2008 in order to analyze seasonal trends in isotopic composition. Results of the study showed d15N enriched values for some consolidated tailings (CT) at sites in 2008. Other sites with mature fine tailings (MFT) as well as non-MFT sites did not have enriched d15N values. The study suggested that there are variations in ammonia levels in the CTs of different oil sands operators. Differences in the quality of the CT resulted in differences in d15N values of the periphyton-dominated by algae as well as in the periphyton dominated by microbes.

  15. Salts of the iodine oxyacids in the impregnation of adsorbent charcoal for trapping radioactive methyliodide

    International Nuclear Information System (INIS)

    Deitz, V.R.; Blachly, C.H.

    1977-01-01

    Radioactive iodine and radioactive methyliodide can be more than 99.7 percent removed from the air stream of a nuclear reactor by passing the air stream through a 2-inch thick filter which is made up of impregnated charcoal prepared by contacting the charcoal with a solution containing KOH, iodine or an iodide, and an oxyacid, followed by contacting with a solution containing a tertiary amine. 3 claims

  16. Nitrate Removal from Aqueous Solutions Using Almond Charcoal Activated with Zinc Chloride

    Directory of Open Access Journals (Sweden)

    Mohsen Arbabi

    2017-10-01

    Full Text Available Background & Aims of the Study: Nitrate is one of the most important contaminants in aquatic environments that can leached to water resources from various sources such as sewage, fertilizers and decomposition of organic waste. Reduction of nitrate to nitrite in infant’s blood stream can cause “blue baby” disease in infants. The aim of this study was to evaluate the nitrate removal from aqueous solutions using modified almond charcoal with zinc chloride. Materials &Methods: This study is an experimental survey. At the first charcoal almond skins were prepared in 5500C and then modified with ZnCl2. Morphologies and characterization of almond shell charcoal were evaluated by using FTIR, EDX, BET and FESEM. Adsorption experiments were conducted with 500 ml sample in Becker. The nitrate concentration removal, contact time, pH and charcoal dosage were investigated. The central composite design method was used to optimizing the nitrate removal process. The results analyzed with ANOVA test. Results: The best condition founded in 48 min, 1250 ppm, 125 mg/l and 3 for retention time, primary nitrate concentration, charcoal dosage and pH respectively. The results showed that the nitrate removal decreases with increasing pH. Modification of skin charcoal is show increasing of nitrate removal from aquatic solution. Conclusion: In this study, the maximum nitrate removal efficiency for raw charcoal and modified charcoal was determined 15.47% and 62.78%, respectively. The results showed that this method can be used as an effective method for removing nitrate from aqueous solutions.

  17. Physico-chemical characteristics and market potential of sawdust charcoal briquette

    Energy Technology Data Exchange (ETDEWEB)

    Akowuah, Joseph O.; Kemausuor, Francis [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Agricultural Engineering; Mitchual, Stephen J. [Univ. of Education, Winneba, Kumasi (Ghana). Dept. of Design and Technology Education

    2012-11-01

    In the absence of the widespread distribution of modern cooking fuels in developing countries, efforts are being made to utilise biomass residues which abound in most of these countries. This is intended to replace portions of firewood and charcoal and thereby reduce the cutting down of forests for fuel purposes. Briquettes from agro-residues have therefore been promoted as a better replacement to firewood and charcoals for heating, cooking and other industrial applications in both urban and rural communities. This study sought to assess the physico-chemical properties of charcoal briquettes produced in Ghana and also establish demand for and willingness of potential users to substitute charcoal and firewood with a charcoal briquette. A laboratory experiment was conducted to determine the physicochemical characteristics of the briquettes. This was done prior to the distribution of the briquette to potential users to collaborate their views or otherwise on the handling and burning characteristics of the charcoal briquette. A survey was undertaken a week later using questionnaires to access the willingness of the potential users to use the briquettes. Sixty respondents were purposively selected from households and the hospitality industry for the survey. Results of the physico-chemical assessment of the briquettes were as follows: length (75 to 120 mm), moisture content (5.7% dry basis), density (1.1 g/cm{sup 3}), ash content (2.6%), fixed carbon (20.7%), volatile matter (71%) and calorific value (4,820 kcal/kg). Responses from the survey indicated that the briquette is easy to ignite, has a long burning time and has good heat output. Respondents also observed that the briquettes did not give off sparks and had less smoke and ash content as compared to the regular charcoal they often used. Finally, 93% of the respondents indicated their willingness to use the briquettes if the price was comparable to charcoal. (orig.)

  18. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L. [Valladolid Univ., Dept. de Quimica Analitica, Facultad de Ciencias (Spain); Garcia-Talavera, P.; Singi, G.M.; Martin, E. [Hospital Clinico Univ., Servicio de Medicina Nuclear, Salamanca (Spain)

    2006-07-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of {sup 131}I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  19. Assessment of radiation exposure of nuclear medicine staff using personal TLD dosimeters and charcoal detectors

    International Nuclear Information System (INIS)

    Jimenez, F.; Garcia-Talavera, M.; Pardo, R.; Deban, L.; Garcia-Talavera, P.; Singi, G.M.; Martin, E.

    2006-01-01

    Although the main concern regarding exposure to ionizing radiation for nuclear medicine workers is external radiation, inhalation of radionuclides can significantly contribute to the imparted doses. We propose a new approach to assess exposure to inhalation of 131 I based on passive monitoring using activated charcoal detectors. We compared the inhalation doses to the staff of a nuclear medicine department, based on the measurements derived from charcoal detectors placed at various locations, and the external doses monitored using personal TLD dosimeters. (authors)

  20. Use of stable nitrogen isotope 15N in investigating nitrogen uptake by plants from allylisothiocyanate decomposition products

    International Nuclear Information System (INIS)

    Dolejskova, J.; Kovar, J.

    1976-01-01

    The assimilability of nitrogen from allylisothiocyanate or from its nitrogenous decomposition products by plants was investigated using 15 N-labelled allylisothiocyanate. The results show that plant nitrogen assimilation from allylisothiocyanate is the higher, the lower the total nitrogen content of the nutritive medium. (author)

  1. The pH-dependent adsorption of tributyltin to charcoals and soot

    International Nuclear Information System (INIS)

    Fang Liping; Borggaard, Ole K.; Marcussen, Helle; Holm, Peter E.; Bruun Hansen, Hans Christian

    2010-01-01

    Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m 2 g -1 have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 μmol m -2 ) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity. - Tributyltin adsorption to black carbon increases at increasing pH but charcoal exhibits electrostatic and hydrophobic adsorption, whereas soot only adsorbs hydrophobically.

  2. The pH-dependent adsorption of tributyltin to charcoals and soot

    Energy Technology Data Exchange (ETDEWEB)

    Fang Liping, E-mail: fang@life.ku.d [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Borggaard, Ole K.; Marcussen, Helle; Holm, Peter E.; Bruun Hansen, Hans Christian [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)

    2010-12-15

    Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m{sup 2} g{sup -1} have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 {mu}mol m{sup -2}) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity. - Tributyltin adsorption to black carbon increases at increasing pH but charcoal exhibits electrostatic and hydrophobic adsorption, whereas soot only adsorbs hydrophobically.

  3. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies.

    Science.gov (United States)

    Yu, Da Young; Lee, Sang Yoon; Lee, Gyun Min

    2018-05-01

    Previously, it was inferred that a high glutamine synthetase (GS) activity in human embryonic kidney (HEK) 293E cells results in elevated resistance to methionine sulfoximine (MSX) and consequently hampers GS-mediated gene amplification and selection by MSX. To overcome this MSX resistance in HEK293E cells, a GS-knockout HEK293E cell line was generated using the CRISPR/Cas9 system to target the endogenous human GS gene. The GS-knockout in the HEK293E cell line (RK8) was confirmed by Western blot analysis of GS and by observation of glutamine-dependent growth. Unlike the wild type HEK293E cells, the RK8 cells were successfully used as host cells to generate a recombinant HEK293E cell line (rHEK293E) producing a monoclonal antibody (mAb). When the RK8 cells were transfected with the GS expression vector containing the mAb gene, rHEK293E cells producing the mAb could be selected in the absence as well as in the presence of MSX. The gene copies and mRNA expression levels of the mAb in rHEK293E cells were also quantified using qRT-PCR. Taken together, the GS-knockout HEK293E cell line can be used as host cells to generate stable rHEK293E cells producing a mAb through GS-mediated gene selection in the absence as well as in the presence of MSX. © 2018 Wiley Periodicals, Inc.

  4. Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain.

    Science.gov (United States)

    Bogaard, Amy; Hodgson, John; Nitsch, Erika; Jones, Glynis; Styring, Amy; Diffey, Charlotte; Pouncett, John; Herbig, Christoph; Charles, Michael; Ertuğ, Füsun; Tugay, Osman; Filipovic, Dragana; Fraser, Rebecca

    This investigation combines two independent methods of identifying crop growing conditions and husbandry practices-functional weed ecology and crop stable carbon and nitrogen isotope analysis-in order to assess their potential for inferring the intensity of past cereal production systems using archaeobotanical assemblages. Present-day organic cereal farming in Haute Provence, France features crop varieties adapted to low-nutrient soils managed through crop rotation, with little to no manuring. Weed quadrat survey of 60 crop field transects in this region revealed that floristic variation primarily reflects geographical differences. Functional ecological weed data clearly distinguish the Provence fields from those surveyed in a previous study of intensively managed spelt wheat in Asturias, north-western Spain: as expected, weed ecological data reflect higher soil fertility and disturbance in Asturias. Similarly, crop stable nitrogen isotope values distinguish between intensive manuring in Asturias and long-term cultivation with minimal manuring in Haute Provence. The new model of cereal cultivation intensity based on weed ecology and crop isotope values in Haute Provence and Asturias was tested through application to two other present-day regimes, successfully identifying a high-intensity regime in the Sighisoara region, Romania, and low-intensity production in Kastamonu, Turkey. Application of this new model to Neolithic archaeobotanical assemblages in central Europe suggests that early farming tended to be intensive, and likely incorporated manuring, but also exhibited considerable variation, providing a finer grained understanding of cultivation intensity than previously available.

  5. QA/QC For Radon Concentration Measurement With Charcoal Canister

    International Nuclear Information System (INIS)

    Pantelic, G.; Zivanovic, M.; Rajacic, M.; Krneta Nikolic, J.; Todorovic, D.

    2015-01-01

    The primary concern of any measuring of radon or radon progeny must be the quality of the results. A good quality assurance program, when properly designed and diligently followed, ensures that laboratory staff will be able to produce the type and quality of measurement results which is needed and expected. Active charcoal detectors are used for testing the concentration of radon in dwellings. The method of measurement is based on radon adsorption on coal and measurement of gamma radiation of radon daughters. Upon closing the detectors, the measurement was carried out after achieving the equilibrium between radon and its daughters (at least 3 hours) using NaI or HPGe detector. Radon concentrations as well as measurement uncertainties were calculated according to US EPA protocol 520/5-87-005. Detectors used for the measurements were calibrated by 226Ra standard of known activity in the same geometry. Standard and background canisters are used for QA and QC, as well as for the calibration of the measurement equipment. Standard canister is a sealed canister with the same matrix and geometry as the canisters used for measurements, but with the known activity of radon. Background canister is a regular radon measurement canister, which has never been exposed. The detector background and detector efficiency are measured to ascertain whether they are within the warning and acceptance limits. (author).

  6. Temperature calibration formula for activated charcoal radon collectors

    International Nuclear Information System (INIS)

    Cooper, Alexandre; Le, Thiem Ngoc; Iimoto, Takeshi; Kosako, Toshiso

    2011-01-01

    Radon adsorption by activated charcoal collectors such as PicoRad radon detectors is known to be largely affected by temperature and relative humidity. Quantitative models are, however, still needed for accurate radon estimation in a variable environment. Here we introduce a temperature calibration formula based on the gas adsorption theory to evaluate the radon concentration in air from the average temperature, collection time, and liquid scintillation count rate. On the basis of calibration experiments done by using the 25 m 3 radon chamber available at the National Institute of Radiological Sciences in Japan, we found that the radon adsorption efficiency may vary up to a factor of two for temperatures typical of indoor conditions. We expect our results to be useful for establishing standardized protocols for optimized radon assessment in dwellings and workplaces. - Research highlights: → The temperature effect on radon adsorption is proportional to αe β/T . → The calibration formula is CF(T,t)=3.1x10 -5 e (2887)/((T+273)) [1-e -0.080t ]. → The radon adsorption efficiency varies up to a factor of two for T = 8.5-31 o C. → The average temperature is suitable for estimating CF(T,t) in a fluctuating environment.

  7. Temperature calibration formula for activated charcoal radon collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Alexandre, E-mail: alexandre.cooper@gmail.co [Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Le, Thiem Ngoc [Institute of Nuclear Science and Technology, Vietnam Atomic Energy Commission, 59 Ly Thuong Kiet, Hanoi (Viet Nam); Iimoto, Takeshi; Kosako, Toshiso [Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2011-01-15

    Radon adsorption by activated charcoal collectors such as PicoRad radon detectors is known to be largely affected by temperature and relative humidity. Quantitative models are, however, still needed for accurate radon estimation in a variable environment. Here we introduce a temperature calibration formula based on the gas adsorption theory to evaluate the radon concentration in air from the average temperature, collection time, and liquid scintillation count rate. On the basis of calibration experiments done by using the 25 m{sup 3} radon chamber available at the National Institute of Radiological Sciences in Japan, we found that the radon adsorption efficiency may vary up to a factor of two for temperatures typical of indoor conditions. We expect our results to be useful for establishing standardized protocols for optimized radon assessment in dwellings and workplaces. - Research highlights: {yields} The temperature effect on radon adsorption is proportional to {alpha}e{sup {beta}/T}. {yields} The calibration formula is CF(T,t)=3.1x10{sup -5}e{sup (2887)/((T+273))} [1-e{sup -0.080t}]. {yields} The radon adsorption efficiency varies up to a factor of two for T = 8.5-31 {sup o}C. {yields} The average temperature is suitable for estimating CF(T,t) in a fluctuating environment.

  8. Combined paracetamol and amitriptyline adsorption to activated charcoal

    DEFF Research Database (Denmark)

    Hoegberg, Lotte Christine Groth; Groenlykke, Thor Buch; Abildtrup, Ulla

    2010-01-01

    Objectives. High-gram drug doses seen in multiple-drug poisonings might be close to the adsorption capacity of activated charcoal (AC). The aim was to determine the maximum adsorption capacities (Q(m)) of amitriptyline and paracetamol, separately and in combination, to AC. Methods. ACs (Carbomix......® and Norit Ready-To-Use) were tested in vitro. At pH 1.2 and pH 7.2, 0.250 g AC and paracetamol and/or amitriptyline were mixed and incubated. The AC: drug ratios were 10:1, 5:1, 3:1, 2:1, and 1:1. The mixed-drug adsorption vials contained the same AC: paracetamol ratios, but amitriptyline was added as fixed...... dose (0.080 g) to all samples. Drug concentrations in the liquid phase were analyzed using high-performance liquid chromatography (HPLC)/UV-detection. Results. Q(m), amitriptyline, were 0.49 g/g Carbomix® and 0.70 g/g Norit Ready-To-Use, and Q(m), paracetamol, were 0.63 g/g Carbomix® and 0.72 g/g Norit...

  9. Development and Performance Evaluation of Charcoal-Fired Cooking Stoves

    International Nuclear Information System (INIS)

    Ndirika, V. I. O.

    2002-01-01

    Three different sizes of cooking stoves which utilizes charcoal as source of fuel with fuel capacities 15.7 kg, 10.6 kg and 3.5 kg for the large, medium and small stoves respectively were designed and fabricated for domestic cooking of food by the rural communities. The stoves were evaluated for performance in terms of fuel efficiency, fuel consumption rate, cooking efficiency and boiling time during testing operation with water. From the result it was revealed that the rate of fuel consumption for the large, medium and small cooking stove were 7.2 kg/h, 5.9 kg/h and 2.3 kg/h respectively, and their fuel efficiencies were 88%, 86% and 82% respectively. Also the cooking efficiencies of these stoves were 94%, 83% and 72% respectively. A comparative evaluation of the cooking efficiencies, fuel efficiencies, fuel consumption rate and cooking time between the three types of stoves and the traditional three stone open fire system, reveals that the cooking efficiencies and fuel efficiencies obtained were greater than the values obtained with the traditional three stone open fire system. But the values of the fuel consumption rate and boiling time obtained for the three stoves were lower than the values obtained with the traditional system. And the difference between their means was statistically significant at 5 % level of significance

  10. Radon measurements with charcoal canisters temperature and humidity considerations

    Directory of Open Access Journals (Sweden)

    Živanović Miloš Z.

    2016-01-01

    Full Text Available Radon testing by using open-faced charcoal canisters is a cheap and fast screening method. Many laboratories perform the sampling and measurements according to the United States Environmental Protection Agency method - EPA 520. According to this method, no corrections for temperature are applied and corrections for humidity are based on canister mass gain. The EPA method is practiced in the Vinča Institute of Nuclear Sciences with recycled canisters. In the course of measurements, it was established that the mass gain of the recycled canisters differs from mass gain measured by Environmental Protection Agency in an active atmosphere. In order to quantify and correct these discrepancies, in the laboratory, canisters were exposed for periods of 3 and 4 days between February 2015 and December 2015. Temperature and humidity were monitored continuously and mass gain measured. No significant correlation between mass gain and temperature was found. Based on Environmental Protection Agency calibration data, functional dependence of mass gain on humidity was determined, yielding Environmental Protection Agency mass gain curves. The results of mass gain measurements of recycled canisters were plotted against these curves and a discrepancy confirmed. After correcting the independent variable in the curve equation and calculating the corrected mass gain for recycled canisters, the agreement between measured mass gain and Environmental Protection Agency mass gain curves was attained. [Projekat Ministarstva nauke Republike Srbije, br. III43009: New Technologies for Monitoring and Protection of Environment from Harmful Chemical Substances and Radiation Impact

  11. Combined paracetamol and amitriptyline adsorption to activated charcoal

    DEFF Research Database (Denmark)

    Hoegberg, Lotte Christine Groth; Groenlykke, Thor Buch; Abildtrup, Ulla

    2010-01-01

    Objectives. High-gram drug doses seen in multiple-drug poisonings might be close to the adsorption capacity of activated charcoal (AC). The aim was to determine the maximum adsorption capacities (Q(m)) of amitriptyline and paracetamol, separately and in combination, to AC. Methods. ACs (Carbomix......® and Norit Ready-To-Use) were tested in vitro. At pH 1.2 and pH 7.2, 0.250 g AC and paracetamol and/or amitriptyline were mixed and incubated. The AC: drug ratios were 10:1, 5:1, 3:1, 2:1, and 1:1. The mixed-drug adsorption vials contained the same AC: paracetamol ratios, but amitriptyline was added as fixed...... Ready-To-Use. The tested pH differences had minor effect on the adsorption. The mixed-drug adsorption showed about 40% Q(m) reduction of each drug with increasing amounts of drug/g AC, but the total gram of drug adsorbed to AC was increased compared to one-drug conditions. Conclusion. The adsorption...

  12. Stable Tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris [Fermilab

    2018-04-13

    For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  13. Accounting for cyanide and its degradation products at three Nevada gold mines; constraints from stable C- and N-isotopes

    Science.gov (United States)

    Johnson, C.A.; Grimes, D.J.; Rye, R.O.

    1998-01-01

    An understanding of the fate of cyanide (CN-) in mine process waters is important for addressing environmental concerns and for taking steps to minimize reagent costs. The utility of stable isotope methods in identifying cyanide loss pathways has been investigated in case studies at three Nevada gold mines. Freshly prepared barren solutions at the mines have cyanide d15N and d13C values averaging -4 ? and -36 ?, respectively, reflecting the nitrogen and carbon sources used by commercial manufacturers, air and natural gas methane. Pregnant solutions returning from ore heaps display small isotopic shifts to lower d15N and d13C values. The shifts are similar to those observed in laboratory experiments where cyanide was progressively precipitated as a cyanometallic compound, and are opposite in sign and much smaller in magnitude than the shifts observed in experiments where HCN was offgassed. Offgassing is inferred to be a minor cyanide loss mechanism in the heap leach operations at the three mines, and precipitation as cyanometallic compounds, and possibly coprecipitation with ferric oxides, is inferred to be an important loss mechanism. Isotopic analysis of dissolved inorganic carbon (DIC) shows that uptake of high d13C air CO2 has been important in many barren and pregnant solutions. However, DIC in reclaim pond waters at all three mines has low d13C values of -28 to -34 ? indicating cyanide breakdown either by hydrolysis or by other chemical pathways that break the C-N bond. Isotope mass balance calculations indicate that about 40 % of the DIC load in the ponds, at a minimum, was derived from cyanide breakdown. This level of cyanide hydrolysis accounts for 14-100 % of the dissolved inorganic nitrogen species present in the ponds. Overall, isotope data provide quantitative evidence that only minor amounts of cyanide are lost via offgassing and that significant amounts are destroyed via hydrolysis and related pathways. The data also highlight the possibility that

  14. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  15. Carbon Stable-Isotope and Physicochemical Data as a Possible Tool to Differentiate between Honey-Production Environments in Uruguay

    Directory of Open Access Journals (Sweden)

    Verónica Berriel

    2018-06-01

    Full Text Available The allocation of honey origin is an increasingly important issue worldwide as it is closely related to product quality and consumer preference. In South America, honeys produced in grasslands and eucalyptus or native forests are preferred at the regional level, so their differentiation is essential to assure consumers of their authenticity according to their productive system. The objective of this study was to differentiate honeys produced in three environments: one, a monoculture system based on the eucalyptus forest, and two others based in natural environments of grasslands and native forests. To do this, honey’s physicochemical and isotopic variables (pH, free acidity, lactic acid content, moisture, total sugar content, and honey and extracted protein 13C isotopic composition were analysed. Discriminant analysis applied to the data revealed that, based on the selected variables, it was impossible to differentiate the three groups of honeys due to the superposition of those produced in grasslands and native forests. For this reason, a group of honeys derived from native and polyfloral environments (grasslands and native forests was formed and subjected to discriminant analysis (DA, together with the group of honeys derived from a commercial plantation of eucalyptus forest. The model obtained in this case achieved 100% correct allocation both at the training stage and the cross-validation stage.

  16. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  17. Combining UHPLC-High Resolution MS and Feeding of Stable Isotope Labeled Polyketide Intermediates for Linking Precursors to End Products

    DEFF Research Database (Denmark)

    Klitgaard, Andreas; Frandsen, Rasmus John Normand; Holm, Dorte Koefoed

    2015-01-01

    acid (6-MSA) and 13C14-YWA1, both produced in-house, as well as commercial 13C7-benzoic acid and 2H7-cinnamic acid, in species of Fusarium, Byssochlamys, Aspergillus, and Penicillium. Incorporation of 6-MSA into terreic acid or patulin was not observed in any of six evaluated species covering three...... genera, because the 6-MSA was shunted into (2Z,4E)-2-methyl-2,4-hexadienedioic acid. This indicates that patulin and terreic acid may be produced in a closed compartment of the cell and that (2Z,4E)-2-methyl-2,4-hexadienedioic acid is a detoxification product toward terreic acid and patulin. In Fusarium...

  18. Inhalation Exposure to PM-Bound Polycyclic Aromatic Hydrocarbons Released from Barbecue Grills Powered by Gas, Lump Charcoal, and Charcoal Briquettes.

    Science.gov (United States)

    Badyda, Artur J; Widziewicz, Kamila; Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Jureczko, Izabela

    2018-01-01

    The present study seeks to define the possible cancer risk arising from the inhalation exposure to particle (PM)-bound polycyclic aromatic hydrocarbons (PAHs) present in barbecue emission gases and to compare the risk depending on the type of fuel used for grill powering. Three types of fuel were compared: liquid propane gas, lump charcoal, and charcoal briquettes. PM 2.5 and PM 2.5-100 were collected during grilling. Subsequently, 16 PAHs congeners were extracted from the PM samples and measured quantitatively using gas chromatography. The content of PM-bound PAHs was used to calculate PAHs deposition in the respiratory tract using the multiple path particle dosimetry model. Finally, a probabilistic risk model was developed to assess the incremental lifetime cancer risk (ILCR) faced by people exposed to PAHs. We found a distinctly greater PAHs formation in case of grills powered by charcoal briquettes. The summary concentration of PAHs (Σ16PAH) ranged from inhale barbecue particles for 5 h a day, 40 days a year exceeds the acceptable level set by the U.S. Environmental Protection Agency. We conclude that the type of heat source used for grilling influences the PM-bound PAHs formation. The greatest concentration of PAHs is generated when grilling over charcoal briquettes. Loading grills with food generates conspicuously more PAHs emissions. Traditional grilling poses cancer risk much above the acceptable limit, as opposed to much less risk involving gas powered grills.

  19. Thoron Mitigation System based on charcoal bed for applications in thorium fuel cycle facilities (part 1): Development of theoretical models for design considerations.

    Science.gov (United States)

    Sahoo, B K; Sudeep Kumara, K; Karunakara, N; Gaware, J J; Sapra, B K; Mayya, Y S

    2017-06-01

    Regulating the environmental discharge of 220 Rn (historically known as thoron) and its decay products from thorium processing facilities is important for protection of environment and general public living in the vicinities. Activated charcoal provides an effective solution to this problem because of its high adsorption capacity to gaseous element like radon. In order to design and develop a charcoal based Thoron Mitigation System, a mathematical model has been developed in the present work for studying the 220 Rn transport and adsorption in a flow through charcoal bed and estimating the 220 Rn mitigation factor (MF) as a function of system and operating parameters. The model accounts for inter- and intra-grain diffusion, advection, radioactive decay and adsorption processes. Also, the effects of large void fluctuation and wall channeling on the mitigation factor have been included through a statistical model. Closed form solution has been provided for the MF in terms of adsorption coefficient, system dimensions, grain size, flow rate and void fluctuation exponent. It is shown that the delay effects due to intra grain diffusion plays a significant role thereby rendering external equilibrium assumptions unsuitable. Also, the application of the statistical model clearly demonstrates the transition from the exponential MF to a power-law form and shows how the occurrence of channels with low probability can lower mitigation factor by several orders of magnitude. As a part of aiding design, the model is further extended to optimise the bed dimensions in respect of pressure drop and MF. The application of the results for the design and development of a practically useful charcoal bed is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Applying the Water-Energy-Food Nexus to the Charcoal Value Chain

    Directory of Open Access Journals (Sweden)

    Harry K. Hoffmann

    2017-12-01

    Full Text Available Globally, natural resources are increasingly under pressure, especially due to population growth, economic growth and transformation as well as climate change. As a result, the water, energy, and food (WEF nexus approach has emerged to understand interdependencies and commonly manage resources within a multi-scale and multi-level framework. In Sub-Saharan Africa, the high and growing consumption of traditional biomass for cooking purposes - notably fuelwood and charcoal—is both a key source of energy and contributor for food security as well as a pressure on natural resources. Improving the bioenergy value chains is essential for limiting environmental degradation and for securing the livelihoods of millions of people. Although the WEF nexus approach entails large potential to address the complex problems arising along the bioenergy value chains, these are currently not considered. Based on the WEF nexus approach, we analyze the different steps within the charcoal value chain in Sub-Saharan Africa and highlight the respective interdependencies and the potential for improving overall socio-economic and environmental sustainability. We emphasize the water, energy and food related implications of vicious and virtuous production cycles, separated by value chain segments. We discuss the potential and major challenges for implementing more sustainable value chains. Furthermore, we underline the necessity of applying WEF nexus approaches to these value chains in order to optimize environmental and social outcomes.

  1. Removal of Organic Dyes by Nanostructure ZnO-Bamboo Charcoal Composites with Photocatalysis Function

    Directory of Open Access Journals (Sweden)

    Xinliang Yu

    2015-01-01

    Full Text Available Composites of nanostructure zinc oxide (nano-ZnO and bamboo charcoal (BC were successfully prepared via impregnation-precipitation method. The products were characterized by XRD, SEM, and EDS. Rhodamine B (RhB and acid fuchsin (AF were selected as the organic dyes of photocatalysis degradation under the irradiation of ultraviolet light (UV. The influence of particle size of BC, irradiation time, pH value of the solution, and additive amount of H2O2 on removal of the dyes has been studied. The results show that smaller particle size of BC in the composites has a better removal effect. The composites possess the highest removal capacity for RhB and AF under the conditions of pH = 2 and pH = 5.4, respectively. The optimum additive amount of H2O2 for 5 mL RhB and AF was 0.050 mL and 0.1 mL, with a removal rate of 93% and 99%, respectively.

  2. Effect of Trichoderma-enriched organic charcoal in the integrated wood protection strategy.

    Directory of Open Access Journals (Sweden)

    Javier Ribera

    Full Text Available The gradual elimination of chromium from wood preservative formulations results in higher Cu leaching and increased susceptibility to wood decay fungi. Finding a sustainable strategy in wood protection has become of great interest among researchers. The objective of these in vitro studies was to demonstrate the effect of T-720-enriched organic charcoal (biochar against five wood decay basidiomycetes isolated from strongly damaged poles. For this purpose, the antagonistic potential of Trichoderma harzianum (strain T-720 was confirmed among other four Trichoderma spp. against five brown-rot basidiomycetes in dual culture tests. T-720 was genetically transformed and tagged with the green fluorescent protein (GFP in order to study its antagonistic mechanism against wood decay basidiomycetes. It was also demonstrated that T-720 inhibits the oxalic acid production by basidiomycetes, a well-known mechanism used by brown-rot fungi to detoxify Cu from impregnated wood. Additionally, this study evaluated the effect of biochar, alone or in combination with T-720, on Cu leaching by different preservatives, pH stabilization and prevention of wood decay caused by five basidiomycetes. Addition of biochar resulted in a significant Cu binding released from impregnated wood specimens. T-720-enriched biochar showed a significant reduction of wood decay caused by four basidiomycetes. The addition of T-720-enriched biochar to the soil into which utility poles are placed may improve the efficiency of Cr-free wood preservatives.

  3. Effects of nano bamboo charcoal on PAHs-degrading strain Sphingomonas sp. GY2B.

    Science.gov (United States)

    She, Bojia; Tao, Xueqin; Huang, Ting; Lu, Guining; Zhou, Zhili; Guo, Chuling; Dang, Zhi

    2016-03-01

    Nano bamboo charcoal (NBC) has been commonly used in the production of textiles, plastics, paint, etc. However, little is known regarding their effects towards the microorganisms. The effects of NBC on phenanthrene degrading strain Sphingomonas sp. GY2B were investigated in the present study. Results showed that the addition of NBC could improve the phenanthrene removal by Sphingomonas sp. GY2B, with removal efficiencies increased by 10.29-18.56% in comparison to the control at 24h, and phenanthrene was almost completely removed at 48h. With the presence of low dose of NBC (20 and 50mgL(-1)), strain GY2B displayed a better growth at 6h, suggesting that NBC was beneficial to the growth of GY2B and thus resulting in the quick removal of phenanthrene from water. However, the growth of strain GY2B in high dose of NBC (200mgL(-1)) was inhibited at 6h, and the inhibition could be attenuated and eliminated after 12h. NBC-effected phenanthrene solubility experiment suggested that NBC makes a negligible contribution to the solubilization of phenanthrene in water. Results of electronic microscopy analysis (SEM and TEM) indicated NBC may interact with the cell membrane, causing the enhanced membrane permeability and then NBC adsorbed on the membrane would enter into the cells. The findings of this work would provide important information for the future usage and long-term environmental risk assessment of NBC. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Respiratory health effects of occupational exposure to charcoal dust in Namibia

    Science.gov (United States)

    Kgabi, Nnenesi

    2016-01-01

    Background Charcoal processing activities can increase the risk of adverse respiratory outcomes. Objective To determine dose–response relationships between occupational exposure to charcoal dust, respiratory symptoms and lung function among charcoal-processing workers in Namibia. Methods A cross-sectional study was conducted with 307 workers from charcoal factories in Namibia. All respondents completed interviewer-administered questionnaires. Spirometry was performed, ambient and respirable dust levels were assessed in different work sections. Multiple logistic regression analysis estimated the overall effect of charcoal dust exposure on respiratory outcomes, while linear regression estimated the exposure-related effect on lung function. Workers were stratified according to cumulative dust exposure category. Results Exposure to respirable charcoal dust levels was above occupational exposure limits in most sectors, with packing and weighing having the highest dust exposure levels (median 27.7 mg/m3, range: 0.2–33.0 for the 8-h time-weighted average). The high cumulative dust exposure category was significantly associated with usual cough (OR: 2.1; 95% CI: 1.1–4.0), usual phlegm (OR: 2.1; 95% CI: 1.1–4.1), episodes of phlegm and cough (OR: 2.8; 95% CI: 1.1–6.1), and shortness of breath. A non-statistically significant lower adjusted mean-predicted % FEV1 was observed (98.1% for male and 95.5% for female) among workers with greater exposure. Conclusions Charcoal dust levels exceeded the US OSHA recommended limit of 3.5 mg/m3 for carbon-black-containing material and study participants presented with exposure-related adverse respiratory outcomes in a dose–response manner. Our findings suggest that the Namibian Ministry of Labour introduce stronger enforcement strategies of existing national health and safety regulations within the industry. PMID:27687528

  5. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    Science.gov (United States)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  6. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    Science.gov (United States)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  7. Research on isotope geology. Assessment of heat production potential of granitic rocks and development of geothermal exploration techniques using radioactive/stable isotopes and fission track 2

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Cheon; Chi, Se Jung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Radioelements and heat production rates of granitic rocks and stable isotopes of groundwaters were analyzed to investigate the geothermal potential of Wolchulsan granite complex in the southern Yeongam area. Wolchulsan granite complex is composed mainly by Cretaceous pink alkali-feldspar granite and partly Jurassic biotite granite. The main target for the geothermal exploration is the alkali-feldspar granite that is known in general to be favorable geothermal reservoir(e.g., Shap granite in UK). To develop exploration techniques for geothermal anomalies, all geochemical data were compared to those from the Jeonju granite complex. Heat production rates(HPR) of the alkali-feldspar granite is 1.8 - 10.6 {mu}Wm{sup -3}. High radio-thermal anomalies were revealed from the central western and northern parts of the granite body. These are relatively higher than the Caledonian hot dry granites in the UK. The integrated assessment of Wolchulsan granite complex suggests potential of the Cretaceous alkali-feldspar granite as a geothermal targets. Groundwater geochemistry of the Yeongam area reflects simple evaporation process and higher oxidation environment. Stable isotope data of groundwaters are plotted on or close to the Meteoric Water Line(MWL). These isotopic data indicate a significant meteoric water dominance and do not show oxygen isotope fractionation between groundwater and wall rocks. In despite of high HPR values of the Yeongam alkali-feldspar granite, groundwater samples do not show the same geochemical properties as a thermal water in the Jeonju area. This reason can be well explained by the comparison with geological settings of the Jeonju area. The Yeongam alkali-feldspar granite does not possess any adjacent heat source rocks despite its high radio-thermal HPR. While the Jeonju granite batholith has later heat source intrusive and suitable deep fracture system for water circulation with sedimentary cap rocks. (Abstract Truncated)

  8. Development of eco-friendly process for the production of bioethanol from banana peel using inhouse developed cocktail of thermo-alkali-stable depolymerizing enzymes.

    Science.gov (United States)

    Prakash, Heena; Chauhan, Prakram Singh; General, Thiyam; Sharma, A K

    2018-03-29

    Conversion of agro-industrial wastes to energy is an innovative approach for waste valorization and management which also mitigates environmental pollution. In this view, present study investigated the feasibility of producing bioethanol from banana peels using cocktail of depolymerizing enzyme/s. We isolated Geobacillus stearothermophilus HPA19 from natural resource which produces cocktail of thermo-alkali-stable xylano-pectino-cellulolytic enzyme/s using wheat bran within 24 h. The optimal temperature and pH for xylanase, filter paper cellulase and pectinase were 80, 70 and 80 °C, and 9.0, 8.0 and 9.0, respectively. Cocktail enzymes showed stability at high temperature (80 °C) and pH (10.0). Ni 2+ and Zn 2+ promoted the relative activity of xylanase and FPase, whereas Na + , Ca 2+ and K + promoted pectinase activity. Cocktail was assessed in saccharification of banana peel. Reducing sugar obtained (37.06 mg ml -1 ) after one variable at a time (OVAT) method is greatly influenced by enzyme dose. Further, response surface methodology was used to optimize saccharification leading to twofold increase in reducing sugar. Maximum ethanol production (21.1 gl -1 ) was achieved through fermentation giving the efficiency of 76.5% within 30 h. Hence utilization of waste biomass for production of value-added products through biotechnological intervention not only helps to combat environmental pollution but also contributes significantly to the economy.

  9. γ radiolysis of thymine in oxygen-free aqueous solution in the presence of electron affinic radiosensitizers: identification of stable products

    International Nuclear Information System (INIS)

    Cadet, J.; Guttin-Lombard, M.; Teoule, R.

    1976-01-01

    Radiosensitizers react with nucleic radicals by addition and by electron transfer reactions. A study has been made of the steady-state γ radiolysis of 1 mM thymine in oxygen-free aqueous solutions containing different classes of radiosensitizing drugs: N-oxyl-free radicals (TAN and TMPN), quinones (menadione and naphthoquinone), nitroheterocyclic compounds (metronidazole and 5-nitro-2-furoic acid) and N-ethylmaleimide. Two classes of thymine degradation products were isolated by thin-layer chromatography and characterized by spectroscopic measurements. The main products, irrespective of radiosensitizers, resulting from oxidation reaction were identified as the cis and trans isomers of 5,6-dihydroxy-5, 6-dihydrothymine, N-pyruvyl-N'-formylurea, 6-hydroxy-5,6-dihydrothymine and 5-hydroxy-5,6-dihydrothymine. In the experimental conditions used only N-oxyls and to a lesser extent NEM reacted with 5-hydroxy-5,6-dihydrothymine-6-yl radical, giving stable covalently-bonded addition products with a high yield. TAN showed a higher binding ability with respect to TMPN, which is in good agreement with the rate-constants previously reported for these bimolecular reactions. (author)

  10. SUPPLEMENTAL ACTIVATED CHARCOAL AND ENERGY INCREASE INTAKE OF MEDITERRANEAN SHRUBS BY SHEEP AND GOATS

    Directory of Open Access Journals (Sweden)

    Jozo Rogošić

    2008-07-01

    Full Text Available Utilization of the Mediterranean shrubby vegetation is often limited by secondary compounds, such as terpenes, which at too high concentrations can adversely affect forage intake and animal health. Ingesting compounds such as activated charcoal and energy can ameliorate the negative effects of secondary compounds and enable animals to eat more shrubs. Thus, our objectives were to determine if supplemental charcoal, energy and numbers of shrub species offered influenced intake of shrubs by sheep and goats. We conducted three experiments each with 12 lambs and 12 kids (6 activated charcoal vs. 6 controls. In the first experiment, we initially offered three shrubs (Juniperus phoenicea, Helichrysum italicum and Juniperus oxicedrus, then in the second one, two shrubs (Juniperus phoenicea and Helichrysum italicum, and finally one shrub (Juniperus phoenicea in the third experiment. In all three experiments (Exp. 1, P<0.001; Exp. 2, P < 0.0003 and Exp. 3, P < 0.03, supplemental charcoal and energy had a positive effect on total shrub intake for both lambs and kids. Kids ate more shrubs than lambs did in all three experiments (P<0.01. Regardless of experiment, both species of animals showed a numerical decrease in total shrub intake, with or without supplemental charcoal and energy, as the number of shrub species on offer decreased. Our findings support the hypothesis that biochemical diversity plays an important role in diet selection, thus enabling animals to better meet their nutritional needs and avoid toxicity.

  11. Lignin and related compounds. VIII. Lignin monomers and dimers from hydrogenolysis of aspen wood using rhodium-on-charcoal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, K; Mullord, D J; Pepper, J M

    1981-04-01

    Aspen poplar wood meal has been subjected to catalytic hydrogenolysis in dioxane-water (9:1) at 500 psig initial pressure of hydrogen over a 5% rhodium-on-charcoal catalyst for five hours at 195 plus or minus 5 degrees C. The resulting chloroform-soluble lignin degradation products were separated by cellulose and silica gel column chromatography. The following compounds were isolated and identified: 4-hydroxybenzoic acid, 1-(4-hydroxy-3,4-dimethoxyphenyl)-1-propanone (propiosyringone), 2,2'-dihydroxy-3,3'-dimethoxy- 5,5'-dipropylbiphenyl, 2,3-bis(4-hydroxy-3,5- dimethoxyphenyl)-1-propanol, and a mixture of 3-(4-hydroxy-3,5-dimethoxyphenyl)-2(4-hydroxy- 3-methoxyphenyl)-1-propan and 3-(4-hydroxy-3- methoxyphenyl)-2-(4-hydroxy-3,5-dimethoxyphenyl)-1- propanol. 9 references.

  12. Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Sung-Koo; Park, Don-Hee; Song, Se Hee; Wee, Young-Jung; Jeong, Gwi-Taek

    2013-06-01

    The acidic hydrolysis of biomass generates numerous inhibitors of fermentation, which adversely affect cell growth and metabolism. The goal of the present study was to determine the effects of fermentation inhibitors on growth and glucose consumption by Saccharomyces cerevisiae. We also conducted in situ adsorption during cell cultivation in synthetic broth containing fermentation inhibitors. In order to evaluate the effect of in situ adsorption on cell growth, five inhibitors, namely 5-hydroxymethylfurfural, levulinic acid, furfural, formic acid, and acetic acid, were introduced into synthetic broth. The existence of fermentation inhibitors during cell culture adversely affects cell growth and sugar consumption. Furfural, formic acid, and acetic acid were the most potent inhibitors in our culture system. The in situ adsorption of inhibitors by the addition of activated charcoal to the synthetic broth increased cell growth and sugar consumption. Our results indicate that detoxification of fermentation media by in situ adsorption may be useful for enhancing biofuel production.

  13. Adsorptive removal of SO{sub 2} from coal burning by bamboo charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang; Qiu, Jianrong; Xiang, Jun; Zeng, Hancai [Huazhong Univ. of Science and Technology, Wuhan (China). Key Lab. of Coal Combustion

    2013-07-01

    Bamboo charcoal (BC) is an environmentally friendly, low-cost and renewable bioresource with porous structure. The adsorption property of bamboo charcoal for sulfur dioxide was investigated through a parametric study conducted with a bench-scale bed and mechanism study by BET, XPS, and temperature pro-grammed desorption (TPD). The varying parameters investigated include particle size of BC, moisture, oxygen, nitric oxide. The experimental data suggest that BC has a good adsorption potential for SO{sub 2}, which removal efficiency is greatly dependent upon the operation conditions. This study provides a good reference for BC to be used for SO{sub 2} removal in the actual flue gas over a wide range of conditions and further provided the preliminary experimental studies and theoretical discussion for bamboo charcoal to be used in multiple pollutants removing.

  14. Calibration of diffusion barrier charcoal detectors and application to radon sampling in dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Montero C, M.E.; Colmenero S, L.; Villalba, L.; Saenz P, J.; Cano J, A.; Moreno B, A.; Renteria V, M.; Herrera P, E.F. [Cento de Investigacion en Materiales Avanzados, S. C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, (Mexico); Cruz G, S. De la [Facultad de Enfermeria y Nutriologia, Universidad Autonoma de Chihuahua, Av. Politecnico Nacional 2714, Chihuahua, (Mexico); Lopez M, A. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, 11801 Mexico D.F. (Mexico)

    2003-07-01

    Some calibration conditions of diffusion barrier charcoal canister (DBCC) detectors for measuring radon concentration in air were studied. A series of functional expressions and graphs were developed to describe relationship between radon concentration in air and the activity adsorbed in DBCC, when placed in small chambers. A semi-empirical expression for the DBCC calibration was obtained, based on the detector integration time and the adsorption coefficient of radon on activated charcoal. Both, the integration time for 10 % of DBCC of the same batch, and the adsorption coefficient of radon for the activated charcoal used in these detectors, were experimentally determined. Using these values as the calibration parameters, a semi-empirical calibration function was used for the interpretation of the radon activities in the detectors used for sampling more than 200 dwellings in the major cities of the state of Chihuahua, Mexico. (Author)

  15. Review of the adsorption of radioactive krypton and xenon on activated charcoal

    International Nuclear Information System (INIS)

    Underhill, D.W.; Moeller, D.W.

    1981-01-01

    This report summarizes the results of a critical review of the published literature on the adsorption of radioactive krypton and xenon on activated charcoal. This review, which was supported by the Advisory Committee on Reactor Safeguards, US Nuclear Regulatory Commission, showed that (a) individual charcoals have a wide range of adsoprtion coefficients and therefore the performance of a given bed is heavily dependent on the quality of the charcoal it contains; (b) because of the detrimental effects of mass transfer on noble gas adsorption, consideration should be given to including this factor in developing technical specifications for adsorption beds; and (c) additional research is needed on the determination of the inter-relationship of moisture and temperature and their effects on adsorption bed performance

  16. Preparation and Photocatalytic Performance of Bamboo-Charcoal-Supported Nano-ZnO Composites

    Directory of Open Access Journals (Sweden)

    Yunlong ZHOU

    2018-02-01

    Full Text Available Nano-ZnO/bamboo charcoal composites were prepared by precipitation with bamboo charcoal as support. Nano-ZnO/bamboo charcoal composites were characterized by XRD, SEM and EDS. Photocatalytic degradation processes of methyl orange were studied. The results indicate that the structure of nano-ZnO is of the wurtzite type and the grain size is about 19-54 nm. The best preparation temperature for these composites is 500℃. The composites have better photocatalytic degradation ability than pure ZnO under UV irradiation. Photocatalytic degradation of methyl orange with the composites obeys first-order kinetics, and the composites can be recycled.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17397

  17. Calibration of diffusion barrier charcoal detectors and application to radon sampling in dwellings

    International Nuclear Information System (INIS)

    Montero C, M.E.; Colmenero S, L.; Villalba, L.; Saenz P, J.; Cano J, A.; Moreno B, A.; Renteria V, M.; Herrera P, E.F.; Cruz G, S. De la; Lopez M, A.

    2003-01-01

    Some calibration conditions of diffusion barrier charcoal canister (DBCC) detectors for measuring radon concentration in air were studied. A series of functional expressions and graphs were developed to describe relationship between radon concentration in air and the activity adsorbed in DBCC, when placed in small chambers. A semi-empirical expression for the DBCC calibration was obtained, based on the detector integration time and the adsorption coefficient of radon on activated charcoal. Both, the integration time for 10 % of DBCC of the same batch, and the adsorption coefficient of radon for the activated charcoal used in these detectors, were experimentally determined. Using these values as the calibration parameters, a semi-empirical calibration function was used for the interpretation of the radon activities in the detectors used for sampling more than 200 dwellings in the major cities of the state of Chihuahua, Mexico. (Author)

  18. Emissions from street vendor cooking devices (charcoal grilling). Final report, January 1998--March 1999

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1999-06-01

    The report discusses a joint US/Mexican program to establish a reliable emissions inventory for street vendor cooking devices (charcoal grilling), a significant source of air pollutants in the Mexicali-Imperial Valley area of Mexico. Emissions from these devices, prevalent in the streets of Mexicali, Mexico, were investigated experimentally by measuring levels of particulate matter, particle size distributions, volatile and semivolatile organic compounds, aldehydes, and oxides of nitrogen and sulfur, emitted when meat is cooked on a grill over a charcoal fire. To investigate the emission rate, both beef and chicken were tested. Furthermore, both meats were marinated with a mixture similar to that used by the street vendors. Some tests were conducted with non-marinated beef for comparison. Two blank runs were performed sampling charcoal fires without meat. Finally, a simple control device, normally used in an exhaust fan to trap grease over a kitchen stove, was evaluated for its effectiveness in reducing emissions

  19. Study on radon concentration monitoring using activated charcoal canisters in high humidity environments

    International Nuclear Information System (INIS)

    Wang Yuexing; Wang Haijun; Yang Yifang; Qin Sichang; Wang Zhentao; Zhang Zhenjiang

    2009-01-01

    The effects of humidity on the sensitivity using activated charcoal canisters for measuring radon concentrations in high humidity environments were studied. Every canister filled with 80 g of activated charcoal, and they were exposed to 48 h or 72 h in the relative humidity of 68%, 80%, 88% and 96% (28 degree C), respectively. The amount of radon absorbed in the canisters was determined by counting the gamma rays from 214 Pb and 214 Bi (radon progeny). The results showed that counts decreased with the increase of relative humidity. There was a negative linear relationship between count and humidity. In the relative humidity range of 68%-96%, the sensitivity of radon absorption decreased about 2.4% for every 1% (degree)rise in humidity. The results also showed that the exposure time of the activated charcoal canisters should be less than 3 days. (authors)

  20. Molecular and structural properties of polymer composites filled with activated charcoal particles

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul [Department of Physics, Hasanuddin University, Makassar 90245 Indonesia (Indonesia); Liong, Syarifuddin [Department of Chemistry, Hasanuddin University, Makassar 90245 Indonesia (Indonesia)

    2016-03-11

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  1. [Testicular testosterone production in male mice of inbred strains PT and CBA/Lac after a long-term period of stable social hierarchy].

    Science.gov (United States)

    Osadchuk, L V; Gutorova, N V; Kleshchev, M A

    2014-04-01

    Social dominance can alter testicular testosterone production, although there is pronounced variability in the relationship between social status and pattern of the testosterone response. The study designed to investigate how a long-term period of stable social hierarchy effects on testicular testosterone production in male mice of inbred strains PT and CBA/Lac. Paired males of different genotypes were housed together for 32 days beginning 38 day of age. Dyadic interactions of males generated dominance-subordination relationships during the first day after a social group has been produced and the social rank of each opponent was assessed by asymmetry in agonistic behaviour. Serum level of testosterone and its testicular content were evaluated in male mice of both inbred strains at 70 day of age after pair housing. Control animals were age- and genotype-matched single males that were housed in conventional cages. After a long-term period of pair housing, the serum testosterone level and its testicular content in males of both PT and CBA/Lac strains were not significantly different from the control. There were no significant differences in androgenic parameters between social ranks in male mice of both strains. The results indicate that in laboratory mice the pattern of testicular testosterone response to social hierarchy determined by a social situation, for example, a stability of social interactions, when the importance of aggressive competition for rank is minimal.

  2. Validation of computer code TRAFIC used for estimation of charcoal heatup in containment ventilation systems

    International Nuclear Information System (INIS)

    Yadav, D.H.; Datta, D.; Malhotra, P.K.; Ghadge, S.G.; Bajaj, S.S.

    2005-01-01

    Full text of publication follows: Standard Indian PHWRs are provided with a Primary Containment Filtration and Pump-Back System (PCFPB) incorporating charcoal filters in the ventilation circuit to remove radioactive iodine that may be released from reactor core into the containment during LOCA+ECCS failure which is a Design Basis Accident for containment of radioactive release. This system is provided with two identical air circulation loops, each having 2 full capacity fans (1 operating and 1 standby) for a bank of four combined charcoal and High Efficiency Particulate Activity (HEPA) filters, in addition to other filters. While the filtration circuit is designed to operate under forced flow conditions, it is of interest to understand the performance of the charcoal filters, in the event of failure of the fans after operating for some time, i.e., when radio-iodine inventory is at its peak value. It is of interest to check whether the buoyancy driven natural circulation occurring in the filtration circuit is sufficient enough to keep the temperature in the charcoal under safe limits. A computer code TRAFIC (Transient Analysis of Filters in Containment) was developed using conservative one dimensional model to analyze the system. Suitable parametric studies were carried out to understand the problem and to identify the safety of existing system. TRAFIC Code has two important components. The first one estimates the heat generation in charcoal filter based on 'Source Term'; while the other one performs thermal-hydraulic computations. In an attempt validate the Code, experimental studies have been carried out. For this purpose, an experimental set up comprising of scaled down model of filtration circuit with heating coils embedded in charcoal for simulating the heating effect due to radio iodine has been constructed. The present work of validation consists of utilizing the results obtained from experiments conducted for different heat loads, elevations and adsorbent

  3. Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2009-04-01

    Full Text Available Abstract Background Many researchers have reported on the optimization of protease production; nevertheless, only a few have reported on the optimization of the production of organic solvent-tolerant proteases. Ironically, none has reported on thermostable organic solvent-tolerant protease to date. The aim of this study was to isolate the thermostable organic solvent-tolerant protease and identify the culture conditions which support its production. The bacteria of genus Bacillus are active producers of extra-cellular proteases, and the thermostability of enzyme production by Bacillus species has been well-studied by a number of researchers. In the present study, the Bacillus subtilis strain Rand was isolated from the contaminated soil found in Port Dickson, Malaysia. Results A thermostable organic solvent-tolerant protease producer had been identified as Bacillus subtilis strain Rand, based on the 16S rRNA analysis conducted, as well as the morphological characteristics and biochemical properties. The production of the thermostable organic solvent-tolerant protease was optimized by varying various physical culture conditions. Inoculation with 5.0% (v/v of (AB600 = 0.5 inoculum size, in a culture medium (pH 7.0 and incubated for 24 h at 37°C with 200 rpm shaking, was the best culture condition which resulted in the maximum growth and production of protease (444.7 U/ml; 4042.4 U/mg. The Rand protease was not only stable in the presence of organic solvents, but it also exhibited a higher activity than in the absence of organic solvent, except for pyridine which inhibited the protease activity. The enzyme retained 100, 99 and 80% of its initial activity, after the heat treatment for 30 min at 50, 55, and 60°C, respectively. Conclusion Strain Rand has been found to be able to secrete extra-cellular thermostable organic solvent-tolerant protease into the culture medium. The protease exhibited a remarkable stability towards temperature and organic

  4. Comparing charcoal and zeolite reflection filters for volatile anaesthetics: A laboratory evaluation.

    Science.gov (United States)

    Sturesson, Louise W; Frennström, Jan O; Ilardi, Marcella; Reinstrup, Peter

    2015-08-01

    A modified heat-moisture exchanger that incorporates a reflecting filter for use with partial rebreathing of exhaled volatile anaesthetics has been commercially available since the 1990 s. The main advantages of the device are efficient delivery of inhaled sedation to intensive care patients and reduced anaesthetic consumption during anaesthesia. However, elevated arterial CO2 values have been observed with an anaesthetic conserving device compared with a conventional heat and moisture exchanger, despite compensation for larger apparatus dead space. The objective of this study is to thoroughly explore the properties of two reflecting materials (charcoal and zeolites). A controlled, prospective, observational laboratory study. Lund University Hospital, Sweden, from December 2011 to December 2012. None. Three filters, with identical volumes, were compared using different volatile anaesthetics at different conditions of temperature and moisture. The filtering materials were charcoal or zeolite. Glass spheres were used as an inert control. Consumption of volatile anaesthetics using different reflecting materials in filters at different conditions regarding temperature and moisture. CO2 reflection by the filtering materials: glass spheres, charcoal or zeolite. Isoflurane consumption in an open system was 60.8 g h(-1). The isoflurane consumption in dry, warm air was 39.8 g h(-1) with glass spheres. Changing to charcoal and zeolite had a profound effect on isoflurane consumption, 11.8 and 10.7 g h(-1), respectively. Heating and humidifying the air as well as the addition of N2O created only minor changes in consumption. The percentage of isoflurane conserved by the charcoal filter was independent of the isoflurane concentration (0.5 to 4.5%). Reflection of sevoflurane, desflurane and halothane by the charcoal filter was similar to reflection of isoflurane. Both charcoal and zeolite filters had CO2 reflecting properties and end-tidal CO2 increased by 3 to 3.7% compared

  5. Gallium-67 activated charcoal: a new method for preparation of radioactive capsules for colonic transit study

    International Nuclear Information System (INIS)

    Cheng, Kai-Yuan; Tsai, Shih-Chuan; Lin, Wan-Yu.

    2003-01-01

    Indium-111 is currently the radionuclide of choice for colonic transit study. However, it is expensive and not available in many hospitals. Technetium-99m has been proposed for colonic transit study but the short half-life has limited its use. Gallium-67 citrate is inexpensive and available in most countries. Most importantly, it has a suitable half-life for colonic transit study. Attempts have been made in some studies to use 67 Ga citrate to label activated charcoal, but the results have not been good because of poor stability. In this study, we successfully labelled activated charcoal with 67 Ga citrate by adding alcohol and 5% glucose solution. To evaluate the in vitro stability, the 67 Ga-activated charcoal was incubated in a milieu mimicking the intestinal content, containing lipase, trypsin and glycochenodeoxycholate at different pH values (6.0, 7.0, 7.4 and 8.0) and for different durations (0 h, 24 h, 48 h, 72 h and 96 h). For the in vivo study, the 67 Ga-activated charcoal was loaded into a commercial empty enteric capsule. Colonic transit scintigraphy was performed in five volunteers, including three healthy people and two constipated patients, after intake of the radioactive capsule. Images were obtained at 2 h, 4 h, 6 h, 8 h, 24h, 48 h, 72 h etc. until no radioactivity was detected in the bowel. Our data show that the in vitro stability of 67 Ga-activated charcoal was good. The labelling efficiency still exceeded 91% at 96 h at pH values of 6.0, 7.0 and 7.4. In the group with a pH value of 8.0, the labelling efficiency gradually fell during the 4-day incubation but was still higher than 88% at the end of the fourth day. In the in vivo study, most capsules disintegrated in the caecum/colon region, and the 67 Ga-activated charcoal mixed very well with bowel content. In addition, the radioactive charcoal could be detected clearly on the 72-h image, which is very important for the evaluation of colonic transit time in patients with constipation. In

  6. Newspaper reporting and the emergence of charcoal burning suicide in Taiwan: A mixed methods approach.

    Science.gov (United States)

    Chen, Ying-Yeh; Tsai, Chi-Wei; Biddle, Lucy; Niederkrotenthaler, Thomas; Wu, Kevin Chien-Chang; Gunnell, David

    2016-03-15

    It has been suggested that extensive media reporting of charcoal burning suicide was a key factor in the rapid spread of this novel method in many East Asian countries. But very few empirical studies have explored the relationship between media reporting and the emergence of this new method of suicide. We investigated the changing pattern of media reporting of charcoal burning suicides in Taiwan during 1998-2002 when this method of suicide increased most rapidly, assessing whether the characteristics of media reporting were associated with the changing incidence of suicide using this method. A mixed method approach, combining quantitative and qualitative analysis of newspaper content during 1998-2002 was used. We compared differences in reporting characteristics before and after the rapid increase in charcoal burning suicide. Point-biserial and Pearson correlation coefficients were calculated to quantify the associations between the media item content and changes in suicide rates. During the period when charcoal burning suicide increased rapidly, the number of reports per suicide was considerably higher than during the early stage (0.31 vs. 0.10). Detailed reporting of this new method was associated with a post-reporting increase in suicides using the method. Qualitative analysis of news items revealed that the content of reports of suicide by charcoal burning changed gradually; in the early stages of the epidemic (1999-2000) there was convergence in the terminology used to report charcoal burning deaths, later reports gave detailed descriptions of the setting in which the death occurred (2001) and finally the method was glamourized and widely publicized (2001-2002). Our analysis was restricted to newspaper reports and did not include TV or the Internet. Newspaper reporting was associated with the evolution and establishment of charcoal burning suicide. Working with media and close monitoring of changes in the incidence of suicide using a new method might help

  7. The determination, by x-ray-fluorescence spectrometry, of gold in activated charcoal

    International Nuclear Information System (INIS)

    Austen, C.E.

    1977-01-01

    A rapid method is described for the determination of gold in activated charcoal by X-ray-fluorescence spectrometry. Compensation for matrix effects is achieved by means of platinum that is added for use as an internal standard. Calibration is achieved by use of a series of synthetic standards that are made by the spiking of barren charcoal with gold and platinum. The limit of determination is about 8 p.p.m. of gold, and the relative standard deviation is 1,2 per cent at a concentration level of 2300 p.p.m

  8. Gallium-67 activated charcoal: a new method for preparation of radioactive capsules for colonic transit study

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kai-Yuan [Department of Radiological Technology, ChungTai Institute of Health Sciences and Technology, Taichung (Taiwan); Tsai, Shih-Chuan [Department of Nuclear Medicine, Show Chwan Memorial Hospital, Changhua (Taiwan); Lin, Wan-Yu. [Department of Nuclear Medicine, Taichung Veterans General Hospital, 160 Taichung Harbor Road, Section 3, 40705, Taichung (Taiwan)

    2003-06-01

    Indium-111 is currently the radionuclide of choice for colonic transit study. However, it is expensive and not available in many hospitals. Technetium-99m has been proposed for colonic transit study but the short half-life has limited its use. Gallium-67 citrate is inexpensive and available in most countries. Most importantly, it has a suitable half-life for colonic transit study. Attempts have been made in some studies to use {sup 67}Ga citrate to label activated charcoal, but the results have not been good because of poor stability. In this study, we successfully labelled activated charcoal with {sup 67}Ga citrate by adding alcohol and 5% glucose solution. To evaluate the in vitro stability, the {sup 67}Ga-activated charcoal was incubated in a milieu mimicking the intestinal content, containing lipase, trypsin and glycochenodeoxycholate at different pH values (6.0, 7.0, 7.4 and 8.0) and for different durations (0 h, 24 h, 48 h, 72 h and 96 h). For the in vivo study, the {sup 67}Ga-activated charcoal was loaded into a commercial empty enteric capsule. Colonic transit scintigraphy was performed in five volunteers, including three healthy people and two constipated patients, after intake of the radioactive capsule. Images were obtained at 2 h, 4 h, 6 h, 8 h, 24h, 48 h, 72 h etc. until no radioactivity was detected in the bowel. Our data show that the in vitro stability of {sup 67}Ga-activated charcoal was good. The labelling efficiency still exceeded 91% at 96 h at pH values of 6.0, 7.0 and 7.4. In the group with a pH value of 8.0, the labelling efficiency gradually fell during the 4-day incubation but was still higher than 88% at the end of the fourth day. In the in vivo study, most capsules disintegrated in the caecum/colon region, and the {sup 67}Ga-activated charcoal mixed very well with bowel content. In addition, the radioactive charcoal could be detected clearly on the 72-h image, which is very important for the evaluation of colonic transit time in patients

  9. Study on a charcoal-based monitor for Rn-220 in air

    International Nuclear Information System (INIS)

    Yu Yiqiao; Solomon, S.B.

    1993-01-01

    Activated charcoal has been used in both passive monitors (Cohen, Pondy et al. 1987) and active monitors (Solomon and Gan, 1989) for the measurements of 222 Rn in air. Cooled, charcoal-impregnated filters, viewed in-situ by a solid state alpha detector, have been used for 220 Rn-in-breath studies. In general, γ ray counting of 220 Rn samples collected on activated charcoal has not been used. This paper describes the development and calibration of a charcoal based monitor designed to measure 220 Rn levels down to a lower limit of 10 Bq m -3 over sampling periods of 4 to 15 h. The activity of 212 Pb (10.6 h) produced from 220 Rn (55.6 s) collected in an activated charcoal-based sampler is 1/700 the total 220 Rn activity. A typical Hp-Ge detector has a MDL for a two-hours count of approximately 0.1 Bq of 212 Pb for the 239 keV γ-ray. For a MDL of 10 Bq·m -3 of 220 Rn in air, a volume of at least 7 m 3 must be sampled, assuming no breakthrough. The present charcoal-based 220 Rn monitor is designed to maximize the path length through the activated charcoal while sufficient cross-sectional area is retained to allow flow rates up to 0.03 m 3 ·kg -1 is packed into a specially designed aluminum container. The container is modeled on a Marinelli beaker to maximize the counting efficiency, while the sample flow through the chambers of the monitor is optimized to maintain radial symmetry. experiments demonstrated that 94% of 220 Rn was adsorbed by the charcoal in the monitor under a flow rate of 0.03 m 3 ·min -1 at 25 degree C and 85%. RH in 15 h. The monitor is designed to fit over a 70 mm diameter Hp-Ge detector. Preliminary measurements of 220 Rn in two buildings and a cave, using the active monitors and 'grabing' samples under a flow rate of 0.03 m 3 ·min -1 and a period of 4 h, indicated concentrations of between 18.6 and 142.0 Bq·m 3

  10. Removal of Mn, Fe, Ni and Cu Ions from Wastewater Using Cow Bone Charcoal

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2010-01-01

    Full Text Available Cow bone charcoal (CBC was synthesized and used for the removal of metals ions (manganese, iron, nickel and copper from aqueous solutions. Two different adsorption models were used for analyzing the data. Adsorption capacities were determined: copper ions exhibit the greatest adsorption on cow bone charcoal because of their size and pH conditions. Adsorption capacity varies as a function of pH. Adsorption isotherms from aqueous solution of heavy metals on CBC were determined. Adsorption isotherms are consistent with Langmuir´s adsorption model. Adsorbent quantity and immersion enthalpy were studied.

  11. What Does Psychological Autopsy Study Tell Us about Charcoal Burning Suicide--A New and Contagious Method in Asia?

    Science.gov (United States)

    Chan, Sandra S. M.; Chiu, Helen F. K.; Chen, Eric Y. H.; Chan, Wincy S. C.; Wong, Paul W. C.; Chan, Cecilia L. W.; Law, Y. W.; Yip, Paul S. F.

    2009-01-01

    Charcoal burning suicides in Hong Kong between 2002-2004 in the 15 to 59-year-old age group were investigated using the psychological autopsy method. The psychopathological profiles of charcoal burning suicides (N = 53) were compared against "other suicides" (N = 97). The two groups did not differ significantly in the prevalence of…

  12. USE OF POWDERED COCONUT CHARCOAL AS A TOXICITY IDENTIFICATION AND EVALUATION MANIPULATION FOR ORGANIC TOXICANTS IN MARINE SEDIMENTS

    Science.gov (United States)

    We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...

  13. Production and Properties of a Thermostable, pH-Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace.

    Science.gov (United States)

    Bennamoun, Leila; Hiligsmann, Serge; Dakhmouche, Scheherazad; Ait-Kaki, Amel; Labbani, Fatima-Zohra Kenza; Nouadri, Tahar; Meraihi, Zahia; Turchetti, Benedetta; Buzzini, Pietro; Thonart, Philippe

    2016-10-29

    Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans , was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl₂0.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL). The enzyme showed stability over a range of temperature (5-90 °C) with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0-10). The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product.

  14. Production and Properties of a Thermostable, pH—Stable Exo-Polygalacturonase Using Aureobasidium pullulans Isolated from Saharan Soil of Algeria Grown on Tomato Pomace

    Directory of Open Access Journals (Sweden)

    Leila Bennamoun

    2016-10-01

    Full Text Available Polygalacturonase is a valuable biocatalyst for several industrial applications. Production of polygalacturonase using the Aureobasidium pullulans stain isolated from Saharan soil of Algeria was investigated. Its capacity to produce polygalacturonase was assessed under submerged culture using tomato pomace as an abundant agro-industrial substrate. Optimization of the medium components, which enhance polygalacturonase activity of the strain Aureobasidium pullulans, was achieved with the aid of response surface methodology. The composition of the optimized medium was as follows: tomato pomace 40 g/L, lactose 1.84 g/L, CaCl20.09 g/L and pH 5.16. Practical validation of the optimum medium provided polygalacturonase activity of 22.05 U/mL, which was 5-fold higher than in unoptimized conditions. Batch cultivation in a 20 L bioreactor performed with the optimal nutrients and conditions resulted in a high polygalacturonase content (25.75 U/mL. The enzyme showed stability over a range of temperature (5–90 °C with an optimum temperature of 60 °C with pH 5.0, exhibiting 100% residual activity after 1h at 60 °C. This enzyme was stable at a broad pH range (5.0–10. The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of polygalacturonic acid. Moreover, the exo-polygalacturonase was able to enhance the clarification of both apple and citrus juice. As a result, an economical polygalacturonase production process was defined and proposed using an industrial food by-product.

  15. Effect of sorbitol, single, and multidose activated charcoal administration on carprofen absorption following experimental overdose in dogs.

    Science.gov (United States)

    Koenigshof, Amy M; Beal, Matthew W; Poppenga, Robert H; Jutkowitz, L Ari

    2015-01-01

    To compare the effectiveness of single dose activated charcoal, single dose activated charcoal with sorbitol, and multidose activated charcoal in reducing plasma carprofen concentrations following experimental overdose in dogs. Randomized, four period cross-over study. University research setting. Eight healthy Beagles. A 120 mg/kg of carprofen was administered orally to each dog followed by either (i) a single 2 g/kg activated charcoal administration 1 hour following carprofen ingestion (AC); (ii) 2 g/kg activated charcoal with 3.84 g/kg sorbitol 1 hour following carprofen ingestion (ACS); (iii) 2 g/kg activated charcoal 1 hour after carprofen ingestion and repeated every 6 hours for a total of 4 doses (MD); (iv) no treatment (control). Plasma carprofen concentrations were obtained over a 36-hour period following carprofen ingestion for each protocol. Pharmacokinetic modeling was performed and time versus concentration, area under the curve, maximum plasma concentration, time to maximum concentration, and elimination half-life were calculated and compared among the groups using ANOVA followed by Tukey's multiple comparisons test. Activated charcoal, activated charcoal with sorbitol (ACS), and multiple-dose activated charcoal (MD) significantly reduced the area under the curve compared to the control group. AC and MD significantly reduced the maximum concentration when compared to the control group. MD significantly reduced elimination half-life when compared to ACS and the control group. There were no other significant differences among the treatment groups. Activated charcoal and ACS are as effective as MD in reducing serum carprofen concentrations following experimental overdose in dogs. Prospective studies are warranted to evaluate the effectiveness of AC, ACS, and MD in the clinical setting. © Veterinary Emergency and Critical Care Society 2015.

  16. Identification of long-term carbon sequestration in soils with historical inputs of biochar using novel stable isotope and spectroscopic techniques

    Science.gov (United States)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Hardy, Brieuc; Dufey, Joseph; Smolders, Erik

    2013-04-01

    Biochar is the collective term for organic matter (OM) that has been produced by pyrolysis of biomass, e.g. during production of charcoal or during natural processes such as bush fires. Biochar production and application is now suggested as one of the economically feasible options for global C-sequestration strategies. The C-sequestration in soil through application of biochar is not only related to its persistence (estimated lifetime exceeds 1000 year in soil), but also due to indirect effects such as its potential to adsorb and increase OM stability in soil. Historical charcoal production sites that had been in use >200 years ago in beech/oak forests have been localized in the south of Belgium. Aerial photography identified black spots in arable land on former forest sites. Soil sampling was conducted in an arable field used for maize production near Mettet (Belgium) where charcoal production was intensive until late 18th century. Soils were sampled in a horizontal gradient across the 'black soils' that extend of few decametres, collecting soil from the spots (Biochar Amended, BA) as well as from the non-biochar amended (NBA). Stable C isotope composition was used to estimate the long-term C-sequestration derived from crops in these soils where maize had been produced since about 15 years. Because C in the biochar originates in forest wood (C3 plants), its isotopic signature (δ13C) differs from the maize (a C4 plant). The C and N content and the δ13C were determined for bulk soil samples and for microaggregate size fractions separated by wet sieving. Fourier Transform Infrared Spectroscopy (FTIR) coupled to optical microscopy was used to obtaining fingerprints of biochar and OM composition for soil microaggregates. The total C content in the BA soil (5.5%) and the C/N ratio (16.9) were higher than for NBA (C content 2.7%; C/N ratio 12.6), which confirms the persistence of OM in the BA. The average isotopic signature of bulk soil from BA (-26.08) was slightly

  17. Production, Characterization, and Flocculation Mechanism of Cation Independent, pH Tolerant, and Thermally Stable Bioflocculant from Enterobacter sp. ETH-2

    Science.gov (United States)

    Tang, Wei; Song, Liyan; Li, Dou; Qiao, Jing; Zhao, Tiantao; Zhao, Heping

    2014-01-01

    Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2), produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa) and multi-functional groups (hydroxyl, amide and carboxyl) that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1∶2.9∶9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application. PMID:25485629

  18. Production, characterization, and flocculation mechanism of cation independent, pH tolerant, and thermally stable bioflocculant from Enterobacter sp. ETH-2.

    Directory of Open Access Journals (Sweden)

    Wei Tang

    Full Text Available Synthetic high polymer flocculants, frequently utilized for flocculating efficiency and low cost, recently have been discovered as producing increased risk to human health and the environment. Development of a more efficient and environmentally sound alternative flocculant agent is investigated in this paper. Bioflocculants are produced by microorganisms and may exhibit a high rate of flocculation activity. The bioflocculant ETH-2, with high flocculating activity (2849 mg Kaolin particle/mg ETH-2, produced by strain Enterobacter sp. isolated from activated sludge, was systematically investigated with regard to its production, characterization, and flocculation mechanism. Analyses of microscopic observation, zeta potential and ETH-2 structure demonstrates the bridging mechanism, as opposed to charge neutralization, was responsible for flocculation of the ETH-2. ETH-2 retains high molecular weight (603 to 1820 kDa and multi-functional groups (hydroxyl, amide and carboxyl that contributed to flocculation. Polysaccharides mainly composed of mannose, glucose, and galactose, with a molar ratio of 1:2.9:9.8 were identified as the active constituents in bioflocculant. The structure of the long backbone with active sites of polysaccharides was determined as a primary basis for the high flocculation activity. Bioflocculant ETH-2 is cation independent, pH tolerant, and thermally stable, suggesting a potential fit for industrial application.

  19. A top quark pair production event from proton-proton collisions recorded by ATLAS with LHC stable beams at a collision energy of 13 TeV

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    Display of a candidate boosted top quark pair production event from proton-proton collisions recorded by ATLAS with LHC stable beams at a collision energy of 13 TeV. The red line shows the path of a muon with transverse momentum around 50 GeV through the detector. The dashed line shows the direction of the missing transverse momentum, which has a magnitude of about 470 GeV. The green and yellow bars indicate energy deposits in the liquid argon and scintillating-tile calorimeters, from these deposits 4 small-radius (R=0.4) jets are identified with transverse momenta between 70 and 300 GeV. Three of these small-radius jets are re-clustered into the leading large-radius (R=1.0) jet (not shown explicitly) with a transverse momentum of about 600 GeV and a jet mass of about 180 GeV, near the top quark mass. One of these three jets in addition to the fourth jet above 70 GeV are identified as having originated from b-quarks. Tracks reconstructed from hits in the inner tracking detector are shown as arcs curving in th...

  20. Computing the net primary productivity for a savannah-dominated ecosystem using stable isotopes: a case study of the Volta River Basin

    International Nuclear Information System (INIS)

    Hayford, E.K.

    2008-01-01

    The hydrologic systems and the terrestrial ecosystem of the Volta river basin in West Africa, play important role in the carbon cycle. This is so because of the coupling of water vapour release and CO 2 uptake during photosynthesis, expressed as water use efficiency or transpiration ratio. Hydrologic and land-cover data, together with stable isotope ratio measurements of δ 18 O and δD, and data from the global network of isotopes in precipitation (GNIP) are used to determine the net primary productivity (NPP) of the Savannah-dominated ecosystem. The δ 18 O and δD values in the Volta rivers range from -4.72 to 2.37 mm -l and from -35.28 to 9.30 mm -1 SMOW, respectively. The results indicate that the vegetation is supported by 380 km 3 of rainfall, out of which 50% is returned to the atmosphere via plant transpiration. Associated with annual transpiration is the NPP of 0.170 x 10 15 gCyr -1 or 428 gCm -2 from the terrestrial ecosystem. Modelled estimates of heterotrophic soil respiration in this study slightly exceeded the NPP estimates, implying a small source of CO 2 to the atmosphere. This condition does not favour the postulated existence of a major sink of atmospheric CO 2 in the Volta basin. (au)

  1. Authentication of pure L-leucine products manufactured in China by discriminating between plant and animal sources using nitrogen stable isotope technique.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip N; Appiah-Sefah, Gloria; Tang, Shijiang

    2013-03-01

     L-leucine products among other branched chain amino acid supplements are highly susceptible to economically motivated adulteration. Curbing this menace is critical and timely. Hence, the δ(15) N composition of the L-leucine derived from plants and animals sources was estimated. The trophic enrichment phenomenon of δ(15) N composition was utilized to elucidate the sources. We finally established the distinction between the respective sources. Samples of plant sources (maize and soybean) and that of animal sources (pig fur and duck feather) were analyzed for δ(15) N isotopic signatures. An elemental analyzer which was connected to an isotope ratio mass spectrometer operated in the continuous flow mode was utilized. The raw materials were obtained from China. Statistical analysis was performed using descriptive statistics and one-way analysis of variance. The results indicated lower δ(15) N values of range -0.7344‰ to 2.384‰ and 1.032‰ to 2.064‰ for maize and soybean samples, respectively. Whereas, a range of 3.860‰ to 6.011‰ and 5.875‰ to 6.011‰ was, respectively, detected in pig fur and duck feather samples. The δ(15) N difference in plants and animals samples was significant (F = 165.0; P = 1.675 E-10 for maize and pig fur samples; F = 212.8; P = 0.0001284 for soybean and duck feather samples). It was observed that δ(15) N trophic enrichment is helpful in elucidating the respective sources. The authors can emphatically assert that the range of δ(15) N composition of L-leucine derived from plants sources within the study area is -1.000‰ to 3.000‰ whereas the range in animal sources is 4.000‰ to 9.000‰. Practical Application This study provides a reliable approach in verifying the authenticity of not only L-leucine products but also other branched chain amino acid supplements and thereby would help in fraud detection of any economically motivated adulteration and mislabeling of these products. When coupled with H and O stable

  2. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  3. Effects of false yam tuber meals and charcoal on broiler chicken ...

    African Journals Online (AJOL)

    The authors investigated the effects of replacing a portion of a commercial broiler feed with false yam tuber meals on broiler growth performance, feed conversion rate (FCR) and blood parameters. Furthermore, wood charcoal was added at various levels to the meals to explore their potential to attenuate toxic effects.

  4. Adsorption of p-Nitrophenol (PNP) on new adsorbents prepared from diatomite and charcoal

    International Nuclear Information System (INIS)

    Hamdi, B.; Khelifa, N.; Chernai-Hamdi, S.; Hadjari, H.

    2009-01-01

    Increasing attention has been paid to mesoporous materials with high surface area and narrow pore size distribution because of their diverse applications (e. g., adsorbents, catalysts, and host materials). Inorganic composite materials (ICM) prepared by a mixture of natural diatomite (macroporous materials) and charcoal (microporous material) in particular operative conditions. (Author)

  5. A comparison of charcoal- and slag-based constructed wetlands for ...

    African Journals Online (AJOL)

    Subsurface-flow constructed wetlands (CW) with charcoal- or slag-based bed matrices were investigated for their potential use in remediating acid mine drainage (AMD). A CW is effectively a reactor in which some components of the wastewater are broken down by the organisms occurring within the CW, whilst others may ...

  6. An Integrative Suicide Prevention Program for Visitor Charcoal Burning Suicide and Suicide Pact

    Science.gov (United States)

    Wong, Paul W. C.; Liu, Patricia M. Y.; Chan, Wincy S. C.; Law, Y. W.; Law, Steven C. K.; Fu, King-Wa; Li, Hana S. H.; Tso, M. K.; Beautrais, Annette L.; Yip, Paul S. F.

    2009-01-01

    An integrative suicide prevention program was implemented to tackle an outbreak of visitor charcoal burning suicides in Cheung Chau, an island in Hong Kong, in 2002. This study evaluated the effectiveness of the program. The numbers of visitor suicides reduced from 37 deaths in the 51 months prior to program implementation to 6 deaths in the 42…

  7. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    International Nuclear Information System (INIS)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-01-01

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of β-SiC with traces of α-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time

  8. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-04-25

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of {beta}-SiC with traces of {alpha}-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time.

  9. A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Hsin-Min Lee

    2017-01-01

    Full Text Available Focusing on the feature of porosity in bamboo charcoal, this study applies the ultrasonic-assisted vibration method to perform surface polishing of the silicon wafer workpiece. The self-developed bamboo charcoal polishing spindle and ultrasonic- assisted vibration mechanism are attached to a single lapping machine. In the machining process, ultrasonic vibration enables the diamond slurry to smoothly pass through the microscopic holes of bamboo charcoal; the end of the bamboo charcoalis able to continue machining on the surface of the workpiece through the grasping force which exists in the microscopic holes. Under the polishing and machining parameters of ultrasonic-assisted vibration, with a diamond slurry concentration of 0.3%, the experimental results show a polishing time of 20 min, a loading of 25 N on the workpiece surface, a spindle speed of 1200 rpm, a vibration frequency of 30 kHz and the original surface roughness value of Ra 0.252 μm equals that of a mirror-like surface at Ra 0.017 μm. These research results prove that by using bamboo charcoal and ultrasonic-assisted vibration for polishing, a very good improvement can be achieved on the workpiece surface.

  10. Advanced Electrocardiogram Analysis in the Amitriptyline-poisoned Pig Treated with Activated Charcoal Haemoperfusion

    DEFF Research Database (Denmark)

    Jansen, Tejs; Hoegberg, Lotte C.G.; Eriksen, Thomas

    2018-01-01

    Coated activated charcoal haemoperfusion (CAC-HP) does not reduce the plasma concentration in amitriptyline (AT)-poisoned pigs. The aim of this non-blinded, randomized, controlled animal trial was to determine if CAC-HP reduces the pathological ECG changes caused by AT poisoning. Fourteen female...

  11. Forensic aspects of carbon monoxide poisoning by charcoal burning in Denmark, 2008-2012

    DEFF Research Database (Denmark)

    Nielsen, Pia Rude; Gheorghe, Alexandra; Lynnerup, Niels

    2014-01-01

    Carbon monoxide (CO) inhalation is a well-known method of committing suicide. There has been a drastic increase in suicide by inhalation of CO, produced from burning charcoal, in some parts of Asia, and a few studies have reported an increased number of these deaths in Europe. CO-related deaths c...

  12. Pyrolysis of blended animal manures to produce combustible gas and value-added charcoal adsorbent

    Science.gov (United States)

    Blended swine solids, chicken litter, and rye grass were pyrolyzed using a skid-mounted sytem. Produced gas composition was analyzed for major hydrocarbons and S-containing compounds. Charcoal was analyzed for its surface functional groups, contact angles, HHV, and total element contents. Some of th...

  13. In vivo experiments with powder charcoal haemoperfusion (filmadsorber) in a pig model of hepatic failure

    NARCIS (Netherlands)

    van Berlo, G.M.W.; Groot, de G.H.; Schalm, S.W.; Jansen, P.P.; Vries, de E.H.; Fick, T.; Reuvers, C.; Boks, A.L.

    1985-01-01

    The filmadsorber, an experimental haemoperfusion column containing activated powder charcoal embedded in a colloidal film, has been tested in pigs with ischaemicnecrosis of the Iiver. Haemoperfusion with aflow of 200 mI/min was perfermed for a duration of 4 to 6 hours. Bile acid clearances varied

  14. The effect of activated charcoal on drug exposure in healthy volunteers: a meta-analysis

    DEFF Research Database (Denmark)

    Jürgens, G; Hoegberg, L C Groth; Graudal, N A

    2009-01-01

    The objective of the study was to estimate the effect of activated charcoal (AC) administered during the first 6 h after drug intake and the effect of drug properties on drug exposure. Sixty-four controlled studies were integrated in a meta-analysis. AC administered 0-5 min after administration...

  15. Methyl iodide retention on charcoal sorbents at parts-per-million concentrations

    International Nuclear Information System (INIS)

    Wood, G.O.; Vogt, G.J.; Kasunic, C.A.

    1978-01-01

    Breakthrough curves for charcoal beds challenged by air containing parts-per-million methyl iodide ( 127 I) vapor concentrations were obtained and analyzed. A goal of this research is to determine if sorbent tests at relatively high vapor concentrations give data that can be extrapolated many orders of magnitude to the region of interest for radioiodine retention and removal. Another objective is to identify and characterize parameters that are critical to the performance of a charcoal bed in a respirator cartridge application. Towards these ends, a sorbent test system was built that allows experimental variations of the parameters of challenge vapor concentration, volumetric flow rate, bed depth, bed diameter, and relative humidity. Methyl iodide breakthrough was measured at a limit of 0.002 ppM using a gas chromatograph equipped with a linearized electron capture detector. Several models that have been proposed to describe breakthrough curves were tested against experimental data. A variety of charcoals used or proposed for use in radioiodine air filtration systems have been tested against 25.7 ppM methyl iodide to obtain these parameters and protection (decomtamination) factors. Effects of challenge concentration, relative humidity, and bed diameter were also investigated. Significant challenge concentration dependence was measured (more efficiency at lower concentration) for two types of charcoals. Increased relative humidity greatly decreased breakthrough times for a given protection factor. Increased bed diameter greatly increased breakthrough times for a given protection factor. Implications of these effects for a test method are discussed

  16. Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal

    NARCIS (Netherlands)

    Postma, J.; Nijhuis, E.H.; Sommeus, E.

    2010-01-01

    Bacteria with the ability to solubilize phosphorus (P) and to improve plant health were selected and tested for growth and survival in P-rich animal bone charcoal (ABC). ABC is suggested to be suitable as a carrier for biocontrol agents, offering them a protected niche as well as delivering

  17. Refinement of the charcoal meal study by reduction of the fasting period.

    Science.gov (United States)

    Prior, Helen; Ewart, Lorna; Bright, Jonathan; Valentin, Jean-Pierre

    2012-05-01

    The aim of this investigation was to determine whether a shorter fasting period than the one historically employed for the charcoal meal test, could be used when measuring gastric emptying and intestinal transit within the same animal, and to ascertain whether the scientific outcome would be affected by this benefit to animal welfare. Rats and mice were fasted for 0, 3, 6 or 18 hours before the oral administration of vehicle or atropine. One hour later, the animals were orally administered a charcoal meal, then 20 minutes later, they were killed and the stomach and small intestine were removed. Intestinal transit time (the position of the charcoal front as a percentage of the total length of the small intestine) and relative gastric emptying (weight of stomach contents) were measured. Rats and mice fasted for six hours showed results for gastric emptying and intestinal transit which were similar to those obtained in animals fasted for 18 hours. Reducing the fasting period reduced the body weight loss in both species, and mice on shorter fasts could be group-housed, as hunger-induced fighting was lessened. Therefore, a fasting period of six hours was subsequently adopted for charcoal meal studies at our institution. 2011 FRAME.

  18. The rapid determination of 230Th by preconcentration of charcoal absorbing N-1923

    International Nuclear Information System (INIS)

    Fang Jiayuan; Wu Hanzhen.

    1986-01-01

    Investigation was made on concentration of 230 Th using charcoal, which had adsorbed amine N-1923 before hand. The separation of α-emitter U, Ra, Po also has been investigated. α-source was prepared by Powder-Pulp method. This method is simple, convenient and esay to operate

  19. Separation of radionuclides from gas by sorption on activated charcoal and inorganic sorbents

    International Nuclear Information System (INIS)

    Kepak, F.

    1988-01-01

    The review deals with the sorption and ion exchange of gaseous radionuclides on activated charcoal and on inorganic sorbents. It presents the physical and chemical characteristics of radionuclides, the sources of gaseous forms of radionuclides as well as the composition of radioactive gases from some nuclear facilities. 79 refs. (author)

  20. Spectral analysis of charcoal on soils: Implications for wildland fire severity mapping methods

    Science.gov (United States)

    Alistair M. S. Smith; Jan U. H. Eitel; Andrew T. Hudak

    2010-01-01

    Recent studies in the Western United States have supported climate scenarios that predict a higher occurrence of large and severe wildfires. Knowledge of the severity is important to infer long-term biogeochemical, ecological, and societal impacts, but understanding the sensitivity of any severity mapping method to variations in soil type and increasing charcoal (char...

  1. Metabolite Profiling of Feces and Serum in Hemodialysis Patients and the Effect of Medicinal Charcoal Tablets.

    Science.gov (United States)

    Liu, Sixiu; Liang, Shanshan; Liu, Hua; Chen, Lei; Sun, Lingshuang; Wei, Meng; Jiang, Hongli; Wang, Jing

    2018-05-22

    Recently, the colon has been recognized as an important source of various uremic toxins in patients with end stage renal disease. Medicinal charcoal tablets are an oral adsorbent that are widely used in patients with chronic kidney disease in China to remove creatinine and urea from the colon. A parallel fecal and serum metabolomics study was performed to determine comprehensive metabolic profiles of patients receiving hemodialysis (HD). The effects of medicinal charcoal tablets on the fecal and serum metabolomes of HD patients were also investigated. Ultra-performance liquid chromatography/mass spectrometry was used to investigate the fecal and serum metabolic profiles of 20 healthy controls and 31 HD patients before and after taking medicinal charcoal tablets for 3 months. There were distinct metabolic variations between the HD patients and healthy controls both in the feces and serum according to multivariate data analysis. Metabolic disturbances of alanine, aspartate and glutamate metabolism, arginine and proline metabolism figured prominently in the serum. However, in the feces, alterations of tryptophan metabolism, lysine degradation and beta-alanine metabolism were pronounced, and the levels of several amino acids (leucine, phenylalanine, lysine, histidine, methionine, tyrosine, and tryptophan) were increased dramatically. Nineteen fecal metabolites and 21 serum metabolites were also identified as biomarkers that contributed to the metabolic differences. Additionally, medicinal charcoal treatment generally enabled the serum and fecal metabolomes of the HD patients to draw close to those of the control subjects, especially the serum metabolic profile. Parallel fecal and serum metabolomics uncovered the systematic metabolic variations of HD patients, especially disturbances in amino acid metabolism in the colon. Medicinal charcoal tablets had an impact on the serum and fecal metabolomes of HD patients, but their exact effects still need to be studied further

  2. Charcoal records reveal past occurrences of disturbances in the forests of the Kisangani region, Democratic Republic of the Congo

    Science.gov (United States)

    Tshibamba Mukendi, John; Hubau, Wannes; Ntahobavuka, Honorine; Boyemba Bosela, Faustin; De Cannière, Charles; Beeckman, Hans

    2014-05-01

    Past disturbances have modified local density, structure and floristic composition of Central African rainforests. As such, these perturbations represent a driving force for forest dynamics and they were presumably at the origin of present-day forest mosaics. One of the most prominent disturbances within the forest is fire, leaving behind charcoal as a witness of past forest dynamics. Quantification and identification of ancient charcoal fragments found in soil layers (= pedoanthracology) allows a detailed reconstruction of forest history, including the possible occurrence of past perturbations. The primary objective of this study is to present palaeoenvironmental evidence for the existence of past disturbances in the forests of the Kisangani region (Democratic Republic of the Congo) using a pedoanthracological approach. We quantified and identified charcoal fragments from pedoanthracological excavations in the Yangambi, Yoko, Masako and Kole forest regions. Charcoal sampling was conducted in pit intervals of 10 cm, whereby pottery fragments were also registered and quantified. Floristic identifications were conducted using former protocols based on wood anatomy, which is largely preserved after charcoalification. 14 excavations were conducted and charcoal was found in most pit intervals. Specifically, 52 out of 56 sampled intervals from the Yangambi forest contained charcoal, along with 47 pit intervals from the Yoko forest reserve, 34 pit intervals from the Masako forest and 16 from the Kole forest. Highest specific anthracomasses were recorded in Yoko (167 mg charcoal per kg soil), followed by Yangambi (133 mg/kg), Masako (71,89 mg/kg) and finally Kole (42,4 mg/kg). Charcoal identifications point at a manifest presence of the family of Fabaceae (Caesalpinioideae). This family is characteristic for the tropical humid rainforest. The presence of charcoal fragments from these taxa, associated with pottery sherds on different depths within the profiles, suggests

  3. A cocatalyst-free Eosin Y-sensitized p-type of Co₃O₄ quantum dot for highly efficient and stable visible-light-driven water reduction and hydrogen production.

    Science.gov (United States)

    Zhang, Ning; Shi, Jinwen; Niu, Fujun; Wang, Jian; Guo, Liejin

    2015-09-07

    Owing to the effect of energy band bending, p-type Co3O4 quantum dots sensitized by Eosin Y showed a high and stable photocatalytic activity (∼13,440 μmol h(-1) g(-1)(cat)) for water reduction and hydrogen production under visible-light irradiation without any cocatalyst.

  4. Photocatalytic degradation of 4-amino-6-chlorobenzene-1,3-disulfonamide stable hydrolysis product of hydrochlorothiazide: Detection of intermediates and their toxicity.

    Science.gov (United States)

    Armaković, Sanja J; Armaković, Stevan; Četojević-Simin, Dragana D; Šibul, Filip; Abramović, Biljana F

    2018-02-01

    In this work we have investigated in details the process of degradation of the 4-amino-6-chlorobenzene-1,3-disulfonamide (ABSA), stable hydrolysis product of frequently used pharmaceutical hydrochlorothiazide (HCTZ), as one of the most ubiquitous contaminants in the sewage water. The study encompassed investigation of degradation by hydrolysis, photolysis, and photocatalysis employing commercially available TiO 2 Degussa P25 catalyst. The process of direct photolysis and photocatalytic degradation were investigated under different type of lights. Detailed insights into the reactive properties of HCTZ and ABSA have been obtained by density functional theory calculations and molecular dynamics simulations. Specifically, preference of HCTZ towards hydrolysis was confirmed experimentally and explained using computational study. Results obtained in this study indicate very limited efficiency of hydrolytic and photolytic degradation in the case of ABSA, while photocatalytic degradation demonstrated great potential. Namely, after 240 min of photocatalytic degradation, 65% of ABSA was mineralizated in water/TiO 2 suspension under SSI, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied and a number of them were detected using LC-ESI-MS/MS. This study also involves toxicity assessment of HCTZ, ABSA, and their mixtures formed during the degradation processes towards mammalian cell lines (rat hepatoma, H-4-II-E, human colon adenocarcinoma, HT-29, and human fetal lung, MRC-5). Toxicity assessments showed that intermediates formed during the process of photocatalysis exerted only mild cell growth effects in selected cell lines, while direct photolysis did not affect cell growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Quantitative measurement of 222Rn in water by the activated charcoal passive collector method: 1. The effect of water in a collector

    International Nuclear Information System (INIS)

    Yoneda, Minoru; Inoue, Yoriteru; Yoshimoto, Keizo

    1994-01-01

    The activated charcoal passive collector method can be applied to measure the concentration of 222 Rn in river water. The 222 Rn collector is composed of dry activated charcoal sealed in a polyethylene bag. However, we found it very difficult to keep activated charcoal in a collector dry during the period the collector was left in a river. The degree of dampness and the time lapsed when activated charcoal became wet were thought to affect the quantity of 222 Rn collected. First, we studied the effect of some parameters in the activated charcoal passive collector method qualitatively in three experiments. We found that the quantity of 222 Rn collected in a collector was not so sensitive to the quantity of activated charcoal in the collector or the thickness of polyethylene film under the condition of wet activated charcoal, and that wet activated charcoal accumulated less 222 Rn than dry activated charcoal. We present some equations which could explain how much 222 Rn was collected in a collector when activated charcoal was submerged directly in water and when activated charcoal was packed in a polyethylene bag but completely wet. These equations were proved effective by being compared with the results of the other experiments. Finally, we recommended some conditions which proved useful when measuring at an actual river

  6. A Model-Based Approach to Infer Shifts in Regional Fire Regimes Over Time Using Sediment Charcoal Records

    Science.gov (United States)

    Itter, M.; Finley, A. O.; Hooten, M.; Higuera, P. E.; Marlon, J. R.; McLachlan, J. S.; Kelly, R.

    2016-12-01

    Sediment charcoal records are used in paleoecological analyses to identify individual local fire events and to estimate fire frequency and regional biomass burned at centennial to millenial time scales. Methods to identify local fire events based on sediment charcoal records have been well developed over the past 30 years, however, an integrated statistical framework for fire identification is still lacking. We build upon existing paleoecological methods to develop a hierarchical Bayesian point process model for local fire identification and estimation of fire return intervals. The model is unique in that it combines sediment charcoal records from multiple lakes across a region in a spatially-explicit fashion leading to estimation of a joint, regional fire return interval in addition to lake-specific local fire frequencies. Further, the model estimates a joint regional charcoal deposition rate free from the effects of local fires that can be used as a measure of regional biomass burned over time. Finally, the hierarchical Bayesian approach allows for tractable error propagation such that estimates of fire return intervals reflect the full range of uncertainty in sediment charcoal records. Specific sources of uncertainty addressed include sediment age models, the separation of local versus regional charcoal sources, and generation of a composite charcoal record The model is applied to sediment charcoal records from a dense network of lakes in the Yukon Flats region of Alaska. The multivariate joint modeling approach results in improved estimates of regional charcoal deposition with reduced uncertainty in the identification of individual fire events and local fire return intervals compared to individual lake approaches. Modeled individual-lake fire return intervals range from 100 to 500 years with a regional interval of roughly 200 years. Regional charcoal deposition to the network of lakes is correlated up to 50 kilometers. Finally, the joint regional charcoal

  7. Life in Ice: Microbial Growth Dynamics and Greenhouse Gas Production During Winter in a Thermokarst Bog Revealed by Stable Isotope Probing Targeted Metagenomics

    Science.gov (United States)

    Blazewicz, S.; White, R. A., III; Tas, N.; Euskirchen, E. S.; Mcfarland, J. W.; Jansson, J.; Waldrop, M. P.

    2016-12-01

    Permafrost contains a reservoir of frozen C estimated to be twice the size of the current atmospheric C pool. In response to changing climate, permafrost is rapidly warming which could result in widespread seasonal thawing. When permafrost thaws, soils that are rich in ice and C often transform into thermokarst wetlands with anaerobic conditions and significant production of atmospheric CH4. While most C flux research in recently thawed permafrost concentrates on the few summer months when seasonal thaw has occurred, there is mounting evidence that sizeable portions of annual CO2 and CH4 efflux occurs over winter or during a rapid burst of emissions associated with seasonal thaw. A potential mechanism for such efflux patterns is microbial activity in frozen soils over winter where gasses produced are partially trapped within ice until spring thaw. In order to better understand microbial transformation of soil C to greenhouse gas over winter, we applied stable isotope probing (SIP) targeted metagenomics combined with process measurements and field flux data to reveal activities of microbial communities in `frozen' soil from an Alaskan thermokarst bog. Field studies revealed build-up of CO2 and CH4 in frozen soils suggesting that microbial activity persisted throughout the winter in soils poised just below the freezing point. Laboratory incubations designed to simulate in-situ winter conditions (-1.5 °C and anaerobic) revealed continuous CH4 and CO2 production. Strikingly, the quantity of CH4 produced in 6 months in frozen soil was equivalent to approximately 80% of CH4 emitted during the 3 month summer `active' season. Heavy water SIP targeted iTag sequencing revealed growing bacteria and archaea in the frozen anaerobic soil. Growth was primarily observed in two bacterial phyla, Firmicutes and Bacteroidetes, suggesting that fermentation was likely the major C mineralization pathway. SIP targeted metagenomics facilitated characterization of the primary metabolic

  8. Development of Stable Isotope Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Han, Jae Min

    2009-03-01

    KAERI has obtained an advanced technology with singular originality for laser stable isotope separation. Objectives for this project are to get production technology of Tl-203 stable isotope used for medical application and are to establish the foundation of the pilot system, while we are taking aim at 'Laser Isotope Separation Technology to make resistance to the nuclear proliferation'. And we will contribute to ensuring a nuclear transparency in the world society by taking part in a practical group of NSG and being collaboration with various international groups related to stable isotope separation technology

  9. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  10. Use of Activated Charcoal for 220Rn Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility

    International Nuclear Information System (INIS)

    Coleman, R.L.

    1999-01-01

    Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of 220 Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm/s (20, 35, 47, and 65 ft/min) with a continuous input concentration of 220 Rn in the range of 9 x 10 3 pCi/L. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of 220 Rn. In addition to measuring the effectiveness of activated charcoal as a 220 Rn adsorption media, the source term for available 220 Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to 220 Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall 220Rn activity reduction factor of about 1 x 10 9 for such a design; however, two measurements collected at a flow velocity of 18 cm/s (35 ft/min) indicated that the reduction factor could be as low as 1 x 10 6 . The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate until a 220 Rn activity on the order of 10 10 Ci has been processed. It was therefore concluded that degradation of performance would likely occur as the result of causes other than filling by radon progeny

  11. The effect of food and ice cream on the adsorption capacity of paracetamol to high surface activated charcoal

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle Riis; Christophersen, Anne Bolette

    2003-01-01

    , the reductions compared to control (Hoegberg et al. 2002) varied between 11% and 26%. Even though a reduction in drug adsorption to activated charcoal was observed when food mixture or ice cream was added, the remaining adsorption capacity of both types of activated charcoal theoretically was still able......The effect of added food mixture (as if food was present in the stomach of an intoxicated patient) or 4 different types of ice cream (added as a flavouring and lubricating agent) on the adsorption of paracetamol (acetaminophen) to 2 formulations of activated charcoal was determined in vitro......, and paracetamol were mixed with either food mixture or ice cream followed by one hr incubation. The maximum adsorption capacity of paracetamol to activated charcoal was calculated using Langmuirs adsorption isotherm. Paracetamol concentration was analyzed using high pressure liquid chromatography. In the presence...

  12. Evaluation of the Effects of Lime-bassanite-charcoal Amendment on the Immobilization of Cadmium in Contaminated Soil.

    Science.gov (United States)

    Huang, Shunhong; Yang, Yi; Li, Qian; Su, Zhen; Yuan, Cuiyu; Ouyang, Kun

    2017-03-01

    The effects of amendments, such as lime, bassanite, sodium phosphate, steel slag and charcoal, and their compounds on the immobilization of cadmium (Cd) are investigated. The lime-bassanite-charcoal compound shows the best remediation performance compared to other agents in conducted experiments. The optimum condition for lime-bassanite-charcoal application in contaminated soil is lime-bassanite-charcoal with a mass ratio of 1:1/3:2/3, a dose of 2% of the soil weight, and a liquid-to-solid ratio of 35%-40%; additionally, the agents should be added before water addition. The highest Cd removal rate was 58.94% (±1.19%) with a ∆pH of 0.23, which is much higher than the rates reported in previous studies. The compound amendment was used in a field experiment, demonstrating a Cd removal efficiency of 48.78% (±4.23), further confirming its effectiveness.

  13. Influence of the particle size of activated charcoal on labeling efficiency with 67Ga-citrate for colonic transit study

    International Nuclear Information System (INIS)

    Wan-Yu Lin; Shih-Chuan Tsai; Kai-Yuan Cheng; Bor-Tsung Hsieh

    2008-01-01

    Indium-111 and 99m Tc have been proposed for colonic transit study, but 111 In is expensive and the half-life of 99m Tc is too short for the study. Gallium-67 citrate is inexpensive and has a suitable half-life. In our previous study, we successfully labeled 67 Ga-citrate activated charcoal, and the labeling efficiency exceeded 91% after a 96 hour incubation period. In this work, we evaluated the influence of the size of activated charcoal particles on the labeling efficiency with 67 Ga-citrate. The data showed that the influence of particle size on the labeling efficiency of activated charcoal with 67 Ga was insignificant. Both sizes of activated charcoal particles can be used for labeling with 67 Ga in colonic transit study. (author)

  14. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    Science.gov (United States)

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  15. Binding affinities of cationic dyes in the presence of activated charcoal and anionic surfactant in the premicellar region

    Science.gov (United States)

    Ali, Farman; Ibrahim, Muhammad; Khan, Fawad; Bibi, Iram; Shah, Syed W. H.

    2018-03-01

    Binding preferences of cationic dyes malachite green and methylene blue in a mixed charcoal-sodium dodecyl sulfate system have been investigated using UV-visible absorption spectroscopy. The dye adsorption shows surfactant-dependent patterns, indicating diverse modes of interactions. At low surfactant concentration, a direct binding to charcoal is preferred. Comparatively greater quantities of surfactant lead to attachment of dye-surfactant complex to charcoal through hydrophobic interactions. A simple model was employed for determination of equilibrium constant K eq and concentration of dye-surfactant ion pair N DS for both dyes. The values of binding parameters revealed that malachite green was directly adsorbed onto charcoal, whereas methylene blue was bound through surfactant monomers. The model is valid for low surfactant concentrations in the premicellar region. These findings have significance for material and environmental sciences.

  16. Conductometric Studies Of Adsorption Of Sulfide On Charcoal From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Md. Rezwan Miah

    2017-03-01

    Full Text Available Adsorption of sulfide S2- from aqueous solution on commercial charcoal was studied using conductometric technique. A proportionally constant for concentration of S2- and its conductance was obtained by measuring conductance of S2- solution over a concentration range of 0.0005amp614850.02 M. The time-dependent measured conductance of S2- solution was converted to concentration using the obtained constant. The adsorption data were analyzed by both Freundlich and Langmuir isotherms. A surface coverage equal to 2.5 mg per gram of charcoal was obtained. The adsorption was found to follow first-order kinetics having rate constant equal to 2.65 amp61620 10amp614853 s-1.

  17. A passive radon dosimeter based on the combination of a track etch detector and activated charcoal

    CERN Document Server

    Deynse, A V; Poffijn, A

    1999-01-01

    The aim of this work is to test a combination of a Makrofol track detector with a new type of charcoal (Carboxen-564) to design a personal radon dosimeter. The intention is to use this dosimeter as a personal radon dosimeter to measure the monthly radon exposure in workplaces, especially when the occupancy is not exactly known. The proposed combination was exposed to low and high concentrations of radon in a large range of relative humidity (RH). For the optimal layer thickness, a charcoal bed of 2.2 mm, a specific track density of 5.1 tracks cm sup - sup 2 /kBq h m sup - sup 3 was obtained. For a monthly working exposure (170 h) at an average radon concentration of 100 Bq/m sup 3 , this means 87 tracks/cm sup 2 or 10 times the background of the Makrofol detector, with a statistical uncertainty of 15%.

  18. Assessing land availability to produce biomass for energy: The case of Brazilian charcoal for steel making

    International Nuclear Information System (INIS)

    Piketty, Marie-Gabrielle; Wichert, Marcos; Fallot, Abigail; Aimola, Luis

    2009-01-01

    The paper discusses the availability of biomass in Brazil to supply charcoal to the steel industry on the bases of an initial global assessment of land potentially available for plantations and of Brazilian data that allows refining the assessment and specifying the issue of practical availability. Technical potentials are first assessed through a series of simple rules against direct competition with agriculture, forests and protected areas, and of quantitative criteria, whether geo-climatic (rainfall), demographic (population density) or legal (reserves). Institutional, social and economic factors are then identified and discussed so as to account for the practical availability of Brazilian biomass through six criteria. The ranking of nine Brazilian States according to these criteria brings out the necessary trade-offs in the selection of land for plantations that would efficiently supply charcoal to the steel industry. (author)

  19. Anatomy Of Archaeological Wood Charcoals From Yenibademli Mound (Imbros), Western Turkey

    Science.gov (United States)

    Yaman, B.

    In this study, the qualitative and quantitative anatomy of six wood charcoals from an early Bronze Age settlement in the island Imbros (Gökçeada) were presented. Taxonomic identification on the basis of wood anatomy showed that two of them belong to the genus Quercus (section Ilex and cf Quercus), and four of them belong to the genus Pinus. Any fireplace is absent at the location of wood charcoals in G9 plan square. It appears that the woody branches on the horizontal roof of the building fell down to the floor after a big fire. It is most likely that the woody genera identified in the study were used for roof construction.

  20. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1975-01-01

    Described is a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time

  1. Radioactive gas standby treatment apparatus with high efficiency rechargeable charcoal filter

    International Nuclear Information System (INIS)

    Hickey, T.N.; Spulgis, I.S.

    1976-01-01

    A description is given of a standby gas treatment system for removal of radioactive release from a nuclear containment structure not only during normal purge operations but also in the event of a design basis accident. Ventiduct trains arranged in parallel so that one is redundant are each operative to extract dust in excess of 0.3 microns and adsorb radioactive iodine and compounds thereof at 99.9 percent plus efficiency. A rechargeable gasketless charcoal filter in each train can be filled or emptied without removing the filter enclosures per se. Laminar flow filter beds entirely encapsulate the gas stream to provide low gas velocity and even distribution across the charcoal cage without channeling, thereby securing long residence time. 2 claims, 9 drawing figures

  2. Development of activated charcoal impregnated air sampling filter media : their characteristics and use

    International Nuclear Information System (INIS)

    Khan, A.A.; Ramarathinam, K.; Gupta, S.K.; Deshingkar, D.S.; Kishore, A.G.

    1975-01-01

    Because of its low maximum permissible concentration in air, air-borne radioiodine must be accurately monitored in contaminated air streams, in the working environment and handling facilities, before release to the environment from the nuclear facilities. Activated charcoal impregnated air sampling filter media are found to be most suitable for monitoring airborne iodine-131. Because of its simplicity and reproducible nature in assessment of air-borne radioactive iodine, the work on the development of such media was undertaken in order to find a suitable substitute for imported activated charcoal impregnated air sampling filter media. Eight different media of such type were developed, evaluated and compared with two imported media. Best suitable medium is recommended for its use in air-borne iodine sampling which was found to be even better suited than imported media of such type. (author)

  3. A charcoal canister survey of radon emanation at the rehabilitated uranium mine site at Nabarlek

    International Nuclear Information System (INIS)

    Storm, J.R.; Patterson, J.R.

    1999-01-01

    This paper describes a recent survey of radon emanation measurements from the rehabilitated Nabarlek mine site. It was mined out in 1979, decommissioned in 1995 and provided a good test bed for assessment of rehabilitation in terms of radon flux attenuation. Measurements have been made with charcoal canisters. Studies to measure the radon-220 flux by observing Tl-208 progeny of thoron the effectiveness of trial covers and meteorological considerations will be reported

  4. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    Science.gov (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  5. Carbon isotopes and charcoal in soils, vegetation changes and climate inferences in the southeastern Brazil

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.; Gouveia, S.E.M; Aravena, R; Boulet, R; Bendassolli, J.A

    2001-01-01

    The use of carbon isotopes in studies of soil organic matter (SOM) dynamics have been applied to infer information about vegetation and climate changes during the late Quaternary (Schwartz et al., 1986; Pessenda et al., 1996). This approach had also been used in different areas in Brazil to document vegetation changes during the Holocene (Desjardins et al., 1996; Gouveia et al., 1997; Pessenda et al., 1998a, b, 2001) and late Pleistocene/Holocene (Freitas et al., 2001). The application of carbon isotopes is based on the different 13 C composition of C 3 and C 4 plants and its preservation in SOM. 13 C values of C 3 plant species range from approximately -32% o to -20% o PDB, with a mean of -27% o . In contrast, δ 13 C of C 4 species range from -17% o to -9% o with mean of -13% o . Thus, C 3 and C 4 plant species have distinct δ 13 C values and differ from each other by approximately 14% o (Boutton, 1991). The study of charcoal fragments found in sediments and soils also supplies information about climatic conditions. Charcoal distribution in the soil profiles can provide information about the occurrence of paleofires (Pessenda et al., 1996), possibly associated with drier climate periods and/or human disturbance. In this paper we report δ 13 C data of soil and 14 C dates on charcoal from five soil profiles collected under natural vegetation in the Parana and Sao Paulo states, southeastern Brazil. Carbon isotopes are used to evaluate vegetation changes during the late Pleistocene and Holocene. Charcoal distribution in the soil and its dating are used to infer linkage between forest fires and climate changes and to establish the chronology (au)

  6. Performance of Charcoal Cookstoves for Haiti, Part 2: Results from the Controlled Cooking Test

    Energy Technology Data Exchange (ETDEWEB)

    Lask, Kathleen; Jones, Jennifer; Booker, Kayje; Ceballos, Cristina; Yang, Nina; Gadgil, Ashok

    2011-11-30

    Five charcoal cookstoves were tested using a Controlled Cooking Test (CCT) developed from cooking practices in Haiti. Cookstoves were tested for total burn time, specific fuel consumption, and emissions of carbon monoxide (CO), carbon dioxide (CO2), and the ratio of carbon monoxide to carbon dioxide (CO/CO2). These results are presented in this report along with LBNL testers’ observations regarding the usability of the stoves.

  7. Efficiency of moso bamboo charcoal and activated carbon for adsorbing radioactive iodine

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Chuan-Chi; Huang, Ying-Pin; Wang, Wie-Chieh [ITRI South, Industrial Technology Research Institute, Tainan (China); Chao, Jun-Hsing; Wei, Yuan-Yao [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu (China)

    2011-02-15

    Preventing radioactive pollution is a troublesome problem but an urgent concern worldwide because radioactive substances cause serious health-related hazards to human being. The adsorption method has been used for many years to concentrate and remove radioactive pollutants; selecting an adequate adsorbent is the key to the success of an adsorption-based pollution abatement system. In Taiwan, all nuclear power plants use activated carbon as the adsorbent to treat radiation-contaminated air emission. The activated carbon is entirely imported; its price and manufacturing technology are entirely controlled by international companies. Taiwan is rich in bamboo, which is one of the raw materials for high-quality activated carbon. Thus, a less costly activated carbon with the same or even better adsorptive capability as the imported adsorbent can be made from bamboo. The objective of this research is to confirm the adsorptive characteristics and efficiency of the activated carbon made of Taiwan native bamboo for removing {sup 131}I gas from air in the laboratory. The study was conducted using new activated carbon module assembled for treating {sup 131}I-contaminated air. The laboratory results reveal that the {sup 131}I removal efficiency for a single-pass module is as high as 70%, and the overall efficiency is 100% for four single-pass modules operated in series. The bamboo charcoal and bamboo activated carbon have suitable functional groups for adsorbing {sup 131}I and they have greater adsorption capacities than commercial activated carbons. Main mechanism is for trapping of radioiodine on impregnated charcoal, as a result of surface oxidation. When volatile radioiodine is trapped by potassium iodide-impregnated bamboo charcoal, the iodo-compound is first adsorbed on the charcoal surface, and then migrates to iodide ion sites where isotope exchange occurs. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. A charcoal canister survey of radon emanation at the rehabilitated uranium mine site at Nabarlek

    Energy Technology Data Exchange (ETDEWEB)

    Storm, J R; Patterson, J R [University of Adelaide, Adelaide, SA (Australia). Department of Physics and Mathematical Physics

    1999-07-01

    This paper describes a recent survey of radon emanation measurements from the rehabilitated Nabarlek mine site. It was mined out in 1979, decommissioned in 1995 and provided a good test bed for assessment of rehabilitation in terms of radon flux attenuation. Measurements have been made with charcoal canisters. Studies to measure the radon-220 flux by observing Tl-208 progeny of thoron the effectiveness of trial covers and meteorological considerations will be reported.

  9. Use of wood anatomy to identify poisonous plants: Charcoal of Spirostachys africana

    Directory of Open Access Journals (Sweden)

    Sandra J. Lennox

    2015-03-01

    Full Text Available Spirostachys africana Sond. (tamboti/tambotie is a woodland tree that is often found near water. It has a poisonous and purgative latex. The archaeological site of Sibudu, a rock shelter in KwaZulu-Natal, has evidence, from well-preserved charcoal and seeds, of past environments and wood use from approximately 77–38 thousand years ago (ka. As their uses and environmental indicators are different, it is critical to confidently distinguish among the three anatomically similar woods of the Euphorbiaceae: Spirostachys africana, Sclerocroton integerrimus and Shirakiopsis elliptica. A detailed anatomical study of reference and archaeological charcoal shows that xylem vessel width increases proportionally as vessel frequency decreases, from Spirostachys africana, Sclerocroton integerrimus to Shirakiopsis elliptica. Crystals of calcium oxalate are present in ray cells of Spirostachys africana, whereas silica bodies are present in ray cells of Sclerocroton integerrimus and Shirakiopsis elliptica. Using these features, the presence of Spirostachys africana was confirmed amongst hearth charcoal of the Spotty Camel layer, with an age of approximately 58 ka and of the Mottled Deposit occupational layer, with an age of approximately 49 ka. The presence of this charcoal, collected from ancient fireplaces or sieved from surrounding sediments, implies that people at Sibudu understood and used this poisonous tree to their advantage. We are encouraged in this view by the presence of many Cryptocarya woodii leaves found on the surface of 77-ka sedge bedding at Sibudu (Wadley L et al., Science. 2011;334:1388–1391. Cryptocarya woodii has insecticidal and larvacidal properties and members of the Laurel family are well known for their medicinal properties.

  10. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal

    OpenAIRE

    Lidan Fan; Mengyue Wang; Zhen Zhang; Gang Qin; Xiaoyi Hu; Qiang Chen

    2018-01-01

    Natural bamboo charcoal (BC) powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA)-based alkaline solid polymer electrolyte (ASPE) by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm) distributed inside a...

  11. The microbiology of apples and apple products.

    Science.gov (United States)

    Doores, S

    1983-01-01

    The apple industry has reached an annual production level of 8.5 billion pounds. CA storage of 25% of this crop has enabled a fresh market on a year-round basis. To achieve high quality in raw fruit and processed apple products, careful attention must be paid to maintaining a microbiologically stable environment. The ecology of the microflora associated with the apple is a reflection of the orchard, handling, harvesting, and storage practices. Yeasts predominate on orchard fruit, molds may become a storage problem, and bacteria cause spoilage, off flavors, and loss of quality in juice products. Despite the microbial problems inherent in producing of quality product, the apple industry is faced with the occurrence of patulin. Patulin, a mycotoxin produced by Penicillium and Aspergillus species, has been associated with damaged fruit. Decreased temperatures, coupled with CA storage; can deter mold growth and patulin production. Laboratory detection methods for derivations of patulin are able to detect microgram quantities. Means to eliminate patulin formed in apple products include addition of ascorbate and SO2, extending fermentation, or charcoal filtering. However, degradation products of patulin have not been evaluated toxicologically.

  12. The contribution of charcoal burning to the rise and decline of suicides in Hong Kong from 1997-2007.

    Science.gov (United States)

    Law, C K; Yip, Paul S F; Caine, Eric D

    2011-09-01

    There has been scant research exploring the relationship between choice of method (means) of self-inflicted death, and broader social or contextual factors. The recent emergence and growth of suicide using carbon monoxide poisoning resulting from burning charcoal in an enclosed space (hereafter, "charcoal burning") was related to an increase in the overall suicide rate in Hong Kong. The growth of this method coincided with changing economic conditions. This paper expands upon previous work to explore possible relationships further. This study aims to discern the role of charcoal burning in overall suicide rate transition during times of both economic recession and expansion, as captured in the unemployment rate of Hong Kong, and to examine whether there was evidence of an effect from means-substitution. Age and gender specific suicide rates in Hong Kong by suicide methods from 1997 to 2007 were calculated. To model the transition of suicide rate by different methods, Poisson regression analyses were employed. Charcoal burning constituted 18.3% of all suicides, 88% of which involved individuals drawn from the middle years (25-59) of life. During both periods of rising and declining unemployment, charcoal burning played an important role in the changing suicide rates, and this effect was most prominent among for those in their middle years. Means-substitution was found among the married women during the period of rate advancement (1997-2003). Compared to others, working-age adults preferentially selected carbon monoxide poisoning from charcoal burning.

  13. Efficiency and emissions of charcoal use in the improved Mbaula cookstove

    International Nuclear Information System (INIS)

    Kaoma, J.; Kasali, G.B.; Ellegaard, A.

    1994-01-01

    An improved chamber method was used to evaluate the thermal performance and emission characteristics of charcoal in an unvented cookstove known as the Improved Mbaula. Emission factors and rates for pollutants, burn rate and stove efficiency were determined. The pollutants that were continuously monitored were carbon monoxide (CO), sulphur dioxide (SO 2 ), nitric oxide (NO), nitrogen dioxide (NO 2 ), and respirable suspended particulates (RSP). Concentrations of CO, nitrogen oxides and RSP in the test chamber (a simulated kitchen) reached levels in excess of guidelines recommended in industrialized countries. Concentrations of SO 2 did not exceed known levels. If the test chamber actually is a good simulation of a common kitchen, the levels reached warrant concern for the health of people exposed, mostly women and children. Levels of pollution in actual kitchens will be assessed in a later study. The adjustable opening of the stove proved effective in regulating the burn rate. At half air input, burn rate decreased by about 40%, while emissions increased by about 60% compared to operation at full air input. Emissions of CO were 340 g/kg charcoal at full air input, which was taken to be the normal mode of operation. The average thermal efficiency (PHU) of the improved mbaula was 25% compared to 29% for the traditional charcoal stove. 16 refs, 4 figs, 12 tabs

  14. Effect of carbon black on thermal properties of charcoal and salacca leafstalk briquettes

    Science.gov (United States)

    Thassana, Chewa; Nuleg, Witoon

    2017-08-01

    In this work, the effect of a carbon black (CB) on the thermal properties of briquettes produced from the charcoal and the salacca leafstalk with and without CB have been investigated. Four thermal properties of a briquettes compose of the burning time, the calorific value, the percentage moisture (PMC) and an percentage ash content (PAC) were analyzed using standard laboratory methods. Our results were indicated that the sallacca leafstalk mix a carbon black is the long burning times, high heating but a few ash content. Results shown that the burning time and the calorific value of a charcoal, a charcoal with CB, the salacca leafstalk and the salacca leafstalk with carbon black particles is about 58, 63, 76, 81 minutes, and 10.33, 12.96, 13.12, 14.63 MJ/kg, respectively. In addition, the PMC and PAC were in range of 11.6 - 8.14% and 9.33 - 5.42%. So, we can conclude that a cabon black affect on the thermal properties of a briquettes and salacca leaftstalk mixed CB has been most suited for briquetting.

  15. Efficiency and emissions of charcoal use in the improved Mbaula cookstove

    Energy Technology Data Exchange (ETDEWEB)

    Kaoma, J; Kasali, G B [Building and Industrial Minerals Research Unit, National Council for Scientific Research, (Zambia); Ellegaard, A [Stockholm Environment Inst. (Sweden)

    1994-12-31

    An improved chamber method was used to evaluate the thermal performance and emission characteristics of charcoal in an unvented cookstove known as the Improved Mbaula. Emission factors and rates for pollutants, burn rate and stove efficiency were determined. The pollutants that were continuously monitored were carbon monoxide (CO), sulphur dioxide (SO{sub 2}), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), and respirable suspended particulates (RSP). Concentrations of CO, nitrogen oxides and RSP in the test chamber (a simulated kitchen) reached levels in excess of guidelines recommended in industrialized countries. Concentrations of SO{sub 2} did not exceed known levels. If the test chamber actually is a good simulation of a common kitchen, the levels reached warrant concern for the health of people exposed, mostly women and children. Levels of pollution in actual kitchens will be assessed in a later study. The adjustable opening of the stove proved effective in regulating the burn rate. At half air input, burn rate decreased by about 40%, while emissions increased by about 60% compared to operation at full air input. Emissions of CO were 340 g/kg charcoal at full air input, which was taken to be the normal mode of operation. The average thermal efficiency (PHU) of the improved mbaula was 25% compared to 29% for the traditional charcoal stove. 16 refs, 4 figs, 12 tabs

  16. Holocene elemental, lead isotope and charcoal record from peat in southern Poland

    Directory of Open Access Journals (Sweden)

    K. Tudyka

    2017-03-01

    Full Text Available This article presents a mid-resolution elemental, isotopic and charcoal record from 10700 BC to AD 500 in a peat core located in Żyglin (southern Poland. The objective is to give insight into the proxies with emphasis on lead (Pb sources in this minerogenic peat deposit. During the Early Holocene (10700–7550 BC the average 206Pb/207Pb quotient was around 1.196. This isotopic signature is consistent with natural dust derived from long-distance soil and rock weathering. The Mid-Holocene period (7550–3200 BC shows a significant change in the peat accumulation conditions. The growth rate is approximately 0.04 mm yr-1 and the 206Pb/207Pb quotients are shifted toward values that are found in local galena ores. This is simultaneous with a significantly increased lead flux which further confirms local sources of material in this peat deposit. In the Late Holocene period (3200 BC–AD 500 a large quantity of charcoal particles with diameters ranging from 2 mm up to 3 cm is found; also, Pb, Zn and Cu fluxes reach their highest values. This period corresponds to the Eneolithic, Bronze and Iron Ages, and human impact is recorded as charcoal.

  17. Preparation of reusable conductive activated charcoal plate as a new electrode for industrial wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ayoubi-Feiz, Baharak; Aber, Soheil [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-10-15

    A conductive activated charcoal plate (ACP) was prepared from a low-cost, abundant, and non-conductive charcoal. The prepared ACP was characterized using N{sub 2} adsorption/desorption isotherms, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Brunauer-Emmett-Teller (BET) surface area of the charcoal and the ACP was 0.58m{sup 2} g{sup -1} and 461.67m{sup 2} g{sup -1}, respectively. The ACP was employed in textile wastewater treatment using electrosorption process. Response surface methodology (RSM) was applied to design the experiments. The decolorization efficiency of 76% at optimum conditions of voltage=450mV, pH=4, and contact time=120 min indicated that the ACP has promising potential to decolorize textile wastewater. Moreover, the results of the kinetic analyses demonstrated that wastewater treatment followed pseudo-first order kinetic model. The ACP electrode could be regenerated and reused effectively at five successive cycles of electrosorption/electrodesorption.

  18. Thermal Properties of Green Fuel Briquettes from Residue Corncobs Materials Mixed Macadamia Shell Charcoal Powder

    Science.gov (United States)

    Teeta, Suminya; Nachaisin, Mali; Wanish, Suchana

    2017-09-01

    The objective of this research was to produce green fuel briquettes from corncobs by adding macadamia shell charcoal powder. The study was sectioned into 3 parts: 1) Quality improvement of green fuel briquettes by adding macadamia; 2) Fuel property analysis based on ASTM standards and thermal fuel efficiency; and 3) Economics appropriateness in producing green fuel briquettes. This research produced green fuel briquettes using the ratio of corncobs weight and macadamia shell charcoal powder in 100:0 90:10 80:20 70:30 60:40 and 50:50 and pressing in the cold briquette machine. Fuel property analysis showed that green fuel briquettes at the ratio 50:50 produced maximum heating values at 21.06 Megajoule per kilogram and briquette density of 725.18 kilograms per cubic meter, but the percent of moisture content, volatile matter, ash, and fixed carbon were 10.09, 83.02, 2.17 and 4.72 respectively. The thermal efficiency of green fuel briquettes averaged 20.22%. Economics appropriateness was most effective where the ratio of corncobs weight to macadamia shell charcoal powder was at 50:50 which accounted for the cost per kilogram at 5.75 Baht. The net present value was at 1,791.25 Baht. Internal rate of return was at 8.62 and durations for a payback period of investment was at 1.9 years which was suitable for investment.

  19. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    Science.gov (United States)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  20. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  1. Adsorption characteristics of sulfur powder by bamboo charcoal to restrain sulfur allergies

    Directory of Open Access Journals (Sweden)

    Wanxi Peng

    2017-01-01

    Full Text Available Exposures to particulate matter with a diameter of 2.5 μm or less (PM2.5 may influence the risk of birth defects and make you allergic, which causes serious harm to human health. Bamboo charcoal can adsorb harmful substances,that was of benefitto people’s health. In order to figure out the optimal adsorbtion condition and the intrinsic change of bamboo charcoal, five chemicals were adsorbed by bamboo charcoal and were analyzed by FT-IR. The optimal blast time was 80 min of Na2SO3, 100 min of Na2S2O8, 20 min of Na2SO4, 120 min of Fe2(SO43 and 60 min or 100 min of S. FT-IR spectra showed that bamboo charcoal had five characteristic peaks of SS stretch, H2O stretch, OH stretch, CO stretch or CC stretch, and NO2 stretch at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1, respectively. For Na2SO3, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 20 min. For Na2S2O8, the peaks at 3850 cm−1, 3740 cm−1, 3430 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Na2SO4, the peaks at 3850 cm−1, 3740 cm−1 and 1530 cm−1 achieved the maximum at 40 min. For Fe2(SO43, the peaks at 3850 cm−1, 3740 cm−1, 1630 cm−1 and 1530 cm−1 achieved the maximum at 120 min. For S, the peaks at 3850 cm−1 and 3740 cm−1 achieved the maximum at 40 min, the peaks at 1630 cm−1 and 1530 cm−1 achieved the maximum at 40 min. It proved that bamboo charcoal could remove sulfur powder from air to restrain sulfur allergies.

  2. Assessing the Efficacy of Restricting Access to Barbecue Charcoal for Suicide Prevention in Taiwan: A Community-Based Intervention Trial

    Science.gov (United States)

    Chen, Ying-Yeh; Chen, Feng; Chang, Shu-Sen; Wong, Jacky; Yip, Paul S F

    2015-01-01

    Objective Charcoal-burning suicide has recently been spreading to many Asian countries. There have also been several cases involving this new method of suicide in Western countries. Restricting access to suicide means is one of the few suicide-prevention measures that have been supported by empirical evidence. The current study aims to assess the effectiveness of a community intervention program that restricts access to charcoal to prevent suicide in Taiwan. Methods and Findings A quasi-experimental design is used to compare method-specific (charcoal-burning suicide, non-charcoal-burning suicide) and overall suicide rates in New Taipei City (the intervention site, with a population of 3.9 million) with two other cities (Taipei City and Kaohsiung City, the control sites, each with 2.7 million residents) before (Jan 1st 2009- April 30th 2012) and after (May 1st 2012-Dec. 31st 2013) the initiation of a charcoal-restriction program on May 1st 2012. The program mandates the removal of barbecue charcoal from open shelves to locked storage in major retail stores in New Taipei City. No such restriction measure was implemented in the two control sites. Generalized linear regression models incorporating secular trends were used to compare the changes in method-specific and overall suicide rates before and after the initiation of the restriction measure. A simulation approach was used to estimate the number of lives saved by the intervention. Compared with the pre-intervention period, the estimated rate reduction of charcoal-burning suicide in New Taipei City was 37% (95% CI: 17%, 50%) after the intervention. Taking secular trends into account, the reduction was 30% (95% CI: 14%, 44%). No compensatory rise in non-charcoal-burning suicide was observed in New Taipei City. No significant reduction in charcoal-burning suicide was observed in the other two control sites. The simulation approach estimated that 91 (95%CI [55, 128]) lives in New Taipei City were saved during the 20

  3. Impact of charcoal waste application on the soil organic matter content and composition of an Haplic Cambisol from South Brazil

    Science.gov (United States)

    dos Anjos Leal, Otávio; Pinheiro Dick, Deborah; Cylene Lombardi, Kátia; Gonçalves Maciel, Vanessa

    2014-05-01

    In some regions in Brazil, charcoal is usually applied to the soil with the purpose to improve its fertility and its organic carbon (SOC) content. In Brazil, the use of charcoal waste from steel industry with agronomic purposes represents also an alternative and sustainable fate for this material. In this context, the objective of this work was to evaluate the impact of Eucalyptus charcoal waste application on the SOC content and on the soil organic matter (SOM) composition. Increasing doses of charcoal (0, 10, 20 and 40 Mg ha-1) were applied to an Haplic Cambisol, in Irati, South-Brazil. Charcoal was initially applied on the soil surface, and then it was incorporated at 10 cm with a harrow. Soil undisturbed and disturbed samples (four replicates) were collected in September 2011 (1 y and 9 months) after charcoal incorporation. Four soil depths were evaluated (0-5, 5-10, 10-20 and 20-30 cm) and each replicate was composed by three subsamples collected within each plot. The soil samples were air dried, passed through a 9.51 mm sieve and thereafter through a 2.00 mm sieve. The SOC content and total N were quantified by dry combustion. The SOM was concentrated with fluoridric acid 10% and then the SOM composition was evaluated by thermogravimetric analysis along the soil profile. The main impact of charcoal application occurred at the 0-5 cm layer of the area treated with the highest dose: SOC content increased in 15.5 g kg-1 in comparison to the soil without charcoal application. The intermediary doses also increased the SOC content, but the differences were not significant. No differences for N content were found in this soil depth. Further results were observed in the 10-20 cm soil depth, where the highest dose increased the SOC content and N content. Furthermore, this treatment increased the recalcitrance of the SOM, mainly at the 0-5 cm and 10-20 cm soil layers. No differences between doses of charcoal application were found in the 20-30 cm soil depth, suggesting

  4. Sustainable charcoal use in iron and steel industry in Carajas region, Brazil; Avaliacao do potencial brasileiro de florestas plantadas na reducao da concentracao do carbono atmosferico: o caso do polo guseiro de Grande Carajas

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Rodrigo Zambrotti [AJR Engenharia - Seguranca, Meio Ambiente e Saude Ltda. (Brazil)

    2004-07-01

    Concern about greenhouse gas emissions and global climate change has raised awareness that forest-management strategies have a large potential for storing and absorbing carbon from the atmosphere. Other measures under consideration include the use of renewable biomass as a substitute for fossil fuel use. This thesis shows the potential of charcoal from renewable Eucalyptus plantations for reducing CO{sub 2} emissions by replacing charcoal from the harvest of native forest in the iron and steel industry located at Carajas region, state of Para, Brazil. The results show that, if deforestation in the Carajas region were stopped and substituted by renewable forests for charcoal production, within a 21-year time horizon some 470.000 hectares of native Amazon forests could be preserved, avoiding the emission of some 2.67 x 10{sup 6} tC/yr to the atmosphere, which is 3.2% of the current carbon emissions from fossil fuel consumption in Brazil (82,4 x 10{sup 6} tC/yr) at a cost of 2,65-3,84 US$/tC. (author)

  5. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor.

    Science.gov (United States)

    Zhang, Wenjie; Liu, Xiaoning; Wang, Dunqiu; Jin, Yue

    2017-11-01

    Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH 4 + -N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  7. Angina Pectoris (Stable Angina)

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Angina Pectoris (Stable Angina) Updated:Aug 21,2017 You may have heard the term “angina pectoris” or “stable angina” in your doctor’s office, ...

  8. Using biofilms and grazing chironomids (Diptera: Chironomidae) to determine primary production, nitrogen stable isotopic baseline and enrichment within wetlands differing in anthropogenic stressors and located in the Athabasca oil sands region of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.; Ciborowski, J.J. [Windsor Univ., Windsor, ON (Canada); Wytrykush, C.M. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2009-07-01

    This presentation reported on a study that investigated the effects of oil sands process materials (OSPM) and construction disturbances on primary production and nitrogen stable isotope enrichment in reclaimed and reference wetlands at oil sands mines in the Athabasca basin. Productivity and food web analyses were instrumental in evaluating the succession and viability of reclaimed wetlands. Primary production was estimated through chlorophyll a (Chl a) concentrations and biomass. Carbon (C) and nitrogen (N) stable isotope ratios were used to identify energy sources, storage and the magnitude and direction of energy transfer within food webs. The objectives were to determine primary productivity, the N baseline, and N enrichment from biofilms and grazing invertebrates colonizing artificial substrates immersed in the water column of two OSPM-affected, two constructed reference and two natural reference wetlands. The lower biomass and Chl a concentrations in OSPM-affected and constructed wetlands suggests that both anthropogenic disturbance and OSPM have an adverse effect on primary productivity and overall wetland function.

  9. Combining charcoal and elemental black carbon analysis in sedimentary archives: Implications for past fire regimes, the pyrogenic carbon cycle, and the human-climate interactions

    Science.gov (United States)

    Thevenon, Florian; Williamson, David; Bard, Edouard; Anselmetti, Flavio S.; Beaufort, Luc; Cachier, Hélène

    2010-07-01

    This paper addresses the quantification of combustion-derived products in oceanic and continental sediments by optical and chemical approaches, and the interest of combining such methods for reconstructing past biomass burning activity and the pyrogenic carbon cycle. In such context, the dark particles > 0.2 µm 2 remaining after the partial digestion of organic matter are optically counted by automated image analysis and defined as charcoal, while the elemental carbon remaining after thermal and chemical oxidative treatments is quantified as black carbon (BC). The obtained pyrogenic carbon records from three sediment core-based case studies, (i) the Late Pleistocene equatorial Pacific Ocean, (ii) the mid-Holocene European Lake Lucerne, and (iii) the Late Holocene African Lake Masoko, are interpreted as proxy records of regional transportation mechanisms and biomass burning activities. The results show that the burial of dark carbon-rich particles in the 360 kyr-long record from the west equatorial Pacific is controlled by the combination of sea-level changes and low-latitude atmospheric circulation patterns (summer monsoon dynamics). However, the three fold increases in charcoal and BC sediment influxes between 53-43 and 12-10 kyr BP suggest that major shifts in fire activity occur synchronously with human colonization in the Indo/Pacific region. The coarse charcoal distribution from a 7.2 kyr record from Lake Lucerne in Switzerland closely matches the regional timing of major technical, land-use, and socio-economic changes during the Neolithic (between ca. 5.7 and 5.2 kyr BP and 4.9-4.5 kyr BP), the Bronze and Iron Ages (at ca. 3.3 and 2.4 kyr BP, respectively), and the industrialization (after AD 1838), pointing to the key impact of human activities on the sources, transportation processes and reservoirs of refractory carbon during the Holocene. In the tropical Masoko maar lake in Tanzania, where charcoal and BC records are highly sensitive to the local climate

  10. The retention of radioactive noble gases in nuclear power stations by means of activated charcoal delay systems. A status report

    International Nuclear Information System (INIS)

    Schroeder, H.J.

    1983-01-01

    Since the beginning of the 1970s off-gas systems using activated charcoal have been used in BWRs and PWRs to minimize the release of radioactive noble gases and the resultant exposure of the environment. In practice, the power-related noble gas emission rate achieved is 1-10 Ci/MWa in the case of BWRs and 0.1-1 Ci/MWa for PWRs. The systems are relatively simple in design and operators state that they are easy and cheap to run. The activated charcoal used shows no signs of becoming spent and, if protected from humidity, retains its full efficiency. On the basis of the information to hand it has never been necessary to replace it. Experience to date suggests that a charge of activated charcoal can last the life of the facility as a whole. All knowledge and experience gained so far indicate that off-gas systems using activated delay systems for BWR facilities are indispensable and must therefore be considered an integral part of such facilities. Capital expenditure amounts to approximately 1% of the total cost and should, therefore, not be unacceptable. In PWRs off-gas systems using pressure vessels as delay trains are in competition with off-gas systems based on activated charcoal delay systems. The activated charcoal systems have proved themselves and their use, which involves capital expenditure equivalent to approximately of 0.5% to the overall cost, can be recommended without reservation

  11. Impact of management strategies in the basal rot, charcoal rots epidemiology and Phaseolus vulgaris L. yield.

    Directory of Open Access Journals (Sweden)

    Ulacio Osorio Dilcia

    2013-02-01

    Full Text Available The effect of chemical, physical, biologycal and cultural strategies individually or combinated were evaluated in the epidemiology of the basal rot (Sclerotium rolfsii, charcoal rot (Macrophomina phaseolina and the Phaseolus vulgaris cv Tacarigua yield at Barinas state from Venezuela. In the experiment, Tebuconazole (Teb was applicated at seed (1 L/Ton and at soil, a los 30 y 60 days after of the sow (1 L/ha; Trichoderma harzianum (Tri was applicated at seed (15 g for each 1.5 k and to 15, 30, 45 y 60 days after of the sow (30 g/10 L of water. On the other hand, soil was solarizated (Sol during 15 days and calcium nitrate (Ca (60 g/10 L of water was applicated each 15 days until 60 days of growth of cultivated plants. Basal rot was registered as far as 42 days after of the sow, showing less of 5.3% in Teb y the combination SolTeb. The hightest incidence of this disease was observed in the treatment Tri with 28.5%, being highter that control (14.5%. Last to 42 days predominated the charcoal rot in the rest of the plants for a total of 100% of incidente in everything the treatments. Nevertheless, Teb showed the hightest yield with 555 k/ha, being different estatistically at treatment TriCa, which showed the lowest yield with 31 k/ha, however, the roots not formed nodules nitrogen uptake in these replications with the fungicide and Ca. It is concluded that S. rolfsii was sensible at action of some of the treatments; but not M. phaseolina; nevertheless, the plants were capables to produce seeds health apparently in treatments in which observed less severity of charcoal rot.

  12. Carbon monoxide poisoning-induced cardiomyopathy from charcoal at a barbecue restaurant: a case report.

    Science.gov (United States)

    Kim, Hyun-Jun; Chung, Yun Kyung; Kwak, Kyeong Min; Ahn, Se-Jin; Kim, Yong-Hyun; Ju, Young-Su; Kwon, Young-Jun; Kim, Eun-A

    2015-01-01

    Acute carbon monoxide poisoning has important clinical value because it can cause severe adverse cardiovascular effects and sudden death. Acute carbon monoxide poisoning due to charcoal is well reported worldwide, and increased use of charcoal in the restaurant industry raises concern for an increase in occupational health problems. We present a case of carbon monoxide poisoning induced cardiomyopathy in a 47-year-old restaurant worker. A male patient was brought to the emergency department to syncope and complained of left chest pain. Cardiac angiography and electrocardiography were performed to rule out acute ischemic heart disease, and cardiac markers were checked. After relief of the symptoms and stabilization of the cardiac markers, the patient was discharged without any complications. Electrocardiography was normal, but cardiac angiography showed up to a 40% midsegmental stenosis of the right coronary artery with thrombotic plaque. The level of cardiac markers was elevated at least 5 to 10 times higher than the normal value, and the carboxyhemoglobin concentration was 35% measured at one hour after syncope. Following the diagnosis of acute carbon monoxide poisoning induced cardiomyopathy, the patient's medical history and work exposure history were examined. He was found to have been exposed to burning charcoal constantly during his work hours. Severe exposure to carbon monoxide was evident in the patient because of high carboxyhemoglobin concentration and highly elevated cardiac enzymes. We concluded that this exposure led to subsequent cardiac injury. He was diagnosed with acute carbon monoxide poisoning-induced cardiomyopathy due to an unsafe working environment. According to the results, the risk of exposure to noxious chemicals such as carbon monoxide by workers in the food service industry is potentially high, and workers in this sector should be educated and monitored by the occupational health service to prevent adverse effects.

  13. Kinetics and adsorption isotherm of lactic acid from fermentation broth onto activated charcoal

    Directory of Open Access Journals (Sweden)

    Seankham Soraya

    2017-01-01

    Full Text Available Activated charcoal was applied for the recovery of lactic acid in undissociated form from fermentation broth. Lactic acid was obtained from the fermentation of Lactobacillus casei TISTR 1340 using acid hydrolyzed Jerusalem artichoke as a carbon source. The equilibrium adsorption isotherm and kinetics for the lactic acid separation were investigated. The experimental data for lactic acid adsorption from fermentation broth were best described by the Freundlich isotherm and the pseudo-second order kinetics with R2 values of 0.99. The initial adsorption rate was 41.32 mg/g⋅min at the initial lactic acid concentration of 40 g/L.

  14. Airborne radon-222 measurement by active sampling with charcoal adsorption and gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shizuma, Kiyoshi; Wen, Xiao-qiong; Fukami, Kenji; Iwatani, Kazuo; Hamanaka, Shun-ichi

    1998-01-01

    A simple method for measuring radon concentration in air is presented. Airborne radon is adsorbed in a charcoal bed by an active air sampling. In time, the adsorbed radon comes to attain radioactive equilibrium with its short-lived progeny 214 Pb. Utilizing this fact, radon concentration is derived from γ-ray measurement of 214 Pb. This method is estimated to be capable of detecting radon concentration in air down to 0.79 Bq·m -3 . The adsorption coefficient obtained with the method is compared with what is obtainable with passive sampling. Applications of this method to indoor and outdoor radon measurements are described. (author)

  15. Evaluating the impact of water processing on wood charcoal remains: Tell Qarassa North, a case study

    DEFF Research Database (Denmark)

    Otaegui, Amaia Arranz; Zapata, Lydia; Colledge, Sue

    .5 l) were recovered. The aim of the work is to evaluate if water processing affects similarly all of taxa or instead, differences exists in the preservation of certain types of remains. To evaluate this, taxonomic and taphonomic analyses were carried out, including the recording of alterations...... the taxa present at the site. The results presented here warn against straightforward interpretations of wood charcoal frequencies in terms of original composition of past vegetation, and suggest that it would be advisable to use more than one recovery technique, along with recording of different types...

  16. Radiocarbon dating of charcoal fragments from the cave A5-3 in Arsanjan, Iran

    International Nuclear Information System (INIS)

    Tomiyama, Shinji; Minami, Masayo; Nakamura, Toshio

    2013-01-01

    Modern humans (Homo-sapiens), who originated in East Africa about 200,000 years ago, migrated out of Africa about 130,000-60,000 years ago, dispersed in West Asia, and finally replaced Neanderthals in Europe and Asia. The region of West Asia, especially southern Iran, therefore, is very important to understand the evolution of modem humans. The Japan-Iran international research group, led by Professor Tsuneki of Tsukuba University, has investigated A5-3 cave in the Arsanjan archeological site in southern Iran since 2011. The sequence of layers in the cave is estimated to belong Middle Paleolithic to the Proto-Neolithic period, based on the type of lithic artifacts excavated. In this study, we measured AMS- 14 C dates of charcoal fragments collected from the layers to reveal the chronology of the Arsanjan site. Charcoal samples collected from surface layer to Layer 4 in Trench E5 (total 6 layers) and Layers 2 and 3 in Trench B3 (total 10 layers) in the A5-3 cave were used. In Trench E5, charcoal samples of surface layer were dated at modern, samples of Layer 1 at 300-115 BP, samples of Layer 2 at 26,750-26,370 BP, and one sample of Layer 3 and samples of Layer 4 were older than 14 C-detection limit. In Trench B3, charcoal samples of Layer 2 were dated at 36,500-35,300 BP, and one sample of Layer 3 was dated at 36,890±190 BP. The layers in both Trenches E5 and B3 had been considered to correspond to each other base on the type of lithic artifacts, but the 14 C results show that the layers of Trench B3 are about 10,000 BP older than those of Trench E5. Layers 2 and 3 in Trench B3 belong to the early Upper Paleolithic period, contemporary with the result reported for AH IV layer in Ghar-e Boof archeological site at Dasht-e Rostam region, southwestern Iran. This study is the second finding of use of these micro-blades at 37,000 BP in Iran, following the Ghar-e Boof site. Layer 4 in Trench B3 includes Middle Paleolithic artifacts, and so 37,000 BP obtained for Layer 3

  17. Productivity, facies and stable-isotope records of OAE2 (Cenomanian - Turonian) in the NW European epicontinental sea: from the English Chalk to North Sea black shales

    Science.gov (United States)

    Jarvis, Ian; Olde, Kate; Trabucho-Alexandre, João; Gröcke, Darren

    2013-04-01

    The Late Cretaceous (100.5 - 66.0 Ma) provides perhaps the best example of how the Earth System may function under long-term extreme greenhouse conditions. Rapidly rising global temperatures indicate that we are heading 'back to the Cretaceous' within a few hundred years, so a better understanding of this time interval is essential. The beginning of the Late Cretaceous was characterized by a period of rapidly rising eustatic sea level, the Cenomanian transgression, which flooded continental margins and established large areas of new epicontinental sea that accumulated thick sequences of pelagic and hemipelagic carbonate (chalk). Highest global temperatures were reached during the early part of the Turonian Stage (93.9 - 89.8 Ma). This period of dramatic palaeoenvironmental change was accompanied by one the largest perturbations of the global carbon cycle in the Mesozoic: Oceanic Anoxic Event 2 (OAE2), which was characterized by a 500 kyr episode of oceanic anoxia, widespread black shale deposition, biotic turnover, and a large global positive carbon stable-isotope excursion (2 - 6 ‰ ∂13C) recorded in marine carbonates and both marine and terrestrial organic matter. The Cenomanian-Turonian boundary interval exposed at Eastbourne, southern England, has become established as a European reference section for OAE2. Here, and elsewhere in Europe, the base of the ∂13C excursion is coincident with a marked facies change from rhythmically bedded grey chalks and marls, to a >8 m thick package of dark greenish-grey marl - the Plenus Marl. The termination of OAE2 occurs 6 m above, in a package of pale-yellow-weathering nodular chalks with prominent marl seams. Sediments are organic lean (10 wt%. The onshore equivalent in eastern England (the Black Band) is similarly organic-rich, as are comparable sections in northern Germany (e.g. Wunstorf), indicating likely fully anoxic episodes within some NW European basins. The exact stratigraphic equivalence between the onshore

  18. Preparing activated carbon from charcoal and investigation of the selective uranium adsorption

    International Nuclear Information System (INIS)

    Kuetahyali, C.; Eral, M.

    2001-01-01

    Preconcentration and separation procedures based on adsorption phenomena are important in nuclear and especially radiation chemistry, industry, medicine and daily life. Adsorption of uranium onto various solids is important from purification, environmental and radioactive waste disposal points of view . The treatment of aqueous nuclear waste solutions containing soluble metal ions requires concentration of the metal ions into smaller volume followed by recovery or secure disposal. For this purpose, many processes are being utilized such as precipitation, ion-exchange, solvent extraction and adsorption on solids etc. Interest in the adsorption of metal ions for recovery purposes has increased manyfold in recent years, because of its simplicity, selectivity and efficiency . The main advantage of adsorption is the separation of trace amount of elements from large volumes of solutions. In recent years, several studies have been made to recover radionuclides by adsorption using natural and synthetic adsorbents. Adsorption on charcoal is one of the most efficient techniques used in water treatment processes for the removal of organics and micropollutants from wastes and drinking waters. Adsorption processes have long been used in the removal of color, odor, and organic pollution. These processes are usually based on the use of activated carbon . Activated carbon consists mainly of carbon and is produced from every carbonaceous material. Activated carbon characterized by its high surface area and its wide distribution of porosity. The textural properties (surface area and porosity) of activated carbons play an important role in determining the capacity of the material in adsorption from aqueous solution. Chemistry of the surface is also important . Generally, activated carbons are mainly microporous, but in addition to micropores they contain meso- and macropores, which are very important in facilitating acces of the adsorbate molecules to the interior of carbon particles

  19. A comparative study of reverse osmosis and activated charcoal, two inexpensive and very effective ways to remove waterborne radon

    International Nuclear Information System (INIS)

    Sullivan, K.T.; Mose, D.G.; Mushrush, G.W.

    1994-01-01

    A two year comparative study of waterborne radon removal reveals that reverse osmosis is consistently more effective than the use of activated charcoal. Reverse osmosis is a process by which water is forced under a pressure sufficient to overcome osmotic pressure through a semipermeable membrane, leaving behind impurities. Removal effectiveness for dissolved organic, dissolved ionic and suspended impurities are typically above 90%. Systems designed for home use to remove impurities from water dispensed at a convenient tap cost about $2000 and commonly consist of a sediment filter, a carbon prefilter, and a reverse osmosis container. A tank of activated charcoal can work equally well, and cost $500-$1000. However, the tank of charcoal becomes measurably enriched in gamma-emitters

  20. Removal of Dissolved Cadmium by Adsorption onto Walnut and Almond Shell Charcoal: Comparison with Granular Activated Carbon (GAC

    Directory of Open Access Journals (Sweden)

    Mohsen Saeedi

    2009-06-01

    Full Text Available In the present study, adsorption of dissolved Cadmium (Cd onto walnut and almond shell charcoal and the standard granular activated carbon (GAC has been investigated and compared. The effect of pH value, initial concentration of dissolved Cadmium and amount of adsorbent on the adsorption of Cd by the mentioned adsorbents were investigated. Results showed that the adsorption process was highly dependent on pH. Maximum Cd removal was achieved when the final pH of the mixture fell within 6.5-7. Adsorption test results revealed that Cd adsorption on the studied adsorbents could be better described by Longmuir isotherm. Maximum Cd removal efficiencies were obtained by walnut shell charcoal (91%, almond shell charcoal (85%, and GAC (81%.

  1. Measurement of dynamic adsorption coefficient of Xe on coconut charcoal in CO2 streams by gas-solid chromatography

    International Nuclear Information System (INIS)

    Sun Xinxi; Huang Yuying; Li Wangchang

    1984-01-01

    This paper presents a method for measuring the dynamic adsorption coefficients of Xe on coconut charcoal II-2 in CO 2 carrier streams by SP-2305E gas chromatograph with the thermal conductivity cell. The adsorption column is made of stainless steel (diameter 4 x 240 mm) packed with 60-80 mesh coconut charcoal II-2. The CO 2 content in carrier streams is about 87%. Three groups of data of Xe dynamic adsorption coefficient were obtained at temperature 15.5 deg C, 31.5 deg C and 50.5 deg C by pulse injection respectively. Another group was obtained at temperature approx. 16 deg C by continueous injection. In addition, adsorption isotherms and adsorption isometrics were determined. In this experimental system, the adsorption heat of Xe on coconut charcoal II-2 is 2820 cal/mole

  2. Lead Testing in Soil Contaminated with Pesticides and Reducing its Effects by the Activity of Activated Charcoal

    Directory of Open Access Journals (Sweden)

    Devesh Chand Thakur

    2014-07-01

    Full Text Available Background: Lead poisoning is classically defined as exposure to high levels of lead typically associated with severe health effects, but being a heavy metal which is potentially toxic, if present at even minor concentrations, it is of great concern to environmentalists and medical professionals alike. Activated charcoal has been known to adsorb heavy metals and thus, was used in this study as well. Aim: The main aim of this study was to decrease the lead content of agricultural soil which is attributed to the use of pesticides containing lead by using activated charcoal. Material and Methods: The lead contamination in agricultural soil and plant dry mass samples which increases due to the effect of pesticides was detected by using Field Portable X-Ray Fluroscence (FP-XRF spectrophotometer. Soil was taken in plastic trays and the plants were grown and watered daily. The collected ground water was also tested. For the estimation of lead in water samples, Graphite Furnace Atomic Absorption Spectroscopy (GFAAS was employed. Results: This study suggested the remediation of soil lead content by using activated charcoal. The study also revealed that activated charcoal not only adsorbs lead but also inhibits the accumulation of lead in ground water. Conclusion: This study promotes a cost effective process to treat agricultural lands polluted with leaded pesticides. Water purifiers, refrigerator etc. contain varying amounts of activated charcoal, after usage of these appliances it can be recycled and used as a source of activated charcoal. This can be applied in pesticide contaminated fields either in the form of slurry or by spraying.

  3. Assessing the spatial representability of charcoal and PAH-based paleofire records with integrated GIS, modelling, and empirical approaches

    Science.gov (United States)

    Vachula, R. S.; Huang, Y.; Russell, J. M.

    2017-12-01

    Lake sediment-based fire reconstructions offer paleoenvironmental context in which to assess modern fires and predict future burning. However, despite the ubiquity, many uncertainties remain regarding the taphonomy of paleofire proxies and the spatial scales for which they record variations in fire history. Here we present down-core proxy analyses of polycyclic aromatic hydrocarbons (PAHs) and three size-fractions of charcoal (63-150, >150 and >250 μm) from Swamp Lake, California, an annually laminated lacustrine archive. Using a statewide historical GIS dataset of area burned, we assess the spatial scales for which these proxies are reliable recorders of fire history. We find that the coherence of observed and proxy-recorded fire history inherently depends upon spatial scale. Contrary to conventional thinking that charcoal mainly records local fires, our results indicate that macroscopic charcoal (>150 μm) may record spatially broader (250 μm) may be a more conservative proxy for local burning. We find that sub-macroscopic charcoal particles (63-150 μm) reliably record regional (up to 150 km) changes in fire history. These results indicate that charcoal-based fire reconstructions may represent spatially broader fire history than previously thought, which has major implications for our understanding of spatiotemporal paleofire variations. Our analyses of PAHs show that dispersal mobility is heterogeneous between compounds, but that PAH fluxes are reliable proxies of fire history within 25-50 km, which suggests PAHs may be a better spatially constrained paleofire proxy than sedimentary charcoal. Further, using a linear discriminant analysis model informed by modern emissions analyses, we show that PAH assemblages preserved in lake sediments can differentiate vegetation type burned, and are thus promising paleoecological biomarkers warranting further research and implementation. In sum, our analyses offer new insight into the spatial dimensions of paleofire

  4. In vitro adsorption of sodium pentobarbital by SuperChar, USP and Darco G-60 activated charcoals

    International Nuclear Information System (INIS)

    Curd-Sneed, C.D.; Parks, K.S.; Bordelon, J.G.; Stewart, J.J.

    1987-01-01

    This study was designed to examine the in vitro adsorption of sodium pentobarbital by three activated charcoals. Solutions of sodium pentobarbital (20 mM) were prepared in distilled water and in 70% sorbitol (w/v). Radiolabeled ( 14 C) sodium pentobarbital was added to each solution to serve as a concentration marker. Two ml of each drug solution was added to test tubes containing 40 mg of either Darco G-60, USP, or SuperChar activated charcoal. The drug-charcoal mixtures were incubated at 37 degrees C for O, 2.5, 5, 7.5 or 10 min. Equilibrium, indicated by a constant percentage of drug bound for two consecutive time periods, was established immediately for the aqueous mixtures and for Darco G-60 in sorbitol. The time to equilibrium was prolonged for USP (2.5 min) and SuperChar (5 min) in the presence of sorbitol. In the second series of experiments, solutions of sodium pentobarbital (1.25 to 160 mM) were prepared in either distilled water or sorbitol. Amount of drug bound by 10 to 320 mg of activated charcoal within a 10 min incubation period was determined. Scatchard analysis determined maximum binding capacity (Bmax) and dissociation constants (Kd) for each activated charcoal. In water, Bmax (mumoles/gm) was greatest for SuperChar (1141), followed by USP (580) and Darco G-60 (381), while the Kd's did not differ. Sorbitol did not change the Bmax or Kd of USP or Darco G-60, but the additive significantly decreased the Bmax (717) and increased the Kd for SuperChar (3.3 to 10.1 mM). The results suggest that relative binding capacity of activated charcoal is directly proportional to surface area, and that sorbitol significantly reduces sodium pentobarbital binding to SuperChar

  5. Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries

    International Nuclear Information System (INIS)

    Liu Tao; Luo Ruiying; Qiao Wenming; Yoon, Seong-Ho; Mochida, Isao

    2010-01-01

    In this study, the microstructure of mangrove-charcoal-derived carbon (MC) was studied using XRD, STM and TEM. MC was found to consist of aligned quasi-spherical structural units with diameters of around 5-20 nm. It shows typical hard carbon characteristics, including a strongly disoriented single graphene layer and BSU, formed by two or three graphene layers stacked nearly parallel. Some curved and faceted graphene layers, especially closed carbon nanoparticles with fullerene-like, were observed in the as-prepared samples. MC was also evaluated as an anodic material for Li-ion batteries. MC carbonized at 1000 deg. C possessed the highest available discharge capacity (below 0.5 V) of 335 mAh g -1 , the high first-cycle coulombic efficiency of 73.7%, good rate and cyclic capability and PC-based electrolyte compatibility. 7 Li nuclear magnetic resonance (NMR) spectra of fully lithiated mangrove charcoal-derived carbons indicated the co-existence of three Li species.

  6. Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tao [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100083 (China); Luo Ruiying, E-mail: ryluo@buaa.edu.c [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100083 (China); Qiao Wenming [College of Chemical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Yoon, Seong-Ho; Mochida, Isao [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-02-01

    In this study, the microstructure of mangrove-charcoal-derived carbon (MC) was studied using XRD, STM and TEM. MC was found to consist of aligned quasi-spherical structural units with diameters of around 5-20 nm. It shows typical hard carbon characteristics, including a strongly disoriented single graphene layer and BSU, formed by two or three graphene layers stacked nearly parallel. Some curved and faceted graphene layers, especially closed carbon nanoparticles with fullerene-like, were observed in the as-prepared samples. MC was also evaluated as an anodic material for Li-ion batteries. MC carbonized at 1000 deg. C possessed the highest available discharge capacity (below 0.5 V) of 335 mAh g{sup -1}, the high first-cycle coulombic efficiency of 73.7%, good rate and cyclic capability and PC-based electrolyte compatibility. {sup 7}Li nuclear magnetic resonance (NMR) spectra of fully lithiated mangrove charcoal-derived carbons indicated the co-existence of three Li species.

  7. Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers

    Energy Technology Data Exchange (ETDEWEB)

    Hilber, Isabel [Research Institute of Organic Agriculture, Ackerstrasse, CH-5070 Frick (Switzerland); Wyss, Gabriela S., E-mail: gabriela.wyss@fibl.or [Research Institute of Organic Agriculture, Ackerstrasse, CH-5070 Frick (Switzerland); Maeder, Paul [Research Institute of Organic Agriculture, Ackerstrasse, CH-5070 Frick (Switzerland); Bucheli, Thomas D. [Agroscope Reckenholz-Taenikon Research Station ART, Reckenholzstr. 191, CH-8046 Zuerich (Switzerland); Meier, Isabel; Vogt, Lea; Schulin, Rainer [Institute of Terrestrial Ecosystems, ETH Zuerich, Universitaetstr. 16, CH-8092 Zuerich (Switzerland)

    2009-08-15

    Activated charcoal (AC) amendments have been suggested as a promising, cost-effective method to immobilize organic contaminants in soil. We performed pot experiments over two years with cucumber (Cucumis sativus L.) grown in agricultural soil with 0.07 mg kg{sup -1} of weathered dieldrin and 0, 200, 400, and 800 mg AC per kg soil. Dieldrin fresh weight concentrations in cucumber fruits were significantly reduced from 0.012 to an average of 0.004 mg kg{sup -1}, and total uptake from 2 to 1 mug in the 800 mg kg{sup -1} AC treatment compared to the untreated soil. The treatment effects differed considerably between the two years, due to different meteorological conditions. AC soil treatments did neither affect the availability of nutrients to the cucumber plants nor their yield (total fruit wet weight per pot). Thus, some important prerequisites for the successful application of AC amendments to immobilize organic pollutants in agricultural soils can be considered fulfilled. - The addition of activated charcoal to soil reduced dieldrin residues in cucumbers and did not affect nutrients availability.

  8. Influence of activated charcoal amendment to contaminated soil on dieldrin and nutrient uptake by cucumbers

    International Nuclear Information System (INIS)

    Hilber, Isabel; Wyss, Gabriela S.; Maeder, Paul; Bucheli, Thomas D.; Meier, Isabel; Vogt, Lea; Schulin, Rainer

    2009-01-01

    Activated charcoal (AC) amendments have been suggested as a promising, cost-effective method to immobilize organic contaminants in soil. We performed pot experiments over two years with cucumber (Cucumis sativus L.) grown in agricultural soil with 0.07 mg kg -1 of weathered dieldrin and 0, 200, 400, and 800 mg AC per kg soil. Dieldrin fresh weight concentrations in cucumber fruits were significantly reduced from 0.012 to an average of 0.004 mg kg -1 , and total uptake from 2 to 1 μg in the 800 mg kg -1 AC treatment compared to the untreated soil. The treatment effects differed considerably between the two years, due to different meteorological conditions. AC soil treatments did neither affect the availability of nutrients to the cucumber plants nor their yield (total fruit wet weight per pot). Thus, some important prerequisites for the successful application of AC amendments to immobilize organic pollutants in agricultural soils can be considered fulfilled. - The addition of activated charcoal to soil reduced dieldrin residues in cucumbers and did not affect nutrients availability.

  9. Lack of beneficial effect of activated charcoal in lead induced testicular toxicity in male albino rats

    Directory of Open Access Journals (Sweden)

    Samuel James Offor

    2017-09-01

    Full Text Available Objective: Lead is a multi-organ toxicant implicated in various diseases including testicular toxicity. In search of cheap and readily available antidote this study has investigated a beneficial role of activated charcoal in lead induced testicular toxicity in male albino rats. Materials and Method: Eighteen male albino rats were divided into three groups of six rats per group. Group 1 (control rats received deionised water (10 ml/kg, group 2 was given lead acetate solution 60 mg/kg and group 3 rats were given lead acetate (60 mg/kg followed by Activated charcoal, AC (1000 mg/kg by oral gavage daily for 28 days. Absolute and relative weights of testis, epididymal sperm reserve, testicular sperm count, percent sperm motility and percent sperm viability were monitored. Results: AC failed to show any significant beneficial effect in ameliorating lead induced testicular toxicity. Conclusions: There seem to be a poor adsorption on lead onto AC in vivo.

  10. Poly(vinyl alcohol Nanocomposites Reinforced with Bamboo Charcoal Nanoparticles: Mineralization Behavior and Characterization

    Directory of Open Access Journals (Sweden)

    Cheng-Ming Tang

    2015-07-01

    Full Text Available Polyvinyl alcohol (PVA demonstrates chemical stability and biocompatibility and is widely used in biomedical applications. The porous bamboo charcoal has excellent toxin absorptivity and has been used in blood purification. In this study, bamboo charcoal nanoparticles (BCNPs were acquired with nano-grinding technology. The PVA and PVA/BCNP nanocomposite membranes were prepared and characterized by the tensile test, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR and X-ray diffraction (XRD. Results showed that the tensile strength and elongation of the swollen PVA membranes containing 1% BCNPs (PB1 were significantly greater than those of PVA and other PVA/BCNP composite membranes. In addition, the major absorption band of OH stretching in the IR spectra shifted from 3262 cm−1 for PVA membrane containing 1% BCNP to 3244 cm−1 for PVA membrane containing 20% BCNP. This blue shift might be attributed to the interaction between the PVA molecules and BCNPs. Moreover, the intensity of the XRD peaks in PVA was decreased with the increased BCNP content. The bioactivity of the nanocomposites was evaluated by immersion in the simulated body fluid (SBF for seven days. The mineral deposition on PB5 was significantly more than that on the other samples. The mineral was identified as hydroxyapatite (HA by XRD. These data suggest that the bioactivity of the composite hydrogel membranes was associated with the surface distribution of hydrophilic/hydrophobic components. The PVA/BCNP composite hydrogels may have potential applications in alveolar bone regeneration.

  11. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    Science.gov (United States)

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Analysis of Japanese Articles about Suicides Involving Charcoal Burning or Hydrogen Sulfide Gas.

    Science.gov (United States)

    Nabeshima, Yoshihiro; Onozuka, Daisuke; Kitazono, Takanari; Hagihara, Akihito

    2016-10-15

    It is well known that certain types of media reports about suicide can result in imitative suicides. In the last two decades, Japan has experienced two suicide epidemics and the subsequent excessive media coverage of these events. However, the quality of the media suicide reports has yet to be evaluated in terms of the guidelines for media suicide coverage. Thus, the present study analyzed Japanese newspaper articles ( n = 4007) on suicides by charcoal burning or hydrogen sulfide gas between 11 February 2003 and 13 March 2010. The suicide reports were evaluated in terms of the extent to which they conformed to the suicide reporting guidelines. The mean violation scores were 3.06 (±0.7) for all articles, 3.2 (±0.8) for articles about suicide by charcoal burning, and 2.9 (±0.7) for articles about suicide by hydrogen sulfide ( p < 0.001). With the exception of not following several recommendations, newspaper articles about suicide have improved in quality, as defined by the recommendations for media suicide coverage. To prevent imitative suicides based on media suicide reports, individuals in the media should try not to report suicide methods and to make attempts to report the poor condition of suicide survivors.

  13. Analysis of Japanese Articles about Suicides Involving Charcoal Burning or Hydrogen Sulfide Gas

    Directory of Open Access Journals (Sweden)

    Yoshihiro Nabeshima

    2016-10-01

    Full Text Available It is well known that certain types of media reports about suicide can result in imitative suicides. In the last two decades, Japan has experienced two suicide epidemics and the subsequent excessive media coverage of these events. However, the quality of the media suicide reports has yet to be evaluated in terms of the guidelines for media suicide coverage. Thus, the present study analyzed Japanese newspaper articles (n = 4007 on suicides by charcoal burning or hydrogen sulfide gas between 11 February 2003 and 13 March 2010. The suicide reports were evaluated in terms of the extent to which they conformed to the suicide reporting guidelines. The mean violation scores were 3.06 (±0.7 for all articles, 3.2 (±0.8 for articles about suicide by charcoal burning, and 2.9 (±0.7 for articles about suicide by hydrogen sulfide (p < 0.001. With the exception of not following several recommendations, newspaper articles about suicide have improved in quality, as defined by the recommendations for media suicide coverage. To prevent imitative suicides based on media suicide reports, individuals in the media should try not to report suicide methods and to make attempts to report the poor condition of suicide survivors.

  14. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  15. Mini-cusab kiln for rapid small-scale manufacture of charcoal from scrub, coconut wood and coconut shells

    Energy Technology Data Exchange (ETDEWEB)

    Little, E C.S.

    1978-05-01

    Following the development and operation of the mini-cusab kiln in New Zealand, FAO tested it successfully in the South Pacific where there is a glut of coconut wood, which has a very high moisture content. It is based on a 44 gallon drum and its construction and subsequent operation are described. It is designed to be supplied continuously with fuel until full of charcoal. The kilns have air ducts which are sealed with plugs as the level of charcoal formed by the continuous fueling rises within the kiln.

  16. Cryogenic adsorption of low-concentration hydrogen on charcoal, 5A molecular sieve, sodalite, ZSM-5 and Wessalith DAY

    International Nuclear Information System (INIS)

    Willms, R.S.

    1993-01-01

    The separation of low-concentration hydrogen isotopes from helium is a processing step that is required for ceramic lithium breeding blanket processing. Cryogenic adsorption is one method of effecting this separation. In this study live adsorbents were considered for this purpose: charcoal, 5A molecular sieve, UOP S-115, ZSM-5 and Wessalith DAY. The first two adsorbents exhibit good equilibrium loadings and are shown to be quite effective at adsorbing low-concentration hydrogen isotopes. The latter three adsorbents display considerably lower equilibrium loadings. This study concludes that by using either charcoal or 5A molecular sieve, cryogenic adsorption would be an effective means of separating hydrogen isotopes from helium

  17. Soil charcoal analysis as a climato-stratigraphical tool: The key case of Cordillera Real, northern Andes

    Energy Technology Data Exchange (ETDEWEB)

    Di Pasquale, G. [Dipartimento di Arboricoltura Botanica e Patologia Vegetale, Universita di Napoli Federico II, Via Universita 100, 80055 Portici (Italy); Impagliazzo, S., E-mail: stefania.impagliazzo@unina.i [Dipartimento di Arboricoltura Botanica e Patologia Vegetale, Universita di Napoli Federico II, Via Universita 100, 80055 Portici (Italy); Lubritto, C. [CIRCE, Dipartimento di Scienze Ambientali, II Universita di Napoli, and INNOVA, via Vivaldi, 43, 81100 Caserta (Italy); Marziano, M. [Dipartimento di Arboricoltura Botanica e Patologia Vegetale, Universita di Napoli Federico II, Via Universita 100, 80055 Portici (Italy); Passariello, I. [CIRCE, Dipartimento di Scienze Ambientali, II Universita di Napoli, and INNOVA, via Vivaldi, 43, 81100 Caserta (Italy); Ermolli, E. Russo [Dipartimento di Arboricoltura Botanica e Patologia Vegetale, Universita di Napoli Federico II, Via Universita 100, 80055 Portici (Italy)

    2010-04-15

    The present study represents the first attempt of reconstructing fire history through soil charcoal dating. The investigated area is located in the Guandera Biological Reserve (western Cordillera Real, northern Ecuador). Six AMS radiocarbon dating, performed at the base of five soil profiles allowed a fire phase to be identified during the Pleistocene-Holocene transition. A strong correspondence was highlighted between the age of the Guandera fires and the El Abra stadial, which is considered the Younger Dryas equivalent in South America. This local evidence of fires contributes to define the geographic area in which the El Abra stadial was recorded and suggests a wider use of the soil charcoal analysis.

  18. Soil charcoal analysis as a climato-stratigraphical tool: The key case of Cordillera Real, northern Andes

    International Nuclear Information System (INIS)

    Di Pasquale, G.; Impagliazzo, S.; Lubritto, C.; Marziano, M.; Passariello, I.; Ermolli, E. Russo

    2010-01-01

    The present study represents the first attempt of reconstructing fire history through soil charcoal dating. The investigated area is located in the Guandera Biological Reserve (western Cordillera Real, northern Ecuador). Six AMS radiocarbon dating, performed at the base of five soil profiles allowed a fire phase to be identified during the Pleistocene-Holocene transition. A strong correspondence was highlighted between the age of the Guandera fires and the El Abra stadial, which is considered the Younger Dryas equivalent in South America. This local evidence of fires contributes to define the geographic area in which the El Abra stadial was recorded and suggests a wider use of the soil charcoal analysis.

  19. Evaluating the impact of water flotation and the state of the wood in archaeological wood charcoal remains

    DEFF Research Database (Denmark)

    Otaegui, Amaia Arranz

    2016-01-01

    . The aim of this work is to evaluate the assemblage and to determine the factors that conditioned the preservation or disintegration of wood charcoal remains. In particular, attention is paid to the distribution of the alterations (e.g. vitrification, decayed wood) by taxa, and the proportions with which...... they are present before and after flotation. To test some of the patterns observed in the archaeo