WorldWideScience

Sample records for stable boundary structures

  1. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  2. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  3. Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4.

    Science.gov (United States)

    McKenna, Keith P; Hofer, Florian; Gilks, Daniel; Lazarov, Vlado K; Chen, Chunlin; Wang, Zhongchang; Ikuhara, Yuichi

    2014-12-10

    The complex and intriguing properties of the ferrimagnetic half metal magnetite (Fe 3 O 4 ) are of continuing fundamental interest as well as being important for practical applications in spintronics, magnetism, catalysis and medicine. There is considerable speculation concerning the role of the ubiquitous antiphase boundary (APB) defects in magnetite, however, direct information on their structure and properties has remained challenging to obtain. Here we combine predictive first principles modelling with high-resolution transmission electron microscopy to unambiguously determine the three-dimensional structure of APBs in magnetite. We demonstrate that APB defects on the {110} planes are unusually stable and induce antiferromagnetic coupling between adjacent domains providing an explanation for the magnetoresistance and reduced spin polarization often observed. We also demonstrate how the high stability of the {110} APB defects is connected to the existence of a metastable bulk phase of Fe 3 O 4 , which could be stabilized by strain in films or nanostructures.

  4. Modelling stable atmospheric boundary layers over snow

    NARCIS (Netherlands)

    Sterk, H.A.M.

    2015-01-01

    Thesis entitled:

    Modelling Stable Atmospheric Boundary Layers over Snow

    H.A.M. Sterk

    Wageningen, 29th of April, 2015

    Summary

    The emphasis of this thesis is on the understanding and forecasting of the Stable Boundary Layer (SBL) over snow-covered surfaces. SBLs

  5. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    Science.gov (United States)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  6. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  7. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.; Debruin, H.A.R.

    2005-01-01

    The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover

  8. Direct numerical simulation of stable and unstable turbulent thermal boundary layers

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Houra, Tomoya; Nagano, Yasutaka

    2007-01-01

    This paper presents direct numerical simulations (DNS) of stable and unstable turbulent thermal boundary layers. Since a buoyancy-affected boundary layer is often encountered in an urban environmental space where stable and unstable stratifications exist, exploring a buoyancy-affected boundary layer is very important to know the transport phenomena of the flow in an urban space. Although actual observation may qualitatively provide the characteristics of these flows, the relevant quantitative turbulent quantities are very difficult to measure. Thus, in order to quantitatively investigate a buoyancy-affected boundary layer in detail, we have here carried out for the first time time- and space-developing DNS of slightly stable and unstable turbulent thermal boundary layers. The DNS results show the quantitative turbulent statistics and structures of stable and unstable thermal boundary layers, in which the characteristic transport phenomena of thermally stratified boundary layers are demonstrated by indicating the budgets of turbulent shear stress and turbulent heat flux. Even though the input of buoyant force is not large, the influence of buoyancy is clearly revealed in both stable and unstable turbulent boundary layers. In particular, it is found that both stable and unstable thermal stratifications caused by the weak buoyant force remarkably alter the structure of near-wall turbulence

  9. Effective search for stable segregation configurations at grain boundaries with data-mining techniques

    Science.gov (United States)

    Kiyohara, Shin; Mizoguchi, Teruyasu

    2018-03-01

    Grain boundary segregation of dopants plays a crucial role in materials properties. To investigate the dopant segregation behavior at the grain boundary, an enormous number of combinations have to be considered in the segregation of multiple dopants at the complex grain boundary structures. Here, two data mining techniques, the random-forests regression and the genetic algorithm, were applied to determine stable segregation sites at grain boundaries efficiently. Using the random-forests method, a predictive model was constructed from 2% of the segregation configurations and it has been shown that this model could determine the stable segregation configurations. Furthermore, the genetic algorithm also successfully determined the most stable segregation configuration with great efficiency. We demonstrate that these approaches are quite effective to investigate the dopant segregation behaviors at grain boundaries.

  10. Stable Structures for Distributed Applications

    OpenAIRE

    Eugen DUMITRASCU; Ion IVAN

    2008-01-01

    For distributed applications, we define the linear, tree and graph structure types with different variants and modalities to aggregate them. The distributed applications have assigned structures that through their characteristics influence the costs of stages for developing cycle and the costs for exploitation, transferred to each user. We also present the quality characteristics of a structure for a stable application, which is focused on stability characteristic. For that characteristic we ...

  11. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-05-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of knowledge of these fundamentals is given

  12. A Formula for the Depth of the Stable Boundary layer: Evaluation and Dimensional Analysis

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2006-01-01

    The height (h) of the stable boundary layer (SBL) is of major importance to understand the relevant processes that govern the SBL development. The SBL depth is the layer in which turbulence transport takes place, and thus governs the vertical structure of the lower atmosphere. Furthermore, release

  13. Boundary Between Stable and Unstable Regimes of Accretion

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a “cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction, which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter α=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius rm (where the magnetic stress in the magnetosphere matches the matter stress in the disk and corotation radius rcor (where the Keplerian velocity in the disk is equal to the angular velocity of the star. For a small misalignment angle of the dipole field, Θ = 5°, accretion is unstable if rcor/rm> 1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Θ = 20°, instability occurs at slightly larger values, rcor/rm> 1.41

  14. Stable Structures for Distributed Applications

    Directory of Open Access Journals (Sweden)

    Eugen DUMITRASCU

    2008-01-01

    Full Text Available For distributed applications, we define the linear, tree and graph structure types with different variants and modalities to aggregate them. The distributed applications have assigned structures that through their characteristics influence the costs of stages for developing cycle and the costs for exploitation, transferred to each user. We also present the quality characteristics of a structure for a stable application, which is focused on stability characteristic. For that characteristic we define the estimated measure indicators for a level. The influence of the factors of stability and the ways for increasing it are thus identified, and at the same time the costs of development stages, the costs of usage and the costs of maintenance to be keep on between limits that assure the global efficiency of application. It is presented the base aspects for distributed applications: definition, peculiarities and importance. The aspects for the development cycle of distributed application are detailed. In this article, we alongside give the mechanisms for building the defined structures and analyze the complexity of the defined structures for a distributed application of a virtual store.

  15. Super-stable Poissonian structures

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2012-01-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics. (paper)

  16. Super-stable Poissonian structures

    Science.gov (United States)

    Eliazar, Iddo

    2012-10-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.

  17. Comments on deriving the equilibrium height of the stable boundary layer

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2007-01-01

    Recently, the equilibrium height of the stable boundary layer received much attention in a series of papers by Zilitinkevich and co-workers. In these studies the stable boundary-layer height is derived in terms of inverse interpolation of different boundary-layer height scales, each representing a

  18. Modelling the artic stable boundary layer and its coupling to the surface

    NARCIS (Netherlands)

    Steeneveld, G.J.; Wiel, van de B.J.H.; Holtslag, A.A.M.

    2006-01-01

    The impact of coupling the atmosphere to the surface energy balance is examined for the stable boundary layer, as an extension of the first GABLS (GEWEX Atmospheric Boundary-Layer Study) one-dimensional model intercomparison. This coupling is of major importance for the stable boundary-layer

  19. Dynamical simulation of structural multiplicity in grain boundaries

    International Nuclear Information System (INIS)

    Majid, I.; Bristowe, P.D.

    1987-06-01

    Work on a computer simulation study of a low-energy high-angle boundary structure which is not periodic have been recently reported. This result is of interest since grain boundary structures are usually assumed to have a periodicity corresponding to the appropriate coincidence site lattice (CSL) and many experimental observations of the structure of grain boundaries performed using conventional and high-resolution electron microscopy, electron diffraction and x-ray diffraction appear to support this work. However, this work, using empirical interatomic pair potentials and the relaxation method of molecular statics, have simulated a Σ = 5 36.87 0 (001) twist boundary and found a low energy structure having a larger repeat cell than the CSL and is composed of two different types of structural unit that are randomly distributed in the boundary plane. This result, which has been termed the multiplicity of grain boundary structures, has also been found in the simulation of tilt boundaries. The multiplicity phenomenon is of special interest in twist boundaries since it is used as a structural model to explain the x-ray scattering from a Σ = 5 boundary in gold. These scattering patterns had previously remained unexplained using stable structures that had simple CSL periodicity. Also, the effect of having a multiple number of low energy structural units coexisting in the grain boundary is of more general interest since it implies that the boundary structures may be quasi-periodic and, in some circumstances, may even result in a roughening of the boundary plane. This paper extends this work by showing, using molecular dynamics, that a multiplicity of structural units can actually nucleate spontaneously in a high-angle grain boundary at finite temperatures

  20. A stable boundary layer perspective on global temperature trends

    International Nuclear Information System (INIS)

    McNider, R T; Christy, J R; Biazar, A

    2010-01-01

    temperatures in the stable boundary layer are not very robust measures of the heat content in the deep atmosphere and climate models do not predict minimum temperatures well, minimum temperatures should not be used as a surrogate for measures of deep atmosphere global warming.

  1. Plume meander and dispersion in a stable boundary layer

    Science.gov (United States)

    Hiscox, April L.; Miller, David R.; Nappo, Carmen J.

    2010-11-01

    Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.

  2. Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98) : a report

    NARCIS (Netherlands)

    Cuxart, J.; Yague, C.; Morales, G.; Terradelles, E.; Orbe, J.; Calvo, J.; Vilu-Guerau, de J.; Soler, M.R.; Infante, C.; Buenestado, P.; Espinalt, A.; Jorgensem, H.E.

    2000-01-01

    This paper describes the Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98), which took place over the northern Spanish plateau comprising relatively flat grassland, in September 1998. The main objectives of the campaign were to study the properties of the mid-latitude stable boundary

  3. Structure of acid-stable carmine.

    Science.gov (United States)

    Sugimoto, Naoki; Kawasaki, Yoko; Sato, Kyoko; Aoki, Hiromitsu; Ichi, Takahito; Koda, Takatoshi; Yamazaki, Takeshi; Maitani, Tamio

    2002-02-01

    Acid-stable carmine has recently been distributed in the U.S. market because of its good acid stability, but it is not permitted in Japan. We analyzed and determined the structure of the major pigment in acid-stable carmine, in order to establish an analytical method for it. Carminic acid was transformed into a different type of pigment, named acid-stable carmine, through amination when heated in ammonia solution. The features of the structure were clarified using a model compound, purpurin, in which the orientation of hydroxyl groups on the A ring of the anthraquinone skeleton is the same as that of carminic acid. By spectroscopic means and the synthesis of acid-stable carmine and purpurin derivatives, the structure of the major pigment in acid-stable carmine was established as 4-aminocarminic acid, a novel compound.

  4. Current Challenges in Understanding and Forecasting Stable Boundary Layers over Land and Ice

    Directory of Open Access Journals (Sweden)

    Gert-Jan eSteeneveld

    2014-10-01

    Full Text Available Understanding and prediction of the stable atmospheric boundary layer is challenging. Many physical processes come into play in the stable boundary layer, i.e. turbulence, radiation, land surface coupling and heterogeneity, orographic turbulent and gravity wave drag. The development of robust stable boundary-layer parameterizations for weather and climate models is difficult because of the multiplicity of processes and their complex interactions. As a result, these models suffer from biases in key variables, such as the 2-m temperature, boundary-layer depth and wind speed. This short paper briefly summarizes the state-of-the-art of stable boundary layer research, and highlights physical processes that received only limited attention so far, in particular orographically-induced gravity wave drag, longwave radiation divergence, and the land-atmosphere coupling over a snow-covered surface. Finally, a conceptual framework with relevant processes and particularly their interactions is proposed.

  5. Mixed basin boundary structures of chaotic systems

    International Nuclear Information System (INIS)

    Rosa, E. Jr.; Ott, E.

    1999-01-01

    Motivated by recent numerical observations on a four-dimensional continuous-time dynamical system, we consider different types of basin boundary structures for chaotic systems. These general structures are essentially mixtures of the previously known types of basin boundaries where the character of the boundary assumes features of the previously known boundary types at different points arbitrarily finely interspersed in the boundary. For example, we discuss situations where an everywhere continuous boundary that is otherwise smooth and differentiable at almost every point has an embedded uncountable, zero Lebesgue measure set of points at which the boundary curve is nondifferentiable. Although the nondifferentiable set is only of zero Lebesgue measure, the curve close-quote s fractal dimension may (depending on parameters) still be greater than one. In addition, we discuss bifurcations from such a mixed boundary to a 'pure' boundary that is a fractal nowhere differentiable curve or surface and to a pure nonfractal boundary that is everywhere smooth. copyright 1999 The American Physical Society

  6. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    Science.gov (United States)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  7. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    Science.gov (United States)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  8. Structure of grain boundaries in hexagonal materials

    International Nuclear Information System (INIS)

    Sarrazit, F.

    1998-05-01

    The work presented in this thesis describes experimental and theoretical aspects associated with the structure of grain boundaries in hexagonal materials. It has been found useful to classify grain boundaries as low-angle, special or general on the basis of their structure. High-angle grain boundaries were investigated in tungsten carbide (WC) using conventional electron microscopy techniques, and three examples characteristic of the interfaces observed in this material were studied extensively. Three-dimensionally periodic patterns are proposed as plausible reference configurations, and the Burgers vectors of observed interfacial dislocations were predicted using a theory developed recently. The comparison of experimental observations with theoretical predictions proved to be difficult as contrast simulation techniques require further development for analysis to be completed confidently. Another part of this work involves the characterisation of high-angle grain boundaries in zinc oxide (ZnO) using circuit mapping. Two boundaries displayed structural features characteristic of the 'special' category, however, one boundary presented features which did not conform to this model. It is proposed that the latter observation shows a structural transition from the special to a more general type. Material fluxes involved in defect interactions were considered using the topological framework described in this work. A genera) expression was derived for the total flux arising which allows the behaviour of line-defects to be studied in complex interfacial processes. (author)

  9. A stable penalty method for the compressible Navier-Stokes equations: I. Open boundary conditions

    DEFF Research Database (Denmark)

    Hesthaven, Jan; Gottlieb, D.

    1996-01-01

    The purpose of this paper is to present asymptotically stable open boundary conditions for the numerical approximation of the compressible Navier-Stokes equations in three spatial dimensions. The treatment uses the conservation form of the Navier-Stokes equations and utilizes linearization...

  10. Intermittent turbulence and oscillations in the stable boundary layer over land

    NARCIS (Netherlands)

    Wiel, van de B.

    2002-01-01

    As the title of this thesis indicates, our main subject of interest is: "Intermittent turbulence and oscillation in the stable boundary layer over land". As such, this theme connects the different chapters. Here, intermittent turbulence is defined as a sequence of events were 'burst' of

  11. Stable boundary-layer regimes at dome C, Antarctica : observation and analysis

    NARCIS (Netherlands)

    Vignon, E.; van de Wiel, B.J.H.; van Hooijdonk, I.G.S.; Genthon, C.; van der Linden, S.J.A.; van Hooft, J.A.; Baas, P.; Maurel, W.; Traullé, O.; Casasanta, G.

    2017-01-01

    Investigation of meteorological measurements along a 45 m tower at Dome C on the high East Antarctic Plateau revealed two distinct stable boundary layer (SBL) regimes at this location. The first regime is characterized by strong winds and continuous turbulence. It results in full vertical coupling

  12. Local Similarity in the Stable Boundary Layer and Mixing-Length Approaches : Consistency of Concepts

    NARCIS (Netherlands)

    Van de Wiel, B.J.H.; Moene, A.F.; De Ronde, W.H.; Jonker, H.J.J.

    2008-01-01

    In stably stratified flows vertical movement of eddies is limited by the fact that kinetic energy is converted into potential energy, leading to a buoyancy displacement scale z B . Our new mixing-length concept for turbulent transport in the stable boundary layer follows a rigid-wall analogy, in the

  13. Local similarity in the stable boundary layer and mixing-length approaches: consistency of concepts

    NARCIS (Netherlands)

    Wiel, van de B.J.H.; Moene, A.F.; Ronde, W.H.; Jonker, H.J.J.

    2008-01-01

    In stably stratified flows vertical movement of eddies is limited by the fact that kinetic energy is converted into potential energy, leading to a buoyancy displacement scale z B . Our new mixing-length concept for turbulent transport in the stable boundary layer follows a rigid-wall analogy, in the

  14. Local similarity in the stable boundary layer and mixing-length approaches : consistency of concepts

    NARCIS (Netherlands)

    Wiel, van de B.J.H.; Moene, A.F.; Ronde, de W.H.; Jonker, H.J.J.

    2008-01-01

    In stably stratified flows vertical movement of eddies is limited by the fact that kinetic energy is converted into potential energy, leading to a buoyancy displacement scale zB. Our new mixing-length concept for turbulent transport in the stable boundary layer follows a rigid-wall analogy, in the

  15. Carbon and oxygen stable isotope and trace element studies in speleothems and across the J-K boundary, Central Italy

    International Nuclear Information System (INIS)

    Kudielka, G.

    2001-07-01

    Frasassi Cave have always been lower in d18O and higher in d13C compared to Soreq Cave. This indicates lower temperatures and a higher portion of C4 type vegetation in the Frasassi area compared to Israel. The agreement of the two records demonstrates that calcite deposits in caves are ideal recorders to global climatic changes. Investigation of the Jurassic/Cretaceous Boundary in Central Italy, the Jurassic/Cretaceous (J-K) boundary has not been satisfactory defined yet. Among others, various boundary definitions have been proposed at the Bosso River Gorge in the Marche region of Northern Italy: by calcareous nanofossils (at 329 m), calpionellids (at 334.1 m) and magnetostratigraphy (at 318 m). A large impact structure near Morokweng in South Africa was recently radiometrically dated to 144.7±1.9 Ma, which is indistinguishable from the stratigraphic age of the J-K boundary (144.2±2.6 Ma). A possible link between the impact event and the J-K boundary might be manifested in form of stratigraphic and geochemical features across the boundary, such as sudden stable-isotope shifts and spheroidal element anomalies. A set of 110 samples spanning about 40 m across the boundary was investigated for stable isotope ratios, and trace element content was determined in the corresponding decarbonated samples. d13C and d18O hardly vary but show a significant decrease at 333.5 m, which is close to the boundary-definition based upon calpionellids (at 334.1 m). Trace element abundances of Fe, Co, Ni, and Cr show remarkable enrichments very close to the boundary as defined by calcareous nanofossils (at 329 m). Another minor anomaly is noticeable at 333.5 m for Ir and Cr. Thus, the present data might be interpreted to hint - not to confirm - the presence of an impactoclastic layer at the Bosso River Gorge. (author)

  16. Electronic and atomic structures of KFe2Se2 grain boundaries

    International Nuclear Information System (INIS)

    Fan, Wei; Liu, Da-Yong; Zeng, Zhi

    2014-01-01

    Highlights: •Twist grain boundary has lower grain-boundary energy. •Twist grain-boundary has similar electronic structure to that in crystal. •Charge and magnetic-moment fluctuations are large within tilt grain boundary. •Bi-collinear AFM is most stable even with existence of grain boundary. •Insulating Fe-vacancy phase is stable with existence of twist grain boundary. -- Abstract: The electronic and atomic structures of the twist and tilt grain boundaries (GB) of the iron-based superconductor KFe 2 Se 2 are studied based on the simulations of the first principles density functional theory. Our results have clarified that the Σ5[0 0 1] twist grain boundary of KFe 2 Se 2 with layered structure has the lower grain-boundary energy. The local structure and the main features of the basic electronic structure within the [0 0 1] twist grain-boundary region have small differences compared with those in KFe 2 Se 2 crystal. The large fluctuations of the charges and magnetic moments are found in the [0 0 1] tilt grain-boundary regions, especially the former are more prominent. The bi-collinear anti-ferromagnetic order is the most stable magnetic order even with grain boundaries in the bulk. The √(5)a×√(5)a superstructure of Fe-vacancies in K 2 Fe 4 Se 5 phase is intrinsically related to the coincident-site lattice of Σ5[0 0 1] twist grain boundary

  17. Boundary modes in quasiperiodic elastic structures

    Science.gov (United States)

    Rosa, Matheus I. N.; Pal, Raj K.; Arruda, José R. F.; Ruzzene, Massimo

    2018-03-01

    Topological metamaterials are a new class of materials that support topological modes such as edge modes and interface modes, which are commonly immune to scattering and imperfections. This novelty has been the subject of extensive research in many branches of physics such as electronics, photonics, phononics, and acoustics. The nontrivial topological properties related to the presence of topological modes are tipically found in periodic media. However, it was recently demonstrated that structures called quasicrystals may also exhibit nontrivial topological behavior attributed to dimensions higher than that of the quasicrystal. While quasiperiodicity has received a lot of attention in the fields of crystallography and photonics, research into quasiperiodic elastic structures has been scarce. In this paper, we show how the concepts of quasiperiodicity may be applied to the design of topological mechanical metamaterials. We start by investigating the boundary modes present in quasiperiodic 1D phononic lattices. These modes have the interesting property of being localized at either one of the two different boundaries depending on the value of an additional parameter, which is remnant of the higher dimension. A smooth variation of this parameter in either time or a spatial dimension can lead to a robust transfer of energy between two sites of the structure. We present an idealized mechanical system composed by an array of coupled rods that may be used as a platform for realizing this kind of robust transfer of energy. These are preliminary investigations into a entirely new class of structures which may lead to novel engineering applications.

  18. Effect of grain boundary structures on the behavior of He defects in Ni: An atomistic study

    Institute of Scientific and Technical Information of China (English)

    H F Gong; Y Yan; X S Zhang; W Lv; T Liu; Q S Ren

    2017-01-01

    We investigated the effect of grain boundary structures on the trapping strength of HeN (N is the number of helium atoms) defects in the grain boundaries of nickel.The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane.The HeN defect is much more stable in nickel bulk than in the grain boundary plane.Besides,the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane.The binding strength between the grain boundary and the HeN defect increases with the defect size.Moreover,the binding strength of the HeN defect to the Σ3 (1 12)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.

  19. DFT computations of the lattice constant, stable atomic structure and ...

    African Journals Online (AJOL)

    This paper presents the most stable atomic structure and lattice constant of Fullerenes (C60). FHI-aims DFT code was used to predict the stable structure and the computational lattice constant of C60. These were compared with known experimental structures and lattice constants of C60. The results obtained showed that ...

  20. Computer generated structures of grain boundaries in Li2-type ordered alloys

    International Nuclear Information System (INIS)

    DeHosson, J.Th.M.; Pestman, B.J.; Schapink, F.W.; Tichelaar, F.D.

    1988-01-01

    In recent years, the influence of the establishment of long-range order in cubic alloys on the structure of grain boundaries in Li 2 alloys has been considered. Thus, for example, for the Σ = 5 (310) tilt boundary the various possible structures have been investigated that are generated upon ordering, starting from plausible structures in the disordered state. However, apart from some rough energy estimates based upon nearest neighbor interactions, no reliable energy calculations have been performed of these different possible structures. In this paper, computer calculations based upon interatomic pair potentials constructed in such a way that the Li 2 structure is stable with respect to disordering, are reported for the Σ = 5 (310) boundary. The relative stability of various possible structures, with associated different boundary compositions, has been investigated

  1. Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions

    Science.gov (United States)

    Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.

    2016-02-01

    The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.

  2. Multi-Stable Morphing Cellular Structures

    Science.gov (United States)

    2015-05-14

    stiffness on critical buckling load and arch stres - ses. It should be noted that although the arches in these studies snapped-through, they did not...switch roles in moving the VMT back from the second to the first stable equilibrium state. A prototype is designed and fabricated and the transition...pulling forward on the insert on the right blade and assisting its deployment. During this process the cable 3-4-1 goes slack and plays no role , but if

  3. Wintertime Boundary Layer Structure in the Grand Canyon.

    Science.gov (United States)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  4. On Hydroelastic Body-Boundary Condition of Floating Structures

    DEFF Research Database (Denmark)

    Xia, Jinzhu

    1996-01-01

    A general linear body boundary condition of hydroelastic analysis of arbitrary shaped floating structures generalizes the classic kinematic rigid-body (Timman-Newman) boundary condition for seakeeping problems. The new boundary condition is consistent with the existing theories under certain...

  5. Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching

    Science.gov (United States)

    2013-01-01

    REPORT Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The stable matching...Franceschetti 858-822-2284 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Jealousy Graphs: Structure and...market. Using this structure, we are able to provide a ner analysis of the complexity of a subclass of decentralized matching markets. Jealousy

  6. Effects of Boundary Layer Height on the Model of Ground-Level PM2.5 Concentrations from AOD: Comparison of Stable and Convective Boundary Layer Heights from Different Methods

    Directory of Open Access Journals (Sweden)

    Zengliang Zang

    2017-06-01

    Full Text Available The aerosol optical depth (AOD from satellites or ground-based sun photometer spectral observations has been widely used to estimate ground-level PM2.5 concentrations by regression methods. The boundary layer height (BLH is a popular factor in the regression model of AOD and PM2.5, but its effect is often uncertain. This may result from the structures between the stable and convective BLHs and from the calculation methods of the BLH. In this study, the boundary layer is divided into two types of stable and convective boundary layer, and the BLH is calculated using different methods from radiosonde data and National Centers for Environmental Prediction (NCEP reanalysis data for the station in Beijing, China during 2014–2015. The BLH values from these methods show significant differences for both the stable and convective boundary layer. Then, these BLHs were introduced into the regression model of AOD-PM2.5 to seek the respective optimal BLH for the two types of boundary layer. It was found that the optimal BLH for the stable boundary layer is determined using the method of surface-based inversion, and the optimal BLH for the convective layer is determined using the method of elevated inversion. Finally, the optimal BLH and other meteorological parameters were combined to predict the PM2.5 concentrations using the stepwise regression method. The results indicate that for the stable boundary layer, the optimal stepwise regression model includes the factors of surface relative humidity, BLH, and surface temperature. These three factors can significantly enhance the prediction accuracy of ground-level PM2.5 concentrations, with an increase of determination coefficient from 0.50 to 0.68. For the convective boundary layer, however, the optimal stepwise regression model includes the factors of BLH and surface wind speed. These two factors improve the determination coefficient, with a relatively low increase from 0.65 to 0.70. It is found that the

  7. Structure of a Stable G-Hairpin

    Czech Academy of Sciences Publication Activity Database

    Gajarský, M.; Zivkovic, M.L.; Stadlbauer, Petr; Pagano, B.; Fiala, R.; Amato, J.; Tomáška, L´.; Šponer, Jiří; Plavec, J.; Trantírek, L.

    2017-01-01

    Roč. 139, č. 10 (2017), s. 3591-3594 ISSN 0002-7863 R&D Projects: GA ČR GA13-28310S; GA ČR(CZ) GA16-13721S Institutional support: RVO:68081707 Keywords : g-quadruplex structures * human telomeric dna * single-stranded-dna * g-triplex Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 13.858, year: 2016

  8. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  9. Dynamics and control of twisting bi-stable structures

    Science.gov (United States)

    Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.

    2018-02-01

    Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states

  10. New Polymorph of Fe3O4 Stable at Core-Mantle Boundary Conditions

    Science.gov (United States)

    Greenberg, E.; Prakapenka, V. B.

    2017-12-01

    Magnetite Fe3O4 (and its high-pressure polymorphs) is one of the most studied iron bearing minerals. One reason for the interest in magnetite is that it contains both Fe2+ and Fe3+, which is especially important for understanding the physical and chemical properties of Earth's deep interior. Early studies on magnetite debated the nature of the structural phase transition at 35 GPa [1-4]. This high-pressure structure was shown to be of the CaTi2O4-type [5], but with Fe3+ occupying multiple sites. Furthermore, at pressures above 65 GPa a second structural transition to a Pmma space group was shown to take place [5], similar to that in Fe3-xTixO4 solid solution [6]. Other studies have focused on the P-T stability of Fe3O4. Early studies by Lazor et al. [7] predicted that Fe3O4 might disproportionate into FeO and h-Fe2O3 at 50 GPa. Other studies suggested that the high-pressure phase should be stable up to 100 GPa [3]. A more recent experimental study by Ricolleau and Fei [8] revealed that Fe3O4 is stable at least up to 103 GPa. Thus far, structural studies of Fe3O4 have been limited to pressures below 105 GPa. We have studied Fe3O4 up to pressures of 175 GPa and temperatures above 4000K, using diamond anvil cells in combination with synchrotron x-ray diffraction and an online pulsed laser-heating system to study the stability of Fe3O4 at relevant pressure-temperature conditions. Our results show that Fe3O4 is stable up to at least 176 GPa and 4200 K. We have discovered a new polymorph of Fe3O4 at these high P-T conditions. This new phase is stable in the pressure range of at least 100Journal of Physics: Condensed Matter 15, 7697 (2003). [4] Xu et al. Pysical Review B 70, 174106 (2004). [5] Greenberg et al. Physical Review B 95, 195150 (2017). [6] Yamanaka et al. American Mineralogist 98, 736 (2013). [7] Lazor et al. Journal of Geophysical Research 109, B05201 (2004). [8] Ricolleau and Fei. American Mineralogist 101, 719 (2016).

  11. Influence of precipitating light elements on stable stratification below the core/mantle boundary

    Science.gov (United States)

    O'Rourke, J. G.; Stevenson, D. J.

    2017-12-01

    Stable stratification below the core/mantle boundary is often invoked to explain anomalously low seismic velocities in this region. Diffusion of light elements like oxygen or, more slowly, silicon could create a stabilizing chemical gradient in the outermost core. Heat flow less than that conducted along the adiabatic gradient may also produce thermal stratification. However, reconciling either origin with the apparent longevity (>3.45 billion years) of Earth's magnetic field remains difficult. Sub-isentropic heat flow would not drive a dynamo by thermal convection before the nucleation of the inner core, which likely occurred less than one billion years ago and did not instantly change the heat flow. Moreover, an oxygen-enriched layer below the core/mantle boundary—the source of thermal buoyancy—could establish double-diffusive convection where motion in the bulk fluid is suppressed below a slowly advancing interface. Here we present new models that explain both stable stratification and a long-lived dynamo by considering ongoing precipitation of magnesium oxide and/or silicon dioxide from the core. Lithophile elements may partition into iron alloys under extreme pressure and temperature during Earth's formation, especially after giant impacts. Modest core/mantle heat flow then drives compositional convection—regardless of thermal conductivity—since their solubility is strongly temperature-dependent. Our models begin with bulk abundances for the mantle and core determined by the redox conditions during accretion. We then track equilibration between the core and a primordial basal magma ocean followed by downward diffusion of light elements. Precipitation begins at a depth that is most sensitive to temperature and oxygen abundance and then creates feedbacks with the radial thermal and chemical profiles. Successful models feature a stable layer with low seismic velocity (which mandates multi-component evolution since a single light element typically

  12. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation.

    Science.gov (United States)

    Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2018-04-01

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi

    2018-03-12

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.

  14. Study of twist boundaries in aluminium. Structure and intergranular diffusion

    International Nuclear Information System (INIS)

    Lemuet, Daniel

    1981-01-01

    This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures

  15. Atomic structures and electronic properties of phosphorene grain boundaries

    International Nuclear Information System (INIS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun; Zhang, Junfeng

    2016-01-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials. (paper)

  16. Discrete Green's Theorem, Green's Functions and Stable Radiative FDTD Boundary Conditions

    NARCIS (Netherlands)

    Arnold, J.M.; Hon, de B.P.

    2007-01-01

    We propose a radiative boundary condition for the discrete-grid formulation of Helmholtz’ equation, based on rational approximation in the frequency domain of a Green’s function for the discretised system. This boundary condition is free from instabilities.

  17. Structural boundary perception in popular music.

    NARCIS (Netherlands)

    Bruderer, M.J.; McKinney, M.F.; Kohlrausch, A.G.

    2006-01-01

    The automatic extraction of musical structure from audio is an important aspect for many music information retrieval (MIR) systems. The criteria on which structural elements in music are defined in MIR systems is often not clearly stated but typically stem from (music) theoretical or signal-based

  18. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  19. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burbery, N.J. [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Das, R., E-mail: r.das@auckland.ac.nz [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Ferguson, W.G. [Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010 (New Zealand)

    2016-08-15

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  20. Subgroup report on grain boundary and interphase boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.; Cannon, R.M.; Clarke, D.R.; Heuer, A.H.; Ho, P.S.; Kear, B.H.; Vitek, V.; Weertman, J.R.; White, C.L.

    1979-01-01

    In many high temperature structural applications, the performance characteristics of a materials system are largely controlled by the properties of its grain and interphase boundaries. Failure in creep and fatigue frequently occurs by cavitation, or cracking along grain boundaries. In a few special cases, this failure problem has been overcome by directional alignment of grain and interphase boundaries by various types of metallurgical processing such as directional solidification and directional recrystallization. A good example is to be found in the application of directionally aligned structures in high performance gas-turbine airfoils. However, where fine, equiaxed grain structures are desirable, other methods of controlling grain boundary properties have been developed. Important among these has been the introduction of improvements in primary melting practices, designed to control important impurities. This is of decisive importance because even traces of certain impurity elements present in grain boundaries in high temperature materials can seriously affect properties. Impurities are deleterious and need to be removed. However, in certain cases, (e.g., creep fracture) controlled impurity additions can be beneficial and result in improved properties

  1. Structure and electronic properties of boron nitride sheet with grain boundaries

    International Nuclear Information System (INIS)

    Wang Zhiguo

    2012-01-01

    Using first-principles calculations, the structure, stability, and electronic properties of BN sheets with grain boundaries (GBs) are investigated. Two types of GBs, i.e., zigzag- and armchair-oriented GBs, are considered. Simulation results reveal that the zigzag-oriented GBs are more stable than the armchair-oriented ones. The GBs induce defect levels located within the band gap, which must be taken into account when building nanoelectronic devices.

  2. Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions

    Directory of Open Access Journals (Sweden)

    K. Schäfer

    2012-07-01

    Full Text Available Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2 are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s−1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.

  3. Numerically stable fluid–structure interactions between compressible flow and solid structures

    KAUST Repository

    Grétarsson, Jón Tómas

    2011-04-01

    We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles incompressible flow). We also show that, under a few reasonable assumptions, this system can be made symmetric positive-definite by following the methodology of [16]. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. © 2011 Elsevier Inc.

  4. Adaptation of benthic invertebrates to food sources along marine-terrestrial boundaries as indicated by carbon and nitrogen stable isotopes

    Science.gov (United States)

    Lange, G.; Haynert, K.; Dinter, T.; Scheu, S.; Kröncke, I.

    2018-01-01

    Frequent environmental changes and abiotic gradients of the Wadden Sea require appropriate adaptations of the local organisms and make it suitable for investigations on functional structure of macrozoobenthic communities from marine to terrestrial boundaries. To investigate community patterns and food use of the macrozoobenthos, a transect of 11 stations was sampled for species number, abundance and stable isotope values (δ13C and δ15N) of macrozoobenthos and for stable isotope values of potential food resources. The transect was located in the back-barrier system of the island of Spiekeroog (southern North Sea, Germany). Our results show that surface and subsurface deposit feeders, such as Peringia ulvae and different oligochaete species, dominated the community, which was poor in species, while species present at the transect stations reached high abundance. The only exception was the upper salt marsh with low abundances but higher species richness because of the presence of specialized semi-terrestrial and terrestrial taxa. The macrozoobenthos relied predominantly on marine resources irrespective of the locality in the intertidal zone, although δ13C values of the consumers decreased from - 14.1 ± 1.6‰ (tidal flats) to - 21.5 ± 2.4‰ (salt marsh). However, the ubiquitous polychaete Hediste diversicolor showed a δ15N enrichment of 2.8‰ (an increase of about one trophic level) from bare sediments to the first vegetated transect station, presumably due to switching from suspension or deposit feeding to predation on smaller invertebrates. Hence, we conclude that changes in feeding mode represent an important mechanism of adaptation to different Wadden Sea habitats.

  5. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  6. Shock-like structures in the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  7. Structure of the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B.U.O.; Bame, S.J.; Forbes, T.G.; Hones, E.W. Jr.; Russell, C.T.

    1981-01-01

    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the Los Alamos Scientific Laboratory/Max-Planck-Institut, Institut fuer Extraterrestrische Physik, fast plasma analyzer on board the Isee 1 and 2 spacecraft, have revealed a complex quasi-periodic structure of some of the observed boundary layers: cool tailward streaming boundary layer plasma is seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over 1 hour or more. One such crossing, at 0800 hours local time and 40 0 northern GSM latitude, is examined in detail, including a quantitative comparison of the boundary layer entry and exit times of the two spacecraft. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Included are periods when the thickness is essentially zero and others when it is of the order of 1 R/sub E/. The duration of these periods is highly variable but is typically in the range of 2--5 min, corresponding to a distance along the magnetopause of the order of 3--8 R/sub E/. The observed boundary layer features include a steep density gradient at the magnetopause, with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer. It also appears that the purely magnetospheric plasma is ocassionally separated from the boundary layer by a halo region in which the plasma density is somewhat higher, and the temperature somewhat lower, than in the magnetosphere. A tentative model is proposed

  8. Recent developments in low cost stable structures for space

    International Nuclear Information System (INIS)

    Thompson, T.C.; Grastataro, C.; Smith, B.G.

    1994-01-01

    The Los Alamos National Laboratory (LANL) in partnership with Composite Optics Incorporated (COI) is advancing the development of low cost, lightweight, composite technology for use in spacecraft and stable structures. The use of advanced composites is well developed, but the application of an all-composite tracker structure has never been achieved. This paper investigates the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small satellites, using technology directly applicable to central tracking in a high luminosity environment. The satellite program Fast On-Orbit Recording of Transient Events (FORTE) is the second in a series of satellites to be launched into orbit for the US Department of Energy (DOE). This paper will discuss recent developments in the area of low cost composites, used for either spacecraft or ultra stable applications in high energy physics (HEP) detectors. The use of advanced composites is a relatively new development in the area of HEP. The Superconducting Super Collider (SSC) spawned a new generation of Trackers which made extensive use of graphite fiber reinforced plastic (GFRP) composite systems. LANL has designed a structure employing new fabrication technology. This concept will lower the cost of composite structures to a point that they may now compete with conventional materials. This paper will discuss the design, analysis and proposed fabrication of a small satellite structure. Central tracking structures using advanced materials capable of operating in an adverse environment typical of that found in a high luminosity collider could use identical concepts

  9. Document boundary determination using structural and lexical analysis

    Science.gov (United States)

    Taghva, Kazem; Cartright, Marc-Allen

    2009-01-01

    The document boundary determination problem is the process of identifying individual documents in a stack of papers. In this paper, we report on a classification system for automation of this process. The system employs features based on document structure and lexical content. We also report on experimental results to support the effectiveness of this system.

  10. Inverse boundary element calculations based on structural modes

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    2007-01-01

    The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods sol...

  11. HREM investigation of the structure of the Σ5(310)/[001] symmetric tilt grain boundaries in Nb

    International Nuclear Information System (INIS)

    King, W.E.; Compbell, G.H.; Coombs, A.; Ruehle, M.

    1991-01-01

    This paper reports on atomistic simulations using interatomic potentials for Nb developed employing the embedded atom method (EAM) and the model generalized pseudopotential theory (MGPT) that have indicated a possible cusp at the Σ5 (310) orientation in the energy vs tilt angle curves for left-angle 001 right-angle symmetric tilt grain boundaries. In addition, the most stable structure predicted using EAM exhibits shifts of one crystal relative to the other along the tilt axis and along the direction perpendicular to the tilt axis lying in the boundary plane. The structure predicted using the MGPT was mirror symmetric across the plane of the grain boundary. This boundary has been prepared for experimental study using the ultra high vacuum diffusion bonding method. A segment of this boundary has been studied using high resolution electron microscopy

  12. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Luhunga, P; Djolov, G [University of Pretoria (South Africa); Esau, I, E-mail: george.djolov@up.ac.z

    2010-08-15

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II 'Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes'. The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  13. A Study of stable Atmospheric Boundary Layer over highveld South Africa

    International Nuclear Information System (INIS)

    Luhunga, P; Djolov, G; Esau, I

    2010-01-01

    The study is part of the South African - Norwegian Programme for Research and Co-operation Phase II 'Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes'. The research strategy of the project is based on 4 legged approach. 1) Application and further development of contemporary atmospheric boundary layer theory. 2) Use of modeling based on large eddy simulation techniques. 3) Experimental investigation of turbulent fluxes. 4) Training and developing academics capable of dealing with the present and new challenges. The paper presents some preliminary results on the micrometeorological variability of the basic meteorological parameters and turbulent fluxes.

  14. Grain boundary engineering for structure materials of nuclear reactors

    Science.gov (United States)

    Tan, L.; Allen, T. R.; Busby, J. T.

    2013-10-01

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic-martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  15. On boundaries among magnetic structures at the sun

    Science.gov (United States)

    Ishkov, V. N.; Linke, J.

    1990-10-01

    Results of an analysis of published observational data on large complex active regions (CARs) on the sun are briefly discussed. Boundaries detected in the lower region of the solar atmosphere are shown to reveal the separation of independently developing magnetic structures, which may interact to produce eruption effects such as flares, reconnection, and flux-tube cancelling, as proposed by Linke and Bachmann (1989). The characteristics of these boundaries are illustrated with diagrams based on CAR data for June-July 1982, July-August 1983, and October 1979.

  16. Grain boundary engineering for structure materials of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Allen, T.R. [Department of Engineering Physics, University of Wisconsin–Madison (United States); Busby, J.T. [Materials Science and Technology Division, Oak Ridge National Laboratory (United States)

    2013-10-15

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic–martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  17. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  18. Stable atmospheric boundary-layer experiment in Spain (SABLES 98): A report

    DEFF Research Database (Denmark)

    Cuxart, J.; Yague, C.; Morales, G.

    2000-01-01

    boundary layer (SBL). Instrumentation deployed on two meteorological masts (of heights 10 m and 100 m) included five sonic anemometers, 15 thermocouples, five cup anemometers and three propeller anemometers, humidity sensors and radiometers. A Sensitron mini-sodar and a tethered balloon were also operated...

  19. Coherent structures in wave boundary layers. Part 1. Oscillatory motion

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...... spots, isolated arrowhead-shaped areas close to the bed in an otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations. The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots cause single or multiple violent spikes in the bed shear stress signal...

  20. Stable structures of coalitions in competitive and altruistic military teams

    Science.gov (United States)

    Aurangzeb, M.; Mikulski, D.; Hudas, G.; Lewis, F. L.; Gu, Edward

    2013-05-01

    In heterogeneous battlefield teams, the balance between team and individual objectives forms the basis for the internal topological structure of teams. The stability of team structure is studied by presenting a graphical coalitional game (GCG) with Positional Advantage (PA). PA is Shapley value strengthened by the Axioms of value. The notion of team and individual objectives is studied by defining altruistic and competitive contribution made by an individual; altruistic and competitive contributions made by an agent are components of its total or marginal contribution. Moreover, the paper examines dynamic team effects by defining three online sequential decision games based on marginal, competitive and altruistic contributions of the individuals towards team. The stable graphs under these sequential decision games are studied and found to be structurally connected, complete, or tree respectively.

  1. Extended Stable Boundary of LCL-Filtered Grid-Connected Inverter Based on An Improved Grid-Voltage Feedforward Control

    DEFF Research Database (Denmark)

    Lu, Minghui; Xin, Zhen; Wang, Xiongfei

    2016-01-01

    should be designed under one-sixth of sampling frequency. However, the low resonance frequency leads to a comparatively large filter inductance or/and capacitance. To extend the stable boundary to the region above fs/6, this paper proposes a novel voltage feedforward scheme for the LCL-filtered inverter....... Theoretical analysis is then provided to validate its feasibility and stability. Compared to other widely used active damping strategies, no extra sensors are needed because the filter capacitor voltage, which is used for voltage feedforward control, is also sampled for phase-locked loop in this paper...

  2. Determination of stable shapes of a thin liquid metal layer using a boundary integral method

    Energy Technology Data Exchange (ETDEWEB)

    Hinaje, M [Groupe de Recherche en Electrotechnique et Electronique de Nancy, 2 avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France); Vinsard, G [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 2 avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France); Dufour, S [Groupe de Recherche en Electrotechnique et Electronique de Nancy, 2 avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2006-03-21

    This paper deals with a thin liquid metal layer submitted to an ac magnetic field. Experimentally, we have noticed that even if the system (inductor+liquid metal) is axisymmetric, when an ac magnetic field is applied the symmetry is broken. The observed deformations of the liquid metal are in three dimensions. Therefore, our aim is to investigate this deformation using a numerical method as boundary element method in three dimensions.

  3. Determination of stable shapes of a thin liquid metal layer using a boundary integral method

    International Nuclear Information System (INIS)

    Hinaje, M; Vinsard, G; Dufour, S

    2006-01-01

    This paper deals with a thin liquid metal layer submitted to an ac magnetic field. Experimentally, we have noticed that even if the system (inductor+liquid metal) is axisymmetric, when an ac magnetic field is applied the symmetry is broken. The observed deformations of the liquid metal are in three dimensions. Therefore, our aim is to investigate this deformation using a numerical method as boundary element method in three dimensions

  4. Structure of reconnection boundary layers in incompressible MHD

    International Nuclear Information System (INIS)

    Sonnerup, B.U.Oe.; Wang, D.J.

    1987-01-01

    The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process

  5. Bioinspired Omnidirectional Self-Stable Reflectors with Multiscale Hierarchical Structures.

    Science.gov (United States)

    Han, Zhiwu; Mu, Zhengzhi; Li, Bo; Feng, Xiaoming; Wang, Ze; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2017-08-30

    Structured surfaces, demonstrating various wondrous physicochemical performances, are ubiquitous phenomena in nature. Butterfly wings with impressive structural colors are an interesting example for multiscale hierarchical structures (MHSs). However, most natural structural colors are relatively unstable and highly sensitive to incident angles, which limit their potential practical applications to a certain extent. Here, we reported a bioinspired color reflector with omnidirectional reflective self-stable (ORS) properties, which is inspired by the wing scales of Papilio palinurus butterfly. Through experimental exploration and theoretical analysis, it was found that the vivid colors of such butterfly wings are structure-based and possess novel ORS properties, which attributes to the multiple optical actions between light and the complex structures coupling the inverse opal-like structures (IOSs) and stacked lamellar ridges (SLRs). On the basis of this, we designed and successfully fabricated the SiO 2 -based bioinspired color reflectors (BCRs) through a facile and effective biotemplate method. It was confirmed that the MHSs in biotemplate are inherited by the obtained SiO 2 -based BCRs. More importantly, the SiO 2 -based BCRs also demonstrated the similar ORS properties in a wide wavelength range. We forcefully anticipate that the reported MHS-based ORS performance discovered in butterfly wing scales here could offer new thoughts for scientists to solve unstable reflection issues in particular optical field. The involved biotemplate fabrication method offers a facile and effective strategy for fabricating functional nanomaterials or bioinspired nanodevices with 3D complex nanostructures, such as structured optical devices, displays, and optoelectronic equipment.

  6. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  7. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  8. The meteorology and chemistry of high nitrogen oxide concentrations in the stable boundary layer at the South Pole

    Science.gov (United States)

    Neff, William; Crawford, Jim; Buhr, Marty; Nicovich, John; Chen, Gao; Davis, Douglas

    2018-03-01

    Four summer seasons of nitrogen oxide (NO) concentrations were obtained at the South Pole (SP) during the Sulfur Chemistry in the Antarctic Troposphere (ISCAT) program (1998 and 2000) and the Antarctic Tropospheric Chemistry Investigation (ANTCI) in (2003, 2005, 2006-2007). Together, analyses of the data collected from these studies provide insight into the large- to small-scale meteorology that sets the stage for extremes in NO and the significant variability that occurs day to day, within seasons, and year to year. In addition, these observations reveal the interplay between physical and chemical processes at work in the stable boundary layer of the high Antarctic plateau. We found a systematic evolution of the large-scale wind system over the ice sheet from winter to summer that controls the surface boundary layer and its effect on NO: initially in early spring (Days 280-310) the transport of warm air and clouds over West Antarctica dominates the environment over the SP; in late spring (Days 310-340), the winds at 300 hPa exhibit a bimodal behavior alternating between northwest and southeast quadrants, which is of significance to NO; in early summer (Days 340-375), the flow aloft is dominated by winds from the Weddell Sea; and finally, during late spring, winds aloft from the southeast are strongly associated with clear skies, shallow stable boundary layers, and light surface winds from the east - it is under these conditions that the highest NO occurs. Examination of the winds at 300 hPa from 1961 to 2013 shows that this seasonal pattern has not changed significantly, although the last twenty years have seen an increasing trend in easterly surface winds at the SP. What has also changed is the persistence of the ozone hole, often into early summer. With lower total ozone column density and higher sun elevation, the highest actinic flux responsible for the photolysis of snow nitrate now occurs in late spring under the shallow boundary layer conditions optimum for

  9. Structures and growth textures of Japanese twin boundaries in quartz

    Science.gov (United States)

    Momma, K.; Nagase, T.; Kudoh, Y.; Kuribayashi, T.

    2008-12-01

    Growth textures and atomic configurations of Japanese twin boundaries in quartz were studied by the observation of natural samples and by computational simulations. Samples used in this study are collected from Narushima, Nagasaki Prefecture, Japan. The samples were first polished, and then etched by hydrofluoric acid for several minutes. The etched figures were observed by phase-contrast reflection microscopy and scanning electron microscopy. From these observations, high concentration of Brazil twin lamellae is found near the composition plane of Japanese twin. Observations of cathode luminescence images reveal that the development of Brazil twin lamellae at {112×2} composition plane of Japanese twin is directly related to the preferential growth of Japanese twin along the composition plane. Atomic configurations at {112×2} composition planes of Japanese twin were simulated by using molecular dynamics simulations and the energy minimization method. The simulated structures proved that {112×2} or {1×1×22} composition planes are the only composition planes that do not introduce unsatisfied bonding between Si and O atoms. When the composition plane is different from these planes, some kind of defect structures, like dislocations, are inevitably introduced. In the case of Brazil twin, screw dislocations are also known to be incorporated where orientation of Brazil twin boundary changes from one orientation to another. On the other hand, in the case where Brazil twin boundaries intersect with {112×2} composition planes of Japanese twin, we found that structures are kept coherently without any unsatisfied bonding. This result means that {112×2} composition planes of Japanese twin are the crystallographic sites having more than one possible stacking structures. Observations in this study indicate that {112×2} composition plane of Japanese twin serves as a source of Brazil twin during the course of crystal growth.

  10. Toward Isolation of Salient Features in Stable Boundary Layer Wind Fields that Influence Loads on Wind Turbines

    Directory of Open Access Journals (Sweden)

    Jinkyoo Park

    2015-04-01

    Full Text Available Neutral boundary layer (NBL flow fields, commonly used in turbine load studies and design, are generated using spectral procedures in stochastic simulation. For large utility-scale turbines, stable boundary layer (SBL flow fields are of great interest because they are often accompanied by enhanced wind shear, wind veer, and even low-level jets (LLJs. The generation of SBL flow fields, in contrast to simpler stochastic simulation for NBL, requires computational fluid dynamics (CFD procedures to capture the physics and noted characteristics—such as shear and veer—that are distinct from those seen in NBL flows. At present, large-eddy simulation (LES is the most efficient CFD procedure for SBL flow field generation and related wind turbine loads studies. Design standards, such as from the International Electrotechnical Commission (IEC, provide guidance albeit with simplifying assumptions (one such deals with assuming constant variance of turbulence over the rotor and recommend standard target turbulence power spectra and coherence functions to allow NBL flow field simulation. In contrast, a systematic SBL flow field simulation procedure has not been offered for design or for site assessment. It is instructive to compare LES-generated SBL flow fields with stochastic NBL flow fields and associated loads which we evaluate for a 5-MW turbine; in doing so, we seek to isolate distinguishing characteristics of wind shear, wind veer, and turbulence variation over the rotor plane in the alternative flow fields and in the turbine loads. Because of known differences in NBL-stochastic and SBL-LES wind fields but an industry preference for simpler stochastic simulation in design practice, this study investigates if one can reproduce stable atmospheric conditions using stochastic approaches with appropriate corrections for shear, veer, turbulence, etc. We find that such simple tuning cannot consistently match turbine target SBL load statistics, even though

  11. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    OpenAIRE

    Kimura, Yusuke

    2018-01-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface i...

  12. Combined effect of boundary layer recirculation factor and stable energy on local air quality in the Pearl River Delta over southern China.

    Science.gov (United States)

    Li, Haowen; Wang, Baomin; Fang, Xingqin; Zhu, Wei; Fan, Qi; Liao, Zhiheng; Liu, Jian; Zhang, Asi; Fan, Shaojia

    2018-03-01

    Atmospheric boundary layer (ABL) has a significant impact on the spatial and temporal distribution of air pollutants. In order to gain a better understanding of how ABL affects the variation of air pollutants, atmospheric boundary layer observations were performed at Sanshui in the Pearl River Delta (PRD) region over southern China during the winter of 2013. Two types of typical ABL status that could lead to air pollution were analyzed comparatively: weak vertical diffusion ability type (WVDAT) and weak horizontal transportation ability type (WHTAT). Results show that (1) WVDAT was featured by moderate wind speed, consistent wind direction, and thick inversion layer at 600~1000 m above ground level (AGL), and air pollutants were restricted in the low altitudes due to the stable atmospheric structure; (2) WHTAT was characterized by calm wind, varied wind direction, and shallow intense ground inversion layer, and air pollutants accumulated in locally because of strong recirculation in the low ABL; (3) recirculation factor (RF) and stable energy (SE) were proved to be good indicators for horizontal transportation ability and vertical diffusion ability of the atmosphere, respectively. Combined utilization of RF and SE can be very helpful in the evaluation of air pollution potential of the ABL. Air quality data from ground and meteorological data collected from radio sounding in Sanshui in the Pearl River Delta showed that local air quality was poor when wind reversal was pronounced or temperature stratification state was stable. The combination of horizontal and vertical transportation ability of the local atmosphere should be taken into consideration when evaluating local environmental bearing capacity for air pollution.

  13. Structure measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, Jaywant H.

    1987-09-01

    Extensive hot-wire measurements have been made to determine the structure of the large eddy in a synthejc turbulent boundary layer on a flat-plate model. The experiments were carried out in a wind tunnel at a nominal free-stream velocity of 12 m/s. The synthetic turbulent boundary layer had a hexagonal pattern of eddies and a ratio of streamwise scale to spanwise scale of 3.2:1. The measured celerity of the large eddy was 84.2 percent of the free-stream velocity. There was some loss of coherence, but very little distortion, as the eddies moved downstream. Several mean properties of the synthetic boundary layer were found to agree quite well with the mean properties of a natural turbulent boundary layer at the same Reynolds number. The large eddy is composed of a pair of primary counter-rotating vortices about five [...] long in the streamwise direction and about one [...] apart in the spanwise direction, where [...] is the mean boundary-layer thickness. The sense of the primary pair is such as to pump fluid away from the wall in the region between the vortices. A secondary pair of counter-rotating streamwise vortices, having a sense opposite to that of the primary pair, is observed outside of and slightly downstream from the primary vortices. Both pairs of vortices extend across the full thickness of the boundary layer and are inclined at a shallow angle to the surface of the flat plate. The data show that the mean vorticity vectors are not tangential to the large-eddy vortices. In fact, the streamwise and normal vorticity components that signal the presence of the eddy are of the same order of magnitude. Definite signatures are obtained in terms of the mean skin-friction coefficient and the mean wake parameter averaged at constant phase. Velocities induced by the vortices are partly responsible for entrainment of irrotational fluid, for transport of momentum, for generation of Reynolds stresses, and for maintenance of streamwise and normal vorticity in the outer

  14. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.

    Science.gov (United States)

    Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L

    2017-09-25

    Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.

  15. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary

    International Nuclear Information System (INIS)

    Becker, Bernd; Kromer, Bernd; Trimborn, Peter

    1991-01-01

    Late Glacial and Holocene tree-ring chronologies, like deep-sea sediments or polar ice cores, contain information about past environments. Changes in tree-ring growth rates can be related to past climate anomalies and changes in the isotope composition of tree-ring cellulose reflect changes in the composition of the atmosphere and the hydrosphere. We have established a 9,928-year absolutely dated dendrochronological record of Holocene oak (Quercus robur, Quercus petraea)-and a 1,604-year floating Late Glacial and Early Holocene chronology of pine (Pinus sylvestris) from subfossil tree remnants deposited in alluvial terraces of south central European rivers. The pine sequence provides records of dendro-dated 14 C, 13 C and 2 H patterns for the late Younger Dryas and the entire Preboreal (10,100-9,000 yr BP). Through the use of dendrochronology, radiocarbon age calibration and stable isotope analysis, we suggest that the Late Glacial/Holocene transition may be identified and dated by 13 C and 2 H tree-ring chronologies. (author)

  16. Density effects on turbulent boundary layer structure: From the atmosphere to hypersonic flow

    Science.gov (United States)

    Williams, Owen J. H.

    This dissertation examines the effects of density gradients on turbulent boundary layer statistics and structure using Particle Image Velocimetry (PIV). Two distinct cases were examined: the thermally stable atmospheric surface layer characteristic of nocturnal or polar conditions, and the hypersonic bounder layer characteristic of high speed aircraft and reentering spacecraft. Previous experimental studies examining the effects of stability on turbulent boundary layers identified two regimes, weak and strong stability, separated by a critical bulk stratification with a collapse of near-wall turbulence thought to be intrinsic to the strongly stable regime. To examine the characteristics of these two regimes, PIV measurements were obtained in conjunction with the mean temperature profile in a low Reynolds number facility over smooth and rough surfaces. The turbulent stresses were found to scale with the wall shear stress in the weakly stable regime prior relaminarization at a critical stratification. Changes in profile shape were shown to correlate with the local stratification profile, and as a result, the collapse of near-wall turbulence is not intrinsic to the strongly stable regime. The critical bulk stratification was found to be sensitive to surface roughness and potentially Reynolds number, and not constant as previously thought. Further investigations examined turbulent boundary layer structure and changes to the motions that contribute to turbulent production. To study the characteristics of a hypersonic turbulent boundary layer at Mach 8, significant improvements were required to the implementation and error characterization of PIV. Limited resolution or dynamic range effects were minimized and the effects of high shear on cross-correlation routines were examined. Significantly, an examination of particle dynamics, subject to fluid inertia, compressibility and non-continuum effects, revealed that particle frequency responses to turbulence can be up to an

  17. Three dimensional boundary displacement due to stable ideal kink modes excited by external n = 2 magnetic perturbations

    Science.gov (United States)

    Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Dunne, M.; Fischer, R.; Birkenmeier, G.; Brida, D.; Cavedon, M.; Denk, S. S.; Igochine, V.; Giannone, L.; Kirk, A.; Kirschner, J.; Medvedeva, A.; Odstrčil, T.; Ryan, D. A.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    In low-collisionality (ν\\star) scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating n=2 MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation.

  18. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  19. Between physics and metaphysics: structure as a boundary concept.

    Science.gov (United States)

    Tau, Ramiro

    2015-03-01

    The notion of structure is found to be used in a great number of theories, scientific research programs and world views. However, its uses and definitions are as diverse as the objects of the scientific disciplines where it can be found. Without trying to recreate the structuralist aspiration from the mid XX century, which believed to have found in this notion a common transdisciplinary language, I discuss a specific aspect of this concept that could be considered a constant in different perspectives. This aspect refers to the location of the notions of structure as boundaries in the different scientific theories. With this, I try to argue that the definition or presentation of a structure configures in itself the frontier for scientific knowledge, defining at the same time implied ontological assumptions. In order to discuss this hypothesis, and taking into consideration the double origin of contemporary notions of structure -the mathematical and linguistic line-, I revise several theoretical perspectives which made explicit the relation between structures and knowledge, and their relation with the real: the arguments on physical knowledge by Eddington, structural anthropology, structural linguistics, Lacanian psychoanalysis and Piaget's genetic psychology.

  20. A Metal Stable Isotope Approach to Understanding Uranium Mobility Across Roll Front Redox Boundaries

    Science.gov (United States)

    Brown, S. T.; Basu, A.; Christensen, J. N.; DePaolo, D. J.; Heikoop, J. M.; Reimus, P. W.; Maher, K.; Weaver, K. L.

    2015-12-01

    Sedimentary roll-front uranium (U) ore deposits are the principal source of U for nuclear fuel in the USA and an important part of the current all-of-the-above energy strategy. Mining of roll-front U ore in the USA is primarily by in situ alkaline oxidative dissolution of U minerals. There are significant environmental benefits to in situ mining including no mine tailings or radioactive dust, however, the long-term immobilization of U in the aquifer after the completion of mining remains uncertain. We have utilized the metal stable isotopes U, Se and Mo in groundwater from roll-front mines in Texas and Wyoming to quantify the aquifer redox conditions and predict the onset of U reduction after post mining aquifer restoration. Supporting information from the geochemistry of groundwater and aquifer sediments are used to understand the transport of U prior to and after in situ mining. Groundwater was collected across 4 mining units at the Rosita mine in the Texas coastal plain and 2 mining units at the Smith Ranch mine in the Powder River Basin, Wyoming. In general, the sampled waters are moderately reducing and ore zone wells contain the highest aqueous U concentrations. The lowest U concentrations occur in monitoring wells downgradient of the ore zone. 238U/235U is lowest in downgradient wells and is correlated with aqueous U concentrations. Rayleigh distillation models of the 238U/235U are consistent with U isotope fractionation factors of 1.0004-1.001, similar to lab-based studies. Based on these results we conclude that redox reactions continue to affect U distribution in the ore zone and downgradient regions. We also measured aqueous selenium isotope (δ82Se) and molybdenum isotope (δ98Mo) compositions in the Rosita groundwater. Se(VI) primarily occurs in the upgradient wells and is absent in most ore zone and downgradient wells. Rayleigh distillation models suggest reduction of Se(VI) along the groundwater flow path and when superimposed on the U isotope data

  1. Space structure of the glow discharge with free side boundary

    International Nuclear Information System (INIS)

    Yatsenko, N.A.

    1995-01-01

    The main purpose of this work is to reveal physical reasons, which are responsible for the formation of space structure of glow type discharge with free side boundary, both in DC and in RF electric fields. By now extensive experimental material have been accumulated in discharge physics. Also many theoretical models have been proposed for describing separate parts of discharge with the cold electrodes (cathode and anode regions, positive column and transition zones - glow luminescence and Farraday's dark space of DC-discharge, electrode regions and plasma column of RF capacitive discharge). As this takes place, the majority of known works are devoted to some one part of gas discharge - positive column, electrode regions, transition zones and so on. At the same time just now we don't know anything about space structure of free, steady-state gas discharge of glow type, as a whole, especially when the pressure p much-gt 1 Torr

  2. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  3. The influence of grain boundary structure on diffusional creep

    DEFF Research Database (Denmark)

    Thorsen, Peter Anker; Bilde-Sørensen, Jørgen

    1999-01-01

    the deformation caused by deposition of material at (or removal of material from) grain boundaries. The misorientation across the grain boundaries, and hence the character of the boundaries, was measured with the use of electron back-scattering patterns. The deformation behavior of the individual boundaries......A Cu-2wt%Ni-alloy was deformed in tension in the diffusional creep regime (Nabarro-Herring creep). A periodic grid consisting of alumina was deposited on the surface of the creep specimen prior to creep. This makes it possible to separate the deformation caused by grain boundary sliding from...

  4. First observations of elevated ducts associated with intermittent turbulence in the stable boundary layer over Bosten Lake, China

    Science.gov (United States)

    Sun, Zheng; Ning, Hui; Song, Shihui; Yan, Dongmei

    2016-10-01

    Nocturnal radiative cooling is a main driver for atmospheric duct formation. Within this atmospheric process, the impacts of intermittent turbulence on ducting have seldom been studied. In this paper, we reported two confusing ducting events observed in the early morning in August 2014 over Bosten Lake, China, when a stable boundary layer (SBL) still survived, by using tethered high-resolution GPS radiosondes. Elevated ducts with strong humidity inversions were observed during the balloon ascents but were absent during observations made upon the balloon descents several minutes later. This phenomenon was initially hypothesized to be attributable to turbulence motions in the SBL, and the connection between the turbulence event and the radar duct was examined by the statistical Thorpe method. Turbulence patches were detected from the ascent profiles but not from the descent profiles. The possible reasons for the duct formation and elimination were discussed in detail. The turbulent transport of moisture in the SBL and the advection due to airflows coming from the lake are the most probable reasons for duct formation. In one case, the downward transport of moisture by turbulence mixing within a Kelvin-Helmholtz billow at the top of the low-level jet resulted in duct elimination. In another case, the passage of density currents originating from the lake may have caused the elimination of the duct. Few studies have attempted to associate intermittent turbulence with radar ducts; thus, this work represents a pioneering study into the connection between turbulent events and atmospheric ducts in a SBL.

  5. The influence of boundary conditions on domain structure stability in spin wave approximation

    International Nuclear Information System (INIS)

    Wachinewski, A.

    1974-01-01

    Instead of the usually used Born-Karman cyclic conditions, boundary conditions which take into account the situation of the boundary lattice sites lying on the crystal's surface are assumed. It is shown that the particular choice of the boundary conditions secures the stability of domain structure in ferromagnet (positive spin wave energies), without including the Winter term in Hamiltonian. (author)

  6. The structure of the stably stratified internal boundary layer in offshore flow over the sea

    Science.gov (United States)

    Garratt, J. R.; Ryan, B. F.

    1989-04-01

    Observations obtained mainly from a research aircraft are presented of the mean and turbulent structure of the stably stratified internal boundary layer (IBL) over the sea formed by warm air advection from land to sea. The potential temperature and humidity fields reveal the vertical extent of the IBL, for fetches out to several hundred of kilometres, geostrophic winds of 20 25 m s-1, and potential temperature differences between undisturbed continental air and the sea surface of 7 to 17 K. The dependence of IBL depth on these external parameters is discussed in the context of the numerical results of Garratt (1987), and some discrepancies are noted. Wind observations show the development of a low-level wind maximum (wind component normal to the coast) and rotation of the wind to smaller cross-isobar flow angles. Potential temperature (θ) profiles within the IBL reveal quite a different structure to that found in the nocturnal boundary layer (NBL) over land. Over the sea, θ profiles have large positive curvature with vertical gradients increasing monotonically with height; this reflects the dominance of turbulent cooling within the layer. The behaviour is consistent with known behaviour in the NBL over land where curvature becomes negative (vertical gradients of θ decreasing with height) as radiative cooling becomes dominant. Turbulent properties are discussed in terms of non-dimensional quantities, normalised by the surface friction velocity, as functions of normalised height using the IBL depth. Vertical profiles of these and the normalised wavelength of the spectral maximum agree well with known results for the stable boundary layer over land (Caughey et al., 1979).

  7. Coherent structures in wave boundary layers. Part 2. Solitary motion

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Jensen, Palle Martin; Sørensen, Lone B.

    2010-01-01

    This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion...... the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces...

  8. Stable structures for Al{sub 20} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Yao Changhong [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)]. E-mail: phych@zju.edu.cn; Song Bin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cao Peilin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2005-06-20

    The low-lying energy structures of Al{sub 20} cluster are obtained by full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method. A set of new low-lying energy structures including a new lowest energy structure, were found in our calculation. The waist-capped double icosahedral structure, which was considered as the global minimum previously, is merely one of the low-lying structures. Comparison and discussion between Al{sub 20} and Si{sub 20} have been made.

  9. Electrical sensing of the dynamical structure of the planetary boundary layer

    Science.gov (United States)

    Nicoll, K. A.; Harrison, R. G.; Silva, H. G.; Salgado, R.; Melgâo, M.; Bortoli, D.

    2018-04-01

    Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also important in determining the electrical charge transport of the lower atmosphere. This paper presents the first high resolution vertical charge profiles during fair weather conditions, obtained with instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. The short intervals (4 h) between balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller charges (up to 20 pC m- 3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was complex, demonstrating charged ultrafine aerosol, lofted upwards by daytime convection. This produced charge up to 92 pC m- 3 up to 500 m above the surface. The diurnal variation in the integrated column of charge above the site tracked closely with the diurnal variation in near surface charge as derived from a nearby electric field sensor, confirming the importance of the link between surface charge generation processes and aloft. The local aerosol vertical profiles were estimated using backscatter measurements from a collocated ceilometer. These were utilised in a simple model to calculate the charge expected due to vertical conduction current flow in the global electric circuit through aerosol layers. The analysis presented here demonstrates that charge can provide detailed information about boundary layer transport, particularly in regard to the ultrafine aerosol structure, that conventional thermodynamic and ceilometer measurements do not.

  10. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  11. The Socially Stable Core in Structured Transferable Utility Games

    NARCIS (Netherlands)

    Herings, P.J.J.; van der Laan, G.; Talman, A.J.J.

    2004-01-01

    We consider cooperative games with transferable utility (TU-games), in which we allow for a social structure on the set of players, for instance a hierarchical ordering or a dominance relation.The social structure is utilized to refine the core of the game, being the set of payoffs to the players

  12. Atomic structure of large angle grain boundaries determined by quantitative X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Fitzsimmons, M.R.; Sass, S.L.

    1988-01-01

    Quantitative X-ray diffraction techniques have been used to determine the atomic structure of the Σ = 5 and 13 [001] twist boundaries in Au with a resolution of 0.09 Angstrom or better. The reciprocal lattices of these boundaries were mapped out using synchrotron radiation. The atomic structures were obtained by testing model structures against the intensity observations with a chi square analysis. The boundary structure were modeled using polyhedra, including octahedra, special configurations of tetrahedra and Archimedian anti-prisms, interwoven together by the boundary symmetry. The results of this work point to the possibility of obtaining general rules for grain boundary structure based on X-ray diffraction observations that give the atomic positions with high resolution

  13. A new first-order turbulence mixing model for the stable atmospheric boundary-layer: development and testing in large-eddy and single column models

    Science.gov (United States)

    Huang, J.; Bou-Zeid, E.; Golaz, J.

    2011-12-01

    Parameterization of the stably-stratified atmospheric boundary-layer is of crucial importance to different aspects of numerical weather prediction at regional scales and climate modeling at global scales, such as land-surface temperature forecasts, fog and frost prediction, and polar climate. It is well-known that most operational climate models require excessive turbulence mixing of the stable boundary-layer to prevent decoupling of the atmospheric component from the land component under strong stability, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. In this study we develop and test a general turbulence mixing model of the stable boundary-layer which works under different stabilities and for steady as well as unsteady conditions. A-priori large-eddy simulation (LES) tests are presented to motivate and verify the new parameterization. Subsequently, an assessment of this model using the GFDL single-column model (SCM) is performed. Idealized test cases including continuously varying stability, as well as stability discontinuity, are used to test the new SCM against LES results. A good match of mean and flux profiles is found when the new parameterization is used, while other traditional first-order turbulence models using the concept of stability function perform poorly. SCM spatial resolution is also found to have little impact on the performance of the new turbulence closure, but temporal resolution is important and a numerical stability criterion based on the model time step is presented.

  14. Impact of height-dependent drainage forcing on the stable atmospheric boundary layer over a uniform slope

    International Nuclear Information System (INIS)

    Maguire, A.J.; Rees, J.M.; Derbyshire, S.H.

    2008-01-01

    This paper presents a theoretical study of the stably stratified atmospheric boundary layer (SBL) overlying a uniform shallow slope with a gradient of the order of 1:1000. By relaxing the assumption made in a previous study that the slope-induced drainage force is constant across the boundary layer, analysis has been performed that demonstrates that a realistic form for the drainage forcing is a term proportional to (1-z/h) 1/2 , where z is the height above the ground and h is the depth of the boundary layer. Modified expressions for the maximum sustainable surface buoyancy flux and Zilitinkevich's ratio are derived.

  15. The influence of the grain boundary structure on diffusional creep

    International Nuclear Information System (INIS)

    Thorsen, P.A.

    1998-05-01

    An experiment was carried out to quantify the deformation in the diffusional creep domain. It was found that material had indisputably been deposited at grain boundaries in tension. A characterisation of 131 boundaries in terms of their misorientation was carried out and this was correlated to the observed deformation. Twin boundaries below a certain limit of deviation from an exact twin misorientation were totally inactive in the deformation. A large qualitative difference was found in the way general boundaries take part in the deformation. The experiments have taken place at Materials Research Department, Risoe National Laboratory at Roskilde. The present thesis has been submitted in partial fulfillment of the requirements for the Ph.D. degree in physics at the Niels Bohr Institute, University of Copenhagen. Besides the results of the creep experiment the thesis contains a description of the theoretical background to diffusional creep models. Also, the results from an investigation of helium bubble formation in an irradiated copper sample is included. (au)

  16. The influence of the grain boundary structure on diffusional creep

    Energy Technology Data Exchange (ETDEWEB)

    Thorsen, P.A

    1998-05-01

    An experiment was carried out to quantify the deformation in the diffusional creep domain. It was found that material had indisputably been deposited at grain boundaries in tension. A characterisation of 131 boundaries in terms of their misorientation was carried out and this was correlated to the observed deformation. Twin boundaries below a certain limit of deviation from an exact twin misorientation were totally inactive in the deformation. A large qualitative difference was found in the way general boundaries take part in the deformation. The experiments have taken place at Materials Research Department, Risoe National Laboratory at Roskilde. The present thesis has been submitted in partial fulfillment of the requirements for the Ph.D. degree in physics at the Niels Bohr Institute, University of Copenhagen. Besides the results of the creep experiment the thesis contains a description of the theoretical background to diffusional creep models. Also, the results from an investigation of helium bubble formation in an irradiated copper sample is included. (au) 7 tabs., 56 ills., 75 refs.

  17. Active structural control with stable fuzzy PID techniques

    CERN Document Server

    Yu, Wen

    2016-01-01

    This book presents a detailed discussion of intelligent techniques to measure the displacement of buildings when they are subjected to vibration. It shows how these techniques are used to control active devices that can reduce vibration 60–80% more effectively than widely used passive anti-seismic systems. After introducing various structural control devices and building-modeling and active structural control methods, the authors propose offset cancellation and high-pass filtering techniques to solve some common problems of building-displacement measurement using accelerometers. The most popular control algorithms in industrial settings, PD/PID controllers, are then analyzed and then combined with fuzzy compensation. The stability of this combination is proven with standard weight-training algorithms. These conditions provide explicit methods for selecting PD/PID controllers. Finally, fuzzy-logic and sliding-mode control are applied to the control of wind-induced vibration. The methods described are support...

  18. The structure of the stable negative ion of calcium

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    The structure of the Ca/sup /minus// ion has been determined using a crossed laser-ion beams apparatus. The photoelectron detachment spectrum shows that, contrary to earlier expectations, the Ca/sup /minus// ion is stably bound in the (4s 2 4p) 2 p state. The electron affinity of Ca was measured to be 0.043 +- 0.007 eV

  19. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    Science.gov (United States)

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  20. The retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure

    Science.gov (United States)

    Mittl, Peer R. E.; Deillon, Christine; Sargent, David; Liu, Niankun; Klauser, Stephan; Thomas, Richard M.; Gutte, Bernd; Grütter, Markus G.

    2000-01-01

    The question of whether a protein whose natural sequence is inverted adopts a stable fold is still under debate. We have determined the 2.1-Å crystal structure of the retro-GCN4 leucine zipper. In contrast to the two-stranded helical coiled-coil GCN4 leucine zipper, the retro-leucine zipper formed a very stable, parallel four-helix bundle, which now lends itself to further structural and functional studies. PMID:10716989

  1. High taxonomic variability despite stable functional structure across microbial communities.

    Science.gov (United States)

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael

    2016-12-05

    Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.

  2. Effect of boundary conditions on radial mode structure of whistlers

    International Nuclear Information System (INIS)

    Boswell, R.W.

    1983-01-01

    The dispersion of the radical eigen modes of a cylindrical m=1 whistler wave with Ωsub(i) << ω << Ωsub(e) << ωsub(pe) are investigated for both conducting and insulating boundaries, where Ωsub(e) and Ωsub(i) are the electron and ion gyro frequencies, Ωsub(pe) is the electron plasma frequency. The effects of electron inertia and resistivity on the modes are discussed

  3. Dynamical structure of the turbulent boundary layer on rough surface

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Jonáš, Pavel; Hladík, Ondřej

    2011-01-01

    Roč. 11, č. 1 (2011), s. 603-604 ISSN 1617-7061 R&D Projects: GA ČR GA101/08/1112; GA ČR GAP101/10/1230 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulent boundary layer * rough wall * hairpin vortex Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201110291/abstract

  4. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    Science.gov (United States)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2018-03-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  5. Spatial variations in food web structures with alternative stable states: evidence from stable isotope analysis in a large eutrophic lake

    Science.gov (United States)

    Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo

    2017-05-01

    Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.

  6. Transducer placement for robustness to variations in boundary conditions for active structural acoustic control

    Science.gov (United States)

    Sprofera, Joseph D.; Clark, Robert L.; Cabell, Randolph H.; Gibbs, Gary P.

    2005-05-01

    Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.

  7. An energy-stable method for solving the incompressible Navier-Stokes equations with non-slip boundary condition

    Science.gov (United States)

    Lee, Byungjoon; Min, Chohong

    2018-05-01

    We introduce a stable method for solving the incompressible Navier-Stokes equations with variable density and viscosity. Our method is stable in the sense that it does not increase the total energy of dynamics that is the sum of kinetic energy and potential energy. Instead of velocity, a new state variable is taken so that the kinetic energy is formulated by the L2 norm of the new variable. Navier-Stokes equations are rephrased with respect to the new variable, and a stable time discretization for the rephrased equations is presented. Taking into consideration the incompressibility in the Marker-And-Cell (MAC) grid, we present a modified Lax-Friedrich method that is L2 stable. Utilizing the discrete integration-by-parts in MAC grid and the modified Lax-Friedrich method, the time discretization is fully discretized. An explicit CFL condition for the stability of the full discretization is given and mathematically proved.

  8. Experiments in a boundary layer subjected to free stream turbulence. Part 1: Boundary layer structure and receptivity

    International Nuclear Information System (INIS)

    Westin, K.J.A.; Boiko, A.V.; Klingmann, B.G.B.; Kozlov, V.V.; Alfredsson, P.H.

    1993-12-01

    The modification of the mean and fluctuating characteristics of a flat plate boundary layer subjected to nearly isotropic free stream turbulence (FST) is studied experimentally using hot-wire anemometry. The study is focussed on the region upstream of the transition onset, where the fluctuations inside the boundary layer are dominated by elongated flow structures which grow downstream both in amplitude and length. Their downstream development and scaling is investigated, and the results are compared to those obtained by previous authors. This allows some conclusions about the parameters which are relevant for the modelling of the transition process. The mechanisms underlying the transition process and the relative importance of the Tollmien-Schlichting wave instability in this flow are treated in an accompanying paper. 25 refs

  9. The structure of Karman vortex streets in the atmospheric boundary layer derived from large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Rieke; Raasch, Siegfried; Etling, Dieter [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    2012-06-15

    Karman vortex streets generated in the wake of an idealized island are studied using large eddy simulation (LES). Simulations were carried out under conditions of a dry convective boundary layer, capped by an inversion below the island top. These conditions are more realistic compared to previous studies in which mesoscale models with a uniform stable stratification were used. Several properties of the vortex streets like the shedding period of the vortices and the distances between cyclonic and anti-cyclonic vortices were determined for various values of Froude number and surface heat flux. The main focus of the study was to identify the azimuthally averaged structure of fully developed single vortices, which is presented here for the first time. For this purpose a tracking mechanism was developed which allows to detect and to follow vortices automatically. Because the capping inversion is located below the obstacle top, the vortices extend throughout the whole depth of the mixed layer and their features are almost constant with height. They have a nearly upright vertical axis with a warm core, which is feeded by a convergent near-surface inflow of warm air. The vortex core is dominated by a continuous updraft in the order of 10 cm s{sup -1}, which is associated with a divergent outflow of air at the vortex' top. This flow divergence creates an additional increase in temperature due to a locally sinking inversion, which is probably responsible for the cloud-free eye of many observed vortices. An increase in the surface heat flux is causing a faster decay of the vortices due to stronger boundary layer turbulence. Other vortex features derived from the simulations are very similar to those from previous studies. (orig.)

  10. Status of LWR primary pressure boundary structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se Hwan; Hong, Jun Hwa; Byun, Taek Sang; Kang, Sung Sik; Ryu, Woo Seog; Lee, Bong Sang; Kook, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    The integrity of major systems, structures and components is a prerequisite to the economy and safety of an existing light water reactor and also for the next generation reactors. As few reactor structural materials are being manufactured by domestic companies, based on economic and safety reasons, a new demand to improve the quality of domestic reactor structural materials and to develop reactor structural steels has arisen. Investigations on the state-of-the-art of the materials specifications, performance and current state of structural materials development were performed as a first step to domestic reactor structural steel development and summarized the result in the present report. (Author) 10 refs., 10 figs., 21 tabs.

  11. Boundary layer structure over areas of heterogeneous heat fluxes

    International Nuclear Information System (INIS)

    Doran, J.C.; Barnes, F.J.; Coulter, R.L.; Crawford, T.L.

    1993-01-01

    In general circulation models (GCMs), some properties of a grid element are necessarily considered homogeneous. That is, for each grid volume there is associated a particular combination of boundary layer depth, vertical profiles of wind and temperature, surface fluxes of sensible and latent heat, etc. In reality, all of these quantities may exhibit significant spatial variations the grid area, and the larger the area the greater the likely variations. In balancing the benefits of higher resolution against increased computational time and expense, it is useful to consider what the consequences of such subgrid-scale variability may be. Moreover, in interpreting the results of a simulation, one must be able to define an appropriate average value over a grid. There are two aspects of this latter problem: (1) in observations, how does one take a set of discrete or volume-averaged measurements and relate these to properties of the entire domain, and (2) in computations, how can subgrid-scale features be accounted for in the model parameterizations? To address these and related issues, two field campaigns were carried out near Boardman, Oregon, in June 1991 and 1992. These campaigns were designed to measure the surface fluxes of latent and sensible heat over adjacent areas with strongly contrasting surface types and to measure the response of the boundary layer to those fluxes. This paper discusses some initial findings from those campaigns

  12. Application of a Novel Laser-Doppler Velocimeter for Turbulence: Structural Measurements in Turbulent Boundary Layers

    National Research Council Canada - National Science Library

    Lowe, Kevin T; Simpson, Roger L

    2006-01-01

    An advanced laser-Doppler velocimeter (LDV), deemed the 'comprehensive LDV', is designed to acquire fully-resolved turbulence structural measurements in high Reynolds number two- and three-dimensional turbulent boundary layers...

  13. Wall-attached structures of streamwise velocity fluctuations in turbulent boundary layer

    Science.gov (United States)

    Hwang, Jinyul; Sung, Hyung Jin

    2017-11-01

    The wall-attached structures of streamwise velocity fluctuations (u) are explored using direct numerical simulation data of turbulent boundary layer at Reτ = 1000 . We identify the structures of u, which are extended close to the wall. Their height (ly) ranges from the near-wall region to the edge of turbulent boundary layer. They are geometrically self-similar in a sense that the length and width of the structures are proportional to the distance from the wall. The population density of the attached structures shows that the tall attached structures (290 wall. The wall-attached structures of u identified in the present work are a proper candidate for Townsend's attached eddy hypothesis and these structures exist in the low Reynolds number turbulent boundary layer. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP) and supported by the Supercomputing Center (KISTI).

  14. Vibration modeling of structural fuzzy with continuous boundary

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2008-01-01

    a multitude of different sprung masses each strongly resisting any motion of the main structure (master) at their base antiresonance. The “theory of structural fuzzy” is intended for modeling such high damping. In the present article the theory of fuzzy structures is briefly outlined and a method of modeling...

  15. Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA.

    Science.gov (United States)

    McPherson, G R; Boutton, T W; Midwood, A J

    1993-02-01

    In southeastern Arizona, Prosopis juliflora (Swartz) DC. and Quercus emoryi Torr. are the dominant woody species at grassland/woodland boundaries. The stability of the grassland/woodland boundary in this region has been questioned, although there is no direct evidence to confirm that woodland is encroaching into grassland or vice versa. We used stable carbon isotope analysis of soil organic matter to investigate the direction and magnitude of vegetation change along this ecotone. δ 13 C values of soil organic matter and roots along the ecotone indicated that both dominant woody species (C 3 ) are recent components of former grasslands (C 4 ), consistent with other reports of recent increases in woody plant abundance in grasslands and savannas throughout the world. Data on root biomass and soil organic matter suggest that this increase in woody plant abundance in grasslands and savannas may increase carbon storage in these ecosystems, with implications for the global carbon cycle.

  16. Boundary values as Hamiltonian variables. II. Graded structures

    International Nuclear Information System (INIS)

    Soloviev, Vladimir O.

    2002-01-01

    It is shown that the new formula for the field theory Poisson brackets arises naturally in the proposed extension of the formal variational calculus incorporating divergences. The linear spaces of local functionals, evolutionary vector fields, functional forms, multi-vectors and differential operators become graded with respect to divergences. The bilinear operations, such as the action of vector fields onto functionals, the commutator of vector fields, the interior product of forms and vectors and the Schouten-Nijenhuis bracket are compatible with the grading. A definition of the adjoint graded operator is proposed and antisymmetric operators are constructed with the help of boundary terms. The fulfilment of the Jacobi identity for the new Poisson brackets is shown to be equivalent to vanishing of the Schouten-Nijenhuis bracket of the Poisson bivector with itself

  17. Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine).

    Science.gov (United States)

    Vystavna, Yuliya; Diadin, Dmytro; Huneau, Frédéric

    2018-05-01

    Stable isotopes of hydrogen ( 2 H) and oxygen ( 18 O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.

  18. Structure of a mushy layer at the inner core boundary

    Science.gov (United States)

    Deguen, R.; Huguet, L.; Bergman, M. I.; Labrosse, S.; Alboussiere, T.

    2015-12-01

    We present experimental results on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone, under hyper-gravity. A commercial centrifuge has been equipped with a slip-ring so that electric power, temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. A Peltier element provides cooling at the bottom of the cell. Probes monitor the temperature along the height of the cell. Ultrasound measurements (2 to 6 MHz) is used to detect the position of the front of the mushy zone and to determine attenuation in the mush. A significant increase of solid fraction (or decrease of mushy layer thickness) and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core, which has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity

  19. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    Science.gov (United States)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  20. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    OpenAIRE

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2015-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP....

  1. Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells.

    Science.gov (United States)

    Li, Han; Liang, Chao; Liu, Yingliang; Zhang, Yiqiang; Tong, Jincheng; Zuo, Weiwei; Xu, Shengang; Shao, Guosheng; Cao, Shaokui

    2017-02-22

    Grain boundaries act as rapid pathways for nonradiative carrier recombination, anion migration, and water corrosion, leading to low efficiency and poor stability of organometal halide perovskite solar cells (PSCs). In this work, the strategy suppressing the crystal grain boundaries is applied to improve the photovoltaic performance, especially moisture-resistant stability, with polyvinylammonium carbochain backbone covalently connecting the perovskite crystal grains. This cationic polyelectrolyte additive serves as nucleation sites and template for crystal growth of MAPbI 3 and afterward the immobilized adjacent crystal grains grow into the continuous compact, pinhole-free perovskite layer. As a result, the unsealed PSC devices, which are fabricated under low-temperature fabrication protocol with a proper content of polymer additive PVAm·HI, currently exhibit the maximum efficiency of 16.3%. Remarkably, these unsealed devices follow an "outside-in" corrosion mechanism and respectively retain 92% and 80% of the initial PCE value after being exposed under ambient environment for 50 days and 100 days, indicating the superiority of carbochain polymer additives in solving the long-term stability problem of PSCs.

  2. Influence of relaxation processes on the structure of a thermal boundary layer in partially ionized argon

    International Nuclear Information System (INIS)

    Dongen, M.E.H. van; Eck, R.B. van P. van; Hagebeuk, H.J.L.; Hirschberg, A.; Hutten-Mansfeld, A.C.B.; Jager, H.J.; Willems, J.F.H.

    1981-01-01

    A model for the unsteady thermal boundary-layer development at the end wall of a shock tube, in partially ionized atmospheric argon, is proposed. Consideration is given to ionization and thermal relaxation processes. In order to obtain some insight into the influence of the relaxation processes on the structure of the boundary layer, a study of the frozen and equilibrium limits has been carried out. The transition from a near-equilibrium situation in the outer part of the boundary layer towards a frozen situation near the wall is determined numerically. Experimental data on the electron and atom density profiles obtained from laser schlieren and absorption measurements are presented. A quantitative agreement between theory and experiment is found for a moderate degree of ionization (3%). At a higher degree of ionization the structure of the boundary layer is dominated by the influence of radiation cooling, which has been neglected in the model. (author)

  3. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    Science.gov (United States)

    Kimura, Yusuke

    2018-03-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface into a pair of isomorphic rational elliptic surfaces. When two rational elliptic surfaces have different complex structures, whether their sum glued along a smooth fiber admits deformation to a K3 surface can be determined by studying the structure of the K3 lattice. We investigate the lattice theoretic condition to determine whether a deformation to a K3 surface exists for pairs of extremal rational elliptic surfaces. In addition, we discuss the configurations of singular fibers under stable degeneration. The sum of two isomorphic rational elliptic surfaces glued together admits a deformation to a K3 surface, the singular fibers of which are twice that of the rational elliptic surface. For special situations, singular fibers of the resulting K3 surface collide and they are enhanced to a fiber of another type. Some K3 surfaces become attractive in these situations. We determine the complex structures and the Weierstrass forms of these attractive K3 surfaces. We also deduce the gauge groups in F-theory compactifications on these attractive K3 surfaces times a K3. E 6, E 7, E 8, SU(5), and SO(10) gauge groups arise in these compactifications.

  4. Interaction Between Aerothermally Compliant Structures and Boundary-Layer Transition in Hypersonic Flow

    Science.gov (United States)

    Riley, Zachary Bryce

    The use of thin-gauge, light-weight structures in combination with the severe aero-thermodynamic loading makes reusable hypersonic cruise vehicles prone to fluid-thermal-structural interactions. These interactions result in surface perturbations in the form of temperature changes and deformations that alter the stability and eventual transition of the boundary layer. The state of the boundary layer has a significant effect on the aerothermodynamic loads acting on a hypersonic vehicle. The inherent relationship between boundary-layer stability, aerothermodynamic loading, and surface conditions make the interaction between the structural response and boundary-layer transition an important area of study in high-speed flows. The goal of this dissertation is to examine the interaction between boundary layer transition and the response of aerothermally compliant structures. This is carried out by first examining the uncoupled problems of: (1) structural deformation and temperature changes altering boundary-layer stability and (2) the boundary layer state affecting structural response. For the former, the stability of boundary layers developing over geometries that typify the response of surface panels subject to combined aerodynamic and thermal loading is numerically assessed using linear stability theory and the linear parabolized stability equations. Numerous parameters are examined including: deformation direction, deformation location, multiple deformations in series, structural boundary condition, surface temperature, the combined effect of Mach number and altitude, and deformation mode shape. The deformation-induced pressure gradient alters the boundary-layer thickness, which changes the frequency of the most-unstable disturbance. In regions of small boundary-layer growth, the disturbance frequency modulation resulting from a single or multiple panels deformed into the flowfield is found to improve boundary-layer stability and potentially delay transition. For the

  5. Coherent structures in the boundary plasma of EAST Tokamak

    DEFF Research Database (Denmark)

    Yan, Ning

    In recent years, with the application of fast camera in fusion plasma, as well as other diagnostic of spatial-temporal resolution such as Langmuir probe, it has become generally clear that the turbulence transport is mostly dominant by cross-field propagation of coherent structures, namely blobs...... or filaments in low-confinement mode (L-mode). Analogously, the fine structures associated with the edge-localized modes (ELMs), i.e., ELM filaments, have been shown to be the main carriers of the transport in the high-confinement mode (H-mode). The filaments carry particles and heat, impinging upon the plasma......-facing material, leading to intensive transient heat load and particle load on the local areas of both the divertor target plates and the first wall, which damages the material and causes enhanced recycling and impurity generation, then further pollutes the core plasma. In this project, we carried out experiment...

  6. An Immersed Boundary Method for Solving the Compressible Navier-Stokes Equations with Fluid Structure Interaction

    Science.gov (United States)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    An immersed boundary method for the compressible Navier-Stokes equation and the additional infrastructure that is needed to solve moving boundary problems and fully coupled fluid-structure interaction is described. All the methods described in this paper were implemented in NASA's LAVA solver framework. The underlying immersed boundary method is based on the locally stabilized immersed boundary method that was previously introduced by the authors. In the present paper this method is extended to account for all aspects that are involved for fluid structure interaction simulations, such as fast geometry queries and stencil computations, the treatment of freshly cleared cells, and the coupling of the computational fluid dynamics solver with a linear structural finite element method. The current approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems in 2D and 3D. As part of the validation procedure, results from the second AIAA aeroelastic prediction workshop are also presented. The current paper is regarded as a proof of concept study, while more advanced methods for fluid structure interaction are currently being investigated, such as geometric and material nonlinearities, and advanced coupling approaches.

  7. Buckling of Monopod Bucket Foundations – Influence of Boundary Conditions and Soil-structure Interaction

    DEFF Research Database (Denmark)

    Madsen, Søren; Pinna, Rodney; Randolph, M. F.

    2015-01-01

    of large-diameter bucket foundations. Since shell structures are generally sensitive to initially imperfect geometries, eigenmode-affine imperfections are introduced in a nonlinear finite-element analysis. The influence of modelling the real lid structure compared to classic boundary conditions...

  8. Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby

    Science.gov (United States)

    Gonzalez, Franklin N.; Neugroschel, Arnost

    1984-02-14

    A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.

  9. Numerical study of the effects of Planetary Boundary Layer structure on the pollutant dispersion within built-up areas.

    Science.gov (United States)

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Liu, Zhenxin; Zhang, Bihui

    2015-06-01

    The effects of different Planetary Boundary Layer (PBL) structures on pollutant dispersion processes within two idealized street canyon configurations and a realistic urban area were numerically examined by a Computational Fluid Dynamics (CFD) model. The boundary conditions of different PBL structures/conditions were provided by simulations of the Weather Researching and Forecasting model. The simulated results of the idealized 2D and 3D street canyon experiments showed that the increment of PBL instability favored the downward transport of momentum from the upper flow above the roof to the pedestrian level within the street canyon. As a result, the flow and turbulent fields within the street canyon under the more unstable PBL condition are stronger. Therefore, more pollutants within the street canyon would be removed by the stronger advection and turbulent diffusion processes under the unstable PBL condition. On the contrary, more pollutants would be concentrated in the street canyon under the stable PBL condition. In addition, the simulations of the realistic building cluster experiments showed that the density of buildings was a crucial factor determining the dynamic effects of the PBL structure on the flow patterns. The momentum field within a denser building configuration was mostly transported from the upper flow, and was more sensitive to the PBL structures than that of the sparser building configuration. Finally, it was recommended to use the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme, which can explicitly output the needed turbulent variables, to provide the boundary conditions to the CFD simulation. Copyright © 2015. Published by Elsevier B.V.

  10. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    Science.gov (United States)

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  11. Shear response of grain boundaries with metastable structures by molecular dynamics simulations

    Science.gov (United States)

    Zhang, Liang; Lu, Cheng; Shibuta, Yasushi

    2018-04-01

    Grain boundaries (GBs) can play a role as the favored locations to annihilate point defects, such as interstitial atoms and vacancies. It is thus highly probable that different boundary structures can be simultaneously present in equilibrium with each other in the same GB, and thus the GB achieves a metastable state. However, the structural transition and deformation mechanism of such GBs are currently not well understood. In this work, molecular dynamics simulations were carried out to study the multiple structures of a Σ5(310)/[001] GB in bicrystal Al and to investigate the effect of structural multiplicity on the mechanical and kinetic properties of such a GB. Different GB structures were obtained by changing the starting atomic configuration of the bicrystal model, and the GB structures had significantly different atomic density. For the Σ5(310) GB with metastable structures, GB sliding was the dominant mechanism at a low temperature (T = 10 K) under shear stress. The sliding mechanism resulted from the uncoordinated transformation of the inhomogeneous structural units. The nucleation of voids was observed during GB sliding at the low temperature, and the voids subsequently evolved to a nanocrack at the boundary plane. Increasing the temperature can induce the structural transition of local GB structures and can change their overall kinetic properties. GB migration with occasional GB sliding dominated the deformation mechanism at elevated temperatures (T = 300 and 600 K), and the migration process of the metastable GB structures is closely related to the thermally assisted diffusion mechanism.

  12. Grain boundaries of nanocrystalline materials - their widths, compositions, and internal structures

    International Nuclear Information System (INIS)

    Fultz, B.; Frase, H.N.

    2000-01-01

    Nanocrystalline materials contain many atoms at and near grain boundaries. Sufficient numbers of Moessbauer probe atoms can be situated in grain boundary environments to make a clear contribution to the measured Moessbauer spectrum. Three types of measurements on nanocrystalline materials are reported here, all using Moessbauer spectrometry in conjunction with X-ray diffractometry, transmission electron microscopy, or small angle neutron scattering. By measuring the fraction of atoms contributing to the grain boundary component in a Moessbauer spectrum, and by knowing the grain size of the material, it is possible to deduce the average width of grain boundaries in metallic alloys. It is found that these widths are approximately 0.5 nm for fcc alloys and slightly larger than 1.0 nm for bcc alloys.Chemical segregation to grain boundaries can be measured by Moessbauer spectrometry, especially in conjunction with small angle neutron scattering. Such measurements on Fe-Cu and Fe 3 Si-Nb were used to study how nanocrystalline materials could be stabilized against grain growth by the segregation of Cu and Nb to grain boundaries. The segregation of Cu to grain boundaries did not stabilize the Fe-Cu alloys against grain growth, since the grain boundaries were found to widen and accept more Cu atoms during annealing. The Nb additions to Fe 3 Si did suppress grain growth, perhaps because of the low mobility of Nb atoms, but also perhaps because Nb atoms altered the chemical ordering in the alloy.The internal structure of grain boundaries in nanocrystalline materials prepared by high-energy ball milling is found to be unstable against internal relaxations at low temperatures. The Moessbauer spectra of the nanocrystalline samples showed changes in the hyperfine fields attributable to movements of grain boundary atoms. In conjunction with SANS measurements, the changes in grain boundary structure induced by cryogenic exposure and annealing at low temperature were found to be

  13. Charged particle reflection by a planar artificially structured boundary with electrostatic plugging

    Directory of Open Access Journals (Sweden)

    R. M. Hedlof

    2017-11-01

    Full Text Available A classical trajectory Monte Carlo simulation is used to investigate an artificially structured boundary for confinement and control of charged particles. The artificially structured boundary considered here incorporates a planar sequence of conducting wires, where adjacent wires carry current in opposite directions. Such a configuration creates a sequence of magnetic cusps and was studied previously [C. A. Ordonez, J. Appl. Phys. 106, 024905 (2009]. The effect of introducing a sequence of electrodes for electrostatic plugging of the cusps is investigated. The results of the simulations are used to identify regions of parameter space in which particle losses through the cusps may be negligible in the single particle limit. A trap based on a cylindrical generalization of the artificially structured boundary presented here may lead to a method for confining non-neutral and partially neutralized plasmas along the edge, such that the bulk of a confined plasma is effectively free of externally applied electromagnetic fields.

  14. Structure and motion of junctions between coherent and incoherent twin boundaries in copper

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.A. [Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 (United States); Ghoniem, N.M., E-mail: ghoniem@ucla.edu [Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 (United States)

    2009-09-15

    The atomic mechanisms of twin boundary migration in copper under externally applied mechanical loads and during thermal annealing are investigated utilizing molecular dynamics computer simulations. The migration dynamics of the incoherent {Sigma}=3[110](112) twin boundary (ITB), pinned between two {Sigma}=3[110](111) twin boundaries, is determined. A three-dimensional structural model is described for the junction between intersecting coherent and incoherent twin boundaries, and migration velocities are calculated under thermal annealing conditions. It is shown that the coherent twin boundary (CTB)/ITB junction results in breaking the crystal symmetry by creation of either an edge dislocation or a mixed (edge/screw) at the intersection. These two types of defects can lead to pronounced differences in the observed migration (and hence annealing) rates of ICT/CTB junctions. The annealing rate resulting from the migration of ITBs with a mixed dislocation is found to be more than twice that of the edge dislocation. The mechanism of ITB motion is shown to be governed by successive kink-like motion of neighboring atomic columns, each of which is shifted by 1/4[1 1 0], followed by structural relaxation to accommodate boundary motion.

  15. Structure and motion of junctions between coherent and incoherent twin boundaries in copper

    International Nuclear Information System (INIS)

    Brown, J.A.; Ghoniem, N.M.

    2009-01-01

    The atomic mechanisms of twin boundary migration in copper under externally applied mechanical loads and during thermal annealing are investigated utilizing molecular dynamics computer simulations. The migration dynamics of the incoherent Σ=3[110](112) twin boundary (ITB), pinned between two Σ=3[110](111) twin boundaries, is determined. A three-dimensional structural model is described for the junction between intersecting coherent and incoherent twin boundaries, and migration velocities are calculated under thermal annealing conditions. It is shown that the coherent twin boundary (CTB)/ITB junction results in breaking the crystal symmetry by creation of either an edge dislocation or a mixed (edge/screw) at the intersection. These two types of defects can lead to pronounced differences in the observed migration (and hence annealing) rates of ICT/CTB junctions. The annealing rate resulting from the migration of ITBs with a mixed dislocation is found to be more than twice that of the edge dislocation. The mechanism of ITB motion is shown to be governed by successive kink-like motion of neighboring atomic columns, each of which is shifted by 1/4[1 1 0], followed by structural relaxation to accommodate boundary motion.

  16. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    International Nuclear Information System (INIS)

    Herrmann-Priesnitz, Benjamín; Torres, Diego A.; Calderón-Muñoz, Williams R.; Salas, Eduardo A.; Vargas-Uscategui, Alejandro; Duarte-Mermoud, Manuel A.

    2016-01-01

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U_o. Results show that boundary layers merge for Re > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U_o. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  17. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Calderón-Muñoz, Williams R. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Energy Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Salas, Eduardo A. [CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Vargas-Uscategui, Alejandro [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Duarte-Mermoud, Manuel A. [Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Department of Electrical Engineering, Universidad de Chile, Av. Tupper 2007, Santiago (Chile)

    2016-03-15

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  18. Structure and transport at grain boundaries in polycrystalline olivine: An atomic-scale perspective

    Science.gov (United States)

    Mantisi, Boris; Sator, Nicolas; Guillot, Bertrand

    2017-12-01

    Structure and transport properties at grain boundaries in polycrystalline olivine have been investigated at the atomic scale by molecular dynamics simulation (MD) using an empirical ionocovalent interaction potential. On the time scale of the simulation (a few tens of nanoseconds for a system size of ∼650,000 atoms) grain boundaries and grain interior were identified by mapping the atomic displacements along the simulation run. In the investigated temperature range (1300-1700 K) the mean thickness of the grain boundary phase is evaluated between 0.5 and 2 nm, a value which depends on temperature and grain size. The structure of the grain boundary phase is found to be disordered (amorphous-like) and is different from the one exhibited by the supercooled liquid. The self-diffusion coefficients of major elements in the intergranular region range from ∼10-13 to 10-10 m2/s between 1300 and 1700 K (with DSigb Kubo relation expressing the viscosity as function of the stress tensor time correlation function. In spite of a slow convergence of the calculation by MD, the grain boundary viscosity was estimated about ∼105 Pa s at 1500 K, a value in agreement with high-temperature viscoelastic relaxation data. An interesting information gained from MD is that sliding at grain boundaries is essentially controlled by the internal friction between the intergranular phase and the grain edges.

  19. Cs/CsPbX3 (X = Br, Cl) epitaxial heteronanocrystals with magic-angle stable/metastable grain boundary

    Science.gov (United States)

    Zhang, Yumeng; Fan, Baolu; Wu, Wenhui; Fan, Jiyang

    2017-05-01

    Metal-semiconductor heteronanostructures are crucial building blocks of nanoscale electronic and optoelectronic devices. However, the lattice misfit remains a challenge in constructing heteronanostructures. Perovskite nanocrystals are superior candidates for constructing nanodevices owing to excellent optical, ferroelectric, and superconducting properties. We report the epitaxial growth of lattice-matched Cs/CsPbBr3 metal-semiconductor heteronanocrystals in a liquid medium. The well-crystallized ultrathin Cs layers grow epitaxially on the surfaces of colloidal CsPbBr3 nanocrystals, forming heteronanocrystals with interface diameters of several nanometers. Most of them are pseudomorphic with coherent interfaces free from dislocations, and the others exhibit discrete high-angle grain boundaries. The model based on the calculation of the elastic potential energy of the epilayer and analysis of the near-coincidence sites explains well the experimental result. The analysis shows that the excellent lattice match between the metal and the semiconductor ensures the ideal epitaxial-growth of both Cs/CsPbBr3 and Cs/CsPbCl3 heteronanocrystals. Such metal/semiconductor heteronanocrystals pave the way for developing perovskite-based nanodevices.

  20. Nanocomposites with thermosetting matrix: structure formation at the interphase boundary

    Directory of Open Access Journals (Sweden)

    KOROLEV Evgenij Valerjevich

    2014-06-01

    Full Text Available Composites with thermosetting matrix are often characterized by elevated values of operational properties – flexural and compressive strength, resistance to aggressive environments, etc. At the same time the cost of most thermosets (particularly – epoxy resins is quite high. Because of this the area of application of polymer composites in construction is limited. One of such application is the creation of multifunctional coatings. The high cost of resin dictates the need to improve the operational properties to ensure economic efficiency. So far, the known way to improve the operational properties is to produce nanoscale interfacial layer between fine filler and matrix in block. This way proved to be effective, but mechanism of the improvement is still uncertain. There areat least two different theories – so-called «adhesion theory» and «theory of deformable layer». The investigation is complicated by the variety of oligomers, hardeners (crosslinking agents and precursors of nanomodifiers. It is becoming more common lately to use adducts of aliphatic amines and epoxy oligomers as hardeners. As precursors of nanomodifiers the organosilicon compounds with siloxane bond in the main chain can be successfully used. In this paper we present results of investigation of a model system comprised of oligomer, crosslinking agent and precursor. The analysis of structure is carried out by means of Raman spectroscopy and atomic force microscopy. It is shown that at gelation point modifier has no significant effect on the chemical composition of the curing products; nevertheless, the admixture of modifier reduces the regularity of the emerging three-dimensional spatial net of thermoset. After completion of curing process the irregular spatial grid is still present. This indicates that in composites admixture of organosilicon precursors may lead to the formation of transition layer with reduced modulus of elasticity. Such layer, in turn, causes stress

  1. Embodied memory: effective and stable perception by combining optic flow and image structure.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P

    2013-12-01

    Visual perception studies typically focus either on optic flow structure or image structure, but not on the combination and interaction of these two sources of information. Each offers unique strengths in contrast to the other's weaknesses. Optic flow yields intrinsically powerful information about 3D structure, but is ephemeral. It ceases when motion stops. Image structure is less powerful in specifying 3D structure, but is stable. It remains when motion stops. Optic flow and image structure are intrinsically related in vision because the optic flow carries one image to the next. This relation is especially important in the context of progressive occlusion, in which optic flow provides information about the location of targets hidden in subsequent image structure. In four experiments, we investigated the role of image structure in "embodied memory" in contrast to memory that is only in the head. We found that either optic flow (Experiment 1) or image structure (Experiment 2) alone were relatively ineffective, whereas the combination was effective and, in contrast to conditions requiring reliance on memory-in-the-head, much more stable over extended time (Experiments 2 through 4). Limits well documented for visual short memory (that is, memory-in-the-head) were strongly exceeded by embodied memory. The findings support J. J. Gibson's (1979/1986, The Ecological Approach to Visual Perception, Boston, MA, Houghton Mifflin) insights about progressive occlusion and the embodied nature of perception and memory.

  2. Characteristics of Boundary Layer Structure during a Persistent Haze Event in the Central Liaoning City Cluster, Northeast China

    Science.gov (United States)

    Li, Xiaolan; Wang, Yangfeng; Shen, Lidu; Zhang, Hongsheng; Zhao, Hujia; Zhang, Yunhai; Ma, Yanjun

    2018-04-01

    The characteristics of boundary layer structure during a persistent regional haze event over the central Liaoning city cluster of Northeast China from 16 to 21 December 2016 were investigated based on the measurements of particulate matter (PM) concentration and the meteorological data within the atmospheric boundary layer (ABL). During the observational period, the maximum hourly mean PM2.5 and PM10 concentrations in Shenyang, Anshan, Fushun, and Benxi ranged from 276 to 355 μg m-3 and from 378 to 442 μg m-3, respectively, and the lowest hourly mean atmospheric visibility (VIS) in different cities ranged from 0.14 to 0.64 km. The central Liaoning city cluster was located in the front of a slowly moving high pressure and was mainly controlled by southerly winds. Wind speed (WS) within the ABL (pollutants. A potential temperature inversion layer existed throughout the entire ABL during the earlier hazy episode [from 0500 Local Time (LT) 18 December to 1100 LT 19 December], and then a potential temperature inversion layer developed with the bottom gradually decreased from 900 m to 300 m. Such a stable atmospheric stratification further weakened pollutant dispersion. The atmospheric boundary layer height (ABLH) estimated based on potential temperature profiles was mostly lower than 400 m and varied oppositely with PM2.5 in Shenyang. In summary, weak winds due to calm synoptic conditions, strong thermal inversion layer, and shallow atmospheric boundary layer contributed to the formation and development of this haze event. The backward trajectory analysis revealed the sources of air masses and explained the different characteristics of the haze episodes in the four cities.

  3. Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kiran Bhaganagar

    2014-09-01

    Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.

  4. Structural evolution of a deformed Σ=9 (122) grain boundary in silicon. A high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Putaux, Jean-Luc

    1991-01-01

    This research thesis addresses the study by high resolution electron microscopy of the evolution of a silicon bi-crystal under deformation at different temperatures. The author notably studied the structural evolution of the boundary as well as that of grains at the vicinity of the boundary. Two observation scales have been used: the evolution of sub-structures of dislocations induced by deformation in grains and in boundary, and the structure of all defects at an atomic scale. After a presentation of experimental tools (the necessary perfect quality of the electronic optics is outlined), the author recalls some descriptive aspects of grain boundaries (geometric network concepts to describe coinciding networks, concepts of delimiting boundaries and of structural unit to describe grain boundary atomic structure), recalls the characteristics of the studied bi-crystal, and the conditions under which it is deformed. He presents the structures of all perfectly coinciding boundaries, describes defects obtained by deformation at the vicinity of the boundary, describes the entry of dissociated dislocations into the boundaries, and discusses the characterization of boundary dislocations (the notion of Burgers vector is put into question again), and the atomic mechanism of displacement of dislocations in boundaries [fr

  5. LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs

    DEFF Research Database (Denmark)

    Will, Sebastian; Joshi, Tejal; Hofacker, Ivo L.

    2012-01-01

    Current genomic screens for noncoding RNAs (ncRNAs) predict a large number of genomic regions containing potential structural ncRNAs. The analysis of these data requires highly accurate prediction of ncRNA boundaries and discrimination of promising candidate ncRNAs from weak predictions. Existing...... methods struggle with these goals because they rely on sequence-based multiple sequence alignments, which regularly misalign RNA structure and therefore do not support identification of structural similarities. To overcome this limitation, we compute columnwise and global reliabilities of alignments based...... on sequence and structure similarity; we refer to these structure-based alignment reliabilities as STARs. The columnwise STARs of alignments, or STAR profiles, provide a versatile tool for the manual and automatic analysis of ncRNAs. In particular, we improve the boundary prediction of the widely used nc...

  6. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  7. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  8. Multiscale Modeling of Grain Boundaries in ZrB2: Structure, Energetics, and Thermal Resistance

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W., Jr.

    2012-01-01

    A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.

  9. Unconditionally stable methods for simulating multi-component two-phase interface models with Peng-Robinson equation of state and various boundary conditions

    KAUST Repository

    Kou, Jisheng

    2015-03-01

    In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.

  10. Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene

    KAUST Repository

    Shi, Xueliang

    2015-10-08

    Quinoidal thia-acene analogues, as the respective isoelectronic structures of pentacene and nonacene, were synthesized and an unusual 1,2-sulfur migration was observed during the Friedel-Crafts alkylation reaction. The analogues display a closed-shell quinoidal structure in the ground state with a distinctive dipolar character. In contrast to their acene isoelectronic structures, both compounds are stable because of the existence of more aromatic sextet rings, a dipolar character, and kinetic blocking. They exhibit unique packing in single crystals resulting from balanced dipole-dipole and [C-H⋯π]/[C-H⋯S] interactions.

  11. A simulation study of the vortex structure in the low-latitude boundary layer

    International Nuclear Information System (INIS)

    Wei, C.Q.; Lee, L.C.; La Belle-Hamer, A.L.

    1990-01-01

    Satellite observations indicate that the plasma density and the flow velocity are highly variable in the low-latitude boundary layer. The thickness of the boundary layer is also highly variable and appears to increase with increasing longitudinal distance from the subsolar point. In this paper plasma dynamics in the low-latitude boundary layer region is studied on the basis of a two-dimensional incompressible bydrodynamic numerical model. In the simulation, plasma is driven into the boundary layer region by imposing a diffusion flux along the magnetopause. The vortex motions associated with the Kelvin-Helmholtz instability are observed in the simulation. The resulting vortex structures in the plasma density and the flow velocity may coalesce as they are convected tailward, causing them to grow in size. The boundary layer thickness increases with increasing longitudinal distance from the subsolar point in accord with satellite observations. The plasma density and the flow velocity are positively correlated. A mixing region is formed where magnetosheath plasma and magnetospheric plasma mix due to the vortex motions. In the later stage of development, a density plateau is formed in the central part of the boundary layer. Many features of the satellite observations of the boundary layer can be explained using the numerical model. The simulation results also predict that the vortices generated in the postnoon (prenoon) boundary layer lead to the presence of localized upward (downward) field-aligned currents in both the northern and the southern polar ionospheres. The upward field-aligned currents in turn may lead to the formation of dayside auroral patches observed in the postnoon region

  12. Simple vibration modeling of structural fuzzy with continuous boundary by including two-dimensional spatial memory

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2008-01-01

    Many complicated systems of practical interest consist basically of a well-defined outer shell-like master structure and a complicated internal structure with uncertain dynamic properties. Using the "fuzzy structure theory" for predicting audible frequency vibration, the internal structure......-dimensional continuous boundary. Additionally, a simple method for determining the so-called equivalent coupling factor is presented. The validity of this method is demonstrated by numerical simulations of the vibration response of a master plate structure with fuzzy attachments. It is revealed that the method performs...

  13. Numerical study of the atomic and electronic structure of some silicon grain boundaries

    International Nuclear Information System (INIS)

    Torrent, M.

    1996-01-01

    This work contributes to the theoretical study of extended defects in covalent materials. The study is especially devoted to the tilt grain boundaries in silicon as a model material. The theoretical model is based on the self-consistent tight-binding approximation and is applied within two numerical techniques: the fast 'order N' density-matrix method and the diagonalization technique which allows the sampling of the reciprocal space. Total energy parameters of the model have been fitted in order to reproduce the silicon band structure (with a correct gap value) and the transferability of crystalline and mechanical properties of this material. A new type of boundary conditions is proposed and tested. These conditions, named 'ante-periodic' or 'Moebius', allow only one grain boundary per box instead of two and decrease the CPU time by a factor of two. The model is then applied to the study of the Σ=25 [001] (710) grain boundary. The results show the possible presence in this boundary of low energy non-reconstructed atomic structures which are electrically active. This confirms what had been suggested by some experimental observations. The same study is also performed for the Σ=13 [001] (510) grain boundary. In order to compare the intrinsic electrical activity in the previous grain boundaries with the one induced by impurities, a total energy parametrization for the silicon-nickel bond is achieved and used in preliminary calculations. Finally the two variants of the Σ=11 [011] (2-33) interface are studied, especially their respective interfacial energies. The result disagrees with previous calculations using phenomenological potentials. (author)

  14. Vertical structure of the boundary layer. a comparison between land and sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sadhuram, Y.

    The structure and the energetics of the boundary layer have been studied simultaneously over land and sea off Goa Coast just before the onset of south west monsoon. The Radiosonde data obtained at 00 GMT (0530 IST) are used in the present...

  15. Automatic kinetic Monte-Carlo modeling for impurity atom diffusion in grain boundary structure of tungsten material

    Directory of Open Access Journals (Sweden)

    Atsushi M. Ito

    2017-08-01

    Full Text Available The diffusion process of hydrogen and helium in plasma-facing material depends on the grain boundary structures. Whether a grain boundary accelerates or limits the diffusion speed of these impurity atoms is not well understood. In the present work, we proposed the automatic modeling of a kinetic Monte-Carlo (KMC simulation to treat an asymmetric grain boundary structure that corresponds to target samples used in fusion material experiments for retention and permeation. In this method, local minimum energy sites and migration paths for impurity atoms in the grain boundary structure are automatically found using localized molecular dynamics. The grain boundary structure was generated with the Voronoi diagram. Consequently, we demonstrate that the KMC simulation for the diffusion process of impurity atoms in the generated grain boundary structure of tungsten material can be performed.

  16. The boundary structure in the analysis of reversibly interacting systems by sedimentation velocity.

    Science.gov (United States)

    Zhao, Huaying; Balbo, Andrea; Brown, Patrick H; Schuck, Peter

    2011-05-01

    Sedimentation velocity (SV) experiments of heterogeneous interacting systems exhibit characteristic boundary structures that can usually be very easily recognized and quantified. For slowly interacting systems, the boundaries represent concentrations of macromolecular species sedimenting at different rates, and they can be interpreted directly with population models based solely on the mass action law. For fast reactions, migration and chemical reactions are coupled, and different, but equally easily discernable boundary structures appear. However, these features have not been commonly utilized for data analysis, for the lack of an intuitive and computationally simple model. The recently introduced effective particle theory (EPT) provides a suitable framework. Here, we review the motivation and theoretical basis of EPT, and explore practical aspects for its application. We introduce an EPT-based design tool for SV experiments of heterogeneous interactions in the software SEDPHAT. As a practical tool for the first step of data analysis, we describe how the boundary resolution of the sedimentation coefficient distribution c(s) can be further improved with a Bayesian adjustment of maximum entropy regularization to the case of heterogeneous interactions between molecules that have been previously studied separately. This can facilitate extracting the characteristic boundary features by integration of c(s). In a second step, these are assembled into isotherms as a function of total loading concentrations and fitted with EPT. Methods for addressing concentration errors in isotherms are discussed. Finally, in an experimental model system of alpha-chymotrypsin interacting with soybean trypsin inhibitor, we show that EPT provides an excellent description of the experimental sedimentation boundary structure of fast interacting systems. Published by Elsevier Inc.

  17. Algebraic structures in generalized Clifford analysis and applications to boundary value problems

    Directory of Open Access Journals (Sweden)

    José Játem

    2015-12-01

    Full Text Available The present article has a threefold purpose: First it is a survey of the algebraic structures of generalized Clifford-type algebras and shows the main results of the corresponding Clifford-type analysis and its application to boundary value problems known so far. Second it is aimed to implement algorithms to provide the fast and accurate computation of boundary value problems for inhomogeneous equations in the framework of the generalized Clifford analysis. Finally it is also aimed to encourage the development of a generalized discrete Clifford analysis.

  18. The structure of turbulent jets, vortices and boundary layer: laboratory and field observations

    International Nuclear Information System (INIS)

    Sekula, E.; Redondo, J.M.

    2008-01-01

    The main aim of this work is research, understand and describe key aspects of the turbulent jets and effects connected with them such as boundary layer interactions on the effect of a 2D geometry. Work is based principally on experiments but there are also some comparisons between experimental and field results. A series of experiments have been performed consisting in detailed turbulent measurements of the 3 velocity components to understand the processes of interaction that lead to mixing and mass transport between boundaries and free shear layers. The turbulent wall jet configuration occurs often in environmental and industrial processes, but here we apply the laboratory experiments as a tool to understand jet/boundary interactions in the environment. We compare the structure of SAR (Synthetic Aperture Radar) images of coastal jets and vortices and experimental jets (plumes) images searching for the relationship between these two kinds of jets at very different Reynolds numbers taking advantage of the self-similarity of the processes. In order to investigate the structure of ocean surface detected jets (SAR) and vortices near the coast, we compare wall and boundary effects on the structure of turbulent jets (3D and 2D) which are non-homogeneous, developing multifractal and spectral techniques useful for environmental monitoring in space.

  19. Hexamethylenetetramine-mediated growth of grain-boundary-passivation CH3NH3PbI3 for highly reproducible and stable perovskite solar cells

    Science.gov (United States)

    Zheng, Yan-Zhen; Li, Xi-Tao; Zhao, Er-Fei; Lv, Xin-Ding; Meng, Fan-Li; Peng, Chao; Lai, Xue-Sen; Huang, Meilan; Cao, Guozhong; Tao, Xia; Chen, Jian-Feng

    2018-02-01

    Simultaneously achieving the long-term device stability and reproducibility has proven challenging in perovskite solar cells because solution-processing produced perovskite film with grain boundary is sensitive to moisture. Herein, we develop a hexamethylenetetramine (HMTA)-mediated one-step solution-processing deposition strategy that leads to the formation of high-purity and grain-boundary-passivation CH3NH3PbI3 film and thereby advances cell optoelectronic performance. Through morphological and structural characterizations and theoretical calculations, we demonstrate that HMTA fully occupies the moisture-exposed surface to build a bridge across grain boundary and coordinates with Pb ions to inhibit the formation of detrimental PbI2. Such HMTA-mediated grown CH3NH3PbI3 films achieves a decent augmentation of power conversion efficiency (PCE) from 12.70% to 17.87%. A full coverage of PbI2-free CH3NH3PbI3 surface on ZnO also boosts the device's stability and reproducibility.

  20. Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes

    Science.gov (United States)

    Mengarelli, V.; Auvray, L.; Zeghal, M.

    2009-03-01

    We study the formation and structure of stable electrostatic complexes between oppositely charged polyelectrolytes, a long polymethacrylic acid and a shorter polyethylenimine, at low pH, where the polyacid is weakly charged. We explore the phase diagram as a function of the charge and concentration ratio of the constituents. In agreement with theory, turbidity and ζ potential measurements show two distinct regimes of weak and strong complexation, which appear successively as the pH is increased and are separated by a well-defined limit. Weak complexes observed by neutron scattering and contrast matching have an open, non-compact structure, while strong complexes are condensed.

  1. CATHEDRAL: a fast and effective algorithm to predict folds and domain boundaries from multidomain protein structures.

    Directory of Open Access Journals (Sweden)

    Oliver C Redfern

    2007-11-01

    Full Text Available We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure-based method (using graph theory to locate known folds within a multidomain context and a residue-based, double-dynamic programming algorithm, which is used to align members of the target fold groups against the query protein structure to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with <1% false positives. For nearly 80% of assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and typically 90% or more of these

  2. Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Danxia Wang

    2015-01-01

    Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l‍(ux2dxuxx-ϕ(∫0l‍(ux2dxuxxt=q(x, in  [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.

  3. Influence of crystallography and bonding on the structure and migration of irrational interphase boundaries

    Science.gov (United States)

    Aaronson, H. I.

    2006-03-01

    Interphase boundary structure developed during precipitation from solid solution and during massive transformations is considered in diverse alloy systems in the presence of differences in stacking sequence across interphase boundaries. Linear misfit compensating defects, including misfit dislocations, structural disconnections, and misfit disconnections, are present over a wide range of crystallographie when both phases have metallic bonding. Misfit dislocations have also been observed when both phases have covalent bonding ( e.g., US: β US2 by Sole and van der Walt). These defects are also found when one phase is ionic and the other is metallic (Nb∶Al2O3 by Rühle et al.), albeit when the latter is formed by vapor deposition. However, when bonding is metallic in one phase but significantly covalent in the other, the structure of the interphase boundary appears to depend upon the strength of the covalent bonding relative to that in the metallically bonded phase. When this difference is large, growth can take place as if it were occurring at a free surface, resulting in orientation relationships that are irrational and conjugate habit planes that are ill matched ( e.g., ZrN: α Zr-N by Li et al. and Xe(solid):Al-Xe by Kishida and Yamaguchi). At lower levels of bonding directionality and strength, crystallography is again irrational, but now edge-to-edge-based low-energy structures can replace linear misfit compensating defects (γm:TiAl:αTi-Al by Reynolds et al.). In the perhaps still smaller difference case of Widmanstätten cementite precipitated from austenite, one orientation relationship yields plates with linear misfit compensating defects at their broad faces whereas another (presumably nucleated at different types of site) produces laths with poorly defined shapes and interfacial structures. Hence, Hume-Rothery-type bonding considerations can markedly affect interphase boundary structure and thus the mechanisms, kinetics, and morphology of growth.

  4. Dynamic Risk Assessment of Sexual Offenders: Validity and Dimensional Structure of the Stable-2007.

    Science.gov (United States)

    Etzler, Sonja; Eher, Reinhard; Rettenberger, Martin

    2018-02-01

    In this study, the predictive and incremental validity of the Stable-2007 beyond the Static-99 was evaluated in an updated sample of N = 638 adult male sexual offenders followed-up for an average of M = 8.2 years. Data were collected at the Federal Evaluation Center for Violent and Sexual Offenders (FECVSO) in Austria within a prospective-longitudinal research design. Scores and risk categories of the Static-99 (AUC = .721; p risk categories contributed incrementally to the prediction of sexual recidivism beyond the Static-99. Analyzing the dimensional structure of the Stable-2007 yielded three factors, named Antisociality, Sexual Deviance, and Hypersexuality. Antisociality and Sexual Deviance were significant predictors for sexual recidivism. Sexual Deviance was negatively associated with non-sexual violent recidivism. Comparisons with latent dimensions of other risk assessment instruments are made and implications for applied risk assessment are discussed.

  5. The origin and structure of streak-like instabilities in laminar boundary layer flames

    Science.gov (United States)

    Gollner, Michael; Miller, Colin; Tang, Wei; Finney, Mark

    2017-11-01

    Streamwise streaks are consistently observed in wildland fires, at the base of pool fires, and in other heated flows within a boundary layer. This study examines both the origin of these structures and their role in influencing some of the macroscopic properties of the flow. Streaks were reproduced and characterized via experiments on stationary heated strips and liquid and gas-fueled burners in laminar boundary layer flows, providing a framework to develop theory based on both observed and measured physical phenomena. The incoming boundary layer was established as the controlling mechanism in forming streaks, which are generated by pre-existing coherent structures, while the amplification of streaks was determined to be compatible with quadratic growth of Rayleigh-Taylor Instabilities, providing credence to the idea that the downstream growth of streaks is strongly tied to buoyancy. These local instabilities were also found to affect macroscopic properties of the flow, including heat transfer to the surface, indicating that a two-dimensional assumption may fail to adequately describe heat and mass transfer during flame spread and other reacting boundary layer flows. This work was supported by NSF (CBET-1554026) and the USDA-FS (13-CS-11221637-124).

  6. Biogeographical boundaries, functional group structure and diversity of Rocky Shore communities along the Argentinean coast.

    Directory of Open Access Journals (Sweden)

    Evie A Wieters

    Full Text Available We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10's km and local (10's m scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3-4 main 'groups' of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site to stabilize patterns of biomass variability and, in this manner, provide a buffer, or "insurance", against

  7. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang

    2017-10-04

    Although a rhombohedral-tetragonal (R-T) phase boundary is known to substantially enhance the piezoelectric properties of potassium-sodium niobate ceramics, the structural evolution of the R-T phase boundary itself is still unclear. In this work, the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction (XRD) patterns and Raman spectra, the structural evolution was determined to be Rhombohedral (R, <-125 °C) → Rhombohedral+Orthorhombic (R+O, -125 °C to 0 °C) → Rhombohedral+Tetragonal (R+T, 0 °C to 150 °C) → dominating Tetragonal (T, 200 °C to Curie temperature (TC)) → Cubic (C, >TC). In addition, the enhanced electrical properties (e.g., a direct piezoelectric coefficient (d33) of ~450±5 pC/N, a conversion piezoelectric coefficient (d33*) of ~580±5 pm/V, an electromechanical coupling factor (kp) of ~0.50±0.02, and TC~250 °C), fatigue-free behavior, and good thermal stability were exhibited by the ceramics possessing the R-T phase boundary. This work improves understanding of the physical mechanism behind the R-T phase boundary in KNN-based ceramics and is an important step towards their adoption in practical applications. This article is protected by copyright. All rights reserved.

  8. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    Science.gov (United States)

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2014-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. PMID:25287913

  9. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. © 2014 Wiley Periodicals, Inc.

  10. Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus.

    Science.gov (United States)

    Dror, Adi; Kanteev, Margarita; Kagan, Irit; Gihaz, Shalev; Shahar, Anat; Fishman, Ayelet

    2015-11-01

    Enzymatic production of biodiesel by transesterification of triglycerides and alcohol, catalyzed by lipases, offers an environmentally friendly and efficient alternative to the chemically catalyzed process while using low-grade feedstocks. Methanol is utilized frequently as the alcohol in the reaction due to its reactivity and low cost. However, one of the major drawbacks of the enzymatic system is the presence of high methanol concentrations which leads to methanol-induced unfolding and inactivation of the biocatalyst. Therefore, a methanol-stable lipase is of great interest for the biodiesel industry. In this study, protein engineering was applied to substitute charged surface residues with hydrophobic ones to enhance the stability in methanol of a lipase from Geobacillus stearothermophilus T6. We identified a methanol-stable variant, R374W, and combined it with a variant found previously, H86Y/A269T. The triple mutant, H86Y/A269T/R374W, had a half-life value at 70 % methanol of 324 min which reflects an 87-fold enhanced stability compared to the wild type together with elevated thermostability in buffer and in 50 % methanol. This variant also exhibited an improved biodiesel yield from waste chicken oil compared to commercial Lipolase 100L® and Novozyme® CALB. Crystal structures of the wild type and the methanol-stable variants provided insights regarding structure-stability correlations. The most prominent features were the extensive formation of new hydrogen bonds between surface residues directly or mediated by structural water molecules and the stabilization of Zn and Ca binding sites. Mutation sites were also characterized by lower B-factor values calculated from the X-ray structures indicating improved rigidity.

  11. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  12. Silicon Σ13(5 0 1) grain boundary interface structure determined by bicrystal Bragg rod X-ray scattering

    International Nuclear Information System (INIS)

    Howes, P.B.; Rhead, S.; Roy, M.; Nicklin, C.L.; Rawle, J.L.; Norris, C.A.

    2013-01-01

    The atomic structure of the silicon Σ13(5 0 1) symmetric tilt grain boundary interface has been determined using Bragg rod X-ray scattering. In contrast to conventional structural studies of grain boundary structure using transmission electron microscopy, this approach allows the non-destructive measurement of macroscopic samples. The interface was found to have a single structure that is fully fourfold coordinated. X-ray diffraction data were measured at Beamline I07 at the Diamond Light Source

  13. A simple boundary element formulation for shape optimization of 2D continuous structures

    International Nuclear Information System (INIS)

    Luciano Mendes Bezerra; Jarbas de Carvalho Santos Junior; Arlindo Pires Lopes; Andre Luiz; Souza, A.C.

    2005-01-01

    For the design of nuclear equipment like pressure vessels, steam generators, and pipelines, among others, it is very important to optimize the shape of the structural systems to withstand prescribed loads such as internal pressures and prescribed or limiting referential values such as stress or strain. In the literature, shape optimization of frame structural systems is commonly found but the same is not true for continuous structural systems. In this work, the Boundary Element Method (BEM) is applied to simple problems of shape optimization of 2D continuous structural systems. The proposed formulation is based on the BEM and on deterministic optimization methods of zero and first order such as Powell's, Conjugate Gradient, and BFGS methods. Optimal characterization for the geometric configuration of 2D structure is obtained with the minimization of an objective function. Such function is written in terms of referential values (such as loads, stresses, strains or deformations) prescribed at few points inside or at the boundary of the structure. The use of the BEM for shape optimization of continuous structures is attractive compared to other methods that discretized the whole continuous. Several numerical examples of the application of the proposed formulation to simple engineering problems are presented. (authors)

  14. Strategy and structure in interaction: What determines the boundaries of the firm?

    OpenAIRE

    Staffan Canback; Phillip Samouel; David Price

    2003-01-01

    This paper analyzes empirically the boundaries of the firm based on Williamson's perspective on what determines firm size. It uses firm performance (risk-adjusted profitability and growth) as dependent variable; and firm organization, diseconomies of scale (atmospheric consequences, bureaucratic insularity, incentive limits, and communication distortion), economies of scale, and asset specificity as independent variables in a structural equation model. Data were collected from the 784 largest...

  15. [Research progress on food sources and food web structure of wetlands based on stable isotopes].

    Science.gov (United States)

    Chen, Zhan Yan; Wu, Hai Tao; Wang, Yun Biao; Lyu, Xian Guo

    2017-07-18

    The trophic dynamics of wetland organisms is the basis of assessing wetland structure and function. Stable isotopes of carbon and nitrogen have been widely applied to identify trophic relationships in food source, food composition and food web transport in wetland ecosystem studies. This paper provided an overall review about the current methodology of isotope mixing model and trophic level in wetland ecosystems, and discussed the standards of trophic fractionation and baseline. Moreover, we characterized the typical food sources and isotopic compositions of wetland ecosystems, summarized the food sources in different trophic levels of herbivores, omnivores and carnivores based on stable isotopic analyses. We also discussed the limitations of stable isotopes in tra-cing food sources and in constructing food webs. Based on the current results, development trends and upcoming requirements, future studies should focus on sample treatment, conservation and trophic enrichment measurement in the wetland food web, as well as on combing a variety of methodologies including traditional stomach stuffing, molecular markers, and multiple isotopes.

  16. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

    Science.gov (United States)

    Liu, Yong; Shu, Chi-Wang; Zhang, Mengping

    2018-02-01

    We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.

  17. Optimal physiological structure of small neurons to guarantee stable information processing

    Science.gov (United States)

    Zeng, S. Y.; Zhang, Z. Z.; Wei, D. Q.; Luo, X. S.; Tang, W. Y.; Zeng, S. W.; Wang, R. F.

    2013-02-01

    Spike is the basic element for neuronal information processing and the spontaneous spiking frequency should be less than 1 Hz for stable information processing. If the neuronal membrane area is small, the frequency of neuronal spontaneous spiking caused by ion channel noise may be high. Therefore, it is important to suppress the deleterious spontaneous spiking of the small neurons. We find by simulation of stochastic neurons with Hodgkin-Huxley-type channels that the leakage system is critical and extremely efficient to suppress the spontaneous spiking and guarantee stable information processing of the small neurons. However, within the physiological limit the potassium system cannot do so. The suppression effect of the leakage system is super-exponential, but that of the potassium system is quasi-linear. With the minor physiological cost and the minimal consumption of metabolic energy, a slightly lower reversal potential and a relatively larger conductance of the leakage system give the optimal physiological structure to suppress the deleterious spontaneous spiking and guarantee stable information processing of small neurons, dendrites and axons.

  18. Some structural aspects of language are more stable than others: a comparison of seven methods.

    Directory of Open Access Journals (Sweden)

    Dan Dediu

    Full Text Available Understanding the patterns and causes of differential structural stability is an area of major interest for the study of language change and evolution. It is still debated whether structural features have intrinsic stabilities across language families and geographic areas, or if the processes governing their rate of change are completely dependent upon the specific context of a given language or language family. We conducted an extensive literature review and selected seven different approaches to conceptualising and estimating the stability of structural linguistic features, aiming at comparing them using the same dataset, the World Atlas of Language Structures. We found that, despite profound conceptual and empirical differences between these methods, they tend to agree in classifying some structural linguistic features as being more stable than others. This suggests that there are intrinsic properties of such structural features influencing their stability across methods, language families and geographic areas. This finding is a major step towards understanding the nature of structural linguistic features and their interaction with idiosyncratic, lineage- and area-specific factors during language change and evolution.

  19. Use of systematics in the interpretation of nuclear structure far from the beta-stable region

    International Nuclear Information System (INIS)

    Wood, J.L.

    1979-01-01

    The use of systematics in the interpretation of nuclear structure far from the beta-stable region is discussed. In particular, a set of rules for the use of systematics is presented together with some experimental criteria that need to be fulfilled for radioactive decay scheme studies in order that all states up to a given spin-parity and energy are located. Illustrative examples are taken from the region 180 < A < 210, with particular emphasis on the odd-mass Au and Hg nuclei. 6 figures

  20. Family boundary structures and child adjustment: the indirect role of emotional reactivity.

    Science.gov (United States)

    Lindahl, Kristin M; Bregman, Hallie R; Malik, Neena M

    2012-12-01

    Structural and system theories propose that disruptions in family subsystem functioning increase risk for youth maladjustment. While there is growing evidence to support this proposition, studies that specifically focus on the larger family system remain relatively rare. Furthermore, the pathways that connect problems in family subsystem alliances to externalizing or internalizing problems in youth are as yet largely unexplored. This study examined youth emotional reactivity (anger and sadness) to family conflict as an indirect pathway of the association between family boundary disturbances and youth adjustment in a sample of two-parent families (N = 270). Observational coding was used to group families into Balanced, Dyadic, or Disengaged family alliance structures and to assess youth emotional reactivity, and parent-report was used to assess youth psychopathology. Structural equation modeling indicated both anger and sadness served as indirect pathways through which family boundary disturbances are linked with youth adjustment. In addition, gender was tested as a moderator and important gender differences were found. Specifically, boys were directly impacted by dyadic disturbances while girls were directly impacted by family disengagement. The findings help target goals for intervention and indicate that worthwhile objectives may include realigning family subsystem boundaries, changing family communication patterns, and improving affective coping skills for youth. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  1. Thailand - Social and Structural Review : Beyond the Crisis - Structural Reform for Stable Growth

    OpenAIRE

    World Bank

    2000-01-01

    Following the East Asian financial crisis, the Bank's involvement in Thailand intensified, enabling a multifaceted stabilization, and structural reform dialogue, which deepened the economic, financial, and sector knowledge of the country. The study benefits from this analytical work, and provides an overview on the ongoing policy dialogue, regarding short- and medium-term reform, through a...

  2. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2013-01-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte

  3. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    Science.gov (United States)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  4. Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies

    NARCIS (Netherlands)

    Chung, Nancy P. Y.; Matthews, Katie; Kim, Helen J.; Ketas, Thomas J.; Golabek, Michael; de Los Reyes, Kevin; Korzun, Jacob; Yasmeen, Anila; Sanders, Rogier W.; Klasse, Per Johan; Wilson, Ian A.; Ward, Andrew B.; Marozsan, Andre J.; Moore, John P.; Cupo, Albert

    2014-01-01

    Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate

  5. Simulation of the structure of vacancies in high angle grain boundaries

    International Nuclear Information System (INIS)

    Bristowe, P.D.; Brokman, A.; Spaepen, F.; Balluffi, R.W.

    1980-06-01

    Since the modeling approach used in an earlier work is used at an atomic level, this is the most appropriate and reliable technique available. To complement this study, however, we have also employed a hard sphere dynamic model and a bubble raft model because in the past they have provided useful qualitative insight into the structure of a variety of defects in two-dimensional crystalline and amorphous systems. The computed results form part of a wider investigation of vacancies and interstitials in various grain boundaries in which the binding energies are analyzed and related to the defect structure and form of the interatomic potential

  6. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals

    Science.gov (United States)

    Wang, J.; Anderoglu, O.; Hirth, J. P.; Misra, A.; Zhang, X.

    2009-07-01

    High resolution transmission electron microscopy of nanotwinned Cu films revealed Σ3 {112} incoherent twin boundaries (ITBs), with a repeatable pattern involving units of three {111} atomic planes. Topological analysis shows that Σ3 {112} ITBs adopt two types of atomic structure with differing arrangements of Shockley partial dislocations. Atomistic simulations were performed for Cu and Al. These studies revealed the structure of the two types of ITBs, the formation mechanism and stability of the associated 9R phase, and the influence of stacking fault energies on them. The results suggest that Σ3 {112} ITBs may migrate through the collective glide of partial dislocations.

  7. Structurally stable graphene oxide-based nanofiltration membranes with bioadhesive polydopamine coating

    Science.gov (United States)

    Wang, Chongbin; Li, Zhiyuan; Chen, Jianxin; Yin, Yongheng; Wu, Hong

    2018-01-01

    Graphene oxide (GO)-based membranes possess promising potential in liquid separation for its high flux. The state-of-art GO-based membranes need to be supported by a substrate to ensure that the ultra-thin GO layer can withstand transmembrane pressure in practical applications. The interfacial compatibility of this kind of composite membrane remains a great challenge due to the intrinsic difference in chemical/physical properties between the GO sheets and the substrate. In this paper, a structurally stable GO-based composite nanofiltration membrane was fabricated by coupling the mussel-inspired adhesive platform and filtration-assisted assembly of GO laminates. The water flux for the prepared GO-based nanofiltration membrane reached up to 85 L m-2 h-1 bar-1 with a high retention above 95% and 100% for Orange G and Congo Red, respectively. The membrane exhibited highly stable structure owing to the covalent and noncovalent interactions between GO separation layer and dopamine adhesive platform.

  8. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    Science.gov (United States)

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

  9. Influence of Fluid–Thermal–Structural Interaction on Boundary Layer Flow in Rectangular Supersonic Nozzles

    Directory of Open Access Journals (Sweden)

    Kalyani Bhide

    2018-03-01

    Full Text Available The aim of this work is to highlight the significance of Fluid–Thermal–Structural Interaction (FTSI as a diagnosis of existing designs, and as a means of preliminary investigation to ensure the feasibility of new designs before conducting experimental and field tests. The novelty of this work lies in the multi-physics simulations, which are, for the first time, performed on rectangular nozzles. An existing experimental supersonic rectangular converging/diverging nozzle geometry is considered for multi-physics 3D simulations. A design that has been improved by eliminating the sharp throat is further investigated to evaluate its structural integrity at design Nozzle Pressure Ratio (NPR 3.67 and off-design (NPR 4.5 conditions. Static structural analysis is performed by unidirectional coupling of pressure loads from steady 3D Computational Fluid Dynamics (CFD and thermal loads from steady thermal conduction simulations, such that the simulations represent the experimental set up. Structural deformation in the existing design is far less than the boundary layer thickness, because the impact of Shock wave Boundary Layer Interaction (SBLI is not as severe. FTSI demonstrates that the discharge coefficient of the improved design is 0.99, and its structural integrity remains intact at off-design conditions. This proves the feasibility of the improved design. Although FTSI influence is shown for a nozzle, the approach can be applied to any product design cycle, or as a prelude to building prototypes.

  10. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    Science.gov (United States)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  11. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Markfort, Corey D. [University of Minnesota, Saint Anthony Falls Laboratory, Department of Civil Engineering, Minneapolis, MN (United States); Porte-Agel, Fernando [Ecole Polytechnique Federale de Lausanne (EPFL), ENAC-IIE-WIRE, Wind Engineering and Renewable Energy Laboratory (WIRE), Lausanne (Switzerland)

    2012-05-15

    Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (x-z) and vertical span-wise planes (y-z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and

  12. DHMPIV and Tomo-PIV measurements of three-dimensional structures in a turbulent boundary layer

    Science.gov (United States)

    Amili, O.; Atkinson, C.; Soria, J.

    In turbulent boundary layers, a large portion of total turbulence production happens in the near wall region, y/δ memory intensive reconstruction algorithm. It is based on a multiplicative line-of-sight (MLOS) estimation that determines possible particle locations in the volume, followed by simultaneous iterative correction. Application of MLOS-SART and MART to a turbulent boundary layer at Refθ=2200 using a 4 camera Tomo-PIV system with a volume of 1000×1000×160 voxels is discussed. In addition, near wall velocity measurement attempt made by digital holographic microscopic particle image velocimetry (DHMPIV). The technique provides a solution to overcome the poor axial accuracy and the low spatial resolution which are common problems in digital holography [5]. By reducing the depth of focus by at least one order of magnitude as well as increasing the lateral spatial resolution, DHMPIV provides the opportunity to resolve the small-scale structures existing in near wall layers.

  13. Ultra-Stable Zero-CTE HoneySiC and H2CMN Mirror Support Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA MSFC, GSFC and JPL are interested in Ultra-Stable Mirror Support Structures for Exoplanet Missions. Telescopes with Apertures of 4-meters or larger and using an...

  14. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  15. Structure and properties of fluid-filled grain boundaries under stress in geological materials. Geologica Ultraiectina (290)

    NARCIS (Netherlands)

    van Noort, R.

    2008-01-01

    Two of the three processes making up the deformation mechanism of intergranular pressure solution, being dissolution and diffusion, take place in the grain boundary fluid phase. Hence, the structure and physical properties of wet grain boundaries under stress can be expected to influence the

  16. Slip, twinning, and fracture at a grain boundary in the L1/sub 2/ ordered structure: A. sigma. = 9 tilt boundary

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, M.H.; King, A.H.

    1988-09-01

    The role of interaction between slip dislocations and a ..sigma.. = 9 tilt boundary in localized microplastic deformation, cleavage, or intergranular fracture in the L1/sub 2/ ordered structure has been analyzed by using the anisotropic elasticity theory of dislocations and fracture. Screw superpartials cross slip easily at the boundary onto the (11-bar1) and the (001) planes at low and high temperatures, respectively. Transmission of primary slip dislocations onto the conjugate slip system occurs with a certain degree of difficulty, which is eased by localized disordering. When the transmission is impeded, cleavage fracture on the (1-bar11) plane is predicted to occur, not intergranular fracture, unless a symmetric double pileup occurs simultaneously. Absorption (or emission) of superpartials occurs only when the boundary region is disordered. Slip initiation from pre-existing sources near the boundary can occur under the local stress concentration. Implications of the present result on the inherent brittleness of grain boundaries in Ni/sub 3/ Al and its improvement by boron segregation are discussed.

  17. Wake structures of two side by side spheres in a tripped boundary layer flow

    Directory of Open Access Journals (Sweden)

    Canli Eyüb

    2014-03-01

    Full Text Available Two independent spheres were placed in a side by side arrangement and flow structure in the wake region of the spheres was investigated with a Particle Image Velocimetry (PIV system when the spheres were in a boundary layer over a flat plate as a special case. Reynolds number was 5000 based on the sphere diameter which was 42.5 mm. Boundary layer was tripped 8mm away from the leading edge of the flat plate with a 5 mm trip wire. The thickness of the hydrodynamically developed boundary layer was determined as 63mm which was larger than the sphere diameter of D=42.5mm. Wake region of the spheres was examined from point of flow physics for the different sphere locations in the ranges of 0≤G/D ≤1.5 and 0≤S/D ≤1.5 where G and S were the distance between the spheres and the distance between the bottom point of the spheres and the flat plate surface, respectively. Depending on the different sphere locations, instantaneous and time averaged vorticity data, scalar values of time-averaged velocity components and their root mean square (rms values and time averaged vorticity data are presented in the study for the evaluation of wake region of the spheres. It is demonstrated that the gap between the two spheres and the interaction between the gap and the boundary layer greatly affects flow pattern, especially when spheres are located near to the flat plate surface, i.e. S/D=0.1 for 0≤G/D ≤1.5. Different distances between the spheres resulted in various flow patterns as the spheres were approached to the flat plate. The distance S/D=0.1 for all gap values has the strongest effect on the wake structures. Beyond G/D=1.0, the sphere wakes tend to be similar to single sphere case. The instantaneous vorticity fields of the side by side arrangements comprised wavy structures in higher level comparing to an individual sphere case. The gap flow intensifies the occurrence of small scale eddies in the wake region. The submersion rate of the spheres

  18. How diking affects the longer-term structure and evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, Daniele

    2015-04-01

    Recurrent diking episodes along divergent plate boundaries, as at Dabbahu (2005, Afar) or at Bardarbunga (2014, Iceland) , highlight the possibility to have m-wide opening in a short time (days to weeks). This suggests a prominent role of magma enhancing transient plate separations. However, the role of diking on a longer term (> 102 years) and its influence on the structure and the evolution of a divergent plate boundary is still poorly investigated. Here we use field surveys along the oceanic Icelandic and continental Ethiopian plate boundaries, along five eruptive fissures and four rift segments. Field observations have also been integrated with analogue and numerical models of dike emplacement to better understand the effect of dike emplacement at depth and at the surface. Our results show that the dike-fed eruptive fissures are systematically associated with graben structures formed by inward dipping normal faults having throws up to 10 m and commonly propagating downward. Moreover, rift segments (i.e. mature rift zones), despite any asymmetry and repetition, are characterized by the same features as the eruptive fissures, the only difference lying in the larger size (higher fault throws, up to 40 m, and wider deformation zones). Analogue and numerical models of dike intrusion confirm that all the structural features observed along the rift segments may be dike-induced; these features include downward propagating normal faults bordering graben structures, contraction at the base of the hanging walls of the faults and upward propagating faults. Simple calculations based on the deeper structure of the eroded rift segments in eastern and western Iceland also suggest that all the fault slip in the active rift segments may result from diking. These results suggest that the overall deformation pattern of eruptive fissures and rift segments may be explained only by dike emplacement. In a magmatic rift, the regional tectonic stress may rarely be high enough to be

  19. Effect of surface texture and structure on the development of stable fluvial armors

    Science.gov (United States)

    Bertin, Stephane; Friedrich, Heide

    2018-04-01

    Stable fluvial armors are found in river systems under conditions of partial sediment transport and limited sediment supply, a common occurrence in nature. Stable armoring is also readily recreated in experimental flumes. Initially, this bed stabilizing phenomenon was examined for different flow discharges and solely related to surface coarsening and bedload transport reduction. The models developed suggest a specific armor composition (i.e., texture) dependent on the parent bed material and formative discharge. Following developments in topographic remote sensing, recent research suggests that armor structure is an important control on bed stability and roughness. In this paper, replicated flume runs during which digital elevation models (DEMs) were collected from both exposed and flooded gravel beds are used to interpret armoring manifestations and to assess their replicability. A range of methodologies was used for the analysis, providing information on (i) surface grain size and orientation, (ii) bed-elevation distributions, (iii) the spatial coherence of the elevations at the grain-scale, (iv) surface slope and aspect, (v) grain imbrication and (vi) the spatial variability in DEM properties. The bed-surface topography was found to be more responsive than bed-material size to changes in flow strength. Our experimental results also provide convincing evidence that gravel-beds' response to water-work during parallel degradation is unique (i.e., replicable) given the formative parameters. Based on this finding, relationships between the armors' properties and formative parameters are proposed, and are supported by adding extensive data from previous research.

  20. Recursive solution for dynamic response of one-dimensional structures with time-dependent boundary conditions

    International Nuclear Information System (INIS)

    Abadi, Mohammad Tahaye

    2015-01-01

    A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.

  1. Recursive solution for dynamic response of one-dimensional structures with time-dependent boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Abadi, Mohammad Tahaye [Aerospace Research Institute, Tehran (Iran, Islamic Republic of)

    2015-10-15

    A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.

  2. An optimal control method for fluid structure interaction systems via adjoint boundary pressure

    Science.gov (United States)

    Chirco, L.; Da Vià, R.; Manservisi, S.

    2017-11-01

    In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.

  3. Time-resolved measurements of coherent structures in the turbulent boundary layer

    Science.gov (United States)

    LeHew, J. A.; Guala, M.; McKeon, B. J.

    2013-04-01

    Time-resolved particle image velocimetry was used to examine the structure and evolution of swirling coherent structure (SCS), one interpretation of which is a marker for a three-dimensional coherent vortex structure, in wall-parallel planes of a turbulent boundary layer with a large field of view, 4.3 δ × 2.2 δ. Measurements were taken at four different wall-normal locations ranging from y/ δ = 0.08-0.48 at a friction Reynolds number, Re τ = 410. The data set yielded statistically converged results over a larger field of view than typically observed in the literature. The method for identifying and tracking swirling coherent structure is discussed, and the resulting trajectories, convection velocities, and lifespan of these structures are analyzed at each wall-normal location. The ability of a model in which the entirety of an individual SCS travels at a single convection velocity, consistent with the attached eddy hypothesis of Townsend (The structure of turbulent shear flows. Cambridge University Press, Cambridge, 1976), to describe the data is investigated. A methodology for determining whether such structures are "attached" or "detached" from the wall is also proposed and used to measure the lifespan and convection velocity distributions of these different structures. SCS were found to persist for longer periods of time further from the wall, particularly those inferred to be "detached" from the wall, which could be tracked for longer than 5 eddy turnover times.

  4. Analysis of the resistance to the stable propagation of fissures in structural steels

    International Nuclear Information System (INIS)

    Alvarez Villar, Nelson; Aquino, Daniel; Aguera, Francisco; Fierro, Victor; Ansaldi, Andrea; Chomik, Enrique; Iorio, Antonio

    2008-01-01

    Linear Elastic Fracture Mechanic (LEFM) is applied to the analysis of highly resistant materials, with correction for plasticity. For moderately ductile materials, structural analysis and design methodologies based on Elastoplastic Fracture Mechanics (EPFM) still have to be developed. The J integral is used in EPFM as a parameter to characterize tenacity to the fracture, following the ASTM standard. It is important to obtain J-Resistant curves, since the use of the stable propagation initiation value (J IC ) as failure criteria, leads to results that are too conservative in most design situations. The application of direct methods allows for results under conditions where the standard methods for obtaining the J-Resistant curve are not applicable. This work analyzes the application of direct methods that are alternatives for the standard, in ferritic-perlitic steels used in gas transport pipes. Experimental results are presented with numerical analysis (FEA) for the adjustment of J-Resistant curves (au)

  5. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry

    Science.gov (United States)

    Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.

    2016-10-01

    Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.

  6. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    Science.gov (United States)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian

    2016-12-01

    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  7. Structural Evolution of the R-T Phase Boundary in KNN-Based Ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Zhang, Xixiang

    2017-01-01

    , the structural evolution of R-T phase boundary from -150 °C to 200 °C is investigated in (0.99-x)K0.5Na0.5Nb1-ySbyO3-0.01CaSnO3-xBi0.5K0.5HfO3 (where x=0~0.05 with y=0.035, and y=0~0.07 with x=0.03) ceramics. Through temperature-dependent powder X-ray diffraction

  8. Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains

    International Nuclear Information System (INIS)

    Haque, Masudul

    2010-01-01

    For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.

  9. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  10. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    Science.gov (United States)

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  11. Structure of high and low shear-stress events in a turbulent boundary layer

    Science.gov (United States)

    Gomit, G.; de Kat, R.; Ganapathisubramani, B.

    2018-01-01

    Simultaneous particle image velocimetry (PIV) and wall-shear-stress sensor measurements were performed to study structures associated with shear-stress events in a flat plate turbulent boundary layer at a Reynolds number Reτ≈4000 . The PIV field of view covers 8 δ (where δ is the boundary layer thickness) along the streamwise direction and captures the entire boundary layer in the wall-normal direction. Simultaneously, wall-shear-stress measurements that capture the large-scale fluctuations were taken using a spanwise array of hot-film skin-friction sensors (spanning 2 δ ). Based on this combination of measurements, the organization of the conditional wall-normal and streamwise velocity fluctuations (u and v ) and of the Reynolds shear stress (-u v ) can be extracted. Conditional averages of the velocity field are computed by dividing the histogram of the large-scale wall-shear-stress fluctuations into four quartiles, each containing 25% of the occurrences. The conditional events corresponding to the extreme quartiles of the histogram (positive and negative) predominantly contribute to a change of velocity profile associated with the large structures and in the modulation of the small scales. A detailed examination of the Reynolds shear-stress contribution related to each of the four quartiles shows that the flow above a low wall-shear-stress event carries a larger amount of Reynolds shear stress than the other quartiles. The contribution of the small and large scales to this observation is discussed based on a scale decomposition of the velocity field.

  12. Grain boundary structures in La2/3Ca1/3MnO3 thin films

    International Nuclear Information System (INIS)

    Miller, D. J.; Lin, Y.-K.; Vlasko-Vlasov, V.; Welp, U.

    1999-01-01

    As with many other oxide-based compounds that exhibit electronic behavior, structural defects have a strong influence on the electronic properties of the CMR manganites. In this work, the authors have studied the effect of grain boundaries on the transport properties and on the local orientation of magnetization. Thin films of the perovskite-related La 2/3 Ca 1/3 MnO 3 compound were deposited onto bicrystal substrates using pulsed laser deposition. Transport measurements showed some enhancement of magnetoresistance across the grain boundary. The structure of the boundary was evaluated by electron microscopy. In contrast with the highly meandering boundaries typically observed in bicrystals of high temperature superconductors, the boundaries in these films are relatively straight and well defined. However, magneto-optical imaging showed that the local magnetization was oriented out of the plane at the grain boundary while it was oriented within the plane in the grains on either side. This coordinated reorientation of local magnetization near the grain boundary leads to enhanced magnetoresistance across the boundary in low fields

  13. Boundary Effect of Planar Glow Dielectric Barrier Discharge and Its Influence on the Discharge Structure

    International Nuclear Information System (INIS)

    Xu Shaowei; Li Lulu; Ouyang Jiting

    2015-01-01

    The dielectric barrier discharge (DBD) in the glow regime in neon has been investigated by experiment and two-dimensional (2D) fluid modeling. The discharge was carried out in a planar DBD system with segmented-electrodes driven by square-wave voltage. The results show that the glow DBD originates in the center of the electrode and expands outward to the electrode edge during each half cycle of the voltage, forming a radial structure. The discharge decays firstly in the inner area but sustains longer in the edge area, showing a reversed discharge area. The discharge cannot completely cover the entire electrode surface, but remains a border of non- or weak discharge. The fluid modeling shows a similar result in agreement with the experiments. The simulations indicate that the electric field in the edge area is distorted due to the boundary effect so that the electric field and charge distribution are different from that in the inner part. The distorted field reduces the longitudinal component near the edge and causes the local field to be lower than that in the center, and hence makes the discharge behindhand. It also induces a transverse field that makes the discharge extend radially outward to the edge. The boundary effect plays an important role in the glow DBD structure. (paper)

  14. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  15. Exploring the role of wave drag in the stable stratified oceanic and atmospheric bottom boundary layer in the cnrs-toulouse (cnrm-game) large stratified water flume

    NARCIS (Netherlands)

    Kleczek, M.; Steeneveld, G.J.; Paci, A.; Calmer, R.; Belleudy, A.; Canonici, J.C.; Murguet, F.; Valette, V.

    2014-01-01

    This paper reports on a laboratory experiment in the CNRM-GAME (Toulouse) stratified water flume of a stably stratified boundary layer, in order to quantify the momentum transfer due to orographically induced gravity waves by gently undulating hills in a boundary layer flow. In a stratified fluid, a

  16. The vertical structure of the Saharan boundary layer: Observations and modelling

    Science.gov (United States)

    Garcia-Carreras, L.; Parker, D. J.; Marsham, J. H.; Rosenberg, P.; Marenco, F.; Mcquaid, J.

    2012-04-01

    The vertical structure of the Saharan atmospheric boundary layer (SABL) is investigated with the use of aircraft data from the Fennec observational campaign, and high-resolution large-eddy model (LEM) simulations. The SABL is one of the deepest on Earth, and crucial in controlling the vertical redistribution and long-range transport of dust in the Sahara. The SABL is typically made up of an actively growing convective region driven by high sensible heating at the surface, with a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ~500hPa. These two layers are usually separated by a weak (≤1K) temperature inversion, making the vertical structure very sensitive to the surface fluxes. Large-eddy model (LEM) simulations initialized with radiosonde data from Bordj Bardji Mokhtar (BBM), southern Algeria, are used to improve our understanding of the turbulence structure of the stratification of the SABL, and any mixing or exchanges between the different layers. The model can reproduce the typical SABL structure from observations, and a tracer is used to illustrate the growth of the convective boundary layer into the residual layer above. The heat fluxes show a deep entrainment zone between the convective region and the SRL, potentially enhanced by the combination of a weak lid and a neutral layer above. The horizontal variability in the depth of the convective layer was also significant even with homogeneous surface fluxes. Aircraft observations from a number of flights are used to validate the model results, and to highlight the variability present in a more realistic setting, where conditions are rarely homogeneous in space. Stacked legs were performed to get an estimate of the mean flux profile of the boundary layer, as well as the variations in the vertical structure of the SABL with heterogeneous atmospheric and surface conditions. Regular radiosondes from BBM put

  17. Magnetic field structure near the plasma boundary in helical systems and divertor tokamaks

    International Nuclear Information System (INIS)

    Nagasaki, Kazunobu; Itoh, Kimitaka

    1990-02-01

    Magnetic field structure of the scrape off layer (SOL) region in both helical systems and divertor tokamaks is studied numerically by using model fields. The connection length of the field line to the wall is calculated. In helical systems, the connection length, L, has a logarithmic dependence on the distance from the outermost magnetic surface or that from the residual magnetic islands. The effect of axisymmetric fields on the field structure is also determined. In divertor tokamaks, the connection length also has logarithmic properties near the separatrix. Even when the perturbations, which resonate to rational surfaces near the plasma boundary, are added, logarithmic properties still remain. We compare the connection length of torsatron/helical-heliotron systems with that of divertor tokamaks. It is found that the former is shorter than the latter by one order magnitude with similar aspect ratio. (author)

  18. Towards hydrochemical PUB - stable vs. heterogeneous NO3 and COD signatures across hydrographic structure and size

    Science.gov (United States)

    Ecrepont, Stephane; Cudennec, Christophe; Jaffrezic, Anne; de Lavenne, Alban

    2017-04-01

    Towards hydrochemical PUB - stable vs. heterogeneous NO3 and DOC signatures across hydrographic structure and size Ecrepont, S.1Cudennec, C.1 Jaffrézic, A.1 de Lavenne, A.2 1UMR SAS, Agrocampus Ouest, Rennes, France 2 HBAN, Irstea, Antony, France Intensive agriculture is a major disturbing factor for water quality in Brittany, France. Observations of chemical data from 350 catchments over a 15 year period show that the high variability of hydrochemical dynamics between catchments in relation to geographic characteristics and farming practices, decreases with an increase in the catchment size. A stable signature of nitrate and DOC dynamics does emerge for bigger catchments, and was evidenced statistically. We adapted a modified version of the standard deviation formula to calculate an index on mean inter-annual winter nitrate and dissolved organic carbon concentrations to characterize each catchment. The method was applied to the whole sample of catchments, some of them nested, to investigate variation of our new index across scales and regions. Results show an increasing and non-linear relationship between the criterion and the surface, with threshold effects. The stability of the thresholds across river basins in Brittany, and across seasons and years is explored. This emergence relates to the progressive connection of streams with heterogeneous characteristic chemical signatures into a mixing dominant effect. The better assessment of this relationship opens two major perspectives: i) to define a geomorphology-based PUB (Prediction in Ungauged Basins) approach for hydrochemistry; ii) to identify the most critical sub-catchments for mitigating actions in terms of farming and landscape practices towards water quality recovery.

  19. Influence of Boundary Conditions on the Simulation of a Diamond-Type Lattice Structure: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Patrick Terriault

    2017-01-01

    Full Text Available Emergent additive manufacturing processes allow the use of metallic porous structures in various industrial applications. Because these structures comprise a large number of ordered unit cells, their design using conventional modeling approaches, such as finite elements, becomes a real challenge. A homogenization technique, in which the lattice structure is simulated as a fully dense volume having equivalent material properties, can then be employed. To determine these equivalent material properties, numerical simulations can be performed on a single unit cell of the lattice structure. However, a critical aspect to consider is the boundary conditions applied to the external faces of the unit cell. In the literature, different types of boundary conditions are used, but a comparative study is definitely lacking. In this publication, a diamond-type unit cell is studied in compression by applying different boundary conditions. If the porous structure’s boundaries are free to deform, then the periodic boundary condition is found to be the most representative, but constraint equations must be introduced in the model. If, instead, the porous structure is inserted in a rigid enclosure, it is then better to use frictionless boundary conditions. These preliminary results remain to be validated for other types of unit cells loaded beyond the yield limit of the material.

  20. Trophic structure of a coastal fish community determined with diet and stable isotope analyses.

    Science.gov (United States)

    Malek, A J; Collie, J S; Taylor, D L

    2016-09-01

    A combination of dietary guild analysis and nitrogen (δ(15) N) and carbon (δ(13) C) stable-isotope analysis was used to assess the trophic structure of the fish community in Rhode Island and Block Island Sounds, an area off southern New England identified for offshore wind energy development. In the autumn of 2009, 2010 and 2011, stomach and tissue samples were taken from 20 fish and invertebrate species for analysis of diet composition and δ(15) N and δ(13) C signatures. The food chain in Rhode Island and Block Island Sounds comprises approximately four trophic levels within which the fish community is divided into distinct dietary guilds, including planktivores, benthivores, crustacivores and piscivores. Within these guilds, inter-species isotopic and dietary overlap is high, suggesting that resource partitioning or competitive interactions play a major role in structuring the fish community. Carbon isotopes indicate that most fishes are supported by pelagic phytoplankton, although there is evidence that benthic production also plays a role, particularly for obligate benthivores such as skates Leucoraja spp. This type of analysis is useful for developing an ecosystem-based approach to management, as it identifies species that act as direct links to basal resources as well as species groups that share trophic roles. © 2016 The Fisheries Society of the British Isles.

  1. Phase behavior and structure of stable complexes between a long polyanion and a branched polycation

    Science.gov (United States)

    Mengarelli, Valentina; Zeghal, Mehdi; Auvray, Loïc; Clemens, Daniel

    2011-08-01

    The association between oppositely charged branched polyethylenimine (BPEI) and polymethacrylic acid (PMA) in the dilute regime is investigated using turbidimetric titration and electrophoretic mobility measurements. The complexation is controlled by tuning continuously the pH-sensitive charge of the polyacid in acidic solution. The formation of soluble and stable positively charged complexes is a cooperative process characterized by the existence of two regimes of weak and strong complexation. In the regime of weak complexation, a long PMA chain overcharged by several BPEI molecules forms a binary complex. As the charge of the polyacid increases, these binary complexes condense at a well defined charge ratio of the mixture to form large positively charged aggregates. The overcharging and the existence of two regimes of complexation are analyzed in the light of recent theories. The structure of the polyelectrolytes is investigated at higher polymer concentration by small angle neutron scattering. Binary complexes of finite size present an open structure where the polyacid chains connecting a small number of BPEI molecules have shrunk slightly. In the condensed complexes, BPEI molecules, wrapped by polyacid chains, form networks of stretched necklaces.

  2. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium -based Bulk Amorphous Alloys based on Stable Liquid-Metal...Air Force Research Laboratory for accurately predicting compositions of new amorphous alloys specifically based on aluminium with properties superior

  3. Anti-phase boundaries and magnetic domain structures in Ni{sub 2}MnGa-type Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, S.P. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Nuhfer, N.T. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); De Graef, M. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)]. E-mail: degraef@cmu.edu

    2007-05-15

    The microstructure and magnetic domain structure of austenitic Heusler Ni{sub 2}MnGa are investigated as a function of heat treatment to study the interplay of anti-phase boundaries and magnetic domain walls. Conventional electron microscopy observations on arc-melted polycrystalline samples show that anti-phase boundaries in this system are invisible for standard two-beam imaging conditions, due to the large extinction distance of the Heusler superlattice reflections. Lorentz Fresnel and Foucault observations on quenched samples reveal a wavy magnetic domain morphology, reminiscent of curved anti-phase boundaries. A close inspection of the domain images indicates that the anti-phase boundaries have a magnetization state different from that of the matrix. Fresnel image simulations for a simple magnetization model are in good agreement with the observations. Magnetic coercivity measurements show a decrease in coercivity with annealing, which correlates with the microscopy observations of reduced anti-phase boundary density for annealed samples.

  4. Modeling of the Gecko's skin microfibrillar structures using the Immersed Boundary method via DNS

    Science.gov (United States)

    Arenas, Isnardo; Carrasquillo, Kenneth; Leonardi, Stefano; Araya, Guillermo; Hussain, Fazle; Castillo, Luciano

    2013-11-01

    There is a current interest in surfaces that mimic the skin of some species (i.e., sharks, dolphins and geckos) in order to achieve drag reduction. The surface considered is based on the microfribrillar structures of a gecko's skin (Aksak et al. 2008). The structures are modeled by means of the immersed boundary method proposed by Fadlun et al. (2000). Direct simulations are performed to predict flow dynamics with a Reynolds number of 7000 based on the height of the channel and centerline velocity. The ratio of the height of the structure with respect to the height of the channel is approximately 0.05. The main motivation is to study how the microfribillar structures affect the momentum transfer from the viscous layer to the outer layer. The surface shows a reduction of the area affected by the shear stress due to the cavities formed by the pattern. As expected, the cavities create a low velocity zone thus decreasing the Reynolds shear stresses. Lambda-2 and Q-criterion were implemented to identify the elongated streamwise vortices. The results show that when compared to a flat channel the microfribillar structures tend to preserve these streamwise vortices instead of bursting into the outer layer which is a source of drag increase.

  5. Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.

    Science.gov (United States)

    Etim, U J; Xu, B; Ullah, Rooh; Yan, Z

    2016-02-01

    Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    Science.gov (United States)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  7. A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales

    International Nuclear Information System (INIS)

    Atzberger, Paul J.; Kramer, Peter R.; Peskin, Charles S.

    2007-01-01

    In modeling many biological systems, it is important to take into account flexible structures which interact with a fluid. At the length scale of cells and cell organelles, thermal fluctuations of the aqueous environment become significant. In this work, it is shown how the immersed boundary method of [C.S. Peskin, The immersed boundary method, Acta Num. 11 (2002) 1-39.] for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic (τ -3/2 ) decay for long times [B.J. Alder, T.E. Wainwright, Decay of the Velocity Autocorrelation Function, Phys. Rev. A 1(1) (1970) 18-21]. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method. Specifically, we present simulations of osmotic effects of molecular dimers, worm-like chain polymer knots, and a basic model of a molecular motor immersed in fluid subject to a

  8. Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season

    Science.gov (United States)

    Chandra, Sagarika; Srivastava, Nishi; Kumar, Manoj

    2018-04-01

    Thermodynamic structure and variability in the atmospheric boundary layer have been investigated with the help of balloon-borne GPS radiosonde over a monsoon trough station Ranchi (Lat. 23°45'N, Long. 85°43'E, India) during the summer monsoon season (June-September) for a period of 2011-2013. Virtual potential temperature gradient method is used for the determination of mixed layer height (MLH). The MLH has been found to vary in the range of 1000-1300 m during the onset, 600-900 m during the active and 1400-1750 m during the break phase of monsoon over this region. Inter-annual variations noticed in MLH could be associated with inter-annual variability in convection and rainfall prevailing over the region. Along with the MLH, the cloud layer heights are also derived from the thermodynamic profiles for the onset, active and break phases of monsoon. Cloud layer height varied a lot during different phases of the monsoon. For the determination of boundary-layer convection, thermodynamic parameter difference (δθ = θ es- θ e) between saturated equivalent potential temperature (θ es ) and equivalent potential temperature (θ e) is used. It is a good indicator of convection and indicates the intense and suppressed convection during different phases of monsoon.

  9. Compressibility effect on thermal coherent structures in spatially-developing turbulent boundary layers via DNS

    Science.gov (United States)

    Araya, Guillermo; Jansen, Kenneth

    2017-11-01

    DNS of compressible spatially-developing turbulent boundary layers is performed at a Mach number of 2.5 over an isothermal flat plate. Turbulent inflow information is generated by following the concept of the rescaling-recycling approach introduced by Lund et al. (J. Comp. Phys. 140, 233-258, 1998); although, the proposed methodology is extended to compressible flows. Furthermore, a dynamic approach is employed to connect the friction velocities at the inlet and recycle stations (i.e., there is no need of an empirical correlation as in Lund et al.). Additionally, the Morkovin's Strong Reynolds Analogy (SRA) is used in the rescaling process of the thermal fluctuations from the recycle plane. Low/high order flow statistics is compared with direct simulations of an incompressible isothermal ZPG boundary layer at similar Reynolds numbers and temperature regarded as a passive scalar. Focus is given to the effect assessment of flow compressibility on the dynamics of thermal coherent structures. AFOSR #FA9550-17-1-0051.

  10. Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer

    International Nuclear Information System (INIS)

    Jian-Hua, Liu; Nan, Jiang

    2008-01-01

    We experimentally investigate the frequency response of near-wall coherent structures to localized periodic blowing and suction through a spanwise slot in a turbulent boundary layer by changing the frequency of periodic disturbance at similar velocities of free stream. The effects of blowing and suction disturbance on energy redistribution, turbulent intensity u' rms + , over y + and waveforms of phase-averaged velocity during sweeping process are respectively discussed under three frequencies of periodic blowing and suction in near-wall region of turbulent boundary layer, compared with those in a standard turbulent boundary layer. The most effective disturbance frequency is figured out in this system. (fundamental areas of phenomenology (including applications))

  11. Mean flow structure of non-equilibrium boundary layers with adverse ...

    Indian Academy of Sciences (India)

    According to them, an equilibrium boundary layer might exist if the pressure ... of adverse pressure gradient on the turbulent boundary layer at the flat plate for ..... of a constant-pressure turbulent layer to the sudden application of an sudden.

  12. Exploration of stable compounds, crystal structures, and superconductivity in the Be-H system

    Directory of Open Access Journals (Sweden)

    Shuyin Yu

    2014-10-01

    Full Text Available Using first-principles variable-composition evolutionary methodology, we explored the high-pressure structures of beryllium hydrides between 0 and 400 GPa. We found that BeH2 remains the only stable compound in this pressure range. The pressure-induced transformations are predicted as I b a m → P 3 ̄ m 1 → R 3 ̄ m → C m c m → P 4 / n m m , which occur at 24, 139, 204 and 349 GPa, respectively. P 3 ̄ m 1 and R 3 ̄ m structures are layered polytypes based on close packings of H atoms with Be atoms filling all octahedral voids in alternating layers. Cmcm and P4/nmm contain two-dimensional triangular networks with each layer forming a kinked slab in the ab-plane. P 3 ̄ m 1 and R 3 ̄ m are semiconductors while Cmcm and P4/nmm are metallic. We have explored superconductivity of both metal phases, and found large electron-phonon coupling parameters of λ = 0.63 for Cmcm with a Tc of 32.1-44.1 K at 250 GPa and λ = 0.65 for P4/nmm with a Tc of 46.1-62.4 K at 400 GPa. The dependence of Tc on pressure indicates that Tc initially increases to a maximum of 45.1 K for Cmcm at 275 GPa and 97.0 K for P4/nmm at 365 GPa, and then decreases with increasing pressure for both phases.

  13. Turbulence and Coherent Structure in the Atmospheric Boundary Layer near the Eyewall of Hurricane Hugo (1989)

    Science.gov (United States)

    Zhang, J. A.; Marks, F. D.; Montgomery, M. T.; Black, P. G.

    2008-12-01

    In this talk we present an analysis of observational data collected from NOAA'S WP-3D research aircraft during the eyewall penetration of category five Hurricane Hugo (1989). The 1 Hz flight level data near 450m above the sea surface comprising wind velocity, temperature, pressure and relative humidity are used to estimate the turbulence intensity and fluxes. In the turbulent flux calculation, the universal shape spectra and co-spectra derived using the 40 Hz data collected during the Coupled Boundary Layer Air-sea Transfer (CBLAST) Hurricane experiment are applied to correct the high frequency part of the data collected in Hurricane Hugo. Since the stationarity assumption required for standard eddy correlations is not always satisfied, different methods are summarized for computing the turbulence parameters. In addition, a wavelet analysis is conducted to investigate the time and special scales of roll vortices or coherent structures that are believed important elements of the eye/eyewall mixing processes that support intense storms.

  14. Boundary element inverse analysis for rebar corrosion detection: Study on the 2004 tsunami-affected structure in Aceh

    Directory of Open Access Journals (Sweden)

    S. Fonna

    2018-06-01

    Full Text Available Evaluation of rebar/reinforcing-steel corrosion for the 2004 tsunami-affected reinforced concrete (RC buildings in Aceh was conducted using half-cell potential mapping technique. However, the results only show qualitative meaning as corrosion risk rather than the corrosion itself, such as the size and location of corrosion. In this study, boundary element inverse analysis was proposed to be performed to detect rebar corrosion of the 2004 tsunami-affected structure in Aceh, using several electrical potential measurement data on the concrete surface. One RC structure in Peukan Bada, an area heavily damaged by the tsunami, was selected for the study. In 2004 the structure was submerged more than 5 m by the tsunami. Boundary element inverse analysis was developed by combining the boundary element method (BEM and particle swarm optimization (PSO. The corrosion was detected by evaluating measured and calculated electrical potential data. The measured and calculated electrical potential on the concrete surface was obtained by using a half-cell potential meter and by performing BEM, respectively. The solution candidates were evaluated by employing PSO. Simulation results show that boundary element inverse analysis successfully detected the size and location of corrosion for the case study. Compared with the actual corrosion, the error of simulation result was less than 5%. Hence, it shows that boundary element inverse analysis is very promising for further development to detect rebar corrosion. Keywords: Inverse analysis, Boundary element method, PSO, Corrosion, Reinforced concrete

  15. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.

    Science.gov (United States)

    Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T

    2018-01-01

    In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.

  16. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Tschopp, M. A., E-mail: mark.tschopp@gatech.edu [Dynamic Research Corporation, (on site at) U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Center for Advanced Vehicular Systems, Mississippi State University, Starkville, Mississippi 39762 (United States); Gao, F.; Yang, L. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Solanki, K. N. [Arizona State University, School for Engineering of Matter, Transport and Energy, Tempe, Arizona 85287 (United States)

    2014-01-21

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He{sub 2}V, HeInt, He{sub 2}Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels.

  17. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    International Nuclear Information System (INIS)

    Tschopp, M. A.; Gao, F.; Yang, L.; Solanki, K. N.

    2014-01-01

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He 2 V, HeInt, He 2 Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels

  18. Attached flow structure and streamwise energy spectra in a turbulent boundary layer

    Science.gov (United States)

    Srinath, S.; Vassilicos, J. C.; Cuvier, C.; Laval, J.-P.; Stanislas, M.; Foucaut, J.-M.

    2018-05-01

    On the basis of (i) particle image velocimetry data of a turbulent boundary layer with large field of view and good spatial resolution and (ii) a mathematical relation between the energy spectrum and specifically modeled flow structures, we show that the scalings of the streamwise energy spectrum E11(kx) in a wave-number range directly affected by the wall are determined by wall-attached eddies but are not given by the Townsend-Perry attached eddy model's prediction of these spectra, at least at the Reynolds numbers Reτ considered here which are between 103 and 104. Instead, we find E11(kx) ˜kx-1 -p where p varies smoothly with distance to the wall from negative values in the buffer layer to positive values in the inertial layer. The exponent p characterizes the turbulence levels inside wall-attached streaky structures conditional on the length of these structures. A particular consequence is that the skin friction velocity is not sufficient to scale E11(kx) for wave numbers directly affected by the wall.

  19. Observing continental boundary-layer structure and evolution over the South African savannah using a ceilometer

    Science.gov (United States)

    Gierens, Rosa T.; Henriksson, Svante; Josipovic, Micky; Vakkari, Ville; van Zyl, Pieter G.; Beukes, Johan P.; Wood, Curtis R.; O'Connor, Ewan J.

    2018-05-01

    The atmospheric boundary layer (BL) is the atmospheric layer coupled to the Earth's surface at relatively short timescales. A key quantity is the BL depth, which is important in many applied areas of weather and climate such as air-quality forecasting. Studying BLs in climates and biomes across the globe is important, particularly in the under-sampled southern hemisphere. The present study is based on a grazed grassland-savannah area in northwestern South Africa during October 2012-August 2014. Ceilometers are probably the cheapest method for measuring continuous aerosol profiles up to several kilometers above ground and are thus an ideal tool for long-term studies of BLs. A ceilometer-estimated BL depth is based on profiles of attenuated backscattering coefficients from atmospheric aerosols; the sharpest drop often occurs at BL top. Based on this, we developed a new method for layer detection that we call the signal-limited layer method. The new algorithm was applied to ceilometer profiles which thus classified BL into classic regime types: daytime convective mixing, and a double layer at night of surface-based stable with a residual layer above it. We employed wavelet fitting to increase successful BL estimation for noisy profiles. The layer-detection algorithm was supported by an eddy-flux station, rain gauges, and manual inspection. Diurnal cycles were often clear, with BL depth detected for 50% of the daytime typically being 1-3 km, and for 80% of the night-time typically being a few hundred meters. Variability was also analyzed with respect to seasons and years. Finally, BL depths were compared with ERA-Interim estimates of BL depth to show reassuring agreement.

  20. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies

    Science.gov (United States)

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  1. Fracture mechanics analysis approach to assess structural integrity of the first confinement boundaries in ITER Generic Upper Port Plug structure

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, Julio, E-mail: julio@natec-ingenieros.com [Numerical Analysis Technologies S.L. (NATEC), Gijon (Spain); Iglesias, Silvia; Vacas, Christian; Udintsev, Victor [CHD, Diagnostic Division, ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Pak, Sunil [Diagnostic and Control Team, National Fusion Research Institute, Daejeon (Korea, Republic of); Maquet, Philippe [CHD, Diagnostic Division, ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Rodriguez, Eduardo; Roces, Jorge [Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon (Spain)

    2015-10-15

    Highlights: • A parametric submodel of the spot under study is developed. • The associated macro has the capability to successively re-build the submodel implementing the crack with the geometry of the updated crack front as a function of the predicted increments of length in the apexes of the crack from the calculated stress intensity factor at the crack front. • The analysis incorporates the crack behavior model to predict the evolution of the postulated defect under the application of the different transients. • The analysis is based on the Elasto-Plastic Fracture Mechanics (EPFM) theory to account for the ductility of the materials (316LN type stainless steel). - Abstract: This paper demonstrates structural integrity of the first confinement boundary in Generic Upper Port Plug structures against cracking during service. This constitutes part of the justification to demonstrate that the non-aggression to the confinement barrier requirement may be compatible with the absent of a specific in-service inspections (ISI) program in the trapezoidal section. Since the component will be subjected to 100% volumetric inspections it can be assumed that no defects below the threshold of applied Nondestructive Evaluation techniques will be present before its commissioning. Cracks during service would be associated to defects under Code acceptance limit. This limit can be reasonably taken as 2 mm. Using elastic–plastic fracture mechanics an initial defect is postulated at the worst location in terms of probability and impact on the confinement boundary. Its evolution is simulated through finite element analysis and final dimension at the end of service is estimated. Applying the procedures in RCC-MR 2007 (App-16) the stability of the crack is assessed. As relative high safety margin was achieved, a complementary assessment postulating an initial defect of 6 mm was also conducted. New margin calculated provides a more robust design.

  2. Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, U.M.R.; Ohkubo, T.; Abe, T.; Hirosawa, S.; Hono, K., E-mail: kazuhiro.hono@nims.go.jp

    2014-12-25

    Graphical abstract: The grain boundary diffusion process (GBDP) using a heavy rare earth elements (HRE) such as Dy and Tb is known as an effective method to enhance the coercivity of Nd–Fe–B sintered magnets without reducing remanence. This process has been industrially implemented to manufacture Nd–Fe–B based sintered magnets with high coercivity and high remanence. In this process, Dy is considered to diffuse through grain boundaries (GBs) to form (Nd{sub 1−x}Dy{sub x}){sub 2}Fe{sub 14}B shells surrounding the Nd{sub 2}Fe{sub 14}B grains and the higher anisotropy field of the Dy-rich shell is considered to suppress the nucleation of reverse domains at low magnetic field. Although there are several investigations on the microstructure of HRE GBDP Nd–Fe–B magnets, no paper addressed the origin of the asymmetric formation of HRE rich shells. Based on detailed analysis of facet planes of core/shell interfaces, we propose a mechanism of the faceted core/shell microstructure formation in the GBDP sintered magnets. We believe that this gives new insights on understanding the coercivity enhancement by the GBDP. - Highlights: • Faceting was observed at the interfaces of cores and shells. • The core/shell interfaces are sharp with an abrupt change in Dy concentration. • Meting occurs at the interfaces of metalic Nd-rich/Nd{sub 2}Fe{sub 14}B phases above 685 °C due to eutectic reaction. • Solidification of Dy-enriched liquid phase from 900 °C can result in the shell formation. - Abstract: Dysprosium enriched shell structure formed by the grain boundary diffusion process (GBDP) of a sintered Nd–Fe–B magnet was characterized by using scanning electron microscopy, electron back-scattered diffraction and transmission electron microscopy. Faceted core–shell interfaces with an abrupt change in Dy concentration suggest the Dy-rich shells are formed by the solidification of the liquid phase during cooling from the GBDP temperature. The Nd-rich phases

  3. Faceted shell structure in grain boundary diffusion-processed sintered Nd–Fe–B magnets

    International Nuclear Information System (INIS)

    Seelam, U.M.R.; Ohkubo, T.; Abe, T.; Hirosawa, S.; Hono, K.

    2014-01-01

    Graphical abstract: The grain boundary diffusion process (GBDP) using a heavy rare earth elements (HRE) such as Dy and Tb is known as an effective method to enhance the coercivity of Nd–Fe–B sintered magnets without reducing remanence. This process has been industrially implemented to manufacture Nd–Fe–B based sintered magnets with high coercivity and high remanence. In this process, Dy is considered to diffuse through grain boundaries (GBs) to form (Nd 1−x Dy x ) 2 Fe 14 B shells surrounding the Nd 2 Fe 14 B grains and the higher anisotropy field of the Dy-rich shell is considered to suppress the nucleation of reverse domains at low magnetic field. Although there are several investigations on the microstructure of HRE GBDP Nd–Fe–B magnets, no paper addressed the origin of the asymmetric formation of HRE rich shells. Based on detailed analysis of facet planes of core/shell interfaces, we propose a mechanism of the faceted core/shell microstructure formation in the GBDP sintered magnets. We believe that this gives new insights on understanding the coercivity enhancement by the GBDP. - Highlights: • Faceting was observed at the interfaces of cores and shells. • The core/shell interfaces are sharp with an abrupt change in Dy concentration. • Meting occurs at the interfaces of metalic Nd-rich/Nd 2 Fe 14 B phases above 685 °C due to eutectic reaction. • Solidification of Dy-enriched liquid phase from 900 °C can result in the shell formation. - Abstract: Dysprosium enriched shell structure formed by the grain boundary diffusion process (GBDP) of a sintered Nd–Fe–B magnet was characterized by using scanning electron microscopy, electron back-scattered diffraction and transmission electron microscopy. Faceted core–shell interfaces with an abrupt change in Dy concentration suggest the Dy-rich shells are formed by the solidification of the liquid phase during cooling from the GBDP temperature. The Nd-rich phases are almost free from Dy, and

  4. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    Science.gov (United States)

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  5. Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from Beijing-Tianjin-Hebei region to northeast China

    Science.gov (United States)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Zhao, Chun; Li, Xiaolan; Zhang, Gen; Wei, Wei; Ma, Yanjun

    2018-05-01

    The northeastern China frequently experiences severe aerosol pollution in winter under unfavorable meteorological conditions. How and to what extent the meteorological factors affect the air quality there are not yet clearly understood. Thus, this study investigated the impacts of synoptic patterns on the aerosol transport and planetary boundary layer (PBL) structure in Shenyang from 1 to 3 December 2016, using surface observations, sounding measurements, satellite data, and three-dimensional simulations. Results showed that the aerosol pollution occurred in Shenyang was not only related to the local emissions, but also contributed by trans-boundary transport of aerosols from the Beiijng-Tianjin-Hebei (BTH) region. In the presence of the westerly and southwesterly synoptic winds, the aerosols emitted from BTH could be brought to Shenyang. From December 2 to 3, the aerosols emitted from BTH accounted for ∼20% of near-surface PM2.5 in Shenyang. In addition, the large-scale synoptic forcings could affect the vertical mixing of pollutants through modulating the PBL structure in Shenyang. The westerly and southwesterly synoptic winds not only brought the aerosols but also the warmer air masses from the southwest regions to Shenyang. The strong warm advections above PBL could enhance the already existing thermal inversion layers capping over PBL in Shenyang, leading to the suppressions of PBL. Both the trans-boundary transport of aerosols and the suppressions of PBL caused by the large-scale synoptic forcings should be partly responsible for the poor air quality in Shenyang, in addition to the high pollutant emissions. The present study revealed the physical mechanisms underlying the aerosol pollution in Shenyang, which has important implications for better forecasting and controlling the aerosols pollution.

  6. Electronic structure of twin boundaries in YBa2Cu3O7

    International Nuclear Information System (INIS)

    Agassi, D.; Kasowski, R.V.

    1991-01-01

    The electronic structure of a twin boundary (TB) in YBa 2 Cu 3 O 7 is evaluated from ab initio band-structure calculations. Two models are considered: The first assumes the ideal TB atomic configuration. The oxygen-disordered TB model, on the other hand, assumes that in proximity to the TB the oxygen atoms relocate randomly to vacant lattice sites such that the Cu-O bond length is preserved. The calculations have been carried out using 52-atom and 78-atom supercells. For the ideal TB model, the TB presence gives rise to a quasicontinuum of localized states near E F . These states do not contribute to the conductivity. For the oxygen-disordered TB model, two representative oxygen dislocations are considered: One in which a chain oxygen [O(1)] is displaced in the basal plane, and the other in which a Cu-plane oxygen [O(2), O(3)] is up-displaced into the yttrium plane. For both configurations we find conductive pathways with energy near E F . These pathways are comprised of zigzag Cu-O chains, oriented in all directions parallel to the TB plane. This model implies, in particular, percolative conduction in the c-axis direction parallel to the TB planes

  7. Influence of the grain boundary atomic structure on the intergranular precipitation

    International Nuclear Information System (INIS)

    Le Coze, J.

    1975-01-01

    The number of intergranular precipitates after long time annealing is calculated taking into account nucleation, growth and coarsening. With intermediate supersaturation, the great number of precipitates which is observed in some boundaries may have different causes: in low misorientation boundaries and (111) twin, the maxima come from semi-coherent nucleation with one grain; in the other boundaries, the maxima are connected with a great number of high energy atomic sites. Depending on supersaturation, some maxima may disappear whereas others are reinforced [fr

  8. Small-scale orographic gravity wave drag in stable boundary layers and its impact on synoptic systems and near surface meteorology

    NARCIS (Netherlands)

    Tsiringakis, Aristofanis; Steeneveld, G.J.; Holtslag, A.A.M.

    2017-01-01

    At present atmospheric models for weather and climate use enhanced turbulent drag under stable conditions, because these empirically provide the necessary momentum drag for accurate forecast of synoptic systems. The enhanced mixing (also known as the "long-tail"), introduces drag that can not be

  9. The influence of vortex pinning and grain boundary structure on critical currents across grain boundaries in YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Miller, D. J.

    1998-01-01

    We have used studies of single grain boundaries in YBCO thin films and bulk bicrystals to study the influence of vortex pinning along a grain boundary on dissipation. The critical current density for transport across grain boundaries in thin films is typically more than an order of magnitude larger than that measured for transport across grain boundaries in bulk samples. For low disorientation angles, the difference in critical current density within the grains that form the boundary can contribute to the substantial differences in current density measured across the boundary. However, substantial differences exist in the critical current density across boundaries in thin film compared to bulk bicrystals even in the higher angle regime in which grain boundary dissipation dominates. The differences in critical current density in this regime can be understood on the basis of vortex pinning along the boundary

  10. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.

    Science.gov (United States)

    Langley, Robin S; Cotoni, Vincent

    2010-04-01

    Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

  11. More than a boundary shift: Perceptual adaptation to foreign-accented speech reshapes the internal structure of phonetic categories.

    Science.gov (United States)

    Xie, Xin; Theodore, Rachel M; Myers, Emily B

    2017-01-01

    The literature on perceptual learning for speech shows that listeners use lexical information to disambiguate phonetically ambiguous speech sounds and that they maintain this new mapping for later recognition of ambiguous sounds for a given talker. Evidence for this kind of perceptual reorganization has focused on phonetic category boundary shifts. Here, we asked whether listeners adjust both category boundaries and internal category structure in rapid adaptation to foreign accents. We investigated the perceptual learning of Mandarin-accented productions of word-final voiced stops in English. After exposure to a Mandarin speaker's productions, native-English listeners' adaptation to the talker was tested in 3 ways: a cross-modal priming task to assess spoken word recognition (Experiment 1), a category identification task to assess shifts in the phonetic boundary (Experiment 2), and a goodness rating task to assess internal category structure (Experiment 3). Following exposure, both category boundary and internal category structure were adjusted; moreover, these prelexical changes facilitated subsequent word recognition. Together, the results demonstrate that listeners' sensitivity to acoustic-phonetic detail in the accented input promoted a dynamic, comprehensive reorganization of their perceptual response as a consequence of exposure to the accented input. We suggest that an examination of internal category structure is important for a complete account of the mechanisms of perceptual learning. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Spatial structures in the heat budget of the Antarctic atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    W. J. van de Berg

    2008-01-01

    Full Text Available Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL. The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled by the heat budget. During winter, transport of heat towards the surface by turbulence and net longwave emission are the primary ABL cooling terms. These processes show horizontal spatial variability only on continental scales. Vertical and horizontal, i.e. along-slope, advection of heat are the main warming terms. Over regions with convex ice sheet topography, i.e. domes and ridges, warming by downward vertical advection is enhanced due to divergence of the ABL wind field. Horizontal advection balances excess warming caused by vertical advection, hence the temperature deficit in the ABL weakens over domes and ridges along the prevailing katabatic wind. Conversely, vertical advection is reduced in regions with concave topography, i.e. valleys, where the ABL temperature deficit enlarges along the katabatic wind. Along the coast, horizontal and vertical advection is governed by the inability of the large-scale circulation to adapt to small scale topographic features. Meso-scale topographic structures have thus a strong impact on the ABL winter temperature, besides latitude and surface elevation. During summer, this mechanism is much weaker, and the horizontal variability of ABL temperatures is smaller.

  13. Plasma structure near the low-latitude boundary layer: A rebuttal

    International Nuclear Information System (INIS)

    Sckopke, N.

    1991-01-01

    A recent reanalysis of a well-documented interval of plasma and magnetic field data led its authors to offer a new model for the structure of the outer magnetosphere and the magnetosheath on the northern dawnside. On November 6, 1977, ISEE 1 and 2 had observed a series of quasi-periodic pulses of magnetosheath-like plasma on northward oriented magnetic field lines which were originally interpreted as repeated encounters of a pulsed low-latitude boundary layer inside a smooth magnetopause followed by a single outward crossing of the magnetopause. D.G. Sibeck and coworkers reinterpreted the ISEE observations as being due to quasi-periodic magnetopause motion causing the satellites to repeatedly exit the magnetosphere and to observe draped northward magnetosheath magnetic field lines in the plasma depletion layer. Their model is based on qualitative arguments concerning the amount of field line draping in the magnetosheath as well as the behavior of energetic electrons near the magnetopause. It is shown in this paper that both arguments are not in accordance with the available evidence

  14. A new structure of a magnetorheological brake with the waveform boundary of a rotary disk

    International Nuclear Information System (INIS)

    Nam, Tran Hai; Ahn, Kyoung Kwan

    2009-01-01

    This paper presents a novel magnetorheological (MR) brake design incorporating a rotary disk with a waveform boundary that generates a resistance force based on the effects of a material deformation process. This force is transmitted from an external agent and creates the necessary energy for breaking the structure of the hardened MR fluid. Its minimum destructive ability is proportional to the variable stiffness of an MR fluid in a magnetic field. In this design, the waveform wall of a rotary disk crushes the particles chains (fibrils) of the MR fluid together instead of breaking them via strain in a conventional MR brake. The resistance forces and braking torques generated by this crush action are stronger than those produced by strain action. To verify our proposed MR brake, the proposed and conventional MR brakes are designed using similar magnetic circuits and material parameters. We compared the performance of our novel MR brake to the performance of a conventional MR brake, and demonstrated that the measured resistance torque of the proposed MR brake is approximately 600% greater than resistance torques generated by conventional brakes

  15. DNA-based stable isotope probing: a link between community structure and function

    Czech Academy of Sciences Publication Activity Database

    Uhlík, Ondřej; Ječná, K.; Leigh, M. B.; Macková, Martina; Macek, Tomáš

    2009-01-01

    Roč. 407, č. 12 (2009), s. 3611-3619 ISSN 0048-9697 Grant - others:GA MŠk(CZ) 2B08031 Program:2B Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA-based stable isotope probing * microbial diversity * bioremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.905, year: 2009

  16. Vertical Structure of the Urban Boundary Layer over Marseille Under Sea-Breeze Conditions

    Science.gov (United States)

    Lemonsu, Aude; Bastin, Sophie; Masson, Valéry; Drobinski, Philippe

    2006-03-01

    During the UBL-ESCOMPTE program (June July 2001), intensive observations were performed in Marseille (France). In particular, a Doppler lidar, located in the north of the city, provided radial velocity measurements on a 6-km radius area in the lowest 3 km of the troposphere. Thus, it is well adapted to document the vertical structure of the atmosphere above complex terrain, notably in Marseille, which is bordered by the Mediterranean sea and framed by numerous massifs. The present study focuses on the last day of the intensive observation period 2 (26 June 2001), which is characterized by a weak synoptic pressure gradient favouring the development of thermal circulations. Under such conditions, a complex stratification of the atmosphere is observed. Three-dimensional numerical simulations, with the Méso-NH atmospheric model including the town energy balance (TEB) urban parameterization, are conducted over south-eastern France. A complete evaluation of the model outputs was already performed at both regional and city scales. Here, the 250-m resolution outputs describing the vertical structure of the atmosphere above the Marseille area are compared to the Doppler lidar data, for which the spatial resolution is comparable. This joint analysis underscores the consistency between the atmospheric boundary layer (ABL) observed by the Doppler lidar and that modelled by Méso-NH. The observations and simulations reveal the presence of a shallow sea breeze (SSB) superimposed on a deep sea breeze (DSB) above Marseille during daytime. Because of the step-like shape of the Marseille coastline, the SSB is organized in two branches of different directions, which converge above the city centre. The analysis of the 250-m wind fields shows evidence of the role of the local topography on the local dynamics. Indeed, the topography tends to reinforce the SSB while it weakens the DSB. The ABL is directly affected by the different sea-breeze circulations, while the urban effects appear

  17. Crustal Structure and Evolution of the Eastern Himalayan Plate Boundary System, Northeast India

    Science.gov (United States)

    Mitra, S.; Priestley, K. F.; Borah, Kajaljyoti; Gaur, V. K.

    2018-01-01

    We use data from 24 broadband seismographs located south of the Eastern Himalayan plate boundary system to investigate the crustal structure beneath Northeast India. P wave receiver function analysis reveals felsic continental crust beneath the Brahmaputra Valley, Shillong Plateau and Mikir Hills, and mafic thinned passive margin transitional crust (basement layer) beneath the Bengal Basin. Within the continental crust, the central Shillong Plateau and Mikir Hills have the thinnest crust (30 ± 2 km) with similar velocity structure, suggesting a unified origin and uplift history. North of the plateau and Mikir Hills the crustal thickness increases sharply by 8-10 km and is modeled by ˜30∘ north dipping Moho flexure. South of the plateau, across the ˜1 km topographic relief of the Dawki Fault, the crustal thickness increases abruptly by 12-13 km and is modeled by downfaulting of the plateau crust, overlain by 13-14 km thick sedimentary layer/rocks of the Bengal Basin. Farther south, beneath central Bengal Basin, the basement layer is thinner (20-22 km) and has higher Vs (˜4.1 km s-1) indicating a transitional crystalline crust, overlain by the thickest sedimentary layer/rocks (18-20 km). Our models suggest that the uplift of the Shillong Plateau occurred by thrust faulting on the reactivated Dawki Fault, a continent margin paleorift fault, and subsequent back thrusting on the south dipping Oldham Fault, in response to flexural loading of the Eastern Himalaya. Our estimated Dawki Fault offset combined with timing of surface uplift of the plateau reveals a reasonable match between long-term uplift and convergence rate across the Dawki Fault with present-day GPS velocities.

  18. Airborne measurements of turbulent trace gas fluxes and analysis of eddy structure in the convective boundary layer over complex terrain

    Science.gov (United States)

    Hasel, M.; Kottmeier, Ch.; Corsmeier, U.; Wieser, A.

    2005-03-01

    Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NO x transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O 3 at the surface. The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NO x loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.

  19. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei

    2013-11-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte structure showed good chemical stability in both CO2 and H2O atmosphere, indicating that the BZPY layers effectively protect the inner BCY electrolyte, while the BCY electrolyte alone decomposed completely under the same conditions. Fuel cell prototypes fabricated with the sandwiched electrolyte achieved a relatively high performance of 185 mW cm- 2 at 700 C, with a high electrolyte film conductivity of 4 × 10- 3 S cm- 1 at 600 C. © 2013 Elsevier B.V.

  20. Study of the Wigner function at the device boundaries in one-dimensional single- and double-barrier structures

    International Nuclear Information System (INIS)

    Savio, Andrea; Poncet, Alain

    2011-01-01

    In this work, we compute the Wigner distribution function on one-dimensional devices from wave functions generated by solving the Schroedinger equation. Our goal is to investigate certain issues that we encountered in implementing Wigner transport equation solvers, such as the large discrepancies observed between the boundary conditions and the solution in the neighborhood of the boundaries. By evaluating the Wigner function without solving the Wigner transport equation, we intend to ensure that the actual boundary conditions are consistent with those commonly applied in literature. We study both single- and double-barrier unbiased structures. We use simple potential profiles, so that we can compute the wave functions analytically for better accuracy. We vary a number of structure geometry, material, meshing, and numerical parameters, among which are the contact length, the barrier height, the number of incident wave functions, and the numerical precision used for the computations, and we observe how the Wigner function at the device boundaries is affected. For the double-barrier structures, we look at the density matrix function and we study a model for the device transmission spectrum which helps explain the lobelike artifacts that we observe on the Wigner function.

  1. Effect of Interface Structure on Thermal Boundary Conductance by using First-principles Density Functional Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    GAO Xue; ZHANG Yue; SHANG Jia-Xiang

    2011-01-01

    We choose a Si/Ge interface as a research object to investigate the infiuence of interface disorder on thermal boundary conductance. In the calculations, the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials, while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory. The results show that interface disorder limits thermal transport. The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance. This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.%We choose a Si/Ge interface as a research object to investigate the influence of interface disorder on thermal boundary conductance.In the calculations,the diffuse mismatch model is used to study thermal boundary conductance between two non-metallic materials,while the phonon dispersion relationship is calculated by the first-principles density functional perturbation theory.The results show that interface disorder limits thermal transport.The increase of atomic spacing at the interface results in weakly coupled interfaces and a decrease in the thermal boundary conductance.This approach shows a simplistic method to investigate the relationship between microstructure and thermal conductivity.It is well known that interfaces can play a dominant role in the overall thermal transport characteristics of structures whose length scale is less than the phonon mean free path.When heat flows across an interface between two different materials,there exists a temperature jump at the interface.Thermal boundary conductance (TBC),which describes the efficiency of heat flow at material interfaces,plays an importance role in the transport of thermal energy in nanometerscale devices,semiconductor superlattices,thin film multilayers and nanocrystalline materials.[1

  2. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.

    Science.gov (United States)

    Li, Junwen; Mitzi, David B; Shenoy, Vivek B

    2011-11-22

    We have studied the atomic and electronic structure of Cu(2)ZnSnSe(4) and CuInSe(2) grain boundaries using first-principles calculations. We find that the constituent atoms at the grain boundary in Cu(2)ZnSnSe(4) create localized defect states that promote the recombination of photon-excited electron and hole carriers. In distinct contrast, significantly lower density of defect states is found at the grain boundaries in CuInSe(2), which is consistent with the experimental observation that CuInSe(2) solar cells exhibit high conversion efficiency without the need for deliberate passivation. Our investigations suggest that it is essential to effectively remove these defect states in order to improve the conversion efficiency of solar cells with Cu(2)ZnSnSe(4) as photovoltaic absorber materials. © 2011 American Chemical Society

  3. Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment

    Science.gov (United States)

    Kwon, B. H.; BéNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.

    1998-10-01

    The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1° to 2°C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1° to 2°C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems

  4. THE EFFECT OF RECONNECTION ON THE STRUCTURE OF THE SUN’S OPEN–CLOSED FLUX BOUNDARY

    International Nuclear Information System (INIS)

    Pontin, D. I.; Wyper, P. F.

    2015-01-01

    Global magnetic field extrapolations are now revealing the huge complexity of the Sun's corona, and in particular the structure of the boundary between open and closed magnetic flux. Moreover, recent developments indicate that magnetic reconnection in the corona likely occurs in highly fragmented current layers, and that this typically leads to a dramatic increase in the topological complexity beyond that of the equilibrium field. In this paper we use static models to investigate the consequences of reconnection at the open–closed flux boundary (“interchange reconnection”) in a fragmented current layer. We demonstrate that it leads to efficient mixing of magnetic flux (and therefore plasma) from open and closed field regions. This corresponds to an increase in the length and complexity of the open–closed boundary. Thus, whenever reconnection occurs at a null point or separator of this open–closed boundary, the associated separatrix arc of the so-called S-web in the high corona becomes not a single line but a band of finite thickness within which the open–closed boundary is highly structured. This has significant implications for the acceleration of the slow solar wind, for which the interaction of open and closed field is thought to be important, and may also explain the coronal origins of certain solar energetic particles. The topological structures examined contain magnetic null points, separatrices and separators, and include a model for a pseudo-streamer. The potential for understanding both the large scale morphology and fine structure observed in flare ribbons associated with coronal nulls is also discussed

  5. Census Bureau Regional Office Boundaries : New Structure as of January 2013

    Data.gov (United States)

    US Census Bureau, Department of Commerce — The Census Bureau has six regional offices to facilitate data collection, data dissemination and geographic operations within their boundary. The surveys these...

  6. How diking affects the longer-term structure and evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, Daniele; Acocella, Valerio; Ruch, Joel; Rivalta, Eleonora

    2015-01-01

    Recurrent diking episodes along divergent plate boundaries, as at Dabbahu (2005, Afar) or at Bardarbunga (2014, Iceland) , highlight the possibility to have m-wide opening in a short time (days to weeks). This suggests a prominent role of magma

  7. A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application

    Science.gov (United States)

    Zhu, Luoding

    2017-11-01

    Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.

  8. Structure of magnetic particles studied by small angle neutron scattering. [Magnetic colloid particles in stable liquid dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cebula, D J; Charles, S W; Popplewell, J

    1981-03-01

    The purpose of this note is to show how the use of small angle neutron scattering (SANS) can provide fundamental information on the structure of magnetic colloid particles in stable liquid dispersion. A more detailed account elaborating the use of the technique to provide fundamental information on interactions will appear later. This contribution contains some principal results on particle structure. The technique of SANS provides a very sensitive means of measuring particle size by measuring the scattered neutron intensity, I(Q), as a function of scattered wave vector, Q.

  9. Size effects on structural and dielectric properties of PZT thin films at compositions around the morpho tropic phase boundary

    International Nuclear Information System (INIS)

    Lima, Elton Carvalho; Araujo, Eudes Borges; Souza Filho, Antonio Gomes de; Bdikin, Igor

    2011-01-01

    Full text: The demand for portability in consumer electronics has motivated the understanding of size effects on ferroelectric thin films. The actual comprehension of these effects in ferroelectrics is unsatisfactory, since the polarization interacts more strongly than other order parameters such as strain and charge. As a result, extrinsic effects are produced if these variables are uncontrolled and problems such as ferroelectric paraelectric phase transition at nanometers scale remains an unsolved issue. In the present work, the effects of thickness and compositional fractions on the structural and dielectric properties of PbZr 1-x Ti x O 3 (PZT) thin films were studied at a composition around the morphotropic phase boundary (x = 0.50). For this purpose, thin films with different thicknesses and different PbO excess were deposited on Si(100) and Pt=T iO 2 =SiO 2 =Si substrates by a chemical method and crystallized in electric furnace at 700 deg C for 1 hour. The effects of substrate, pyrolysis temperature and excess lead addition in the films are reported. For films with 10 mol% PbO in excess, the pyrolysis in the regime of 300 deg C for 30 minutes was observed to yield PZT pyrochlore free thin films deposited on Pt=T iO 2 =SiO 2 =Si substrate. Out this condition, the transformation from amorphous to the pyrochlore metastable phase is kinetically more favorable that a transformation to the perovskite phase, which is thermodynamically stable. Rietveld refinements based on X-ray diffraction results showed that films present a purely tetragonal phase and that this phase does not change when the film thickness decreases. The dielectric permittivity measurements showed a monoclinic → tetragonal phase transition at 198K. Results showed that the dielectric permittivity (ε) increases continuously from 257 to 463, while the thickness of the PZT films increases from 200 to 710 nm. These results suggests that interface pinning centers can be the responsible mechanism by

  10. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans

    Directory of Open Access Journals (Sweden)

    Fernando Abarca

    2014-08-01

    Full Text Available Licanantase (Lic is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm “Rosetta Fold-and-Dock”. To assess the structural stability of our model, Molecular Dynamics (MD and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic’s secondary and tertiary structure.

  11. Localization of Stable and Chaotic Nonpropagating Structures in Nonlinear Mesoscopic Lattices.

    Science.gov (United States)

    Greenfield, Alan Barry

    Recent developments in the study of non-linear localized states, especially non-propagating ones, are outlined. Theoretical models of linear and nonlinear states in a lattice of coupled pendulums and related systems are reviewed. Particular attention is paid to those states which can be described by the Nonlinear Schrodinger equation as well as states where two modes can coexist and states exhibiting chaos. Measurement of localized stable and chaotic states in a 35 site physical pendulum lattice is reported. Various measurement techniques that were used are explained. States that were measured include the tanh profile or kink soliton, and the corresponding uniform state in the wavelength 2 mode, a similar soliton and uniform state in the wavelength 4 mode, a domain wall between the wavelength 2 and 4 modes and a domain wall between a chaotic state and the wavelength 2 mode. Amplitude profiles were measured for the stable kink and domain wall states and smooth curves were obtained by dividing the kink states by the corresponding uniform states. Return maps were measured for two sites in the chaotic domain wall. Simulation of a chaotic domain wall in a 50 site numerical lattice is reported. This system has the advantage that its parameters can be modified much more easily than those of the physical lattice. An attempt is made at quantifying the level of chaos as a function of lattice site with fractal dimension calculations on return maps embedded in a three dimensional space. The drive plane of the chaotic domain wall is mapped out in the drive amplitude - drive frequency plane. Transitions to various stable and quasiperiodic domain walls are noted.

  12. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong

    2013-01-01

    We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Numerical study of the atomic and electronic structure of some silicon grain boundaries; Etude numerique de la structure atomique et electronique de quelques joints de grains du silicium

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, M

    1996-07-01

    This work contributes to the theoretical study of extended defects in covalent materials. The study is especially devoted to the tilt grain boundaries in silicon as a model material. The theoretical model is based on the self-consistent tight-binding approximation and is applied within two numerical techniques: the fast 'order N' density-matrix method and the diagonalization technique which allows the sampling of the reciprocal space. Total energy parameters of the model have been fitted in order to reproduce the silicon band structure (with a correct gap value) and the transferability of crystalline and mechanical properties of this material. A new type of boundary conditions is proposed and tested. These conditions, named 'ante-periodic' or 'Moebius', allow only one grain boundary per box instead of two and decrease the CPU time by a factor of two. The model is then applied to the study of the {sigma}=25 [001] (710) grain boundary. The results show the possible presence in this boundary of low energy non-reconstructed atomic structures which are electrically active. This confirms what had been suggested by some experimental observations. The same study is also performed for the {sigma}=13 [001] (510) grain boundary. In order to compare the intrinsic electrical activity in the previous grain boundaries with the one induced by impurities, a total energy parametrization for the silicon-nickel bond is achieved and used in preliminary calculations. Finally the two variants of the {sigma}=11 [011] (2-33) interface are studied, especially their respective interfacial energies. The result disagrees with previous calculations using phenomenological potentials. (author)

  14. Numerical study of the atomic and electronic structure of some silicon grain boundaries; Etude numerique de la structure atomique et electronique de quelques joints de grains du silicium

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, M

    1996-07-01

    This work contributes to the theoretical study of extended defects in covalent materials. The study is especially devoted to the tilt grain boundaries in silicon as a model material. The theoretical model is based on the self-consistent tight-binding approximation and is applied within two numerical techniques: the fast 'order N' density-matrix method and the diagonalization technique which allows the sampling of the reciprocal space. Total energy parameters of the model have been fitted in order to reproduce the silicon band structure (with a correct gap value) and the transferability of crystalline and mechanical properties of this material. A new type of boundary conditions is proposed and tested. These conditions, named 'ante-periodic' or 'Moebius', allow only one grain boundary per box instead of two and decrease the CPU time by a factor of two. The model is then applied to the study of the {sigma}=25 [001] (710) grain boundary. The results show the possible presence in this boundary of low energy non-reconstructed atomic structures which are electrically active. This confirms what had been suggested by some experimental observations. The same study is also performed for the {sigma}=13 [001] (510) grain boundary. In order to compare the intrinsic electrical activity in the previous grain boundaries with the one induced by impurities, a total energy parametrization for the silicon-nickel bond is achieved and used in preliminary calculations. Finally the two variants of the {sigma}=11 [011] (2-33) interface are studied, especially their respective interfacial energies. The result disagrees with previous calculations using phenomenological potentials. (author)

  15. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    Science.gov (United States)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  16. Structurally Stable Attractive Nanoscale Emulsions with Dipole-Dipole Interaction-Driven Interdrop Percolation.

    Science.gov (United States)

    Shin, Kyounghee; Gong, Gyeonghyeon; Cuadrado, Jonas; Jeon, Serim; Seo, Mintae; Choi, Hong Sung; Hwang, Jae Sung; Lee, Youngbok; Fernandez-Nieves, Alberto; Kim, Jin Woong

    2017-03-28

    This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T 2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tun-Dong; Fan, Tian-E [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Shao, Gui-Fang, E-mail: gfshao@xmu.edu.cn [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Zheng, Ji-Wen [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Wen, Yu-Hua [Institute of Theoretical Physics and Astrophysics, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2014-08-14

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs.

  18. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Liu, Tun-Dong; Fan, Tian-E; Shao, Gui-Fang; Zheng, Ji-Wen; Wen, Yu-Hua

    2014-01-01

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs

  19. Reynolds stress structures in a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation.

    Science.gov (United States)

    Atkinson, C.; Sekimoto, A.; Jiménez, J.; Soria, J.

    2018-04-01

    Mean Reynolds stress profiles and instantaneous Reynolds stress structures are investigated in a self-similar adverse pressure gradient turbulent boundary layer (APG-TBL) at the verge of separation using data from direct numerical simulations. The use of a self-similar APG-TBL provides a flow domain in which the flow gradually approaches a constant non-dimensional pressure gradient, resulting in a flow in which the relative contribution of each term in the governing equations is independent of streamwise position over a domain larger than two boundary layer thickness. This allows the flow structures to undergo a development that is less dependent on the upstream flow history when compared to more rapidly decelerated boundary layers. This APG-TBL maintains an almost constant shape factor of H = 2.3 to 2.35 over a momentum thickness based Reynolds number range of Re δ 2 = 8420 to 12400. In the APG-TBL the production of turbulent kinetic energy is still mostly due to the correlation of streamwise and wall-normal fluctuations, 〈uv〉, however the contribution form the other components of the Reynolds stress tensor are no longer negligible. Statistical properties associated with the scale and location of sweeps and ejections in this APG-TBL are compared with those of a zero pressure gradient turbulent boundary layer developing from the same inlet profile, resulting in momentum thickness based range of Re δ 2 = 3400 to 3770. In the APG-TBL the peak in both the mean Reynolds stress and the production of turbulent kinetic energy move from the near wall region out to a point consistent with the displacement thickness height. This is associated with a narrower distribution of the Reynolds stress and a 1.6 times higher relative number of wall-detached negative uv structures. These structures occupy 5 times less of the boundary layer volume and show a similar reduction in their streamwise extent with respect to the boundary layer thickness. A significantly lower percentage

  20. Stable isotopes provide insight into population structure and segregation in eastern North Atlantic sperm whales

    DEFF Research Database (Denmark)

    Borrell, Asunción; Velásquez Vacca, Adriana; Pinela, Ana M.

    2013-01-01

    In pelagic species inhabiting large oceans, genetic differentiation tends to be mild and populations devoid of structure. However, large cetaceans have provided many examples of structuring. Here we investigate whether the sperm whale, a pelagic species with large population sizes and reputedly......, use of habitat and/or migratory destinations are dissimilar between whales from the two regions and suggest that the North Atlantic population of sperm whales is more structured than traditionally accepted....

  1. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    Science.gov (United States)

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  2. Experimental evidence of structural transition at the crystal-amorphous interphase boundary between Al and Al2O3

    International Nuclear Information System (INIS)

    Yang, Z.Q.; He, L.L.; Zhao, S.J.; Ye, H.Q.

    2002-01-01

    High-resolution transmission electron microscopy observations on the structure of the interphase boundary between crystalline Al and amorphous Al 2 O 3 coating reveal that an interfacial melting transition of Al occurs at 833 K, which is distinctly lower than the bulk melting point of Al. The crystalline lattice planes of Al near the interface bend or small segments of crystalline Al deviated from the matrix Al grains are formed. Stand-off dislocations formed at the interphase boundary are also observed. The amorphous Al 2 O 3 coating plays an important role in retaining the evidence for structural transition at high temperature to room temperature, which makes it possible to make experimental observations. (author)

  3. Atomic structure of surface defects in alumina studied by dynamic force microscopy: strain-relief-, translation- and reflection-related boundaries, including their junctions

    International Nuclear Information System (INIS)

    Simon, G H; König, T; Heinke, L; Lichtenstein, L; Heyde, M; Freund, H-J

    2011-01-01

    We present an extensive atomic resolution frequency modulation dynamic force microscopy study of ultrathin aluminium oxide on a single crystalline NiAl(110) surface. One-dimensional surface defects produced by domain boundaries have been resolved. Images are presented for reflection domain boundaries (RDBs), four different types of antiphase domain boundaries, a nucleation-related translation domain boundary and also domain boundary junctions. New structures and aspects of the boundaries and their network are revealed and merged into a comprehensive picture of the defect arrangements. The alumina film also covers the substrate completely at the boundaries and their junctions and follows the structural building principles found in its unit cell. This encompasses square and rectangular groups of surface oxygen sites. The observed structural elements can be related to the electronic signature of the boundaries and therefore to the electronic defects associated with the boundaries. A coincidence site lattice predicted for the RDBs is in good agreement with experimental data. With Σ = 19 it can be considered to be of low-sigma type, which frequently coincides with special boundary properties. Images of asymmetric RDBs show points of good contact alternating with regions of nearly amorphous disorder in the oxygen sublattice. (paper)

  4. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles

    International Nuclear Information System (INIS)

    Wu Wei; He Quanguo; Chen Hong; Tang Jianxin; Nie Libo

    2007-01-01

    Air-stable nanoparticles of Fe 3 O 4 /Au were prepared via sonolysis of a solution mixture of hydrogen tetrachloroaureate(III) trihydrate (HAuCl 4 ) and (3-aminopropyl)triethoxysilane (APTES)-coated Fe 3 O 4 nanoparticles with further drop-addition of sodium citrate. The Fe 3 O 4 /Au nanoparticles were characterized by x-ray powder diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID) magnetometry. Nanoparticles of Fe 3 O 4 /Au obtained under appropriate conditions possess a very high saturation magnetization of about 63 emu g -1 and their average diameter is about 30 nm

  5. Spatial structures in the heat budget of the Antarctic Atmospheric Boundary Layer

    NARCIS (Netherlands)

    van der Berg, W.J.; van den Broeke, M.R.; van Meijgaard, E.

    2008-01-01

    Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL). The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled

  6. Changing the boundaries of the firm - Adopting and designing efficient management control structures

    NARCIS (Netherlands)

    Vosselman, E.G.J.; van der Meer-Kooistra, J.

    2006-01-01

    Purpose - To develop a model in which alternative patterns of management control are confronted with situational and institutional features in the context of transactional relationships. The model could be of use to managers in making rational decisions regarding the boundaries of the organization.

  7. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  8. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level

  9. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  10. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    Science.gov (United States)

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.

  11. DNA-based stable isotope probing: a link between community structure and function

    International Nuclear Information System (INIS)

    Uhlik, Ondrej; Jecna, Katerina; Leigh, Mary Beth; Mackova, Martina; Macek, Tomas

    2009-01-01

    DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing 13C-labeled substrate to a microbial community and subsequent analyses of the 13C-DNA isolated from the community. Isopycnic centrifugation permits separating 13C-labeled DNA of organisms that utilized the substrate from 12C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.

  12. 3-D mesoscale MHD simulations of magnetospheric cusp-like configurations: cusp diamagnetic cavities and boundary structure

    Directory of Open Access Journals (Sweden)

    E. Adamson

    2012-02-01

    Full Text Available We present results from mesoscale simulations of the magnetospheric cusp region for both strongly northward and strongly southward interplanetary magnetic field (IMF. Simulation results indicate an extended region of depressed magnetic field and strongly enhanced plasma β which exhibits a strong dependence on IMF orientation. These structures correspond to the Cusp Diamagnetic Cavities (CDC's. The typical features of these CDC's are generally well reproduced by the simulation. The inner boundaries between the CDC and the magnetosphere are gradual transitions which form a clear funnel shape, regardless of IMF orientation. The outer CDC/magnetosheath boundary exhibits a clear indentation in both the x-z and y-z planes for southward IMF, while it is only indented in the x-z plane for northward, with a convex geometry in the y-z plane. The outer boundary represents an Alfvénic transition, mostly consistent with a slow-shock, indicating that reconnection plays an important role in structuring the high-altitude cusp region.

  13. Equilibrium structure of the plasma sheet boundary layer-lobe interface

    Science.gov (United States)

    Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.

    1990-01-01

    Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.

  14. Measurement of the Flow Over Two Parallel Mountain Ridges in the Nighttime Stable Boundary Layer With Scanning Lidar Systems at the Perdigão 2017 Experiment

    Science.gov (United States)

    Wildmann, N.; Kigle, S.; Gerz, T.; Bell, T.; Klein, P. M.

    2017-12-01

    For onshore wind energy production, the highest wind potential is often found on exposed spots like hilltops, mountain ridges or escarpments with heterogeneous land cover. The understanding of the flow field in such complex terrain in the relevant heights where wind power is generated is an ongoing field of research. The German Aerospace Center (DLR) contributed to the NEWA (New European Wind Atlas) experiment in the province of Perdigão (Portugal) with three long-range Doppler wind lidar of type Leosphere Windcube-200S from May to June 2017. In the experiment, a single wind energy converter (WEC) of type Enercon E82 is situated on a forested mountain ridge. In main wind direction, which is from South-West and almost perpendicular to the ridge, a valley and then a second mountain ridge in a distance of approximately 1.4 km follow. Two of the DLR lidar instruments are placed downstream and in line with the main wind direction and the WEC. One of these instruments is placed in the valley, and the other one on the distant mountain ridge. This line-up allows coplanar scanning of the flow in the valley and over the ridge tops and thus the determination of horizontal and vertical wind components. The third DLR system, placed on the WEC ridge, and an additional scanning lidar from the University of Oklahoma, placed in the valley, are used to determine the cross-wind component of the flow. Regular flow features that were observed with this lidar setup in the six weeks of the intensive operation period are jet-like layers of high wind speeds that occur during the night from a North-Easterly direction. These jets are found to have wind speeds up to 13 m s-1 and are very variable with regards to their maximum speed, height and broadness. Depending on the Froude number of the flow, waves are forming over the two mountain ridges with either a stable wavelength that equals the mountain ridge distance, or more dynamic higher frequency oscillations. All of these flow features are

  15. The Azimuthally Averaged Boundary Layer Structure of a Numerically Simulated Major Hurricane

    Science.gov (United States)

    2015-08-14

    Michael T. Montgomery2, and James C. McWilliams3 1IMSG at NOAA/NWS/NCEP, College Park, Maryland, USA, 2Naval Postgraduate School , Monterey...definitions of the hurricane boundary layer are uncontroversial in the outer regions of a hurri- cane , where convection is not prevalent and there is...support from the National Research Council (NRC) through its Research Associateship Program, and the host institution, the Naval Postgraduate School (NPS

  16. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    International Nuclear Information System (INIS)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-01-01

    Graphical abstract: - Highlights: • Highly transparent, stable, and superhydrophobic PET film was fabricated by dip-coating way. • The gradient structure is beneficial to both hydrophobicity and transparency. • The superhydrophobic PET film after physical damage can quickly regain by one-step spary. • The fabrication method is available for various substrates and large-scale production. - Abstract: Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) <5°. Besides, the average transmittance of this superhydrophobic coating on PET film and glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  17. Structural changes, market concentration and vertical integration: would they lead to more stable markets

    International Nuclear Information System (INIS)

    Tahmassebi, H.

    1991-01-01

    This communication is concerned with three major developments that are likely to have significant impact on the future structure of world oil markets: oil company mergers and acquisitions, shift of exploration and production activity from the United States to overseas, and joint venture agreements between producing countries and oil companies aimed at further downstream integration by OPEC. The last two developments are likely to contribute substantially to price and market stability in the future

  18. Structural changes, market concentration and vertical integration: would they lead to more stable markets

    Energy Technology Data Exchange (ETDEWEB)

    Tahmassebi, H.

    This communication is concerned with three major developments that are likely to have significant impact on the future structure of world oil markets: oil company mergers and acquisitions, shift of exploration and production activity from the United States to overseas, and joint venture agreements between producing countries and oil companies aimed at further downstream integration by OPEC. The last two developments are likely to contribute substantially to price and market stability in the future.

  19. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    Science.gov (United States)

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  20. SSI 2D/3D soil structure interaction: A program system for the calculation of structure-soil interactions using the boundary element method. Project C1

    International Nuclear Information System (INIS)

    Schmid, G.; Willms, G.; Huh, Y.; Gibhardt, M.

    1988-12-01

    SSI 2D/3D is a computer programm to calculate dynamic stiffness matrices for soil-structure-interaction problems in frequency domain. It is applicable to two- or three-dimensional situations. The present report is a detailed manual for the use of the computer code written in FORTRAN 77. In addition it gives a survey of the possibilities of the Boundary Element Method applied to dynamic problems in infinite domains. (orig.) [de

  1. Structure of hybrid organic-inorganic sols for the preparation of hydrothermally stable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L.; Sah, A; Blank, D.H.A.; Ten Elshof, J.E. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Geenevasen, J.A.J. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands); Kreiter, R.; Vente, J.F. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-06-15

    A procedure for the preparation of hybrid sols for the synthesis of organic-inorganic microporous materials and thin film membranes is reported. We describe silane reactivity and sol structure for acid-catalysed colloidal sols from mixtures of either tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES), or bis(triethoxysilyl)ethane (BTESE) and MTES. Early-stage hydrolysis and condensation rates of the individual silane precursors were followed with 29Si liquid NMR and structural characteristics of more developed sols were studied with Dynamic Light Scattering. Condensation was found to proceed at more or less similar rates for the different precursors. Homogeneously mixed hybrid colloids can therefore be formed from precursor mixtures. The conditions of preparation under which clear sols with low viscosity could be formed from BTESE/MTES were determined. These sols were synthesised at moderate water/silane and acid/silane ratios and could be applied for the coating of defect-free microporous membranes for molecular separations under hydrothermal conditions.

  2. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florescu

    2016-06-01

    Full Text Available Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

  3. The clustered nucleus-cluster structures in stable and unstable nuclei

    International Nuclear Information System (INIS)

    Freer, Martin

    2007-01-01

    The subject of clustering has a lineage which runs throughout the history of nuclear physics. Its attraction is the simplification of the often uncorrelated behaviour of independent particles to organized and coherent quasi-crystalline structures. In this review the ideas behind the development of clustering in light nuclei are investigated, mostly from the stand-point of the harmonic oscillator framework. This allows a unifying description of alpha-conjugate and neutron-rich nuclei, alike. More sophisticated models of clusters are explored, such as antisymmetrized molecular dynamics. A number of contemporary topics in clustering are touched upon; the 3α-cluster state in 12 C, nuclear molecules and clustering at the drip-line. Finally, an understanding of the 12 C+ 12 C resonances in 24 Mg, within the framework of the theoretical ideas developed in the review, is presented

  4. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    Science.gov (United States)

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  5. Flutter Sensitivity to Boundary Layer Thickness, Structural Damping, and Static Pressure Differential for a Shuttle Tile Overlay Repair Concept

    Science.gov (United States)

    Scott, Robert C.; Bartels, Robert E.

    2009-01-01

    This paper examines the aeroelastic stability of an on-orbit installable Space Shuttle patch panel. CFD flutter solutions were obtained for thick and thin boundary layers at a free stream Mach number of 2.0 and several Mach numbers near sonic speed. The effect of structural damping on these flutter solutions was also examined, and the effect of structural nonlinearities associated with in-plane forces in the panel was considered on the worst case linear flutter solution. The results of the study indicated that adequate flutter margins exist for the panel at the Mach numbers examined. The addition of structural damping improved flutter margins as did the inclusion of nonlinear effects associated with a static pressure difference across the panel.

  6. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    Science.gov (United States)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated

  7. Influence of the added mass effect and boundary conditions on the dynamic response of submerged and confined structures

    International Nuclear Information System (INIS)

    Valentín, D; Presas, A; Egusquiza, E; Valero, C

    2014-01-01

    The dynamic response of submerged and confined disk-like structures is of interest in the flied of hydraulic machinery, especially in hydraulic turbine runners. This response is difficult to be estimated with accuracy due to the strong influence of the boundary conditions. Small radial gaps as well as short axial distances to rigid surfaces greatly modify the dynamic response because the fact of the added mass and damping effects. Moreover, the effect of the shaft coupling is also important for certain mode-shapes of the structure. In the present study, the influence of the added mass effect and boundary conditions on the dynamic behavior of a submerged disk attached to a shaft is evaluated through experimental tests and structural- acoustic coupling numerical simulations. For the experimentation, a test rig has been developed. It consists of a confined disk attached to a shaft inside a cylindrical container full of water. The disk can be fixed at different axial positions along the shaft. Piezoelectric patches are used to excite the disk and the response is measured with submersible accelerometers. For each configuration tested, the natural frequencies of the disk and the shaft are studied. Numerical results have been compared with experimental results

  8. Anomalies of the photo-response and thermal boundary resistance of a YBaCuO/YSZ structure

    International Nuclear Information System (INIS)

    Bonch-Osmolovskii, M.M.; Galkina, T.I.; Golovashkin, A.I.; Dovydenko, K.Yu.; Klokov, A.Yu.; Krasnosvobodtsev, S.I.; Oktyabrskii, S.R.; Romanov, E.G.

    1993-01-01

    The photoresponse of a YBaCuO/ZrO 2 bolometric structure was measured under modulated (λ = 630 nm) and pulsed (τ ∼ 7-8 ns; λ = 337 nm) laser excitation. The shape of the measured photoresponse was interpreted by a thermal model; nevertheless, the pulse amplitude for vanishing YBaCuO film resistance was 5-6 times greater than predicted; the thermal boundary resistance R Bd between YBaCuO and YSZ was evaluated ≅ 10 -2 K x cm 2 /Watt, which is considerably larger than estimated theoretically for the similar situation of YBaCuO/MgO. (orig.)

  9. Longitudinal tests of competing factor structures for the Rosenberg Self-Esteem Scale: traits, ephemeral artifacts, and stable response styles.

    Science.gov (United States)

    Marsh, Herbert W; Scalas, L Francesca; Nagengast, Benjamin

    2010-06-01

    Self-esteem, typically measured by the Rosenberg Self-Esteem Scale (RSE), is one of the most widely studied constructs in psychology. Nevertheless, there is broad agreement that a simple unidimensional factor model, consistent with the original design and typical application in applied research, does not provide an adequate explanation of RSE responses. However, there is no clear agreement about what alternative model is most appropriate-or even a clear rationale for how to test competing interpretations. Three alternative interpretations exist: (a) 2 substantively important trait factors (positive and negative self-esteem), (b) 1 trait factor and ephemeral method artifacts associated with positively or negatively worded items, or (c) 1 trait factor and stable response-style method factors associated with item wording. We have posited 8 alternative models and structural equation model tests based on longitudinal data (4 waves of data across 8 years with a large, representative sample of adolescents). Longitudinal models provide no support for the unidimensional model, undermine support for the 2-factor model, and clearly refute claims that wording effects are ephemeral, but they provide good support for models positing 1 substantive (self-esteem) factor and response-style method factors that are stable over time. This longitudinal methodological approach has not only resolved these long-standing issues in self-esteem research but also has broad applicability to most psychological assessments based on self-reports with a mix of positively and negatively worded items.

  10. Stable isotope evidence of long-term changes in North Sea food web structure

    DEFF Research Database (Denmark)

    Richardson, Katherine; Christensen, Jens Tang

    2008-01-01

    coast. Porpoises collected after ~1960 had significantly lower d15N than porpoises collected earlier. This change in d15N implies that fundamental changes in food web structure in, or nutrient availability to, the North Sea have taken place over the last ~150 yr and that most of the change occurred over......, been feeding at a lower trophic level than during the preceding century, i.e. animals from lower trophic levels may now be more dominant than they were prior to the middle of the 20th century. There is no a priori reason to suspect that a change in isotope distributions at the base of the food web has...... occurred during this period and we have not been able to find material that would allow us to test the assumption that there has been no temporal development of d15N at the lowest levels of the food web. Thus, we cannot eliminate the possibility that the change in d15N in harbour porpoise skeletons...

  11. Peculiarities of the fundamental mode structure in stable-resonator lasers upon spatially inhomogeneous amplification

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Kostryukov, P V; Telegin, L S; Tunkin, V G; Yakovlev, D V

    2007-01-01

    The structure of the fundamental mode of a laser is calculated by the iteration Fox-Li method in the case of inhomogeneous unsaturated amplification produced by axially symmetric longitudinal pumping. The calculation is performed for different parameters g 1 and g 2 of the resonator within the entire stability region. It is shown that in the case of inhomogeneous amplification, the fundamental mode considerably deviates from the Gaussian mode of an empty resonator only in the so-called critical configurations of the resonator, when the quantity [arccos(g 1 g 2 ) 1/2 ]/π is zero or takes a number of values expressed by irreducible fractions m/n. For the Fresnel number N F = 9, configurations with m/n = 1/2, 2/5, 3/8, 1/3, 3/10, 1/4, 1/5, 1/6, 1/8, and 1/10 are pronounced. As N F increases, the number of critical configurations increases. The expansion in a system of Laguerre-Gaussian beams shows that the fundamental mode in critical configurations is formed by a set of beams with certain radial indices p phased in the active medium. (resonators. modes)

  12. Stable isotopes indicate population structuring in the southwest Atlantic population of right whales (Eubalaena australis.

    Directory of Open Access Journals (Sweden)

    Morgana Vighi

    Full Text Available From the early 17th century to the 1970s southern right whales, Eubalaena australis, were subject to intense exploitation along the Atlantic coast of South America. Catches along this coast recorded by whalers originally formed a continuum from Brazil to Tierra del Fuego. Nevertheless, the recovery of the population has apparently occurred fragmentarily, and with two main areas of concentration, one off southern Brazil (Santa Catarina and another off central Argentina (Peninsula Valdés. This pattern suggests some level of heterogeneity amongst the population, which is apparently contradicted by records that traced individuals moving throughout the whole geographical extension covered by the species in the Southwest Atlantic. To test the hypothesis of the potential occurrence of discrete subpopulations exploiting specific habitats, we investigated N, C and O isotopic values in 125 bone samples obtained from whaling factories operating in the early 1970s in southern Brazil (n=72 and from contemporary and more recent strandings occurring in central Argentina (n=53. Results indicated significant differences between the two sampling areas, being δ13C and δ18O values significantly higher in samples from southern Brazil than in those from central Argentina. This variation was consistent with isotopic baselines from the two areas, indicating the occurrence of some level of structure in the Southwest Atlantic right whale population and equally that whales more likely feed in areas commonly thought to exclusively serve as nursing grounds. Results aim at reconsidering of the units currently used in the management of the southern right whale in the Southwest Atlantic Ocean. In the context of the current die-off affecting the species in Peninsula Valdés, these results also highlight the necessity to better understand movements of individuals and precisely identify their feeding areas.

  13. Synthesis, structure and topological analysis of glycine templated highly stable cadmium sulfate framework: A New Lewis Acid catalyst

    Science.gov (United States)

    Paul, Avijit Kumar

    2018-04-01

    One new open-framework two-dimensional layer, [Cd(NH3CH2COO)(SO4)], I, has been synthesized using amino acid as templating agent. Single crystal structural analysis shows that the compound crystallizes in monoclinic cell with non-centrosymmetric space group P21, a = 4.9513(1) Å, b = 7.9763(2) Å, c = 8.0967(2) Å, β = 105.917(1)° and V = 307.504(12) Å3. The compound has connectivity between the Cd-centers and the sulfate units forming a two-dimensional layer structure. Sulfate unit is coordinated to metal center with η3, μ4 mode possessing a coordination free oxygen atom. The zwitterionic form of glycine molecule is present in the structure bridging with two metal centers through μ2-mode by carboxylate oxygens. The topological analysis reveals that the two-dimensional network is formed with a novel 4- and 6-connected binodal net of (32,42,52)(34,44,54,63) topology. Although one end of the glycine molecule is free from coordination, the structure is highly stable up to 350 °C. Strong N-H⋯ O hydrogen bonding interactions play an important role in the stabilization and formation of three-dimensional supramolecular structure. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicates good catalytic behavior. The present study illustrates the usefulness of the amino acid for the structure building in less studied sulfate based framework materials as well as designing of new heterogeneous catalysts for the broad application. The compound has also been characterized through elemental analysis, PXRD, IR, SEM and TG-DT studies.

  14. The model of the long-range effect in solids: Evolution of structure, clusters of internal boundaries, and their statistical descriptors

    Science.gov (United States)

    Herega, Alexander; Sukhanov, Volodymyr; Vyrovoy, Valery

    2017-12-01

    It is known that the multifocal mechanism of genesis of structure of heterogeneous materials provokes intensive formation of internal boundaries. In the present papers, the dependence of the structure and properties of material on the characteristic size and shape, the number and size distribution, and the character of interaction of individual internal boundaries and their clusters is studied. The limitation on the applicability of the material damage coefficient is established; the effective information descriptor of internal boundaries is proposed. An idea of the effect of long-range interaction in irradiated solids on the realization of the second-order phase transition is introduced; a phenomenological percolation model of the effect is proposed.

  15. The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission

    International Nuclear Information System (INIS)

    Ebisawa, Tatsuki; Yamamura, Akihiro; Kameda, Yasuhiro; Hayakawa, Kou; Nagata, Koji; Tanokura, Masaru

    2010-01-01

    The crystal structure of a monomeric mutant of Azami-Green (mAG) from G. fascicularis was determined at 2.2 Å resolution. Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first known monomeric green-emitting fluorescent protein that is not a variant of Aequorea victoria green fluorescent protein (avGFP). These two green fluorescent proteins are only 27% identical in their amino-acid sequences. mAG is more similar in its amino-acid sequence to four fluorescent proteins: Dendra2 (a green-to-red irreversibly photoconverting fluorescent protein), Dronpa (a bright-and-dark reversibly photoswitchable fluorescent protein), KikG (a tetrameric green-emitting fluorescent protein) and Kaede (another green-to-red irreversibly photoconverting fluorescent protein). To reveal the structural basis of stable green emission by mAG, the 2.2 Å crystal structure of mAG has been determined and compared with the crystal structures of avGFP, Dronpa, Dendra2, Kaede and KikG. The structural comparison revealed that the chromophore formed by Gln62-Tyr63-Gly64 (QYG) and the fixing of the conformation of the imidazole ring of His193 by hydrogen bonds and van der Waals contacts involving His193, Arg66 and Thr69 are likely to be required for the stable green emission of mAG. The crystal structure of mAG will contribute to the design and development of new monomeric fluorescent proteins with faster maturation, brighter fluorescence, improved photostability, new colours and other preferable properties as alternatives to avGFP and its variants

  16. Biomarker Evidence of Relatively Stable Community Structure in the Northern South China Sea during the Last Glacial and Holocene

    Directory of Open Access Journals (Sweden)

    Juan He

    2008-01-01

    Full Text Available High-resolution molecular abundance records for several marine biomarkers during the last glacial and Holocene have been generated for core MD05-2904 (19 _ 116 _ 2066 mwater depth from the northern South China Sea. The UK' 37 SST record indicates a 4.4 C cooling during the Last Glacial Maximum for this site, consistent with previous reconstructions. The contents of C37 alkenones, dinosterol, brassicasterol, and C30 alkyl diols are used as productivity proxies for haptophytes, dinoflagellates, diatoms, and eustigmatophytes, respectively. These records reveal that both individual phytoplankton group and total productivity increased by several factors during the LGM compared with those for the Holocene, in response to increased nutrient supply. However, the community structure based on biomarker percentages remained relatively stable during the last glacial-Holocene transition, although there were short-term oscillations.

  17. Transition behavior of asymmetric polystyrene-b-poly(2-vinylpyridine) films: A stable hexagonally modulated layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Koo, Kyosung; Kim, Kyunginn; Ahn, Hyungju; Lee, Byeongdu; Park, Cheolmin; Ryu, Du Yeol

    2015-03-09

    The phase transitions in the films of an asymmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) were investigated by grazing incidence small-angle X-ray scattering (GISAXS) and transmission electron microscopy (TEM). Compared with the sequential transitions in the bulk, hexagonally perforated layer (HPL) – gyroid (GYR) – disorder (DIS) upon heating, the transitions in film geometry were dramatically changed with decreasing thickness due to the growing preferential interactions from substrate, resulting in a thickness-dependent transition diagram including four different morphologies of hexagonally modulated layer (HML), coexisting (HML and GYR), GYR, and DIS. Particularly in the films ≤10Lo, where Lo is d-spacing at 150 °C, a stable HML structure was identified even above the order-to-disorder transition (ODT) temperature of the bulk, which was attributed to the suppressed compositional fluctuations by the enhanced substrate interactions.

  18. Framework to Define Structure and Boundaries of Complex Health Intervention Systems: The ALERT Project

    DEFF Research Database (Denmark)

    Boriani, Elena; Esposito, Roberto; Frazzoli, Chiara

    2017-01-01

    of a framework with focus on systems and system boundaries of interdisciplinary projects. As an example on how to apply our framework, we analyzed ALERT [an integrated sensors and biosensors’ system (BEST) aimed at monitoring the quality, health, and traceability of the chain of the bovine milk......], a multidisciplinary and interdisciplinary project based on the application of measurable biomarkers at strategic points of the milk chain for improved food security (including safety), human, and ecosystem health (1). In fact, the European food safety framework calls for science-based support to the primary producers......’ mandate for legal, scientific, and ethical responsibility in food supply. Because of its multidisciplinary and interdisciplinary approach involving human, animal, and ecosystem health, ALERT can be considered as a One Health project. Within the ALERT context, we identified the need to take into account...

  19. Framework to Define Structure and Boundaries of Complex Health Intervention Systems: The ALERT Project

    Directory of Open Access Journals (Sweden)

    Elena Boriani

    2017-07-01

    Full Text Available Health intervention systems are complex and subject to multiple variables in different phases of implementation. This constitutes a concrete challenge for the application of translational science in real life. Complex systems as health-oriented interventions call for interdisciplinary approaches with carefully defined system boundaries. Exploring individual components of such systems from different viewpoints gives a wide overview and helps to understand the elements and the relationships that drive actions and consequences within the system. In this study, we present an application and assessment of a framework with focus on systems and system boundaries of interdisciplinary projects. As an example on how to apply our framework, we analyzed ALERT [an integrated sensors and biosensors’ system (BEST aimed at monitoring the quality, health, and traceability of the chain of the bovine milk], a multidisciplinary and interdisciplinary project based on the application of measurable biomarkers at strategic points of the milk chain for improved food security (including safety, human, and ecosystem health (1. In fact, the European food safety framework calls for science-based support to the primary producers’ mandate for legal, scientific, and ethical responsibility in food supply. Because of its multidisciplinary and interdisciplinary approach involving human, animal, and ecosystem health, ALERT can be considered as a One Health project. Within the ALERT context, we identified the need to take into account the main actors, interactions, and relationships of stakeholders to depict a simplified skeleton of the system. The framework can provide elements to highlight how and where to improve the project development when project evaluations are required.

  20. Structuring of turbulence and its impact on basic features of Ekman boundary layers

    Directory of Open Access Journals (Sweden)

    I. Esau

    2013-08-01

    Full Text Available The turbulent Ekman boundary layer (EBL has been studied in a large number of theoretical, laboratory and modeling works since F. Nansen's observations during the Norwegian Polar Expedition 1893–1896. Nevertheless, the proposed analytical models, analysis of the EBL instabilities, and turbulence-resolving numerical simulations are not fully consistent. In particular, the role of turbulence self-organization into longitudinal roll vortices in the EBL and its dependence on the meridional component of the Coriolis force remain unclear. A new set of large-eddy simulations (LES are presented in this study. LES were performed for eight different latitudes (from 1° N to 90° N in the domain spanning 144 km in the meridional direction. Geostrophic winds from the west and from the east were used to drive the development of EBL turbulence. The emergence and growth of longitudinal rolls in the EBL was simulated. The simulated rolls are in good agreement with EBL stability analysis given in Dubos et al. (2008. The destruction of rolls in the westerly flow at low latitude was observed in simulations, which agrees well with the action of secondary instability on the rolls in the EBL. This study quantifies the effect of the meridional component of the Coriolis force and the effect of rolls in the EBL on the internal EBL parameters such as friction velocity, cross-isobaric angle, parameters of the EBL depth and resistance laws. A large impact of the roll development or destruction is found. The depth of the EBL in the westerly flow is about five times less than it is in the easterly flow at low latitudes. The EBL parameters, which depend on the depth, also exhibit large difference in these two types of the EBL. Thus, this study supports the need to include the horizontal component of the Coriolis force into theoretical constructions and parameterizations of the boundary layer in models.

  1. Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.

    Science.gov (United States)

    Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2015-12-09

    High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.

  2. Application of sodar to interpret CO2 and CO profiles and their dependence on boundary layer structure

    International Nuclear Information System (INIS)

    Neff, W; Andrews, A; Wolfe, D

    2008-01-01

    The Boulder Atmospheric Observatory (BAO) tower was constructed and became operational in 1977. This 300-m tower, although originally supporting the development and improvement of ground-based remote sensing devices, has been used extensively in the study of the atmospheric boundary layer as well as plume dispersion and air quality. It was used in studies of the Denver Brown Cloud during the winters of 1987-1988 and 1996-1997. Located about 20 km east from the foothills of the Rocky Mountains, it is subject to a wide range of weather conditions ranging from night-time drainage winds with a low-level jet structure, to down-slope wind storms and upslope snow storms. During the summer of 2007, three levels of CO 2 and CO gas sampling (at 22, 100, and 300 m) were added as the tower became part of the NOAA ESRL/Global Monitoring Division CO 2 tall-tower network. The tower's location in complex terrain and its proximity to urban areas will provide a number of challenges in the interpretation of the data it provides. In this paper, we will describe some of the history of the tower in past air quality studies, examples of its complex meteorological setting and initial examples comparing diurnal variation in CO 2 and CO with boundary layer depths and structure observed with an acoustic sounder

  3. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

    Science.gov (United States)

    Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa

    2018-03-01

    The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

  4. The Effects of Land Surface Heating And Roughness Elements on the Structure and Scaling Laws of Atmospheric Boundary Layer Turbulence

    Science.gov (United States)

    Ghannam, Khaled

    The atmospheric boundary-layer is the lowest 500-2000 m of the Earth's atmosphere where much of human life and ecosystem services reside. This layer responds to land surface (e.g. buoyancy and roughness elements) and slowly evolving free tropospheric (e.g. temperature and humidity lapse rates) conditions that arguably mediate and modulate biosphere-atmosphere interactions. Such response often results in spatially- and temporally-rich turbulence scales that continue to be the subject of inquiry given their significance to a plethora of applications in environmental sciences and engineering. The work here addresses key aspects of boundary layer turbulence with a focus on the role of roughness elements (vegetation canopies) and buoyancy (surface heating) in modifying the well-studied picture of shear-dominated wall-bounded turbulence. A combination of laboratory channel experiments, field experiments, and numerical simulations are used to explore three distinct aspects of boundary layer turbulence. These are: • The concept of ergodicity in turbulence statistics within canopies: It has been long-recognized that homogeneous and stationary turbulence is ergodic, but less is known about the effects of inhomogeneity introduced by the presence of canopies on the turbulence statistics. A high resolution (temporal and spatial) flume experiment is used here to test the convergence of the time statistics of turbulent scalar concentrations to their ensemble (spatio-temporal) counterpart. The findings indicate that within-canopy scalar statistics have a tendency to be ergodic, mostly in shallow layers (close to canopy top) where the sweeping flow events appear to randomize the statistics. Deeper layers within the canopy are dominated by low-dimensional (quasi-deterministic) von Karman vortices that tend to break ergodicity. • Scaling laws of turbulent velocity spectra and structure functions in near-surface atmospheric turbulence: the existence of a logarithmic scaling in the

  5. Small scale structure in the wall region of a turbulent boundary layer

    International Nuclear Information System (INIS)

    Bogar, T.J.

    1975-01-01

    This paper is a report of the construction and application of an extremely small hot-wire X-probe (typical dimensions of 100 μ) to the measurement of Reynolds stress in the wall region of the turbulent boundary layer of a flat plate at high Reynolds number (Re/sub theta/ = 11,300). In the present flow, the size of the probe corresponds to a dimensionless length based on wall parameters of lu/sub tau//ν = 3. Probe construction methods are described. The Wyngaard-Lumley constant temperature anemometer used to heat the wire is analyzed, and a direct acoustical frequency calibration of the wire is made. This calibration shows the small wire to have uniform frequency response to 15 kHz. A novel calibration technique is employed using a high speed, digital mini-computer to determine the velocity in the stream direction and in a direction normal to the wall by matching the unique voltage pairs produced by the X-wire array in a turbulent flow to the voltage pairs produced when the probe is exposed to a known uniform flow inclined at various angles

  6. Instantaneous structure of a boundary layer subjected to free-stream turbulence

    Science.gov (United States)

    Hearst, R. Jason; de Silva, Charitha; Dogan, Eda; Ganapathisubramani, Bharathram

    2017-11-01

    A canonical turbulent boundary layer (TBL) has a distinct turbulent/non-turbulent interface (TNTI) separating the rotational wall-bounded fluid from the irrotational free-stream. If an intermittency profile is constructed separating the flow above and below the TNTI, this profile can be described by an error-function. Within the turbulent region, the flow is separated by interfaces that demarcate uniform momentum zones (UMZs). We observe that these characteristics of a TBL change if there is free-stream turbulence (FST). First, the entire flow is rotational, and thus a distinct TNTI does not exist. Nonetheless, it is possible to identify an interface that approximately separates the flow with mean zero vorticity from the distinctly wall-signed vorticity. This turbulent/turbulent interface is shown to be closer to the wall than the traditional TNTI, and the resulting intermittency profile is not an error-function. Also, UMZs appear to be masked by the free-stream perturbations. Despite these differences, a velocity field of a TBL with homogeneous, isotropic turbulence superimposed and weighted with the empirical intermittency profile, qualitatively reproduces the 1st and 2nd-order statistics. These findings suggest that a TBL subjected to FST may be described by a simple model. EPSRC, ERC, NSERC, Zonta International.

  7. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    Science.gov (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  8. The structure of a separating turbulent boundary layer. IV - Effects of periodic free-stream unsteadiness

    Science.gov (United States)

    Simpson, R. L.; Shivaprasad, B. G.; Chew, Y.-T.

    1983-01-01

    Measurements were obtained of the sinusoidal unsteadiness of the free stream velocity during the separation of the turbulent boundary layer. Data were gathered by single wire and cross-wire, anemometry upstream of flow detachment, by laser Doppler velocimetry to detect the movement of the flow in small increments, and by a laser anemometer in the detached zone to measure turbulence and velocities. The study was restricted to a sinusoidal instability frequency of 0.61 and a ratio of oscillation amplitude to mean velocity of 0.3. Large amplitude and phase variations were found after the detachment, with unsteady effects producing hysteresis in the relationships between flow parameters. The detached shear layer decreased in thickness with increasing free-stream velocity and increases in the Reynolds shear stress. Deceleration of the free stream velocity caused thickening in the shear layer and upstream movement of the flow reversal location. The results are useful for studies of compressor blade and helicopter rotors in transition.

  9. Boundary layer structure observed by Shipborne Doppler Sodar in the Suez Canal zone

    International Nuclear Information System (INIS)

    Fiocco, G.; Mastrantonio, G.; Ricotta, A.

    1980-01-01

    Observations of the boundary layer with a monostatic Sodar and other instrumentation were carried out in the Suez canal zone in January and March 1979, from the Italian m.v. Salernum on its way to and from a GARP assignment. The Sodar was operated almost continuously throughout the passages. In addition to the intensity records, an off-line Doppler analysis involving the use of the fast Fourier transform of the digitized Sodar echoes has provided the vertical component w of the velocity. In general, because of efficient filtering and of the good quality of the data, a vertical profile of w has been determined for each transmitted pulse. During a prolonged stay in the Bitter lakes vertical profiles of temperature and humidity were also obtained by deploying a tethered balloon. Large temporal and spatial temperature contrasts exist in the canal zone due to the presence of the desert and of large and small bodies of water. The ensuring phenomenology during the time of observation was quite varied. (author)

  10. Boundary layer structure observed by Shipborne Doppler Sonar in the Suez Canal zone

    Energy Technology Data Exchange (ETDEWEB)

    Fiocco, G. (Rome Univ. (Italy). Ist. di Fisica); Mastrantonio, G.; Ricotta, A. (Consiglio Nazionale delle Ricerche, Frascati (Italy). Lab. per il Plasma nello Spazio)

    Observations of the boundary layer with a monostatic Sonar and other instrumentation were carried out in the Suez canal zone in January and March 1979, from the Italian m.v. Salernum on its way to and from a GARP assignment. The Sonar was operated almost continuously throughout the passages. In addition to the intensity records, an off-line Doppler analysis involving the use of the fast Fourier transform of the digitized Sonar echoes has provided the vertical component w of the velocity. In general, because of efficient filtering and of the good quality of the data, a vertical profile of w has been determined for each transmitted pulse. During a prolonged stay in the Bitter lakes vertical profiles of temperature and humidity were also obtained by deploying a tethered balloon. Large temporal and spatial temperature contrasts exist in the canal zone due to the presence of the desert and of large and small bodies of water. The ensuring phenomenology during the time of observation was quite varied.

  11. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1993

    Science.gov (United States)

    Bartholomay, Roy C.; Edwards, Daniel D.; Campbell, Linford J.

    1994-01-01

    The U.S. Geological Survey and the Idaho Department of Water Resources, in response to a request from the U.S. Department of Energy, sampled 19 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from seven irrigation wells, four domestic wells, two springs, one stock well, three dairy wells, one observation well, and one commercial well. Two quality assurance samples also were collected and analyzed. None of the radionuclides, inorganic constituents, or organic compounds exceeded the established maximum contaminant levels for drinking water. Most of the radionuclide and inorganic constituent concen- trations exceeded their respective laboratory reporting levels. All samples analyzed for surfactants and dissolved organic carbon had concentrations that exceeded their reporting level. Ethylbenzene concentrations exceeded the reporting level in one water sample.

  12. Boundary element method in dynamic interaction of structures with multilayers media

    International Nuclear Information System (INIS)

    Mihalache, N.; Poterasu, V.F.

    1993-01-01

    The paper presents the problems of dynamic interaction between the multilayers media and structure by means of B.E.M., using Green's functions. The structure considered by the authors as a particular problem concerns a reinforced concrete shear wall and soil foundation of three layers having different thickness and mechanical characteristics. The authors will present comparatively the stresses and the displacements in static and dynamic regime interaction response of the structure. Theoretical part of the paper presents: Green's functions for the multilayers media in dynamic regime, stiffness matrices, stresses and displacements in the multilayers media exprimed by means of the Green's functions induced by the shear and horizontal forces, computer program, consideration for dynamic, structure-foundation-multilayers soil foundation interaction. (author)

  13. Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis

    International Nuclear Information System (INIS)

    Lavoie, Raphael A.; Hebert, Craig E.; Rail, Jean-Francois; Braune, Birgit M.; Yumvihoze, Emmanuel; Hill, Laura G.; Lean, David R.S.

    2010-01-01

    Even at low concentrations in the environment, mercury has the potential to biomagnify in food chains and reaches levels of concern in apex predators. The aim of this study was to relate the transfer of total mercury (THg) and methylmercury (MeHg) in a Gulf of St. Lawrence food web to the trophic structure, from primary consumers to seabirds, using stable nitrogen (δ 15 N) and carbon (δ 13 C) isotope analysis and physical environmental parameters. The energy reaching upper trophic level species was principally derived from pelagic primary production, with particulate organic matter (POM) at the base of the food chain. We developed a biomagnification factor (BMF) taking into account the various prey items consumed by a given predator using stable isotope mixing models. This BMF provides a more realistic estimation than when using a single prey. Lipid content, body weight, trophic level and benthic connection explained 77.4 and 80.7% of the variation in THg and MeHg concentrations, respectively in this food web. When other values were held constant, relationships with lipid and benthic connection were negative whereas relationships with trophic level and body weight were positive. Total Hg and MeHg biomagnified in this food web with biomagnification power values (slope of the relationship with δ 15 N) of 0.170 and 0.235, respectively on wet weight and 0.134 and 0.201, respectively on dry weight. Values of biomagnification power were greater for pelagic and benthopelagic species compared to benthic species whereas the opposite trend was observed for levels at the base of the food chain. This suggests that Hg would be readily bioavailable to organisms at the base of the benthic food chain, but trophic transfer would be more efficient in each trophic level of pelagic and benthopelagic food chains.

  14. Transition metal atoms absorbed on MoS2/h-BN heterostructure: stable geometries, band structures and magnetic properties.

    Science.gov (United States)

    Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin

    2018-06-15

    We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.

  15. Study of Baffle Boundary and System Parameters on Liquid-Solid Coupling Vibration of Rectangular Liquid-Storage Structure

    Directory of Open Access Journals (Sweden)

    Wei Jing

    2016-01-01

    Full Text Available In order to study the vibration problem of liquid-solid coupling of rectangular liquid-storage structure with horizontal elastic baffle, ignoring the influence of surface gravity wave, two different velocity potential functions corresponding to the liquid above and below the elastic baffle are assumed; based on the theory of mathematical equation and energy method, the formulas of basic frequency of liquid-solid coupling vibration system are derived, the baffle joined to the tank wall with 3 kinds of boundary conditions, namely, four edges simply supported, two opposite edges clamped and two opposite edges simply supported, and four edges clamped; the influence rules of baffle length-width ratio, the ratio of baffle height to liquid level, baffle elastic modulus, baffle density, baffle thickness, and liquid density on the coupling vibration performance are studied. The results show that the frequency of the clamped boundary is minimum; the influences of baffle length-width ratio and relative height on the basic frequency are much greater than that of the other system parameters; the relation between baffle length-width ratio and the frequency is exponential, while baffle relative height has a parabola relation with the frequency; the larger the baffle length-width ratio, the closer the baffle to the liquid level; the coupling frequency will be reduced more obviously.

  16. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    Energy Technology Data Exchange (ETDEWEB)

    Keylock, Christopher J [Sheffield Fluid Mechanics Group and Department of Civil and Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Nishimura, Kouichi, E-mail: c.keylock@sheffield.ac.uk [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2016-04-15

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  17. Wavelet phase analysis of two velocity components to infer the structure of interscale transfers in a turbulent boundary-layer

    International Nuclear Information System (INIS)

    Keylock, Christopher J; Nishimura, Kouichi

    2016-01-01

    Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient boundary layer shows that phase coupling between longitudinal and vertical velocity components is strong at both large and small scales, but minimal in the middle of the inertial regime. The same general pattern is observed at all vertical positions studied, but there is stronger phase coherence as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal shape at small scales to the development of significant bimodality at the integral scale and above. The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime, with the small scale relation consistent with intense ejections followed by a more prolonged sweep motion. These results may be interpreted in a manner that is consistent with the action of low speed streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating boundary-layer structure and inferring process from single-point measurements. (paper)

  18. Trophic structure of mesopelagic fishes in the Gulf of Mexico revealed by gut content and stable isotope analyses

    Science.gov (United States)

    McClain-Counts, Jennifer P.; Demopoulos, Amanda W.J.; Ross, Steve W.

    2017-01-01

    Mesopelagic fishes represent an important component of the marine food web due to their global distributions, high abundances and ability to transport organic material throughout a large part of the water column. This study combined stable isotope (SIAs) and gut content analyses (GCAs) to characterize the trophic structure of mesopelagic fishes in the North-Central Gulf of Mexico. Additionally, this study examined whether mesopelagic fishes utilized chemosynthetic energy from cold seeps. Specimens were collected (9–25 August 2007) over three deep (>1,000 m) cold seeps at discrete depths (surface to 1,503 m) over the diurnal cycle. GCA classified 31 species (five families) of mesopelagic fishes into five feeding guilds: piscivores, large crustacean consumers, copepod consumers, generalists and mixed zooplanktivores. However, these guilds were less clearly defined based on stable isotope mixing model (MixSIAR) results, suggesting diets may be more mixed over longer time periods (weeks–months) and across co-occurring species. Copepods were likely important for the majority of mesopelagic fishes, consistent with GCA (this study) and previous literature. MixSIAR results also identified non-crustacean prey items, including salps and pteropods, as potentially important prey items for mesopelagic fishes, including those fishes not analysed in GCA (Sternoptyx spp. and Melamphaidae). Salps and other soft-bodied species are often missed in GCAs. Mesopelagic fishes had δ13C results consistent with particulate organic matter serving as the baseline organic carbon source, fueling up to three trophic levels. Fishes that undergo diel vertical migration were depleted in 15N relative to weak migrators, consistent with depth-specific isotope trends in sources and consumers, and assimilation of 15N-depleted organic matter in surface waters. Linear correlations between fish size and δ15N values suggested ontogenetic changes in fish diets for several species. While there was

  19. On nonlinear wave-structure interaction using an immersed boundary method in 2D

    DEFF Research Database (Denmark)

    Kontos, Stavros; Bingham, Harry B.; Lindberg, Ole

    2016-01-01

    of a structure. The method obtains an optimum scaling of the solution effort [2] and has been implemented on massively parallel GPU architectures using the CUDA API [3] making it suitable for high resolution flow simulations. This combination of novel and robust numerical methods aims at creating new efficient...

  20. Hierarchical population structure in greater sage-grouse provides insight into management boundary delineation

    Science.gov (United States)

    Todd B. Cross; David E. Naugle; John C. Carlson; Michael K. Schwartz

    2016-01-01

    Understanding population structure is important for guiding ongoing conservation and restoration efforts. The greater sage-grouse (Centrocercus urophasianus) is a species of concern distributed across 1.2 million km2 of western North America. We genotyped 1499 greater sagegrouse from 297 leks across Montana, North Dakota and South Dakota using a 15 locus...

  1. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  2. Late-Stage Vortical Structures and Eddy Motions in a Transitional Boundary Layer

    International Nuclear Information System (INIS)

    Xiao-Bing, Liu; Zheng-Qing, Chen; Chao-Qun, Liu

    2010-01-01

    A high-order direct numerical simulation of flow transition over a flat-plate at a free stream Mach number 0.5 is carried out. Formation and development of three-dimensional vortical structures, typically shown as A-vortices, hairpin vortices and ring-like vortices, are observed. Numerical results show that there is a strong downdraft motion of fluid excited by every ring-like vortex in the late-stage of the transition process. At two sides of the vortical structure centerline, the downdraft motions induced by the ring-like vortex and the rotating legs superimpose. This is responsible for the appearance of a high-speed streak associated with the positive spike observed in a previous investigation and the appearance of a high-shear layer in the near wall region. (fundamental areas of phenomenology(including applications))

  3. Analysis of defect structure in silicon. Effect of grain boundary density on carrier mobility in UCP material

    Science.gov (United States)

    Dunn, J.; Stringfellow, G. B.; Natesh, R.

    1982-01-01

    The relationships between hole mobility and grain boundary density were studied. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using a quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.

  4. Nanoscale discontinuities at the boundary of flowing liquids: a look into structure

    International Nuclear Information System (INIS)

    Wolff, Max; Gutfreund, Philipp; Zabel, Hartmut; Ruehm, Adrian; Akgun, Bulent

    2011-01-01

    When downsizing technology, confinement and interface effects become enormously important. Shear imposes additional anisotropy on a liquid. This may induce inhomogeneities, which may have their origin close to the solid interface. For advancing the understanding of flow, information on structures on all length scales and in particular close to the solid interface is indispensable. Neutron scattering offers an excellent tool to contribute in this context. In this work, surface sensitive scattering techniques were used to resolve the structure of liquids under flow in the vicinity of a solid interface. Our results are summarized as follows. First, for a Newtonian liquid we report a depletion distance on the order of nanometers which is far too small to explain the amount of surface slip, on the order of micrometers, found by complementary techniques. Second, for a grafted polymer brush we find no entanglement-disentanglement transition under shear but the grafted film gets ripped off the surface. Third, by evaluating the local structure factor of a micellar solution close to the solid interface it turns out that the degree of order and local relaxation depends critically on the surface energy of the solid surface.

  5. The vertical structure of airflow turbulence characteristics within a boundary layer during wind blown sand transport over a beach

    Science.gov (United States)

    Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.

    2010-12-01

    Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.

  6. Liquid structure as a guide for phase stability in the solid state: Discovery of a stable compound in the Au-Si alloy system

    International Nuclear Information System (INIS)

    Tasci, Emre S.; Sluiter, Marcel H.F.; Pasturel, Alain; Villars, Pierre

    2010-01-01

    A new crystalline ground state was discovered in the Au-Si system through first-principles electronic structure calculations. The new structure was found using the experimentally and theoretically determined local atomic structure in the liquid as a guide for the solid state. Local atomic structure in the liquid was matched with that for all known crystal structures as compiled in the Pauling File structural database. The best matching crystalline structures were then explicitly calculated using first-principles methods. Most candidate crystal structures were found to be close, but above the enthalpy of a composition weighted average of the face-centered cubic Au and diamond structure Si terminal phases, but one crystal structure was more stable than the terminal phases by about 10 meV atom -1 at T = 0 K. As first-principles simulations of local structure are feasible for most liquid alloys, the present methodology is applicable to other alloys lying near a eutectic composition.

  7. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang; Lu, Ang-Yu; Lu, Ping; Yang, Xiulin; Jiang, Chang-Ming; Mariano, Marina; Kaehr, Brian; Lin, Oliver; Taylor, André ; Sharp, Ian D.; Li, Lain-Jong; Chou, Stanley S.; Tung, Vincent

    2017-01-01

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  8. Highly transparent, stable, and superhydrophobic coatings based on gradient structure design and fast regeneration from physical damage

    Science.gov (United States)

    Chen, Zao; Liu, Xiaojiang; Wang, Yan; Li, Jun; Guan, Zisheng

    2015-12-01

    Optical transparency, mechanical flexibility, and fast regeneration are important factors to expand the application of superhydrophobic surfaces. Herein, we fabricated highly transparent, stable, and superhydrophobic coatings through a novel gradient structure design by versatile dip-coating of silica colloid particles (SCPs) and diethoxydimethysiliane cross-linked silica nanoparticles (DDS-SNPs) on polyethylene terephthalate (PET) film and glass, followed by the modification of octadecyltrichlorosiliane (OTCS). When the DDS concentration reached 5 wt%, the modified SCPs/DDS-SNPs coating exhibited a water contact angle (WCA) of 153° and a sliding angle (SA) glass was increased by 2.7% and 1% in the visible wavelength, respectively. This superhydrophobic coating also showed good robustness and stability against water dropping impact, ultrasonic damage, and acid solution. Moreover, the superhydrophobic PET film after physical damage can quickly regain the superhydrophobicity by one-step spray regenerative solution of dodecyltrichlorosilane (DTCS) modified silica nanoparticles at room temperature. The demonstrated method for the preparation and regeneration of superhydrophobic coating is available for different substrates and large-scale production at room temperature.

  9. Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

    KAUST Repository

    Chen, Yen-Chang

    2017-10-12

    The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

  10. Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D.; Habibzadegan, Andrew [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); Tu, Chingkuang; Silverman, David N. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States)

    2013-08-01

    The X-ray crystallographic structure of the disulfide-containing HCAII (dsHCAII) has been solved to 1.77 Å resolution and revealed that successful oxidation of the cysteine bond was achieved while also retaining desirable active-site geometry. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration of CO{sub 2} to bicarbonate and a proton. Recently, there has been industrial interest in utilizing CAs as biocatalysts for carbon sequestration and biofuel production. The conditions used in these processes, however, result in high temperatures and acidic pH. This unfavorable environment results in rapid destabilization and loss of catalytic activity in CAs, ultimately resulting in cost-inefficient high-maintenance operation of the system. In order to negate these detrimental industrial conditions, cysteines at residues 23 (Ala23Cys) and 203 (Leu203Cys) were engineered into a wild-type variant of human CA II (HCAII) containing the mutation Cys206Ser. The X-ray crystallographic structure of the disulfide-containing HCAII (dsHCAII) was solved to 1.77 Å resolution and revealed that successful oxidation of the cysteine bond was achieved while also retaining desirable active-site geometry. Kinetic studies utilizing the measurement of {sup 18}O-labeled CO{sub 2} by mass spectrometry revealed that dsHCAII retained high catalytic efficiency, and differential scanning calorimetry showed acid stability and thermal stability that was enhanced by up to 14 K compared with native HCAII. Together, these studies have shown that dsHCAII has properties that could be used in an industrial setting to help to lower costs and improve the overall reaction efficiency.

  11. Supplementary Material for Finding the Stable Structures of N1-xWX with an Ab-initio High-Throughput Approach

    Science.gov (United States)

    2015-05-08

    Supplementary material for “Finding the stable structures of N1−xWX with an ab - initio high-throughput approach” Michael J. Mehl∗ Center for...AND SUBTITLE Supplementary Material for ’Finding the Stable Structures of N1-xWX with an ab - initio High-throughput Approach’ 5a. CONTRACT NUMBER 5b...and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48, 13115–13118 (1993). 2 G. Kresse and J. Hafner, Ab initio

  12. Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time

    Directory of Open Access Journals (Sweden)

    Cody Springer Sheik

    2015-05-01

    Full Text Available Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time.

  13. Stable genetic structure and connectivity in pollution-adapted and nearby pollution-sensitive populations of Fundulus heteroclitus

    Science.gov (United States)

    Biancani, Leann M.; Flight, Patrick A.; Nacci, Diane E.; Rand, David M.; Crawford, Douglas L.; Oleksiak, Marjorie F.

    2018-01-01

    Populations of the non-migratory estuarine fish Fundulus heteroclitus inhabiting the heavily polluted New Bedford Harbour (NBH) estuary have shown inherited tolerance to local pollutants introduced to their habitats in the past 100 years. Here we examine two questions: (i) Is there pollution-driven selection on the mitochondrial genome across a fine geographical scale? and (ii) What is the pattern of migration among sites spanning a strong pollution gradient? Whole mitochondrial genomes were analysed for 133 F. heteroclitus from seven nearby collection sites: four sites along the NBH pollution cline (approx. 5 km distance), which had pollution-adapted fish, as well as one site adjacent to the pollution cline and two relatively unpolluted sites about 30 km away, which had pollution-sensitive fish. Additionally, we used microsatellite analyses to quantify genetic variation over three F. heteroclitus generations in both pollution-adapted and sensitive individuals collected from two sites at two different time points (1999/2000 and 2007/2008). Our results show no evidence for a selective sweep of mtDNA in the polluted sites. Moreover, mtDNA analyses revealed that both pollution-adapted and sensitive populations harbour similar levels of genetic diversity. We observed a high level of non-synonymous mutations in the most polluted site. This is probably associated with a reduction in Ne and concomitant weakening of purifying selection, a demographic expansion following a pollution-related bottleneck or increased mutation rates. Our demographic analyses suggest that isolation by distance influences the distribution of mtDNA genetic variation between the pollution cline and the clean populations at broad spatial scales. At finer scales, population structure is patchy, and neither spatial distance, pollution concentration or pollution tolerance is a good predictor of mtDNA variation. Lastly, microsatellite analyses revealed stable population structure over the last

  14. Structural integrity of water reactor pressure boundary components. Progress report ending 29 February 1976

    International Nuclear Information System (INIS)

    Loss, F.J.

    1976-01-01

    The report describes progress in the following areas: (a) fatigue crack propagation in reactor pressure vessel steels in an air environment, (b) dynamic fracture toughness of 1-in. (25-mm) and precracked Charpy-V bend specimens under impact loading, (c) postirradiation notch ductility and properties recovery in reactor vessel steels, (d) factors contributing to variable resistance of structural steels to radiation embrittlement, and (e) the initial program plan to investigate the phenomena of warm prestress and plastic net ligament in support of thermal shock studies

  15. A Hybrid Finite Element-Fourier Spectral Method for Vibration Analysis of Structures with Elastic Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-01-01

    Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.

  16. High spatial resolution measurements of large-scale three-dimensional structures in a turbulent boundary layer

    Science.gov (United States)

    Atkinson, Callum; Buchmann, Nicolas; Kuehn, Matthias; Soria, Julio

    2011-11-01

    Large-scale three-dimensional (3D) structures in a turbulent boundary layer at Reθ = 2000 are examined via the streamwise extrapolation of time-resolved stereo particle image velocimetry (SPIV) measurements in a wall-normal spanwise plane using Taylor's hypothesis. Two overlapping SPIV systems are used to provide a field of view similar to that of direct numerical simulations (DNS) on the order of 50 δ × 1 . 5 δ × 3 . 0 δ in the streamwise, wall-normal and spanwise directions, respectively, with an interrogation window size of 40+ ×20+ ×60+ wall units. Velocity power spectra are compared with DNS to examine the effective resolution of these measurements and two-point correlations are performed to investigate the integral length scales associated with coherent velocity and vorticity fluctuations. Individual coherent structures are detected to provide statistics on the 3D size, spacing, and angular orientation of large-scale structures, as well as their contribution to the total turbulent kinetic energy and Reynolds shear stress. The support of the ARC through Discovery (and LIEF) grants is gratefully acknowledged.

  17. Spanwise vorticity and wall normal velocity structure in the inertial region of turbulent boundary layers

    Science.gov (United States)

    Cuevas Bautista, Juan Carlos; Morrill-Winter, Caleb; White, Christopher; Chini, Gregory; Klewicki, Joseph

    2017-11-01

    The Reynolds shear stress gradient is a leading order mechanism on the inertial domain of turbulent wall-flows. This quantity can be described relative to the sum of two velocity-vorticity correlations, vωz and wωy . Recent studies suggest that the first of these correlates with the step-like structure of the instantaneous streamwise velocity profile on the inertial layer. This structure is comprised of large zones of uniform momentum segregated by slender regions of concentrated vorticity. In this talk we study the contributions of the v and ωz motions to the vorticity transport (vωz) mechanism through the use of experimental data at large friction Reynolds numbers, δ+. The primary contributions to v and ωz were estimated by identifying the peak wavelengths of their streamwise spectra. The magnitudes of these peaks are of the same order, and are shown to exhibit a weak δ+ dependence. The peak wavelengths of v, however, exhibit a strong wall-distance (y) dependence, while the peak wavelengths of ωz show only a weak y dependence, and remain almost O (√{δ+}) in size throughout the inertial domain. This research was partially supported by the National Science Foundation and partially supported by the Australian Research Council.

  18. Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries.

    Science.gov (United States)

    Uren, Caitlin; Kim, Minju; Martin, Alicia R; Bobo, Dean; Gignoux, Christopher R; van Helden, Paul D; Möller, Marlo; Hoal, Eileen G; Henn, Brenna M

    2016-09-01

    Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa. Copyright © 2016 by the Genetics Society of America.

  19. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  20. Agricultural Conservation Planning Framework: 3. Land Use and Field Boundary Database Development and Structure.

    Science.gov (United States)

    Tomer, Mark D; James, David E; Sandoval-Green, Claudette M J

    2017-05-01

    Conservation planning information is important for identifying options for watershed water quality improvement and can be developed for use at field, farm, and watershed scales. Translation across scales is a key issue impeding progress at watershed scales because watershed improvement goals must be connected with implementation of farm- and field-level conservation practices to demonstrate success. This is particularly true when examining alternatives for "trap and treat" practices implemented at agricultural-field edges to control (or influence) water flows through fields, landscapes, and riparian corridors within agricultural watersheds. We propose that database structures used in developing conservation planning information can achieve translation across conservation-planning scales, and we developed the Agricultural Conservation Planning Framework (ACPF) to enable practical planning applications. The ACPF comprises a planning concept, a database to facilitate field-level and watershed-scale analyses, and an ArcGIS toolbox with Python scripts to identify specific options for placement of conservation practices. This paper appends two prior publications and describes the structure of the ACPF database, which contains land use, crop history, and soils information and is available for download for 6091 HUC12 watersheds located across Iowa, Illinois, Minnesota, and parts of Kansas, Missouri, Nebraska, and Wisconsin and comprises information on 2.74 × 10 agricultural fields (available through /). Sample results examining land use trends across Iowa and Illinois are presented here to demonstrate potential uses of the database. While designed for use with the ACPF toolbox, users are welcome to use the ACPF watershed data in a variety of planning and modeling approaches. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Impact of aerosol intrusions on sea-ice melting rates and the structure Arctic boundary layer clouds

    Science.gov (United States)

    Cotton, W.; Carrio, G.; Jiang, H.

    2003-04-01

    The Los Alamos National Laboratory sea-ice model (LANL CICE) was implemented into the real-time and research versions of the Colorado State University-Regional Atmospheric Modeling System (RAMS@CSU). The original version of CICE was modified in its structure to allow module communication in an interactive multigrid framework. In addition, some improvements have been made in the routines involved in the coupling, among them, the inclusion of iterative methods that consider variable roughness lengths for snow-covered ice thickness categories. This version of the model also includes more complex microphysics that considers the nucleation of cloud droplets, allowing the prediction of mixing ratios and number concentrations for all condensed water species. The real-time version of RAMS@CSU automatically processes the NASA Team SSMI F13 25km sea-ice coverage data; the data are objectively analyzed and mapped to the model grid configuration. We performed two types of cloud resolving simulations to assess the impact of the entrainment of aerosols from above the inversion on Arctic boundary layer clouds. The first series of numerical experiments corresponds to a case observed on May 4 1998 during the FIRE-ACE/SHEBA field experiment. Results indicate a significant impact on the microstructure of the simulated clouds. When assuming polluted initial profiles above the inversion, the liquid water fraction of the cloud monotonically decreases, the total condensate paths increases and downward IR tends to increase due to a significant increase in the ice water path. The second set of cloud resolving simulations focused on the evaluation of the potential effect of aerosol concentration above the inversion on melting rates during spring-summer period. For these multi-month simulations, the IFN and CCN profiles were also initialized assuming the 4 May profiles as benchmarks. Results suggest that increasing the aerosol concentrations above the boundary layer increases sea-ice melting

  2. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-01-01

    propagation under changing structural boundary conditions can be monitored reliably. The method is not limited by the properties of the structure, and thus it is feasible to be applied to composite structure. PMID:26927115

  3. Stable States of Biological Organisms

    Science.gov (United States)

    Yukalov, V. I.; Sornette, D.; Yukalova, E. P.; Henry, J.-Y.; Cobb, J. P.

    2009-04-01

    A novel model of biological organisms is advanced, treating an organism as a self-consistent system subject to a pathogen flux. The principal novelty of the model is that it describes not some parts, but a biological organism as a whole. The organism is modeled by a five-dimensional dynamical system. The organism homeostasis is described by the evolution equations for five interacting components: healthy cells, ill cells, innate immune cells, specific immune cells, and pathogens. The stability analysis demonstrates that, in a wide domain of the parameter space, the system exhibits robust structural stability. There always exist four stable stationary solutions characterizing four qualitatively differing states of the organism: alive state, boundary state, critical state, and dead state.

  4. The boundary condition at the valve for numerical modelling of transient pipe flow with fluid structure interaction

    Science.gov (United States)

    Henclik, S.

    2014-08-01

    Transient flows in pipes (water hammer = WH) do appear in various situations and the accompanying pressure waves may involve serious perturbations in system functioning. To model these effects properly in the case of elastic pipe the dynamic fluid-structure interaction (FSI) should be taken into account. Fluid-structure couplings appear in various manners and the junction coupling is considered to be the strongest. This effect can be especially significant if the pipe can move as a whole body, which is possible when all its supports are not rigid. In the current paper a similar effect is numerically modelled. The pipe is fixed rigidly, but the valve at the end has a spring-dashpot mounting system, thus its motion is possible when WH is excited by the valve closuring. The boundary condition at the moving valve is modelled as a differential equation of motion. The valve hydraulic characteristics during closuring period are assumed by a time dependence of its loss factor. Preliminary numerical tests of that algorithm were done with an own computer program and it was found that the proper valve fixing system may produce significant lowering of WH pressures.

  5. Collaboration in Healthcare Through Boundary Work and Boundary Objects

    DEFF Research Database (Denmark)

    Meier, Ninna

    2015-01-01

    This article contributes to our understanding of how boundary work is practiced in healthcare settings. Previous studies have shown how boundaries are constantly changing, multiple, and co-existing, and can also be relatively stable cognitive and social distinctions between individuals and groups...

  6. Geological and Structural evolution of the Eurasia Africa plate boundary in the Gulf of Cadiz Central Eastern Atlantic Sea.

    OpenAIRE

    D’Oriano, Filippo

    2010-01-01

    Iberia Africa plate boundary, cross, roughly W-E, connecting the eastern Atlantic Ocean from Azores triple junction to the Continental margin of Morocco. Relative movement between the two plate change along the boundary, from transtensive near the Azores archipelago, through trascurrent movement in the middle at the Gloria Fracture Zone, to transpressive in the Gulf of Cadiz area. This study presents the results of geophysical and geological analysis on the plate boundary area offshore Gibral...

  7. Latitude-energy structure of multiple ion beamlets in Polar/TIMAS data in plasma sheet boundary layer and boundary plasma sheet below 6 RE radial distance: basic properties and statistical analysis

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2005-03-01

    Full Text Available Velocity dispersed ion signatures (VDIS occurring at the plasma sheet boundary layer (PSBL are a well reported feature. Theory has, however, predicted the existence of multiple ion beamlets, similar to VDIS, in the boundary plasma sheet (BPS, i.e. at latitudes below the PSBL. In this study we show evidence for the multiple ion beamlets in Polar/TIMAS ion data and basic properties of the ion beamlets will be presented. Statistics of the occurrence frequency of ion multiple beamlets show that they are most common in the midnight MLT sector and for altitudes above 4 RE, while at low altitude (≤3 RE, single beamlets at PSBL (VDIS are more common. Distribution functions of ion beamlets in velocity space have recently been shown to correspond to 3-dimensional hollow spheres, containing a large amount of free energy. We also study correlation with ~100 Hz waves and electron anisotropies and consider the possibility that ion beamlets correspond to stable auroral arcs.

  8. Structure of the Lithosphere-Asthenosphere Boundary Onshore and Offshore the California Continental Margin from Three-Dimensional Seismic Anisotropy

    Science.gov (United States)

    Gomez, C. D.; Escobar, L., Sr.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.

    2016-12-01

    The California continental margin, a major transform plate boundary in continental North America, is the locus of complex tectonic stress fields that are important in interpreting both remnant and ongoing deformational strain. Ancient subduction of the East Pacific Rise spreading center, the rotation and translation of tectonic blocks and inception of the San Andreas fault all contribute to the dynamic stress fields located both onshore and offshore southern California. Data obtained by the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) and the CISN (California Integrated Seismic Network) seismic array are analyzed for azimuthal anisotropy of Rayleigh waves from 80 teleseismic events at periods 16 - 78 s. Here we invert Rayleigh wave data for shear wave velocity structure and three-dimensional seismic anisotropy in the thee regions designated within the continental margin including the continent, seafloor and California Borderlands. Preliminary results show that seismic anisotropy is resolved in multiple layers and can be used to determine the lithosphere-asthenosphere boundary (LAB) in offshore and continental regions. The oldest seafloor in our study at age 25-35 Ma indicates that the anisotropic transition across the LAB occurs at 73 km +/- 25 km with the lithospheric fast direction oriented WNW-ESE, consistent with current Pacific plate motion direction. The continent region west of the San Andreas indicates similar WNW-ESE anisotropy and LAB depth. Regions east of the San Andreas fault indicate NW-SE anisotropy transitioning to a N-S alignment at 80 km depth north of the Garlock fault. The youngest seafloor (15 - 25 Ma) and outer Borderlands indicate a more complex three layer fabric where shallow lithospheric NE-SW fast directions are perpendicular with ancient Farallon subduction arc, a mid-layer with E-W fast directions are perpendicular to remnant fossil fabric, and the deepest layer

  9. Low-Energy Dislocation Structure (LEDS) character of dislocation boundaries aligned with slip planes in rolled aluminium

    DEFF Research Database (Denmark)

    Winther, Grethe; Hong, Chuanshi; Huang, Xiaoxu

    2015-01-01

    For the specific slip geometry of two sets of coplanar systems (a total of four systems) in fcc metals, the range of dislocation networks in boundaries aligned with one of the two active slip planes is predicted from the Frank equation for boundaries free of long-range elastic stresses. Detailed...

  10. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng

    2012-01-01

    We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser

  11. Investigations of structure parameters and their similarity relationships in the convective boundary layer by means of large-eddy simulations and comparison with measurement data

    NARCIS (Netherlands)

    Maronga, B.; Moene, A.F.; Dinther, van D.; Raasch, S.

    2012-01-01

    Turbulent fluctuations of the refractive index (n) in the atmospheric boundary layer are related to local fluctuations in the air density, which can be expressed by the refractive-index structure parameter (Cn2). Since these fluctuations depend mainly on temperature and humidity, it is possible to

  12. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    2001-05-01

    precipitation (AO is mapped to the dawn periphery of the Central Plasma Sheet (CPS; the soft small scale structured precipitation (SSSL is mapped to the outer magnetosphere close to the magnetopause, i.e. the Low Latitude Boundary Layer (LLBL. In the near-noon sector, earthward fluxes of soft electrons, which cause the Diffuse Red Aurora (DRA, are observed. The ion energies decrease with increasing latitude. The plasma spectra of the DRA regime are analogous to the spectra of the Plasma Mantle (PM. In the dawn sector, the large-scale field-aligned currents flow into the ionosphere at the SSSL latitudes (Region 1 and flow out at the AO or DAZ latitudes (Region 2. In the dawn and dusk sectors, the large-scale Region 1 and Region 2 FAC generation occurs in different plasma domains of the distant magnetosphere. The dawn and dusk FAC connection to the traditional Region 1 and Region 2 has only formal character, as FAC generating in various magnetospheric plasma domains integrate in the same region (Region 1 or Region 2. In the SSSL, there is anti-sunward convection; in the DAZ and the AO, there is the sunward convection. At PM latitudes, the convection is controlled by the azimuthal IMF component (By . It is suggested to extend the notation of the plasma pattern boundaries, as proposed by Newell et al. (1996, for the nightside sector of the auroral oval to the dawn sector.Key words. Magnetospheric physics (current systems; magnetospheric configuration and dynamics; plasma convection

  13. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    electrons and isotropic ion precipitation (AO is mapped to the dawn periphery of the Central Plasma Sheet (CPS; the soft small scale structured precipitation (SSSL is mapped to the outer magnetosphere close to the magnetopause, i.e. the Low Latitude Boundary Layer (LLBL. In the near-noon sector, earthward fluxes of soft electrons, which cause the Diffuse Red Aurora (DRA, are observed. The ion energies decrease with increasing latitude. The plasma spectra of the DRA regime are analogous to the spectra of the Plasma Mantle (PM. In the dawn sector, the large-scale field-aligned currents flow into the ionosphere at the SSSL latitudes (Region 1 and flow out at the AO or DAZ latitudes (Region 2. In the dawn and dusk sectors, the large-scale Region 1 and Region 2 FAC generation occurs in different plasma domains of the distant magnetosphere. The dawn and dusk FAC connection to the traditional Region 1 and Region 2 has only formal character, as FAC generating in various magnetospheric plasma domains integrate in the same region (Region 1 or Region 2. In the SSSL, there is anti-sunward convection; in the DAZ and the AO, there is the sunward convection. At PM latitudes, the convection is controlled by the azimuthal IMF component (By . It is suggested to extend the notation of the plasma pattern boundaries, as proposed by Newell et al. (1996, for the nightside sector of the auroral oval to the dawn sector.

    Key words. Magnetospheric physics (current systems; magnetospheric configuration and dynamics; plasma convection

  14. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  15. Structure of the Milky Way stellar halo out to its outer boundary with blue horizontal-branch stars

    Science.gov (United States)

    Fukushima, Tetsuya; Chiba, Masashi; Homma, Daisuke; Okamoto, Sakurako; Komiyama, Yutaka; Tanaka, Masayuki; Tanaka, Mikito; Arimoto, Nobuo; Matsuno, Tadafumi

    2018-06-01

    We present the structure of the Milky Way stellar halo beyond Galactocentric distances of r = 50 kpc traced by blue horizontal-branch (BHB) stars, which are extracted from the survey data in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). We select BHB candidates based on (g, r, i, z) photometry, where the z-band is on the Paschen series and the colors that involve the z-band are sensitive to surface gravity. About 450 BHB candidates are identified between r = 50 kpc and 300 kpc, most of which are beyond the reach of previous large surveys, including the Sloan Digital Sky Survey. We find that the global structure of the stellar halo in this range has substructures, which are especially remarkable in the GAMA15H and XMM-LSS fields in the HSC-SSP. We find that the stellar halo can be fitted to a single power-law density profile with an index of α ≃ 3.3 (3.5) with (without) these fields and its global axial ratio is q ≃ 2.2 (1.3). Thus, the stellar halo may be significantly disturbed and be made in a prolate form by halo substructures, perhaps associated with the Sagittarius stream in its extension beyond r ˜ 100 kpc. For a broken power-law model allowing different power-law indices inside/outside a break radius, we obtain a steep power-law slope of α ≃ 5 outside a break radius of ˜100 kpc (200 kpc) for the case with (without) GAMA15H and XMM-LSS. This radius of 200 kpc might be as close as a halo boundary if there is any, although a larger BHB sample is required from further HSC-SSP surveys to increase its statistical significance.

  16. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection.

    Science.gov (United States)

    Shishkina, Olga; Wagner, Sebastian; Horn, Susanne

    2014-03-01

    We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.

  17. On the Structure and Adjustment of Inversion-Capped Neutral Atmospheric Boundary-Layer Flows: Large-Eddy Simulation Study

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.

    2014-01-01

    A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis...... on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development...... of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude...

  18. Structural Characterization of the Novel and Thermal Stable Hydrogenases from the Purple Sulfur Bacteria Thiocapsa Roseopersicina and Lamprobacter Modestohalophilus

    Science.gov (United States)

    2011-08-01

    advantages over other types of nanotubes. These CNTs form a stable monolayer which can be transferred to the conductive matrix using the Langmuir - Blodgett ...roseopersicina exhibits high stability in the buffer systems, in which its molecules have a negative charge: at the pH range 7-9 and low ionic strength; 4...coaxial glass cylinders. A modified 100 L bioreactor company ACE GLASS was used for deep cultivation. Sterilization of the total volume of liquid

  19. Modeling of a fluid-loaded smart shell structure for active noise and vibration control using a coupled finite element–boundary element approach

    International Nuclear Information System (INIS)

    Ringwelski, S; Gabbert, U

    2010-01-01

    A recently developed approach for the simulation and design of a fluid-loaded lightweight structure with surface-mounted piezoelectric actuators and sensors capable of actively reducing the sound radiation and the vibration is presented. The objective of this paper is to describe the theoretical background of the approach in which the FEM is applied to model the actively controlled shell structure. The FEM is also employed to model finite fluid domains around the shell structure as well as fluid domains that are partially or totally bounded by the structure. Boundary elements are used to characterize the unbounded acoustic pressure fields. The approach presented is based on the coupling of piezoelectric and acoustic finite elements with boundary elements. A coupled finite element–boundary element model is derived by introducing coupling conditions at the fluid–fluid and fluid–structure interfaces. Because of the possibility of using piezoelectric patches as actuators and sensors, feedback control algorithms can be implemented directly into the multi-coupled structural–acoustic approach to provide a closed-loop model for the design of active noise and vibration control. In order to demonstrate the applicability of the approach developed, a number of test simulations are carried out and the results are compared with experimental data. As a test case, a box-shaped shell structure with surface-mounted piezoelectric actuators and four sensors and an open rearward end is considered. A comparison between the measured values and those predicted by the coupled finite element–boundary element model shows a good agreement

  20. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO{sub 3} and diamond

    Energy Technology Data Exchange (ETDEWEB)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2008-01-21

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO{sub 3}/IDT/diamond and diamond/IDT/128{sup 0} rotated Y-X cut LiNbO{sub 3} multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO{sub 2}) or silicon dioxide (SiO{sub 2}). The presence of a TeO{sub 2} over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO{sub 2}. The temperature stable TeO{sub 2}/LiNbO{sub 3}/IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) x 10{sup -15} s{sup 3} kg{sup -1} has been obtained for the temperature stable SiO{sub 2}/diamond/IDT/LiNbO{sub 3} layered structure indicating a promising device structure for AO applications.

  1. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO3 and diamond

    Science.gov (United States)

    Shandilya, Swati; Sreenivas, K.; Gupta, Vinay

    2008-01-01

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO3/IDT/diamond and diamond/IDT/128° rotated Y-X cut LiNbO3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO2) or silicon dioxide (SiO2). The presence of a TeO2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO2. The temperature stable TeO2/LiNbO3/IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) × 10-15 s3 kg-1 has been obtained for the temperature stable SiO2/diamond/IDT/LiNbO3 layered structure indicating a promising device structure for AO applications.

  2. Acousto-optical and SAW propagation characteristics of temperature stable multilayered structures based on LiNbO3 and diamond

    International Nuclear Information System (INIS)

    Shandilya, Swati; Sreenivas, K; Gupta, Vinay

    2008-01-01

    Theoretical studies on the surface acoustic wave (SAW) properties of c-axis oriented LiNbO 3 /IDT/diamond and diamond/IDT/128 0 rotated Y-X cut LiNbO 3 multilayered structures have been considered. Both layered structures exhibit a positive temperature coefficient of delay (TCD) characteristic, and a zero TCD device is obtained after integrating with an over-layer of either tellurium dioxide (TeO 2 ) or silicon dioxide (SiO 2 ). The presence of a TeO 2 over-layer enhanced the electromechanical coupling coefficients of both multilayered structures, which acts as a better temperature compensation layer than SiO 2 . The temperature stable TeO 2 /LiNbO 3 /IDT/diamond layered structure exhibits good electromechanical coefficient and higher phase velocity for SAW device applications. On the other hand, a high acousto-optical (AO) figure of merit (30-37) x 10 -15 s 3 kg -1 has been obtained for the temperature stable SiO 2 /diamond/IDT/LiNbO 3 layered structure indicating a promising device structure for AO applications

  3. Stable structures of Al510–800 clusters and lowest energy sequence of truncated octahedral Al clusters up to 10,000 atoms

    International Nuclear Information System (INIS)

    Wu, Xia; He, Chengdong

    2012-01-01

    Highlights: ► The stable structures of Al 510–800 clusters are obtained with the NP-B potential. ► Al 510–800 clusters adopt truncated octahedral (TO) growth pattern based on complete TOs at Al 405 , Al 586 , and Al 711 . ► The lowest energy sequence of complete TOs up to the size 10,000 is proposed. -- Abstract: The stable structures of Al 510–800 clusters are obtained using dynamic lattice searching with constructed cores (DLSc) method by the NP-B potential. According to the structural growth rule, octahedra and truncated octahedra (TO) configurations are adopted as the inner cores in DLSc method. The results show that in the optimized structures two complete TO structures are found at Al 586 and Al 711 . Furthermore, Al 510–800 clusters adopt TO growth pattern on complete TOs at Al 405 , Al 586 , and Al 711 , and the configurations of the surface atoms are investigated. On the other hand, Al clusters with complete TO motifs are studied up to the size 10,000 by the geometrical construction method. The structural characteristics of complete TOs are denoted by the term “family”, and the growth sequence of Al clusters is investigated. The lowest energy sequence of complete TOs is proposed.

  4. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  5. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  6. Rheological structure of a lithosphere-asthenosphere boundary zone, decoded from EBSD analysis of mantle xenoliths from Ichinomegata, NE Japan

    Science.gov (United States)

    Sato, Y.; Ozawa, K.

    2017-12-01

    Mantle xenoliths are fragments of mantle materials entrapped in alkali basalts or kimberlites and transported to the surface (Nixon, 1987). They provide information on rheological, thermal, chemical, petrological structures of the upper mantle (e.g. Green et al., 2010; McKenzie and Bickle, 1988; O'Reilly and Griffin, 1996). They potentially represent materials from a boundary zone of lithosphere and asthenosphere (LABZ), where the heat transportation mechanism changes from convection to conduction (Sleep, 2005, 2006). However, difficulties in geobarometry for spinel peridotite (e.g. O'Reilly et al., 1997) have hampered our understanding of shallow LABZ. Ichinomegata located in the back-arc side of NE Japan is a latest Pleistocene andesitic-dacitic volcano yielding spinel peridotite xenoliths (Katsui et al., 1979). Through our works (Sato and Ozawa, 2016, 2017a, 2017b), we have overcome difficulties in geobarometry of spinel peridotites and gained accurate thermal structure (0.74-1.60 GPa, 832-1084 °C) from eight of the nine examined xenoliths. The rheological and chemical features suggest drastic changes: undeformed (granular), depleted, subsolidus mantle representing lithospheric mantle (ca. 28-35 km) and deformed (porphyroclastic), fertile, hydrous supersolidus mantle representing rheological LABZ (ca. 35-54 km). We investigate depth dependent variation of crystallographic preferred orientation (CPO) of constituent minerals of the xenoliths by electron back-scattered diffraction analysis (using JSM-7000F with a CCD detector and the CHANNEL5 software at the University of Tokyo). A shallower (ca. 32 km) sample with tabulargranular texture and coarse olivine size (0.92 mm) has A-type olivine CPO with [100] maximum as reported by Satsukawa and Michibayashi (2014) (hereafter SM14), whereas a deep (ca. 51 km) sample with porphyroclastic texture and finer olivine size (0.46 mm) has CPO with weaker fabric intensity characterized by a [100] girdle similar to AG-type and

  7. Boundary-Layer Characteristics Over a Coastal Megacity

    Science.gov (United States)

    Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.

    2017-12-01

    Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.

  8. Nonlinear soil-structure interaction analysis based on the boundary-element method in time domain with application to embedded foundation

    International Nuclear Information System (INIS)

    Wolf, J.P.; Darbre, G.R.

    1985-01-01

    The computational procedure of the so-called truncated indirect boundary-element method is derived. The latter, which is non-local in space and time, represents a rigorous generally applicable procedure for taking into account a layered halfspace in a non-linear soil-structure interaction analysis. As an example, the non-linear soil-structure interaction analysis of a structure embedded in a halfspace with partial uplift of the basement and separation of the side wall is investigated. (orig.)

  9. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    of temporal and material variables have been applied as a means of exploring the processes leading to their socioconceptual anchorage. The outcome of this analysis is a series of interrelated, generative boundary principles, including boundaries as markers, articulations, process-related devices, and fixation...

  10. Changing Boundaries

    DEFF Research Database (Denmark)

    Brodkin, Evelyn; Larsen, Flemming

    2013-01-01

    project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...

  11. Carbon sources and trophic structure in an eelgrass (Zostera marina L.) bed based on stable isotope and fatty acid analyses

    OpenAIRE

    Jaschinski, Sybill; Brepohl, Daniela C.; Sommer, Ulrich

    2008-01-01

    Multiple stable isotope and fatty acid analyses were applied to examine food web dynamics in an eelgrass Zostera marina L. system in the western Baltic Sea. Samples of eelgrass, epiphytic algae, sand microflora, red algae, phytoplankton and main consumer species were collected in June 2002. delta C-13 values of primary producers ranged from -9.6%. for eelgrass to the most depleted value of -34.9%. for the most abundant red alga, Delesseria sanguinea, Epiphyte delta C-13 (-11.3 parts per thous...

  12. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  13. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    to maintain the order of the home when managing disease and adopting new healthcare technology. In our analysis we relate this boundary work to two continuums of visibility-invisibility and integration-segmentation in disease management. We explore five factors that affect the boundary work: objects......, activities, places, character of disease, and collaboration. Furthermore, the processes are explored of how boundary objects move between social worlds pushing and shaping boundaries. From this we discuss design implications for future healthcare technologies for the home.......To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work...

  14. Structural observations and U-Pb mineral ages from igneous rocks at the Archaean-Palaeoproterozoic boundary in the Salahmi Schist Belt, central Finland: constraints on tectonic evolution

    Directory of Open Access Journals (Sweden)

    Pietikäinen, K.

    1999-06-01

    Full Text Available The study area in Vieremä, central Finland, contains part of Archaean-Palaeoproterozoic boundary. In the east, the area comprises Archaean gneiss and the Salahmi Schist Belt. The rocks of the schist belt are turbiditic metagreywackes, with well-preserved depositional structures, occurring as Proterozoic wedge-shaped blocks, and staurolite schists, the latter representing higher-strained and metamorphosed equivalents of the metagreywackes. In the west of the area there is an Archaean gneiss block, containing strongly elongated structures, and deformed Svecofennian supracrustal rocks, which are cut by deformed granitoids. These are juxtaposed with the schist belt. The boundaries of these tectonometamorphic blocks are narrow, highly strained mylonites and thrust zones. The metamorphic grade of the supracrustal rocks increases from east to west, the increase being stepwise across the mylonitic block boundaries. The rocks are more deformed from east to west with younger structures overprinting. In the staurolite schists of the Salahmi Schist Belt, the most prominent structure is a lineation (L2 that overprints the bedding and axial plane foliation. In Sorronmäki quarry, at the western boundary of the schist belt, this Palaeoproterozoic lineation dominates all the structures in tonalite gneiss, which gives a U-Pb age of 2731±6 Ma. Southeast of the quarry, at the same boundary, the Salahmi schists have been overturned towards the northeast, suggesting that the Archaean gneiss at Sorronmäki has been thrust towards the northeast over these rocks. In the western part of the study area, the Leppikangas granodiorite that intrudes the Svecofennian supracrustal rocks gives a U-Pb age of 1891+6 Ma. In the granodiorite, a strong lineation formed by the intersection of two foliations, which maybe L2 is associated with thrusting towards the northeast. The monazite age of the Archaean Sorronmäki gneiss is 1817+3 Ma, and the titanite age of the Svecofennian

  15. Synthesis and characterization of highly efficient and stable Pr6O11/Ag3PO4/Pt ternary hybrid structure

    International Nuclear Information System (INIS)

    Deng, Jiatao; Liu, Lin; Niu, Tongjun; Sun, Xiaosong

    2017-01-01

    Highlights: • Visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalysts were prepared. • Pr 6 O 11 /Ag 3 PO 4 /Pt showed highly efficient and stable photocatalystic activity. • The photocatalytic mechanism of Pr 6 O 11 /Ag 3 PO 4 /Pt composite was given. - Abstract: Ag 3 PO 4 is an excellent photocatalyst with high efficiency and quantum yield, but suffers from the fast recombination of photogenerated electron-hole pairs and photo-corrosion. Hereby, the highly efficient and stable visible-light-driven Pr 6 O 11 /Ag 3 PO 4 /Pt photocatalyst were prepared via a three-step wet chemical approach. The as-prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite was characterized by X-ray diffraction, US-vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectra and transient photocurrent as well. Comparing with single Pr 6 O 11 or Ag 3 PO 4 , the prepared Pr 6 O 11 /Ag 3 PO 4 /Pt composite exhibited much higher photocatalytic activity and stability for the degradation of Rhodamine B under visible light irradiation (>420 nm). The enhanced photocatalytic performance of Pr 6 O 11 /Ag 3 PO 4 /Pt composite has been attributed to the efficient separation of photo-generated electron-hole pairs through a scheme system composed of Pr 6 O 11, Ag 3 PO 4 and Pt.

  16. Stable isotopes and mercury in a model estuarine fish: Multibasin comparisons with water quality, community structure, and available prey base

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Douglas H., E-mail: Doug.Adams@MyFWC.com; Paperno, Richard

    2012-01-01

    Stable-isotope ratios ({delta}{sup 13}C and {delta}{sup 15}N) and mercury in a model predator, and associated prey community assessments were used to make inferences regarding food web relationships and how these relationships are influenced by habitat variability and anthropogenic factors. Although interconnected, the three major basins of the Indian River Lagoon system on the Atlantic coast of Florida comprise noticeably different available habitat types with spatially distinct faunal communities and available prey for spotted seatrout, Cynoscion nebulosus, a model predatory fish species. Water quality, degree of urbanization, human population density, and levels of nitrogen enrichment clearly differ between these representative estuarine basins. The differences can influence feeding ecology and therefore result in different mercury concentrations and different stable-isotope signatures of spotted seatrout between basins. Mercury concentrations in spotted seatrout were greatest in Mosquito Lagoon (ML) and least in the Indian River Lagoon proper (IRL), although concentrations were low for all basins. Spotted seatrout from IRL were carbon-depleted and nitrogen-enriched compared with those from the other basins; this suggests either that the fish's primary source of carbon in IRL is an algae- or phytoplankton-based food web or that the pathway through the food web is shorter there. The {delta}{sup 15}N values of IRL spotted seatrout were greater than those in the Banana River Lagoon or ML, suggesting slightly different trophic positioning of fish in these basins. The greater {delta}{sup 15}N values in IRL spotted seatrout may also reflect the greater human population density and resultant anthropogenic inputs (e.g., observed higher total nitrogen levels) in IRL compared with the other more pristine basins examined. Understanding species' responses to broad-scale habitat heterogeneity in estuaries and knowing basin-specific differences in stable isotopes

  17. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  18. Stable Tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris [Fermilab

    2018-04-13

    For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  19. Buckling control of morphing composite airfoil structure using multi-stable laminate by piezoelectric sensors/actuators

    Science.gov (United States)

    Zareie, Shahin; Zabihollah, Abolghassem; Azizi, Aydin

    2011-04-01

    In the present work, an unsymmetric laminated plate with surface bonded piezoelectric sensors, and actuators has been considered. Piezoelectric sensor were used to monitor the load and deformation bifurcation occurs. Monitoring the shape and load of a morphing structure is essential to ascertain that the structure is properly deployed and it is not loaded excessively ,thus, preventing structural to failure. A piezoceramic actuator is used to provide activation load and to force the structure to change its stability state from one to another. A non-linear finite element model based on the layerwise displacement theory considering the electro-mechanical coupling effects of piezoelectric elements has been developed for simulation purposes. A control mechanism is also employed to actively control the shape of the structure. It is observed that, utilizing multistable composite to design a morphing structure may significantly reduce the energy required for changing the shape. Further controlling the buckling phenomena using piezoelectric sensor and actuator along with an ON/OFF controller can effectively and efficiency enhance the performance of the morphing structure during manoeuver.

  20. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  1. Boundary Spanning

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....

  2. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  3. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    Science.gov (United States)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  4. Interaction of ultra high intensity laser pulse with structured target and fast particle generation in a stable mode

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.A. [Max-Born Institute, Berlin (Germany); Platonov, K.Yu. [Vavilov State Optical Institute, St. Petersburg (Russian Federation)

    2013-02-15

    It is shown that the relief structure with optimum parameters can significantly increase the short-pulse laser absorption, which is connected with the enhancement of moving electrons between relief ledges. Analytical modeling and numerical simulations confirm this argumentation. In the considered cases, degradation of a structure by a laser pre-pulse is the most important factor and for this scheme to work, one needs a very high-contrast laser-pulse and a nanosecond laser pre-pulse duration. The limitation on laser pulse duration is not so strong because after destruction of a first relief a secondary dynamic structure of ion density appears. Thus, high absorption connected with a relief existence continues during a long time that gives a possibility for structure targets to be more efficient compared to a plane one. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    Science.gov (United States)

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-25

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  6. The structure of a three-dimensional boundary layer subjected to streamwise-varying spanwise-homogeneous pressure gradient

    International Nuclear Information System (INIS)

    Bentaleb, Y.; Leschziner, M.A.

    2013-01-01

    Highlights: • We study a spatially-evolving three-dimensional boundary layer. • We impose a streamwise-varying spanwise-homogeneous pressure gradient. • A collateral flow is formed close to the wall, and this is investigated alongside the skewed upper part of the boundary layer. • A wide range of flow-physical properties have been studied. -- Abstract: A spatially-evolving three-dimensional boundary layer, subjected to a streamwise-varying spanwise-homogeneous pressure gradient, equivalent to a body force, is investigated by way of direct numerical simulation. The pressure gradient, prescribed to change its sign half-way along the boundary layer, provokes strong skewing of the velocity vector, with a layer of nearly collateral flow forming close to the wall up to the position of maximum spanwise velocity. A wide range of flow-physical properties have been studied, with particular emphasis on the near-wall layer, including second-moments, major budget contributions and wall-normal two-point correlations of velocity fluctuations and their angles, relative to wall-shear fluctuations. The results illustrate the complexity caused by skewing, including a damping in turbulent mixing and a significant lag between strains and stresses. The study has been undertaken in the context of efforts to develop and test novel hybrid LES–RANS schemes for non-equilibrium near-wall flows, with an emphasis on three-dimensional near-wall straining. Fundamental flow-physical issues aside, the data derived should be of particular relevance to a priori studies of second-moment RANS closure and the development and validation of RANS-type near-wall approximations implemented in LES schemes for high-Reynolds-number complex flows

  7. The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel

    Czech Academy of Sciences Publication Activity Database

    Všianská, Monika; Šob, Mojmír

    2011-01-01

    Roč. 56, č. 6 (2011), s. 817-840 ISSN 0079-6425 R&D Projects: GA AV ČR IAA100100920; GA MŠk(CZ) OC10008; GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507 Keywords : grain boundaries * segregation * nickel * embrittlement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 18.216, year: 2011

  8. The use of protein structure/activity relationships in the rational design of stable particulate delivery systems

    Directory of Open Access Journals (Sweden)

    M.H.B. Costa

    2002-06-01

    Full Text Available The recombinant heat shock protein (18 kDa-hsp from Mycobacterium leprae was studied as a T-epitope model for vaccine development. We present a structural analysis of the stability of recombinant 18 kDa-hsp during different processing steps. Circular dichroism and ELISA were used to monitor protein structure after thermal stress, lyophilization and chemical modification. We observed that the 18 kDa-hsp is extremely resistant to a wide range of temperatures (60% of activity is retained at 80ºC for 20 min. N-Acylation increased its ordered structure by 4% and decreased its ß-T1 structure by 2%. ELISA demonstrated that the native conformation of the 18 kDa-hsp was preserved after hydrophobic modification by acylation. The recombinant 18 kDa-hsp resists to a wide range of temperatures and chemical modifications without loss of its main characteristic, which is to be a source of T epitopes. This resistance is probably directly related to its lack of organization at the level of tertiary and secondary structures.

  9. Diamagnetic boundary layers: a kinetic theory

    International Nuclear Information System (INIS)

    Lemaire, J.; Burlaga, L.F.

    1976-01-01

    A kinetic theory for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma such as those observed in the solar wind is presented. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary, one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers, in which the current is carried by protons are discussed; in particular, cases in which the magnetic field intensity and/or direction changed across the layer were considered. In every case, the thickness was of the order of a few proton gyroradii and the field changed smoothly , although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. The results are consistent with the observations of boundary layers in the solar wind near 1 AU. (Auth.)

  10. Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Schulte, Lars; Grydgaard, Anne; Jakobsen, Mathilde R.

    2011-01-01

    matrix component) and secondly degrading PDMS (the expendable component). Depending on the temperature of the cross-linking reaction different morphologies can be ‘frozen’ from the same block copolymer. Starting with a block copolymer precursor of lamellar morphology at room temperature, the gyroid...... structure or a metastable structure showing hexagonal symmetry (probably HPL) were permanently captured by cross-linking the precursor at 140 °C or at 85 °C, respectively. PDMS was degraded by reaction with tetrabutylamonium fluoride; considerations on the mechanism of cleaving reaction are presented...

  11. Facile synthesis of stable structured MoS{sub 2}-Mo-CNFs heteroarchitecture with enhanced hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Qionghua [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Faculty of Material and Energy, South West University, Chongqing 400700 (China); Yao, Yucen [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Liu, Bitao, E-mail: liubitao007@163.com [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Peng, Lingling; Yan, Hengqing; Hou, Zhupei; Wang, Jun [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Lin, Yue, E-mail: linyue@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026 (China)

    2017-06-01

    3D structured MoS{sub 2} are grown in-situ on Mo particles embedded carbon nanofibers (CNFs) via a hydrothermal method. Due to this special structure, the bonding and effective electron delivery between CNFs and MoS{sub 2} are both enhanced, and which will exhibits a better hydrogen evolution activity. The onset potential of this MoS{sub 2}-Mo-CNFs catalyst will decreased to 60 mV compared to the 90 mV for the MoS{sub 2}-CNFs. And its current density nearly no change with 5000 cycles which is better than the 32.3% decrease of MoS{sub 2}-CNFs at η = 300 mV (V vs RHE). - Highlights: • Newly structured MoS{sub 2}-Mo-CNFs with effectively connection between MoS{sub 2} and CNFs successfully synthesized. • This structure can enhance the charge transfer and significantly increase electrocatalytic efficiency. • Nearly no HER activity loss after 5000 CV cycles.

  12. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    Science.gov (United States)

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  13. Formation of a stable, three-dimensional porous structure with self-assembled glass spheres using the plasma-induced electromeniscus phenomenon

    International Nuclear Information System (INIS)

    Matsuura, Hiroshi; Tanikawa, Tamio; Ando, Yasuhisa; Miyake, Koji; Sasaki, Shinya

    2006-01-01

    We develop a method for fabricating a stable, three-dimensional porous structure with self-assembled glass spheres. This three-dimensional (3D) self-assembly of glass spheres is achieved using the electromeniscus phenomenon, which is associated with a microscale solution current. The current encloses a group of glass spheres, carries the spheres, and assembles them three dimensionally with its surface tension at the desired site. The assembled glass spheres are fixed using a plasma-induced reaction combined with thermal treatment of the solution. These assembled microscale spheres create a large number of openings with extensive surface areas. This extensive area among 3D porous structures would be particularly useful for fabricating high-performance catalysts and high-resolution hydrogen sensors

  14. Structural characteristics and harmonic vibrational analysis of the stable conformer of 2,3-epoxypropanol by quantum chemical methods.

    Science.gov (United States)

    Arjunan, V; Rani, T; Santhanam, R; Mohan, S

    2012-10-01

    The FT-IR and FT-Raman spectra of H bond inner conformer of 2,3-epoxypropanol have been recorded in the regions 3700-400 and 3700-100 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The normal coordinate analysis was carried out to confirm the precision of the assignments. The structure of the conformers H bond inner and H bond outer1 were optimised and the structural characteristics were determined by density functional theory (DFT) using B3LYP and MP2 methods with 6-31G** and 6-311++G** basis sets. The vibrational frequencies were calculated in all these methods and were compared with the experimental frequencies which yield good agreement between observed and calculated frequencies. The electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Structural determination of stable MoOx monolayers on O/Cu3Au(1 0 0): DFT calculations

    International Nuclear Information System (INIS)

    Valadares, George C.S.; Mendes, F.M.T.; Dionízio Moreira, M.; Leitão, A.A.; Niehus, H.

    2012-01-01

    Highlights: ► Molybdenum oxide is widely used in catalysis in the chemical industry. ► Recently, ultra-thin (monolayer) films of MoO x have been produced on top of O-Cu 3 Au substrates. ► XPS measurements suggest an unusual +5 charge state of the Mo cation. ► Seeking for a low-energy structure with good match to the experimental STM and XPS. ► Bader charges indicate indeed an intermediate charge state as compared to the more common Mo +4 O 2 and Mo +6 O 3 bulk oxides. -- Abstract: Using ab initio calculations based on density functional theory (DFT), we propose a geometrical structure for MoO x monolayers recently grown on O/Cu 3 Au(1 0 0) substrates. The proposed structure reproduces the p(2 × 2) symmetry found by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED), as well as the intermediate oxidation state between Mo(IV) and Mo(VI) identified by X-ray photoelectron spectroscopy (XPS). Simulated STM images assign the bright spots in the experimental images to oxygen 2p states.

  16. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects......; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... and distributive justice at national level....

  17. Structure, electronic properties, and oxygen incorporation/diffusion characteristics of the Σ 5 TiN(310)[001] tilt grain boundary

    Science.gov (United States)

    McKenna, Keith P.

    2018-02-01

    First principles calculations are employed to investigate the structure, electronic properties, and oxygen incorporation/diffusion characteristics of the Σ 5 TiN(310) tilt grain boundary with relevance to applications of polycrystalline TiN in microelectronics and protective coatings. We show that the grain boundary does not significantly modify electronic states near the Fermi energy but does induce an upward shift of up to 0.6 eV in a number of deeper occupied bands. We also show that oxygen is preferentially incorporated into the TiN grain boundary (GB) but must overcome relatively high activation energies for further diffusion. These predictions are consistent with the "stuffed barrier model" proposed to explain the good barrier characteristics of TiN. We also show that while the oxidizing power of TiN GBs is not sufficient to reduce HfO2 (a prototypical gate dielectric material), they can act as a scavenger for interstitial oxygen. Altogether, these results provide the much needed atomistic insights into the properties of a model GB in TiN and suggest a number of directions for future investigation.

  18. Fundamental understanding of oxygen reduction and reaction behavior and developing high performance and stable hetero-structured cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2016-11-14

    New unique hetero-structured cathode has been developed in this project. La2NiO4+δ (LNO) as a surface catalyst with interstitial oxygen defects was introduced onto the state-of-the-art (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) cathode to enhance the surface-limited ORR kinetics on SOFC cathode. Furthermore, the hetero-structured cathode surface maintains high activity under electrode polarization with much less negative effects from surface cation segregation of Sr, which is known to cause degradation issues for conventional LSCF and LSC cathodes, thus improving the cathode long-term stability. The interface chemistry distribution and oxygen transport properties have been studied to prove the enhancement of power out and stability of LNO-infiltrated LSCF cathode. The further investigation demonstrates that CeO2 & La2-xNiO4+δ (x=0-0.2) co-infiltration is a simple and cost-effective method to improve both performance and stability of LSCF cathode by limiting nano-particles growth/delamination and further improve the surface stability. For the first time, a physical model is proposed to illustrate how unique interstitial species on hetero-structured cathode surface work to regulate the exchange rate of the incorporation reaction. Meanwhile, fundamental investigation of the surface oxygen exchange and bulk oxygen transport properties under over-potential conditions across cathode materials have been carried out in this project, which were discussed and compared to the Nernst equation that is generally applied to treat any oxide electrodes under equilibrium.

  19. Atomic structure of a stable high-index Ge surface: G2(103)-(4x1)

    DEFF Research Database (Denmark)

    Seehofer, L.; Bunk, O.; Falkenberg, G.

    1997-01-01

    Based on scanning tunneling microscopy and surface X-ray diffraction, we propose a complex structural model for the Ge(103)-(4 x 1) reconstruction. Each unit cell contains two (103) double steps, which gives rise to the formation of stripes of Ge atoms oriented in the [] direction....... The stripes and the spaces between them are covered with threefold-coordinated Ge adatoms. Charge is transferred from the bulk-like edge atoms of the double steps to the adatoms. The formation of the reconstruction can be explained in terms of stress relief, charge transfer, and minimization of the dangling...

  20. Stable piecewise polynomial vector fields

    Directory of Open Access Journals (Sweden)

    Claudio Pessoa

    2012-09-01

    Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.

  1. Magnetopause boundary structure deduced from the high-time resolution particle experiment on the Equator-S spacecraft

    Directory of Open Access Journals (Sweden)

    G. K. Parks

    1999-12-01

    Full Text Available An electrostatic analyser (ESA onboard the Equator-S spacecraft operating in coordination with a potential control device (PCD has obtained the first accurate electron energy spectrum with energies ≈7 eV–100 eV in the vicinity of the magnetopause. On 8 January, 1998, a solar wind pressure increase pushed the magnetopause inward, leaving the Equator-S spacecraft in the magnetosheath. On the return into the magnetosphere approximately 80 min later, the magnetopause was observed by the ESA and the solid state telescopes (the SSTs detected electrons and ions with energies ≈20–300 keV. The high time resolution (3 s data from ESA and SST show the boundary region contains of multiple plasma sources that appear to evolve in space and time. We show that electrons with energies ≈7 eV–100 eV permeate the outer regions of the magnetosphere, from the magnetopause to ≈6Re. Pitch-angle distributions of ≈20–300 keV electrons show the electrons travel in both directions along the magnetic field with a peak at 90° indicating a trapped configuration. The IMF during this interval was dominated by Bx and By components with a small Bz.Key words. Magnetospheric physics (magnetopause · cusp · and boundary layers; magnetospheric configuration and dynamics; solar wind · magnetosphere interactions

  2. Direct numerical simulation of thermally-stratified turbulent boundary layer subjected to adverse pressure gradient

    International Nuclear Information System (INIS)

    Hattori, Hirofumi; Kono, Amane; Houra, Tomoya

    2016-01-01

    Highlights: • We study various thermally-stratified turbulent boundary layers having adverse pressure gradient (APG) by means of DNS. • The detailed turbulent statistics and structures in various thermally-stratified turbulent boundary layers having APG are discussed. • It is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification. • In the case of strong stable stratification with or without APG, the flow separation is observed in the downstream region. - Abstract: The objective of this study is to investigate and observe turbulent heat transfer structures and statistics in thermally-stratified turbulent boundary layers subjected to a non-equilibrium adverse pressure gradient (APG) by means of direct numerical simulation (DNS). DNSs are carried out under conditions of neutral, stable and unstable thermal stratifications with a non-equilibrium APG, in which DNS results reveal heat transfer characteristics of thermally-stratified non-equilibrium APG turbulent boundary layers. In cases of thermally-stratified turbulent boundary layers affected by APG, heat transfer performances increase in comparison with a turbulent boundary layer with neutral thermal stratification and zero pressure gradient (ZPG). Especially, it is found that the friction coefficient and Stanton number decrease along the streamwise direction due to the effects of stable thermal stratification and APG, but those again increase due to the APG effect in the case of weak stable thermal stratification (WSBL). Thus, the analysis for both the friction coefficient and Stanton number in the case of WSBL with/without APG is conducted using the FIK identity in order to investigate contributions from the transport equations, in which it is found that both Reynolds-shear-stress and the mean convection terms

  3. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  4. The high Andes, gene flow and a stable hybrid zone shape the genetic structure of a wide-ranging South American parrot

    Directory of Open Access Journals (Sweden)

    Schaefer H Martin

    2011-06-01

    Full Text Available Abstract Background While the gene flow in some organisms is strongly affected by physical barriers and geographical distance, other highly mobile species are able to overcome such constraints. In southern South America, the Andes (here up to 6,900 m may constitute a formidable barrier to dispersal. In addition, this region was affected by cycles of intercalating arid/moist periods during the Upper/Late Pleistocene and Holocene. These factors may have been crucial in driving the phylogeographic structure of the vertebrate fauna of the region. Here we test these hypotheses in the burrowing parrot Cyanoliseus patagonus (Aves, Psittaciformes across its wide distributional range in Chile and Argentina. Results Our data show a Chilean origin for this species, with a single migration event across the Andes during the Upper/Late Pleistocene, which gave rise to all extant Argentinean mitochondrial lineages. Analyses suggest a complex population structure for burrowing parrots in Argentina, which includes a hybrid zone that has remained stable for several thousand years. Within this zone, introgression by expanding haplotypes has resulted in the evolution of an intermediate phenotype. Multivariate regressions show that present day climatic variables have a strong influence on the distribution of genetic heterogeneity, accounting for almost half of the variation in the data. Conclusions Here we show how huge barriers like the Andes and the regional environmental conditions imposed constraints on the ability of a parrot species to colonise new habitats, affecting the way in which populations diverged and thus, genetic structure. When contact between divergent populations was re-established, a stable hybrid zone was formed, functioning as a channel for genetic exchange between populations.

  5. An AgI@g-C3N4 hybrid core@shell structure: Stable and enhanced photocatalytic degradation

    Science.gov (United States)

    Liu, Li; Qi, Yuehong; Yang, Jinyi; Cui, Wenquan; Li, Xingang; Zhang, Zisheng

    2015-12-01

    A novel visible-light-active material AgI@g-C3N4 was prepared by ultrasonication/chemisorption method. The core@shell structure AgI@g-C3N4 catalyst showed high efficiency for the degradation of MB under visible light irradiation (λ > 420 nm). Nearly 96.5% of MB was degraded after 120 min of irradiation in the presence of the AgI@g-C3N4 photocatalyst. Superior stability was also observed in the cyclic runs indicating that the as prepared hybrid composite is highly desirable for the remediation of organic contaminated wastewaters. The improved photocatalytic performance is due to synergistic effects at the interface of AgI and g-C3N4 which can effectively accelerate the charge separation and reinforce the photostability of hybrid composite. The possible mechanism for the photocatalytic activity of AgI@g-C3N4 was tentatively proposed.

  6. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    International Nuclear Information System (INIS)

    Olcese, M.; Caso, C.; Castiglioni, G.; Cereseto, R.; Cuneo, S.; Dameri, M.; Gemme, C.; Glitza, K.-W.; Lenzen, G.; Mora, F.; Netchaeva, P.; Ockenfels, W.; Piano, E.; Pizzorno, C.; Puppo, R.; Rebora, A.; Rossi, L.; Thadome, J.; Vernocchi, F.; Vigeolas, E.; Vinci, A.

    2004-01-01

    The design of an ultra light structure, the so-called 'stave', to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high-dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed

  7. Dynamo Tests for Stratification Below the Core-Mantle Boundary

    Science.gov (United States)

    Olson, P.; Landeau, M.

    2017-12-01

    Evidence from seismology, mineral physics, and core dynamics points to a layer with an overall stable stratification in the Earth's outer core, possibly thermal in origin, extending below the core-mantle boundary (CMB) for several hundred kilometers. In contrast, energetic deep mantle convection with elevated heat flux implies locally unstable thermal stratification below the CMB in places, consistent with interpretations of non-dipole geomagnetic field behavior that favor upwelling flows below the CMB. Here, we model the structure of convection and magnetic fields in the core using numerical dynamos with laterally heterogeneous boundary heat flux in order to rationalize this conflicting evidence. Strongly heterogeneous boundary heat flux generates localized convection beneath the CMB that coexists with an overall stable stratification there. Partially stratified dynamos have distinctive time average magnetic field structures. Without stratification or with stratification confined to a thin layer, the octupole component is small and the CMB magnetic field structure includes polar intensity minima. With more extensive stratification, the octupole component is large and the magnetic field structure includes intense patches or high intensity lobes in the polar regions. Comparisons with the time-averaged geomagnetic field are generally favorable for partial stratification in a thin layer but unfavorable for stratification in a thick layer beneath the CMB.

  8. Emergence of a few distinct structures from a single formal structure type during high-throughput screening for stable compounds: The case of RbCuS and RbCuSe

    Science.gov (United States)

    Trimarchi, Giancarlo; Zhang, Xiuwen; DeVries Vermeer, Michael J.; Cantwell, Jacqueline; Poeppelmeier, Kenneth R.; Zunger, Alex

    2015-10-01

    Theoretical sorting of stable and synthesizable "missing compounds" from those that are unstable is a crucial step in the discovery of previously unknown functional materials. This active research area often involves high-throughput (HT) examination of the total energy of a given compound in a list of candidate formal structure types (FSTs), searching for those with the lowest energy within that list. While it is well appreciated that local relaxation methods based on a fixed list of structure types can lead to inaccurate geometries, this approach is widely used in HT studies because it produces answers faster than global optimization methods (that vary lattice vectors and atomic positions without local restrictions). We find, however, a different failure mode of the HT protocol: specific crystallographic classes of formal structure types each correspond to a series of chemically distinct "daughter structure types" (DSTs) that have the same space group but possess totally different local bonding configurations, including coordination types. Failure to include such DSTs in the fixed list of examined candidate structures used in contemporary high-throughput approaches can lead to qualitative misidentification of the stable bonding pattern, not just quantitative inaccuracies. In this work, we (i) clarify the understanding of the general DST-FST relationship, thus improving current discovery HT approaches, (ii) illustrate this failure mode for RbCuS and RbCuSe (the latter being a yet unreported compound and is predicted here) by developing a synthesis method and accelerated crystal-structure determination, and (iii) apply the genetic-algorithm-based global space-group optimization (GSGO) approach which is not vulnerable to the failure mode of HT searches of fixed lists, demonstrating a correct identification of the stable DST. The broad impact of items (i)-(iii) lies in the demonstrated predictive ability of a more comprehensive search strategy than what is currently

  9. Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid.

    Science.gov (United States)

    Cherel, Y; Ridoux, V; Spitz, J; Richard, P

    2009-06-23

    Although deep-sea cephalopods are key marine organims, their feeding ecology remains essentially unknown. Here, we report for the first time the trophic structure of an assemblage of these animals (19 species) by measuring the isotopic signature of wings of their lower beaks, which accumulated in stomachs of stranded sperm whales. Overall, the species encompassed a narrow range in delta(13)C values (1.7 per thousand), indicating that they lived in closely related and overlapping habitats. delta(13)C values can be interpreted in terms of distribution with the more (13)C-depleted species (e.g. Stigmatoteuthis arcturi, Vampyroteuthis infernalis) having a more pelagic habitat than the more (13)C-enriched, bathyal species (e.g. Todarodes sagittatus and the giant squid Architeuthis dux). The cephalopods sampled had delta(15)N values ranging 4.6 per thousand, which is consistent with the species spanning approximately 1.5 trophic levels. Neither the giant octopod (Haliphron atlanticus) nor the giant squid reached the highest trophic position. Species delta(15)N was independent of body size, with large squids having both the highest (Taningia danae) and lowest (Lepidoteuthis grimaldii) delta(15)N values. Their trophic position indicates that some species share the top of the food web, together with other megacarnivores such as the sperm whale.

  10. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study

    International Nuclear Information System (INIS)

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D.; Xue, Ming

    2014-01-01

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (∼ 1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O 3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. - Highlights: • Low mixed layer exacerbates air pollution over the North China Plain (NCP) • Warm advection from the Loess

  11. Geometry and structure of the pull-apart basins developed along the western South American-Scotia plate boundary (SW Atlantic Ocean)

    Science.gov (United States)

    Esteban, F. D.; Tassone, A.; Isola, J. I.; Lodolo, E.; Menichetti, M.

    2018-04-01

    The South American-Scotia plate boundary is a left-lateral fault system which runs roughly E-W for more than 3000 km across the SW Atlantic Ocean and the Tierra del Fuego Island, reaching to the west the southern Chile Trench. Analyses of a large dataset of single- and multi-channel seismic reflection profiles acquired offshore has allowed to map the trace of the plate boundary from Tierra del Fuego to the Malvinas Trough, a tectonic depression located in the eastern part of the fault system, and to reconstruct the shape and geometry of the basins formed along the principal displacement zone of the fault system. Three main Neogene pull-apart basins that range from 70 to 100 km in length, and from 12 to 22 km in width, have been identified along this segment of the plate boundary. These basins have elongated shapes with their major axes parallel to the ENE-WSW direction of the fault zone. The sedimentary architecture and the infill geometry of the basins suggest that they represent mostly strike-slip dominated transtension basins which propagated from E to W. The basins imaged by seismic data show in some cases geometrical and structural features linked to the possible reactivation of previous wedge-top basins and inherited structures pertaining to the external front of the Magallanes fold-and-thrust compression belt, along which the South American-Scotia fault system has been superimposed. It is suggested that the sequence of the elongated basins occur symmetrically to a thorough going strike-slip fault, in a left-stepping geometrical arrangement, in a manner similar to those basins seen in other transcurrent environments.

  12. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.

    Science.gov (United States)

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D; Xue, Ming

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy

    Science.gov (United States)

    2009-01-01

    Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (± 0.1) × 10-5 s-1 for a solution:solid of 10:1 and 1.6 (± 0.8) × 10-4 s-1 for a solution:solid of 5:1 (batch mode; T = 150°C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at δiso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (± 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR. PMID:19144195

  14. Long-term behaviour of concrete under saline conditions for long-term stable sealing structures; Langzeitverhalten von Beton unter salinaren Bedingungen fuer langzeitstabile Verschlussbauwerke

    Energy Technology Data Exchange (ETDEWEB)

    Dahlhaus, Frank; Haucke, Joerg [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Bergbau und Spezialtiefbau

    2012-03-15

    The authors of the contribution under consideration examine the long-term behaviour of concrete under saline conditions and in particular the suitability of the dam construction materials salt concrete and brine concrete for the use as a part of a sealing system of long-term stable geotechnical sealing structures. The long-term stability of the building material mainly is determined by the corrosion of the cement paste phases. The specific shrinkage behaviour of the construction material is analyzed experimentally in order to verify the expected cracks. The mechanisms of cracking in the salt concrete and brine concrete are analyzed by means of a mesomechanical approach in numerical finite-element calculations.

  15. Turbulence and pollutant transport in urban street canyons under stable stratification: a large-eddy simulation

    Science.gov (United States)

    Li, X.

    2014-12-01

    Thermal stratification of the atmospheric surface layer has strong impact on the land-atmosphere exchange of turbulent, heat, and pollutant fluxes. Few studies have been carried out for the interaction of the weakly to moderately stable stratified atmosphere and the urban canopy. This study performs a large-eddy simulation of a modeled street canyon within a weakly to moderately stable atmosphere boundary layer. To better resolve the smaller eddy size resulted from the stable stratification, a higher spatial and temporal resolution is used. The detailed flow structure and turbulence inside the street canyon are analyzed. The relationship of pollutant dispersion and Richardson number of the atmosphere is investigated. Differences between these characteristics and those under neutral and unstable atmosphere boundary layer are emphasized.

  16. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    Science.gov (United States)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  17. The analytical solution to the problem on the temperature field in a structural element of rectangular profile for third kind boundary conditions

    International Nuclear Information System (INIS)

    Kulich, N.V.; Nemtsev, V.A.

    1986-01-01

    The analytical solution to the problem on the stationary temperature field in an infinite structural element of rectangular profile characteristic of the conjugation points of a vessel and a tube sheet of a heat exchanger (or of a finned surface) at the third-kind boundary conditions has been obtained by the methods of the complex variable function theory. With the help of the obtained analytical dependences the calculations of the given element of the design and the comparison with the known data have been conducted. The proposed analytical solution can be effectively used in calculations of temperature fields in finned surfaces and structural elements of the power equipment of the considered profile and the method is applied for solution of the like problems

  18. Geophysical Data Define Boundaries and Sub-Regions of the Northern Gulf of Mexico Basin: Structural Histories and Causes are Hypothesized.

    Science.gov (United States)

    Kinsland, G. L.

    2017-12-01

    Within the last several years new types of geophysical data of the southern margin of the North American Craton and the Northern Gulf of Mexico Basin (NGoMB) have become available, e.g., results from the USArray experiment, high resolution satellite gravity data of the GoM itself and new heat flow data. These data when combined with previously existing geophysical data (gravity, magnetic and seismic) and shallow structural data offer new insights into the boundaries and sub-regions of the NGoMB. I offer hypotheses for the development of the structures of the buried crust and upper mantle which cause these features. Of particular interest might be my suggestion that the NGoMB might have extended in a southeasterly direction prior to the counter-clockwise rotation of the Yucatan Peninsula which ultimately resulted in the GoM.

  19. ANALYSIS OF COST STRUCTURE FOR PHARMACOTHERAPY OF PATIENTS WITH STABLE ANGINA (THE CASE OF CARDIOLOGY DEPARTMENT OF TVER REGIONAL CLINICAL HOSPITAL

    Directory of Open Access Journals (Sweden)

    M. A. Demidova

    2012-01-01

    Full Text Available Aim. To analyze the cost structure for pharmacotherapy of patients with stable angina (SA, in particular, to compare the cost of pharmacotherapy with drugs, both included and not included into the official Standard of care (SC. Material and methods. Medical records of patients with SA (n=100 admitted to the cardiology department of Tver Regional Clinical Hospital in January-July 2010 were studied retrospectivelly. Costs of treatment with drugs specified in SC for patients with SA as well as drugs not included in SC were considered. Costs of pharmacotherapy and cost structure were determined. Pharmacoeconomical methods, especially ABC analysis, were partially used.  Results. Totally 65502.39 ruble was spent for pharmacotherapy of 100 patients with SA. Cost structure was the following: 32679.34 ruble was spent for drugs recommended by SC, 23698.18 ruble — for drugs not included in SC, and 9124.87 ruble — for drugs to treat concomitant diseases which are not taken into account by SC for patients with SA. Conclusion. SA pharmacotherapy counts 50% of the total cost for drugs recommended by SC, 36% — for drugs not included in SC but belonged to pharmacological class presented in SC, and 14% — drugs from pharmacological class not included in SC. In the process of new SC elaboration for SA patients it is necessary to take into account treatment costs of concomitant diseases especially diabetes mellitus which can account up to 9.5% of total treatment cost of SA patients.

  20. Arctic boundary layer properties and its influence on cloud occurrence frequency, phase and structure in autumn season

    Science.gov (United States)

    Qiu, S.; Dong, X.; Xi, B.

    2017-12-01

    In this study, autumnal boundary layer characteristics and cloud properties have been investigated using data collected at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site from January 2002 to December 2008. We found that both cloud and planetary boundary layer (PBL) properties can be well distinguished by surface wind directions. When the ARM NSA site is dominated by a northerly wind during the period September- November, the PBL is at near saturation for all three months; while the maximum RH layer varies from low and thin in September, to higher and thicker in October, and then it becomes close to surface again in November. Both the ceilometer and the MPL derived cloud base heights coincide well with the RH maximum layer in the PBL for all three autumnal months. The frequencies of occurrence of mixed phase clouds in September and October are around 60-80% under a northerly wind, which are about 1.5 times higher than those during a southerly wind. Under northerly wind, the PDFs of PBL temperature and specific humidity are narrow and unimodal, with a peak probability around 0.4-0.5. Under a southerly wind, on the other hand, the PBL is both warmer and wetter than northerly wind profiles, which result in lower RH values (10-15% lower) in September and October; and the PDFs of PBL temperature and specific humidity are more evenly distributed with larger distribution range and lower PDF peak values (<0.3). In September, colder and dryer PBL is more favorable for mixed phase cloud formation, cloud occurrence frequency decreases from 90% to 60% as PBL temperature and specific humidity increase. In October, the frequency of occurrence of mixed phase clouds also decreases from 90% to 50-60% as PBL temperature increases. While in November, it increases first and then decreases with increasing PBL temperature and specific humidity. The frequency of occurrence of mixed phase clouds is linearly correlated to PBL RH values: for all three months, it

  1. Sublayer of Prandtl Boundary Layers

    Science.gov (United States)

    Grenier, Emmanuel; Nguyen, Toan T.

    2018-03-01

    The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.

  2. Exchange Processes in the Atmospheric Boundary Layer Over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Stefano Serafin

    2018-03-01

    Full Text Available The exchange of heat, momentum, and mass in the atmosphere over mountainous terrain is controlled by synoptic-scale dynamics, thermally driven mesoscale circulations, and turbulence. This article reviews the key challenges relevant to the understanding of exchange processes in the mountain boundary layer and outlines possible research priorities for the future. The review describes the limitations of the experimental study of turbulent exchange over complex terrain, the impact of slope and valley breezes on the structure of the convective boundary layer, and the role of intermittent mixing and wave–turbulence interaction in the stable boundary layer. The interplay between exchange processes at different spatial scales is discussed in depth, emphasizing the role of elevated and ground-based stable layers in controlling multi-scale interactions in the atmosphere over and near mountains. Implications of the current understanding of exchange processes over mountains towards the improvement of numerical weather prediction and climate models are discussed, considering in particular the representation of surface boundary conditions, the parameterization of sub-grid-scale exchange, and the development of stochastic perturbation schemes.

  3. The Bottom Boundary Layer.

    Science.gov (United States)

    Trowbridge, John H; Lentz, Steven J

    2018-01-03

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  4. The Bottom Boundary Layer

    Science.gov (United States)

    Trowbridge, John H.; Lentz, Steven J.

    2018-01-01

    The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.

  5. On relevant boundary perturbations of unitary minimal models

    International Nuclear Information System (INIS)

    Recknagel, A.; Roggenkamp, D.; Schomerus, V.

    2000-01-01

    We consider unitary Virasoro minimal models on the disk with Cardy boundary conditions and discuss deformations by certain relevant boundary operators, analogous to tachyon condensation in string theory. Concentrating on the least relevant boundary field, we can perform a perturbative analysis of renormalization group fixed points. We find that the systems always flow towards stable fixed points which admit no further (non-trivial) relevant perturbations. The new conformal boundary conditions are in general given by superpositions of 'pure' Cardy boundary conditions

  6. Application of nitrogen and carbon stable isotopes (δ(15N and δ(13C to quantify food chain length and trophic structure.

    Directory of Open Access Journals (Sweden)

    Matthew J Perkins

    Full Text Available Increasingly, stable isotope ratios of nitrogen (δ(15N and carbon (δ(13C are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR using δ(15N, and carbon range (CR using δ(13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15N or δ(13C from source to consumer between trophic levels and among food chains. δ(15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰, and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority

  7. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    Science.gov (United States)

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  8. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    Science.gov (United States)

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  9. SEM observation of grain boundary structures in quartz-iron oxide rocks deformed at intermediate metamorphic conditions

    Directory of Open Access Journals (Sweden)

    Leonardo Lagoeiro

    2011-09-01

    Full Text Available Several studies have demonstrated the effect of a second phase on the distribution of fluid phase and dissolution of quartz grains. However, as most observations came from aggregates deformed under hydrostatic stress conditions and mica-bearing quartz rocks, 3-D distribution of pores on quartz-quartz (QQB and quartz-hematite boundaries (QHB has been studied. Several fracture surfaces oriented according to finite strain ellipsoid were analyzed. The pore distribution characterizes the porosity and grain shape as highly anisotropic, which results from the nature and orientation of boundaries. QHB have physical/chemical properties very different from QQB, once the hematite plates have strong effect on wetting behavior of fluid, likewise micas in quartzites. They are pore-free flat surfaces, normal to compression direction, suggesting that they were once wetted with a continuous fluid film acting as faster diffusion pathway. At QQB, the pores are faceted, isolated, close to its edges reflecting the crystallographic control and an interconnected network of fluid along grain junctions. The QQB facing the extension direction are sites of fluid concentration. As consequence, the anisotropic dissolution and grain growth were responsible for the formation of hematite plates and tabular quartz grains significantly contributing for the generation of the foliation observed in the studied rocks.Muitos estudos têm demonstrado o efeito de uma segunda fase sobre a distribuição de fase fluida e dissolução de grãos de quartzo. Entretanto, como a maioria das observações vêm de agregados deformados sob condições de tensão hidrostática e em rochas quartzosas ricas em mica, a distribuição 3D de poros e bordas quartzo-quartzo (BQQ e quartzo-hematita (BQH tem sido estudada. Várias superfícies de fraturas orientadas segundo o elipsóide de deformação finita foram analisadas. A distribuição dos poros caracteriza a porosidade e a forma dos grãos como

  10. On the Restriction of the Location of Stable Points for Generalized Lotka-Volterra

    OpenAIRE

    Livesay, Michael Richard

    2017-01-01

    We develop tools to determine which fixed points in a generalized Lotka-Volterra system are stable, under certain non-degeneracy conditions. We characterize which faces of the boundary of the domain of the Lotka-Volterra system could contain a stable fixed point. Under various relaxed conditions, we show that whenever a face of the boundary contains a stable point there are no other stable points in any strictly larger face of the boundary.

  11. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  12. Soil and vegetation dynamics in a forest-savannah boundary in Southern Amazon state during the holocene, using 14C dating and stable carbon isotopes of soil organic matter

    International Nuclear Information System (INIS)

    Vidotto, Elaine; Pessenda, Luiz Carlos Ruiz; Ribeiro, Adauto de Souza; Bendassolli, Jose Albertino

    2005-01-01

    This work presents a comparative study between organic soil horizons formed in depressions, distant ca. 500 meters from each sampling site, in a forest/savannah boundary in the Southern Amazon Basin. The influence of the paleovegetation and soil dynamics, based on carbon isotope ( 12 C, 13 C, 14 C) data of soil organic matter (SOM) was evaluated. The soils were classified as Dystropept (Cambissolo) and were considered as clayey. The total organic carbon contents decreased from the surface to deeper parts of the soils profiles. At deeper parts of the soil profiles in the savannah site, between 100 cm and 30 cm, the δ 13 C values characterized the influence of C 4 plants (around -18,0 per mille). From about 20 cm to the surface the δ 13 C values characterized the mixture of C 3 and C 4 plants. The soil δ 13 C values in the forest site ranged from -25,0 per mille at deeper parts of the profile to -26,0 per mille in the surface, characterizing the dominance of C 3 plants in this location. 13 C and 14 C data from soil samples indicated a predominance of C 3 plants in the early Holocene. From ca. 7000 to 3000 years BP the influence of C 4 plants increased, characterizing a savannah expansion probably related to a drier climate in the region. Since 3000 years 14 C BP, the carbon isotope data suggest the forest expansion, probably due to a return to wetter climate. 14 C data in the 40-50 cm and 100 cm soil depth were contemporary, showing no difference on the soil organic matter deposition in the savannah and in the forest locations. (author)

  13. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  14. Towards tricking a pathogen's protease into fighting infection: the 3D structure of a stable circularly permuted onconase variant cleavedby HIV-1 protease.

    Directory of Open Access Journals (Sweden)

    Mariona Callís

    Full Text Available Onconase® is a highly cytotoxic amphibian homolog of Ribonuclease A. Here, we describe the construction of circularly permuted Onconase® variants by connecting the N- and C-termini of this enzyme with amino acid residues that are recognized and cleaved by the human immunodeficiency virus protease. Uncleaved circularly permuted Onconase® variants are unusually stable, non-cytotoxic and can internalize in human T-lymphocyte Jurkat cells. The structure, stability and dynamics of an intact and a cleaved circularly permuted Onconase® variant were determined by Nuclear Magnetic Resonance spectroscopy and provide valuable insight into the changes in catalytic efficiency caused by the cleavage. The understanding of the structural environment and the dynamics of the activation process represents a first step toward the development of more effective drugs for the treatment of diseases related to pathogens expressing a specific protease. By taking advantage of the protease's activity to initiate a cytotoxic cascade, this approach is thought to be less susceptible to known resistance mechanisms.

  15. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  16. Boundary layer structure and scavenging effect during a typical winter haze-fog episode in a core city of BTH region, China

    Science.gov (United States)

    Han, Suqin; Liu, Jingle; Hao, Tianyi; Zhang, Yufen; Li, Peiyan; Yang, Jianbo; Wang, Qinliang; Cai, Ziying; Yao, Qing; Zhang, Min; Wang, Xiujun

    2018-04-01

    The vertical distribution of PM2.5 and meteorological parameters from ground to upper levels were observed simultaneously using meteorological tower, tethered balloons and aerosol laser radar in Dec of 2016 in the urban area of Tianjin and its southern district, Jinghai. The influence of the vertical structure of boundary layer on a typical haze-fog episode was analyzed. There existed long distance transport of PM in the high layers before the haze formed in Tianjin and the downward airflows brought the PM from the high layer to the ground. In the early stages of this episode, periodic temperature inversions occurred, leading to conspicuous diurnal variations in the vertical profile of the PM2.5. In the middle and late stages of this episode, strong inversion and thick humidity layer were sustained below 400 m, and there were no big daily changes in the vertical profiles of the PM2.5. During the rapid formation period of the fog, the inversion layer was damaged and turbulence was strengthened. During the stationary phase of the fog process, wind and turbulence in the boundary layer became weak again. Rime was the main weather-related, wet cleaning mechanism that lowered pollutants concentration during this fog episode. High concentrations of water soluble ions in the rime samples and the concentrations of those ions in ambient PM2.5 appeared significant decrease during the rime period, which illustrated the scavenging effect of rime.

  17. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    Science.gov (United States)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  18. Observed development of the vertical structure of the marine boundary layer during the LASIE experiment in the Ligurian Sea

    DEFF Research Database (Denmark)

    Sempreviva, Anna Maria; Schiano, M.E.; Pensieri, S.

    2010-01-01

    sensors mounted on the buoy ODAS Italia1 located in the centre of the Gulf of Genoa. The evolution of the height (zi) of the MABL was monitored using radiosondes and a ceilometer on board of the N/O Urania. Here, we present the database and an uncommon case study of the evolution of the vertical structure...

  19. Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Zhou, Quan; Sugiyama, K.; Stevens, Richard Johannes Antonius Maria; Grossmann, Siegfried; Lohse, Detlef; Xia, K.

    2011-01-01

    We investigate the structures of the near-plate velocity and temperature profiles at different horizontal positions along the conducting bottom (and top) plate of a Rayleigh-Bénard convection cell, using two-dimensional (2D) numerical data obtained at the Rayleigh number Ra = 108 and the Prandtl

  20. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    International Nuclear Information System (INIS)

    Lin, Jau-Wen

    2014-01-01

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  1. Vertical variations in the turbulent structure of the surface boundary layer over vineyards under unstable atmospheric conditions

    Science.gov (United States)

    Due to their highly-structured canopy, turbulent characteristics within and above vineyards, may not conform to those typically exhibited by other agricultural and natural ecosystems. Using data collected as a part of the Grape Remote sensing and Atmospheric Profiling and Evapotranspiration Experime...

  2. Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress

    International Nuclear Information System (INIS)

    Bhattacharya, Somesh Kr; Tanaka, Shingo; Kohyama, Masanori; Shiihara, Yoshinori

    2013-01-01

    We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)

  3. Numerical simulations of the stratified oceanic bottom boundary layer

    Science.gov (United States)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory

  4. Grain boundary barrier modification due to coupling effect of crystal polar field and water molecular dipole in ZnO-based structures

    International Nuclear Information System (INIS)

    Ji, Xu; Zhu, Yuan; Chen, Mingming; Su, Longxing; Chen, Anqi; Zhao, Chengchun; Gui, Xuchun; Xiang, Rong; Huang, Feng; Tang, Zikang

    2014-01-01

    Surface water molecules induced grain boundaries (GBs) barrier modification was investigated in ZnO and ZnMgO/ZnO films. Tunable electronic transport properties of the samples by water were characterized via a field effect transistor (FET) device structure. The FETs fabricated from polar C-plane ZnO and ZnMgO/ZnO films that have lots of GBs exhibited obvious double Schottky-like current-voltage property, whereas that fabricated from nonpolar M-plane samples with GBs and ZnO bulk single-crystal had no obvious conduction modulation effects. Physically, these hallmark properties are supposed to be caused by the electrostatical coupling effect of crystal polar field and molecular dipole on GBs barrier.

  5. The uranium valence in the Cs-U-O system: crystal structures and thin layers contribution to the physico-chemical study of grain boundaries in irradiated fuel

    International Nuclear Information System (INIS)

    Van Den Berghe, S.

    2002-01-01

    The document is an abstract of a PhD thesis. The PhD thesis investigates the way in which cesium, through its effect on oxygen, modifies the uranium environment and in consequence the valence state of the uranium atom itself. To this end, the crystallographic structure and local uranium environment of several uranium uranates has been determined by Rietveld refinement of neutron and X-ray diffraction data. Thin layers of stoichiometric uranium dioxide were prepared using sputter deposition techniques and used to model interactions on the grain boundaries. They were covered with cesium and exposed to controlled amounts of oxygen, while the uranium valence state was monitored with Ultraviolet Photoelectron Spectroscopy and XPS

  6. TWO EXAMPLES FOR IMAGING BURIED GEOLOGICAL BOUNDARIES: SINKHOLE STRUCTURE AND SEYİT HACI FAULT, KARAPINAR, KONYA

    Directory of Open Access Journals (Sweden)

    Ertan TOKER

    2014-12-01

    Full Text Available Once anomalies with positive and negative circular closures are assessed together inpotential field maps, the ones which have meaningful geometric structure appear as moredistinguishable. When the edge detection is applied, the preliminary geological modelabout the geological structure may or may not be verified. When it is not verified then it isunderstood that the predicted geological model should be reconsidered and discussedagain. In this study, the edge detection was introduced and the success of the method wastested in an artificial data. Following that, its effect on sinkholes was studied applying themethod on detailed gravity data collected in Karapınar (Konya region. At the same time,this method was applied on data related to active Seyit Hacı Fault zone. It was detectedthat the fault had shown continuity towards SW and these evidences were discussed

  7. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  8. Modeling the Geometry of Plate Boundary and Seismic Structure in the Southern Ryukyu Trench Subduction Zone, Japan, Using Amphibious Seismic Observations

    Science.gov (United States)

    Yamamoto, Y.; Takahashi, T.; Ishihara, Y.; Kaiho, Y.; Arai, R.; Obana, K.; Nakanishi, A.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2018-02-01

    Here we present the new model, the geometry of the subducted Philippine Sea Plate interface beneath the southern Ryukyu Trench subduction zone, estimated from seismic tomography and focal mechanism estimation by using passive and active data from a temporary amphibious seismic network and permanent land stations. Using relocated low-angle thrust-type earthquakes, repeating earthquakes, and structural information, we constrained the geometry of plate boundary from the trench axis to a 60 km depth with uncertainties of less than 5 km. The estimated plate geometry model exhibited large variation, including a pronounced convex structure that may be evidence of a subducted seamount in the eastern portion of study area, whereas the western part appeared smooth. We also found that the active earthquake region near the plate boundary, defined by the distance from our plate geometry model, was clearly separated from the area dominated by short-term slow-slip events (SSEs). The oceanic crust just beneath the SSE-dominant region, the western part of the study area, showed high Vp/Vs ratios (>1.8), whereas the eastern side showed moderate or low Vp/Vs (<1.75). We interpreted this as an indication that high fluid pressures near the surface of the slab are contributing to the SSE activities. Within the toe of the mantle wedge, P and S wave velocities (<7.5 and <4.2 km/s, respectively) lower than those observed through normal mantle peridotite might suggest that some portions of the mantle may be at least 40% serpentinized.

  9. Meteorological observations of the coastal boundary layer structure by remote measurement methods for determining the impact of meteorological conditions on the breeze circulation

    Science.gov (United States)

    Barantiev, D.

    2010-09-01

    Continuous measurements of the characteristics of atmospheric boundary layer and the characteristics of breeze circulation were initiated at the meteorological observatory of Ahtopol on the Black Sea coast (south-east Bulgaria) under a Bulgarian-Russian collaborative programme. Research observations started in July 2008 and go on. These observations are the start of high resolution atmospheric boundary layer vertical structure climatology at a Bulgarian Black Sea coastal site. Automatic weather station «MK-15» with an acoustic anemometer (mounted at 4,5m height) and Flat Array Sodar without RASS extension «Scintec» were installed on polygon of Ahtopol. A preliminary analysis was made of the experimental data on the thermodynamic structure of the atmospheric boundary layer in the coastal zone. Vertical profiles of wind speed, direction and spatio-temporal sectional were constructed according to the sodar data. Graphs of temporal variations of the direction and modulus of wind velocity, vertical velocity, the standard deviation of the acoustic temperature and time variation of air temperature (at a height of 2m - standard synoptic measurements) were constructed according MK-15. The momentum u* = " - w-'u' and sensible heat H = w'T' surface turbulent fluxes were calculated from MK-15 raw data. Prevailing weather conditions contributing to breeze circulation in the area were investigated. Blurred pressure field of high pressure with warm air mass, clear and (or) the overcast weather was characterized for treatment cases. The average wind speed near the ground was did not exceed 3 m/s, with a ripple rate of up to 4 m/s according to MK-15. The nature of the wind changed direction during the day has been practically the same (i.e., diurnal repeats) in all cases. The breeze front location was also detected based on standard measurements in the surface layer (mean values of temperature at 2 m and wind speed and direction from MK-15). In the zone of the front the wind

  10. Grain boundaries in Ni3Al. 2

    International Nuclear Information System (INIS)

    Kung, H.; Sass, S.L.

    1992-01-01

    This paper discusses the dislocation structure of small angle tilt and twist boundaries in ordered Ni 3 Al, with and without boron, investigated using transmission electron microscopy. Dislocation with Burgers vectors that correspond to anti-phase boundary (APB)-coupled superpartials were found in small angle twist boundaries in both boron-free and boron-doped Ni 3 Al, and a small angle tilt boundary in boron-doped Ni 3 Al. The boundary structures are in agreement with theoretical models proposed by Marcinkowski and co-workers. The APB energy determined from the dissociation of the grain boundary dislocations was lower than values reported for isolated APBs in Ni 3 Al. For small angle twist boundaries the presence of boron reduced the APB energy at the interface until it approached zero. This is consistent with the structure of these boundaries containing small regions of increased compositional disorder in the first atomic plane next to the interface

  11. An Assessment of Pseudo-Operational Ground-Based Light Detection and Ranging Sensors to Determine the Boundary-Layer Structure in the Coastal Atmosphere

    Directory of Open Access Journals (Sweden)

    Conor Milroy

    2012-01-01

    Full Text Available Twenty-one cases of boundary-layer structure were retrieved by three co-located remote sensors, One LIDAR and two ceilometers at the coastal site of Mace Head, Ireland. Data were collected during the ICOS field campaign held at the GAW Atmospheric Station of Mace Head, Ireland, from 8th to 28th of June, 2009. The study is a two-step investigation of the BL structure based on (i the intercomparison of the backscatter profiles from the three laser sensors, namely the Leosphere ALS300 LIDAR, the Vaisala CL31 ceilometer and the Jenoptik CHM15K ceilometer; (ii and the comparison of the backscatter profiles with twenty-three radiosoundings performed during the period from the 8th to the 15th of June, 2009. The sensor-independent Temporal Height-Tracking algorithm was applied to the backscatter profiles as retrieved by each instrument to determine the decoupled structure of the BL over Mace Head. The LIDAR and ceilometers-retrieved BL heights were compared to the radiosoundings temperature profiles. The comparison between the remote and the in-situ data proved the existence of the inherent link between temperature and aerosol backscatter profiles and opened at future studies focusing on the further assessment of LIDAR-ceilometer comparison.

  12. New insights about the population structure of the blue jack mackerel (Trachurus picturatus in the NE Atlantic using otolith stable isotope ratios

    Directory of Open Access Journals (Sweden)

    Cláudia Moreira

    2015-11-01

    Full Text Available The blue jack mackerel Trachurus picturatus is a pelagic fish widely distributed in the NE Atlantic and also found in the Mediterranean and Black Seas. It is an economically important resource in the Macaronesian islands of Azores, Madeira and Canaries, but despite its fishery value and ecological importance, fluctuations in the landings are difficult to explain since studies regarding the population dynamics, stocks structure, fish movements and habitat connectivity are inexistent. The populations of marine pelagic fishes, in particular the migratory ones, such as T. picturatus,, may be erroneously considered an homogenous population unit because they show broad geographic distributions, large population sizes and high migratory movements. Stable isotope ratios, namely δ18O and δ13C, measured by standard mass spectrometric techniques in whole otolith samples of T. picturatus adults sampled in the fishery grounds of the Islands of Azores, Madeira and Canaries, and at the Portuguese mainland (Matosinhos, Peniche and Portimão during the spring-summer of 2013 were analysed. The 18O signatures followed the general tendency taking into account the seawater temperatures of the sampling regions. 13C signatures showed however differences between the oceanic or continental origin of the fish. Both variables provided location-specific signatures. Further studies including mitochondrial and nuclear DNA studies are also been conducted to acquire new knowledge for fisheries conservation purposes.

  13. Synthesis and X-ray Crystal Structure of a Stable cis-1,2-bis(diphenylphosphinoethene Monodentate Thiolate Platinum Complex and TGA Studies of its Precursors

    Directory of Open Access Journals (Sweden)

    Vaz Rodrigo H.

    2002-01-01

    Full Text Available The stable Pt(II complex [Pt(SPh2(dppen (4, (dppen, Ph2PCH=CHPPh2 was obtained from [PtCl(SPh2(SnPh3cod] (1 (cod = 1,5-cyclooctadiene by reductive elimination reaction of SnClPh3 and substitution of the cod ligand by the diphosphine, albeit in low yields. Yields of 80% were obtained when [Pt(SPh2cod] (3 was used as the starting material instead. The viability of these reactions was suggested by a TG study, performed on the starting materials. Complex 4 was characterized by multinuclear NMR (195Pt, 31P, ¹H and 13C and IR spectroscopies and elemental analysis. The molecular structure, solved by an X-ray diffraction study, exhibted a slightly distorted square-planar geometry and short C=C and Pt-P bond distances which were interpreted in terms of a p interaction between the double bond and the metal-ligand bond, as observed for other diphosphine compounds described previously.

  14. Phase boundary between cubic B1 and rhombohedral structures in (Mg,Fe)O magnesiowüstite determined by in situ X-ray diffraction measurements

    Science.gov (United States)

    Dymshits, Anna M.; Litasov, Konstantin D.; Shatskiy, Anton; Chanyshev, Artem D.; Podborodnikov, Ivan V.; Higo, Yuji

    2018-01-01

    The phase relations and equation of state of (Mg0.08Fe0.92)O magnesiowüstite (Mw92) have been studied using the Kawai-type high-pressure apparatus coupled with synchrotron radiation. To determine the phase boundary between the NaCl-type cubic (B1) and rhombohedral ( rB1) structures in Mw92, in situ X-ray observations were carried out at pressures of 0-35 GPa and temperatures of 300-1473 K. Au and MgO were used as the internal pressure markers and metallic Fe as oxygen fugacity buffer. The phase boundary between B1 and rB1 structures was described by a linear equation P (GPa) = 1.6 + 0.033 × T (K). The Clapeyron slope (d P/d T) determined in this study is close to that obtained at pressures above 70 GPa but steeper than that obtained for FeO. An addition of MgO to FeO structure expands the stability field of the rB1 phase to lower pressures and higher temperatures. Thus, the rB1 phase may be stabilized with respect to the B1 phase at a lower pressures. The pressure-volume-temperature equation of state of B1-Mw92 was determined up to 30 GPa and 1473 K. Fitting the hydrostatic compression data up to 30 GPa with the Birch-Murnaghan equation of state (EoS) yielded: unit cell volume ( V 0, T0), 79.23 ± 4 Å3; bulk modulus ( K 0, T0), 183 ± 4 GPa; its pressure derivative ( K' T ), 4.1 ± 0.4; (∂ K 0, T /∂ T) = -0.029 ± 0.005 GPa K‒1; a = 3.70 ± 0.27 × 10-5 K-1 and b = 0.47 ± 0.49 × 10-8 K-2, where α0, T = a + bT is the volumetric thermal expansion coefficient. The obtained bulk modulus of Mw92 is very close to the value expected for stoichiometric iron-rich (Mg,Fe)O. This result confirms the idea that the bulk modulus of (Mg,Fe)O is greatly affected by the actual defect structure, caused by either Mg2+ or vacancies.

  15. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2017-01-01

    Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.

  16. Evidence of stable genetic structure across a remote island archipelago through self-recruitment in a widely dispersed coral reef fish

    KAUST Repository

    Priest, Mark

    2012-11-19

    We used microsatellite markers to assess the population genetic structure of the scribbled rabbitfish Siganus spinus in the western Pacific. This species is a culturally important food fish in the Mariana Archipelago and subject to high fishing pressure. Our primary hypothesis was to test whether the individuals resident in the southern Mariana Island chain were genetically distinct and hence should be managed as discrete stocks. In addition to spatial sampling of adults, newly-settled individuals were sampled on Guam over four recruitment events to assess the temporal stability of the observed spatial patterns, and evidence of self-recruitment. We found significant genetic structure in S. spinus across the western Pacific, with Bayesian analyses revealing three genetically distinct clusters: the southernMariana Islands, east Micronesia, and the west Pacific; with the southern Mariana Islands beingmore strongly differentiated fromthe rest of the region. Analyses of temporal samples from Guam indicated the southern Mariana cluster was stable over time, with no genetic differentiation between adults versus recruits, or between samples collected across four separate recruitment events spanning 11 months. Subsequent assignment tests indicated seven recruits had self-recruited from within the Southern Mariana Islands population. Our results confirm the relative isolation of the southern Mariana Islands population and highlight how local processes can act to isolate populations that, by virtue of their broad-scale distribution, have been subject to traditionally high gene flows. Our results add to a growing consensus that self-recruitment is a highly significant influence on the population dynamics of tropical reef fish. 2012 The Authors. Ecology and Evolution published by Blackwell Publishing Ltd.

  17. Boundaries of magnetic anomaly sources in the Tyrrhenian region

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    1998-06-01

    Full Text Available Analysis of the analytic signal of the aeromagnetic field in the Tyrrhenian region allowed the systematic location of the boundaries of magnetic shallow sources. This method was chosen because of its independence from the magnetization and inducing field direction, and the results were similar to those of the boundary analysis of the horizontal gradient of the pseudogravity transformed field. The analytic signal was computed by a stable algorithm based on the second order horizontal derivatives of the field and Laplace equation. The complexity of the investigated area is well reflected in the aeromagnetic field and an objective and systematic study, such as boundary analysis, provided a rather complete description of the main regional structures. Significant trends indicated the existence of structures, whose nature was still unknown or uncertain. These included structures located between the Vavilov and De Marchi seamounts, NW of Stromboli Island, south of Ponza Island, a buried horst immediately south of the Cilento coastline, a body located northwest of the Cassinis seamount and other small magnetized structures located south of the Tuscanian archipelago. In many cases, a better definition of several structures previously recognized was obtained as in the case of some tectonic alignments (e.g., the Elba ridge, the Romolo and Selli lines, etc., a large number of igneous seamounts (e.g., Magnaghi, Marsili, Vavilov, Anchise, Quirra, Enarete, Eolo and Sisifo seamounts and several crystalline outcrops (e.g., Ichnusa, Vercelli, M. della Rondine, Tiberino, Cassinis, Traiano, Glauco and Augusto seamounts.

  18. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  19. Solution of moving boundary problems with implicit boundary condition

    International Nuclear Information System (INIS)

    Moyano, E.A.

    1990-01-01

    An algorithm that solves numerically a model for studying one dimensional moving boundary problems, with implicit boundary condition, is described. Landau's transformation is used, in order to work with a fixed number of nodes at each instant. Then, it is necessary to deal with a parabolic partial differential equation, whose diffusive and convective terms have variable coefficients. The partial differential equation is implicitly discretized, using Laasonen's scheme, always stable, instead of employing Crank-Nicholson sheme, as it has been done by Ferris and Hill. Fixed time and space steps (Δt, Δξ) are used, and the iteration is made with variable positions of the interface, i.e. varying δs until a boundary condition is satisfied. The model has the same features of the oxygen diffusion in absorbing tissue. It would be capable of estimating time variant radiation treatments of cancerous tumors. (Author) [es

  20. Pressure effect on grain boundary diffusion

    International Nuclear Information System (INIS)

    Smirnova, E.S.; Chuvil'deev, V.N.

    1997-01-01

    The influence of hydrostatic pressure on grain boundary diffusion and grain boundary migration in metallic materials is theoretically investigated. The model is suggested that permits describing changes in activation energy of grain boundary self-diffusion and diffusion permeability of grain boundaries under hydrostatic pressure. The model is based on the ideas about island-type structure of grain boundaries as well as linear relationship of variations in grain boundary free volume to hydrostatic pressure value. Comparison of theoretical data with experimental ones for a number of metals and alloys (α-Zr, Sn-Ge, Cu-In with Co, In, Al as diffusing elements) shows a qualitative agreement