WorldWideScience

Sample records for stabilized temperature graphite

  1. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  2. High temperature stability of onion-like carbon vs highly oriented pyrolytic graphite.

    Directory of Open Access Journals (Sweden)

    Alessandro Latini

    Full Text Available The thermodynamic stability of onion-like carbon (OLC nanostructures with respect to highly oriented pyrolytic graphite (HOPG was determined in the interval 765-1030 K by the electromotive force (emf measurements of solid electrolyte galvanic cell: (Low Pt|Cr3C2,CrF2,OLC|CaF2s.c.|Cr3C2,CrF2,HOPG|Pt (High. The free energy change of transformation HOPG = OLC was found positive below 920.6 K crossing the zero value at this temperature. Its trend with temperature was well described by a 3rd degree polynomial. The unexpected too high values of [Formula: see text] jointly to the HR-TEM, STEM and EELS evidences that showed OLC completely embedded in rigid cages made of a Cr3C2/CrF2 matrix, suggested that carbon in the electrodes experienced different internal pressures. This was confirmed by the evaluation under constant volume of [dP/dT by the α/κ ratio for OLC (0.5 MPa K(-1 and HOPG (8 Pa K(-1 where α and κ are the isobaric thermal expansion and isothermal compressibility coefficients, respectively. The temperature dependency of the pressure was derived and utilized to calculate the enthalpy and entropy changes as function of temperature and pressure. The highest value of the internal pressure experienced by OLC was calculated to be about 7 GPa at the highest temperature. At 920.6 K, ΔrH and ΔrS values are 95.8 kJ mol(-1 and 104.1 JK(-1 mol(-1, respectively. The surface contributions to the energetic of the system were evaluated and they were found negligible compared with the bulk terms. As a consequence of the high internal pressure, the values of the enthalpy and entropy changes were mainly attributed to the formation of carbon defects in OLC considered as multishell fullerenes. The change of the carbon defect fraction is reported as a function of temperature.

  3. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  4. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  5. Method 200.12 - Determination of Trace Elements in Marine Waters by StabilizedTemperature Graphite Furnace Atomic Absorption

    Science.gov (United States)

    This method provides procedures for the determination of total recoverable elements by graphite furnace atomic absorption (GFAA) in marine waters, including estuarine, ocean and brines with salinities of up to 35 ppt.

  6. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  7. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    Science.gov (United States)

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-01-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g−1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g−1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective. PMID:27498979

  8. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability.

    Science.gov (United States)

    Pawar, Rajendra C; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S

    2016-08-08

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g(-1)) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g(-1)). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  9. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    Science.gov (United States)

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-08-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g-1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g-1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  10. Thermal conductivity enhancement of sodium acetate trihydrate by adding graphite powder and the effect on stability of supercooling

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Dannemand, Mark; Kong, Weiqiang

    2015-01-01

    Sodium acetate trihydrate and graphite powder mixtures have been evaluated to investigate the influence of the graphite powder on the stability of supercooling. A sodium acetate and water mixture mixed with graphite powder was successfully supercooled at ambient indoor temperatures for five month...

  11. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  12. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    OpenAIRE

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-01-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod...

  14. The Effect of Graphite Nanoparticles on Thermal Stability and Ablation of Phenolic/Carbon Fiber/Graphite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Reza Akhlaghi

    2014-08-01

    Full Text Available Phenolic resin composites reinforced with short carbon fiber are one of the most usable materials in ultra-high-temperature applications such as thermal protective in aerospace industries. In this work, novolac type of phenolic resin matrix was modified with graphite nanoparticles to prepare multi-layered nanocomposites. The effect of graphite nanoparticles was studied on the thermal stability, ablation and mechanical properties of novolac/short carbon fiber composites to achieve nanocomposite with optimum properties for ultra-high-temperature applications. In order to evaluate thermal stability and ablation properties of composite and nanocomposites, a sample containing 40 wt% short carbon fiber was prepared as a reference and the structure of its polymeric matrix was modified with nanographite particles. The amounts of nanographite powders in nanocomposite samples were chosen as 6, 9 and 12 wt%. XRD Spectroscopy was used to study and investigate the dispersion of the graphite nanoparticles and morphology in the polymeric matrix. The compression molding under hot press method was used to fabricate the composite and nanocomposite specimens. Thermal properties of the nanocomposites were studied by TGA and oxy-acetylene flame test. Three-point bending and wear tests were performed to measure the mechanical and wear properties of the nanocomposites. The obtained results showed that the addition of nanographite improved the thermal stability, decreased the rate of degradation and at the same time decreased the weight loss and ablation rate of the nanocomposites. Addition of 12 wt% nanographite particles increased thermal stability by about 12% compared to the reference sample. Moreover in nanocomposite with 12 wt% graphite, the rate of ablation decreased by more than 19% compared to the reference composite.

  15. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  16. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  17. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    OpenAIRE

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2016-01-01

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  18. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  19. Sensing disks for slug-type calorimeters have higher temperature stability

    Science.gov (United States)

    1967-01-01

    Graphite sensing disk for slug-type radiation calorimeters exhibits better performance at high temperatures than copper and nickel disks. The graphite is heat-soaked to stabilize its emittance and the thermocouple is protected from the graphite so repeated temperature cycling does not change its sensitivity.

  20. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    Science.gov (United States)

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  1. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature

    International Nuclear Information System (INIS)

    Daulton, T.L.; Kirk, M.A.; Lewis, R.S.; Rehn, L.E.

    2001-01-01

    It has previously been shown that graphite can be transformed into diamond by MeV electron and ion irradiation at temperatures above approximately 600 deg. C. However, there exists geological evidence suggesting that carbonaceous materials can be transformed to diamond by irradiation at substantially lower temperatures. For example, submicron-size diamond aggregates have been found in uranium-rich, Precambrian carbonaceous deposits that never experienced high temperature or pressure. To test if diamonds can be formed at lower irradiation temperatures, sheets of fine-grain polycrystalline graphite were bombarded at 20 deg. C with 350±50 MeV Kr ions to fluences of 6x10 12 cm -2 using the Argonne tandem linear accelerator system (ATLAS). Ion-irradiated (and unirradiated control) graphite specimens were then subjected to acid dissolution treatments to remove untransformed graphite and isolate diamonds that were produced; these acid residues were subsequently characterized by high-resolution and analytical electron microscopy. The acid residue of the ion-irradiated graphite was found to contain nanodiamonds, demonstrating that ion irradiation of graphite at ambient temperature can produce diamond. The diamond yield under our irradiation conditions is low, ∼0.01 diamonds/ion. An important observation that emerges from comparing the present result with previous observations of diamond formation during irradiation is that nanodiamonds form under a surprisingly wide range of irradiation conditions. This propensity may be related to the very small difference in the graphite and diamond free-energies coupled with surface-energy considerations that may alter the relative stability of diamond and graphite at nanometer sizes

  2. On residual gas analysis during high temperature baking of graphite tiles

    International Nuclear Information System (INIS)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C; Chauhan, N; Raole, P M

    2008-01-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles

  3. On residual gas analysis during high temperature baking of graphite tiles

    Science.gov (United States)

    Prakash, A. A.; Chaudhuri, P.; Khirwadkar, S.; Chauhan, N.; Raole, P. M.; Reddy, D. Chenna; Saxena, Y. C.

    2008-05-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles.

  4. Modelling fracture of aged graphite bricks under radiation and temperature

    Directory of Open Access Journals (Sweden)

    Atheer Hashim

    2017-05-01

    Full Text Available The graphite bricks of the UK carbon dioxide gas cooled nuclear reactors are subjected to neutron irradiation and radiolytic oxidation during operation which will affect thermal and mechanical material properties and may lead to structural failure. In this paper, an empirical equation is obtained and used to represent the reduction in the thermal conductivity as a result of temperature and neutron dose. A 2D finite element thermal analysis was carried out using Abaqus to obtain temperature distribution across the graphite brick. Although thermal conductivity could be reduced by up to 75% under certain conditions of dose and temperature, analysis has shown that it has no significant effect on the temperature distribution. It was found that the temperature distribution within the graphite brick is non-radial, different from the steady state temperature distribution used in the previous studies [1,2]. To investigate the significance of this non-radial temperature distribution on the failure of graphite bricks, a subsequent mechanical analysis was also carried out with the nodal temperature information obtained from the thermal analysis. To predict the formation of cracks within the brick and the subsequent propagation, a linear traction–separation cohesive model in conjunction with the extended finite element method (XFEM is used. Compared to the analysis with steady state radial temperature distribution, the crack initiation time for the model with non-radial temperature distribution is delayed by almost one year in service, and the maximum crack length is also shorter by around 20%.

  5. Low temperature chemical processing of graphite-clad nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  6. Damage tolerance of nuclear graphite at elevated temperatures

    Science.gov (United States)

    Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; Kuball, Martin; Ritchie, Robert O.

    2017-06-01

    Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800-1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are `frozen-in' following processing.

  7. A study of the high temperature behavior of graphite

    International Nuclear Information System (INIS)

    Gale, H.; Zee, R. H.; Gale, W. F.; Yeh, W.

    1997-01-01

    Poco AXF 5Q graphite coupons were heated at temperatures ranging from 1900 K to 2400 K. A loss in weight was observed in all cases, but there appeared to be no simple relationship between the holding temperature and the weight loss observed. Scanning electron microscopy revealed no change in the surface morphology of the samples before and after heating, indicating that the loss of material occurred in a uniform, rather than a localized, fashion. The weight loss per hour, for pre-dried graphite coupons, was in most cases higher with short holding times than for prolonged exposure. Thus, it would appear that the observed weight changes were dominated in most cases by the removal of volatiles rather than by the evaporation of carbon

  8. Property changes in graphite irradiated at changing irradiation temperature

    International Nuclear Information System (INIS)

    Price, R.J.; Haag, G.

    1979-07-01

    Design data for irradiated graphite are usually presented as families of isothermal curves showing the change in physical property as a function of fast neutron fluence. In this report, procedures for combining isothermal curves to predict behavior under changing irradiation temperatures are compared with experimental data on irradiation-induced changes in dimensions, Young's modulus, thermal conductivity, and thermal expansivity. The suggested procedure fits the data quite well and is physically realistic

  9. High-temperature solid electrolyte interphases (SEI) in graphite electrodes

    Science.gov (United States)

    Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.

    2018-03-01

    Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.

  10. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance

    International Nuclear Information System (INIS)

    Yan, Yong; Ben, Liubin; Zhan, Yuanjie; Huang, Xuejie

    2016-01-01

    Highlights: • Nano-Sn embedded in interlayers of expanded graphite is fabricated. • The graphene/nano-Sn/graphene stacked structure promotes cycling stability of Sn. • The Sn/EG shows improved low temperature electrochemical performance. • Chemical diffusion coefficients of the Sn/EG are obtained by GITT. • The Sn/EG exhibits faster Li-ion intercalation kinetics than graphite. - Abstract: Metallic tin (Sn) used as anode material for lithium ion batteries has long been proposed, but its low temperature electrochemical performance has been rarely concerned. Here, a Sn/C composite with nano-Sn embedded in expanded graphite (Sn/EG) is synthesized. The nano-Sn particles (∼30 nm) are uniformly distributed in the interlayers of expanded graphite forming a tightly stacked layered structure. The electrochemical performance of the Sn/EG, particularly at low temperature, is carefully investigated compared with graphite. At -20 °C, the Sn/EG shows capacities of 200 mAh g −1 at 0.1C and 130 mAh g −1 at 0.2C, which is much superior to graphite (<10 mAh g −1 ). EIS measurements suggest that the charge transfer impedance of the Sn/EG increases less rapidly than graphite with decreasing temperatures, which is responsible for the improved low temperature electrochemical performance. The Li-ion chemical diffusion coefficients of the Sn/EG obtained by GITT are an order of magnitude higher at room temperature than that at -20 °C. Furthermore, the Sn/EG exhibits faster Li-ion intercalation kinetics than graphite in the asymmetric charge/discharge measurements, which shows great promise for the application in electric vehicles charged at low temperature.

  11. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    Science.gov (United States)

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  12. Graphite oxidation and damage under irradiation at high temperatures in an impure helium environment

    Science.gov (United States)

    Goodwin, Cameron S.

    The High Temperature Gas-Cooled Reactor (HTGR) is a Generation IV reactor concept that uses a graphite-moderated nuclear reactor with a once-through uranium fuel cycle. In order to investigate the mechanism for corrosion of graphite in HTGRs, the graphite was placed in a similar environment in order to evaluate its resistance to corrosion and oxidation. While the effects of radiation on graphite have been studied in the past, the properties of graphite are largely dependent on the coke used in manufacturing the graphite. There are no longer any of the previously studied graphite types available for use in the HTGR. There are various types of graphite being considered for different uses in the HTGR and all of these graphite types need to be analyzed to determine how radiation will affect them. Extensive characterization of samples of five different types of graphite was conducted. The irradiated samples were analyzed with electron paramagnetic resonance spectroscopy, Raman spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and gas chromatography. The results prove a knowledge base for considering the graphite types best suited for use in HTGRs. In my dissertation work graphite samples were gamma irradiated and also irradiated in a mixed field, in order to study the effects of neutron as well as gamma irradiation. Thermal effects on the graphite were also investigated by irradiating the samples at room temperature and at 1000 °C. From the analysi of the samples in this study there is no evidence of substantial damage to the grades of graphite analyzed. This is significant in approving the use of these graphites in nuclear reactors. Should significant damage had occurred to the samples, the use of these grades of graphite would need to be reconsidered. This information can be used to further characterize other grades of nuclear graphite as they become available.

  13. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei, E-mail: wxu12@mails.tsinghua.edu.cn; Shi, Lei; Zheng, Yanhua

    2016-09-15

    Graphite is widely used as moderator, reflector and structural materials in the high temperature gas-cooled reactor pebble-bed modular (HTR-PM). In normal operating conditions or water/air ingress accident, the nuclear graphite in the reactor may be oxidized by air or steam. Oxidation behavior of nuclear graphite IG-110 which is used as the structural materials and reflector of HTR-PM is mainly researched in this paper. To investigate the penetration depth of oxygen in IG-110, this paper developed the one dimensional spherical oxidation model. In the oxidation model, the equations considered graphite porosity variation with the graphite weight loss. The effect of weight loss on the effective diffusion coefficient and the oxidation rate was also considered in this model. Based on this theoretical model, this paper obtained the relative concentration and local weight loss ratio profile in graphite. In addition, the local effective diffusion coefficient and oxidation rate in the graphite were also investigated.

  14. Graphite structural design code for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    1989-02-01

    The reactor internal structures of the High Temperature Engineering Test Reactor (HTTR) are made up of mainly graphite components. The characteristics of graphite are quite different in stress-strain behavior from metals, since the ductility of graphite is significantly less than metals. Therefore, the design codes provided for metal components can not be applied directly to graphite components. The graphite structural design code for the HTTR was drafted by JAERI and reviewed by specialists outside JAERI. The design code is established mainly on the basis of JAERI's research data and by reference to the fundamental concepts of the domestic design codes for metal components. In this design code, the graphite components are categorized into the core components and core support components and the stress limits are specified separately to meet the safety requirements to each. This report presents the graphite structural design code for the HTTR which is utlized for the present design of the HTTR. (author)

  15. Production test IP-725, increased graphite temperature limit, F Reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Russell, A.

    1965-12-10

    This report presents the results of a high graphite temperature test conducted at F Reactor from January, through June, 1965. Since the reactor was soon to be permanently shut down, this was believed to be a good opportunity to investigate the effect of increased graphite temperature on graphite stack oxidation with CO{sub 2}, During the first phase of the test, the graphite temperature limit was increased, from 650 C to 700 C for a period of approximately 3 1/2 months. During this phase of the test the actual maximum operating graphite temperature was maintained near the 700 C limit. During the second phase of the test the temperature limit was further increased to 750 C for approximately 2 months. Unfortunately,, the actual graphite operating temperature was maintained at the desired temperature level for only several weeks and thus complicated interpretation of the test results. Throughout the 6 month test period, stack oxidation was monitored with graphite samples inserted in 2 bare process tube channels and by measurement of CO (reaction product of graphite and CO{sub 2}) in the reactor gas atmosphere.

  16. Structure and stability of the water - graphite complexes

    Czech Academy of Sciences Publication Activity Database

    Rubeš, Miroslav; Nachtigall, Petr; Vondrášek, Jiří; Bludský, Ota

    2009-01-01

    Roč. 113, č. 19 (2009), s. 8412-8419 ISSN 1932-7447 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550613 Institutional research plan: CEZ:AV0Z40550506 Keywords : water-graphite * DFT * coupled-cluster calculations * interaction energy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.224, year: 2009

  17. Graphite core stability during 'care and maintenance' and 'safe storage'

    International Nuclear Information System (INIS)

    Wickham, A.J.; Marsden, B.J.; Sellers, R.M.; Pilkington, N.J.

    1998-01-01

    The current decommissioning strategy for the graphite-moderated reactors operated by Magnox Electric plc, Nuclear Electric Ltd and Scottish Nuclear Ltd is to delay dismantling and to initiate a monitored period of care and maintenance followed by a period of safe storage totaling up to 135 years. This philosophy has the considerable advantage of permitting the majority of radionuclides to decay, thereby minimising personnel dose during dismantling which itself will require far less complex remote-handling equipment. It also defers the disposal of the graphite and other components so that the provision of a deep land-based repository can be achieved. A comprehensive review of all relevant data on the chemical, physical and mechanical properties of the graphite and its potential reactions, including radioactivity transport, has been undertaken in order to demonstrate that there are no potential mechanisms which might lead to degradation of the core during the storage period. It is concluded that no significant experimental work is necessary to support the safe storage philosophy although, since the ingress of rainwater over long periods of time cannot be assumed incredible, a number of anomalies in chemical leaching rates may be worthy of re-examination. No other potential chemical reactions, such as the radiolytic formation of nitric acid leading to corrosion problems, are considered significant. (author)

  18. Synergistically improved thermal conductivity of polyamide-6 with low melting temperature metal and graphite

    Directory of Open Access Journals (Sweden)

    Y. C. Jia

    2016-08-01

    Full Text Available Low melting temperature metal (LMTM-tin (Sn was introduced into polyamide-6 (PA6 and PA6/graphite composites respectively to improve the thermal conductivity of PA6 by melt processing (extruding and injection molding. After introducing Sn, the thermal conductivity of PA6/Sn was nearly constant because of the serious agglomeration of Sn. However, when 20 wt% (5.4 vol% of Sn was added into PA6 containing 50 wt% (33.3 vol% of graphite, the thermal conductivity of the composite was dramatically increased to 5.364 versus 1.852 W·(m·K–1 for the PA6/graphite composite, which suggests that the incorporation of graphite and Sn have a significant synergistic effect on the thermal conductivity improvement of PA6. What is more, the electrical conductivity of the composite increased nearly 8 orders of magnitudes after introducing both graphite and Sn. Characterization of microstructure and energy dispersive spectrum analysis (EDS indicates that the dispersion of Sn in PA6/graphite/Sn was much more uniform than that of PA6/Sn composite. According to Differential Scanning Calorimetry measurement and EDS, the uniform dispersion of Sn in PA6/graphite/Sn and the high thermal conductivity of PA6/graphite/Sn are speculated to be related with the electron transfer between graphite and Sn, which makes Sn distribute evenly around the graphite layers.

  19. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  20. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Xu Wei; Shi Lei; Zheng Yanhua

    2014-01-01

    Graphite is widely used in the high temperature gas-cooled reactor pebble-bed modular (HTR-PM). There are about 420,000 spherical fuel elements in the reactor core. The amount of graphite matrix in the reactor is dozens of tons. In normal operating conditions or water/air ingress accident, the matrix graphite of spherical fuel element may be oxidized by air or steam. This paper developed a new graphite oxidation model, considering the graphite porosity variation with the fractional burn-off. This model also considered the effects of microstructure development during oxidation and the resulting changing of diffusivity as well as the oxidation rate. Based on this theoretical model, this paper analyzed penetration depth and the graphite transient oxidation by oxygen. In addition, this paper obtained the weight loss ratio and oxidation rate trend over time and space. (author)

  1. Management of graphite material: a key issue for High Temperature Gas Reactor system (HTGR)

    International Nuclear Information System (INIS)

    Bourdeloie, C.; Marimbeau, P.; Robin, J.C.; Cellier, F.

    2005-01-01

    Graphite material is used in nuclear High Temperature Gas-cooled Reactors (HTGR, Fig.1) as moderator, thermal absorber and also as structural components of the core (Fig.2). This type of reactor was selected by the Generation IV forum as a potential high temperature provider for supplying hydrogen production plants and is under development in France in the frame of the AREVA ANTARES program. In order to select graphite grades to be used in these future reactors, the requirements for mechanical, thermal, physical-chemical properties must match the internal environment of the nuclear core, especially with regard to irradiation effect. Another important aspect that must be addressed early in design is the waste issue. Indeed, it is necessary to reduce the amount of nuclear waste produced by operation of the reactor during its lifetime. Preliminary assessment of the nuclear waste output for an ANTARES type 280 MWe HTGR over 60 year-lifetime gives an estimated 6000 m 3 of activated graphite waste. Thus, reducing the graphite waste production is an important issue for any HTGR system. First, this paper presents a preliminary inventory of graphite waste fluxes coming from a HTGR, in mass and volume, with magnitudes of radiological activities based on activation calculations of graphite during its stay in the core of the reactor. Normalized data corresponding to an output of 1 GWe.year electricity allows comparison of the waste production with other nuclear reactor systems. Second, possible routes to manage irradiated graphite waste are addressed in both the context of French nuclear waste management rules and by comparison to other national regulations. Routes for graphite waste disposal studied in different countries (concerning existing irradiated graphite waste) will be discussed with regard to new issues of large graphite waste from HTGR. Alternative or complementary solutions aiming at lowering volume of graphite waste to be managed will be presented. For example

  2. Dispersion stability and thermophysical properties of environmentally friendly graphite oil–based nanofluids used in machining

    Directory of Open Access Journals (Sweden)

    Yu Su

    2016-01-01

    Full Text Available As environmentally friendly cutting fluids, vegetable-based oil and ester oil are being more and more widely used in metal cutting industry. However, their cooling and lubricating properties are required to be further improved in order to meet more cooling and lubricating challenges in high-efficiency machining. Nanofluids with enhanced heat carrying and lubricating capabilities seem to give a promising solution. In this article, graphite oil–based nanofluids with LB2000 vegetable-based oil and PriEco6000 unsaturated polyol ester as base fluids were prepared by ultrasonically assisted two-step method, and their dispersion stability and thermophysical properties such as viscosity and thermal conductivity were experimentally and theoretically investigated at different ultrasonication times. The results indicate that graphite-PriEco6000 nanofluid showed better dispersion stability, higher viscosity, and thermal conductivity than graphite-LB2000 nanofluid, which made it more suitable for application in high-efficiency machining as coolant and lubricant. The theoretical classical models showed good agreement with the thermal conductivity values of graphite oil–based nanofluids measured experimentally. However, the deviation between the experimental values of viscosity and the theoretical models was relatively big. New empirical correlations were proposed for predicting the viscosity of graphite oil–based nanofluids at various ultrasonication times.

  3. Temperature control of the graphite stack of the reactor RBMK-1500

    International Nuclear Information System (INIS)

    Lesnoj, S.

    1998-01-01

    The paper includes general information about RBMK-1500 reactor, construction features and main technical data; graphite moderator stack, temperature channel, thermocouple TXA-1379, its basic technical and metrologic parameters as well as its advantages and disadvantages

  4. Graphite/salt composites for high temperature energy storage: a study of the effects of the graphite and of the microstructure of the composites on the phase change properties of the salts; Composites graphite/sel pour le stockage d'energie a haute temperature: etude des effets du graphite et de la microstructure des composites sur les proprietes de changement de phase des sels

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.; Palomo del Barrio, E. [TREFLE UMR 8508, 33 - Talence (France); Dumas, J.P. [Universite de Pau et des Pays de l' Adour, LaTEP, 64 - Pau (France)

    2008-07-15

    Thermal energy storage at high temperature is an efficient way for energy saving in the industrial sector, as well as a key component for power generation based on renewable energy resources. Thermal energy storage technology based on phase change materials (mainly salts) has been identified to meet the requirements of investment costs and compactness. However, the low thermal conductivity of salts (1 W/m/K) could be a limiting factor concerning power. To overcome such a drawback, new materials combining salts with graphite have been developed. Nevertheless, it is important to verify that no degradation of the salts storage properties is induced by their thermal conductivity enhancement. In this Note, the effects of the graphite and the composites graphite/salt microstructure on the phase change properties of salts are analysed. It appears that the thermo chemical stability of salts is not disturbed by graphite and that graphite does not modify the latent heat of salts. It is shown that graphite usually promotes heterogeneous nucleation and that it can reduce melting temperature.

  5. High Temperature Vacuum Annealing and Hydrogenation Modification of Exfoliated Graphite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Xiaobing Li

    2013-01-01

    Full Text Available Highly active defect sites on the edges of graphene automatically capture oxygen from air to form various oxygen groups. A two-step procedure to remove various oxygen functional groups from the defect sites of exfoliated graphene nanoplatelets (GNPs has been developed to reduce the atomic oxygen concentration from 9.5% to 4.8%. This two-step approach involves high temperature vacuum annealing followed by hydrogenation to protect the reduced edge carbon atoms from recombining with the atmospheric oxygen. The reduced GNPs exhibit decreased surface resistance and graphitic potential-dependent capacitance characteristics compared to the complex potential-dependent capacitance characteristics exhibited by the unreduced GNPs as a result of the removal of the oxygen functional groups present primarily at the edges. These reduced GNPs also exhibit high electrochemical cyclic stability for electrochemical energy storage applications.

  6. An analytical study on porosity changes of nuclear graphites under high temperature irradiations

    International Nuclear Information System (INIS)

    Arai, T.

    1996-01-01

    A quantitative description of the changing pore structure, based on some radiation damage mechanisms, may introduce a physically appropriate method for lifetime assessment of graphite fuel and moderator components. Recently Brocklehurst and Kelly have analyzed well-characterized data on dimensional changes of UK reactor graphites to quantify volumetric and linear pore generation terms. The analysis (B/K theory) has demonstrated that a crystal strain parameter X T , depending on irradiation temperature and fluence, is suitable for defining structure factors, which relate changes in microstructure with those in macroscopic properties of a family of nuclear graphites. Graphite components in high temperature reactors are subjected to higher temperatures well above 1000 deg. C, which accelerate pore generation. Their mechanical integrity will suffer from the deterioration, resulting in a reduced lifetime. Previous design considerations on the dimensional change behavior have been based on an empirical approach using measured data obtained in a number of irradiation experiments. A large variety of experimental data have been utilized to develop a general phenomenological model(Graphite Damage Model, GDM) for predicting engineering properties of nuclear graphites. The present study tries to combine the B/K theory with the GDM prediction with a view to characterizing porosity changes at high temperatures of some graphites from different manufacturing routes. The dimensional change data in the literature are analyzed by the GDM to obtain their analytical presentation as a function of temperature and fluence. The results are used to derive an X T function and pore volume change as a function of X T for each grade of graphite. The resulting porosity changes are compared between different kinds of graphites. 13 refs, 6 figs, 3 tabs

  7. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  8. Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite

    Directory of Open Access Journals (Sweden)

    Wen-Pin Shih

    2010-04-01

    Full Text Available This paper presents a novel method to fabricate temperature sensor arrays by dispensing a graphite-polydimethylsiloxane composite on flexible polyimide films. The fabricated temperature sensor array has 64 sensing cells in a 4 × 4 cm2 area. The sensor array can be used as humanoid artificial skin for sensation system of robots. Interdigitated copper electrodes were patterned on the flexible polyimide substrate for determining the resistivity change of the composites subjected to ambient temperature variations. Polydimethylsiloxane was used as the matrix. Composites of different graphite volume fractions for large dynamic range from 30 ºC to 110 ºC have been investigated. Our experiments showed that graphite powder provided the composite high temperature sensitivity. The fabricated temperature sensor array has been tested. The detected temperature contours are in good agreement with the shapes and magnitudes of different heat sources.

  9. Measurements of impurity migration in graphite at high temperatures using a proton microprobe

    International Nuclear Information System (INIS)

    Shroy, R.E.; Soo, P.; Sastre, C.A.; Schweiter, D.G.; Kraner, H.W.; Jones, K.W.

    1978-01-01

    The migration of fission products and other impurities through the graphite core of a High Temperature Gas Cooled Reactor is of prime importance in studies of reactor safety. Work in this area is being carried out in which graphite specimens are heated to temperatures up to 3800 0 C to induce migration of trace elements whose local concentrations are then measured with a proton microprobe. This instrument is a powerful device for such work because of its ability to determine concentrations at a part per million (ppm) level in a circular area as small as 10 μm while operating in an air environment. Studies show that Si, Ca, Cl, and Fe impurities in graphite migrate from hotter to cooler regions. Also Si, S, Cl, Ca, Fe, Mn, and Cr are observed to escape from the graphite and be deposited on cooler surfaces

  10. Irradiation of graphite cloth at various temperatures with deutrons and helium ions

    International Nuclear Information System (INIS)

    Ekern, R.; Das, S.K.; Kaminsky, M.

    1975-01-01

    Graphite cloth samples were irradiated with 100 keV deuterons and 4 He + ions at room temperature and at elevated temperatures. Scanning electron microscopy was used to examine the surfaces of irradiated and unirradiated graphite fibers. Irradiation at room temperature with 4 He + to a total dose of 3.1 x 10 18 ions cm -2 produces considerable flaking of individual fibers, which is not observed on unirradiated fibers. Identical irradiations at 400 0 and 800 0 with 4 He + did not produce any detectable flaking or other surface damage. The elevated temperatures apparently prevent an accumulation of helium in localized areas which in turn could cause flaking in near surface regions. Results obtained for deuteron bombardment of graphite cloth at room temperature and at 600 0 C are also discussed

  11. Effects of high temperature neutron irradiation on the physical, chemical and mechanical properties of fine-grained isotropic graphite

    International Nuclear Information System (INIS)

    Matsuo, H.; Nomura, S.; Imai, H.; Oku, T.; Eto, M.

    1987-01-01

    Effects of neutron irradiation on the dimensional change, coefficient of thermal expansion(CTE), thermal conductivity, corrosion rate, Young's modulus and strengths were studied for the candidate graphite material IG-110 of the experimental very high temperature gas-cooled reactor(VHTR) after irradiation at 585 - 1273 deg C to neutron fluences of up to about 3 x 10 25 n/m 2 (E > 29 fJ) in the JMTR and JRR-2, and to about 7 x 10 25 n/m 2 (E > 29 fJ) in the HFR. The results were compared with the irradiation behaviors of other graphites. Dimensional shrinkage was observed in the whole irradiation temperature range, showing lower value than 2 %. The shrinkage rate showed the minimum in the irradiation temperature of around 850 deg C, followed by the increase for the samples irradiated at higher temperatures. The dimensional stability of the material was clarified to be almost the same with that of H451 graphite. The CTE, thermal resistivity and Young's modulus increased in the early stage of irradiation and then only the CTE decreased while the thermal resistivity and Young's modulus levelled off with further irradiation. The neutron fluence showing the maximum CTE shifted to the lower fluence with increasing irradiation temperature. The increases of both thermal resistivity and Young's modulus were remarkable for the samples irradiated at lower temperatures. Compressive and bending strengths measured at room temperature increased after irradiation as well. The corrosion rate with water-vapor of 0.65 % in helium at high temperatures decreased owing to irradiation and the reduction was independent of irradiation temperature and neutron fluence. The activation energy for the reaction was estimated to be the same before and after irradiation. (author)

  12. Long-term cycle stability of metal hydride-graphite composites

    OpenAIRE

    Dieterich, Mila; Pohlmann, Carsten; Bürger, Inga; Linder, Marc; Röntzsch, Lars

    2015-01-01

    Recently, metal hydride composites (MHC) have been proposed which consist of a hydride forming metal alloy and a highly heat conduction secondary phase such as expanded natural graphite (ENG) in order to improve the thermal conductivity of metal hydride powder beds. However, only little data is available in the literature on the effects of extensive cycling on technically relevant properties of MHC. In this paper, hydrogenation characteristics, thermal conductivity and geometrical stability o...

  13. Irradiation creep of graphite

    International Nuclear Information System (INIS)

    Kennedy, C.R.

    1990-01-01

    Displacement damage of graphite by neutron irradiation causes graphite to change dimensions. This dimensional instability requires careful attention when graphite is used as as moderator and reflector material in nuclear devices. Natural gradients in flux and temperature result in time-varying differential growth generating stresses similar to thermal stresses with an ever increasing temperature gradient. Graphite, however, does have the ability to creep under irradiation, allowing the stress intensity to relax below the fracture strength of the material. Creep strain also serves to average the radiation-induced strains, thus contributing to the stability of the core. As the dimensional instability is a function of temperature, so are the creep characteristics of graphite, and it is of interest to generalize the available data for extension to more extreme conditions of fluence and temperature. Irradiation creep of graphite is characterized by two stages of creep; a primary stage that saturates with time and a secondary stage that is generally assumed to be linear and constant with time. Virtually all past studies have not considered primary creep in detail primarily because there is limited available data at the very low fluences required to saturate primary creep. It is the purpose of this study to carefully examine primary creep in detail over the irradiation temperature range of 150 to 1000 degree C. These studies also include the combined effects of creep, differential growth, and structural changes in graphite by irradiation. 3 refs., 5 figs

  14. Effect of heating temperature on the structure and fine texture of carbon-graphite pan fibres

    International Nuclear Information System (INIS)

    Varenkov, A.N.

    1976-01-01

    The structure and strength properties of carbon-graphite fibres obtained at 1000, 2000, 2750 and 3000 0 C from polyacrylonitrile (PAN) were investigated. The dependence of the interplanar distance, dimensions of the quasicrystallites and their orientations on the fibre temperature obtained were determined by X-ray structural analysis. A rise in formation temperature of the fibre leads to a decreased interplanar distance, (from 6.031 to 6.798 A), to growth of the quasicrystallites (from 14 to 99 A) and to a decrease in their degree of disorientation with respect to the fibre axis. Re-annealing influences the structure and properties of the fibres in the case where the temperature of the re-anneal exceeds the temperature at which the carbon-graphite fibre is obtained. Bombardment with neutrons ( E > 0.5 MeV) lowers the strength of the carbon-graphite fibres as a function of the irradiation dose. (author)

  15. Development and testing of nuclear graphite for the German pebble-bed high temperature reactor

    International Nuclear Information System (INIS)

    Haag, G.; Delle, W.; Nickel, H.; Theymann, W.; Wilhelmi, G.

    1987-01-01

    Several types of high temperature reactors have been developed in the Federal Republic of Germany. They are all based on spherical fuel elements being surrounded by graphite as reflector material. As an example, HTR-500 developed by the Hochtemperatur Reaktorbau GmbH is shown. The core consists of the top reflector, the side reflector with inner and outer parts, the bottom reflector and the core support columns. The most serious problem with respect to fast neutron radiation damage had to be solved for the materials of those parts near the pebble bed. Regarding the temperature profile in the core, the top reflector is at 300 deg C, and as cooling gas flows from the top downward, the temperature of the inner side reflector rises to about 700 deg C at the bottom. Fortunately, the highest fast neutron load accumulated during the life time of a reactor corresponds to the lowest temperature. This makes graphite components easier to survive neutron exposure without being mechanically damaged, although the maximum fast neutron fluence is as high as 4 x 10 22 /cm 2 at about 400 deg C. HTR graphite components are divided into four classes according to loading. The raw materials for nuclear graphite, the development of pitch coke nuclear graphite, the irradiation behavior of ATR-2E and ASR-IRS and others are reported. (Kako, I.)

  16. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  17. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation

    Science.gov (United States)

    Gorrini, F.; Cazzanelli, M.; Bazzanella, N.; Edla, R.; Gemmi, M.; Cappello, V.; David, J.; Dorigoni, C.; Bifone, A.; Miotello, A.

    2016-10-01

    Nanodiamonds are the subject of active research for their potential applications in nano-magnetometry, quantum optics, bioimaging and water cleaning processes. Here, we present a novel thermodynamic model that describes a graphite-liquid-diamond route for the synthesis of nanodiamonds. Its robustness is proved via the production of nanodiamonds powders at room-temperature and standard atmospheric pressure by pulsed laser ablation of pyrolytic graphite in water. The aqueous environment provides a confinement mechanism that promotes diamond nucleation and growth, and a biologically compatible medium for suspension of nanodiamonds. Moreover, we introduce a facile physico-chemical method that does not require harsh chemical or temperature conditions to remove the graphitic byproducts of the laser ablation process. A full characterization of the nanodiamonds by electron and Raman spectroscopies is reported. Our model is also corroborated by comparison with experimental data from the literature.

  18. Investigation on structural integrity of graphite component during high temperature 950degC continuous operation of HTTR

    International Nuclear Information System (INIS)

    Sumita, Junya; Shimazaki, Yosuke; Shibata, Taiju

    2014-01-01

    Graphite material is used for internal structures in high temperature gas-cooled reactor. The core components and graphite core support structures are so designed as to maintain the structural integrity to keep core cooling capability. To confirm that the core components and graphite core support structures satisfy the design requirements, the temperatures of the reactor internals are measured during the reactor operation. Surveillance test of graphite specimens and in-service inspection using TV camera are planned in conjunction with the refueling. This paper describes the evaluation results of the integrity of the core components and graphite core support structures during the high temperature 950degC continuous operation, a high temperature continuous operation with reactor outlet temperature of 950degC for 50 days, in high temperature engineering test reactor. The design requirements of the core components and graphite core support structures were satisfied during the high temperature 950degC continuous operation. The dimensional change of graphite which directly influences the temperature of coolant was estimated considering the temperature profiles of fuel block. The magnitude of irradiation-induced dimensional change considering temperature profiles was about 1.2 times larger than that under constant irradiation temperature of 1000degC. In addition, the programs of surveillance test and ISI using TV camera were introduced. (author)

  19. New Insights of Graphite Anode Stability in Rechargeable Batteries: Li-Ion Coordination Structures Prevail over Solid Electrolyte Interphases

    KAUST Repository

    Ming, Jun

    2018-01-04

    Graphite anodes are not stable in most noncarbonate solvents (e.g., ether, sulfoxide, sulfone) upon Li ion intercalation, known as an urgent issue in present Li ions and next-generation Li–S and Li–O2 batteries for storage of Li ions within the anode for safety features. The solid electrolyte interphase (SEI) is commonly believed to be decisive for stabilizing the graphite anode. However, here we find that the solvation structure of the Li ions, determined by the electrolyte composition including lithium salts, solvents, and additives, plays a more dominant role than SEI in graphite anode stability. The Li ion intercalation desired for battery operation competes with the undesired Li+–solvent co-insertion, leading to graphite exfoliation. The increase in organic lithium salt LiN(SO2CF3)2 concentration or, more effectively, the addition of LiNO3 lowers the interaction strength between Li+ and solvents, suppressing the graphite exfoliation caused by Li+–solvent co-insertion. Our findings refresh the knowledge of the well-known SEI for graphite stability in metal ion batteries and also provide new guidelines for electrolyte systems to achieve reliable and safe Li–S full batteries.

  20. Fuel elements for high temperature reactors having special suitability for reuse of the structural graphite

    International Nuclear Information System (INIS)

    Huschka, H.; Herrmann, F.J.

    1976-01-01

    There are prepared fuel elements for high temperature reactors from which the fuel zone can be removed from the structural graphite after the burnup of the fissile material has taken place so that the fuel element can be filled with new fuel and again placed in the reactor by having the strength of the matrix in the fuel zone sufficient for binding the embedded coated fuel particles but substantially less than the strength of the structural graphite whereby by the action of force it can be easily split up without destroying the particles

  1. Temperature dependence of the thermal expansion of neutron-irradiated pyrolytic carbon and graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1988-01-01

    The effects of neutron irradiation and annealing on the temperature dependence of the linear thermal expansion of pyrolytic carbon and graphite were investigated after irradiation at 930-1280 0 C to a maximum neutron fluence of 2.84 x 10 25 m -2 (E > 29 fJ). After irradiation, little change in the thermal expansion of pyrolytic graphite was observed. However, as-deposited pyrolytic carbon showed an increase in thermal expansion in the perpendicular direction, a decrease in the direction parallel to the deposition plane, and also an increase in the anisotropy of the thermal expansion. Annealing at 2000 0 C did not cause any effective changes for irradiated specimens of either as-deposited pyrolytic carbon or pyrolytic graphite. (author)

  2. Effect of Temperature and Graphite Immersion Method on Carbothermic Reduction of Fayalite Slag

    Science.gov (United States)

    Mitrašinović, Aleksandar

    2017-09-01

    In this work, graphite flakes were used to reduce fayalite slag originated from the pyrometallurgical copper extraction process. Experiments were conducted with a significantly different contact area between graphite and slag at two temperatures, 1300°C and 1400°C. The process was continuously monitored via the concentration change of CO and CO2 in off-gas. Reduction rate values in experiments where 150-micron-diameter graphite flakes were submerged into the slag and left to float slowly to the top are about four times higher compared with when graphite flakes were dispersed at the top surface of liquid slag. The activation energy for instigating reduction was 302.61 kJ mol-1 and 306.67 kJ mol-1 in the case where graphite flakes were submerged into the slag and dispersed at the surface, respectively. The reduction process is characterized by two distinctive periods: an initial steep increase in the concentration of CO and CO2 controlled by the Boudouard reaction and a subsequent slow decrease of CO and CO2 concentrations in the off-gas controlled by mass transfer of reducible oxides from bulk to the gas-slag interface.

  3. Effects of porosity and temperature on oxidation behavior in air of selected nuclear graphites

    International Nuclear Information System (INIS)

    Chen Dongyue; Li Zhengcao; Miao Wei; Zhang Zhengjun

    2012-01-01

    Nuclear graphite endures gas oxidation in High Temperature Gas-cooled Reactor (HTGR), which may threaten the safety of reactor. To study the oxidation behavior of nuclear graphite, weight loss curve is usually measured through Thermo Gravimetric Analysis (TGA) method. In this work, three brands of nuclear graphite for HTGR (i.e., HSM-SC, IG-11, and NBG-18) are oxidized under 873 and 1073 K in open air, and their weight loss curves are obtained. The acceleration of oxidizing rate is observed for both HSM-SC and IG-11, and is attributed to the large porosity increase during oxidation process. For HSM-SC, the porosity increase comes from preferential binder oxidation, and thus its binder quality shall be improved to obtain better oxidation resistance. Temperature effects on oxidation for HSM-SC are also studied, which shows that oxidizing gas tends to be exhausted at graphite surface at high temperature instead of penetrate into the interior of bulk. (author)

  4. Microstructure and low-temperature hydrogen storage capacity of ball-milled graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hentsche, Melanie; Hermann, Helmut; Lindackers, Dirk [Leibniz-Institute for Solid State and Materials Research IFW Dresden, PF 270116, D-01171 Dresden (Germany); Seifert, Gotthard [Technical University Dresden, Institute of Physical Chemistry and Electrochemistry, D-01062 Dresden (Germany)

    2007-07-15

    Hydrogen adsorption in ball-milled graphite is investigated in the low temperature range from 110 to 35 K and at pressures up to 20 MPa. The adsorption data are compared to the results of detailed quantitative microstructural analyses of the samples used for the adsorption experiments. The amount of hydrogen adsorbed at temperatures well below 77 K exceeds considerably that what is expected from adsorption on plane graphitic planes. The results can be explained assuming the following mechanisms: (i) adsorption in trapping states on plane surfaces at and below 110 K; (ii) adsorption in small micropores with diameter of less than 1 nm at 77 K and pressure of 10 MPa, and (iii) multilayer adsorption in mesopores at temperatures from 35 to 40 K and pressure of 2 MPa. The effects observed in the low temperature range are reversible and make the investigated material interesting as a supporting component for liquid hydrogen storage systems. (author)

  5. Interfacial effects in ZnO nanotubes/needle-structured graphitic diamond nanohybrid for detecting dissolved acetone at room temperature

    Science.gov (United States)

    Kathiravan, Deepa; Huang, Bohr-Ran; Saravanan, Adhimoorthy; Yeh, Chien-Jui; Leou, Keh-Chyang; Lin, I.-Nan

    2017-12-01

    A high-performance ZnO nanotubes (ZNTs)/needle-structured graphitic diamond (NGD) nanohybrid material was prepared and observed the electrochemical sensing properties of liquid acetone in water. Initially, we synthesized NGD film using bias-enhanced growth (BEG) process. Afterwards, a well-etched ZNTs were spatially grown on the NGD film using simple hydrothermal method, and utilized as sensing material for assemble an electrochemical sensor (via EGFET configuration) operating at room temperature. The systematic investigations depict the ultra-high sensing properties attained from ZNTs grown on NGD film. The NGD film mostly have needle or wire shaped diamond grains, which contributes extremely high electrical conductivity. Furthermore, needle shaped diamond grains cover with multi-layer graphitic material generates conduction channels for ZNTs and leads to enhance the oxygen residuals and species. The material stability and conductivity of NGD as well the defects exist with oxygen vacancies in ZNTs offers superior sensing properties. Thus, the interesting combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days).

  6. Temperature and radiolytic corrosion effects on the chlorine behaviour in nuclear graphite: consequences for the disposable of irradiated graphite from UNGG reactors; Effets de la temperature et de la corrosion radiolytique sur le comportement du chlore dans le graphite nucleaire: consequences pour le stockage des graphites irradies des reacteurs UNGG

    Energy Technology Data Exchange (ETDEWEB)

    Vaudey, C.E.

    2010-10-15

    This work concerns the dismantling of the UNGG reactor which have produced around 23 000 t of graphite wastes that ave to be disposed of according to the French law of June 206. These wastes contain two long-lived radionuclides ({sup 14}C and {sup 36}Cl) which are the main long term dose contributors. In order to get information about their inventory and their long term behaviour in case of water ingress into the repository, it is necessary to determine their location and speciation in the irradiated graphite after the reactor shutdown. This work concerns the study of {sup 36}Cl. The main objective is to reproduce its behaviour during reactor operation. For that purpose, we have studied the effects of temperature and radiolytic corrosion independently. Our results show a rapid release of around 20% {sup 36}Cl during the first hours of reactor operation whereas a much slower release occurs afterwards. We have put in evidence two types of chlorine corresponding to two different chemical forms (of different thermal stabilities) or to two locations (of different accessibilities). We have also shown that the radiolytic corrosion seems to enhance chlorine release, whatever the irradiation dose. Moreover, the major chemical form of chlorine is inorganic. (author)

  7. Non-graphite crucible for high temperature applications

    Science.gov (United States)

    Holcombe, Cressie E.; Pfeiler, William A.

    1996-01-01

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation.

  8. Annealing of neutron damage in graphite irradiated and stored at room temperature

    International Nuclear Information System (INIS)

    Gray, W.J.; Thrower, P.A.

    1979-01-01

    Annealing of neutron radiation damage in graphite at the same temperature at which it was irradiated is reported. Highly oriented pyrolytic graphite samples were irradiated to fluences in the range 0.44 to 153 x 10 15 /cm 2 at room temperature using three different neutron sources with average energies of 1.5, 5.5, and 15 MeV, respectively. Following these irradiations, the C 44 elastic constants of the samples were measured several times over periods up to two years during which time sample temperatures never exceeded 30 0 C. The C 44 constants were observed to slowly decrease toward their unirradiated values with up to 40% of the irradiation-induced changes eventually annealing out

  9. Experimental investigation of linear thermal expansion of pyrolytic graphite at high temperatures

    Science.gov (United States)

    Senchenko, V. N.; Belikov, R. S.

    2017-11-01

    Using the previously described [1] experimental setup for investigation of the thermophysical properties of refractory materials under high pressure and temperature a few experiments with pyrolytic graphite were carried out. The density of the material was equal to 2.18 g/cm3. Experimental data on the linear thermal expansion in the perpendicular and parallel to the basal plane direction were obtained. Thermal expansion in the perpendicular to the basal plane direction during the heating from room temperature up to the melting point was 16.4 ± 1.6%. The results obtained allow calculating the density of pyrolytic graphite in the wide range of high temperatures up to the melting point.

  10. Graphene quantum dots produced by exfoliation of intercalated graphite nanoparticles and their application for temperature sensors

    Science.gov (United States)

    Nguyen, Duy Khiem; Kim, TaeYoung

    2018-01-01

    Graphene quantum dots (GQDs) have received much attention as a new class of fluorescent materials due to their unique transport phenomena and broadband absorption. Here, we present a method to produce pristine blue-luminescent GQDs from graphite nanoparticles by the intercalation of graphite nanoparticles and subsequent exfoliation in liquids. The as-synthesized GQDs are composed of highly crystalline carbon rings and show uniform size distribution ranging from 3 to 4 nm with an average thickness of ∼1 nm. The GQDs exhibit an excitation-dependent blue photoluminescence with a quantum yield of 22.3%. Furthermore, the GQDs were explored as an active sensing material for temperature measurement. The GQD-based temperature sensors show high responsivity to temperature changes over the range 30-80 °C.

  11. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-01-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  12. Possible room temperature superconductivity in conductors obtained by bringing alkanes into contact with a graphite surface

    Directory of Open Access Journals (Sweden)

    Yasushi Kawashima

    2013-05-01

    Full Text Available Electrical resistances of conductors obtained by bringing alkanes into contact with a graphite surface have been investigated at room temperatures. Ring current in a ring-shaped container into which n-octane-soaked thin graphite flakes were compressed did not decay for 50 days at room temperature. After two HOPG plates were immersed into n-heptane and n-octane at room temperature, changes in resistances of the two samples were measured by four terminal technique. The measurement showed that the resistances of these samples decrease to less than the smallest resistance that can be measured with a high resolution digital voltmeter (0.1μV. The observation of persistent currents in the ring-shaped container suggests that the HOPG plates immersed in n-heptane and n-octane really entered zero-resistance state at room temperature. These results suggest that room temperature superconductor may be obtained by bringing alkanes into contact with a graphite surface.

  13. Localized temperature stability of low temperature cofired ceramics

    Science.gov (United States)

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  14. A study of the relationship between microstructure and oxidation effects in nuclear graphite at very high temperatures

    Science.gov (United States)

    Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang

    2018-04-01

    Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.

  15. Frictional characteristics of silicon graphite lubricated with water at high pressure and high temperature

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Eun Hyun; Park, Jin Seok; Kim, Jong In

    2001-01-01

    Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss and wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics

  16. Study on structural recovery of graphite irradiated with swift heavy ions at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pellemoine, F., E-mail: pellemoi@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Avilov, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Bender, M. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Ewing, R.C. [Dept. of Geological Sciences, Stanford University, Stanford, CA 94305-2115 (United States); Fernandes, S. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Lang, M. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); Li, W.X. [Dept. of Geological Sciences, Stanford University, Stanford, CA 94305-2115 (United States); Mittig, W. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Schein, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Severin, D. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Tomut, M. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Laboratory of Magnetism and Superconductivity, National Institute for Materials Physics NIMP, Bucharest (Romania); Trautmann, C. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Dept. of Materials Science, Technische Universität Darmstadt, Darmstadt (Germany); and others

    2015-12-15

    Thin graphite foils bombarded with an intense high-energy (8.6 MeV/u) gold beam reaching fluences up to 1 × 10{sup 15} ions/cm{sup 2} lead to swelling and electrical resistivity changes. As shown earlier, these effects are diminished with increasing irradiation temperature. The work reported here extends the investigation of beam induced changes of these samples by structural analysis using synchrotron X-ray diffraction and transmission electron microscope. A nearly complete recovery from swelling at irradiation temperatures above about 1500 °C is identified.

  17. New graphite/salt materials for high temperature energy storage. Phase change properties study

    International Nuclear Information System (INIS)

    Lopez, J.

    2007-07-01

    This work is a contribution to the study of new graphite/salt composites dedicated to high temperature energy storage (≥200 C). The aim is to analyse and to understand the influence of both graphite and composite microstructure on the phase change properties of salts. This PhD is carried out within the framework of two projects: DISTOR (European) and HTPSTOCK (French). The major contributions of this work are threefold: 1) An important database (solid-liquid phase change properties) is provided from the DSC analysis of six salts and the corresponding composites. 2) Rigorous modeling of salts melting in confined media in several geometries are proposed to understand why, during the first melting of the compression elaborated composites, problems of salt leakage are observed. These models show that the materials morphology is responsible for these phenomena: the graphite matrix restrains the volume expansion due to salt melting: salt melts under pressure, which leads to a melting on a large temperature range and to a loss of energy density. Sensitivity analysis of parameters (geometric and physic) shows that matrix rigidity modulus is the parameter on which it is necessary to act during the composites elaboration to blur this phenomenon. 3) Finally, this work proposes a thermodynamic formulation of both surface/interface phenomena and the presence of dissolved impurities being able to explain a melting point lowering. It seems that the melting point lowering observed (∼ 5 C) are mainly due to the presence of dissolved impurities (brought by graphite) in the liquid, along with an additional Gibbs-Thomson effect (∼ 1 C, related to the size of the clusters crystals). (author)

  18. Radiation behaviour of graphite for HTGR

    International Nuclear Information System (INIS)

    Shtrombakh, Ya.I.; Platonov, P.A.; Gurovich, B.A.; Alekseev, V.M.

    1996-01-01

    The paper presents the results of investigations of different graphite materials, among with the standard reactor graphite manufacturing by electrode technology and a number of advanced graphites of new generation. During the investigation of radiation stability of standard reactor graphite the basic mechanisms of radiation damage of its structure were studied. With the help of transmission electron microscopy deformations and cracking of filler and binder were detected in the vicinity of the boundaries, separating these two components. Cracking begins with crystallite splitting and ends in full fracture of boundary layers. Such process of degradation can be explained by disjoint deformations resulting from difference in growth rate of filler and binder crystallites, in its turn caused by considerable difference between their sizes. It has been concluded that radiation stability of graphite may be improved by creating such graphite materials, in which the difference in sizes of crystallites of different structure components would be the minimal possible. When developing production technology of isotropic graphite for high temperature reactors, some progress was made towards the solution of this problem. Despite considerable swelling at high temperature this type of graphite appeared to be substantially less susceptible to the degradation of the structure and to deterioration of physico-mechanical properties. In addition to graphites manufactured by tradition technology, the graphite was investigated, in which pyrocarbon precipitated from gas phase under 1000 deg. C was used as binder. Carbon precipitated in such a way was non-graphitized at high temperatures and therefore it demonstrated sharp shrinkage under irradiation at high temperature, and shrinkage rate correlated with pyrocarbon quota in graphite structure. (author). 5 refs, 18 figs, 1 tab

  19. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  20. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater.

    Science.gov (United States)

    Yun, Jumi; Lee, Dae Hoon; Im, Ji Sun; Kim, Hyung-Il

    2012-08-01

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Voltage stabilizers for high temperature furnace

    International Nuclear Information System (INIS)

    Huet, J.

    1966-10-01

    The stabilization of furnace temperatures in the range 1500-2500 C has been achieved by controlling the effective (rms) value of the supply voltage of the heating element. Temperature variations are less than, or equal to, one degree C in the whole working range of the furnace. Two types of set-ups have been developed: one is static, the other takes use of a servo-motor. (author) [fr

  2. High temperature vacuum furnace for the preparation of graphite targets for 14C dating by tandem accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Lowe, D.C.; Bristow, P.; Judd, W.J.

    1985-02-01

    A simple and reliable furnace design capable of producing temperatures of up to 2800 deg. C is presented. The furnace has been specifically designed for the rapid and reliable production of graphite targets for 14 C dating purposes but may be used in a variety of applications requiring high temperatures under vacuum conditions

  3. Degree of functionalization and stability of fluorine groups fixed to carbon nanotubes and graphite nanoplates by CF{sub 4} microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader-Fernández, V.K.; Morales-Lara, F. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Melguizo, M.; García-Gallarín, C.; López-Garzón, R.; Godino-Salido, M.L. [Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén (Spain); López-Garzón, F.J., E-mail: flopez@ugr.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Domingo-García, M.; Pérez-Mendoza, M.J. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2015-12-01

    Highlights: • The surface area of GNPs and MWCNTs determines the degree of fluorination by plasma. • Fluorine is bound to carbon atoms in up to eight chemical environments. • The stability of the fluorine groups varies in a wide range of temperature. • The electronic properties of MWCNTs are changed as a consequence of fluorination. • The textural characteristics of the materials are not changed after fluorination. - Abstract: The fluorination of graphite nanoplates (GNPs) and multi-wall carbon nanotubes (MWCNTs) by CF{sub 4} cold plasma is reported. The aim is to analyze the influence of the textural characteristics in the degree of fluorination and in the thermal stability of the fluorine groups. We have used thermal programmed desorption which clearly discriminates the nature of the desorbing species and their stability. The degree of fluorination of both materials is similar up to 20 min of treatment and then it decreases in GNPs at longer treatments. Nevertheless, the fluorine content in MWCNTs keeps increasing after 45 min. This different evolution of the fluorination degree with the time is related to the surface areas. The fluorine bonding is produced not only in defects and irregularities but also on the external graphene sheets of both materials, and it results in up to eight different chemical environments having different thermal stabilities from 150 °C up to temperatures higher than 900 °C. The fluorination increases the electronic states near the Fermi level of the nanotubes whereas it does not affect the electronic properties of graphite nanoplates. It is shown that no intercalation compounds are formed and that the textural characteristics of the materials remain unchanged after fluorination.

  4. Implications of Graphite Radiation Damage on the Neutronic, Operational, and Safety Aspects of Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Hawari, Ayman I.

    2011-01-01

    In both the prismatic and pebble bed designs of Very High Temperature Reactors (VHTR), the graphite moderator is expected to reach exposure levels of 10 21 to 10 22 n/cm 2 over the lifetime of the reactor. This exposure results in damage to the graphite structure. In this work, molecular dynamic and ab initio molecular static calculations will be used to: (1) simulate radiation damage in graphite under various irradiation and temperature conditions, (2) generate the thermal neutron scattering cross sections for damaged graphite, and (3) examine the resulting microstructure to identify damage formations that may produce the high-temperature Wigner effect. The impact of damage on the neutronic, operational and safety behavior of the reactor will be assessed using reactor physics calculations. In addition, tests will be performed on irradiated graphite samples to search for the high-temperature Wigner effect, and phonon density of states measurements will be conducted to quantify the effect on thermal neutron scattering cross sections using these samples.

  5. Theoretical analysis of the graphitization of a nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S Joon; Park, Jae-Gwan [Nano Science and Technology Division, Korea Institute of Science and Technology (KIST), PO Box 131, Cheongryang, Seoul, 130-650 (Korea, Republic of)

    2007-09-26

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F{sub 2g} vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond.

  6. Theoretical analysis of the graphitization of a nanodiamond

    International Nuclear Information System (INIS)

    Kwon, S Joon; Park, Jae-Gwan

    2007-01-01

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F 2g vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond

  7. Investigation of corrosion resistance of graphite under electron irradiation in the oxygen flow at the temperatures 600...800 deg C

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Odejchuk, N.P.; Ryzhov, V.P.; Borisenko, V.N.; Gamov, V.O.; Lyashchenko, A.N.; Ulybkin, A.L.; Yakovlev, V.K.

    2013-01-01

    In work results of researches of corrosion resistance of graphite samples by grades MPG, ARV and GSP (graphite bonded pyrocarbon) in oxygen flow at the temperatures of ∼ 600 and ∼ 800 deg C under the influence of electron irradiation at the accelerator ELIAS. Established that the oxidation process of graphite with the increasing temperature goes significantly more intensively and the oxidation rate increases in 6...8 times. It is shown that the best corrosion resistance under irradiation in the investigated temperature range has graphite GSP with density 1.77...1.9 g/cm 3 manufacturing of NSC KIPT

  8. Analysis of triacylglycerols on porous graphitic carbon by high temperature liquid chromatography.

    Science.gov (United States)

    Merelli, Bérangère; De Person, Marine; Favetta, Patrick; Lafosse, Michel

    2007-07-20

    The retention behaviour of several triacylglycerols (TAGs) and fats on Hypercarb, a porous graphitic carbon column (PGC), was investigated in liquid chromatography (LC) under isocratic elution mode with an evaporative light scattering detector (ELSD). Mixtures of chloroform/isopropanol were selected as mobile phase for a suitable retention time to study the influence of temperature. The retention was different between PGC and non-aqueous reversed phase liquid chromatography (NARP-LC) on octadecyl phase. The retention of TAGs was investigated in the interval 30-70 degrees C. Retention was greatly affected by temperature: it decreases as the column temperature increases. Selectivity of TAGs was also slightly influenced by the temperature. Moreover, this chromatographic method is compatible with a mass spectrometer (MS) detector by using atmospheric pressure chemical ionisation (APCI): same fingerprints of cocoa butter and shea butter were obtained with LC-ELSD and LC-APCI-MS. These preliminary results showed that the PGC column could be suitable to separate quickly triacylglycerols in high temperature conditions coupled with ELSD or MS detector.

  9. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  10. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  11. Dynamic measurements of depth profiles of hydrogen implanted into graphite at elevated temperatures

    International Nuclear Information System (INIS)

    Morita, K.; Ohtsuka, K.; Hasebe, Y.

    1989-01-01

    Time variations of depth profiles of hydrogen retained in graphite during and after implantation of 3 keV H 2 + ions have been studied from dynamic measurements by means of elastic recoil detection at temperatures between 300 and 1000 K and at ion fluxes of 4x10 13 , 2x10 14 and 4x10 14 /cm 2 s. It is shown that the maximum steady state concentration of hydrogens is about 6x10 22 /cm 3 at room temperature and is by a factor of 1.7 higher than the maximum static concentration after implantation. It is also shown that the depth profiles have the maximum at the projected range of implanted ions, the width of the profile broadens gradually inwards as the fluence and the temperature increase and the shapes of steady state profiles are almost the same as those of static profiles. By analytically solving mass balance equations for hydrogens, in which diffusion, trapping, ion-induced detrapping and recession of the surface are taken into account, the experimental steady state depth profiles are demonstrated to be well reproduced. The diffusion constants of hydrogen are determined as a function of temperature by fitting the calculated to the experimental depth profiles. (orig.)

  12. Treatment and Disposal of the Radioactive Graphite Waste of High-Temperature Gas-Cooled Reactor Spent Fuel

    International Nuclear Information System (INIS)

    Li Junfeng

    2016-01-01

    High-temperature gas-cooled reactors (HTGRs) represent one of the Gen IV reactors in the future market, with efficient generation of energy and the supply of process heat at high temperature utilised in many industrial processes. HTGR development has been carried out within China’s National High Technology Research and Development Program. The first industrial demonstration HTGR of 200 MWe is under construction in Shandong Province China. HTGRs use ceramic-coated fuel particles that are strong and highly resistant to irradiation. Graphite is used as moderator and helium is used as coolant. The fuel particles and the graphite block in which they are imbedded can withstand very high temperature (up to ~1600℃). Graphite waste presents as the fuel element components of HTGR with up to 95% of the whole element beside the graphite blocks in the core. For example, a 200 MWe reactor could discharge about 90,000 fuel elements with 17 tonnes irradiated graphite included each year. The core of the HTGR in China consists of a pebble bed with spherical fuel elements. The UO 2 fuel kernel particles (0.5mm diameter) (triple-coated isotropic fuel particles) are coated by several layers including inner buffer layer with less dense pyrocarbon, dense pyro-carbon, SiC layer and outer layer of dense pyro-carbon, which can prevent the leaking of fission products (Fig. 1). Spherical fuel elements (60mm diameter) consist of a 50mm diameter inner zone and 5mm thick shell of fuel free zone [3]. The inner zone contains about 8300 triple-coated isotropic fuel particles of 0.92mm in diameter dispersed in the graphite matrix

  13. Elevated-temperature application of the IITRI compression test fixture for graphite/polyimide filamentary composites

    Science.gov (United States)

    Raju, B. B.; Camarda, C. J.; Cooper, P. A.

    1979-01-01

    Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).

  14. Graphite Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  15. New graphite/salt materials for high temperature energy storage. Phase change properties study; Nouveaux materiaux graphite/sel pour le stockage d'energie a haute temperature. Etude des proprietes de changement de phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J

    2007-07-15

    This work is a contribution to the study of new graphite/salt composites dedicated to high temperature energy storage ({>=}200 C). The aim is to analyse and to understand the influence of both graphite and composite microstructure on the phase change properties of salts. This PhD is carried out within the framework of two projects: DISTOR (European) and HTPSTOCK (French). The major contributions of this work are threefold: 1) An important database (solid-liquid phase change properties) is provided from the DSC analysis of six salts and the corresponding composites. 2) Rigorous modeling of salts melting in confined media in several geometries are proposed to understand why, during the first melting of the compression elaborated composites, problems of salt leakage are observed. These models show that the materials morphology is responsible for these phenomena: the graphite matrix restrains the volume expansion due to salt melting: salt melts under pressure, which leads to a melting on a large temperature range and to a loss of energy density. Sensitivity analysis of parameters (geometric and physic) shows that matrix rigidity modulus is the parameter on which it is necessary to act during the composites elaboration to blur this phenomenon. 3) Finally, this work proposes a thermodynamic formulation of both surface/interface phenomena and the presence of dissolved impurities being able to explain a melting point lowering. It seems that the melting point lowering observed ({approx} 5 C) are mainly due to the presence of dissolved impurities (brought by graphite) in the liquid, along with an additional Gibbs-Thomson effect ({approx} 1 C, related to the size of the clusters crystals). (author)

  16. Radiation damage in graphite

    CERN Document Server

    Simmons, John Harry Walrond

    1965-01-01

    Nuclear Energy, Volume 102: Radiation Damage in Graphite provides a general account of the effects of irradiation on graphite. This book presents valuable work on the structure of the defects produced in graphite crystals by irradiation. Organized into eight chapters, this volume begins with an overview of the description of the methods of manufacturing graphite and of its physical properties. This text then presents details of the method of setting up a scale of irradiation dose. Other chapters consider the effect of irradiation at a given temperature on a physical property of graphite. This

  17. KNO3/NaNO3 - Graphite materials for thermal energy storage at high temperature: Part I. - Elaboration methods and thermal properties

    International Nuclear Information System (INIS)

    Acem, Zoubir; Lopez, Jerome; Palomo Del Barrio, Elena

    2010-01-01

    Composites graphite/salt for thermal energy storage at high temperature (∼200 deg. C) have been developed and tested. As at low temperature in the past, graphite has been used to enhance the thermal conductivity of the eutectic system KNO 3 /NaNO 3 . A new elaboration method has been proposed as an alternative to graphite foams infiltration. It consists of cold-compression of a physical mixing of expanded natural graphite particles and salt powder. Two different compression routes have been investigated: uni-axial compression and isostatic compression. The first part of the paper has been devoted to the analysis of the thermal properties of these new graphite/salt composites. It is proven that cold-compression is a simple and efficient technique for improving the salt thermal conductivity. For instance, graphite amounts between 15 and 20%wt lead to apparent thermal conductivities close to 20 W/m/K (20 times greater than the thermal conductivity of the salt). Furthermore, some advantages in terms of cost and safety are expected because materials elaboration is carried out at room temperature. The second part of the paper is focused on the analyses of the phase transition properties of these graphite/salt composites materials.

  18. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae-Won, E-mail: pjw@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Eung-Seon; Kim, Jae-Un [Korea Atomic Energy Research Institute, 1045 Daedeok-Daero, Yuseong-Gu, Daejeon-City (Korea, Republic of); Kim, Yootaek [Dept. of Materials Engineering, Kyonggi Universtiy, Suwon (Korea, Republic of); Windes, William E. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2016-08-15

    Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  19. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    International Nuclear Information System (INIS)

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.

    2016-01-01

    Highlights: • Ion beam mixed SiC coating was performed on the graphite for the enhanced adhesion. • The SiC coated was cracked at the elevated temperature, confirming the strong bonding, and then was vigorously oxidized leaving only the SiC layer. • For crack healing, CVD crack healing increased by ∼4 times in 20% weight reduction in air at 900 °C as compared to PVD crack healing. - Abstract: The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  20. High-temperature tensile cell for in situ real-time investigation of carbon fibre carbonization and graphitization processes

    Energy Technology Data Exchange (ETDEWEB)

    Behr, Michael; Rix, James; Landes, Brian; Barton, Bryan; Billovits, Gerry; Hukkanen, Eric; Patton, Jasson; Wang, Weijun; Keane, Denis; Weigand, Steven (Dow); (NWU)

    2016-10-17

    A new high-temperature fibre tensile cell is described, developed for use at the Advanced Photon Source at Argonne National Laboratory to enable the investigation of the carbonization and graphitization processes during carbon fibre production. This cell is used to heat precursor fibre bundles to temperatures up to ~2300°C in a controlled inert atmosphere, while applying tensile stress to facilitate formation of highly oriented graphitic microstructure; evolution of the microstructure as a function of temperature and time during the carbonization and higher-temperature graphitization processes can then be monitored by collecting real-time wide-angle X-ray diffraction (WAXD) patterns. As an example, the carbonization and graphitization behaviour of an oxidized polyacrylonitrile fibre was studied up to a temperature of ~1750°C. Real-time WAXD revealed the gradual increase in microstructure alignment with the fibre axis with increasing temperature over the temperature range 600–1100°C. Above 1100°C, no further changes in orientation were observed. The overall magnitude of change increased with increasing applied tensile stress during carbonization. As a second example, the high-temperature graphitizability of PAN- and pitch-derived commercial carbon fibres was studied. Here, the magnitude of graphitic microstructure evolution of the pitch-derived fibre far exceeded that of the PAN-derived fibres at temperatures up to ~2300°C, indicating its facile graphitizability.

  1. Synthesis and stability of Br2, ICl and IBr intercalated pitch-based graphite fibers

    Science.gov (United States)

    Wessbecher, Dorothy E.; Forsman, William C.; Gaier, James R.

    1988-01-01

    The intercalation of halogens in pitch-based fiber is studied as well as the stability of the resultant intercalation compounds. It is found that IBr intercalates P-100 to yield a high-sigma GIC with attractive stability properties. During ICl intercalation, the presence of O2 interferes with the reaction and necessitates a higher threshold pressure for intercalation.

  2. Compressive impact strength of high temperature gas-cooled reactor graphite

    International Nuclear Information System (INIS)

    Ugachi, Hirokazu; Ishiyama, Shintaro; Eto, Motokuni; Ishihara, Masahiro

    1991-01-01

    To investigate the effect of strain rate on fracture behavior for coarse grained nuclear graphite, PGX, a hydraulic servo type impact testing machine has been constructed and compressive impact strength test was performed at various strain up to more than 100(1/s). From the results, the following conclusions were derived. (1) Compressive impact strength of graphite increases with increasing of strain rate in the range of 10 -3 to 100(1/s). (2) Compressive impact strength decreases drastically for strain rates more than 100(1/s). (3) Compressive impact strength dose not depend on specimen volume. (author)

  3. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  4. Preparation by low-temperature nonthermal plasma of graphite fiber and its characteristics for solid-phase microextraction.

    Science.gov (United States)

    Luo, Fan; Wu, Zucheng; Tao, Ping; Cong, Yanqing

    2009-01-05

    Low-temperature nonthermal plasma has been used to prepare solid-phase microextraction (SPME) fibers with high adsorbability, long-term serviceability, and high reproducibility. Graphite rods serving as fiber precursors were treated by an air plasma discharged at 15.2-15.5 kV for a duration of 8 min. Sampling results revealed that the adsorptive capacity of the homemade fiber was 2.5-34.6 times that of a polyacrylate (PA) fiber for alcohols (methanol, ethanol, isopropyl alcohol, n-butyl alcohol), and about 1.4-1.6 times and 2.5-5.1 times that of an activated carbon fiber (ACF) for alcohols and BTEX (benzene, toluene, ethylbenzene, and xylenes), respectively. It is confirmed from FTIR (Fourier transform infrared spectrophotometer) and SEM (scanning electron microscope) analyses that the improvement in the adsorptive performance attributed to increased surface energy and roughness of the graphite fiber. Using gas chromatography (GC)-flame-ionization detector (FID), the limits of detection (LODs) of the alcohols and BTEX ranged between 0.19 and 3.75 microg L(-1), the linear ranges were between 0.6 and 35,619 microg L(-1) with good linearity (R(2)=0.9964-0.9997). It was demonstrated that nonthermal plasma offers a fast and simple method for preparing an efficient graphite SPME fiber, and that SPME using the homemade fiber represents a sensitive and selective extraction method for the analysis of a wide range of organic compounds.

  5. Preparation by low-temperature nonthermal plasma of graphite fiber and its characteristics for solid-phase microextraction

    International Nuclear Information System (INIS)

    Luo Fan; Wu Zucheng; Tao Ping; Cong Yanqing

    2009-01-01

    Low-temperature nonthermal plasma has been used to prepare solid-phase microextraction (SPME) fibers with high adsorbability, long-term serviceability, and high reproducibility. Graphite rods serving as fiber precursors were treated by an air plasma discharged at 15.2-15.5 kV for a duration of 8 min. Sampling results revealed that the adsorptive capacity of the homemade fiber was 2.5-34.6 times that of a polyacrylate (PA) fiber for alcohols (methanol, ethanol, isopropyl alcohol, n-butyl alcohol), and about 1.4-1.6 times and 2.5-5.1 times that of an activated carbon fiber (ACF) for alcohols and BTEX (benzene, toluene, ethylbenzene, and xylenes), respectively. It is confirmed from FTIR (Fourier transform infrared spectrophotometer) and SEM (scanning electron microscope) analyses that the improvement in the adsorptive performance attributed to increased surface energy and roughness of the graphite fiber. Using gas chromatography (GC)-flame-ionization detector (FID), the limits of detection (LODs) of the alcohols and BTEX ranged between 0.19 and 3.75 μg L -1 , the linear ranges were between 0.6 and 35619 μg L -1 with good linearity (R 2 = 0.9964-0.9997). It was demonstrated that nonthermal plasma offers a fast and simple method for preparing an efficient graphite SPME fiber, and that SPME using the homemade fiber represents a sensitive and selective extraction method for the analysis of a wide range of organic compounds

  6. Room temperature hydrogen sensing with the graphite/ZnO nanorod junctions decorated with Pt nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan; Gladkov, Petar; Černohorský, Ondřej; Vaniš, Jan; Maixner, J.; Dickerson, J.H.

    2016-01-01

    Roč. 116, February (2016), s. 124-129 ISSN 0038-1101 R&D Projects: GA MŠk(CZ) LD14111; GA ČR(CZ) GA15-17044S Institutional support: RVO:67985882 Keywords : Graphite based junction * Hydrogen sensor * Electrophoretic deposition Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.580, year: 2016

  7. A new kind of shape-stabilized PCMs with positive temperature coefficient (PTC) effect

    International Nuclear Information System (INIS)

    Cheng, Wen-long; Wu, Wan-fan; Song, Jia-liang; Liu, Yi; Yuan, Shuai; Liu, Na

    2014-01-01

    Highlights: • A new kind of shape-stabilized PCMs with PTC effect is first prepared. • It provides a potential means for the thermal control of the electronic devices. • The switching temperature of the materials is about 25 °C. • The most appropriate component of the material is found out by experimental study. • The NTC effect of the new PCMs is eliminated effectively by heat treatment. - Abstract: A new kind of shape-stabilized phase change materials (PCMs) with positive temperature coefficient (PTC) effect was prepared in this paper. The materials were prepared by adding graphite powder (GP) to the paraffin/low density polyethylene (LDPE) composite and the PTC characteristic was found by adjusting the component ratio of the material. Then the physical structures and thermal properties of the materials were investigated and the effect of various GP mass fractions and paraffin/LDPE mass proportions on the PTC behavior of the materials was studied experimentally. The results showed that the switching temperature of the materials was about 25 °C (room temperature) which approached to the first phase change temperature of paraffin dispersed in the materials. The PTC behavior of the materials was the best when the GP mass fraction and the mass proportion of LDPE/paraffin were 40 wt% and 30:70, respectively. Furthermore, the negative temperature coefficient (NTC) effect of the materials could be eliminated effectively with heat treatment. This new kind of materials is different from the former PTC materials which the switching temperatures focus on high temperature ranges. It makes up for the defect of previous materials that the switching temperatures only range in high temperature rather than room temperature and provides a potential means for the thermal control of the electronic devices or other room temperature thermal control applications

  8. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    of decreasing hydrophobicity. This is indicated by the initial decrease and then increase in the value of Keq. with the increasing strength of the acid treatment. The corresponding carbon - ionomer composite also showed varying thermal stability depending on Nafion orientation. The specific maximum surface...

  9. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra

    2009-01-01

    demonstrate a PhC cavity with a quality factor of Q15 000 that exhibits a temperature-independent resonance. Temperature-stable cavities constitute a major building block in the development of a large suite of applications from high-sensitivity sensor systems for chemical and biomedical applications...

  10. High temperature stability of materials and structures

    International Nuclear Information System (INIS)

    Solomin, N.V.

    1980-01-01

    The problems of high temperature resistance of materials under the effect of mechanic and thermomechanic stresses are considered as well as the resistance of elements of constructions to high temperature inelastic deformation under loading. New experimental data on material properties are presented, the original technique for calculating inelastic deformation of particular bodies is presented [ru

  11. Thermoelectric refrigerator having improved temperature stabilization means

    International Nuclear Information System (INIS)

    Falco, C.M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized

  12. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  13. Temperature Dependence of the Stability of Ion Pair Interactions ...

    Indian Academy of Sciences (India)

    Abstract. An understanding of the determinants of the thermal stability of thermostable proteins is expected to enable design of enzymes that can be employed in industrial biocatalytic processes carried out at high temperatures. A major factor that has been proposed to stabilize thermostable proteins is the high occurrence.

  14. Temperature Dependence of the Stability of Ion Pair Interactions ...

    Indian Academy of Sciences (India)

    An understanding of the determinants of the thermal stability of thermostable proteins is expected to enable design of enzymes that can be employed in industrial biocatalytic processes carried out at high temperatures. A major factor that has been proposed to stabilize thermostable proteins is the high occurrenceof salt ...

  15. Failure Predictions for Graphite Reflector Bricks in the Very High Temperature Reactor with the Prismatic Core Design

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gyanender, E-mail: sing0550@umn.edu [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Fok, Alex [Minnesota Dental Research in Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, 515, Delaware St. SE, Minneapolis, MN 55455 (United States); Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States); Mantell, Susan [Department of Mechanical Engineering, University of Minnesota, 111, Church St. SE, Minneapolis, MN 55455 (United States)

    2017-06-15

    Highlights: • Failure probability of VHTR reflector bricks predicted though crack modeling. • Criterion chosen for defining failure strongly affects the predictions. • Breaching of the CRC could be significantly delayed through crack arrest. • Capability to predict crack initiation and propagation demonstrated. - Abstract: Graphite is used in nuclear reactor cores as a neutron moderator, reflector and structural material. The dimensions and physical properties of graphite change when it is exposed to neutron irradiation. The non-uniform changes in the dimensions and physical properties lead to the build-up of stresses over the course of time in the core components. When the stresses reach the critical limit, i.e. the strength of the material, cracking occurs and ultimately the components fail. In this paper, an explicit crack modeling approach to predict the probability of failure of a VHTR prismatic reactor core reflector brick is presented. Firstly, a constitutive model for graphite is constructed and used to predict the stress distribution in the reflector brick under in-reactor conditions of high temperature and irradiation. Fracture simulations are performed as part of a Monte Carlo analysis to predict the probability of failure. Failure probability is determined based on two different criteria for defining failure time: A) crack initiation and B) crack extension to near control rod channel. A significant difference is found between the failure probabilities based on the two criteria. It is predicted that the reflector bricks will start cracking during the time range of 5–9 years, while breaching of the control rod channels will occur during the period of 11–16 years. The results show that, due to crack arrest, there is a significantly delay between crack initiation and breaching of the control rod channel.

  16. Preparation by low-temperature nonthermal plasma of graphite fiber and its characteristics for solid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Luo Fan [Department of Environmental Engineering, State Key Laboratory of Clean Energy Utilization, Key Laboratory of Polluted Environment Remediation and Ecological Health, MOE, Zhejiang University, Hangzhou 310027 (China); Wu Zucheng [Department of Environmental Engineering, State Key Laboratory of Clean Energy Utilization, Key Laboratory of Polluted Environment Remediation and Ecological Health, MOE, Zhejiang University, Hangzhou 310027 (China)], E-mail: wuzc@zju.edu.cn; Tao Ping [Institute of Structural Mechanics, China Academy of Engineering Physics, Mianyang 621900 (China); Cong Yanqing [College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China)

    2009-01-05

    Low-temperature nonthermal plasma has been used to prepare solid-phase microextraction (SPME) fibers with high adsorbability, long-term serviceability, and high reproducibility. Graphite rods serving as fiber precursors were treated by an air plasma discharged at 15.2-15.5 kV for a duration of 8 min. Sampling results revealed that the adsorptive capacity of the homemade fiber was 2.5-34.6 times that of a polyacrylate (PA) fiber for alcohols (methanol, ethanol, isopropyl alcohol, n-butyl alcohol), and about 1.4-1.6 times and 2.5-5.1 times that of an activated carbon fiber (ACF) for alcohols and BTEX (benzene, toluene, ethylbenzene, and xylenes), respectively. It is confirmed from FTIR (Fourier transform infrared spectrophotometer) and SEM (scanning electron microscope) analyses that the improvement in the adsorptive performance attributed to increased surface energy and roughness of the graphite fiber. Using gas chromatography (GC)-flame-ionization detector (FID), the limits of detection (LODs) of the alcohols and BTEX ranged between 0.19 and 3.75 {mu}g L{sup -1}, the linear ranges were between 0.6 and 35619 {mu}g L{sup -1} with good linearity (R{sup 2} = 0.9964-0.9997). It was demonstrated that nonthermal plasma offers a fast and simple method for preparing an efficient graphite SPME fiber, and that SPME using the homemade fiber represents a sensitive and selective extraction method for the analysis of a wide range of organic compounds.

  17. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  18. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  19. Thermal stability of high temperature structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, C.E.; Rasefske, R.K.; Castagna, A. [Lockheed Martin Corp., Schenectady, NY (United States)

    1999-03-01

    High temperature structural alloys were evaluated for suitability for long term operation at elevated temperatures. The effect of elevated temperature exposure on the microstructure and mechanical properties of a number of alloys was characterized. Fe-based alloys (330 stainless steel, 800H, and mechanically alloyed MA 956), and Ni-based alloys (Hastelloy X, Haynes 230, Alloy 718, and mechanically alloyed MA 758) were evaluated for room temperature tensile and impact toughness properties after exposure at 750 C for 10,000 hours. Of the Fe-based alloys evaluated, 330 stainless steel and 800H showed secondary carbide (M{sub 23}C{sub 6}) precipitation and a corresponding reduction in ductility and toughness as compared to the as-received condition. Within the group of Ni-based alloys tested, Alloy 718 showed the most dramatic structure change as it formed delta phase during 10,000 hours of exposure at 750 C with significant reductions in strength, ductility, and toughness. Haynes 230 and Hastelloy X showed significant M{sub 23}C{sub 6} carbide precipitation and a resulting reduction in ductility and toughness. Haynes 230 was also evaluated after 10,000 hours of exposure at 850, 950, and 1050 C. For the 750--950 C exposures the M{sub 23}C{sub 6} carbides in Haynes 230 coarsened. This resulted in large reductions in impact strength and ductility for the 750, 850 and 950 C specimens. The 1050 C exposure specimens showed the resolution of M{sub 23}C{sub 6} secondary carbides, and mechanical properties similar to the as-received solution annealed condition.

  20. Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for Supercapacitors electrode

    Science.gov (United States)

    Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali

    2018-01-01

    Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.

  1. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    impact is lower and can therefore be counteracted by temperature, a better reordering of the structure should be achieved. Concerning 14C, except when located close to open pores where it can be removed through radiolytic corrosion, it tends to stabilize in the graphite matrix into sp2 or sp3 structures with variable proportions depending on the irradiation conditions.

  2. Temperature stabilization near Tsub(lambda) in liquid helium

    International Nuclear Information System (INIS)

    Francois, M.; Lhuillier, D.

    1975-01-01

    The study of He I and II equilibrium properties near the lambda transition requires a very performant temperature stabilisation. A system using second or fourth sound and which offers a stability better than 10 -8 0 K/hour in the temperature range 1.8 0 K-2.2 0 K is presented. (Auth.)

  3. Influence of temperature on the anaerobic stabilization of organic ...

    African Journals Online (AJOL)

    This study was aimed at determining the effect of temperature on the stabilization of organic solid waste conjugated with sewage sludge in anaerobic batch ... It is concluded that anaerobic digestion at ambient temperature represents an economical and environmentally viable strategy for the disposal of municipal solid ...

  4. Elliptically Bent X-Ray Mirrors with Active Temperature Stabilization

    International Nuclear Information System (INIS)

    Yuan, S.; Church, M.; Yashchuk, V.V.; Celestre, R.S.; McKinney, W.R.; Morrison, G.; Warwick, T.; Padmore, H.A.; Goldberg, K.A.; Kirschman, J.; Noll, T.

    2010-01-01

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the advanced light source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3 K does not noticeably affect the mirror figure. Without temperature stabilization, the rms slope error is changed by approximately 1.5 μrad (primarily defocus) under the same conditions

  5. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Windes, Willaim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kane, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  6. Injectable sodium pentobarbital: Stability at room temperature.

    Science.gov (United States)

    Priest, Sydney M; Geisbuhler, Timothy P

    2015-01-01

    Sodium pentobarbital (Nembutal) is a barbiturate used in research as an anesthetic in many animal models. The injectable form of this drug has lately become difficult to procure and prohibitively expensive. Due to this lack of availability, researchers have begun to compound injectable sodium pentobarbital from so-called "nonpharmaceutical" pentobarbital. Some oversight agencies have objected to this practice, claiming a lack of quality control and degradation of the drug. We sought with this study to establish both: 1) a protocol for the preparation of injectable sodium pentobarbital, and 2) standard operating procedures to monitor the quality of the preparation and degradation of the drug over time. Our preparation consists of a mixture of sodium pentobarbital in alkaline aqueous solution, propylene glycol, and ethanol. Pentobarbital content in this preparation was assayed by high-pressure liquid chromatography (HPLC). We also assayed pentobarbital content over time in preparations of various ages up to 6 years old. We determined that the drug degraded at a maximum of 0.5% per year in our preparation (alkaline water/propylene glycol/ethanol) when stored in the dark at room temperature. A yellow discoloration developed after about 2 years, which we have arbitrarily determined disqualifies the preparation from use as an anesthetic. Attempts to spectroscopically assay this discoloration were not successful. Pentobarbital sodium (CID: 14075609). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels with multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.

  8. Clay facial masks: physicochemical stability at different storage temperatures.

    Science.gov (United States)

    Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles

    2007-01-01

    Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.

  9. Temperature Stabilized Characterization of High Voltage Power Supplies

    CERN Document Server

    Krarup, Ole

    2017-01-01

    High precision measurements of the masses of nuclear ions in the ISOLTRAP experiment relies on an MR-ToF. A major source of noise and drift is the instability of the high voltage power supplies employed. Electrical noise and temperature changes can broaden peaks in time-of-flight spectra and shift the position of peaks between runs. In this report we investigate how the noise and drift of high-voltage power supplies can be characterized. Results indicate that analog power supplies generally have better relative stability than digitally controlled ones, and that the high temperature coefficients of all power supplies merit efforts to stabilize them.

  10. Temperature effects on the capacitance of an imidazolium-based ionic liquid on a graphite electrode: a molecular dynamics simulation.

    Science.gov (United States)

    Liu, Xiaohong; Han, Yining; Yan, Tianying

    2014-08-25

    Temperature-dependent electric double layer (EDL) and differential capacitance-potential (C(d)-U) curves of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM(+)/PF6(-)) were studied on a graphite electrode by molecular dynamics simulations. It was found that all C(d)-U curves were asymmetric camel-shaped with higher C(d) at negative polarization, attributed to the specific adsorption of BMIM(+). In addition, the maxima of Cd at the negative polarization decrease monotonically with temperature due to the thicker EDL, whereas at the positive polarization they gradually increase from 450 to 550 K and decrease at 600 K. Such temperature effects at positive polarization may be understood in terms of the competition between two aspects: the weakening specific adsorption of BMIM(+) allows more effective screening to the positive charge and overall increasing EDL thickness. Although the former dominates from 450 to 550 K, the latter becomes dominant at 600 K. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A surface acoustic wave ICP sensor with good temperature stability.

    Science.gov (United States)

    Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng

    2017-07-20

    Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.

  12. Global temperature stability by rule induction: An interdisciplinary bridge

    International Nuclear Information System (INIS)

    Gunn, J.D.; Grzymala-Busse, J.W.

    1994-01-01

    Rules incorporating influences on global temperature, an estimate of radiation balance, were induced from astronomical, geophysical, and anthropogenic variables. During periods of intermediate global temperatures (generally like the present century), the influences assume canceling roles; influences cancel the effects of extreme states potentially imposed by other influences because they are, in aggregate, most likely to be assuming opposite values. This imparts an overall stability to the global temperature. To achieve cold or hot global temperature, influences assume reinforcing roles. CO 2 is an active influence on global temperature. By virtue of its constancy in the atmosphere, it can be expected to sponsor frequent hot years in combination with the other influences as they cycle through their periods. If measures were implemented to maintain warm or cool global temperatures, it could retain the status quo of present global agricultural regions. They are probably more productive than hot world regions would be because of narrow storm tracks

  13. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  14. Enhanced Stability of a Protein with Increasing Temperature

    DEFF Research Database (Denmark)

    Vinther, Joachim Møllesøe; Kristensen, Søren M; Led, Jens J

    2010-01-01

    The unusual stability of a structured but locally flexible protein, human growth hormone (hGH) at pH 2.7, was investigated using the temperature dependence of the nanosecond-picosecond dynamics of the backbone amide groups obtained from (15)N NMR relaxation data. It is found that the flexibility ...

  15. Structural stability of high entropy alloys under pressure and temperature

    DEFF Research Database (Denmark)

    Ahmad, Azkar S.; Su, Y.; Liu, S. Y.

    2017-01-01

    The stability of high-entropy alloys (HEAs) is a key issue before their selection for industrial applications. In this study, in-situ high-pressure and high-temperature synchrotron radiation X-ray diffraction experiments have been performed on three typical HEAs Ni20Co20Fe20Mn20Cr20, Hf25Nb25Zr25Ti...

  16. Aerobic stability of distillers wet grains as influenced by temperature.

    Science.gov (United States)

    Lehman, R Michael; Rosentrater, Kurt A

    2013-02-01

    The storability of distillers wet grains (DWG) influences the economic, energetic, and carbon balances of fuel ethanol production, yet there are limited published data on the deterioration of DWG following its production. We used biogenic CO(2) production to assess the aerobic stability of DWG incubated at three temperatures (12 °C, 22 °C, 32 °C) and compared CO(2) production over time to the appearance of mold and changes in DWG color parameters. CO(2) production and mold colonization indicate that at temperatures near 12 °C, the aerobic stability of DWG was high and that it can be stored for at least a 10-day period. At temperatures close to 22 °C, the onset of increased microbial activity and visible mold colonization occurred between 4 and 7 days and both activity and mold ratings were very high by the ninth day in all three experiments. At 32 °C, 2 days may be a more appropriate limit for storage. Temperature and time interact in a nonlinear fashion that permits the prediction of DWG stability boundaries. The simple visual appearance of mold appears to be a reasonable indicator that correlates well (r = 0.694) with CO(2) production, a measure of the aerobic stability of DWG. Published 2012 by John Wiley & Sons, Ltd.

  17. Li4Ti5O12-coated graphite anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lee, Meng-Lun; Li, Yu Han; Liao, Shih-Chieh; Chen, Jin-Ming; Yeh, Jien-Wei; Shih, Han C.

    2013-01-01

    Highlights: • Nano-sized Li 4 Ti 5 O 12 (LTO)-coated graphite core–shell prepared by sol–gel process. • LTO-coated graphite is used in Li-ion battery to improve the cycle life under 55 °C. • Graphite coated with LTO shows smaller resistance than graphite after cell cycling. • The LTO coating suppress the disorder of SP 2 structure in graphite during cycling. • Resistance and structure stabilization results in good cycle life of the Li-ion cell. - Abstract: In this study, we synthesized and characterized Li 4 Ti 5 O 12 (LTO)-coated graphite as an anode material for Li-batteries. The surface of graphite powders was uniformly coated by the LTO nanoparticles to form a core–shelled structure via a sol–gel process, followed by calcination. The average size of graphite core was 20 μm while the thickness of LTO shell was 60 nm to 100 nm. We found that LTO-coated graphite has better rate-capability and cycle life at RT and 55 °C, compared with the pristine graphite. The electrochemical impedance spectroscopy (EIS) results of the cell with LTO-coated graphite anode showed a significant suppression of the impedance rise after 60 cycles. In addition, the Raman spectrum showed that after 60 charge–discharge cycles at 55 °C, the I D /I G ratio of the LTO-coated graphite electrode increased slightly, while that of the pristine graphite electrode increased significantly. The batteries with LTO-coated graphite anode exhibited excellent cyclic ability and high temperature performance

  18. Nanoscale, conformal films of graphitic carbon nitride deposited at room temperature: a method for construction of heterojunction devices.

    Science.gov (United States)

    Ladva, Satyam A; Travis, William; Quesada-Cabrera, Raul; Rosillo-Lopez, Martin; Afandi, Abdulkareem; Li, Yaomin; Jackman, Richard B; Bear, Joseph C; Parkin, Ivan P; Blackman, Christopher; Salzmann, Christoph G; Palgrave, Robert G

    2017-11-09

    Graphitic carbon nitrides (GCNs) represent a family of 2D materials composed of carbon and nitrogen with variable amounts of hydrogen, used in a wide variety of applications. We report a method of room temperature thin film deposition which allows ordered GCN layers to be deposited on a very wide variety of substrates, including conductive glass, flexible plastics, nanoparticles and nano-structured surfaces, where they form a highly conformal coating on the nanoscale. Film thicknesses of below 20 nm are achievable. In this way we construct functional nanoscale heterojunctions between TiO 2 nanoparticles and GCN, capable of producing H 2 photocatalytically under visible light irradiation. The films are hydrogen rich, have a band gap around 1.7 eV, display transmission electron microscopy lattice fringes as well as X-ray diffraction peaks despite being deposited at room temperature, and show characteristic Raman and IR bands. We use cluster etching to reveal the chemical environments of C and N in GCN using X-ray photoelectron spectroscopy. We elucidate the mechanism of this deposition, which operates via sequential surface adsorption and reaction analogous to atomic layer deposition. The mechanism may have implications for current models of carbon nitride formation.

  19. Thermal stability study of semimetal graphite n-InP and n-GaN Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2013-01-01

    Roč. 28, č. 5 (2013) ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Gallium nitride * Schottky barrier diodes * Graphite Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.206, year: 2013

  20. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  1. Temperature and irradiation effects on the behaviour of 14C and its precursor 14N in nuclear graphite. Study of a decontamination process using steam reforming

    International Nuclear Information System (INIS)

    Silbermann, Gwennaelle

    2013-01-01

    The dismantling of UNGG reactors in France will generate about 23 000 tons of radioactive graphite wastes. To manage these wastes, the radiological inventory and data on radionuclides (RN) location and speciation should be determined. 14 C was identified as an important RN for disposal due to its high initial activity and the risk of release of a mobile organic fraction in environment, after water ingress into the disposal. Hence, the objective of this thesis, carried out in partnership with EDF is to implement experimental studies to simulate and evaluate the impact of temperature, irradiation and graphite radiolytic corrosion on the in reactor behavior of 14 C and its precursor, 14 N. The obtained data are then used to study the thermal decontamination of graphite in presence of water vapor. The experimental approach aims at simulating the presence of 14 C and 14 N by the respective ion implantation of 13 C and 14 N or 15 N in virgin graphite. This study shows that, in the temperature range reached during reactor operation, (100-500 C) and without radiolytic corrosion, 13 C is thermally stable whatever the initial graphite structure. Moreover, irradiation experiments were performed on heated graphite (500 C) put in contact with a gas representative of the radiolized coolant gas. They show the synergistic role played by the oxidative species and the graphite structure disorder on the enhancement of 13 C mobility resulting in the gasification of the graphite surface and/or the selective oxidation of 13 C more weakly bound than 12 C. Concerning the pristine nitrogen, we showed first that the surface concentration reaches several hundred ppm (≤500 ppm at) and decreases at deeper depths to about 160 ppm at.. Unlike implanted 13 C, implanted nitrogen migrates at 500 C when the graphite is highly disordered (about 8 dpa) while remaining stable for a lower disorder rate (0.14 dpa). Experiments also show the synergistic role by electronic excitations and temperature

  2. Thermogravimetric and Differential Scanning Calorimetric Behavior of Ball-Milled Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Seon; Kim, Min Hwan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi Hyun; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An examination was made to characterize the oxidation behavior of ball-milled nuclear graphite powder through a TG-DSC analysis. With the ball milling time, the BET surface area increased with the reduction of particle size, but decreased with the chemisorptions of O{sub 2} on the activated surface. The enhancement of the oxidation after the ball milling is attributed to both increases in the specific surface area and atomic scale defects in the graphite structure. In a high temperature gas-cooled reactor, nuclear graphite has been widely used as fuel elements, moderator or reflector blocks, and core support structures owing to its excellent moderating power, mechanical properties and machinability. For the same reason, it will be used in a helium cooled ceramic reflector test blanket module for the ITER. Each submodule has a seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebbles packed tritium breeder layers, and a reflector layer packed with 1 mm diameter graphite pebbles to reduce the volume of beryllium. The abrasion of graphite structures owing to relative motion or thermal cycle during operation may produce graphite dust. It is expected that graphite dust will be more oxidative than bulk graphite, and thus the oxidation behavior of graphite dust must be examined to analyze the safety of the reactors during an air ingress accident. In this study, the thermal stability of ball-milled graphite powder was investigated using a simultaneous thermogravimeter-differential scanning calorimeter.

  3. Simulation of silicon nanoparticles stabilized by hydrogen at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Galashev, Alexander Y., E-mail: galashev@ecko.uran.r [Russian Academy of Sciences, Ural Division, Institute of Industrial Ecology (Russian Federation)

    2010-10-15

    The stability of different silicon nanoparticles are investigated at a high temperature. The temperature dependence of the physicochemical properties of 60- and 73-atom silicon nanoparticles are investigated using the molecular dynamics method. The 73-atom particles have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene. They are surrounded by a 'coat' from 60 atoms of hydrogen. The nanoassembled particle at the presence of a hydrogen 'coat' has the most stable number (close to four) of Si-Si bonds per atom. The structure and kinetic properties of a hollow single-layer fullerene-structured Si{sub 60} cluster are considered in the temperature range 10 K {<=} T {<=} 1760 K. Five series of calculations are conducted, with a simulation of several media inside and outside the Si{sub 60} cluster, specifically, the vacuum and interior spaces filled with 30 and 60 hydrogen atoms with and without the exterior hydrogen environment of 60 atoms. Fullerene surrounded by a hydrogen 'coat' and containing 60 hydrogen atoms in the interior space has a higher stability. Such cluster has smaller self-diffusion coefficients at high temperatures. The fullerene stabilized with hydrogen is stable to the formation of linear atomic chains up to the temperatures 270-280 K.

  4. Chapter 10: Calculation of the temperature coefficient of reactivity of a graphite-moderated reactor

    International Nuclear Information System (INIS)

    Brown, G.; Richmond, R.; Stace, R.H.W.

    1963-01-01

    The temperature coefficients of reactivity of the BEPO, Windscale and Calder reactors are calculated, using the revised methods given by Lockey et al. (1956) and by Campbell and Symonds (1962). The results are compared with experimental values. (author)

  5. Graphites for nuclear applications; Les graphites pour les applications nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.P.; Gosmain, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DMN), Lab. de Microscopie et d' Etudes de l' Endommagement, 91 - Gif-sur-Yvette (France)

    2006-03-15

    Being an excellent neutron moderator, graphite is used as a structural material in many nuclear reactor types. By the end of the 50's, the French gas-cooled reactor development needed manufacturing of a nuclear-grade graphite. Graphite irradiation can lead to in-lattice energy accumulation, dimensional changes and physical properties modification. Moreover, the radiolytic corrosion induced by the coolant (CO{sub 2}) may generate mechanical properties degradation. Today, French gas-cooled reactors are all in their decommissioning phase that requires the knowledge of the radiological inventory of the irradiated graphites. At present time, graphite is still foreseen as a future material for hydrogen production by high temperature gas cooled nuclear plants. In the future, graphite will be the necessary moderator material for high temperature reactors with thermal neutron spectrum dedicated to hydrogen and electricity production. (authors)

  6. Bonding glass to metal with plastic for stability over temperature

    Science.gov (United States)

    Willis, Chris L.; Petrie, Stephen P.

    2001-11-01

    To enable the invention of higher power IRCM lasers, 3D LIDAR systems, Designator/Rangefinders and other Instruments subjected to a broad range of operating conditions, there is a need to develop improved technology to hold small mirrors, lenses, beamsplitters and other optical elements with repeatable and high dimensional stability over wide environmental temperature ranges, an do so with great economy. The intent of this effort was to begin identifying significant factors for bonding small mirrors for high stability. A screening experiment was performed in which half-inch diameter flat mirrors were face bonded to similar mirror mounts, then bolted to a reference test fixture and subjected to an environmental temperature range of -40 to +70 degrees C. Mount material, optic material, adhesive material, bond joint design, and bond thickness were varied. The resulting tilt errors in the mirror assemblies were measured. Steps were taken to isolate the bond joint stability as opposed to stability in the mounted mirror subassemblies. The effort required to minimize experimental noise was much greater than anticipated. This first experimental effort failed to identify main factors with statistical significance, however; some results are interesting. Perhaps also of interest is the progress made at characterizing the experimental setup and process, and lessons learned in control of noise factors in this kind of experiment.

  7. Temperature measurements in a wall stabilized steady flame using CARS

    KAUST Repository

    Sesha Giri, Krishna

    2017-01-05

    Flame quenching by heat loss to a surface continues to be an active area of combustion research. Close wall temperature measurements in an isothermal wall-stabilized flame are reported in this work. Conventional N-vibrational Coherent Anti-Stokes Raman Scattering (CARS) thermometry as close as 275 μm to a convex wall cooled with water has been carried out. The standard deviation of mean temperatures is observed to be ~6.5% for high temperatures (>2000K) and ~14% in the lower range (<500K). Methane/air and ethylene/air stoichiometric flames for various global strain rates based on exit bulk velocities are plotted and compared. CH* chemiluminescence is employed to determine the flame location relative to the wall. Flame locations are shown to move closer to the wall with increasing strain rates in addition to higher near-wall temperatures. Peak temperatures for ethylene are considerably higher (~250-300K) than peak temperatures for methane. Preheat zone profiles are similar for different strain rates across fuels. This work demonstrates close wall precise temperature measurments using CARS.

  8. High speed machining of aluminium gear box without temperature stabilization

    Directory of Open Access Journals (Sweden)

    Abilio P. SILVA

    2010-01-01

    Full Text Available At the present time both clutch and mechanism housings, which are the main components from automotive gear boxes, are made of special aluminium alloys. These alloys are extremely light when compared with steel, making them a perfect choice to mitigate the cars weight and machining costs. Nonetheless they possess a high thermal expansion coefficient, which can be considered a major disadvantage since it makes necessary to pay extraordinary attention to dimensional variations during the production cycle due to temperature deviations. High speed machining of precision components made of aluminium requests thus their temperature to become previously stable. This procedure is the only way to force dimensions to stay inside its tolerance intervals. The main purpose of the present work was to assess the possibility to avoid the use of special ovens to make the clutch housing temperature become stable prior to machining. The dimensional stabilization of 40 sample parts, pre-heated at three temperature levels, was accomplished through the use of this system. The achieved results were made possible by analysing the part’s temperature at the machine’s entrance, the machine’s interior temperature, 35 measured dimensions and their tolerance intervals as well as the average temperature deviations of each of the five considered batches. By analysing the obtained results in detail it was possible to determine which dimensions show high sensitiveness to temperature (high correlation between dimension’s variation and temperature. Among these dimensions we can point out the ones related with depth, since they display the highest deviations due to temperature. Being a work with practical application it was possible to confirm the benefit of using this methodology by achieving significant enhancements on production efficiency, energy savings and reduction on maintenance costs, through the application of small adjustments to the machining sequence and by

  9. Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wujun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Kiggans, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Overbury, Steven H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Schwartz, Viviane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Liang, Chengdu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2011-04-01

    Graphene materials derived through the exfoliation of graphite are always accompanied with high population of defects and/or surface functionalities due to the harsh conditions utilized in the synthesis. We describe herein a scalable approach for the preparation of high quality graphene materials via low-temperature exfoliation of graphite under mild chemical conditions. The microwave induced rapid decomposition of nitromethane at low temperature produces mechanical force that lifts up the graphene sheets from the FeCl3 and CH3NO2 co-intercalated graphite compound without creating defects and functional groups.

  10. Nanodiamond infiltration into porous silicon through etching of solid carbon produced at different graphitization temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, C. R. B., E-mail: claudia_rbm@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais-INPE, Centro de Ciencias do Sistema Terrestre-CCST, Centro de Ciencias do Sistema Terrestre-CCST (Brazil); Baldan, M. R.; Beloto, A. F.; Ferreira, N. G. [CTE/INPE, Centro de Tecnologias Espaciais (Brazil)

    2011-09-15

    Nanocrystalline diamond (NCD) was grown on the porous silicon (PS) substrate using Reticulated Vitreous Carbon (RVC) as an additional solid carbon source. RVC was produced at different heat treatment temperatures of 1300, 1500, and 2000 Degree-Sign C, resulting in samples with different turbostratic carbon organizations. The PS substrate was produced by an electrochemical method. NCD film was obtained by the chemical vapor infiltration/deposition process where a RVC piece was positioned just below the PS substrate. The PS and NCD samples were characterized by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). NCD films presented faceted nanograins with uniform surface texture covering all the pores resulting in an apparent micro honeycomb structure. Raman's spectra showed the D and G bands, as well as, the typical two shoulders at 1,150 and 1,490 cm{sup -1} attributed to NCD. X-ray diffraction analyses showed the predominant (111) diamond orientation as well as the (220) and (311) peaks. The structural organization and the heteroatom presence on the RVC surface, analyzed from X-ray photoelectron spectroscopy, showed their significant influence on the NCD growth process. The hydrogen etching released, from RVC surface, associated to carbon and/or oxygen/nitrogen amounts led to different contributions for NCD growth.

  11. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  12. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  13. Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers

    International Nuclear Information System (INIS)

    Warzoha, Ronald J.; Weigand, Rebecca M.; Fleischer, Amy S.

    2015-01-01

    Highlights: • The thermal properties of a PCM with nanofibers are determined. • The solid-phase thermal conductivity scales exponentially with volume fraction. • The liquid-phase thermal conductivity is only enhanced beyond a critical percolation threshold. • The nanoscale interface resistance depends on the nanoparticle’s dimensionality. • The thermal diffusivity and volumetric heat capacity of the nanoenhanced PCMs are found. - Abstract: In many studies, carbon nanoparticles with high values of thermal conductivity (10–3000 W/m K) have been embedded into phase change thermal energy storage materials (PCMs) in order to enhance their bulk thermal properties. While a great deal of work to date has focused on determining the effect of these nanoparticles on a PCM’s solid phase thermal properties, little is known about their effect on its liquid phase thermal properties. Thus, in this study, the effect of implanting randomly oriented herringbone style graphite nanofibers (HGNF, average diameter = 100 nm, average length = 20 μm) on the bulk thermal properties of an organic paraffin PCM (IGI 1230A, T melt = 329.15 K) in both the solid and liquid phase is quantified. The bulk thermal conductivity, volumetric heat capacity and thermal diffusivity of HGNF/PCM nanocomposites are obtained as a function of temperature and HGNF volume loading level. It is found that the property enhancement varies significantly depending on the material phase. In order to explain the difference between solid and liquid phase thermal properties, heat flow at the nanoparticle–PCM and nanoparticle–nanoparticle interfaces is examined as a function of HGNF loading level and temperature. To do this, the solid and liquid phase thermal boundary resistances (TBRs) between the nanoparticles and the surrounding PCM and/or between contacting nanoparticles are found. Results suggest that the TBR at the HGNF–PCM interface is nearly double the TBR across the HGNF–HGNF interface in

  14. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2017-11-01

    Full Text Available Screen-printed graphite electrodes (SPGEs have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs. Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O2 in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs. Six common RTILs are initially employed for O2 detection using cyclic voltammetry (CV, and two RTILs ([C2mim][NTf2] and [C4mim][PF6] chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs—for CV in the 10–100% vol. range, and for LTCA in the 0.1–20% vol. range—on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O2, particularly in [C4mim][PF6].

  15. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids.

    Science.gov (United States)

    Lee, Junqiao; Hussain, Ghulam; Banks, Craig E; Silvester, Debbie S

    2017-11-26

    Screen-printed graphite electrodes (SPGEs) have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs). Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O₂) in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs). Six common RTILs are initially employed for O₂ detection using cyclic voltammetry (CV), and two RTILs ([C₂mim][NTf₂] and [C₄mim][PF₆]) chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA) was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs-for CV in the 10-100% vol. range, and for LTCA in the 0.1-20% vol. range-on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O₂, particularly in [C₄mim][PF₆].

  16. Graphite Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; T. Burchell; R. Bratton

    2007-09-01

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  17. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    Science.gov (United States)

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  18. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  19. Thermal Response and Stability Characteristics of Bistable Composite Laminates by Considering Temperature Dependent Material Properties and Resin Layers

    Science.gov (United States)

    Moore, M.; Ziaei-Rad, S.; Salehi, H.

    2013-02-01

    In this study, the stability characteristics and thermal response of a bistable composite plate with different asymmetric composition were considered. The non-linear finite element method (FEM) was utilized to determine the response of the laminate. Attention was focused on the temperature dependency of laminate mechanical properties, especially on the thermal expansion coefficients of the composite graphite-epoxy plate. Also the effect of including the resin layers on the stability characteristics of the laminate was investigated. The effect of the temperature on the laminate cured configurations in the range of 25°C to 180°C and -60°C to 40°C was examined. The results indicate that the coefficient of thermal expansions has a major effect on the cured shapes. Next, optical microscopy was used to characterize the laminate composition and for the first time the effect of including the resin layers on the actuation loads that causes snapping behavior between two stable shapes was studied. The results obtained from the finite element simulations were compared with experimental results and a good correlation was obtained. Finally, the stability characteristics of a tapered composite panel were investigated for using in a sample winglet as a candidate application of bistable structures.

  20. Flow stress, subgrain size, and subgrain stability at elevated temperature

    International Nuclear Information System (INIS)

    Sherby, O.D.; Klundt, R.H.; Miller, A.K.

    1977-01-01

    Well defined subgrain boundaries dominate the microstructural changes occurring during plastic flow of polycrystalline metals at elevated temperature. The quantitative influence of subgrain size on elevated-temperature plastic flow is considered. Based on the results of tests under constant-stress and constant-structure conditions, and equation is developed which predicts the creep rate as a function of subgrain size, stress, diffusion coefficient, and elastic modulus. In general, the subgrain size is a unique function of the current modulus-compensated flow stress, but if fine subgrains can be introduced and stabilized, large increases in creep strength may result. The applicability of the phenomenological relation developed to the behavior of dispersion-strengthened materials (where the second-phase particles may predetermine the effective subgrain size) is discussed. When subgrain effects are included, it is shown that the creep rate is less dependent on stacking fault energy than has been previously thought

  1. High-temperature friction and wear studies of Fe-Cu-Sn alloy with graphite as solid lubricant under dry sliding conditions

    Science.gov (United States)

    Mushtaq, Shuhaib; Wani, M. F.

    2018-02-01

    Solid lubricants are particularly used in the advanced mechanical motion systems with extreme conditions such as (high temperature, vacuum, radiation, extreme contact pressure, etc). The main focus of this paper is to study the dry sliding friction and wear behavior of Fe-Cu-Sn alloy with varying wt% of graphite at high temperature up to 423 K. The influence of temperature, sliding distance and load on friction and wear behavior of Fe-Cu-Sn alloy against EN8 steel was studied using ball (EN8) on disc (Fe-Cu-Sn alloy). Lower wear and lower friction of Fe-Cu-Sn alloy were observed at high temperature, as compared to room temperature. Surface morphological and surface analytical studies of fresh and worn surfaces were carried out using optical microscopy, 3D profilometer, scanning electron microscope, energy dispersive x-ray spectroscopy, XRD, and Raman spectroscopy to understand the friction and wear behavior.

  2. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model

    International Nuclear Information System (INIS)

    Ling, Ziye; Chen, Jiajie; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2015-01-01

    Highlights: • Expanded graphite can improve thermal conductivity of RT44HC by 20–60 times. • Thermal conductivity of PCM/EG composites keeps constant before/after melting. • Thermal conductivity of PCMs nearly doubled during phase changing. • Thermal conductivity of composite PCM increases with density and percentage of EG. • The simple model predicts thermal conductivity of EG-based composites accurately. - Abstract: This work studies factors that affect the thermal conductivity of an organic phase change material (PCM), RT44HC/expanded graphite (EG) composite, which include: EG mass fraction, composite PCM density and temperature. The increase of EG mass fraction and bulk density will both enhance thermal conductivity of composite PCMs, by up to 60 times. Thermal conductivity of RT44HC/EG composites remains independent on temperature outside the phase change range (40–45 °C), but nearly doubles during the phase change. The narrow temperature change during the phase change allows the maximum heat flux or minimum temperature for heat source if attaching PCMs to a first (constant temperature) or second (constant heat flux) thermal boundary. At last, a simple thermal conductivity model for EG-based composites is put forward, based on only two parameters: mass fraction of EG and bulk density of the composite. This model is validated with experiment data presented in this paper and in literature, showing this model has general applicability to any composite of EG and poor thermal conductive materials

  3. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  4. Optical, spectral and thermal characteristics of GaN-based vertical light emitting diodes on graphite substrate

    International Nuclear Information System (INIS)

    Lee, H K; Lee, D H; Chung, K S; Yu, J S

    2011-01-01

    We investigated the optical, spectral and thermal characteristics of GaN-based blue vertical light emitting diodes (VLEDs) on graphite substrate in comparison with conventional lateral LEDs (LLEDs) on sapphire substrate with a mesa size of 1 × 1 mm 2 . For fabricated VLEDs and LLEDs, the temperature-dependent optical and spectral characteristics were measured in the temperature range of 288–378 K and the junction temperatures (T j ) were experimentally determined by the forward voltage method. From these results, the improved optical property and high thermal stability were achieved by the VLED structure on graphite substrate. At 350 mA, the optical output power of the VLED on graphite substrate was improved by 23% compared to the LLED on sapphire substrate at the temperature of 298 K. Also, the VLED on graphite substrate exhibited lower junction temperature and thermal resistance than those of the LLED on sapphire substrate

  5. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  6. Simultaneous stabilization of global temperature and precipitation through cocktail geoengineering

    Science.gov (United States)

    Cao, Long; Duan, Lei; Bala, Govindasamy; Caldeira, Ken

    2017-07-01

    Solar geoengineering has been proposed as a backup plan to offset some aspects of anthropogenic climate change if timely CO2 emission reductions fail to materialize. Modeling studies have shown that there are trade-offs between changes in temperature and hydrological cycle in response to solar geoengineering. Here we investigate the possibility of stabilizing both global mean temperature and precipitation simultaneously by combining two geoengineering approaches: stratospheric sulfate aerosol increase (SAI) that deflects sunlight to space and cirrus cloud thinning (CCT) that enables more longwave radiation to escape to space. Using the slab ocean configuration of National Center for Atmospheric Research Community Earth System Model, we simulate SAI by uniformly adding sulfate aerosol in the upper stratosphere and CCT by uniformly increasing cirrus cloud ice particle falling speed. Under an idealized warming scenario of abrupt quadrupling of atmospheric CO2, we show that by combining appropriate amounts of SAI and CCT geoengineering, global mean (or land mean) temperature and precipitation can be restored simultaneously to preindustrial levels. However, compared to SAI, cocktail geoengineering by mixing SAI and CCT does not markedly improve the overall similarity between geoengineered climate and preindustrial climate on regional scales. Some optimal spatially nonuniform mixture of SAI with CCT might have the potential to better mitigate climate change at both the global and regional scales.

  7. Low temperature absorption of hydrogen isotopes on potassium-graphite intercalation compounds prepared from carbon fibers and HOPG

    International Nuclear Information System (INIS)

    Akuzawa, N.; Amemiya, T.; Terai, T.; Takahashi, Y.

    1984-01-01

    Hydrogen absorption behavior of potassium-carbon intercalation compounds (KCsub(x)), prepared from PAN based carbon fiber, benzene derived vapor grown carbon fiber and highly oriented pyrolytic graphite, was investigated by measuring the isotherms of hydrogen- and deuterium-gas absorption and the H 2 - D 2 isotopic partition coefficient at 77 K. The absorption behavior was somewhat different from those of KCsub(x) prepared from natural or artificial graphite powders: The rate of absorption was very slow, especially at the early stage of experiment, and equilibrium absorption was attained only after several runs of absorption-desorption cycles. For KC 21 prepared from HOPG, a remarkable exfoliation was observed by the release of absorbed hydrogen. The isotopic partition coefficients of these samples were not very different from those of other KCsub(x) samples. (author)

  8. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  9. Surfactant-free exfoliation of graphite in aqueous solutions.

    Science.gov (United States)

    Ricardo, Karen B; Sendecki, Anne; Liu, Haitao

    2014-03-14

    We report an ultrasound exfoliation of graphite in a weakly basic solution to produce multi-layer graphene dispersion. A unique feature of this process is that no surfactant was added to stabilize the exfoliated graphene in water. The concentration of the graphene dispersion prepared by this approach can be up to 0.02 mg mL(-1) and it was stable at room temperature for several months.

  10. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater

    Science.gov (United States)

    Wu, Shijia; He, Weihua; Yang, Wulin; Ye, Yaoli; Huang, Xia; Logan, Bruce E.

    2017-07-01

    Microbial fuel cells (MFCs) need to have a compact architecture, but power generation using low strength domestic wastewater is unstable for closely-spaced electrode designs using thin anodes (flat mesh or small diameter graphite fiber brushes) due to oxygen crossover from the cathode. A composite anode configuration was developed to improve performance, by joining the mesh and brushes together, with the mesh used to block oxygen crossover to the brushes, and the brushes used to stabilize mesh potentials. In small, fed-batch MFCs (28 mL), the composite anode produced 20% higher power densities than MFCs using only brushes, and 150% power densities compared to carbon mesh anodes. In continuous flow tests at short hydraulic retention times (HRTs, 2 or 4 h) using larger MFCs (100 mL), composite anodes had stable performance, while brush anode MFCs exhibited power overshoot in polarization tests. Both configurations exhibited power overshoot at a longer HRT of 8 h due to lower effluent CODs. The use of composite anodes reduced biomass growth on the cathode (1.9 ± 0.2 mg) compared to only brushes (3.1 ± 0.3 mg), and increased coulombic efficiencies, demonstrating that they successfully reduced oxygen contamination of the anode and the bio-fouling of cathode.

  11. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  12. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  13. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Y; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann Jr, N C; Smith, D R

    2011-03-21

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  14. Study of corrosion resistance graphite in oxygen

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Odejchuk, N.P.; Petel'guzov, I.A.; Ryzhov, V.P.; Yakovlev, V.K.

    2011-01-01

    The paper presents the results of the corrosion resistance of MPG, ARV and GSP graphite grades in oxygen at temperatures of 400, 600 and 800 o C. The oxidation kinetics of graphites is defined. It is shown, that interaction process of graphites with oxygen is characterized by a decrease of sample weights. The description of installation for carrying out of tests and a technique of carrying out of tests and researches is resulted. It is shown that the best corrosion resistance in the investigated temperature range has GSP graphite with density of 1.8-1.9 g/cm 3 of NSC KIPT production.

  15. Improvements in X-band transmitter phase stability through Klystron body temperature regulation

    Science.gov (United States)

    Perez, R. M.

    1992-01-01

    This article describes the techniques used and experimental results obtained in improving transmitter stability by control of the klystron body temperature. Related work in the measurement of klystron phase control parameters (pushing factors) is also discussed. The contribution of wave guide temperature excursions to uplink phase stability is presented. Suggestions are made as to the direction of future work in this area.

  16. In Situ Formation of AgCo Stabilized on Graphitic Carbon Nitride and Concomitant Hydrolysis of Ammonia Borane to Hydrogen

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2018-04-01

    Full Text Available The development of highly-efficient heterogeneous supported catalysts for catalytic hydrolysis of ammonia borane to yield hydrogen is of significant importance considering the versatile usages of hydrogen. Herein, we reported the in situ synthesis of AgCo bimetallic nanoparticles supported on g-C3N4 and concomitant hydrolysis of ammonia borane for hydrogen evolution at room temperature. The as-synthesized Ag0.1Co0.9/g-C3N4 catalysts displayed the highest turnover frequency (TOF value of 249.02 mol H2·(molAg·min−1 for hydrogen evolution from the hydrolysis of ammonia borane, which was higher than many other reported values. Furthermore, the Ag0.1Co0.9/g-C3N4 catalyst could be recycled during five consecutive runs. The study proves that Ag0.1Co0.9/g-C3N4 is a potential catalytic material toward the hydrolysis of ammonia borane for hydrogen production.

  17. ISX-A graphite limiter experiment

    International Nuclear Information System (INIS)

    Langley, R.A.; Colchin, R.J.; Isler, R.C.; Murakami, M.; Simpkins, J.E.; Cecchi, J.L.; Corso, V.L.; Dylla, H.F.; Ellis, R.A. Jr.; Nishi, M.

    1979-01-01

    Graphite limiters were installed and tested in the ISX-A tokamak as part of the ISX-A surface physics program and the TFTR materials research program. The puropse of the experiment was to compare plasma performance using graphite limiters as opposed to the standard ISX-A stainless steel limiters. Heaters were installed in the graphite limiters so that the effects of operation at elevated temperatures could be evaluated

  18. Graphitic packing removal tool

    Science.gov (United States)

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  19. Elastic properties of graphite and interstitial defects

    International Nuclear Information System (INIS)

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  20. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current

    Science.gov (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan

    2017-10-01

    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  1. Oxidation of the AlSi6Cu4 alloy and AlSi6Cu4-graphite particles composite at the elevated temperatures

    Directory of Open Access Journals (Sweden)

    J. Pozar

    2009-04-01

    Full Text Available Oxidation process of AlSi6Cu4 alloy as a composite matrix and of AlSi6Cu4 / 8 vol.% graphite particles composite was investigated.Composites were prepared by stirring method for suspension obtaining and by squeeze casting of the suspension. This process wasexamined by testing specimens annealed during up to 1000 hours at 573 K and 673 K in air atmosphere. The average oxidation state, oxidelayer thickness and hardness of examined materials were measured during the annealing time. Obtained results imply the followingconclusions: composite oxidizes faster than matrix alloy at both temperatures what is confirmed by higher weight gains and thicker oxide layer. The rate of oxidation of both materials gradually slows down at both temperatures. At initial stages of annealing at 673 K the rate of oxidation of both materials is much higher than that at 573 K. With increasing time of annealing the ratio of oxidation rate at 673 K to the one at 573 K comes down. Hardness of the composite is lower than that of matrix alloy before and during annealing at both temperatures. Drop in hardness at both 573 K and 673 K is the same for matrix and composite, and after about 100 hours the hardness no longer descents.

  2. Corrosion of graphitic high temperature reactor materials in steam/helium mixtures at total pessures of 3-55 bar and temperatures of 900-1150 C (1173-1423K)

    International Nuclear Information System (INIS)

    Hinssen, H.K.; Loenissen, K.J.; Katscher, W.; Moormann, R.

    1993-03-01

    In course of accident examination for (HTR), experiments on the corrosion behavior of graphitic reactor materials in steam have been performed a total pressures of 3-55bar and temperatures of 900-1150 C (1173-1423K); these experiments and their evaluation are documented here. Reactor materials examined are the structure graphite V483T2 and the fuel element matrices A3-27 and A3-3. In all experiments, the steam partial pressure was 474mbar (inert gas helium). The dependence of reaction rates and density profiles on burn-off, total pressure and temperature has been examined. Experimental reaction rates depending on burn-off are fitted by theoretical curves, a procedure, which allows rate comparison for a well defined burn-off. Comparing rates as a function of total pressure, V483T2 shows a linear dependence on 1√p total , whereas for matrix materials a pressure independent rate was found for p total 4mm for A3-3. (orig.) [de

  3. Investigation of temperature stability of ITO films characteristics

    Directory of Open Access Journals (Sweden)

    Troyan Pavel

    2018-01-01

    Full Text Available The paper represents research of thermal stability of optical and electro-physical parameters of ITO films deposited using various techniques. Variation of optical and electro-physical parameters was recorded using spectroscopy, and Hall’s and four-probe measurements. The best thermal stability was demonstrated by ITO films deposited by metal target sputtering In(90%/Sn(10% in mixture of gases O2 (25% + Ar (75% with further annealing in air atmosphere. This enables to apply this technique for production of thin film transparent resistive elements capable to heat the translucent structures up to 100°C without deterioration of their parameters.

  4. Low temperature stabilization process for production of carbon fiber having structural order

    Science.gov (United States)

    Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie; Tenhaeff, Wyatt Evan; Menchhofer, Paul A.; Paulauskas, Felix Leonard

    2017-08-15

    A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presence of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.

  5. Silicon-photonic PTAT temperature sensor for micro-ring resonator thermal stabilization.

    Science.gov (United States)

    Saeedi, Saman; Emami, Azita

    2015-08-24

    We present a scheme for thermal stabilization of micro-ring resonator modulators through direct measurement of ring temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. The closed-loop feedback system is demonstrated to operate in presence of thermal perturbations at 20Gb/s.

  6. Low temperature synthesis of nanocrystalline scandia-stabilized ...

    Indian Academy of Sciences (India)

    Zirconia stabilized with 11 mol% scandia (11ScSZ) has been successfully synthesized by novel alanine-assisted soft chemical aqueous combustion method. The reaction kinetics during combustion synthesis has been studied in detail by analysing thermal behaviour of different metal–alanine complexes. A single phase ...

  7. Low temperature synthesis of nanocrystalline scandia-stabilized ...

    Indian Academy of Sciences (India)

    2Chemistry Division, State Forensic Science Laboratory, Kolkata 700037, India. MS received 6 March 2015; accepted 8 July 2015. Abstract. Zirconia stabilized with 11 mol% scandia (11ScSZ) has been successfully synthesized by novel alanine- assisted soft chemical aqueous combustion method. The reaction kinetics ...

  8. Low temperature synthesis of nanocrystalline scandia-stabilized ...

    Indian Academy of Sciences (India)

    1Fuel Cell and Battery Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700 032, India. 2Chemistry Division, State Forensic Science Laboratory, Kolkata 700037, India. ... viability of solid oxide fuel cell (SOFC) technology.1–12 Till date, yttria-stabilized zirconia (YSZ) is the leading choice as electrolyte ...

  9. Stability of lithium niobate on irradiation at elevated temperature

    International Nuclear Information System (INIS)

    Primak, W.; Gavin, A.P.; Anderson, T.T.; Monahan, E.

    1977-01-01

    In contrast to results obtained for neutron irradiation in a thermal reactor near room temperature, lithium niobate plates irradiated in the Experimental Breeder Reactor II (EBR-II) did not become metamict. This is attributed to the elevated temperature of the EBR-II. Ion bombardment experiments indicate that to avoid disordering of lithium niobate on irradiation, its temperature should be maintained above 673 K. Evidence for ionic conductivity was found at 873 K, indicating that it would be inadvisable to permit the temperature to rise that high, particularly with voltage across the plate. In reactor application as a microphone transducer, it is tentatively recommended that the lithium niobate be maintained in the middle of this temperature range for a major portion of reactor operating time

  10. Soft ceramics for high temperature lubrication: graphite-free lubricants for hot and warm forging of steel

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.

    2016-01-01

    The main research focus of this thesis is on the development of the next generation of solid lubricants for high temperature forming of steel. These lubricants are based on ceramic nanoparticles which are more resistant to temperature and oxidation than traditional lubricants. Nowadays, the most

  11. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  12. Study of the influence of thermal shock on the carbon-graphite material stability with niobium carbide protective coating using pulsed electron radiation

    International Nuclear Information System (INIS)

    Gromov, L.A.; Kalyagin, V.A.; Mendeleeva, Z.G.; Tkach, V.N.; Fedorenko, A.I.

    1983-01-01

    The resistance to thermal shock of protective coatings of niobium carbide on carbon-graphite materials of the B-2-1, GSP and KM grades is studied. Thermal shock simulation in thermonuclear installations is realized by bombarding materials with pulsed electron beams at 1.5 MeV energy. Energy release in a pulse of 3 μs duration reaches 1-2 MW/cm 2 . It is found that carbide coatings of 200 μm thickness on graphite with GSP pyrocarbon bundle are not damaged when affected by 10 4 pulses of the above power

  13. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low‐temperature fuel cells. A novel type of catalysts prepared by high‐pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting...... of uniform iron carbide (Fe3C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR...

  14. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life

    Science.gov (United States)

    Romero-Romero, M. Luisa; Risso, Valeria A.; Martinez-Rodriguez, Sergio; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2016-01-01

    The relationship between the denaturation temperatures of proteins (Tm values) and the living temperatures of their host organisms (environmental temperatures: TENV values) is poorly understood. Since different proteins in the same organism may show widely different Tm’s, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm’s are oftentimes found to correlate with TENV’s but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm’s for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate) can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C) that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms. PMID:27253436

  15. High temperature solid lubricants: When and where to use them

    Science.gov (United States)

    Sliney, H. E.

    1973-01-01

    The state of the art of solid lubrication for moderate to extremely high temperature lubrication (to 1600 F) is reviewed. Lubricating characteristics, stability in various environments, and relevant machine design considerations are discussed. Lubricating materials discussed include the layer lattice compounds: MoS2, WS2, graphite and graphite fluoride, the high temperature polyimide polymer, and calcium fluoride based coating and composites. The scope of the information includes results from wear testers, ball bearing, and journal bearings.

  16. High temperature solid lubricants - When and where to use them.

    Science.gov (United States)

    Sliney, H. E.

    1973-01-01

    This paper reviews the state of the art of solid lubrication for moderate to extremely high temperature lubrication (to 1600 F). Lubricating characteristics, stability in various environments, and relevant machine design considerations are discussed. Lubricating materials discussed include MoS2, WS2, graphite, graphite fluoride, the high temperature polymide polymer, and calcium fluoride based coatings and composites. The scope of the information includes results from wear testers, ball bearings, and journal bearings.

  17. Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea.

    Science.gov (United States)

    Xu, Junying; Li, Yuexiang; Peng, Shaoqin; Lu, Gongxuan; Li, Shuben

    2013-05-28

    Graphitic carbon nitride (g-C3N4) was prepared by pyrolysis of urea at different temperatures (450-650 °C), and characterized by thermogravimetric and differential thermal analysis (TG-DTA), elemental analysis (C/H/N), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (DRS), Brunauer-Emmett-Teller (BET) analysis, Fourier transform-infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectra. The samples prepared at low temperatures (450 and 500 °C) are a mixture of g-C3N4 and impurities, whereas the samples prepared at high temperatures (550, 600 and 650 °C) should be g-C3N4 (polymeric carbon nitride). The polymerization degree of g-C3N4 for the prepared samples increases to a maximum at 600 °C with increasing pyrolysis temperature and then decreases, whereas the defect concentration changes conversely, that is, g-C3N4 prepared at 600 °C has the lowest defect concentration. Using Eosin Y (EY) and the prepared sample as the sensitizer and the matrix, respectively, the photocatalytic activity for hydrogen evolution from aqueous triethanolamine solution was investigated. The g-C3N4 prepared at 600 °C exhibits the highest sensitization activity. Under optimum conditions (1.25 × 10(-5) mol L(-1) EY and 7.0 wt% Pt), the maximal apparent quantum yield of EY-sensitized g-C3N4 prepared at 600 °C for hydrogen evolution is 18.8%. The highest activity can be attributed to the pure composition, the higher dye adsorption amount and the lowest defect concentration.

  18. Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene

    DEFF Research Database (Denmark)

    Wehenkel, Dominique Joseph; Bointon, Thomas Hardisty; Booth, Tim

    2015-01-01

    microscopy and Raman spectroscopy conclusively demonstrate the unforseen stability of this transparent conductor to a relative humidity up to 100% at room temperature for 25 days, to a temperature up to 150 degrees C in atmosphere and to a temperature as high as 620 degrees C in vacuum, that is more than......We present the first systematic study of the stability of the structure and electrical properties of FeCl3 intercalated few-layer graphene to high levels of humidity and high temperature. Complementary experimental techniques such as electrical transport, high resolution transmission electron...

  19. Investigation of low temperature thermal stability in bulk nanocrystalline Ni

    International Nuclear Information System (INIS)

    Chauhan, Manish; Mohamed, Farghalli A.

    2006-01-01

    Grain growth behavior of bulk nanocrystalline Ni, prepared by an electrodeposition technique with average grain sizes of 20 and 15nm was investigated in the homologous temperature (T/T m ) range of 0.20-0.40. In studying grain growth, the techniques of X-ray diffraction and transmission electron microscopy were used. The results show that in the temperature range of 0.20-0.30T m , there is no appreciable grain growth, even after long annealing times. However, in the temperature range of 0.3-0.4T m , the rate of grain growth was rapid during the initial period of annealing, which decreases with increase in time. The value of time exponent, n, deduced from the grain growth equation of the general form D 1/n -D 0 1/n =Kt was found to be approximately 0.1 for both grain sizes of Ni. At temperatures higher than 0.3T m , an approximate activation energy of 105+/-3kJ/mol, which is close to the activation energy for grain boundary diffusion in polycrystalline Ni, was measured. At temperatures lower than 0.3T m , an approximate activation energy of 11+/-3kJ/mol was found. It is suggested that this low activation energy represents the energy for the re-ordering of the nanocrystalline grain boundaries

  20. Stability of soybean aphid resistance in soybean across different temperatures

    Science.gov (United States)

    The soybean aphid, Aphis glycines Matsumura, is the most important insect pest posing a threat to soybean, Glycine max (L.) Merr., grain production in the United States. Soybean cultivars with resistance are currently being deployed to aid in management of the pest. Temperature has been reported to ...

  1. Temperature Dependence of the Stability of Ion Pair Interactions ...

    Indian Academy of Sciences (India)

    The current study employs free energy calculations to elucidate the thermodynamics of the formation of salt bridge interactions and the temperature dependence, using acetate and methylguanidium ions as model systems. Three different orientations of the methylguanidinium approaching the carboxylate group have been ...

  2. Optimum Temperature and Thermal Stability of Crude Polyphenol ...

    African Journals Online (AJOL)

    extracted from all the fruits is stable upon incubation for 10 to 120 minutes at temperature between 20- 700C. The activity of the crude enzyme from all the fruits used was found to decrease ... 1.14.18.1), is a copper-containing enzyme which is widely distributed in plants (Vaughn and Duke, 1984) that catalyzes two different ...

  3. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min‑1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ∼ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  4. NGNP Graphite Selection and Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.; Bratton, R.; Windes, W.

    2007-09-30

    The nuclear graphite (H-451) previously used in the United States for High-Temperature Reactors (HTRs) is no longer available. New graphites have been developed and are considered suitable candidates for the Next-Generation Nuclear Plant (NGNP). A complete properties database for these new, available, candidate grades of graphite must be developed to support the design and licensing of NGNP core components. Data are required for the physical, mechanical (including radiation-induced creep), and oxidation properties of graphites. Moreover, the data must be statistically sound and take account of in-billet, between billets, and lot-to-lot variations of properties. These data are needed to support the ongoing development1 of the risk-derived American Society of Mechanical Engineers (ASME) graphite design code (a consensus code being prepared under the jurisdiction of the ASME by gas-cooled reactor and NGNP stakeholders including the vendors). The earlier Fort St. Vrain design of High-Temperature Reactor (HTRs) used deterministic performance models for H-451, while the NGNP will use new graphite grades and risk-derived (probabilistic) performance models and design codes, such as that being developed by the ASME. A radiation effects database must be developed for the currently available graphite materials, and this requires a substantial graphite irradiation program. The graphite Technology Development Plan (TDP)2 describes the data needed and the experiments planned to acquire these data in a timely fashion to support NGNP design, construction, and licensing. The strategy for the selection of appropriate grades of graphite for the NGNP is discussed here. The final selection of graphite grades depends upon the chosen reactor type and vendor because the reactor type (pebble bed or prismatic block) has a major influence on the graphite chosen by the designer. However, the time required to obtain the needed irradiation data for the selected NGNP graphite is sufficiently

  5. High-temperature stability of yttria-stabilized zirconia thermal barrier ...

    Indian Academy of Sciences (India)

    In contrast, at the same conditions, the uncoated C-103 alloy specimen showed extensive oxidation followed by weight loss due to spallation. A maximum temperature drop of ∼ 200°C was observed on the opposite side of the coated alloy with 600 μ m YSZ coat; as against negligible temperature drop in case of bare alloy ...

  6. Characterization of commercial expandable graphite fire retardants

    Energy Technology Data Exchange (ETDEWEB)

    Focke, Walter Wilhelm, E-mail: walter.focke@up.ac.za; Badenhorst, Heinrich; Mhike, Washington; Kruger, Hermanus Joachim; Lombaard, Dewan

    2014-05-01

    Highlights: • Expandable graphite is less well-ordered than its graphite bisulfate progenitor. • It includes graphite oxide as a randomly interstratified phase. • CO{sub 2}, CO and SO{sub 2} are released during thermal-driven exfoliation. - Abstract: Thermal analysis and other techniques were employed to characterize two expandable graphite samples. The expansion onset temperatures of the expandable graphite's were ca. 220 °C and 300 °C respectively. The key finding is that the commercial products are not just pure graphite intercalation compounds with sulfuric acid species intercalated as guest ions and molecules in between intact graphene layers. A more realistic model is proposed where graphite oxide-like layers are also randomly interstratified in the graphite flakes. These graphite oxide-like layers comprise highly oxidized graphene sheets which contain many different oxygen-containing functional groups. This model explains the high oxygen to sulfur atomic ratios found in both elemental analysis of the neat materials and in the gas generated during the main exfoliation event.

  7. A new method to determine oxidative stability of vegetable fats and oils at simulated frying temperature

    Directory of Open Access Journals (Sweden)

    Gertz Christian

    2001-01-01

    Full Text Available A new procedure at simulated frying conditions in our laboratory was developed to monitor frying stability of fats and oils. Water-conditioned silica was prepared and added to the fresh vegetable oil, which was heated for two hours at 170°C. The oil stability at frying temperature was then evaluated by determining the amount of formed dimeric triglycerides The results obtained showed that the stability of the vegetable oils at frying temperature could not be explained by the fatty acid composition alone. Corn oil was observed to be more stable than soybean oil, and rapeseed oil was better than olive oil. It was also observed that crude, non-refined oils were found to have a better heat stability than refin-ed oils. To estimate the effectiveness of synthetic and naturally occurring antioxidants, namely various tocopherols, tocopherol acetate and phytosterol fractions, phenolic compounds like quercetin, oryzanol, ferulic acid, gallates, BHT, BHA and other compounds like ascorbic acid 6-palmitate and squalene were added to refined sunflower and rape seed oil, and their oxidative stability at elevated temperature (OSET values determined. Both linoleic and oleic rich oils gave comparable results for the activity of the various compounds. alpha-tocopherol, tocopherol esters and BHA had low effects on oil stability at frying temperature, while ascorbyl palmitate and some phytosterol fractions were found to have the most stabilizing activity under frying conditions.

  8. Study on the Comprehensive Properties and Microstructures of A3-3 Matrix Graphite Related to the High Temperature Purification Treatment

    Directory of Open Access Journals (Sweden)

    Xiangwen Zhou

    2018-01-01

    Full Text Available At the beginning, a comparative analysis was made on the oxidation corrosion rate and ash content of A3-3 matrix graphite (MG pebbles lathed before and after high temperature purification (HTP treatment. Their oxidation corrosion rate and ash contents were almost identical, which indicated that the HTP process was to purify the entire MG pebbles and not limited on the surfaces. Furthermore, the multiple mechanical and thermal properties of MG treated without and with the treatment of HTP at ~1900°C were compared and their microstructure features were characterized as well. As the crush strength, oxidation corrosion rate, and erosion rate of MG without HTP treatment did not satisfy the specifications, the comprehensive properties and purity of MG with HTP were improved in various degrees through the HTP process so that all performances met the requirements of the A3-3 MG. The improvement of crush strength and erosion rate of MG in the HTP process could be mainly attributed to the upgradation of ordered microstructure and corresponding increase of density. However, the enhancement of oxidation corrosion rate was due to the synergistic effects of microstructural optimization and reduction of impurity elements, especially the transition metal elements of MG in the HTP process.

  9. Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids

    Science.gov (United States)

    Kaur, Navjot; Chudasama, Bhupendra

    2018-04-01

    Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.

  10. Stability of gold cages (Au16 and Au17) at finite temperature

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... We have employed ab initio molecular dynamics to investigate the stability of the smallest gold cages, namely Au16 and Au17, at finite temperatures. First, we obtain the ground state structure along with at least 50 distinct isomers for both the clusters. This is followed by the finite temperature simulations of ...

  11. Evaluation of the effect of temperature on the stability of metal soaps ...

    African Journals Online (AJOL)

    The thermal stability of calcium and zinc dicarboxylates was studied. The kinetics of the decomposition was studied thermogravimetrically at various temperatures. The rates of the first stage decomposition were used to assess the effect of temperature on the susceptibility of the metal soaps of dicarboxylic acids to ...

  12. Silicon photomultiplier's gain stabilization by bias correction for compensation of the temperature fluctuations

    International Nuclear Information System (INIS)

    Dorosz, P.; Baszczyk, M.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2013-01-01

    Gain of the silicon photomultiplier is strongly dependent on the value of bias voltage and temperature. This paper proposes a method for gain stabilization just by compensation of temperature fluctuations by bias correction. It has been confirmed that this approach gives good results and the gain can be kept very stable

  13. Temperature-dependent structure, elasticity, and entropic stability of Bi phases on Cu(111)

    NARCIS (Netherlands)

    van Gastel, Raoul; Kaminski, D; Vlieg, E.; Poelsema, Bene

    2014-01-01

    We have used low energy electron microscopy (LEEM) to characterize the structure and stability of Bi phases on Cu{111}. As a function of temperature we find that the Cu{111}(3√×3√)R30∘-Bi surface alloy phase gradually dealloys and is fully depleted from Bi at a temperature of 803 K. The dealloying

  14. Artigo revisão: estabilização de suspensões aquosas contendo grafite Review article: stabilization of graphite-containing aqueous suspensions

    Directory of Open Access Journals (Sweden)

    I. R. de Oliveira

    2000-12-01

    Full Text Available A aplicação de materiais refratários contendo grafite tem aumentado muito nos últimos 10 anos, especialmente no caso de concretos refratários. Tais refratários são considerados compósitos singulares em que o grafite contribui para a redução da expansão térmica, aumento da resistência ao choque térmico, da energia de fratura e da resistência ao ataque por escória. Entretanto, sua baixa molhabilidade por água e líquidos orgânicos dificulta o seu processamento por meio de suspensões. Em virtude disso, um tratamento da superfície das partículas de grafite deve ser realizado visando melhorar sua molhabilidade e dispersão em suspensão aquosa. As principais características estruturais e superficiais responsáveis pela sua baixa molhabilidade e os métodos de tratamento superficial mais utilizados são abordados nesta revisão. Tais métodos de tratamento superficial envolvem, principalmente, a adsorção de agentes ativos na superfície, como é o caso dos surfactantes e polieletrólitos, e a cobertura da superfície por uma espécie hidrofílica.The application of graphite-containing refractories has increased enormously over the latest ten years, especially in the case of refractory castables. Graphite in such refractories contributes to the reduction of the material thermal expansion and improvement on its thermal shock resistance, fracture energy and slag resistance. However, the low wettability of graphite in water and organic liquids represents a barrier to its processing. Therefore, a surface treatment of graphite particles is required to improve its wettability and enable its dispersion in aqueous suspensions. The main structural and surface characteristics responsible for the low wettability of graphite, as well as the most common surface treatment methods applied are discussed in the present review article. Such surface treatment methods include the surface covering of graphite by hydrophilic species and the

  15. Miniature High Stability High Temperature Space Rated Blackbody Radiance Source

    Science.gov (United States)

    Jones, J. A.; Beswick, A. G.

    1987-09-01

    This paper presents the design and test performance of a conical cavity type blackbody radiance source that will meet the requirements of the Halogen Occultation Experiment (HALOE) on the NASA Upper Atmospheric Research Satellite program (UARS). Since a radiance source meeting the requirements of this experiment was unavailable in the commercial market, a development effort was undertaken by the HALOE Project. The blackbody radiance source operates in vacuum at 1300 K + 0.5 K over any 15-minute interval, uses less than 7.5 watts of power, maintains a 49°C outer case temperature, and fits within the 2.5 x 2.5 x 3.0 inch envelope allocated inside the HALOE instrument. Also, the unit operates in air, during ground testing of the HALOE instrument, where it uses 17 watts of power with an outer case temperature of 66°C. The thrust of this design effort was to minimize the heat losses, in order to keep the power usage under 7.5 watts, and to minimize the amount of silica in the materials. Silica in the presence of the platinum heater winding used in this design would cause the platinum to erode, changing the operating temperature set-point. The design required the development of fabrication techniques which would provide very small, close tolerance parts from extremely difficult-to-machine materials. Also, a space rated ceramic core and unique, low thermal conductance, ceramic-to-metal joint was developed, tested and incorporated in this design. The completed flight qualification hardware has undergone performance, environmental and life testing. The design configuration and test results are discussed in detail in this paper.

  16. Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizers

    DEFF Research Database (Denmark)

    Kiil, Søren; G.de With, R.A.T.M.Van Benthem

    2013-01-01

    A mathematical model, describing coating degradation mechanisms of thermoset coatings exposed to ultraviolet radiation and humidity at constant temperature, was extended to simulate the behavior of a coating with a low glass transition temperature. The effects of adding light stabilizers (a UV......, and simulates the transient development of an oxidation zone. Simulations are in good agreement with experimental data for a fast degrading epoxy-amine coating with a glass transition temperature of −50°C. It was found that the degradation rate of the non-stabilized coating was influenced significantly...

  17. High-temperature stability of yttria-stabilized zirconia thermal barrier ...

    Indian Academy of Sciences (India)

    Abstract. Thermal barrier coatings (TBCs) of yttria-stabilized zirconia (YSZ) of different thicknesses with an intermediate bond coat were deposited on C-103 Nb alloy using the air plasma spraying technique. The coatings were subjected to rapid infra-red (IR) heating (∼25◦C s−1) up to ∼1250◦C and exposed up to 100 s at ...

  18. Temperature Stabilization of the NIFFTE Time Projection Chamber

    Science.gov (United States)

    Hicks, Caleb

    2017-09-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) is a collaboration measuring nuclear fission cross sections for use in advanced nuclear reactors. A neutron beam incident on targets of Uranium-235, Uranium-238, and Plutonium-239 is used to measure the neutron induced fission cross sections for these isotopes. A Time Projection Chamber (TPC) is used to record these reactions. Significant heat is generated by the readout cards mounted on the TPC, which are cooled by fans. One proposed measurement of the experiment is to compare the cross sections of the target to a proton target of gaseous hydrogen. A constant temperature inside the TPC's pressure vessel is desirable to maintain a constant number of hydrogen target atoms. In addition, a constant temperature minimizes the strain and wrinkles on an amplifying mesh inside the TPC. This poster describes the successful work to develop, build, and install a fan controller using a Raspberry Pi, an Arduino, and a custom circuit board to implement an algorithm called Proportional-Integral-Derivative control. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.

  19. Atmospheric Stability & Turbulence from Temperature Profiles over Sicily During Summer 2002 & 2003 HASI Balloon Campaigns

    Science.gov (United States)

    Colombatti, G.; Ferri, F.; Angrilli, F.; Fulchignoni, M.

    2005-01-01

    Experimental results and interpretation of the temperature measurements data retrieved during the balloon campaigns (in 2002 and in 2003) for testing HASI (Huygens Atmospheric Structure Instrument), launched from the Italian Space Agency Base in Trapani (Sicily), are presented. Both ascending and descending phases are analysed; data reveal interesting features near the tropopause (present in the region between 11km-14km), where temperature cooling can be related to layers with strong winds (2002 flight); in the troposphere a multistratified structure of the temperature field is observed and discussed (particularly in the 2003 flight) Finally, stability and turbulence of the atmosphere are analysed; the buoyancy N2 parameters for both the flights show lowers value respect to standard tropospheric values corresponding to a lower stability of the atmosphere; still there is a higher stability above the tropopause. The energy spectrum of temperature data is consistent with the Kolmogorov theory: the characteristic k(sup -5/3) behaviour is reproduced.

  20. Dynamical stability and low-temperature lattice specific heat of one-dimensional fullerene polymers

    Science.gov (United States)

    Shimizu, Atsushi; Ono, Shota

    2018-02-01

    We theoretically investigate the dynamical stability of one-dimensional fullerene polymers by computing the phonon dispersion relations within the atomistic approach. We find that only seven models among 54 models proposed previously (Noda et al., 2015) are dynamically stable. We show that the low temperature specific heat of them is proportional to the square root of the temperature in a wider range of temperature compared to the case of single-walled carbon nanotubes.

  1. Transducer-based fiber Bragg grating high-temperature sensor with enhanced range and stability

    Science.gov (United States)

    Mamidi, Venkata Reddy; Kamineni, Srimannarayana; Ravinuthala, Lakshmi Narayana Sai Prasad; Tumu, Venkatappa Rao

    2017-09-01

    Fiber Bragg grating (FBG)-based high-temperature sensor with enhanced-temperature range and stability has been developed and tested. The sensor consists of an FBG and a mechanical transducer, which furnishes a linear temperature-dependent tensile strain on FBG by means of differential linear thermal expansion of two different ceramic materials. The designed sensor is tested over a range: 20°C to 1160°C and is expected to measure up to 1500°C.

  2. Radiation cured epoxy acrylate composites based on graphene, graphite oxide and functionalized graphite oxide with enhanced properties.

    Science.gov (United States)

    Guo, Yuqiang; Bao, Chenlu; Song, Lei; Qian, Xiaodong; Yuan, Bihe; Hu, Yuan

    2012-03-01

    Epoxy acrylate (EA) composites containing graphite oxide (GO), graphene and nitrogen-double bond functionalized graphite oxide (FGO) were fabricated using UV-radiation and electron beam radiation via in-situ polymerization. Graphene and FGO were homogenously dispersed in EA matrix and enhanced properties, including thermal stability, flame retardancy, electrical conductivity and reduced deleterious gas releasing in thermo decomposition were obtained. Microscale combustion colorimeter results illustrated improved flame retardancy; EA/FGO composites achieved a 29.7% reduction in total heat release (THR) when containing only 0.1% FGO and a 38.6% reduction in peak-heat release rate (PHRR) when containing 3% FGO. The onset decomposition temperatures were delayed and the maximum decomposition values were reduced, according to thermogravimetric analysis which indicated enhanced thermal stabilities. The electrical conductivity was increased by 6 orders of magnitude (3% graphene) and the deleterious gas released during the thermo decomposition was reduced with the addition of all the graphite samples. This study represented a new approach to functionalize GO with flame retardant elements and active curable double bond to achieve better dispersion of GO into polymer matrix to obtain nanocomposites and paved a way for achieving graphene-based materials with high-performance of graphene in enhancement of flame retardancy of polymers for practical applications.

  3. Irradiation damage in graphite due to fast neutrons in fission and fusion systems

    International Nuclear Information System (INIS)

    2000-09-01

    Gas cooled reactors have been in operation for the production of electricity for over forty years, encompassing a total of 56 units operated in seven countries. The predominant experience has been with carbon dioxide cooled reactors (52 units), with the majority operated in the United Kingdom. In addition, four prototype helium cooled power plants were operated in the United States and Germany. The United Kingdom has no plans for further construction of carbon dioxide units, and the last helium cooled unit was shutdown in 1990. However, there has been an increasing interest in modular helium cooled reactors during the 1990s as a possible future nuclear option. Graphite is a primary material for the construction of gas cooled reactor cores, serving as a low absorption neutron moderator and providing a high temperature, high strength structure. Commercial gas cooled reactor cores (both carbon dioxide cooled and helium cooled) utilise large quantities of graphite. The structural behaviour of graphite (strength, dimensional stability, susceptibility to cracking, etc.) is a complex function of the source material, manufacturing process, chemical environment, and temperature and irradiation history. A large body of data on graphite structural performance has accumulated from operation of commercial gas cooled reactors, beginning in the 1950s and continuing to the present. The IAEA is supporting a project to collect graphite data and archive it in a retrievable form as an International Database on Irradiated Nuclear Graphite Properties, with limited general access and more detailed access by participating Member States. Because of the large size of the database, the complexity of the phenomena and the number of variables involved, a general understanding of graphite behaviour is essential to the understanding and use of the data

  4. High-temperature stability of yttria-stabilized zirconia thermal barrier ...

    Indian Academy of Sciences (India)

    The coatings before and after IR heating were investigated by scanning electron microscopy, X-ray diffraction, electron probe microanalysis, microhardness and residual stress measurements in order to understand the effect of thermal shock on the properties of the TBC. On account of these high-temperature properties, ...

  5. High-temperature stability of yttria-stabilized zirconia thermal barrier ...

    Indian Academy of Sciences (India)

    or an internal combustion engine. For such kind of appli- cations, high heat flux is required for short time duration. Since, Nb alloys are being used for these applications, TBC with a prior bond coat is essential for better performance of components made by these alloys. Further, Nb alloys suffer from high temperature ...

  6. Development of a High Temperature Heater using an Yttria Stabilized Zirconia Cored Brick Matrix

    Science.gov (United States)

    Smith, K. W.; Decoursin, D. G.

    1971-01-01

    The Ames pilot heater is a ceramic regenerative heater that provides high temperature air for aerodynamic and combustion experiments. The development of this heater to provide a heat storage bed with temperature capability of about 4600 R is described. A bed was designed and installed having cored brick elements of yttria-stabilized zirconia. The bed dimensions were 14 inches in diameter by 10 feet high. The thermal stress limitations of the bed were studied and maximum air flow rates based upon these limits were established. A combustion reheat system was designed and installed to provide the necessary control over the bed temperature distribution. The revised heater system was successfully operated at a maximum bed temperature of 4600 R. The successful operation demonstrated that yttria-stabilized zirconia cored brick can satisfy the high temperature-long duration requirement for storage heater applications.

  7. Design of DC-contact RF MEMS switch with temperature stability

    Directory of Open Access Journals (Sweden)

    Junfeng Sun

    2015-04-01

    Full Text Available In order to improve the temperature stability of DC-contact RF MEMS switch, a thermal buckle-beam structure is implemented. The stability of the switch pull-in voltage versus temperature is not only improved, but also the impact of stress and stress gradient on the drive voltage is suppressed. Test results show that the switch pull-in voltage is less sensitive to temperature between -20 °C and 100 °C. The variable rate of pull-in voltage to temperature is about -120 mV/°C. The RF performance of the switch is stable, and the isolation is almost independent of temperature. After being annealed at 280 °C for 12 hours, our switch samples, which are suitable for packaging, have less than 1.5% change in the rate of pull-in voltage.

  8. A self-adaptive thermal switch array for rapid temperature stabilization under various thermal power inputs

    Science.gov (United States)

    Geng, Xiaobao; Patel, Pragnesh; Narain, Amitabh; Desheng Meng, Dennis

    2011-08-01

    A self-adaptive thermal switch array (TSA) based on actuation by low-melting-point alloy droplets is reported to stabilize the temperature of a heat-generating microelectromechanical system (MEMS) device at a predetermined range (i.e. the optimal working temperature of the device) with neither a control circuit nor electrical power consumption. When the temperature is below this range, the TSA stays off and works as a thermal insulator. Therefore, the MEMS device can quickly heat itself up to its optimal working temperature during startup. Once this temperature is reached, TSA is automatically turned on to increase the thermal conductance, working as an effective thermal spreader. As a result, the MEMS device tends to stay at its optimal working temperature without complex thermal management components and the associated parasitic power loss. A prototype TSA was fabricated and characterized to prove the concept. The stabilization temperatures under various power inputs have been studied both experimentally and theoretically. Under the increment of power input from 3.8 to 5.8 W, the temperature of the device increased only by 2.5 °C due to the stabilization effect of TSA.

  9. Stabilization of a magnetic island by localized heating in a tokamak with stiff temperature profile

    Science.gov (United States)

    Maget, Patrick; Widmer, Fabien; Février, Olivier; Garbet, Xavier; Lütjens, Hinrich

    2018-02-01

    In tokamaks plasmas, turbulent transport is triggered above a threshold in the temperature gradient and leads to stiff profiles. This particularity, neglected so far in the problem of magnetic island stabilization by a localized heat source, is investigated analytically in this paper. We show that the efficiency of the stabilization is deeply modified compared to the previous estimates due to the strong dependence of the turbulence level on the additional heat source amplitude inside the island.

  10. Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application

    OpenAIRE

    Solé, Aran; Neumann, Hannah; Niedermaier, Sophia; Cabeza, Luisa F.; Palomo, Elena

    2014-01-01

    Sugar alcohols are potential phase change materials candidates as they present high phase change enthalpy values, are non-toxic and low cost products. Three promising sugar-alcohols were selected: D-mannitol, myo-inositol and dulcitol under high melting enthalpy and temperature criterion. Thermal cycling tests were performed to study its cycling stability which can be determining when selecting the suitable phase change material. D-mannitol and dulcitol present poor thermal stability...

  11. Temperature-stabilized, narrowband tunable fiber-Bragg gratings for matched-filter receiver

    Science.gov (United States)

    Roth, Jeffrey M.; Kummer, Joseph W.; Minch, Jeffrey R.; Malinsky, Bryan G.; Scalesse, Vincent; Walther, Frederick G.

    2017-02-01

    We report on a 1550-nm matched filter based on a pair of fiber Bragg gratings (FBGs) that is actively stabilized over temperature. The filter is constructed of a cascaded pair of athermally-packaged FBGs. The tandem FBG pair produces an aggregate 3-dB bandwidth of 3.9-GHz that is closely matched to a return-to-zero, 2.880-GHz differential-phase-shift-keyed optical waveform. The FBGs comprising the filter are controlled in wavelength using a custom-designed, pulse-width modulation (PWM) heater controller. The controllers allow tuning of the FBGs over temperature to compensate and cancel out native temperature dependence of the athermal FBG (AFBG) package. Two heaters are bonded to each FBG device, one on each end. One heater is a static offset that biases the FBG wavelength positively. The second heater is a PWM controller that actively moves the FBG wavelength negatively. A temperature sensor measures the FBGs' temperature, and a feed-forward control loop adjusts the PWM signal to hold the wavelength within a desired range. This stabilization technique reduces the device's native temperature dependence from approximately 0.65 pm/°C to 0.06 pm/°C, improving the temperature stability by tenfold, while retaining some control for poten- tial long-term drifts. The technique demonstrates that the FBGs can be held to +/-1.5 pm (+/-188 MHz) of the target wavelength over a 0 to +50°C temperature range. The temperature-stabilized FBGs are integrated into a low-noise, optical pre-amplifier that operates over a wide temperature range for a laser communication system.

  12. Investigations in the mechanism of carbothermal reduction of yttria stabilized zirconia for ultra-high temperature ceramics application and its influence on yttria contained in it

    Science.gov (United States)

    Sondhi, Anchal

    Zirconium carbide (ZrC) is a high modulus ceramic with an ultra-high melting temperature and, consequently, is capable of withstanding extreme environments. Carbon-carbon composites (CCCs) are important structural materials in current commercial and future hypersonic aircraft; however, these materials may be susceptible to degradation when exposed to elevated temperatures during extreme velocities. At speeds of exceeding Mach 5, intense heating of leading edges of the aircraft triggers rapid oxidation of carbon in CCCs resulting in degradation of the structure and probable failure. Environmental/thermal barrier coatings (EBC/TBC) are employed to protect airfoil structures from extreme conditions. Yttria stabilized zirconia (YSZ) is a well-known EBC/TBC material currently used to protect metallic turbine blades and other aerospace structures. In this work, 3 mol% YSZ has been studied as a potential EBC/TBC on CCCs. However, YSZ is an oxygen conductor and may not sufficiently slow the oxidation of the underlying CCC. Under appropriate conditions, ZrC can form at the interface between CCC and YSZ. Because ZrC is a poor oxygen ion conductor in addition to its stability at high temperatures, it can reduce the oxygen transport to the CCC and thus increase the service lifetime of the structure. This dissertation investigates the thermodynamics and kinetics of the YSZ/ZrC/CCC system and the resulting structural changes across multiple size scales. A series of experiments were conducted to understand the mechanisms and species involved in the carbothermal reduction of ZrO2 to form ZrC. 3 mol% YSZ and graphite powders were uniaxially pressed into pellets and reacted in a graphite (C) furnace. Rietveld x-ray diffraction phase quantification determined that greater fractions of ZrC were formed when carbon was the majority mobile species. These results were validated by modeling the process thermochemically and were confirmed with additional experiments. Measurements were

  13. Effect of austempering temperature and time on the kinetics and microstructure of austempered compacted graphite cast irons; Einfluss von Zwischenstufenverguetungstemperatur und -zeit auf die Kinetik und die Mikrostruktur von zwischenstufenverguetetem, Gusseisen mit Vermiculargraphit

    Energy Technology Data Exchange (ETDEWEB)

    Teymourian, Mehdi [LMI Co., Tehran (Iran, Islamic Republic of). Casting Dept.; Boutorabi, Seyed Mohammad Ali [Iran Univ. of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of). Center of Excellence for Advanced Materials

    2012-07-01

    After starting the austempering nucleation of bainitic ferrite was observed within a very short time. Samples that austempered for 2 min. showed martensite in the microstructure. By increasing the austempering time from 30 min to 90 min the retained austenite decomposes and X-ray diffraction observations revealed the greatest volume fraction of retained austenite up to 17.3 and 23.8 percent when austempered for 30 min. Micro-hardness of the bainitic Verbesferrite increased up to 370 and 500 HV and micro-hardness of the retained austenite increased up to 300 and 400 HV at the austempering temperatures of 300 C and 400 C respectively. In comparison to austempered ductile iron, the austempered compacted graphite cast iron shows higher rate of bainitic reaction. Bainite formation driving force and consequently the rate of austempering process are higher in compacted graphite cast irons. (orig.)

  14. Temperature control of a cyclotron magnet for stabilization of the JAERI AVF cyclotron beam

    International Nuclear Information System (INIS)

    Okumura, S.; Arakawa, K.; Fukuda, M.; Nakamura, Y.; Yokota, W.; Ishimoto, T.; Kurashima, S.; Ishibori, I.; Nara, T.; Agematsu, T.; Tamura, H.; Matsumura, A.; Sano, M.; Tachikawa, T.

    2001-01-01

    Frequent corrections of the magnetic field of the JAERI AVF cyclotron were required for keeping a beam current constant during long time operation. We observed correlation between the magnetic field and the temperature of the cyclotron magnet yoke by measuring the magnetic field with an NMR probe and the temperature with platinum resistance thermometers. As a result, this instability of a cyclotron beam was induced by temperature-change of the magnet yoke caused mainly by thermal conduction from the main coil. To restrain the thermal conduction to the yoke, we have inserted temperature-controlled copper plates between the yoke and the main coil. In addition, a temperature control system for the cooling water of the trim coils has been installed, which is independent of the total cooling system for controlling the pole tip temperature. An optimum condition of the temperature control systems for stabilizing the magnetic field has been investigated

  15. Short- and long-term stability of resonant quartz temperature sensors.

    Science.gov (United States)

    Spassov, L; Gadjanova, V; Velcheva, R; Dulmet, B

    2008-07-01

    A new miniaturized design of the thermosensitive quartz resonator (TSQR) using an NLC cut (yxl/ -31 degrees 30') with a fundamental frequency of 29.3 MHz was created in the Acoustoelectronics Laboratory of ISSPBAS for use in a wide temperature range (4.2 K to 450 K) as highly sensitive quartz temperature sensors (QTS). This paper presents the results of the investigations of the short- and long-term frequency stability of QTS. The short-term frequency stability of QTS was measured for averaging times up to 150 s at three constant temperatures: liquid helium (4.2 K), liquid nitrogen (77 K), and melting ice (0 degrees C). The short-term frequency stability is 6.8 * 10(-9) at 0 degrees C for t = 15 s, which permits a temperature sensitivity of 2 * 10(-4) K. The long-term stability (aging) was investigated at room temperature and at 80 degrees C for 500 days. The aging characteristics at 25 degrees C and 80 degrees C are compared. It was observed that the frequency change does not exceed 5 * 10(-7) after the 25th day of accelerated aging at 80 degrees C. This guarantees a reliable operation of the sensor, without additional calibration, for several years.

  16. Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures

    OpenAIRE

    Yonghyan Kim; Venkatramana D. Krishna; Montserrat Torremorell; Sagar M. Goyal; Maxim C.-J. Cheeran

    2018-01-01

    Indirect transmission of porcine epidemic diarrhea virus (PEDV) ensues when susceptible animals contact PEDV-contaminated fomite materials. Although the survival of PEDV under various pHs and temperatures has been studied, virus stability on different fomite surfaces under varying temperature conditions has not been explored. Hence, we evaluated the survival of PEDV on inanimate objects routinely used on swine farms such as styrofoam, rubber, plastic, coveralls, and other equipment. The titer...

  17. Electrochemical Deposition and Re-oxidation of Au at Highly Oriented Pyrolytic Graphite. Stabilization of Au Nanoparticles on the Upper Plane of Step Edges

    Energy Technology Data Exchange (ETDEWEB)

    Pinhero, Patrick Joseph; Lister, Tedd Edward; Boxley, Chett J.; White, Henry S.

    2003-10-01

    The electrochemical deposition and reoxidation of Au on the basal plane of highly oriented pyrolytic graphite (HOPG) immersed in a 5 mM AuCl4-/6 M LiCl solution is reported. Scanning electron microscopy (SEM) and ex-situ atomic force microscopy (AFM) demonstrate that Au nanoparticles, ~3.3 nm in height and ~10 nm in diameter, are deposited at times less than ~1 s. The density of nanoparticles, 6 × 109 cm-2, is of the same order of magnitude as the surface point defect density, suggesting that point defects act as nucleation sites for Au electrodeposition. A small subset of the Au nanoparticles (~7%) continues to grow between 1 and 50 s, reaching a height of ~150 nm and a diameter of ~300 nm. At times greater than 50 s, the larger particles coalesce to yield a surface comprised of a low density (~2 × 106 cm-2) of micrometer-size Au crystallites surrounded by Au nanoparticles. Double potential step chronocoulometric experiments demonstrate that the electrodeposition of Au is chemically irreversible, a finding supported by SEM and AFM observations of Au nanoparticles and larger crystallites on the surface after long periods of reoxidation (>3600 s). Au nanoparticles are observed to be preferentially deposited on the upper plane of step edges, a consequence of the nonuniform surface electron density that results from relaxation of the graphite lattice near steps.

  18. Graphite Fluoride Fiber Composites For Heat Sinking

    Science.gov (United States)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1989-01-01

    Graphite fluoride fiber/polymer composite materials consist of graphite fluoride fibers in epoxy, polytetrafluoroethylene, or polyimide resin. Combines high electrical resistivity with high thermal conductivity and solves heat-transfer problems of many electrical systems. Commercially available in powder form, for use as dry lubricant or cathode material in lithium batteries. Produced by direct fluorination of graphite powder at temperature of 400 to 650 degree C. Applications include printed-circuit boards for high-density power electronics, insulators for magnetic-field cores like those found in alternators and transformers, substrates for thin-film resistors, and electrical-protection layers in aircraft de-icers.

  19. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  20. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    Science.gov (United States)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  1. T-mixer operating with water at different temperatures: Simulation and stability analysis

    Science.gov (United States)

    Siconolfi, L.; Camarri, S.; Salvetti, M. V.

    2018-03-01

    In this paper we investigate the transition from the vortex to the engulfment regime in a T-mixer when the two entering flows have different viscosity. In particular we consider as working fluid water entering the two inlet channels of the mixer at two different temperatures. Contrary to the isothermal case, at low Reynolds numbers the vortex regime shows only a single reflectional symmetry, due to the nonhomogeneous distribution of the viscosity. Increasing the Reynolds number, a symmetry-breaking bifurcation drives the system to a new steady flow configuration, usually called the engulfment regime, similar to what it is possible to observe in an isothermal case. This flow regime is associated with an increase of the mixing between the two inlet streams. It is shown by direct numerical simulation (DNS) and by stability analysis that the engulfment regime is promoted by the temperature difference. Starting from the DNSs, the resulting flow fields are analyzed in detail considering different temperature jumps between the two inlet boundaries. Furthermore, dedicated linear stability analyses are carried out to investigate the instability mechanism associated with the occurrence of the engulfment regime. In particular, similarly to the case without temperature differences, the onset of engulfment is driven by the momentum equation, and the temperature field does not lead to any additional instability mechanism. However, the existence of a temperature field leads to quantitative changes of the stability characteristics and of the resulting flow fields via a variation of the viscosity coefficient.

  2. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  3. OBSERVATIONS OF SIMILARITY THEORY STABILITY CORRECTION TERMS FOR MOMENTUM AND TEMPERATURE, OVER AGRICULTURAL FIELDS AND FORESTS.

    Science.gov (United States)

    Many observations of temperature and wind speed profiles have been taken over "ideal" terrain and analyzed to develop the stability correction terms which are commonly used in the application of similarity theory. Fewer observations have been taken and analyzed in this manner ov...

  4. Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md Taibur; McCloy, John; Panat, Rahul, E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163 (United States); Ramana, C. V., E-mail: rahul.panat@wsu.edu, E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2016-08-21

    Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 °C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 °C, at which point a decreasing trend prevails until 300 °C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance. In addition to establishing the conditions for stability of Ag NP films, the results provide a fundamental understanding of the effect of grain growth and reduction in grain boundary area on the electrical stability of sintered NP films.

  5. Homogenization Pressure and Temperature Affect Protein Partitioning and Oxidative Stability of Emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Barouh, Nathalie; Nielsen, Nina Skall

    2013-01-01

    The oxidative stability of 10 % fish oil-in-water emulsions was investigated for emulsions prepared under different homogenization conditions. Homogenization was conducted at two different pressures (5 or 22.5 MPa), and at two different temperatures (22 and 72 °C). Milk proteins were used as the ...

  6. High-temperature stability of thermoelectric Ca3Co4O9 thin films

    DEFF Research Database (Denmark)

    Brinks, P.; Van Nong, Ngo; Pryds, Nini

    2015-01-01

    An enhanced thermal stability in thermoelectric Ca3Co4O9 thin films up to 550 °C in an oxygen rich environment was demonstrated by high-temperature electrical and X-ray diffraction measurements. In contrast to generally performed heating in helium gas, it is shown that an oxygen/helium mixture...

  7. Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers

    DEFF Research Database (Denmark)

    Zhukov, Alexey E.; Kryzhanovskaya, Natalia V.; Zubov, Fedor I.

    2012-01-01

    We fabricated and tested a quantum well laser with asymmetric barrier layers. Such a laser has been proposed earlier to suppress bipolar carrier population in the optical confinement layer and thus to improve temperature-stability of the threshold current. As compared to the conventional reference...

  8. Active Frequency Stabilization Method for Sensitive Applications Operating in Variable Temperature Environments

    Directory of Open Access Journals (Sweden)

    DONE, A.

    2018-02-01

    Full Text Available This article proposes a cost efficient and easy to implement frequency stabilization method orientated toward communication systems operating in an extensive temperature range, as the automotive or the aerospace applications. The proposed solution uses off-the-shelf components and it is optimized for very low power consumption. The novelty of this article is represented by the introduction of the barium strontium titanate capacitor for quartz crystal oscillator active frequency stabilization. After the design was completed, the performances were evaluated and compared to the ones of the uncompensated oscillator. Experimental results confirmed the suitability of the proposed design, achieving 35 times better frequency stability within variable temperature conditions, whereas the power consumption is maintained below 6mW.

  9. Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries

    Science.gov (United States)

    Graczyk-Zajac, M.; Fasel, C.; Riedel, R.

    2011-08-01

    We report on a new composite material in view of its application as a negative electrode in lithium-ion batteries. A commercial preceramic polysilazane mixed with graphite in 1:1 weight ratio was transformed into a SiCN/graphite composite material through a pyrolytic polymer-to-ceramic conversion at three different temperatures, namely 950 °C, 1100 °C and 1300 °C. By means of Raman spectroscopy we found successive ordering of carbon clusters into nano-crystalline graphitic regions with increasing pyrolysis temperature. The reversible capacity of about 350 mAh g-1 was measured with constant current charging/discharging for the composite prepared at 1300 °C. For comparison pure graphite and pure polysilazane-derived SiCN ceramic were examined as reference materials. During fast charging and discharging the composite material demonstrates enhanced capacity and stability. Charging and discharging in half an hour lead to about 200 and 10 mAh g-1, for the composite annealed at 1300 °C and pure graphite, respectively. A clear dependence between the final material capacity and pyrolysis temperature is found and discussed with respect to possible application in batteries, i.e. practical discharging potential limit. The best results in terms of capacity recovered under 1 V and high rate capability were also obtained for samples synthesized at 1300 °C.

  10. Ion beam induced surface graphitization of CVD diamond for x-ray beam position monitor applications

    International Nuclear Information System (INIS)

    Liu, Chian; Shu, D.; Kuzay, T.M.; Wen, L.; Melendres, C.A.; Argonne National Lab., IL

    1996-01-01

    The Advanced Photon Source at ANL is a third-generation synchrotron facility that generates powerful x-ray beams on its undulator beamlines. It is important to know the position and angle of the x- ray beam during experiments. Due to very high heat flux levels, several patented x-ray beam position monitors (XBPM) exploiting chemical vapor deposition (CVD) diamond have been developed. These XBPMs have a thin layer of low-atomic-mass metallic coating so that photoemission from the x rays generate a minute but measurable current for position determination. Graphitization of the CVD diamond surface creates a very thin, intrinsic and conducting layer that can stand much higher temperatures and minimal x-ray transmission losses compared to the coated metallic layers. In this paper, a laboratory sputter ion source was used to transform selected surfaces of a CVD diamond substrate into graphite. The effect of 1-5 keV argon ion bombardment on CVD diamond surfaces at various target temperatures from 200 to 500 C was studied using Auger electron spectroscopy and in-situ electrical resistivity measurements. Graphitization after the ion bombardment has been confirmed and optimum conditions for graphitization studied. Raman spectroscopy was used to identify the overall diamond structure in the bulk of CVD diamond substrate after the ion bombardments. It was found that target temperature plays an important role in stability and electrical conductivity of the irradiated CVD diamonds

  11. Graphite reactor physics

    International Nuclear Information System (INIS)

    Bacher, P.; Cogne, F.

    1964-01-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm 2 , channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [fr

  12. Energy evaluations, graphite corrosion in Bugey I

    International Nuclear Information System (INIS)

    Brisbois, J.; Fiche, C.

    1967-01-01

    Bugey I presents a problem of radiolytic corrosion of the graphite by the CO 2 under pressure at high temperature. This report aims to evaluate the energy transferred to the gas by a Bugey I core cell, in normal operating conditions. The water, the carbon oxides and the hydrogen formed quantities are deduced as the consumed graphite and methane. Experimental studies are realized in parallel to validate the presented results. (A.L.B.)

  13. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  14. Process for stabilizing dimensions of duplex stainless steels for service at elevated temperatures

    Science.gov (United States)

    Hull, Frederick C.; Tobin, John C.

    1981-01-01

    Duplex stainless steel materials containing austenite plus delta ferrite, are dimensionally stabilized by heating the material to a reaction temperature between about 1050.degree.-1450.degree. F. (566.degree.-788.degree. C.), holding it at this temperature during transformation of delta ferrite to austenite plus sigma phase, and subsequently heating to a reversion temperature between about 1625.degree.-1750.degree. F. (885.degree.-954.degree. C.), whereby the sigma phase transforms back to ferrite, but the austenite remains dispersed in the ferrite phase. Final controlled cooling permits transformation of ferrite to austenite plus sigma and, later, precipitation of carbides.

  15. Effect of the thermal stabilization temperature on the change in the texture of polyacrylonitrile fiber

    Science.gov (United States)

    Fazlitdinova, A. G.; Tyumentsev, V. A.

    2015-11-01

    The effect of temperature of isothermal treatment on the change in sizes L 010 of coherent scattering regions and texture of a polyacrylonitrile fiber during its transition to the structure of a thermally stabilized fiber is analyzed using X-ray structure analysis. An increase in the thermostabilization temperature at a constant stretching load stimulates simultaneously a more active increase in size L 010 and texturing of polyacrylonitrile fibers at the initial stage. Active evolution of the phase transformation at temperatures 275-290°C during further thermostabilization is accompanied by a substantial decrease in the texture of the polymer that has not experienced the phase transformation by this instant.

  16. The Effect of Novolac and Graphite Polycrystal on the Acetone Penetration and Thermal Resistance of Nanocomposites Based on Nitrile Rubber

    Directory of Open Access Journals (Sweden)

    Rasool Mahboudi

    2015-03-01

    Full Text Available Developments of high diffusive environments in coincidence with emerging fluids with strong ability to destroy polymeric systems have resulted in rapid deformation and destruction of polymeric parts when in contact with such aggressive environments. Therefore, nowadays, there is a great need to develop highly resistant materials towards aggressive chemicals and harsh conditions. In this paper the effect of graphite polycrystal powders and novolac type phenolic resin has been experimentally studied towards acetone diffusion and thermal stability of polyacrylonitrile butadiene rubber/novolac/graphite polycrystal nanocomposites. The results obtained from dynamic mechanical thermal analysis (DMTA and swelling in acetone showed that after 32 h samples reached to 94.2% of final swelling state. By using Avrami equation and swelling experimental data, the functionality of Ln(m/m0 to novolac and graphite polycrystal weight fraction and test duration time were evaluated. This theoretical equation evaluated and predicted the amount of Ln(m/m0 with 5.92% error after 32 h. Increases in graphite polycrystal content were followed by decreases in diffusion of acetone and modulus, before glass transition temperature, and increased thermal stability and thermal resistance of the nanocomposites. Increases in novolac content by 35 wt%, decreased glass transition temperature, thermal stability and thermal resistance of the nanocomposites. In nanocomposite, containing 45 wt% of novolac, dynamic mechanical thermal analysis (DMTA data and scanning electron microscope (SEM images showed phase separation of thermoset and elastomer in the nanocomposite blend.

  17. Evaluation of ac conductivity behaviour of graphite filled

    Indian Academy of Sciences (India)

    Composites of epoxy resin having different amounts of graphite particles have been prepared by solution casting method. Temperature dependence of dielectric constant, tan and a.c. conductivity was measured in the frequency range, 1–20 kHz, temperature range, 40–180°C for 0.99, 1.96 and 2.91 wt% graphite filled ...

  18. Quicklime (CaO) Stabilization of fine-grained marine sediments in low temperature areas

    DEFF Research Database (Denmark)

    Skels, Peteris; Ingeman-Nielsen, Thomas; Jørgensen, Anders Stuhr

    2011-01-01

    This study presents laboratory testing on quicklime (CaO) stabilization of fine-grained marine sediments in low temperature areas. The soil was sampled on the Fossil Plain in Kangerlussuaq, Greenland, and analyzed in the laboratory at Technical University of Denmark (DTU). The optimum CaO content...... curing temperatures, comparing stabilization effectiveness between low and normal soil temperature conditions....... in a soil-CaO mixture was determined using a number of laboratory methods, such as pH test, consistency limit analysis, degree of compaction, and short term California Bearing Ratio (CBR) values. The study also numerically demonstrates a long term strength development of the soil-CaO mixture at 1°C and 10°C...

  19. Effect of Static Soaking Under Different Temperatures on the Lime Stabilized Gypseous Soil

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al-Zubaydi

    2013-04-01

    Full Text Available This study concerns with the effect of long-term soaking on the unconfined compressive strength, loss in weight and gypsum dissolution of gypseous soil stabilized with (4% lime, take into account the following variables: initial water content, water temperature, soaking duration. The results reveals that, the unconfined compressive strength was dropped, and the reduction in values was different according to the initial water content and water temperature, so that the reduction of the unconfined compressive strength of samples soaked in water at low temperatures (50 and 250 C was greater than those soaked in water temperatures  at (490 and 600 C. The results obtained shows that the increase in soaking period decreases the percentage amount of gypsum and loss in weight for all water temperatures and soaking durations.

  20. Impact of radiolysis and radiolytic corrosion on the release of {sup 13}C and {sup 37}Cl implanted into nuclear graphite: Consequences for the behaviour of {sup 14}C and {sup 36}Cl in gas cooled graphite moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moncoffre, N., E-mail: nathalie.moncoffre@ipnl.in2p3.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Toulhoat, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); CEA/DEN, Centre de Saclay (France); Bérerd, N.; Pipon, Y. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Université de Lyon, Université Lyon, IUT Lyon-1 département chimie (France); Silbermann, G. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); Blondel, A. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Andra, Châtenay-Malabry (France); Galy, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); and others

    2016-04-15

    Graphite finds widespread use in many areas of nuclear technology based on its excellent moderator and reflector qualities as well as its strength and high temperature stability. Thus, it has been used as moderator or reflector in CO{sub 2} cooled nuclear reactors such as UNGG, MAGNOX, and AGR. However, neutron irradiation of graphite results in the production of {sup 14}C (dose determining radionuclide) and {sup 36}Cl (long lived radionuclide), these radionuclides being a key issue regarding the management of the irradiated waste. Whatever the management option (purification, storage, and geological disposal), a previous assessment of the radioactive inventory and the radionuclide's location and speciation has to be made. During reactor operation, the effects of radiolysis are likely to promote the radionuclide release especially at the gas/graphite interface. Radiolysis of the coolant is mainly initiated through γ irradiation as well as through Compton electrons in the graphite pores. Radiolysis can be simulated in laboratory using γ irradiation or ion irradiation. In this paper, {sup 13}C, {sup 37}Cl and {sup 14}N are implanted into virgin nuclear graphite in order to simulate respectively the presence of {sup 14}C, {sup 36}Cl and nitrogen, a {sup 14}C precursor. Different irradiation experiments were carried out using different irradiation devices on implanted graphite brought into contact with a gas simulating the coolant. The aim was to assess the effects of gas radiolysis and radiolytic corrosion induced by γ or He{sup 2+} irradiation at the gas/graphite interface in order to evaluate their role on the radionuclide release. Our results allow inferring that radiolytic corrosion has clearly promoted the release of {sup 14}C, {sup 36}Cl and {sup 14}N located at the graphite brick/gas interfaces and open pores.

  1. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  2. Stability Study on Steel Structural Columns with Initial Blast Damage under High Temperatures

    Science.gov (United States)

    Baoxin, Qi; Yan, Shi; Li, Peng

    2018-03-01

    Blast may bring light-weight steel columns with initial damages, resulting in lowering its critical fire-resistance temperature whose reduced amplitude is relevant to the form and degree of the damages. Finite element analysis software ANSYS was used in the paper to analyze the issue of the fire-resistance temperature of the column with the blast damages, and the coupling method for heat and structure was applied during the simulation. The emphasis was laid on parametric factors of axial compression ratio, the form and the degree of the initial damages, as well as the confined condition at the ends of the columns. The numerical results showed that the fire-resistance temperature will lower as increasing of the axial compression ratio, the form and the degree of the initial damages and it will be also affected by the restraint conditions at the ends of the columns. The critical stress formula with initial bending damage under elevated temperature was set up under flexural small deformation condition, then the stability coefficient was determined and the method for evaluating the limit temperature of the column was put forward. The theoretical result was also compared with that of the finite element method (FEM). The results both showed that the stability capacity for the damaged columns was dramatically reduced as increasing the temperature and the initial damage level.

  3. Effect of Pouring Time and Storage Temperature on Dimensional Stability of Casts Made from Irreversible Hydrocolloid

    Directory of Open Access Journals (Sweden)

    M. Farzin

    2010-12-01

    Full Text Available Objective: The aim of this study was to evaluate the dimensional stability of casts made from an alginate impression material poured immediately and stored after specific periods.Materials and Methods: The common alginate used in Iran (Super; Iralgin, Golchai Co.,Tehran, Iran was tested. A master model was mounted on a special device and used to obtain the impressions. These impressions were stored at 23°C (SD=1 and 4°C (SD=1 in100% relative humidity, then poured with gypsum immediately and again after 12, 25, 45 and 60 minutes. The casts were measured with a traveling microscope with the precision of 0.5 micrometer.Results: The dimensional stability of the alginate and impressions were both significantly time and temperature dependent. The impressions were dimensionally stable significantly until 12 minutes of storage at room temperature and until 45 minutes of storage at 4°C(SD=1.Conclusion: The dimensional stability of the alginate impressions was influenced by the storage time and environment temperature, but a humid environment and 4°C (SD=1temperature may delay the pouring.

  4. Evaluation of Thermal Stability of RNA Nanoparticles by Temperature Gradient Gel Electrophoresis (TGGE) in Native Condition.

    Science.gov (United States)

    Benkato, Kheiria; O'Brien, Benjamin; Bui, My N; Jasinski, Daniel L; Guo, Peixuan; Khisamutdinov, Emil F

    2017-01-01

    Temperature gradient gel electrophoresis (TGGE) is a powerful tool used to analyze the thermal stabilities of nucleic acids. While TGGE is a decades-old technique, it has recently gained favor in the field of RNA nanotechnology, notably in assessing the thermal stabilities of RNA nanoparticles (NPs). With TGGE, an electrical current and a linear temperature gradient are applied simultaneously to NP-loaded polyacrylamide gel, separating the negatively charged NPs based on their thermal behavior (a more stable RNA complex will remain intact through higher temperature ranges). The linear temperature gradient can be set either perpendicular or parallel to the electrical current, as either will make the NPs undergo a transition from native to denatured conformations. Often, the melting transition is influenced by sequence variations, secondary/tertiary structures, concentrations, and external factors such as the presence of a denaturing agent (e.g., urea), the presence of monovalent or divalent metal ions, and the pH of the solvent. In this chapter, we describe the experimental setup and the analysis of the thermal stability of RNA NPs in native conditions using a modified version of a commercially available TGGE system.

  5. Effect of cinnamaldehyde on oxidative stability of several fats and oils at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Tuğba İnanç Horuz

    2015-12-01

    Full Text Available Natural antioxidants recently have gained popularity since synthetic ones have toxic and carcinogenic effects. In the present study, effect of temperature (120, 150 and 180°C and cinnamaldehyde on oxidative stability of several oils (olive, hazelnut and palm oils and fats (milkfat and butter was examined. In order to compare the results with the synthetic antioxidant, butylated hydroxy toluene (BHT was used at a concentration of 200 ppm. This level is the legal maximum limit allowed. Experiments were conducted by using a PetroOxy device, a rapid small scale oxidation stability test. According to induction time values obtained by PetroOxy device, the stability of oils drastically decreased with increasing temperature. Cinnamaldehyde had no significant effect (p > 0.05 on all fat and oil samples compared to control (no antioxidant added and BHT added samples. BHT significantly increased induction times of all fat and oil samples at lower temperatures. However, it was not effective at 180°C (p < 0.05. It can be concluded that cinnamaldehyde could not be considered as a good alternative to BHT for preservation of fats and oils at high temperatures.

  6. Electrical properties of Egyptian natural graphite

    International Nuclear Information System (INIS)

    El-Shazly, O.; El-Wahidy, E.F.; Elanany, N.; Saad, N.A.

    1992-06-01

    The electrical properties of Egyptian natural graphite flakes, obtained from the graphite schists of Wadi Bent, Eastern Desert, were measured. The flakes were ground and compressed into pellets. The standard four probe dc method was used to measure the temperature dependence of the electric resistivity from room temperature down to 12 K. The transverse and longitudinal magnetoresistance were measured in the low magnetic field range at temperatures 300 K, 77 K and 12 K. The transverse magnetoresistance data was used to estimate the average mobility, assuming a simple two-band model. (author). 20 refs, 4 figs, 1 tab

  7. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)

    2017-04-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  8. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City College of New York, NY (United States)

    2016-05-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  9. Effects of Temperature on the Performance and Stability of Recent COTS Silicon Oscillators

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2010-01-01

    Silicon oscillators have lately emerged to serve as potential replacement for crystal and ceramic resonators to provide timing and clock signals in electronic systems. These semiconductor-based devices, including those that are based on MEMS technology, are reported to be resistant to vibration and shock (an important criteria for systems to be deployed in space), immune to EMI, consume very low current, require few or no external components, and cover a wide range of frequency for analog and digital circuits. In this work, the performance of five recently-developed COTS silicon oscillator chips from different manufacturers was determined within a temperature range that extended beyond the individual specified range of operation. In addition, restart capability at extreme temperatures, i.e. power switched on while the device was soaking at extreme (hot or cold) temperature, and the effects of thermal cycling under a wide temperature range on the operation of these silicon oscillators were also investigated. Performance characterization of each oscillator was obtained in terms of its output frequency, duty cycle, rise and fall times, and supply current at specific test temperatures. The five different oscillators tested operated beyond their specified temperature region, with some displaying excellent stability throughout the whole test temperature range. Others experienced some instability at certain temperature test points as evidenced by fluctuation in the output frequency. Recovery from temperature-induced changes took place when excessive temperatures were removed. It should also be pointed out that all oscillators were able to restart at the extreme test temperatures and to withstand the limited thermal cycling without undergoing any significant changes in their characteristics. In addition, no physical damage was observed in the packaging material of any of these silicon oscillators due to extreme temperature exposure and thermal cycling. It is recommended

  10. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  11. STABILITY CONSTANTS OF NP(V) COMPLEXES WITH FLOURIDE AND SULFATE AT VARIABLE TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Y. Xia; J.I. Friese; D.A. Moore; L. Rao

    2005-07-11

    A solvent extraction method was used to determine the stability constants of Np(V) complexes with fluoride and sulfate in 1.0 M NaClO{sub 4} from 25 C to 60 C. The distribution ratio of Np(V) between the organic and aqueous phases was found to decrease as the concentrations of fluoride and sulfate were increased. Stability constants of the 1:1 Np(V)-fluoride complexes and the 1:1 Np(V)-sulfate and 1:2 Np(V)-sulfate complexes, dominant in the aqueous phase under the experimental conditions, were calculated from the effect of [F{sup -}] and [SO{sub 4}{sup 2-}] on the distribution ratio. The enthalpy and entropy of complexation were calculated from the stability constants at different temperatures by using the Van't Hoff equation.

  12. Bonding glass to metal with plastic for stability over temperature: II

    Science.gov (United States)

    Willis, Chris L.; Petrie, Stephen P.

    2002-09-01

    To enable the invention of new optical instruments subjected to a broad range of operating conditions, there is a need to develop improved technology to hold small mirrors and other optical elements with high dimensional stability and low cost. A previous paper described a screening experiment on small face bonded mirrors subjected to an environment of -41 to +70 degree(s)C with the intent of finding factors that influence the bond joint's contribution to angular stability. This paper describes part of the continuing experiment, specifically addressing BK-7 mirrors bonded to Aluminum mounts with a flexible adhesive. The resulting tilt errors in the mirror assemblies were measured, and showed a definite pattern with respect to bond thickness. Flexible bonds between these two CTE mismatched materials did not fail, and exhibited high stability over temperature at 0.002-inch bond thickness.

  13. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  14. Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer

    Science.gov (United States)

    Johnson, Chris

    2008-01-01

    The paper describes the specific temperature stability and control requirements for the thermal vacuum and thermal balance testing of the Aquarius Instrument at the Goddard Space Flight Center in Greenbelt, Maryland. The testing was conducted in the 10' wide x 15' deep Facility 225 Thermal Vacuum chamber. The temperature control stability requirements were less than .14 C RMS thermal variation over a seven-day period. The thermal test specification also called for the ability to impose a high-resolution sinusoidal variation for all heater zones. The special requirements of the Aquarius radiometer test necessitated the construction of a multi-function test fixture and the modification of two existing heater controller racks.

  15. Stability analysis of the high temperature thermal pebble bed nuclear reactor concept

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1981-02-01

    A study was made of the stability of the high temperature gas-cooled pebble bed core against xenon-driven oscillation. This generic study indicated that a core as large as 3000 MW(t) could be stable. Several aspects present a challenge to analysis including the void space above the pebble bed, the effects of possible control rod configurations, and the temperature feedback contribution. Special methods of analysis were developed in this effort. Of considerable utility was the scheme of including an azimuthal buckling loss term in the neturon balance equations admitting direct solution of the first azimuthal harmonic for a core having azimuthal symmetry. This technique allows the linear stability analysis to be done solving two-dimensional (RZ) problems instead of three-dimensional problems. A scheme for removing the fundamental source contribution was also implemented to allow direct iteration toward the dominant harmonic solution, treating up to three dimensions with diffusion theory

  16. Ultra-high temperature stability Joule-Thomson cooler with capability to accomodate pressure variations

    Science.gov (United States)

    Bard, Steven (Inventor); Wu, Jiunn-Jeng (Inventor); Trimble, Curtis A. (Inventor)

    1992-01-01

    A Joule-Thomson cryogenic refrigeration system capable of achieving high temperature stabilities in the presence of varying temperature, atmospheric pressure, and heat load is provided. The Joule-Thomson cryogenic refrigeration system includes a demand flow Joule-Thomson expansion valve disposed in a cryostat of the refrigeration system. The expansion valve has an adjustable orifice that controls the flow of compressed gas therethrough and induces cooling and partial liquefaction of the gas. A recuperative heat exchanger is disposed in the cryostat and coupled to the expansion valve. A thermostatically self-regulating mechanism is disposed in the cryostat and coupled to the J-T expansion valve. The thermostatically self-regulating mechanism automatically adjusts the cross sectional area of the adjustable valve orifice in response to environmental temperature changes and changes in power dissipated at a cold head. A temperature sensing and adjusting mechanism is coupled to a cold head for adjusting the temperature of the cold head in response to the change in heat flow in the cold head. The temperature sensing and adjusting mechanism comprises a temperature sensitive diode, a wound wire heater, and an electrical feedback control circuit coupling the diode to the heater. An absolute pressure relief valve is interposed between the output of the cryostat and an exhaust port for maintaining a constant exhaust temperature in the refrigerating system, independent of the changes in atmospheric pressure.

  17. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland [Institute of Materials Physics, Graz University of Technology, A-8010 Graz (Austria)

    2016-07-15

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  18. Effects of ion temperature fluctuations on the stability of resistive ballooning modes

    International Nuclear Information System (INIS)

    Singh, R.; Nordman, H.; Jarmen, A.; Weiland, J.

    1996-01-01

    The influence of ion temperature fluctuations on the stability of resistive drift- and ballooning-modes is investigated using a two-fluid model. The Eigenmode equations are derived and solved analytically in a low beta model equilibrium. Parameters relevant to L-mode edge plasmas from the Texas Experimental Tokamak are used. The resistive modes are found to be destabilized by ion temperature fluctuations over a broad range of mode numbers. The scaling of the growth rate with magnetic shear and mode number is elucidated. 13 refs, 4 figs

  19. Thermo chemical stability of cadmium sulfide nanoparticles under intense pulsed light irradiation and high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, H.A., E-mail: hcoloradolopera@ucla.edu [Materials Science and Engineering Department, University of California, Los Angeles, CA 90095 (United States); Universidad de Antioquia, Mechanical Engineering, Medellin (Colombia); Dhage, S.R. [International Advanced Research Center for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005 (India); Hahn, H.T. [Materials Science and Engineering Department, University of California, Los Angeles, CA 90095 (United States); Mechanical and Aerospace Engineering Department, University of California, Los Angeles (United States)

    2011-09-15

    Highlights: > In this paper is about the thermochemical stability of CdS nanoparticles under Intense Pulsed Light (IPL) irradiation. > After few irradiation shots over the nano-particles, CdS pillars appeared without phase transformation. > No oxidation was observed during the treatment process. > CdS nanoparticles are thermally stable until around 400 deg. C and 600 deg. C for air and argon atmospheres respectively. > It has been studied and demonstrated the stability of CdS nanoparticles under intense pulsed light and under high temperature conditions. - Abstract: Thermo chemical stability of CdS nanoparticles under an Intense Pulsed Light from a xenon flash lamp and high temperature X-ray Diffraction (XRD) were investigated. The CdS nanoparticles were obtained with a chemical bath method. The CdSO{sub 4} (0.16 M) solution was added to an NH{sub 3} (7.5 M) solution under constant stirring. Afterwards, a thiourea (0.6 M) solution was added. The bath temperature and pH were maintained at 65 deg. C and 10, respectively and the mixture was stirred constantly until a solid precipitate of yellow CdS was produced. Its microstructure was investigated with Scanning Electron Microscopy, and its electronic properties were determined by UV-visible and Photo luminescence Spectroscopy. The microstructure of the sintered CdS nanoparticles, obtained the high temperature XRD, was investigated with EDAX and X-ray micro Tomography. In addition, high temperature XRD and Themogravimetric Analysis tests were conducted over the samples. The CdS nanoparticles' crystallinity increased with the irradiation exposure and they were thermally stable until 600 deg. C in argon atmosphere. However new phases start to appear after annealing at 400 deg. C for 30 min in air atmosphere. The main contribution of this paper was to investigate the stability of CdS nanoparticles under intense light and high temperature conditions. It was found that the number of irradiation shots conducted with the

  20. Quantum electrodynamics at a finite temperature with an external field destroying the stability of the vacuum

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.

    1987-01-01

    A generating functional for expectation values is found for QED at a finite temperature with an external field which destroys the stability of the vacuum. The equations for connected Green functions and the effective action for the mean field are written out. Their representation is obtained in the form of an integral over the proper time for the Green function taking into account temperature effects in a constant uniform field. By means of this representation the polarization operator for the mean field in an external constant uniform field has been calculated

  1. Quantum electrodynamics at finite temperatures in presence of an external field violating the vacuum stability

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.

    1987-01-01

    A functional generating expectation values is obtained for QED at a finite temperature in presence of an external field violating the vacuum stability. Equations for connected Green's functions and the effective action for the mean field are derived. The Green function is obtained as an integral with respect of the proper time; the representation takes into account temperature effects in a constant homogeneous field. The polarization operator for the mean field in an external constant homogeneous field is calculated by means of the integral representation

  2. Microstructure and elevated temperature stability of 9-12% Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N.; Hawk, Jeffrey A.

    2005-02-01

    Medium Cr steels have been used in fossil fired power plants for many years because of their excellent high temperature stability and mechanical properties. As the desire to increase the efficiency of power plants continues, the operating temperature (>650C) continues to go up. Currently available low and medium Cr containing steels will not withstand the new operating temperature and must be reassessed in terms of their solid-solution and precipitation strengthening schemes. Three medium Cr steels were developed to investigate high temperature alloy strengthening strategies: 0.08C-(9-12)Cr-1.2Ni-0.7Mo-3.0Cu-3.0Co-0.5Ti. The microstructure of the alloy will be described in the as-cast and thermo-mechanically worked states. In addition, the effect on microstructure from long-term high temperature exposure will also be discussed. Finally, the overall stability of these steels will be compared against currently available power plant steels.

  3. Electrical properties and temperature stability of a new kind of lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Wang Yuanyu; Wu Jiagang; Xiao Dingquan; Zhang Bin; Wu Wenjuan; Shi Wei; Zhu Jianguo

    2008-01-01

    0.995[(K 0.50 Na 0.50 ) 0.94 Li 0.06 ]NbO 3 -0.005AETiO 3 (AE=Ca, Sr, Mg, Ba) lead-free piezoelectric ceramics were prepared by normal sintering. The effects of the AETiO 3 and poling temperature on the electrical properties of the ceramics were carefully studied, and the temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the ceramics with Li and CaTiO 3 possess the pure phase, Li and AETiO 3 improves the electrical properties of the pure (K 0.50 Na 0.50 )NbO 3 ceramics, the poling temperature near tetragonal and orthorhombic phase transition will enhance the piezoelectric properties of the ceramics and the KNLN-CT ceramics exhibit good temperature stability of electrical properties for tetragonal and orthorhombic phase transition below room temperature. The KNLN-CT ceramics exhibit relatively good properties: d 33 = 172 pC N -1 , k p = 0.43, tan δ = 0.032, ε r = 771 and T c = 465 deg. C. As a result, the KNLN-CT ceramic is promising candidate material for piezoelectric devices.

  4. Antibiotic stability related to temperature variations in elastomeric pumps used for outpatient parenteral antimicrobial therapy (OPAT).

    Science.gov (United States)

    Voumard, Rachel; Van Neyghem, Niklas; Cochet, Camille; Gardiol, Céline; Decosterd, Laurent; Buclin, Thierry; de Valliere, Serge

    2017-05-01

    Elastomeric pumps can be used for the continuous administration of antimicrobials in the outpatient setting. A potentially limiting factor in their use is the stability of antimicrobials. To investigate under real-life conditions the temperature variations of antibiotic solutions contained in elastomeric pumps, and to examine under such conditions the stability of five antibiotics. Healthy volunteers carried the elastomeric pumps in carry pouches during their daily activities. A thermologger measured the temperatures every 15 min over 24 h. Antibiotic concentrations were measured by HPLC coupled to tandem MS. During daytime, the temperature of solutions in the pumps increased steadily, warming to >30°C. During the night, when the pumps were kept attached to the waist, the temperatures reached up to 33°C. The use of white carry pouches avoided excessive temperature increases. Over seven experiments, cefazolin, cefepime, piperacillin and tazobactam were found to be stable over 24 h. Flucloxacillin showed a mean decrease in concentration of 11% ( P  = 0.001). Real-life situations can cause significant temperature rises in elastomeric pumps, thereby potentially increasing the risk of antibiotic degradation. Patients should be instructed to avoid situations causing excessive temperature increases. Despite these temperature variations, cefazolin, cefepime, piperacillin and tazobactam were found to be stable over 24 h. A moderate degradation was noticed for flucloxacillin, albeit most probably not to an extent that might impair anti-infective efficacy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Stability of Anthocyanins from Rubus glaucus and Solanum betaceum as affected by Temperature and Water Activity

    OpenAIRE

    Clara Marcela Olaya; Maria Paola Castaño; Gloria Astrid Garzon Monroy

    2009-01-01

    The stability of sprayed-dried microencapsulated anthocyanins from Andes berry (Rubus glaucus) and Tamarillo (Solanum betaceum), as affected by storage time, water activity (Aw) and temperature was compared. The fruits were osmotically dehydrated with ethanol and the anthocyanin extract was microencapsulated with maltodextrin DE 20 by spray drying. Half life of the anthocyanins; changes in color, total phenolics, and antioxidant activity of the powders, were analyzed during storage at two dif...

  6. Stability of Anthocyanins from Rubus glaucus and Solanum betaceum as affected by Temperature and Water Activity

    OpenAIRE

    Garzon Monroy Gloria Astrid; Castaño Maria Paola; Olaya Clara Marcela

    2009-01-01

    The stability of sprayed-dried microencapsulated anthocyanins from Andes berry (Rubus glaucus) and Tamarillo (Solanum betaceum), as affected by storage time, water activity (Aw) and temperature was compared. The fruits were osmotically dehydrated with ethanol and the anthocyanin extract was microencapsulated with maltodextrin DE 20 by spray drying. Half life o...

  7. Low temperature differential thermal analysis (DTA) of some matrices stabilizing primary γ-radiolysis products

    International Nuclear Information System (INIS)

    Kroh, J.; Piekarska, J.; Szajdzinska-Pietek, E.; Swiatkowski, W.

    1980-01-01

    DTA studies were carried out for a number of systems currently used in this laboratory as matrices stabilizing primary γ-radiolysis products. Temperatures of the first and second-order phase transitions were determined and compared with the available literature data. Some hydrocarbon and alcohol matrices were examined by DTA after γ-irradiation. The additional heat effects observed were ascribed to the reactions of trapped intermediates. DTA results were compared with those of RTL and ESR. (author)

  8. Surface areas of turbostratic graphitic carbons prepared from a resin using nickel particles, 20 nm, as graphitization catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Oya, A.; Inoue, E.; Otani, S.; Marsh, H.

    1981-11-01

    Nickel particles were used to graphitize catalytically a non-graphitizing carbon to create a turbostratic graphitic material called the T/SUB/s-component. This method was examined by X-ray diffraction. Coals on heat treatment to temperatures >1270 K form T/SUB/s-component carbons. Therefore, considerations of the properties of the T/SUB/s-component carbon may have relevance to considerations of the operational performances of blast furnace coke. (22 refs.)

  9. BWR stability: analysis of cladding temperature for high amplitude oscillations - 146

    International Nuclear Information System (INIS)

    Pohl, P.; Wehle, F.

    2010-01-01

    Power oscillations associated with density waves in boiling water reactors (BWRs) have been studied widely. Industrial research in this area is active since the invention of the first BWR. Stability measurements have been performed in various plants during commissioning phase but especially the magnitude and divergent nature of the oscillations during the LaSalle Unit 2 nuclear power plant event on March 9, 1988, renewed concern about the state of knowledge on BWR instabilities and possible consequences to fuel rod integrity. The objective of this paper is to present a simplified stability tool, applicable for stability analysis in the non-linear regime, which extends to high amplitude oscillations where inlet reverse flow occurs. In case of high amplitude oscillations a cyclical dryout and rewetting process at the fuel rod may take place, which leads in turn to rapid changes of the heat transfer from the fuel rod to the coolant. The application of this stability tool allows for a conservative determination of the fuel rod cladding temperature in case of high amplitude oscillations during the dryout / re-wet phase. Moreover, it reveals in good agreement to experimental findings the stabilizing effect of the reverse bundle inlet flow, which might be obtained for large oscillation amplitudes. (authors)

  10. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  11. Carbon Nanotubes Growth on Graphite Fibers

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal Chemical Vapor Deposition (CVD). On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 C at an ambient pressure. Methane and hydrogen gases with methane contents of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than 800 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650 - 800 C), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations.

  12. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...

  13. Facile Synthesis of Nitrogen Doped Graphene Oxide from Graphite Flakes and Powders: A Comparison of Their Surface Chemistry.

    Science.gov (United States)

    Yokwana, Kholiswa; Ray, Sekhar C; Khenfouch, Mohammad; Kuvarega, Alex T; Mamba, Bhekie B; Mhlanga, Sabelo D; Nxumalo, Edward N

    2018-08-01

    Nitrogen-doped graphene oxide (NGO) nanosheets were prepared via a facile one-pot modified Hummer's approach at low temperatures using graphite powder and flakes as starting materials in the presence of a nitrogen precursor. It was found that the morphology, structure, composition and surface chemistry of the NGO nanosheets depended on the nature of the graphite precursor used. GO nanosheets doped with nitrogen atoms exhibited a unique structure with few thin layers and wrinkled sheets, high porosity and structural defects. NGO sheets made from graphite powder (NGOp) exhibited excellent thermal stability and remarkably high surface area (up to 240.53 m2 ·g-1) compared to NGO sheets made from graphite flakes (NGOf) which degraded at low temperatures and had an average surface area of 24.70 m2 ·g-1. NGOf sheets had a size range of 850 to 2200 nm while NGOp sheets demonstrated obviously small sizes (460-1600 nm) even when exposed to different pH conditions. The NGO nanosheets exhibited negatively charged surfaces in a wide pH range (1 to 12) and were found to be stable above pH 6. In addition, graphite flakes were found to be more suitable for the production of NGO as they produced high N-doping levels (0.65 to 1.29 at.%) compared to graphite powders (0.30 to 0.35 at.%). This study further demonstrates that by adjusting the amount of N source in the host GO, one can tailor its thermal stability, surface morphology, surface chemistry and surface area.

  14. Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite

    Science.gov (United States)

    Kolhatkar, Gitanjali; Boucherif, Abderraouf; Rahim Boucherif, Abderrahim; Dupuy, Arthur; Fréchette, Luc G.; Arès, Richard; Ruediger, Andreas

    2018-04-01

    We demonstrate the thermal stability and thermal insulation of graphene-mesoporous-silicon nanocomposites (GPSNC). By comparing the morphology of GPSNC carbonized at 650 °C as-formed to that after annealing, we show that this nanocomposite remains stable at temperatures as high as 1050 °C due to the presence of a few monolayers of graphene coating on the pore walls. This does not only make this material compatible with most thermal processes but also suggests applications in harsh high temperature environments. The thermal conductivity of GPSNCs carbonized at temperatures in the 500 °C-800 °C range is determined through Raman spectroscopy measurements. They indicate that the thermal conductivity of the composite is lower than that of silicon, with a value of 13 ± 1 W mK-1 at room temperature, and not affected by the thin graphene layer, suggesting a role of the high concentration of carbon related-defects as indicated by the high intensity of the D-band compared to G-band of the Raman spectra. This morphological stability at high temperature combined with a high thermal insulation make GPSNC a promising candidate for a broad range of applications including microelectromechanical systems and thermal effect microsystems such as flow sensors or IR detectors. Finally, at 120 °C, the thermal conductivity remains equal to that at room temperature, attesting to the potential of using our nanocomposite in devices that operate at high temperatures such as microreactors for distributed chemical conversion, solid oxide fuel cells, thermoelectric devices or thermal micromotors.

  15. Studies on Foam Decay Trend and Influence of Temperature Jump on Foam Stability in Sclerotherapy.

    Science.gov (United States)

    Bai, Taoping; Chen, Yu; Jiang, Wentao; Yan, Fei; Fan, Yubo

    2018-02-01

    This study investigated the influence of temperature jump and liquid-gas ratio on foam stability to derive the foam-decay law. The experimental group conditions were as follows: mutation temperatures (10°C, 16°C, 20°C, 23°C, 25°C, and 27°C to >37°C) and liquid-gas ratios (1:1, 1:2, 1:3, and 1:4). The control group conditions were as follows: temperatures (10°C, 16°C, 20°C, 23°C, 25°C and 27°C) and liquid-gas ratios (1:1, 1:2, 1:3, and 1:4). A homemade device manufactured using the Tessari DSS method was used to prepare the foam. The decay process was videotape recorded. In the drainage rate curve, the temperature rose, and the liquid-gas ratio varied from 1:1 to 1:4, causing faster decay. In the entire process, the foam volume decreased with increasing drainage rate. The relationships were almost linear. Comparison of the experimental and control groups shows that the temperature jump results in a drainage time range of 1 to 15 seconds. The half-life ranges from 10 to 30 seconds. The maximum rate is 18.85%. Changes in the preparation temperature yields a drainage time range of 3 to 30 seconds. The half-life varies from 20 to 60 seconds. Decreasing the temperature jump range and liquid-gas ratio gradually enhances the foam stability. The foam decay time and drainage rate exhibit an exponential function distribution.

  16. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  17. Effects of Propylene Carbonate Content in CsPF6-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa; Engelhard, Mark H.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-10

    Cesium salt has been demonstrated as an efficient electrolyte additive in suppressing the lithium (Li) dendrite formation and directing the formation of an ultrathin and stable solid electrolyte interphase (SEI) even in propylene carbonate (PC)-ethylene carbonate (EC)-based electrolytes. Here, we further investigate the effect of PC content in the presence of CsPF6 additive (0.05 M) on the performances of graphite electrode in Li||graphite half cells and in graphite||LiNi0.80Co0.15Al0.05O2 (NCA) full cells. It is found that the performance of graphite electrode is also affected by PC content even though CsPF6 additive is present in the electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode is attributed to the synergistic effects of the Cs+ additive and the PC solvent. The formation of a robust, ultrathin and compact SEI layer containing lithium-enriched species on the graphite electrode, directed by Cs+, effectively suppresses the PC co-intercalation and thus prevents the graphite exfoliation. This SEI layer is only permeable for de-solvated Li+ ions and allows fast Li+ ion transport through it, which therefore largely alleviates the Li dendrite formation on graphite electrode during lithiation even at high current densities. The presence of low-melting-point PC solvent also enables the sustainable operation of the graphite||NCA full cells under a wide spectrum of temperatures. The fundamental findings of this work shed light on the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in a variety of energy storage devices.

  18. Reduced Crystallization Temperature Methodology for Polymer Selection in Amorphous Solid Dispersions: Stability Perspective.

    Science.gov (United States)

    Bhugra, Chandan; Telang, Chitra; Schwabe, Robert; Zhong, Li

    2016-09-06

    API-polymer interactions, used to select the right polymeric matrix with an aim to stabilize an amorphous dispersion, are routinely studied using spectroscopic and/or calorimetric techniques (i.e., melting point depression). An alternate selection tool has been explored to rank order polymers for formation of stable amorphous dispersions as a pragmatic method for polymer selection. Reduced crystallization temperature of API, a parameter introduced by Zhou et al.,1 was utilized in this study for rank ordering interactions in API-polymeric systems. The trends in reduced crystallization temperature monitored over polymer concentration range of up to 20% polymer loading were utilized to calculate "crystallization parameter" or CP for two model systems (nifedipine and BI ABC). The rank order of CP, i.e., a measure of API-polymer interaction, for nifedipine followed the order PVP > PVP-VA > Soluplus > HPMCAS > PV Ac > PAA. This rank ordering was correlated to published results of molecular interactions and physical stability for nifedipine. A different rank ordering was observed for BI ABC: PAA > PVP > HPMCAS > Soluplus > PVPV-VA > PVAc. Interactions for BI ABC were not as differentiated when compared to nifedipine based on CP trends. BI ABC dispersions at drug loadings between 40 and 60% were physically stable for prolonged periods under ICH conditions as well as accelerated stress. We propose that large CP differences among polymers could be predictive of stability outcomes. Acceptable stability at pharmaceutically relevant drug loadings would suggest that the relative influence of downstream processes, such as polymer solubility in various solvents, process suitability and selection, and more importantly supersaturation potential, should be higher compared to stability considerations while developing compounds like BI ABC.

  19. Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures.

    Science.gov (United States)

    Kim, Yonghyan; Krishna, Venkatramana D; Torremorell, Montserrat; Goyal, Sagar M; Cheeran, Maxim C-J

    2018-02-13

    Indirect transmission of porcine epidemic diarrhea virus (PEDV) ensues when susceptible animals contact PEDV-contaminated fomite materials. Although the survival of PEDV under various pHs and temperatures has been studied, virus stability on different fomite surfaces under varying temperature conditions has not been explored. Hence, we evaluated the survival of PEDV on inanimate objects routinely used on swine farms such as styrofoam, rubber, plastic, coveralls, and other equipment. The titer of infectious PEDV at 4 °C decreased by only 1 to 2 log during the first 5 days, and the virus was recoverable for up to 15 days on Styrofoam, aluminum, Tyvek ® coverall, cloth, and plastic. However, viral titers decreased precipitously when stored at room temperature; no virus was detectable after one day on all materials tested. A more sensitive immunoplaque assay was able to detect virus from Styrofoam, metal, and plastic at 20 days post application, representing a 3-log loss of input virus on fomite materials. Recovery of infectious PEDV from Tyvek ® coverall and rubber was above detection limit at 20 days. Our findings indicate that the type of fomite material and temperatures impact PEDV stability, which is important in understanding the nuances of indirect transmission and epidemiology of PEDV.

  20. Stability of Porcine Epidemic Diarrhea Virus on Fomite Materials at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Yonghyan Kim

    2018-02-01

    Full Text Available Indirect transmission of porcine epidemic diarrhea virus (PEDV ensues when susceptible animals contact PEDV-contaminated fomite materials. Although the survival of PEDV under various pHs and temperatures has been studied, virus stability on different fomite surfaces under varying temperature conditions has not been explored. Hence, we evaluated the survival of PEDV on inanimate objects routinely used on swine farms such as styrofoam, rubber, plastic, coveralls, and other equipment. The titer of infectious PEDV at 4 °C decreased by only 1 to 2 log during the first 5 days, and the virus was recoverable for up to 15 days on Styrofoam, aluminum, Tyvek® coverall, cloth, and plastic. However, viral titers decreased precipitously when stored at room temperature; no virus was detectable after one day on all materials tested. A more sensitive immunoplaque assay was able to detect virus from Styrofoam, metal, and plastic at 20 days post application, representing a 3-log loss of input virus on fomite materials. Recovery of infectious PEDV from Tyvek® coverall and rubber was above detection limit at 20 days. Our findings indicate that the type of fomite material and temperatures impact PEDV stability, which is important in understanding the nuances of indirect transmission and epidemiology of PEDV.

  1. Thermocyclic stability of candidate Seebeck coefficient standard reference materials at high temperature

    Science.gov (United States)

    Martin, Joshua; Wong-Ng, Winnie; Caillat, Thierry; Yonenaga, I.; Green, Martin L.

    2014-05-01

    The Seebeck coefficient is the most widely measured property specific to thermoelectric materials. There is currently no consensus on measurement protocols, and researchers employ a variety of techniques to measure the Seebeck coefficient. The implementation of standardized measurement protocols and the use of reliable Seebeck Coefficient Standard Reference Materials (SRMs®) will allow the accurate interlaboratory comparison and validation of materials data, thereby accelerating the development and commercialization of more efficient thermoelectric materials and devices. To enable members of the thermoelectric materials community the means to calibrate Seebeck coefficient measurement equipment, NIST certified SRM® 3451 "Low Temperature Seebeck Coefficient Standard (10 K to 390 K)". Due to different practical requirements in instrumentation, sample contact methodology, and thermal stability, a complementary SRM® is required for the high temperature regime (300 K to 900 K). The principal requirement of a SRM® for the Seebeck coefficient at high temperature is thermocyclic stability. We therefore characterized the thermocyclic behavior of the Seebeck coefficient for a series of candidate materials: constantan, p-type single crystal SiGe, and p-type polycrystalline SiGe, by measuring the temperature dependence of the Seebeck coefficient as a function of 10 sequential thermal cycles, between 300 K and 900 K. We employed multiple regression analysis to interpolate and analyze the thermocyclic variability in the measurement curves.

  2. Graphite matrix materials for nuclear waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  3. Graphite matrix materials for nuclear waste isolation

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept

  4. An investigation on actuation behavior of polyacrylonitrile gel fibers as a function of microstructure and stabilization temperature

    International Nuclear Information System (INIS)

    Mirbaha, Hamideh; Arbab, Shahram; Zeinolebadi, Ahmad; Nourpanah, Parviz

    2013-01-01

    Polyacrylonitrile (PAN) gel fibers show great potential to be used as actuators due to their mechanical response to chemical stimuli. In this work the response of PAN gel fibers to pH variation is studied. Three commercial grade PAN fibers with different chemical composition are investigated. Fibers are stabilized at temperatures varying from 100 to 275 °C. The stabilized fibers are hydrolyzed in an alkaline solution to obtain gel fibers. Gel fibers are stepwise immersed in solutions with pH varying between 0 and 14. Length/diameter variations are measured by optical microscopy. Results suggest that there is an optimum stabilization temperature at which a maximum response to pH change is obtained. This temperature corresponds to the onset of cyclization reactions, and is determined by the chemical composition of starting material. Thus at low stabilization temperatures (T ≤ 200 °C) only a gel-like shell is formed on the surface of fibers. Fibers stabilized above 200 °C show significant length/diameter variations (up to 325%). Increasing the stabilization temperature above the optimum temperature weakens the response of fibers to pH change. The results also show that the actuation behavior of PAN fibers containing itaconic acid starts at lower stabilization temperatures. This is attributed to the effect of acidic groups in lowering the onset of cyclization reactions. (paper)

  5. The use of lightweight aggregate saturated with PCM as a temperature stabilizing material for road surfaces

    International Nuclear Information System (INIS)

    Ryms, Michał; Lewandowski, Witold M.; Klugmann-Radziemska, Ewa; Denda, Hubert; Wcisło, Patrycja

    2015-01-01

    This paper presents the possibility of adding lightweight building aggregates to increase the stability – mechanical as well as thermal – of constructions and road objects. This stability can be achieved through saturating the porous granules of aggregate with a phase-change material (PCM) that allows the accumulation of solar heat. Intense solar radiation, especially during the summer, can cause the asphalt on road surfaces, bridges and parking lots to melt, thus protecting the structure from further overheating. The absence of asphalt layers results in thermal stress and strain conditions causes accelerated wear of road surface. Lightweight aggregate, previously used to reduce the weight of the structures, while maintaining the bearing capacity similar to that offered by conventional concrete structures, thereby gains a new functionality, as a temperature stabilizing material. The paper contains a review of several phase-change materials as well as a study justifying the choice of ceresin, a product of crude oil distillation, as a suitable material for such applications. Information about the aggregate and its possible applications, and a proposed method of saturating the aggregate with ceresin has also been collected and presented. With the help of quantitative research conducted through the use of differential scanning calorimetry, the characteristic of thermodynamic parameters of pure ceresin and expanded clay aggregate (Pollytag) saturated with ceresin was determined. Simulation tests conducted under real conditions on two asphalt surfaces (0.32 × 0.22 × 0.15 m), one of which contained the PCM while the other did not, have shown that even a small addition of ceresin (3% mass relative to the weight of the ground) causes a reduction in surface temperature of about 5 K within the tested temperature range of 318.15–338.15 K. - Highlights: • Road surface overheating on summer days may reach up to 344 K. • Solution against overheating through

  6. Stability of phases at high temperatures in CoRe based alloys being developed for ultra-high temperature applications

    Science.gov (United States)

    Gilles, R.; Strunz, P.; Mukherji, D.; Hofmann, M.; Hoelzel, M.; Roesler, J.

    2012-02-01

    In the development of new high-temperature alloys for gas turbine applications various candidates are under consideration. This contribution deals with a CoRe based alloy strengthened by Cr23C6 type carbide and Cr2Re3 type σ phase precipitations (here designated as CoRe-1 alloy). High-temperature cycling experiments show how the influence of heating, cooling and the hcpfcc phase transformation of the Co-matrix on the stability of these phases. Neutron diffraction experiments with high-temperature vacuum furnace show that Cr23C6 carbides starts to dissolve around 1100°C and above 1250°C are almost completely dissolved. On the other hand σ phase is still present at 1300°C. This contribution describes the evolution of the different phases during the heating and cooling cycles which are repeated two times. Further, the influence of boron addition to CoRe-1 alloy was studied for samples in the first heating/cooling cycle. A newly developed tensile rig was also tested up to 980°C to combine in situ loading and heating for the neutron diffraction measurements.

  7. Stability of whey protein hydrolysate powders: effects of relative humidity and temperature.

    Science.gov (United States)

    Zhou, Peng; Liu, Dasong; Chen, Xiaoxia; Chen, Yingjia; Labuza, Theodore P

    2014-05-01

    Whey protein hydrolysate (WPH) is now considered as an important and special dairy protein ingredient for its nutritional and functional properties. The objectives of the present study were to investigate the effect of environmental relative humidity (RH) and storage temperature on the physicochemical stability of three WPH powders with hydrolysis degrees (DH) of 5.2%, 8.8% and 14.9%, respectively. The water sorption isotherms of the three WPH powders fitted the Guggenheim-Andersson-DeBoer model well. An increase in water content leaded to a decrease in glass transition temperature (Tg), following a linear Tg vs log water content relationship. Moreover, an increase in DH caused the decrease in Tg at the same water content. Changes in microstructure and colour occurred significantly when the WPH powders were stored at high environmental RH or temperature, especially for those with high DH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A comprehensive study of temperature stability of Silicon PhotoMultiplier

    International Nuclear Information System (INIS)

    Ferri, A; Acerbi, F; Gola, A; Paternoster, G; Piemonte, C; Zorzi, N

    2014-01-01

    The temperature stability of the SiPM signal output can be a crucial aspect in many applications. In a typical scenario where the detector is biased at a constant voltage, a temperature fluctuation determines a change in the breakdown voltage and consequently in the applied over-voltage. The latter impacts on all the parameters that determine the output signal such as gain, PDE and correlated noise probability. In this paper we show a detailed analysis of the dependence of these parameters versus the temperature. In particular, we analyze two cases in which the quantity of interest is the integrated charge or the signal amplitude, respectively. The model is applied to a 1 × 1 mm 2 FBK RGB SiPM with 50 × 50 μm 2 cells showing a good agreement with the experimental data

  9. Temperature dependence of hardness in yttria-stabilized zirconia single crystals

    Science.gov (United States)

    Morscher, Gregory N.; Pirouz, Pirouz; Heuer, Arthur H.

    1991-01-01

    The temperature dependence of hardness and microcracking in single-crystal 9.5-mol pct-Y2O3-fully-stabilized cubic-ZrO2 was studied as a function of orientation. Crack lengths increased with increased temperature up to 500 C; above 800 C, no cracks were found, indicating an indentation brittle-to-ductile transition of about 800 C. The temperature dependence of hardness was reduced around 500 C. Etching studies to delineate the plastic zone around and below indents identified the operative slip systems. The role of dislocations and their interactions within the plastic zone on the hardness and indentation fracture behavior of cubic-ZrO2 are discussed.

  10. The effects of temperature on the formation and stability of bipolarons in conjugated polymers

    Science.gov (United States)

    Meng, Yan; Guo, Guang-jie; Wang, Ya-dong; Li, Yin-feng; An, Zhong

    2017-04-01

    Within the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model modified to include thermal effects and electron-electron interactions, the transition from polaron to bipolaron and the formation of bipolaron induced by injecting charges are separately simulated using a nonadiabatic evolution method. For the transition process, it is found that with the temperature effects taken into account, two separate polarons with the same charge and antiparallel spins can recombine into a bipolaron. The results show that with the temperature increasing, the time taken for the recombination of two polarons decreases. The effects of different distances between the polarons are also numerically simulated. For the bipolaron formation, we investigate the evolution of two charges injected into a polymer chain with the thermal effects. We find that the bipolaron is always quickly formed and its dynamical stability is less sensitive to the temperature change. Thermal effects can only affect the degree of the charges localization.

  11. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  12. Oxidizability and explosibility of pure graphite powder

    International Nuclear Information System (INIS)

    L Rahmani; D Roubineau; S Cornet

    2005-01-01

    Full text of publication follows: While graphite is widely considered a heat-resistant material, e.g. able to screen metallic shielding from thermal damage, and graphite powder is used as a fire extinguisher agent where water or carbon dioxide should not, it still can react with air and - being carbon - give forth a significant amount of heat. Whether this makes it a hazard in operations such as dismantling nuclear reactors that contain hundreds of tons of graphite, including a small percentage of powder, is a question that has to be answered, considering that dismantling implies the use of such potential fire initiators as thermal cutters and electrical equipment. For this reason EDF commissioned the Centre National de Prevention et Protection (CNPP) to carry out explosibility tests on unirradiated, nuclear grade (i.e. with about 100 ppm of impurities) graphite powder. CNPP tests were so designed as to simulate realistic conditions that might result from a severe mishap during a dismantling operation, such as the crash of heavy equipment on graphite blocks coupled with the bruise of a high power electrical cable. EDF-CNPP tests complement others, done either in Italy most notably on irradiated graphite dust contaminated with various pollutants, or in the UK where the ability of settled graphite dust to propagate an initial gas explosion into an adjacent volume was assessed. EDF-CNPP tests comprise two steps. Step one was intended to produce a qualitative understanding of how nuclear grade graphite behaves while heated in air. In a first series of experiments graphite samples were heated up to 900 C during two and a half hours and their mass loss measured: it was found that while fine powder is wholly oxidised, coarser powder and chunks retained about two thirds of their initial mass. Oxidation kinetics, as assessed by oven temperature shoot-up, begins at 580 C and is quite low, compared with that of iron powder. In a second series of experiments a graphite piece

  13. Oxidizability and explosibility of pure graphite powder

    International Nuclear Information System (INIS)

    Rahmani, L.; Roubineau, D.; Cornet, S.

    2005-01-01

    Full text of publication follows: While graphite is widely considered a heat-resistant material, e.g. able to screen metallic shielding from thermal damage, and graphite powder is used as a fire extinguisher agent where water or carbon dioxide should not, it still can react with air and - being carbon - give forth a significant amount of heat. Whether this makes it a hazard in operations such as dismantling nuclear reactors that contain hundreds of tons of graphite, including a small percentage of powder, is a question that has to be answered, considering that dismantling implies the use of such potential fire initiators as thermal cutters and electrical equipment. For this reason EDF commissioned the Centre National de Prevention et Protection (CNPP) to carry out explosibility tests on unirradiated, nuclear grade (i.e. with about 100 ppm of impurities) graphite powder. CNPP tests were so designed as to simulate realistic conditions that might result from a severe mishap during a dismantling operation, such as the crash of heavy equipment on graphite blocks coupled with the bruise of a high power electrical cable. EDF-CNPP tests complement others, done either in Italy most notably on irradiated graphite dust contaminated with various pollutants, or in the UK where the ability of settled graphite dust to propagate an initial gas explosion into an adjacent volume was assessed. EDF-CNPP tests comprise two steps. Step one was intended to produce a qualitative understanding of how nuclear grade graphite behaves while heated in air. In a first series of experiments graphite samples were heated up to 900 C during two and a half hours and their mass loss measured: it was found that while fine powder is wholly oxidised, coarser powder and chunks retained about two thirds of their initial mass. Oxidation kinetics, as assessed by oven temperature shoot-up, begins at 580 C and is quite low, compared with that of iron powder. In a second series of experiments a graphite piece

  14. Measurement of the cleavage energy of graphite.

    Science.gov (United States)

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J; Zheng, Quanshui

    2015-08-28

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m(-2) for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m(-2), is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.

  15. Edge-emitting InGaAs/GaAs laser with high temperature stability of wavelength and threshold current

    International Nuclear Information System (INIS)

    Gordeev, N Yu; Novikov, I I; Chunareva, A V; Il'inskaya, N D; Shernyakov, Yu M; Maximov, M V; Kalyuzhnyy, N A; Mintairov, S A; Lantratov, V M; Payusov, A S; Shchukin, V A; Ledentsov, N N

    2010-01-01

    We have investigated an edge-emitting tilted wave laser (TWL) with the active region based on GaInAs/GaAs quantum wells. In the TWL the wavelength stabilization is based on the coupling of the laser active waveguide cavity to a specially introduced thick epitaxial layer and the emission wavelength is defined by the combined cavity mode preferably by a single dominating mode. The TWL wafer has been grown by metal-organic chemical vapour deposition. Laser parameters have been investigated both in pulsed and CW mode in the temperature range of 15–60 °C. In the temperature window of 20–50 °C under CW excitation the lasers have shown high wavelength temperature stability with the temperature shift of 0.05 nm K −1 and threshold current stability with the characteristic temperature of 500 K. The data obtained prove the concept of thermal stability in tilted wave lasers

  16. Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Weickert, M J; Pagratis, M; Curry, S R; Blackmore, R

    1997-01-01

    Accumulation of soluble recombinant hemoglobin (rHb1.1) in Escherichia coli requires proper protein folding, prosthetic group (heme) addition, and subunit assembly. This served as a new model system for the study of the effects of temperature, protein synthesis rates, and protein accumulation rates on protein solubility in E. coli. Fermentation expression of rHb1.1 at 30 degrees C from cultures containing a medium or high globin gene dosage (pBR-based or pUC-based plasmids with rHb1.1 genes under the control of the tac promoter) was compared. A medium gene dosage resulted in rHb1.1 accumulating to approximately 7% of the soluble cell protein, of which 78% was soluble. A high globin gene dosage resulted in a > or = 3-fold increase in total globin to 23 to 24% of the soluble cell protein, but 70% was insoluble. Accumulation of insoluble rHb1.1 began immediately upon induction. The proportion of rHb1.1 from the high globin gene dosage that accumulated as insoluble globin was affected by reducing (i) the inducer concentration and (ii) the temperature. Reducing the inducer concentration reduced globin synthesis up to eightfold but increased the proportion of soluble rHb1.1 to 93%. In contrast, total globin protein synthesis was barely affected by reducing the temperature from 30 to 26 degrees C, while soluble globin accumulation increased > 2-fold to approximately 15% of the soluble cell protein. The contrast between the effects of reducing rates of protein synthesis and accumulation and those of reducing temperature suggests that lower temperature stabilizes one or more folding intermediates. We propose a simplified physical model which integrates protein synthesis, folding, and heme association. This model shows that temperature-dependent apoglobin stability is the most critical factor in soluble rHb1.1 accumulation. PMID:9361418

  17. Analysis of the structural stability of the smectite submitted to high pressures and temperatures

    International Nuclear Information System (INIS)

    Alabarse, Frederico Gil

    2009-10-01

    The thermal stability of bentonite is of particular interest for containment barrier in nuclear waste disposal facilities. However, very little is known about the stability of smectite (principal component of bentonite) under high-pressure and high-temperature conditions (HPHT). The objective of this work was to investigate the stability of the smectite structure under HP-HT conditions. The HP-HT experiments were performed on toroidal chambers (TC) with pressure up 7.7 GPa and temperatures of 1000 deg C. The samples were characterized by X-ray diffraction after the HP-HT processing. Furthermore, one sample from the original material was analyzed using Fourier transformed infra-red (FTIR) in situ measurements on a diamond anvil cell (DAC) in experiments up to 12 GPa. The original sample of bentonite, calcium dioctahedral montmorillonite with small fraction of quartz, was characterized by FTIR, XRD, X-ray fluorescence (XRF), scanning electron microscopy (SEM), surface area, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In the experiment performed using the DAC up to 12 GPa, the FTIR in situ measurements analysis showed that the smectite structure is stable with a reversible deformation in the Si-O bond and that the smectite did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 250 deg C of temperature, during 3.5 h showed, after analysis by XRD and FTIR, that the smectite structure is stable and did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 1000 deg C of temperature, during 3.5 h showed, after analysis by XRD and SEM, the transformation of bentonite to the mineral assemblage: Coesite, Quartz, Kyanite and Pyrope. (author)

  18. Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperature

    Science.gov (United States)

    Purnamayati, L.; Dewi, EN; Kurniasih, R. A.

    2018-02-01

    Phycocyanin is natural blue colorant which easily damages by heat. The inlet temperature of spray dryer is an important parameter representing the feature of the microcapsules.The aim of this study was to investigate the phycocyanin stability of microcapsules made from Spirulina sp with maltodextrin and κ-Carrageenan as the coating material, processed by spray drying method in different inlet temperature. Microcapsules were processed in three various inlet temperaturei.e. 90°C, 110°C, and 130°C, respectively. The results indicated that phycocyanin microcapsule with 90°C of inlet temperature produced the highest moisture content, phycocyanin concentration and encapsulation efficiency of 3,5%, 1,729% and 29,623%, respectively. On the other hand, the highest encapsulation yield was produced by 130°C of theinlet temperature of 29,48% and not significantly different with 110°C. The results of Scanning Electron Microscopy (SEM) showed that phycocyanin microcapsules with 110°C of inlet temperature produced the most rounded shape. To sum up, 110°C was the best inlet temperature to phycocyanin microencapsulation by the spray dryer.

  19. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz.

    1996-04-01

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of 137 Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes

  20. Inhibiting influence of traces of hydrogenated compounds on the combustion rate of artificial graphites

    International Nuclear Information System (INIS)

    Hoynant, Georges

    1959-01-01

    After having outlined that studies related to graphite oxidation by oxygen or by carbon dioxide in different experimental conditions (graphite type, temperature range, pressure range) gave results which revealed to be non reproducible, or not consistent, and that these discrepancies could be attributed to the graphite chemical purity, to the graphite structure or to the purity of the combustion agent, this research thesis notably focused on this last aspect. As no graphite is rigorously pure and perfectly crystallised, a chemically pure but imperfectly crystallised one has been chosen (the Acheson graphite) as well as a well crystallised but unclean graphite (graphite obtained by silicon carbide dissociation). After a presentation of these materials, the author reports the study of the texture of the Acheson graphites. Then, he highlights and studies inhibition phenomena, and discusses and interprets experimental results

  1. Thermophysical properties estimation of paraffin/graphite composite phase change material using an inverse method

    International Nuclear Information System (INIS)

    Lachheb, Mohamed; Karkri, Mustapha; Albouchi, Fethi; Mzali, Foued; Nasrallah, Sassi Ben

    2014-01-01

    Highlights: • Preparation of paraffin/graphite composites by uni-axial compression technique. • Measurement of thermophysical properties of paraffin/graphite using the periodic method. • Measurement of the experimental densities of paraffin/graphite composites. • Prediction of the effective thermal conductivity using analytical models. - Abstract: In this paper, two types of graphite were combined with paraffin in an attempt to improve thermal conductivity of paraffin phase change material (PCM): Synthetic graphite (Timrex SFG75) and graphite waste obtained from damaged Tubular graphite Heat Exchangers. These paraffin/graphite phase change material (PCM) composites are prepared by the cold uniaxial compression technique and the thermophysical properties were estimated using a periodic temperature method and an inverse technique. Results showed that the thermal conductivity and thermal diffusivity are greatly influenced by the graphite addition

  2. Study on practical of eddy current testing of core and core support graphite components in HTTR

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Iyoku, Tatsuo; Ooka, Norikazu; Shindo, Yoshihisa; Kawae, Hidetoshi; Hayashi, Motomitsu; Kambe, Mamoru; Takahashi, Masaaki; Ide, Akira.

    1994-01-01

    Core and core support graphite components in the HTTR (High Temperature Engineering Test Reactor) are mainly made of nuclear-grade IG-110 and PGX graphites. Nondestructive inspection with Eddy Current Testing (ECT) is planned to be applied to these components. The method of ECT has been already established for metallic components, however, cannot be applied directly to the graphite ones, because the characteristics of graphite are quite different in micro-structure from those of metals. Therefore, ECT method and condition were studied for the application of the ECT to the graphite components. This paper describes the study on practical method and conditions of ECT for above mentioned graphite structures. (author)

  3. The role of graphite morphology and matrix structure on low ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thermal cycling resistance; graphite morphology; grey cast iron; austempered ductile iron; compacted/vermicular graphite iron; matrix decompo- sition. 1. Introduction. When a material is subjected to a temperature gradient, it tends to expand differentially. During this process, thermal stresses are induced. The source of ...

  4. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.

    1994-01-01

    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  5. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  6. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    Science.gov (United States)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  7. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  8. Ceramic stabilization of hazardous wastes: a high performance room temperature process

    International Nuclear Information System (INIS)

    Maloney, M.D.

    1996-01-01

    ANL has developed a room-temperature process for converting hazardous materials to a ceramic structure. It is similar to vitrification but is achieved at low cost, similar to conventional cement stabilization. The waste constituents are both chemically stabilized and physically encapsulated, producing very low leaching levels and the potential for delisting. The process, which is pH-insensitive, is ideal for inorganic sludges and liquids, as well as mixed chemical-radioactive wastes, but can also handle significant percentages of salts and even halogenated organics. High waste loadings are possible and densification occurs,so that volumes are only slightly increased and in some cases (eg, incinerator ash) are reduced. The ceramic product has strength and weathering properties far superior to cement products

  9. Effect of thermal stabilization on the low-temperature stress-corrosion cracking of Inconel 600

    International Nuclear Information System (INIS)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    The propensity to low-temperature stress-corrosion cracking (SCC) of thermally stabilized Inconel 600 in sulfur-bearing environments has been investigated using U-bends and slow-strain-rate testing. The results have been compared with those of sensitized Inconel 600. The potential dependence of crack-propagation rate has been established in a single test by using several U-bends held at different potentials, by choosing an appropriate electrical circuitry. The difference in SCC susceptibility of the sensitized and stabilized materials is discussed in terms of the grain-boundary chromium depletion and resulting intergranular attack in boiling ferric sulfate-sulfuric acid tests, and electrochemical potentiokinetic reactivation (EPR) tests. 10 figures

  10. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  11. Stability of the rate, state and temperature dependent friction model and its applications

    Science.gov (United States)

    Singh, Arun K.; Singh, Trilok N.

    2016-04-01

    In this paper, we study stability of the rate, state and temperature friction (RSTF) model. The Segall and Rice approach is used to model heat transfer at the sliding interface with its surroundings. The effect of pore pressure is not considered in the model to avoid the complex expression for critical stiffness. Linear stability analysis of the spring-mass sliding system is carried out with the ageing law under the quasistatic conditions in order to determine the critical stiffness above which sliding behaviour changes from unstable to stable or vice versa. Our numerical simulations establish that critical stiffness of the heated surface may increase or decrease from corresponding to the critical stiffness of the unheated surface depending on the relative values of two contradictory parameters related with velocity effect and temperature effect. Parametric studies are also carried out to understand shear velocity and temperature of the sliding surface dependence of steady friction. The RSTF model is also used to study the gravity induced failure of a creeping rock slope and the results are justified.

  12. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  13. Short communication: Stability and integrity of classical swine fever virus RNA stored at room temperature

    Directory of Open Access Journals (Sweden)

    Damarys Relova

    2017-12-01

    Full Text Available Worldwide cooperation between laboratories working with classical swine fever virus (CSFV requires exchange of virus isolates. For this purpose, shipment of CSFV RNA is a safe alternative to the exchange of infectious material. New techniques using desiccation have been developed to store RNA at room temperature and are reported as effective means of preserving RNA integrity. In this study, we evaluated the stability and integrity of dried CSFV RNA stored at room temperature. First, we determined the stability of CSFV RNA covering CSFV genome regions used typically for the detection of viral RNA in diagnostic samples by reverse transcription-polymerase chain reaction (RT-PCR. To this end, different concentrations of in vitro-transcribed RNAs of the 5’-untranslated region and of the NS5B gene were stored as dried RNA at 4, 20, and 37oC for two months. Aliquots were analyzed every week by CSFV-specific quantitative real-time RT-PCR. Neither the RNA concentration nor the storage temperature did affect CSFV RNA yields at any of the time evaluated until the end of the experiment. Furthermore, it was possible to recover infectious CSFV after transfection of SK-6 cells with dried viral RNA stored at room temperature for one week. The full-length E2 of CSFV was amplified from all the recovered viruses, and nucleotide sequence analysis revealed 100% identity with the corresponding sequence obtained from RNA of the original material. These results show that CSFV RNA stored as dried RNA at room temperature is stable, maintaining its integrity for downstream analyses and applications.

  14. Stabilization of temperature during magnetic hyperthermia by Ce substituted magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, S.K.; Alla, S.K. [Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mandal, R.K. [Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Prasad, N.K., E-mail: nandkp.met@iitbhu.ac.in [Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2017-07-15

    Highlights: • Ce{sub x}Fe{sub 3−x}O{sub 4} (0.01 ≤ x ≤ 0.5) nanoparticles below 15 nm were synthesized by microwave refluxing method. • The saturation magnetization decreased with increased Ce concentration. • The sample displayed stabilization of temperature near 42 °C during magnetic hyperthermia. - Abstract: We report here magnetic hyperthermia using nanoparticles of Ce{sub x}Fe{sub 3−x}O{sub 4} (x = 0.01, 0.05, 0.1, 0.3 and 0.5) during which temperature was found to be stabilizing near 42 °C. This happens despite of their high saturation magnetization (M{sub S}) and Curie temperature (T{sub C}) values. It was observed that by selecting an appropriate magnetic field the temperature can be rose exactly near the therapeutic temperature and thus it will help to selectively kill the cancerous cells leaving normal cells unaffected. These nanoparticles (size around 8–15 nm) were produced by single step microwave refluxing technique. X-ray diffraction (XRD) analysis demonstrates that samples were essentially single phase except for x = 0.5 sample. The X-ray photoelectron spectroscopy (XPS) study for the samples demonstrated that Ce was present in both Ce{sup 3+} and Ce{sup 4+} states. The saturation magnetization value of the samples decreased sharply from 62 Am{sup 2}/kg for x = 0.01 to 19 Am{sup 2}/kg for x = 0.1. This value further decreased with increased Ce doping.

  15. Catalytically Graphitized Electrospun Carbon Nanofibers Adorned with Nickel Nanoparticles for Catalysis Applications

    Directory of Open Access Journals (Sweden)

    A. M. Bazargan

    2016-01-01

    Full Text Available Catalytically graphitized electrospun carbon nanofibers adorned uniformly with fine nickel nanoparticles were successfully prepared. The procedure was based on the electrospinning technique and the use of nickel precursor to create both graphitized nanofibers and nickel nanoparticles under a relatively low-temperature heat treatment. The X-ray diffraction and Raman results clearly proved catalytic graphitization of polymer-based carbon fibers in the presence of nickel catalyst. Taking the results from scanning and transmission electron microscopies and X-ray diffraction into account, it was inferred that during the heat treatment, nickel atoms have diffused through the nanofibers and formed fine nickel nanoparticles on the surface of graphitized nanofibers to make a well stabilized heterogeneous nanostructure. The results from Brunauer–Emmett–Teller technique also showed a high surface area value of 140.2 m2g-1 for the obtained structure. All these attributes along with the fibrous and porous structure enable the product to serve as a potential candidate in the catalysis applications.

  16. Vanadium carbide and graphite promoted Pd electrocatalyst for ethanol oxidation in alkaline media

    Science.gov (United States)

    Yan, Zaoxue; Zhang, Mingmei; Xie, Jimin; Shen, Pei Kang

    2013-12-01

    The vanadium carbide particles with the diameter of 1-3 nm on graphitized resin (GC-V8C7) are synthesized through ionic exchange process. The materials are characterized by XRD, Raman, TEM, SEM and EDS measurements. The results prove that the ion-exchange resin as both carbon source and dispersion media favors the formation of very uniform and small (1-3 nm) V8C7 particles, and protect the V8C7 from conglomeration even at the temperature of 1500 °C. Meanwhile, the vanadium compound is found efficient catalytic effect on graphitization of ion-exchange resin, leading to high graphitization degree of GC-V8C7. Pd particles are loaded on the GC-V8C7 materials as electrocatalyst (Pd/GC-V8C7) for ethanol oxidation in alkaline media. The cyclic voltammograms measurements show that both V8C7 and GC (graphitized ion-exchange resin) give Pd electrocatalyst improved catalytic performance in activity, stability and overpotential, compared with that of Pd supporting on Vulcan XC-72 carbon (Pd/C). The present synthesizing method of GC-V8C7 is simple and effective, which can be readily scaled up for mass production of other nanomaterials.

  17. Air oxidation behavior of carbon and graphite materials for HTGR

    International Nuclear Information System (INIS)

    Kawakami, Haruo

    1986-01-01

    Most components in the core of high temperature gas-cooled reactors are made of carbon and graphite which are efficient neutron moderators, and have high strength at high temperature. The demerit of these materials in HTGR use is that these are readily oxidized by the impurity oxidants in helium coolant in the normal operating condition, and by air in the case of an air ingress accident. In order to examine the candidate materials for the experimental very high temperature gas-cooled reactor in Japan, the air oxidation experiment on some carbon and graphite was carried out. The materials tested were isotropic fine grain graphite (1G-11, 1G-110), anisotropic molded graphite (PGX, TS-1621), and anisotropic molded carbon (ASR-ORB, ASR-IRB, P3JHA-B). The uniform oxidation in the temperature range from 430 to 650 deg C and the non-uniform oxidation in the temperature range from 700 to 1000 deg C were tested. The oxidation of graphite by air was enhanced by the impurities in the graphite such as Co, Ni and V. The reaction rate of PGX graphite was nearly proportional to oxygen partial pressure. Below 650 deg C, the ratio of reaction products CO/CO 2 increased as temperature rose, but above 800 deg C, CO was oxidized to CO 2 . (Kako, I.)

  18. Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves

    International Nuclear Information System (INIS)

    Zhou, Guobing; Yang, Yongping; Wang, Xin; Cheng, Jinming

    2010-01-01

    Thermal characteristics of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal temperature wave on the outer surface were investigated numerically and compared with traditional building materials such as brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation under convective boundary conditions was solved using fully implicit finite-difference scheme. The simulation results showed that the SSPCM wallboard presents distinct characteristics from other ordinary building materials. Phase transition keeping time of inner surface and decrement factor were applied to analyze the effects of PCM thermophysical properties (melting temperature, heat of fusion, phase transition zone and thermal conductivity), inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. It was found that melting temperature is one important factor which influences both the phase transition keeping time and the decrement factor; for a certain outside temperature wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the phase transition keeping time or the decrement factor are scarcely influenced; thermal conductivity of PCM and inner surface convective coefficient have little effect on the phase transition keeping time but significantly influence the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segment of inner surface temperature line. The results aim to be useful for the selection of SSPCMs and their applications in passive solar buildings.

  19. Oxygen-assisted low-pressure chemical vapor deposition for the low-temperature direct growth of graphitic nanofibers on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cell

    Science.gov (United States)

    Chen, Chih-Sheng; Hsieh, Chien-Kuo

    2014-11-01

    In this paper, we report an oxygen-assisted low-pressure chemical vapor deposition (LPCVD) method for the direct growth of graphitic nanofibers (GNFs) on a fluorine-doped tin oxide (FTO) glass substrate at a low temperature (550 °C). By adding moderate concentrations of oxygen in a gas mixture of argon, ethylene, and hydrogen during LPCVD, an extremely dense GNF forest can be obtained on a nickel-coated FTO glass substrate. Though this process, the graphitic nanofibers are grown homogenously on a large area of FTO glass. It was observed that oxygen-assisted LPCVD leads to the direct growth of high-quality GNFs as a counter electrode for dye-sensitized solar cells (DSSCs). In combination with an N719 dye-sensitized TiO2 working electrode and an iodine-based electrolyte, the DSSC with a GNF counter electrode showed a power conversion efficiency of 5.51% under AM 1.5 (100 mW cm-2) illumination, which approached that of the DSSC with a Pt counter electrode (5.44%). The results demonstrated that our directly grown GNFs could be promising candidates for counter electrodes to achieve high performance in DSSCs.

  20. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  1. Low-Temperature Superionic Conductivity in Strained Yttria-Stabilized Zirconia

    DEFF Research Database (Denmark)

    Sillassen, Michael; Eklund, Per; Pryds, Nini

    2010-01-01

    Very high lateral ionic conductivities in epitaxial cubic yttria-stabilized zirconia (YSZ) synthesized on single-crystal SrTiO3 and MgO substrates by reactive direct current magnetron sputtering are reported. Superionic conductivities (i.e., ionic conductivities of the order 1 -1cm-1) are observed...... at 500 °C for 58-nm-thick films on MgO. The results indicate a superposition of two parallel contributions - one due to bulk conductivity and one attributable to conduction along the film-substrate interface. Interfacial effects dominate the conductivity at low temperatures (...

  2. Temperature-stabilized differential amplifier for low-noise DC measurements

    Science.gov (United States)

    Märki, P.; Braem, B. A.; Ihn, T.

    2017-08-01

    A tabletop low-noise differential amplifier with a bandwidth of 100 kHz is presented. Low voltage drifts of the order of 100 nV/day are reached by thermally stabilizing relevant amplifier components. The input leakage current is below 100 fA. Input-stage errors are reduced by extensive circuitry. Voltage noise, current noise, input capacitance, and input current are extraordinarily low. The input resistance is larger than 1 T Ω . The amplifiers were tested with and deployed for electrical transport measurements of quantum devices at cryogenic temperatures.

  3. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  4. The wear properties of nuclear grade graphite IG-11 under different loads

    International Nuclear Information System (INIS)

    Luo Xiaowei; Zhang Lihong; Yu Suyuan

    2004-01-01

    The influence of normal load on wear performance of graphite used in a 10 MW high temperature gas-cooled reactor was investigated. The experiments included the wear between graphite and graphite specimens, and the wear between graphite and stainless steel specimens. The worn surfaces and abrasive particles were analysed with SEM and the wear mechanism was discussed. The sizes of abrasive particles were counted. (author)

  5. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  6. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Mansor, Noramalina; Jorge, A Belen; Corà, Furio; Gibbs, Christopher; Jervis, Rhodri; McMillan, Paul F; Wang, Xiaochen; Brett, Daniel J L

    2014-04-03

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li + Cl - ), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li + Cl - catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA.

  7. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  8. Stability of serum, plasma and urine osmolality in different storage conditions: Relevance of temperature and centrifugation.

    Science.gov (United States)

    Sureda-Vives, Macià; Morell-Garcia, Daniel; Rubio-Alaejos, Ana; Valiña, Laura; Robles, Juan; Bauça, Josep Miquel

    2017-09-01

    Osmolality reflects the concentration of all dissolved particles in a body fluid, and its measurement is routinely performed in clinical laboratories for the differential diagnosis of disorders related with the hydrolytic balance regulation, the renal function and in small-molecule poisonings. The aim of the study was to assess the stability of serum, plasma and urine osmolality through time and under different common storage conditions, including delayed centrifugation. Blood and urine samples were collected, and classified into different groups according to several preanalytical variables: serum or plasma lithium-heparin tubes; spun or unspun; stored at room temperature (RT), at 4°C or frozen at -21°C. Aliquots from each group were assayed over time, for up to 14days. Statistical differences were based on three different international performance criteria. Whole blood stability was higher in the presence of anticoagulant. Serum osmolality was stable for 2days at RT and 8days at 4°C, while plasma was less stable when refrigerated. Urine stability was 5days at RT, 4days at 4°C and >14days when frozen. Osmolality may be of great interest for the management of several conditions, such as in case of a delay in the clinical suspicion, or in case of problems in sample collection or processing. The ability to obtain reliable results for samples kept up to 14days also offers the possibility to retrospectively assess baseline values for patients which may require it. Copyright © 2017. Published by Elsevier Inc.

  9. Network structure and thermal stability study of high temperature seal glass

    Science.gov (United States)

    Lu, K.; Mahapatra, M. K.

    2008-10-01

    High temperature seal glass has stringent requirement on glass thermal stability, which is dictated by glass network structures. In this study, a SrO-La2O3-Al2O3-B2O3-SiO2 based glass system was studied using nuclear magnetic resonance, Raman spectroscopy, and x-ray diffraction for solid oxide cell application purpose. Glass structural unit neighboring environment and local ordering were evaluated. Glass network connectivity as well as silicon and boron glass former coordination were calculated for different B2O3:SiO2 ratios. Thermal stability of the borosilicate glasses was studied after thermal treatment at 850 °C. The study shows that high B2O3 content induces BO4 and SiO4 structural unit ordering, increases glass localized inhomogeneity, decreases glass network connectivity, and causes devitrification. Glass modifiers interact with either silicon- or boron-containing structural units and form different devitrified phases at different B2O3:SiO2 ratios. B2O3-free glass shows the best thermal stability among the studied compositions, remaining stable after thermal treatment for 200 h at 850 °C.

  10. Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures

    Science.gov (United States)

    Rosas-Trigueros, Jorge Luis; Correa-Basurto, José; Guadalupe Benítez-Cardoza, Claudia; Zamorano-Carrillo, Absalom

    2011-01-01

    Bax is a member of the Bcl-2 protein family that participates in mitochondrion-mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c-compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α-helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment. PMID:21936009

  11. Stabilization of temperature during magnetic hyperthermia by Ce substituted magnetite nanoparticles

    Science.gov (United States)

    Shaw, S. K.; Alla, S. K.; Meena, S. S.; Mandal, R. K.; Prasad, N. K.

    2017-07-01

    We report here magnetic hyperthermia using nanoparticles of CexFe3-xO4 (x = 0.01, 0.05, 0.1, 0.3 and 0.5) during which temperature was found to be stabilizing near 42 °C. This happens despite of their high saturation magnetization (MS) and Curie temperature (TC) values. It was observed that by selecting an appropriate magnetic field the temperature can be rose exactly near the therapeutic temperature and thus it will help to selectively kill the cancerous cells leaving normal cells unaffected. These nanoparticles (size around 8-15 nm) were produced by single step microwave refluxing technique. X-ray diffraction (XRD) analysis demonstrates that samples were essentially single phase except for x = 0.5 sample. The X-ray photoelectron spectroscopy (XPS) study for the samples demonstrated that Ce was present in both Ce3+ and Ce4+ states. The saturation magnetization value of the samples decreased sharply from 62 Am2/kg for x = 0.01 to 19 Am2/kg for x = 0.1. This value further decreased with increased Ce doping.

  12. High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction

    Science.gov (United States)

    Tomaka, G.; Grendysa, J.; ŚliŻ, P.; Becker, C. R.; Polit, J.; Wojnarowska, R.; Stadler, A.; Sheregii, E. M.

    2016-05-01

    Experimental results of the magnetotransport measurements (longitudinal magnetoresistance Rx x and the Hall resistance Rx y) are presented over a wide interval of temperatures for several samples of Hg1 -xCdxTe (x ≈0.13 -0.15 ) grown by MBE—thin layers (thickness about 100 nm) strained and not strained and thick ones with thickness about 1 μ m . An amazing temperature stability of the SdH-oscillation period and amplitude is observed in the entire temperature interval of measurements up to 50 K. Moreover, the quantum Hall effect (QHE) behavior of the Hall resistance is registered in the same temperature interval. These peculiarities of the Rx x and Rx y for strained thin layers are interpreted using quantum Hall conductivity (QHC) on topologically protected surface states (TPSS) [C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011), 10.1103/PhysRevLett.106.126803]. In the case of not strained layers it is assumed that the QHC on the TPSS (or on the resonant interface states) contributes also to the conductance of the bulk samples.

  13. Temperature Stability and Bioadhesive Properties of Δ9-Tetrahydrocannabinol Incorporated Hydroxypropylcellulose Polymer Matrix Systems

    Science.gov (United States)

    Repka, Michael A.; Munjal, Manish; ElSohly, Mahmoud A.; Ross, Samir A.

    2010-01-01

    The purpose of this study was to determine and compare the bioadhesive profiles of hydroxypropylcellulose (HPC) polymer matrices as a function of Δ9-tetrahydrocannabinol (THC) content. In addition, the effect of processing temperature on the stability of THC and its extent of degradation to cannabinol (CBN) was investigated. A hot-melt cast molding method was used to prepare HPC polymer matrix systems incorporated with THC at 0, 4, 8, and 16 percent. Bioadhesive measurements including peak adhesive force, area under the curve, and elongation at adhesive failure were recorded utilizing the TA.XT2i Texture Analyzer™. Data obtained from these tests at various contact time intervals suggested that the incorporation of THC led to an increase in the bioadhesive strength of the HPC polymer matrices. To determine the stability of THC and the resulting CBN content in the matrices, three different processing temperatures were utilized (120, 160, and 200°C). Post-production High Performance Liquid Chromotography (HPLC) analysis revealed that the processed systems contained at least 94% of THC and the relative percent formation of CBN was 0.5% at 120°C and 0.4% at 160°C compared to 1.6% at 200°C. These findings indicate that the cannabinoid may be a plausible candidate for incorporation into systems utilizing hot-melt extrusion techniques for the development of an effective mucoadhesive transmucosal matrix system for delivery of THC. PMID:16455601

  14. Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix.

    Science.gov (United States)

    Herbig, Anna-Lena; Renard, Catherine M G C

    2017-04-01

    The study comprises a systematic and quantitative evaluation of potential intrinsic and extrinsic factors that impact vitamin C degradation in a real food matrix. The supernatant of centrifuged apple purée was fortified in vitamin C, and degradation was followed without stirring. Model discrimination indicated better fit for the zero order model than the first order model which was hence chosen for determination of rate constants. pH influenced strongly vitamin C degradation in citrate-phosphate buffer but not in the apple purée serum. To get an idea of the impact of the food matrix, stability in apple purée serum was compared with that in carrot purée. In the latter, stability was slightly higher. Vitamin C degradation rates were not influenced by its initial concentration. The temperature effect was only marked in the temperature range 40-60°C. In the range 60-80°C, filling height of tubes had the greatest impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A systematic study of acoustic emission from nuclear graphites

    International Nuclear Information System (INIS)

    Neighbour, G.B.; McEnaney, B.

    1996-01-01

    Acoustic emission (AE) monitoring has been identified as a possible method to determine internal stresses in nuclear graphites using the Kaiser effect, i.e., on stressing a graphite that has been subject to a prior stress, the onset of AE occurs at the previous peak stress. For three nuclear graphites (PGA, IM1-24 and VNEC), AE was monitored during both monotonic and cyclic loading to failure in tensile, compressive and flexural test modes. For unirradiated graphites, the Kaiser effect was not found in cyclic loading, but a Felicity effect was observed, i.e., the onset of AE occurred below the previously applied peak stress. The Felicity effect was attributed to time-dependent relaxation and recovery processes and was characterized using a new parameter, the Recovery ratio. It was shown that AE can be used to monitor creep strain and creep recovery in graphites at zero load. The AE-time responses from these experiments were fitted to equations similar to those used for creep strain-time at elevated temperatures. The number of AE counts from irradiated graphites were greater than those from unirradiated graphites, subject to similar stresses, due to increases in porosity caused by radiolytic oxidation. A Felicity effect was also observed on cyclic loading of irradiated graphites, but no evidence for a Kaiser effect was found for irradiated graphites loaded monotonically to failure. Thus internal stresses in irradiated graphites could not be measured using AE. This was attributed to relaxation and recovery processes that occur between removing the irradiated graphite from the reactor and AE testing. This work indicated that AE monitoring is not a suitable technique for measuring internal stresses in irradiated graphite. (author). 19 refs, 6 figs, 6 tabs

  16. Carbon-graphite component for an electrochemical cell and method for making the component

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.C. Jr.

    1987-06-02

    A method is described for making a carbon-graphite component suited for use in an electrochemical cell, comprising: forming a precursor sheet structure consisting essentially of a mixture of cellulose fibers, purified graphite particles and a carbonizable, thermosetting resin wherein the cellulose fibers support and position the purified graphite particles; heating the sheet structure to a first temperature range to carbonize the cellulose fibers and thermosetting resin wherein the carbonized resin bonds the carbonized cellulose fibers and graphite particles together; and heating the sheet structure to a second, higher temperature range to graphitize the carbonized cellulose fibers and resin.

  17. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    Science.gov (United States)

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-01

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying materia1 requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  18. [Evaluation of the influence of humidity and temperature on the drug stability by initial average rate experiment].

    Science.gov (United States)

    He, Ning; Sun, Hechun; Dai, Miaomiao

    2014-05-01

    To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.

  19. Copper Substitution and Noise Reduction in Brake Pads: Graphite Type Selection

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2012-11-01

    Full Text Available Graphite is commonly used in brake pads. The use of graphite powder has the main goal of solid state lubrication and friction coefficient stabilization. In this article results on resin bonded brake pads with focus on noise performance and heat dissipation are presented. Experimental tests are based on model friction materials with a known formulation and a reduced number of components for a better identification of the role of the graphite type. Results clearly indicate that both noise performance and thermal conductivity are strongly affected by the type of graphite. Guidelines for the selection of graphite types for optimized friction materials are given.

  20. Stability evaluation of quality parameters for palm oil products at low temperature storage.

    Science.gov (United States)

    Ramli, Nur Aainaa Syahirah; Mohd Noor, Mohd Azmil; Musa, Hajar; Ghazali, Razmah

    2017-12-18

    Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated. In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P  0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature. The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Mesoporous polybutadiene-modified zirconia for high-temperature packed capillary liquid chromatography: column preparation and temperature programming stability.

    Science.gov (United States)

    Andersen, Thomas; Nguyen, Quynh-Nhu T; Trones, Roger; Greibrokk, Tyge

    2003-11-07

    In the present study, three different methods for packing of 3 microm PBD-ZrO2 particles in 0.5 mm i.d. glass-lined stainless steel columns have been examined. The two first methods were based on a traditional downstream high-pressure technique using tetrachloromethane (Method I) or aqueous Triton X-100 (Method II) as slurry solvents, while Method III was an upstream high-pressure flocculating method with stirring, using isopropanol both as the slurry and packing solvent. Method I was found to be superior in terms of efficiency, producing 0.5 mm i.d. x 10 cm columns with almost 90,000 plates m(-1) for toluene (R.S.D. = 8.7%, n = 3), using a slurry concentration of 600 mg ml(-1), ACN-water (50:50 (v/v)) as the packing solvent and a packing pressure of 650 bars. For Method I, the slurry concentration, column i.d., column length and initial packing pressure were found to have a significant effect on column efficiency. Finally, the long-term temperature stability of the prepared columns was investigated. In isothermal mode, using ACN-20 mM phosphate buffer, pH 7 (50:50 (v/v)) as the mobile phase, the columns were found to be stable for at least 3,000 void volumes at 100 degrees C. At this temperature, the solute efficiencies changed about 5-18% and the retention factors changed about 6-8%. In temperature programming mode (not exceeding 100 degrees C), on the other hand, a rapid decrease in both column efficiency and retention factors was observed. However, when the columns were packed as initially described, ramped up and down from 50 to 100 degrees C for 48 h and refilled, fairly stable columns with acceptable efficiencies were obtained. Although not fully regaining their initial efficiency after refilling, the solute efficiencies changed about 19-28% (32-37%) and the retention factors changed about 4-5% (13-17%) after running 3,000 (25,000) void volumes or 500 (3,900) temperature programs.

  2. Research of oxidation properties of graphite used in HTR-10

    International Nuclear Information System (INIS)

    Luo Xiaowei; Jean-Charles, R.

    2006-01-01

    The oxidation of graphite influences the graphite performance. There are many factors to influence the graphite oxidation. In 10 MW High Temperature Gas-cooled Reactor(HTR-10), the graphite IG-11 was used as moderator and structure material. The dependence of oxidation behaviour on temperature for the graphite IG-11, was investigated by thermogravimetric analysis in the temperature range of 400 to 1200 degree C. The oxidant was dry air (water content -6 ) with a flow rate of 20 ml/min. The oxidation time was 4 hours. The oxidation results exhibited three regimes: in the 400-600 degree C range, the activation energy was 158.56 kJ/mol and oxidation was controlled by chemical reaction; in the 600-800 degree C range, the activation energy was 72.01 kJ/mol and oxidation kinetics were controlled by in-pore diffusion; when the temperature was over 800 degree C, the activation energy was very small and oxidation was controlled by the boundary layer. Due to CO production, the oxidation rate increased at high temperatures. The effect of burn-off on activation energy was also investigated. In the 600-800 degree C range, the activation energy decreased with burn-off. Results in low temperature tests were very dispersible because the oxidation behaviour at low temperatures was sensitive to inhomogeneous distribution of impurities and some impurities can catalyse graphite oxidation. (authors)

  3. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  4. Temperature and time stability of whole blood lactate: implications for feasibility of pre-hospital measurement

    Directory of Open Access Journals (Sweden)

    Watkins Timothy R

    2011-05-01

    Full Text Available Abstract Background To determine the time and temperature stability of whole blood lactate using experimental conditions applicable to the out-of-hospital environment. Findings We performed a prospective, clinical laboratory-based study at an academic hospital. Whole blood lactate was obtained by venipuncture from five post-prandial, resting subjects. Blood was stored in lithium heparinized vacutainers in three temperature conditions: 1 room temperature (20°C, 2 wrapped in a portable, instant ice pack (0°C, or 3 wet ice (0°C. Lactate concentrations (mmol/L were measured at 0, 5, 10, 20, and 30 minutes after sampling, and compared using repeated measures analysis of variance. Mean baseline lactate among resting subjects (N = 5 was 1.24 mmol/L (95%CI: 0.49,1.98 mmol/L. After 30 minutes, lactate concentration increased, on average, by 0.08 mmol/L (95%CI: 0.02,0.13 mmol/L, 0.18 mmol/L (95%CI: 0.07,0.28 mmol/L, and 0.36 mmol/L (95%CI: 0.24,0.47 mmol/L when stored in wet ice, ice pack, and room temperature, respectively. The increase in lactate was similar in samples wrapped in portable ice pack or stored in wet ice at all time points (p > 0.05, and met criteria for equivalence at 30 minutes. However, lactate measurements from whole blood stored at room temperature were significantly greater, on average, than wet ice or portable ice pack within five and ten minutes, respectively (p Conclusions Whole blood lactate measurements using samples stored in a portable ice pack are similar to wet ice for up to 30 minutes. These conditions are applicable to the out-of-hospital environment, and should inform future studies of pre-hospital measurement of lactate.

  5. Graphitization of oil palm trunk chip with controlled heating condition

    Science.gov (United States)

    Karim, N. A.; Ghazali, C. M. R.; Ramli, M. M.; Halin, D. S. C.; Nainggolan, I.

    2017-09-01

    The purpose of this study is to synthesize the synthetic graphite from oil palm trunk at lower temperature (various heating temperatures, 500 °C, 800 °C and 1,000 °C) with controlled condition and study the physical properties and characterization of the graphite obtained. After heat treatment process, the samples were characterized by X-Ray Diffraction (XRD) and analyzed using X'Pert Highscore Plus software. The morphological study was carried out by using Field Emission Electro Scanning Microscope (FESEM). Based on the analysis, by heating of the sample at 800 °C, the amorphous carbon and nanocrystalline graphite were observed.

  6. Stabilization of some vegetable oils by sugarcane leaf extract at ambient temperature

    International Nuclear Information System (INIS)

    Nadeem, M.; Azeem, M.W.

    2016-01-01

    The present was aimed to assess the antioxidant of ethanolic sugarcane leaf extract for the stabilisation of sunflower, (SFO), soybean and (SBO) canola oils (CO) at ambient temperature. SFO, SBO and CO were added with 600 ppm sugracane leaf extract, fielled in transparent PET bottles, stored at ambient temperature for 180 days, sampled at 0, 60, 120 and 180 days for the assessment of oxidative stability. Total phenolic content in sugracane leaf extract (SLE) was 724.3 (mg GAE/100g). 2,2, Diphenyl-2 picrylhydrazyl free radical scavenging activity of slewas 76% as compared to 88% butylated hydroxyl toluene. C18:1 in fresh, 6 months stored controls and SLE supplemented SFO were 46.12%, 42.59% and 47.15%, 40.29, 43.13%, respectively. C18:2 and 18.3 in fresh and 180 days stored control and SLE suplemented SBO were 51.19%, 45.61%, 48.97% and 6.19%, 3.37% and 5.67%, respectively. Similar trend was also recorded and canola oil. Induction period of supplemented vegetable oil was higher than the un-supplemented sample. Sensory characteristics of SLE supplemented vegetable oil were not different from the control. Sugarcane leaf extract can be used for the long term preservation of SFO, SBO and CO at ambient temperature. (author)

  7. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    Science.gov (United States)

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  8. Development of a graphite probe calorimeter for absolute clinical dosimetry

    International Nuclear Information System (INIS)

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman; Marchington, David

    2013-01-01

    The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61/652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU/min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU/min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

  9. Thermal Conductivity And Expansion Of Graphite/Copper

    Science.gov (United States)

    Mcdanels, David L.; Ellis, David L.

    1993-01-01

    Report describes fabrication of graphite-fiber/copper-matrix composite plates, measurements of thermal conductivities of plates at temperatures from ambient to 1,073 K, and measurements of thermal expansions of plates from ambient temperature to 1,050 K. Composites promising lightweight, high-thermal-conductivity materials proposed for use in heat exchangers and other heat-transfer components of power systems in spacecraft and hypersonic aircraft. Graphite/copper also of interest as model composite material.

  10. Microstructure and some properties of boron modified graphite USB-15

    Science.gov (United States)

    Chernikov, V. N.; Alimov, V. Kh.; Gorodetsky, A. E.; Sharapov, V. M.; Zakharov, A. P.; Kurolenkin, E. I.

    1992-09-01

    Boronized graphites, in particular USB-15, have some unique properties which make them applicable in thermonuclear confinement experiments. The optimization of USB-15 manufacture technology demands more detailed knowledge of its properties and, first of all, its microstructure. In this connection microstructure of USB-15 was studied in detail by means of X-ray diffraction, microanalysis, analytical TEM, SEM and other methods, both in original state and after annealing at 2300, 2700 and 3100 K. The erosion resistance to low energy bombardment from deuterium plasma was investigated between 350 and 900 K. In the course of 3 keV D +-ion implantation up to a dose ~ 5 × 10 20 D + m -2 deuterium is mainly trapped in vacancy complexes, which were studied by means of TDS and deuterium profiling using SIMS and RGA. The ratio of CD 4 to D 2 molecules emitted from USB-15 during post-implantation thermal desorption is considerably less than that from other types of graphites, indicating that the recombination desorption of deuterium is greatly enhanced by B in solid solution. Summary is given on property evolution of USB-15 (before and after thermal treatment) as a result of irradiation up to a fast neutron fluence ( E > 0.18 MeV) of 2.5 × 10 25 n m -2 in a temperature range 360-1100 K. Thermal annealing of USB-15 in the range 2200-2400 K is recommended for improvement of its thermal strength and radiation stability.

  11. Stability of alloyed and nonalloyed ohmic contacts to n-type GaN at high temperature in air

    Science.gov (United States)

    Zhao, Shirong; Gao, Jianyi; Wang, Shuo; Xie, Hongen; Ponce, Fernando A.; Goodnick, Stephen; Chowdhury, Srabanti

    2017-12-01

    We report on the high-temperature characteristics and stability of both alloyed Ti/Al/Ni/Au ohmic contacts and nonalloyed Al/Au ohmic contacts to n-type GaN at temperatures up to 600 °C in air. The alloyed contacts showed a specific contact resistivity (ρc) of 6.8 × 10‑6 Ω cm2 at room temperature after fabrication. ρc did not change with temperature or show degradation after the application of thermal stress at 600 °C for 4 h in air. The ρc of nonalloyed contacts was reduced by two orders of magnitude and stabilized to 5 × 10‑6 Ω cm2 after the application of high-temperature thermal stress. Transmission electron microscopy, scanning transmission electron microscopy, and electron energy loss spectroscopy were used to analyze the metal–semiconductor interface to understand the formation of the low-resistivity and high-stability ohmic contacts at high temperature. Our study reveals the high stability of both alloyed and nonalloyed ohmic contacts for GaN-based electronic devices operating at high temperatures in air.

  12. Carbide Coatings for Nickel Alloys, Graphite and Carbon/Carbon Composites to be used in Fluoride Salt Valves

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Denis [Johns Hopkins Univ., Baltimore, MD (United States); Zhang, Dajie [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-10-22

    The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiation damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.

  13. Graphitic Mesoporous Carbon Loaded with Iron-Nickel Hydroxide for Superior Oxygen Evolution Reactivity.

    Science.gov (United States)

    Wang, Ling; Huang, Xiaolei; Xue, Junmin

    2016-07-21

    Earth-abundant transition metal oxides and hydroxides have been intensively investigated as promising catalysts for the oxygen evolution reaction (OER). However, the overall OER performance of the transition metal oxides/hydroxides is largely jeopardized by their inherent low electrical conductivity. Mesoporous carbon has been a commonly used as a carrier material for these oxides/hydroxides to promote the electrical conductivity and provide a large specific surface area. However, most of the available mesoporous carbon carriers are amorphous. It has been very challenging to synthesize graphitic mesoporous carbon owing to the extremely high graphitization temperature. In this work, we report a new strategy used to prepare graphitic mesoporous carbon (GMC) by employing Fe metal as the graphitization catalyst. The graphitic carbon was obtained at 1000 °C, at which it retained its mesoporous structure. The conductivity of the obtained GMC was approximately 550 S m(-1) , which was almost ten times higher than that of amorphous carbon. The GMC was further loaded with Fe-Ni hydroxide to fabricate the OER catalyst. The obtained catalyst showed good OER activity with an overpotential of 320 mV at a current density of 10 mA cm(-2) and a low Tafel slope of 57 mV dec(-1) . The synthesized catalyst also possessed excellent stability, with almost no current drop even after 2000 cycles and at a constant voltage for 2 h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires

    Science.gov (United States)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.

  15. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  16. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  17. Temperature, heat content, mixing and stability in Lake Orta: a pluriannual investigation

    Directory of Open Access Journals (Sweden)

    Luigi BARBANTI

    2001-02-01

    Full Text Available This paper describes the overall state of some physical phenomena occurring in Lake Orta, such as thermal stratification and destratification, accumulation and release of heat, vertical winter mixing, and stability of the water mass. The historical series of temperature distribution along the water column in the period 1984-1999, from which the holo-oligomictic character of Lake Orta emerges, is analysed. The monthly evaluation of the heat contents metre by metre from 0 to 143 m depth reveals how the complete winter mixing occurs only when the energy present within the whole column is less than 1,675 MJ m-2; above this value the circulation is only partial, as in the other deep subalpine lakes. A water layer in the deep hypolimnion has been shown to contain a climatic memory, which has generally increased since 1981. Walker’s stability analysis has revealed that when at a depth below 90 metres there is a level where 0.07 J m-2 are exceeded, total mixing cannot take place. In contrast, the Birgean work identifies, during the heating phase, the layers of the lake where energy is stored or lost.

  18. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  19. Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Qumer Iqbal

    2015-03-01

    Full Text Available The maintenance of the quality and storage life of perishable fruits and vegetables is a major challenge for the food industry. In this study, the effects of different temperatures, packaging materials and storage time on the stability of capsaicinoids and antioxidants, such as total carotenoids, ascorbic acid and total phenolic compounds, were studied in three commercially cultivated hot pepper hybrids, namely Sky Red, Maha and Wonder King. For this purpose, dry whole pods were packed in jute bags and low-density polyethylene bags (LDPE, stored for five months under controlled conditions at 20, 25 or 30 ○C and analyzed on Day 0 and at 50-day intervals until Day 150. The three hot pepper hybrids differed significantly with respect to their capsaicinoids and antioxidant concentrations, but the results indicated that with the increase in storage temperature and time, a gradual and steady decrease in these levels was equally observed for all hybrids. Overall, mean concentrations after five months were significantly reduced by 22.6% for ascorbic acid, 19.0% for phenolic compounds, 17% for carotenoids and 12.7% for capsaicinoids. The trends of capsaicinoids and antioxidants evolution were decreasing gradually during storage until Day 150, this effect being more pronounced at higher temperature. Furthermore, the disappearance rates of capsaicinoids and antioxidants were higher in peppers packed in jute bags than in those wrapped with LDPE. In conclusion, despite the sensitivity of capsaicinoids and antioxidants to oxygen, light and moisture, the packaging in natural jute or synthetic LDPE plastic bags, as well as the storage at ambient temperature preserved between 77.4% and 87.3% of the initial amounts of these health- and nutrition-promoting compounds during five months’ storage.

  20. Variation of the properties of siliconized graphite during neutron irradiation

    International Nuclear Information System (INIS)

    Virgil'ev, Y.S.; Chugunova, T.K.; Pikulik, R.G.

    1986-01-01

    The authors evaluate the radiation-induced property changes in siliconized graphite of the industrial grades SG-P and SG-M. The authors simultaneously tested the reference (control) specimens of graphite that are used as the base for obtaining the SG-M siliconized graphite by impregnating with silicon. The suggested scheme (model) atributes the dimensional changes of the siliconized graphite specimens to the effect of the quantitative ratio of the carbide phase and carbon under different conditions of irradiation. If silicon is insufficient for the formation of a dense skeleton, graphite plays a devisive role, and it may be assumed that at an irradiation temperature greater than 600 K, the material shrinks. The presence of isolated carbide inclusions also affects the physicomechanical properties (including the anitfriction properties)

  1. Surface phenomena of high energy Li(Ni1/3Co1/3Mn1/3)O2/graphite cells at high temperature and high cutoff voltages

    Science.gov (United States)

    Liu, Ting; Garsuch, Arnd; Chesneau, Frederick; Lucht, Brett L.

    2014-12-01

    Layered Li(Ni1/3Co1/3Mn1/3)O2 (NCM) materials have been investigated at high working potential and elevated temperature to correlate electrochemical performance with changes to the electrode interface. Graphite/NCM cells were cycled to either 4.2 or 4.5 V vs Li/Li+ at room temperature (25 °C) followed by moderately elevated temperature (55 °C). Cells cycled to 4.2 and 4.5 V have similar capacity retention, but the cells cycled to 4.5 V have poorer first cycle efficiency, efficiency upon cycling at 55 °C, and greater increases in cell resistance. Surface analyses indicate thicker surface films on the cathode after cycling to 4.5 V, compared to cycling at a lower voltage of 4.2 V. The thicker surface film on the cathode is the result of electrolyte oxidation to generate poly(ethylene carbonate) and lithium alkyl carbonates. Electrochemical impedance spectroscopy of three-electrode cells reveals that the cathode dominates the cell impedance and the cathode impedance is much greater for cells cycled to 4.5 V than cells cycled to 4.2 V.

  2. Sample distillation/graphitization system for carbon pool analysis by accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Pohlman, J.W.; Knies, D.L.; Grabowski, K.S.; DeTurck, T.M.; Treacy, D.J.; Coffin, R.B.

    2000-01-01

    A facility at the Naval Research Laboratory (NRL), Washington, DC, has been developed to extract, trap, cryogenically distill and graphitize carbon from a suite of organic and inorganic carbon pools for analysis by accelerator mass spectrometry (AMS). The system was developed to investigate carbon pools associated with the formation and stability of methane hydrates. However, since the carbon compounds found in hydrate fields are ubiquitous in aquatic ecosystems, this apparatus is applicable to a number of oceanographic and environmental sample types. Targeted pools are dissolved methane, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), solid organic matrices (e.g., seston, tissue and sediments), biomarkers and short chained (C 1 -C 5 ) hydrocarbons from methane hydrates. In most instances, the extraction, distillation and graphitization events are continuous within the system, thus, minimizing the possibility of fractionation or contamination during sample processing. A variety of methods are employed to extract carbon compounds and convert them to CO 2 for graphitization. Dissolved methane and DIC from the same sample are sparged and cryogenically separated before the methane is oxidized in a high temperature oxygen stream. DOC is oxidized to CO 2 by 1200 W ultraviolet photo-oxidation lamp, and solids oxidized in sealed, evacuated tubes. Hydrocarbons liberated from the disassociation of gas hydrates are cryogenically separated with a cryogenic temperature control unit, and biomarkers separated and concentrated by preparative capillary gas chromatography (PCGC). With this system, up to 20 samples, standards or blanks can be processed per day

  3. High heat flux experiment on isotropic graphite using pulsed laser beam

    International Nuclear Information System (INIS)

    Kizaki, Hiroshi; Tokunaga, Kazutoshi; Fukuda, Shigehisa; Yoshida, Naoaki; Muroga, Takeo.

    1989-01-01

    In order to examine the plasma-withstanding behavior of isotropic graphite which is the leading favorite material for the first wall of nuclear fusion reactors, the pulsed thermal loading experiment was carried out by using a laser. As the result of analyzing the gas which was emitted during the pulsed thermal loading, together with the formation and release of various hydrocarbon gases, also the formation of carbon clusters due to the sublimation of carbon was observed. The vacuum characteristics and the dependence on thermal loading condition and surface treatment condition of these released gases were determined, and the problems and the way of improvement in its application to nuclear fusion reactors were elucidated. Since the isotropic graphite is of low atomic number, the radiation loss in plasma is small, and the improvement of the plasma parameters can be expected. Besides, the heat resistance and high temperature stability in vacuum are good, and the induced radioactivity is low. On the other hand, the quantity of gas occlusion is much, various hydrocarbon gases are formed at high temperature, and the wear due to sublimation arises by very high thermal loading. The experimental method, the observation of graphite surface by SEM, and the effect of carbon coating due to thermal decomposition are reported. (K.I.)

  4. THERMAL INSULATION PROPERTIES RESEARCH OF THE COMPOSITE MATERIAL WATER GLASS–GRAPHITE MICROPARTICLES

    Directory of Open Access Journals (Sweden)

    V. A. Gostev

    2014-05-01

    Full Text Available Research results for the composite material (CM water glass–graphite microparticles with high thermal stability and thermal insulation properties are given. A composition consisting of graphite (42 % by weight, water glass Na2O(SiO2n (50% by weight and the hardener - sodium silicofluoric Na2SiF6 (8% by weight. Technology of such composition receipt is suggested. Experimental samples of the CM with filler particles (graphite and a few microns in size were obtained. This is confirmed by a study of samples by X-ray diffraction and electron microscopy. The qualitative and quantitative phase analysis of the CM structure is done. Load limit values leading to the destruction of CM are identified. The character of the rupture surface is detected. Numerical values of specific heat and thermal conductivity are defined. Dependence of the specific heat capacity and thermal conductivity on temperature at monotonic heating is obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. CM with such characteristics can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  5. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Smiley, A. J.

    1987-01-01

    In this paper the mode I fracture behavior of graphite/epoxy and graphite/PEEK composites is examined over four decades of crosshead rates (0.25-250 mm/min). Straight-sided double-cantilever-beam specimens consisting of unidirectional laminates were tested at room temperature. For graphite/epoxy the load-deflection response was linear to fracture, and stable slow crack growth initiating at the highest load level was observed for all rates tested. In contrast, mode I crack growth in the graphite/PEEK material was often unstable and showed stick-slip behavior. Subcritical crack growth occurring prior to the onset of fracture was observed at intermediate displacement rates. A mechanism for the fracture behavior of the graphite/PEEK material (based on viscoelastic, plastic, and microcrack coalescence in the process zone) is proposed and related to the observed rate-dependent phenomena.

  6. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  7. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  8. Stability of Anthocyanins from Rubus glaucus and Solanum betaceum as affected by Temperature and Water Activity

    Directory of Open Access Journals (Sweden)

    Clara Marcela Olaya

    2009-09-01

    Full Text Available The stability of sprayed-dried microencapsulated anthocyanins from Andes berry (Rubus glaucus and Tamarillo (Solanum betaceum, as affected by storage time, water activity (Aw and temperature was compared. The fruits were osmotically dehydrated with ethanol and the anthocyanin extract was microencapsulated with maltodextrin DE 20 by spray drying. Half life of the anthocyanins; changes in color, total phenolics, and antioxidant activity of the powders, were analyzed during storage at two different temperatures (25 °C and 40 °C and two Aw levels (0.20 and 0.35. A decrease in monomeric anthocyanin was observed in both samples. The half life of the Andes berry pigments ranged between 11 and 32 days while the half life of the tamarillo pigments ranged between 9 and 21 days. A darkening effect occurred in both samples as a result of storage time.  The antioxidant activity decreased while the phenolic content increased with time. Antioxidant activity of Andes berry samples was highly correlated with anthocyanin content and total phenolic content while the antioxidant activity of tamarillo samples was highly correlated with total phenolic content. These results would be useful in developing applications for spray-dried anthocyanin as powdered food-grade colorants.

  9. Influence of Ti in the β-Zr(Fe) phase stability at ambient temperature

    International Nuclear Information System (INIS)

    Coelho, J.S.

    1980-12-01

    Investigations of the Fe-Ti-Zr alloy system with concentrations ranging from 1 at.% Ti to 20 at.% Ti and with a fixed concentration of 4 at.% Fe were performed using X-Ray diffraction, Mossbauer Spectroscopy and Optical and Electronic Metallographies. The alloys were melted in arc furnace in argon atmosphere and after being homogenized, they were quenched from the beta field into cold water in order to retain the high temperature β-Zr(Fe)-Ti phase. The obtained results show that the beta phase was partially retained until the concentration of 7 at.% Ti and was completely retained at the concentration equal to or higher than 8 at.% Ti. It is assumed in Moessbauer Spectroscopy a doublet for the beta phase and a singlet for the supersatured α'-Zr(Fe)-Ti phase resulting from the martensitic transformation. The relative amount of each phase detected by Moessbauer Spectroscopy was measured by the relative area of the each spectral line. The stability of the beta phase at room temperature was discussed in terms of short-range ordering caused by the Fe-Ti bonds. Some related properties were discussed through the changing of the lattice parameter, isomer shift and quadrupole splitting. (Author) [pt

  10. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures

    Science.gov (United States)

    Arafa, Khalid A. O.

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN) registry with study ID (ISRCTN94238244). PMID:27143970

  11. Electrochemical removal of segregated silicon dioxide impurities from yttria stabilized zirconia surfaces at elevated temperatures

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2011-01-01

    Here we report on the electrochemical removal of segregated silicon dioxide impurities from Yttria Stabilized Zirconia (YSZ) surfaces at elevated temperatures studied under Ultra High Vacuum (UHV) conditions. YSZ single crystals were heated in vacuum by an applied 18kHz a.c. voltage using the ion....... This was demonstrated by silicon enrichment of a gold foil placed behind the YSZ crystal surface while annealed. The results suggest a fast way to clean YSZ for trace silicon dioxide impurities found in the bulk of the cleanest crystals commercially available....... conductivity of YSZ. The crystals were annealed in vacuum and atmospheres of water or oxygen from 10−5 mbar to 100mbar in the temperature range of 1100°C to 1275°C. The surface was after annealing analyzed by X-ray Photoelectron Spectroscopy (XPS) without exposing the crystal to atmosphere between annealing...... and XPS analysis. Silicon enrichment of the surface was only observed at oxygen and water vapor partial pressures above 25mbar and 10mbar, respectively. No silicon was observed on crystals annealed in vacuum and at oxygen and water vapor partial pressures below 10mbar. The YSZ seems to get partially...

  12. Investigation on stability and moisture absorption of superhydrophobic wood under alternating humidity and temperature conditions

    Science.gov (United States)

    Qing, Yan; Liu, Ming; Wu, Yiqiang; Jia, Shanshan; Wang, Shuang; Li, Xingong

    The application of superhydrophobic wood is majorly limited by its durability when subjected to natural conditions. Herein, the stability of two representative superhydrophobic woods (i.e., Poplar (Populus tomentosa) and Chinese fir (Cunninghamia lanceolata)), were prepared via a one-step hydrothermal process using tetrabutyltitanate (Ti(OC4H9)4, TBOT) and vinyltriethoxysilane (CH2CHSi(OC2H5)3, VTES) as a co-precursor and sequentially tested under different humidity and temperature conditions. The variables including morphology, water contact angle (WCA), color parameter, chemical components of the surface, and moisture absorption property were characterized using a scanning electron microscope (SEM), WCA measurement, a colorimeter, a Fourier transform infrared (FTIR) spectroscopy, and a moisture absorption test, respectively. It was found that initial static WCAs of superhydrophobic wood were larger than 150°. Micron-sized cracks were formed on the coatings after the alternating humidity and temperature aging cycles. This lowered the water repellency, but the WCA was still greater than 140°. There was nearly no chemical change of wood after the aging test; the color change between the same species of untreated and superhydrophobic wood was very small, only with a difference of 0.42 and 4.05 in overall color change ΔE∗ values for Chinese fir and poplar, respectively. The superhydrophobic coatings had a trivial influence on wood moisture absorption property, which only lowered 3% in poplar and 2% in Chinese fir, respectively.

  13. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures

    Directory of Open Access Journals (Sweden)

    Khalid A. O. Arafa

    2016-01-01

    Full Text Available Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN registry with study ID (ISRCTN94238244.

  14. BENDING VIBRATION AND STABILITY OF A MULTIPLE-NANOBEAM SYSTEM INFLUENCED BY TEMPERATURE CHANGE

    Directory of Open Access Journals (Sweden)

    Danilo Karličić

    2016-04-01

    Full Text Available In this study, we analyzed the bending vibration and stability of a multiple-nanobeam system (MNBS coupled in elastic medium and influenced by temperature change and compressive axial load. The MNBS is modeled as the system consisting of a set of m identical and simply supported nanobeams mutually connected by Winkler’s type elastic layers. According to the Euler - Bernoulli beam and nonlocal thermo-elasticity theory, the system of m coupled partial differential equations is derived and solved by means of the method of separation of variables as well as the trigonometric one. Analytical solutions for natural frequencies and critical buckling loads of elastic MNBS are obtained. The effects of nonlocal parameter, temperature change and the number of nanobeams on the natural frequencies and the buckling loads are investigated through numerical examples. Thus, this work can represent a starting point to examine dynamical behavior and design of complex nanobeam structures, nanocomposites and nanodevices under the influence of various physical fields.

  15. Ultrafast Multiphoton Thermionic Photoemission from Graphite

    Directory of Open Access Journals (Sweden)

    Shijing Tan

    2017-01-01

    Full Text Available Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.

  16. Protein Stability during Hot Melt Extrusion: The Effect of Extrusion Temperature, Hydrophilicity of Polymers and Sugar Glass Pre-stabilization

    NARCIS (Netherlands)

    Teekamp, Naomi; Olinga, Peter; Frijlink, Henderik W.; Hinrichs, Wouter

    2015-01-01

    Purpose Biodegradable polymers have been widely investigated for controlled release formulations for protein delivery. However, the processing stability of proteins remains a major challenge. The aim of this research is to assess the influence of the hot melt extrusion process on the activity of a

  17. Protein Stability during Hot Melt Extrusion : The Effect of Extrusion Temperature, Hydrophilicity of Polymers and Sugar Glass Pre-stabilization

    NARCIS (Netherlands)

    Teekamp, Naomi; Olinga, Peter; Hinrichs, Wouter; Frijlink, Henderik W.

    2015-01-01

    Purpose Biodegradable polymers have been widely investigated for controlled release formulations for protein delivery. However, the processing stability of proteins remains a major challenge. The aim of this research is to assess the influence of the hot melt extrusion process on the activity of a

  18. A 3-D inelastic analysis of HTR graphite structures and a comparison with A 2-D approach

    International Nuclear Information System (INIS)

    Willaschek, J.

    1979-01-01

    In High Temperature Reactor Cores (HTR) a large number of elements are constructed of nuclear graphite. The dimensions of the graphite components are limited by stresses and strains resulting from thermal loads, irradiation induced dimensional changes and stress-dependent irradiation creep. Therefore it is necessary to examine the feasibility of design concepts with regard to the structural integrity of the material. This paper presents an analysis of a radial reflector concept for use in a 3000 MWth HTR for process heat production. This concept of a pebble bed reactor (OTTO cycle) requires reflector dimensions and shapes which have previously not been used and which may exceed acceptable stress limits. Graphite reflector elements in a HTR are subject to a high fluence of fast neutrons. The fluence varies spatially within an element. Irradiation-induced strains occur which in turn vary non-linearly with the fluence. At low fluences the graphite shrinks. With increasing fluence shrinkage is saturated and after a 'turn-around' point the graphite begins to swell. The net effect of fluence gradient and irradiation-induced strain is a 'necking' of the element which moves radially outwards with time. In this paper a three-dimensional inelastic analysis of a graphite block with the above deformation history is described. The influence of irradiation on dimensional stability and other material properties was taken into account. Numerical results were obtained with the finite-element computer code ADINA, modified at INTERATOM for the task in hand. The radial reflector block was modelled using 21-node three-dimensional continuum elements of elastic-creep material. The element stiffness matrices were calculated using the standard 2x2x2 Gauss integration; material nonlinearities with quadratic displacement functions and linearised initial strains were employed. (orig.)

  19. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  20. A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore

    OpenAIRE

    Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong

    2017-01-01

    The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electroche...

  1. New method for calculations of nanostructure kinetic stability at high temperature

    Science.gov (United States)

    Fedorov, A. S.; Kuzubov, A. A.; Visotin, M. A.; Tomilin, F. N.

    2017-10-01

    A new universal method is developed for determination of nanostructure kinetic stability (KS) at high temperatures, when nanostructures can be destroyed by chemical bonds breaking due to atom thermal vibrations. The method is based on calculation of probability for any bond in the structure to stretch more than a limit value Lmax, when the bond breaks. Assuming the number of vibrations is very large and all of them are independent, using the central limit theorem, an expression for the probability of a given bond elongation up to Lmax is derived in order to determine the KS. It is shown that this expression leads to the effective Arrhenius formula, but unlike the standard transition state theory it allows one to find the contributions of different vibrations to a chemical bond cleavage. To determine the KS, only calculation of frequencies and eigenvectors of vibrational modes in the groundstate of the nanostructure is needed, while the transition states need not be found. The suggested method was tested on calculating KS of bonds in some alkanes, octene isomers and narrow graphene nanoribbons of different types and widths at the temperature T=1200 K. The probability of breaking of the C-C bond in the center of these hydrocarbons is found to be significantly higher than at the ends of the molecules. It is also shown that the KS of the octene isomers decreases when the double C˭C bond is moved to the end of the molecule, which agrees well with the experimental data. The KS of the narrowest graphene nanoribbons of different types varies by 1-2 orders of magnitude depending on the width and structure, while all of them are by several orders of magnitude less stable at high temperature than the hydrocarbons and benzene.

  2. Base metal catalyzed graphitization of cellulose : A combined Raman spectroscopy, temperature-dependent X-ray diffraction and high-resolution transmission electron microscopy study

    NARCIS (Netherlands)

    Hoekstra, Jacco; Beale, Andrew M.; Soulimani, Fouad; Versluijs-Helder, Marjan; Geus, John W.; Jenneskens, Leonardus W.

    2015-01-01

    Microcrystalline cellulose (MCC) spheres homogeneously loaded with the nitrate salts of copper, nickel, cobalt, or iron are excellent model systems to establish the temperature at which highly dispersed base metal nanoparticles are formed as well as to establish the temperature at which catalytic

  3. Structural stability of the smectite-doped lanthanum under high pressures and high temperatures

    International Nuclear Information System (INIS)

    Stefani, Vicente Fiorini

    2012-01-01

    Smectites are phyllosilicates that have a tetrahedron: octahedron structure ratio of 2:1, with high cation exchange capacity (CEC) in the interlayers. For these and other features, smectites have been used in many parts of the world as secondary barriers with the goal of containing a possible leak of radioactive elements in final disposal facilities for radioactive waste through cation exchange. Our aim in this work is to reach the cation exchange in calcium montmorillonite (smectite dioctahedral) by lanthanum to simulate trivalent radionuclides and to study the stability of this structure under high pressure and high temperature. To achieve high pressure it was used two different technique: DAC (Diamond Anvil Cell), achieving pressures up to 12GPa at room temperature and hydraulic press with a toroidal chamber profile to achieve pressures up to 7,7GPa and temperatures up to 900 degree C. The heating is achieved simultaneously by an electric system coupled in the hydraulic press. The outcomes show that the smectite structure doped with lanthanum remains stable under 12GPa at room temperature and 2.5GPa at 200 degree C. However, above 300 degree C at 2.5GPa the structure becomes a new phase of muscovite-like, rich of La, where it loses its interlayer water and turns out to be irreversible. Furthermore, it is important to point out that the higher temperature the better ordered is the structure and it is still stable under 7.7GPa and 900 degree C. Moreover, after all experiments the structure continues being dioctahedral. The new phase of muscovite-like, rich of La, in contact with a calcium solution remains partially unchanged, whereas the other part returns to the original structure (montmorillonite-Ca). The following analyses were performed: X-ray diffraction (XRD) for evaluating the spatial structure; Fourier transform infrared spectroscopy (FTIR) for getting information about the vibrational modes; scanning electron microscopy with dispersive Xray spectroscopy

  4. Graphite technology development plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  5. (Irradiation creep of graphite)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  6. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  7. Thermal stability and high temperature polymorphism of topochemically-prepared Dion–Jacobson triple-layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Guertin, Stephen L.; Josepha, Elisha A.; Montasserasadi, Dariush; Wiley, John B., E-mail: jwiley@uno.edu

    2015-10-25

    The thermal stability of six Dion–Jacobson-related triple layered perovskites, ACa{sub 2}Nb{sub 3}O{sub 10} (A = H, NH{sub 4}, Li, Na, K, CuCl), was explored to 1000 °C. Each compound was produced topochemically by low-temperature (<500 °C) ion exchange from RbCa{sub 2}Nb{sub 3}O{sub 10}. The thermal behavior of the series was examined by variable temperature X-ray powder diffraction experiments in tandem with thermogravimetric analysis and differential scanning calorimetry. Five of the species were found to be low temperature/metastable phases, decomposing below 900 °C, where the stability of the series decreased with decreasing interlayer cation size. The compounds, A = Li, Na, K, exhibited high temperature polymorphism, with a completely reversible transition evident for KCa{sub 2}Nb{sub 3}O{sub 10}. - Highlights: • Thermal stability of topochemically prepared triple-layered perovskites studied. • Clear correlation seen between stability and identity of interlayer cation. • Several in ACa{sub 2}Nb{sub 3}O{sub 10} series (A = Li, Na, K) exhibit high temperature polymorphism.

  8. Stability of ceftazidime (with arginine) stored in plastic syringes at three temperatures.

    Science.gov (United States)

    Nahata, M C; Morosco, R S; Fox, J L

    1992-12-01

    The stability of ceftazidime (with arginine) stored in plastic syringes at three temperatures was studied. Ceftazidime (with arginine) was reconstituted with sterile water for injection to a concentration of 100 mg/mL and transferred to plastic syringes. Syringes were stored at 22 degrees C for 24 hours; at 4 degrees C for 7 or 10 days, then at 22 degrees C for 24 hours; or at -20 degrees C for 91 days, then at 22 degrees C for 24 hours or at 4 degrees C for seven days followed by 22 degrees C for 24 hours. Ceftazidime concentration was measured at various times by using a stability-indicating high-performance liquid chromatographic method. At each sampling time, each syringe was visually inspected and the pH of each solution was measured. Mean ceftazidime concentration remained > 90% of initial concentration at all storage conditions. Although during storage the color of the solutions changed from light straw to dark yellow and the pH decreased, no precipitate was visually detected and no peaks for degradation products appeared on the chromatograms. Ceftazidime 100 mg/mL (with arginine) in sterile water for injection was stable when stored in plastic syringes for up to 24 hours at 22 degrees C, for 10 days at 4 degrees C followed by up to 24 hours at 22 degrees C, and for 91 days at -20 degrees C followed by up to 24 hours at 22 degrees C or by 7 days at 4 degrees C and up to 24 hours at 22 degrees C.

  9. Thermophysical and Mechanical Properties of Granite and Its Effects on Borehole Stability in High Temperature and Three-Dimensional Stress

    Science.gov (United States)

    Bao-lin, Liu; Hai-yan, Zhu; Chuan-liang, Yan; Zhi-jun, Li; Zhi-qiao, Wang

    2014-01-01

    When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200°C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations. PMID:24778592

  10. Influence of microenvironment pH, humidity, and temperature on the stability of polymorphic and amorphous forms of clopidogrel bisulfate

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Singh, Saranjit; Bansal, Arvind K

    2010-01-01

    The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline pH, respectiv......The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline p...... salt to free base. Thermal studies indicated that polymorphic forms of clopidogrel bisulfate and also its glassy amorphous form were highly resistant to temperature, whereas the rubbery state of the drug degraded significantly at temperatures of > or =80 degrees C....

  11. PROPRIÉTÉS ÉLECTRONIQUES DU GRAPHITE

    OpenAIRE

    Schneider, Johannes M.

    2010-01-01

    In this thesis, low-temperature magnetotransport (T = 10 mK) and the de Haas-van Alphen effect of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the first part, low field magnetotransport up to B = 11 T is discussed. A Fourier analysis of the background removed signal shows that the electric transport in graphite is governed by two types of charge carriers, electrons and holes. Their phase and frequency values are in agreement with the predictions of the ...

  12. Corrosion-induced microstructural changes in a US core graphite

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Lee, D.A.

    1981-01-01

    The results reported here apply to Great Lakes grade H-451 graphite, the core graphite specified for the US HTGR. This graphite is structurally similar to the German reflector grades we have investigated at ORNL, and hence should be applicable to them if similar impurity levels are obtained. Moreover, these results extend and confirm the behavior pattern exhibited by the fuel matrix material A3-3 reported in the previous paper, although the effects are more pronounced in A3-3 presumably due to its resin-type binder and low heat-treatment temperatures

  13. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions.

    Science.gov (United States)

    Yang, Ping; Yuan, Chunlong; Wang, Hua; Han, Fuliang; Liu, Yangjie; Wang, Lin; Liu, Yang

    2018-02-07

    This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3- O -glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3- O -glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p -coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  14. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Ping Yang

    2018-02-01

    Full Text Available This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins’ structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  15. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    Science.gov (United States)

    Angell, C Austen [Mesa, AZ; Xu, Wu [Broadview Heights, OH; Belieres, Jean-Philippe [Chandler, AZ; Yoshizawa, Masahiro [Tokyo, JP

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  16. On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Kim, Eung-Seon; Sah, Injin; Park, Daegyu; Kim, Youngjun; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this work, the variations of the thermal conductivity of the A3-3 matrix graphite after neutron irradiation is discussed as well as of the IG-110 graphite for comparison. Neutron irradiation of the graphite specimens was carried out as a part of the first irradiation test of KAERI's coated particle fuel specimens by use of Hanaro research reactor. This work can be summarized as follows: 1) In the evaluation of the specific heat of the graphite materials, various literature data were used and the variations of the specific heat data of all the graphite specimens are observed well agreed, irrespectively of the difference in specimens (graphite and matrix graphite and irradiated and un-irradiated). 2) This implies that it should be reasonable that for both structural graphite and fuel matrix graphite, and even for the neuron-irradiated graphite, any of these specific heat data set be used in the calculation of the thermal conductivity. 3) For the irradiated A3-3 matrix graphite specimens, the thermal conductivity decreased on both directions. On the radial direction, the tendency of variation upon temperature is similar to that of unirradiated specimen, i.e., decreasing as the temperature increases. 4) In the German irradiation experiments with A3-27 matrix graphite specimens, the thermal conductivity of the un-irradiated specimen shows a decrease and that of irradiated specimen is nearly constant as the temperature increases. 5) The thermal conductivity of the irradiated IG-110 was considerably decreased compared with that of un-irradiated specimens The difference of the thermal conductivity of un-irradiated and irradiated IG-110 graphite specimens is much larger than that of un-irradiated and irradiated A3-3 matrix graphite specimens.

  17. INCREASING OF MECHANICAL PROPERTIES OF CAST GRAPHITIZED STEEL

    Directory of Open Access Journals (Sweden)

    I. V. Akimov

    2015-06-01

    Full Text Available Purpose. Due to the presence of many essential properties (low prime cost, high manufacturability and damping ability, heat conductivity, fluidity and others,the graphitized cast irons are widely applied for parts operating under the conditions of static and cyclic loads, wear at dry friction and aggressive media at elevated temperatures. At the same time because of significant content of the graphite phase in the structure, the cast irons possess relatively low mechanical properties. Thereby the attention is drawn to graphitized steels, the peculiarity of which consists in the presence of graphite inclusions in the structure, which appoints specific cast iron's properties to these materials. But unlike cast irons, the graphite content in them is in 2…3 times lower and it affects positively on mechanical and service properties indices. This work deals with the optimization of the composition of cast graphitized steel, which has high mechanical properties indices. Methodology. The experimental design technique was used in this work. Alloys prototypes were smelted and their mechanical properties were investigated on the basis of these techniques. Findings were exposed to regression processing, and the dependences of the alloys components influence on its properties were obtained. By means of graphical optimization the optimal composition of steel with high mechanical properties indices has been determined. Findings.Ithasbeenestablishedthat carbon and silicon have the most significant influence on the strength and cyclic endurance of graphitized steels. The chemical composition of the cast graphitized steel with high static and cyclic strength indices was suggested in this work. Originality. With the use of mathematical experimental design techniques the dependences describing the influence of carbon, silicon and copper on the static and cyclic strength indices were obtained. They allow optimizing compositions of graphitized steels. Practical

  18. On estimating the fracture probability of nuclear graphite components

    International Nuclear Information System (INIS)

    Srinivasan, Makuteswara

    2008-01-01

    The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation

  19. Graphite Oxidation Thermodynamics/Reactions

    International Nuclear Information System (INIS)

    Propp, W.A.

    1998-01-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study

  20. On modes and kinetics of nuclear graphite oxidation in massive air or steam ingress

    International Nuclear Information System (INIS)

    El-Genk, M. S.; Tournier, J. M. P.

    2010-01-01

    A massive air or steam ingress in High and Very-High Temperature Reactors (HTRs and VHTRs) nominally operating at 600-950 deg. C is a design-basis accident requiring the development and validation of models for predicting the graphite oxidation and erosion and examining the potential of a fission products release and a loss in integrity of the graphite core and reflector blocks. Isotropic and porous nuclear graphite is of many types with similarities but also differences in microstructure; volume porosity, impurities; type and size of filler coke particles; graphitization; heat treatment temperature and thermal and physical properties. These as well as temperature affect the prevailing mode and kinetics of the graphite oxidation and burn-off rate. This paper reviews the fabrication procedures, characteristics, chemical kinetics and modes of oxidation of nuclear graphite for future model developments. (authors)

  1. Stability of very-high pressure arc discharges against perturbations of the electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S. [Departamento de Fisica, Ciencias Exactas e Engenharia, Universidade da Madeira, Largo do Municipio, Funchal 9000 (Portugal); Hechtfischer, U. [Philips Lighting, BU Automotive Lamps, Technology, Philipsstrasse 8, Aachen 52068 (Germany)

    2012-04-01

    We study the stability of the energy balance of the electron gas in very high-pressure plasmas against longitudinal perturbations, using a local dispersion analysis. After deriving a dispersion equation, we apply the model to a very high-pressure (100 bar) xenon plasma and find instability for electron temperatures, T{sub e}, in a window between 2400 K and 5500-7000 K x 10{sup 3} K, depending on the current density (10{sup 6}-10{sup 8} A/m{sup 2}). The instability can be traced back to the Joule heating of the electron gas being a growing function of T{sub e}, which is due to a rising dependence of the electron-atom collision frequency on T{sub e}. We then analyze the T{sub e} range occurring in very high-pressure xenon lamps and conclude that only the near-anode region exhibits T{sub e} sufficiently low for this instability to occur. Indeed, previous experiments have revealed that such lamps develop, under certain conditions, voltage oscillations accompanied by electromagnetic interference, and this instability has been pinned down to the plasma-anode interaction. A relation between the mechanisms of the considered instability and multiple anodic attachments of high-pressure arcs is discussed.

  2. The effect of irradiation temperature on the quality improvement of Kimchi, Korean fermented vegetables, for its shelf stability

    Science.gov (United States)

    Park, Jin-Gyu; Kim, Jae-Hun; Park, Jae-Nam; Kim, Young-Duk; Kim, Wang-Geun; Lee, Ju-Woon; Hwang, Han-Joon; Byun, Myung-Woo

    2008-04-01

    The present study was conducted to evaluate the effect of irradiation temperature on the shelf stability and quality of Kimchi during storage at 35 °C for 30 days. Kimchi samples were N 2-packaged and heated at 60 °C and then gamma irradiated at 20 kGy under various temperatures (room temperature, ice, dry ice, and liquid nitrogen). In the results of microbial, pH, and acidity analysis, combination treatment of heating and irradiation was able to sterilize microbes in Kimchi regardless of irradiation temperature. When Kimchi was irradiated under frozen temperatures, especially dry ice, the softening of texture and the deterioration of sensory quality of Kimchi were reduced. Also, ESR signal intensities were weakened due to the decrease of irradiation dose and temperature.

  3. The effect of irradiation temperature on the quality improvement of Kimchi, Korean fermented vegetables, for its shelf stability

    International Nuclear Information System (INIS)

    Park, Jin-Gyu; Kim, Jae-Hun; Park, Jae-Nam; Kim, Young-Duk; Kim, Wang-Geun; Lee, Ju-Woon; Hwang, Han-Joon; Byun, Myung-Woo

    2008-01-01

    The present study was conducted to evaluate the effect of irradiation temperature on the shelf stability and quality of Kimchi during storage at 35 deg. C for 30 days. Kimchi samples were N 2 -packaged and heated at 60 deg. C and then gamma irradiated at 20 kGy under various temperatures (room temperature, ice, dry ice, and liquid nitrogen). In the results of microbial, pH, and acidity analysis, combination treatment of heating and irradiation was able to sterilize microbes in Kimchi regardless of irradiation temperature. When Kimchi was irradiated under frozen temperatures, especially dry ice, the softening of texture and the deterioration of sensory quality of Kimchi were reduced. Also, ESR signal intensities were weakened due to the decrease of irradiation dose and temperature

  4. The effect of irradiation temperature on the quality improvement of Kimchi, Korean fermented vegetables, for its shelf stability

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Gyu [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Department of Food and Biotechnology, Korea University, Chungnam 339-700 (Korea, Republic of); Kim, Jae-Hun; Park, Jae-Nam [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Young-Duk [CJ Food Research and Development, CJ Corp., Seoul 152-050 (Korea, Republic of); Kim, Wang-Geun [Department of Application Science and Technology, Chosun University, Gwangju 501-759 (Korea, Republic of); Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Hwang, Han-Joon [Department of Food and Biotechnology, Korea University, Chungnam 339-700 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: mwbyun@kaeri.re.kr

    2008-04-15

    The present study was conducted to evaluate the effect of irradiation temperature on the shelf stability and quality of Kimchi during storage at 35 deg. C for 30 days. Kimchi samples were N{sub 2}-packaged and heated at 60 deg. C and then gamma irradiated at 20 kGy under various temperatures (room temperature, ice, dry ice, and liquid nitrogen). In the results of microbial, pH, and acidity analysis, combination treatment of heating and irradiation was able to sterilize microbes in Kimchi regardless of irradiation temperature. When Kimchi was irradiated under frozen temperatures, especially dry ice, the softening of texture and the deterioration of sensory quality of Kimchi were reduced. Also, ESR signal intensities were weakened due to the decrease of irradiation dose and temperature.

  5. Effect of churning temperature on water content, rheology, microstructure and stability of butter during four weeks of storage

    DEFF Research Database (Denmark)

    Rønholt, Stine; Madsen, Ann Sophie; Kirkensgaard, Jacob Judas Kain

    2014-01-01

    The effect of churning temperature (10 °C vs. 22 °C) is evaluated with respect to water content, rheology, microstructure and stability of butter produced using the batch churning method with a temperature ramp of 4 °C/min. Using pulsed-nuclear magnetic resonance, an increase in relative solid fat...... content from 44% to 49.5% was observed when decreasing the churning temperature. Due to lower solid fat content formed upon churning at high temperatures, average water droplet size significantly increased from 5.5 μm to 18.5 μm and less water could be incorporated into the butter during mixing. Using...... differential scanning calorimetry, it was observed that water addition as well as churning at low temperatures induced a transition toward more stable crystal structures, as the melting point in the high melting fraction was slightly lower for butter churned at high temperature. This did, however, not reflect...

  6. Effect of Storage Time and Temperature on Dimensional Stability of Impressions Made with Zinc Oxide Impression Paste

    Directory of Open Access Journals (Sweden)

    Sareh Habibzadeh

    2016-10-01

    Full Text Available Objectives: This study aimed to assess the effect of storage time and temperature on dimensional stability of impressions made with Cavex Outline zinc oxide impression paste.Materials and Methods: A round stainless steel mold with five grooves (three horizontal and two vertical was used in this in-vitro experimental study. Cavex Outline impression paste was prepared according to the manufacturer’s instructions and applied to the mold. The mold was placed on a block and stored at 35°C and 100% humidity for setting. The impressions were poured with stone immediately and also after 30, 120, 240 and 420 minutes and 24 hours. The distance between the vertical lines on the casts was measured and compared with that in the immediately poured cast.Results: Storage in a refrigerator and at room temperature for zero to seven hours had no significant effect on dimensional stability of the impressions; however, 24 hours of storage in a refrigerator or at room temperature decreased the dimensional stability of Cavex Outline (P=0.001. Also, a significant association was found between dimensional changes following 24 hours of storage in a refrigerator (4°C and at room temperature (23°C; P<0.01.Conclusions: The optimal pouring time of Cavex Outline impressions with stone is between zero to seven hours, and 24 hours of storage significantly decreases the dimensional stability.Keywords: Dental Impression Materials; Zinc Oxide; Cavex

  7. DETERMINING OF THERMAL STABILITY OF EXPLOSIVES FOR CIVIL USES MODERN EQUIPMENT EQUIPPED WITH AUTOMATIC TEMPERATURE AND PRESSURE

    Directory of Open Access Journals (Sweden)

    Gabriel VASILESCU

    2015-07-01

    Full Text Available Thermal stability of explosives for civil use is a key security parameter. When the explosive is exposed to high tempera-tures in a given period of time can lead to undesirable phenomena such as decomposing or even very dangerous as un-controlled detonation.

  8. Stability of white wine proteins: combined effect of pH, ionic strength, and temperature on their aggregation.

    Science.gov (United States)

    Dufrechou, Marie; Poncet-Legrand, Céline; Sauvage, François-Xavier; Vernhet, Aude

    2012-02-08

    Protein haze development in white wines is an unacceptable visual defect attributed to slow protein unfolding and aggregation. It is favored by wine exposure to excessive temperatures but can also develop in properly stored wines. In this study, the combined impact of pH (2.5-4.0), ionic strength (0.02-0.15 M), and temperature (25, 40, and 70 °C) on wine protein stability was investigated. The results showed three classes of proteins with low conformational stability involved in aggregation at room temperature: β-glucanases, chitinases, and some thaumatin-like protein isoforms (22-24 kDa). Unexpectedly, at 25 °C, maximum instability was observed at the lower pH, far from the protein isoelectric point. Increasing temperatures led to a shift of the maximum haze at higher pH. These different behaviors could be explained by the opposite impact of pH on intramolecular (conformational stability) and intermolecular (colloidal stability) electrostatic interactions. The present results highlight that wine pH and ionic strength play a determinant part in aggregation mechanisms, aggregate characteristics, and final haze.

  9. Microstructural Stability and Oxidation Resistance of 9-12 Chromium Steels at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Alman, D.E.; Jablonski, P.D.; Hawk, J.A.

    2006-05-01

    Various martensitic 9-12 Cr steels are utilized currently in fossil fuel powered energy plants for their good elevated temperature properties such as creep strength, steam side oxidation resistance, fire side corrosion resistance, and thermal fatigue resistance. Need for further improvements on the properties of 9-12 Cr steels for higher temperature (>600oC) use is driven by the environmental concerns (i.e., improve efficiency to reduce emissions and fossil fuel consumption). In this paper, we will discuss the results of the research done to explore new subsitutional solute solution and precipitate hardening mechanisms for improved strength of 9-12 Cr martensitic steels. Stability of the phases present in the steels will be evaluated for various temperature and time exposures. A comparison of microstructural properties of the experimental steels and commercial steels will also be presented.

    The influence of a Ce surface treatment on oxidation behavior of a commercial (P91) and several experimental steels containing 9 to 12 weight percent Cr was examined at 650ºC in flowing dry and moist air. The oxidation behavior of all the alloys without the Ce modification was significantly degraded by the presence of moisture in the air during testing. For instance the weight gain for P91 was two orders of magnitude greater in moist air than in dry air. This was accompanied by a change in oxide scale from the formation of Cr-based scales in dry air to the formation of Fe-based scales in moist air. The Ce surface treatment was very effective in improving the oxidation resistance of the experimental steels in both moist and dry air. For instance, after exposure to moist air at 650ºC for 2000 hours, an experimental alloy with the cerium surface modification had a weight gain three orders of magnitude lower than the alloy without the Ce modification and two orders of magnitude lower than P91. The Ce surface treatment suppressed the formation of Fe-based scales and

  10. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  11. Calculation of the Thermal State of the Graphite Moderator of the RBMK Reactor

    Directory of Open Access Journals (Sweden)

    Vorobiev Alexander V.

    2017-01-01

    Full Text Available This work is devoted to study the temperature field of the graphite stack of the RBMK reactor. In work was analyzed the influence of contact pressure between the components of the masonry on the temperature of the graphite moderator.

  12. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    of uniform iron carbide (Fe3C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR...

  13. Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry

    Science.gov (United States)

    Agarwal, Shilpi; Kumar, Varun; Shakher, Chandra

    2018-03-01

    This paper presents the effect of magnetic field (upward decreasing, uniform and upward increasing) on wick stabilized micro diffusion flame by using digital holographic interferometry (DHI). The investigations reveal that under the influence of upward decreasing and uniform magnetic field temperature inside the micro flame increases in comparison to temperature inside micro flame without magnetic field. This is in contrary to normal diffusion flame, where uniform magnetic field has a little or no effect on the temperature. DHI is inherently more accurate more precise and is having better spatial resolution. DHI is ideally suited to study micro flame.

  14. Nanoscale stripe arrays templated on Moiré patterns in graphite

    Science.gov (United States)

    McNally, Michael J.; Koç, Mumin Mehmet; Torricelli, Gauthier; von Haeften, Klaus

    2016-04-01

    Large areas of nanoscale stripe arrays were produced by drop casting silica nanoparticle solutions on highly oriented pyrolytic graphite surfaces at room temperature and imaged with atomic force microscopy. The alignment of the striped areas always reflected the threefold symmetry of the graphite surface. Two different patterns were observed, with different coverages, line separations and mutual orientation, being offset by 30°. Measurement of the relative angles and separations of the line patterns showed a very good match with an underlying Moiré pattern, resulting from the rotation of the top graphene layers. Closer-spaced lines were attributed to the zig-zag direction of the Moiré pattern whereas wider-spaced lines belonged to the armchair direction. The different abundance and apparent difference in long-term stability suggested that stability was governed by the number of reactive vertices per unit area as opposed to the number of vertices per line-length. Whilst sequential images recorded over several days revealed long term stability of all zig-zag arrays, attachment and detachment of single nanoparticles was observed. By contrast, arrays aligned in the armchair direction appeared and vanished collectively, suggesting condensation and evaporation of a fluid of nanoparticles floating on the surface.

  15. Effect of Storage Temperature on the Stability of Spray Dried Bacteriophage Powders.

    Science.gov (United States)

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Nguyen, An; Gengenbach, Thomas; Carter, Elizabeth A; Carrigy, Nicholas B; Wang, Hui; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2018-02-24

    This study aimed to assess the robustness of using a spray drying approach and formulation design in producing inhalable phage powders. Two types of Pseudomonas phages, PEV2 (Podovirus) and PEV40 (Myovirus) in two formulations containing different amounts of trehalose (70% and 60%) and leucine (30% and 40%) were studied. Most of the surface of the produced powders was found to be covered in crystalline leucine. The powders were stored at 4°C and 20 °C under vacuum. The phage stability and in vitro aerosol performance of the phage powders were examined on the day of production and after 1, 3 and 12 months of storage. A minor titer loss during production was observed for both phages (0.2 - 0.8 log 10 pfu/ml). The storage stability of the produced phage powders was found to be phage and formulation dependent. No further reduction in titer occurred for PEV2 powders stored at 4 °C across the study. The formulation containing 30% leucine maintained the viability of PEV2 at 20 °C, while the formulation containing 40% leucine gradually lost titer over time with a storage reduction of ∼0.9 log 10 pfu/ml measured after 12 months. In comparison, the PEV40 phage powders generally had a ∼ 0.5 log 10 pfu/ml loss upon storage regardless of temperature. When aerosolized, the total in vitro lung doses of PEV2 were of the order of 10 7 pfu, except the formulation containing 40% leucine stored at 20 °C which had a lower lung dose. The PEV40 powders also had lung doses of 10 6 - 10 7 pfu. The results demonstrate that spray dried Myoviridae and Podoviridae phage in a simple formulation of leucine and trehalose can be successfully stored for one year at 4 °C and 20 °C with vacuum packaging. Copyright © 2018. Published by Elsevier B.V.

  16. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  17. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  18. Impedance of electrochemically modified graphite.

    Science.gov (United States)

    Magdić, Katja; Kvastek, Krešimir; Horvat-Radošević, Višnja

    2014-01-01

    Electrochemical impedance spectroscopy, EIS, has been applied for characterization of electrochemically modified graphite electrodes in the sulphuric acid solution. Graphite modifications were performed by potential cyclization between potentials of graphite oxide formation/reduction, different number of cycles, and prolonged reduction steps after cyclization. Impedance spectra measured at two potential points within double-layer region of graphite have been successfully modeled using the concept of porous electrodes involving two different electrolyte diffusion paths, indicating existence of two classes of pores. The evaluated impedance parameter values show continuous changes with stages of graphite modification, indicating continuous structural changes of pores by number of potential cycles applied. Differences of impedance parameter values at two potential values indicate the potential induced changes of solution properties within the pores of modified graphite.

  19. Deuterium pumping and erosion behavior of selected graphite materials under high flux plasma bombardment in PISCES

    International Nuclear Information System (INIS)

    Hirooka, Y.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.

    1988-06-01

    Deuterium plasma recycling and chemical erosion behavior of selected graphite materials have been investigated using the PISCES-A facility. These materials include: Pyro-graphite; 2D-graphite weave; 4D-graphite weave; and POCO-graphite. Deuterium plasma bombardment conditions are: fluxes around 7 /times/ 10 17 ions s/sup /minus/1/cm/sup /minus/2/; exposure time in the range from 10 to 100 s; bombarding energy of 300 eV; and graphite temperatures between 20 and 120/degree/C. To reduce deuterium plasma recycling, several approaches have been investigated. Erosion due to high-fluence helium plasma conditioning significantly increases the surface porosity of POCO-graphite and 4D-graphite weave whereas little change for 2D-graphite weave and Pyro-graphite. The increased pore openings and refreshed in-pore surface sites are found to reduce the deuterium plasma recycling and chemical erosion rates at transient stages. The steady state recycling rates for these graphite materials can be also correlated to the surface porosity. Surface topographical modification by machined-grooves noticeably reduces the steady state deuterium recycling rate and the impurity emission from the surface. These surface topography effects are attributed to co-deposition of remitted deuterium, chemically sputtered hydrocarbon and physically sputtered carbon under deuterium plasma bombardment. The co-deposited film is found to have a characteristic surface morphology with dendritic microstructures. 18 ref., 4 figs., 1 tab

  20. Elevated Temperature Photophysical Properties and Morphological Stability of CdSe and CdSe/CdS Nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E. [Department; Center; Fedin, Igor [Department; Diroll, Benjamin T. [Center; Liu, Yuzi [Center; Talapin, Dmitri V. [Center; Department; Schaller, Richard D. [Department; Center

    2018-01-03

    Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine two-dimensional CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300-700 K using static and transient spectroscopies as well as in-situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission linewidth with temperature elevation up to ~500 K, losing a factor of ~8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ~500 K yields thickness dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the NP morphology up to near 600 K followed by sintering and evaporation at still higher temperatures. The mechanism of reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, arise primarily from hole trapping in both NPs and sandwich NPs.

  1. Stochastic description of compounds stability under irradiation: Temperature, flux and cascade size effects

    International Nuclear Information System (INIS)

    Doan, N.V.; Martin, G.; Haider, F.; Bellon, P.

    1989-01-01

    Assessing cascade size effects on compound stability under irradiation requires a safe stochastic description of the order-disorder transition under external forcing. To address multidimensional order parameter structures, we introduce the Kubo Ansatz technique and apply it to the FCC lattice. Irradiation-induced stabilization of unexpected structures is predicted: a diagram for the respective stability of L1 2 , L1 0 and disordered FCC solid solution is established

  2. STABILITY OF BETACYANIN PIGMENTS FROM RED PURPLE PITAYA FRUIT (Hylocereus polyrhizus : INFLUENCE OF PH, TEMPERATURE, METAL IONS AND ASCORBIC ACID

    Directory of Open Access Journals (Sweden)

    Tang, C.S Tang, C.S

    2010-06-01

    Full Text Available Betacyanin pigments from red-purple pitaya fruit (Hylocereus polyrhizus could be an attractive source of red colourant for food application. This paper presents results on the extraction of betacyanin pigments from pitaya fruits grown locally in Malaysia. Both the flesh of the fruit and its mesocarp were investigated and it was found that the flesh had higher pigment contents compared to its peel component. The concentration of betacyanins expressed as betanin equivalents per 100 g of flesh and peel were 10.1 ± 0.6 mg and 6.7 ± 0.2 mg, respectively when 80% methanol was used.  The stability of betacyanin pigments were investigated at different pH, temperature and in presence of different concentrations of metal ions (Cu2+ and Fe2+ and ascorbic acid. The results showed that the pigment was most stable at pH range between 5 and 6. However, it forfeited its stability to the heat induced at elevated temperatures. Metal ions (Cu2+ and Fe2+ proved to be capable of accelerating betacyanin degradation, with Cu2+ exhibiting the greatest effect. By contrast, supplementation with ascorbic acid could enhance the pigment stability against the detrimental effects caused by pH, temperature and metal ions. Nevertheless, if the concentration of ascorbic acid exceeds 0.7 %, it may change its role from pigment stabilizer to become a pro-oxidant.    Keywords: Betacyanin, pigments, pitaya fruit, Hylocereus polyrhizus, ascorbic acid

  3. Compressive Creep Performance and High Temperature Dimensional Stability of Conventional Silica Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Karakus, M.; Kirkland, T.P.; Liu, K.C.; Moore, R.E.; Pint, B.A.; Wereszczak, A.A.

    1999-03-01

    Advanced Industrial Materials program is sponsoring work to conduct creep testing and analysis on refractories of interest to the glass industry. An earlier stage of the project involved identifying which refractories to test and this is described elsewhere. Conventional silica was one such identified refractory category, and the present report describes the creep behavior of this class of refractories. To portray a more complete understanding of how these refractories perform at service temperatures, their fundamental corrosion resistances, dimensional stabilities, and microstructure were characterized as well.

  4. Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability

    Science.gov (United States)

    Jiang, Fei; Kongsaeree, Puapong; Schilke, Karl; Lajoie, Curtis; Kelly, Christine

    The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris ctMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4-7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.

  5. A model for pulsed laser melting of graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Dresselhaus, M. S.; Venkatesan, T.; Jacobson, D. C.

    1985-12-01

    A model for laser melting of carbon at high temperatures to form liquid carbon has been developed. This model is solved numerically using experimental data from laser irradiation studies in graphite consistent with a melting temperature for graphite of 4300 K. The parameters for high-temperature graphite are based on the extension of previously measured thermal properties into the high-temperature regime. A simple classical free electron gas model is used to calculate the properties of liquid carbon. There is very good agreement between the model calculation and experimental results for laser pulse fluences below 2.0 J/cm2. Modifications to the model for larger laser pulse fluences are discussed.

  6. Topological investigation of nuclear graphite using small angle scattering

    Science.gov (United States)

    Rai, Durgesh K.; Khaykovich, Boris; Campbell, Anne A.; Ilvasky, Jan; Katoh, Yutai; Snead, Lance L.

    Nuclear power reactors require high performance materials that withstand high temperatures and neutron damage over long period of times. Graphite is widely used for high temperature fission reactor applications. It has a complex multiphase microstructure, which is affected by neutron irradiation. The irradiation-induced microstructures result in significant thermophysical property changes, affecting service lifetimes. It is important to understand these life-limiting phenomena at many different length scales. We present the results from small angle scattering (SAS) studies on graphite samples, which vary in doses and irradiation temperatures. The neutron and synchrotron SAS measurement data indicates that the graphite morphology consists of surface fractal structures. The samples were found to be uniform across several decades of length scale, while exhibiting different surface fractal dimensions, for different irradiation doses and temperature conditions. The surface fractal dimension changes at HFIR at ORNL, DOE User Facility; APS at ANL, DOE User Facility; Office of Nuclear Energy NSUF.

  7. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS.

  8. Ultrafast photon number resolving detector with a temperature stabilized si multi pixel photon counter

    International Nuclear Information System (INIS)

    Song, Minsoo; Hong, Eugene; Won, Eunil; Yoon, Tai Hyun

    2008-01-01

    Quantum information science has been rapidly progressed and matured and matured thanks to the recent developments of the single photon detection technologies. Single photon detectors such as a Si avalanche photo diode(APD)in the infrared, an InGaAs/InP APD in the telecommunication band, and a super conducting transient edge sensor(TES)in the broad region of the spectrum have been widely used. Single photon detectors, however, operating at the ultraviolet to visible (370nm∼800nm)regions has not been actively investigated partly due to the lack of single photon and/or entangled photon sources and the lack of solid state single photon detectors. In this paper, we investigate the single photon detection characteristics of a Si multi pixel photon counter(MPPC), which has a high spectral responsivity between 300nm to 800nm, as a photon number resolving solid state detector. Figure 1 shows the schematic diagram of the single photon detection set up at 399nm by using a temperature stabilized Si MPPC. The output beam of the laser being properly attenuated is directed to the MPPC module, at which fixed number of photo electrons corresponding to incident individual photon are generated at Geiger mode of the Si APD pixels. The detected photo current is converted into a digital signal by using a fast analog to digital converter and a digital oscilloscope stores the time sequence of the photo currents. Figure 2 shows the accumulated charges collected by MPPC at∼10.deg.C showing a clear single photon and two photons peaks, respectively, separated by ∼5 sigma of the coincidence counts at the two output ports of a Mach Zender interferometer as a function of optical path length difference. The research was supported by Seoul R and BD program(NT070127)and by the KRISS

  9. Stability of cubic zirconia in a granitic system under high pressure and temperature

    International Nuclear Information System (INIS)

    Gibb, F. G. F.; Burakov, B. E.; Taylor, K. J.; Domracheva, Y.

    2008-01-01

    Cubic zirconia is a well known, highly durable material with potential uses as an actinide host phase in ceramic waste forms and inert matrix fuels and in containers for very deep borehole disposal of some highly radioactive wastes. To investigate the behaviour of this material under the conditions of possible use, a cube of ∼2.5 mm edge was made from a single crystal of Yttria stabilized cubic zirconia doped with 0.3 wt.% CeO 2 . The cube was enclosed in powdered granite within a gold capsule and a small amount of H 2 O added before sealing. The sealed capsule was held for 4 months in a cold-seal pressure vessel at a temperature of 780 deg. C and a pressure 150 MPa, simulating both the conditions of a deep borehole disposal involving partial melting of the host rock and the conditions under which the actinide waste form might be encapsulated in granite prior to disposal. At the end of the experiment the quenched, largely glassy, sample was cut into thin slices and studied by optical microscopy, EMPA, SEM and cathodoluminescence methods. The results show that no corrosion of the zirconia crystal or reaction with the granite melt occurred and that no detectable diffusion of elements, including Ce, in or out of the zirconia took place on the timescale of the experiment. Consequently, it appears that cubic zirconia could perform most satisfactorily as both an actinide host waste form for encapsulation in solid granite for very deep disposal and as a container material for deep borehole disposal of highly radioactive wastes (HLW), including spent fuel. (authors)

  10. Work Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2017-07-01

    Full Text Available This paper reports on characterization techniques for electron emission from potassium-intercalated boron nitride-modified graphitic petals (GPs. Carbon-based materials offer potentially good performance in electron emission applications owing to high thermal stability and a wide range of nanostructures that increase emission current via field enhancement. Furthermore, potassium adsorption and intercalation of carbon-based nanoscale emitters decreases work functions from approximately 4.6 eV to as low as 2.0 eV. In this study, boron nitride modifications of GPs were performed. Hexagonal boron nitride is a planar structure akin to graphene and has demonstrated useful chemical and electrical properties when embedded in graphitic layers. Photoemission induced by simulated solar excitation was employed to characterize the emitter electron energy distributions, and changes in the electron emission characteristics with respect to temperature identified annealing temperature limits. After several heating cycles, a single stable emission peak with work function of 2.8 eV was present for the intercalated GP sample up to 1,000 K. Up to 600 K, the potassium-intercalated boron nitride modified sample exhibited improved retention of potassium in the form of multiple emission peaks (1.8, 2.5, and 3.3 eV resulting in a large net electron emission relative to the unmodified graphitic sample. However, upon further heating to 1,000 K, the unmodified GP sample demonstrated better stability and higher emission current than the boron nitride modified sample. Both samples deintercalated above 1,000 K.

  11. Effective Thermal Conductivity of Graphite Materials with Cracks

    Science.gov (United States)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  12. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  13. Blunt indentation of core graphite

    International Nuclear Information System (INIS)

    Hartley, M.; McEnaney, B.

    1996-01-01

    Blunt indentation experiments were carried out on unoxidized and thermally oxidised IM1-24 graphite as a model to simulate local point stresses acting on graphite moderator bricks. Blunt indentation of unoxidized graphite initiates cracks close to the region of maximum tensile stress at the edge of the indentation. Cracks propagate and converge to form a cone of material. Failure is catastrophic, typically forming three pieces of graphite and ejecting the cone referred to above. The failure mode under indentation loading for highly oxidised graphite (weigh loss > 40%) is different from that for the unoxidized graphite. There is no longer a distinct crack path, the indentation is much deeper than in the case of the unoxidized graphite, and there is a region of crushed debris beneath the indentation, producing a crater-like structure. The reduction in the compressive fracture stress, σ cf , under indentation loading with increasing fractional weight loss on oxidation, x, can be fitted to σ cf /σ 0 = exp-[5.2x] where σ 0 is the compressive fracture stress of the unoxidized graphite. This indicates that the effect of thermal oxidation on indentation fracture stress is more severe than the effects of radiolytic oxidation on conventional strengths of nuclear graphites. (author). 8 refs, 12 figs

  14. Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, Yongjiao; Zang, Jianbing; Dong, Liang; Pan, Hong; Yuan, Yungang; Wang, Yanhui

    2013-01-01

    Highlights: • The graphitized nanodiamond (GND) showed a higher oxidation-resistance than XC-72. • The PtNi/GND electrocatalytic exhibited greater stability than PtNi/XC-72. • The PtNi/GND had a better catalytic activity for MOR and ORR than Pt/GND. -- Abstract: Surface graphitized nanodiamond (GND) with a diamond core covered by a graphitic carbon shell was prepared by annealing ND at the temperature of 1300 °C in a vacuum of 10 −3 Pa. PtNi electrocatalysts were prepared by a microwave heating polyol method using the prepared GND as a support. The composition and morphology of the PtNi electrocatalysts supported on GND (PtNi/GND) were characterized by X-ray diffraction, transmission electron microscopy and energy dispersion spectra. The results showed that nano-scaled PtNi alloy particles with an atomic ratio of approximately 1:1 were uniformly deposited on the GND through co-reduction process. The electrocatalytic activities of the PtNi/GND electrocatalysts for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) were investigated by cyclic voltammetry, chronoamperometry and linear sweep voltammetry. The PtNi/GND exhibited better electrocatalytic activities than the Pt/GND either for MOR and ORR. In comparison with traditional carbon support Vulcan XC-72, GND showed higher oxidation-resistance, and consequently led to greater stability for the PtNi/GND than PtNi/XC-72

  15. Irradiated graphite studies prior to decommissioning of G1, G2 and G3 reactors

    International Nuclear Information System (INIS)

    Bonal, J.P.; Vistoli, J.Ph.; Combes, C.

    2005-01-01

    G1 (46 MW th ), G2 (250 MW th ) and G3 (250 MW th ) are the first French plutonium production reactors owned by CEA (Commissariat a l'Energie Atomique). They started to be operated in 1956 (G1), 1959 (G2) and 1960 (G3); their final shutdown occurred in 1968, 1980 and 1984 respectively. Each reactor used about 1200 tons of graphite as moderator, moreover in G2 and G3, a 95 tons graphite wall is used to shield the rear side concrete from neutron irradiation. G1 is an air cooled reactor operated at a graphite temperature ranging from 30 C to 230 C; G2 and G3 are CO 2 cooled reactors and during operation the graphite temperature is higher (140 C to 400 C). These reactors are now partly decommissioned, but the graphite stacks are still inside the reactors. The graphite core radioactivity has decreased enough so that a full decommissioning stage may be considered. Conceming this decommissioning, the studies reported here are: (i) stored energy in graphite, (ii) graphite radioactivity measurements, (iii) leaching of radionuclide ( 14 C, 36 Cl, 63 Ni, 60 Co, 3 H) from graphite, (iv) chlorine diffusion through graphite. (authors)

  16. Graphite fluoride fibers and their applications in the space industry

    Science.gov (United States)

    Hung, Ching-Chen; Long, Martin; Dever, Therese

    1990-01-01

    Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.

  17. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  18. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect.

    Science.gov (United States)

    Rabbani, Yahya; Ashtiani, Mahshid; Hashemabadi, Seyed Hassan

    2015-06-14

    In this study, the stability and rheological properties of a suspension of carbonyl iron microparticles (CIMs) in silicone oil were investigated within a temperature range of 10 to 85 °C. The effect of adding two hydrophobic (stearic and palmitic) acids on the stability and magnetorheological effect of a suspension of CIMs in silicone oil was studied. According to the results, for preparing a stable and efficient magnetorheological (MR) fluid, additives should be utilized. Therefore, 3 wt% of stearic acid was added to the MR fluid which led to an enhancement of the fluid stability over 92% at 25 °C. By investigating shear stress variation due to the changes in the shear rate for acid-based MR fluids, the maximum yield stress was obtained by fitting the Bingham plastic rheological model at high shear rates. Based on the existing correlations of yield stress and either temperature or magnetic field strength, a new model was fitted to the experimental data to monitor the simultaneous effect of magnetic field strength and temperature on the maximum yield stress. The results demonstrated that as the magnetic field intensified or the temperature decreased, the maximum yield stress increased dramatically. In addition, when the MR fluid reached its magnetic saturation, the viscosity of fluid depended only on the shear rate.

  19. Macroscopic Properties of Restacked, Redox-Liquid Exfoliated Graphite and Graphite Mimics Produced in Bulk Quantities

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vikram K [ORNL; Quinlan, Ronald [ORNL; Agapov, Alexander L [ORNL; Dunlap, John R [ORNL; Nelson, Kimberly M [ORNL; Duranty, Edward R [ORNL; Sokolov, Alexei P [ORNL; Bhat, Gajanan [ORNL; Mays, Jimmy [ORNL

    2014-01-01

    The excellent properties exhibited by monolayer graphene have spurred the development of exfoliation techniques using bulk graphite to produce large quantities of pristine monolayer sheets. Development of simple chemistry to exfoliate and intercalate graphite and graphite mimics in large quantities is required for numerous applications. To determine the macroscopic behavior of restacked, exfoliated bulk materials, a systematic approach is presented using a simple, redox-liquid sonication process along to obtain large quantities of 2D and 3D hexagonally layered graphite, molybdenum disulfi de, and boron nitride, which are subsequently characterized to observe chemical and structural changes. For MoS 2 sonicated with the antioxidant sodium bisulfi te, results from Raman spectroscopy, X-ray diffraction, and electron microscopy indicate the presence of distorted phases from different polymorphs, and apparent nanotube structures in the bulk, restacked powder. Furthermore, using thermograviemtric analysis, the antioxidant enhances the resistance to oxidative degradation of MoS 2 , upon thermal treatment up to 900 C. The addition of the ionic antioxidant decreased dispersion stability in non-polar solvent, suggesting decreased compatibility with non-polar systems. Using simple chemical methods, the ability to generate tailored multidimensional layered materials with unique macroscopic properties is critical for numerous applications, including electrical devices, reinforced polymer composites, lithium ion capacitors, and chemical sensing.

  20. Dynamic Mechanical Properties of Bio-Polymer Graphite Thin Films

    Science.gov (United States)

    Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Munirah Abdullah, Nur; Abdullah, M. F. L.

    2017-08-01

    Waste cooking oil is used as the main substances in producing graphite biopolymer thin films. Biopolymer is produce from the reaction of bio-monomer and cross linker with the ratio of 2:1 and addition of graphite with an increment of 2% through a slip casting method. The morphological surface properties of the samples are observed by using Scanning Electron Microscope (SEM). It is shown that the graphite particle is well mixed and homogenously dispersed in biopolymer matrix. Meanwhile, the mechanical response of materials by monitoring the change in the material properties in terms of frequency and temperature of the samples were determined using Dynamic Mechanical Analysis (DMA). The calculated cross-linked density of biopolymer composites revealed the increment of graphite particle loading at 8% gives highest results with 260.012 x 103 M/m3.

  1. Spin-density wave state in simple hexagonal graphite

    Science.gov (United States)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  2. Graphene-graphite oxide field-effect transistors.

    Science.gov (United States)

    Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc

    2012-03-14

    Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society

  3. Impact-Contact Analysis of Prismatic Graphite Blocks Using Abaqus

    International Nuclear Information System (INIS)

    Kang, Ji Ho; Kim, Gyeong Ho; Choi, Woo Seok

    2010-12-01

    Graphite blocks are the important core components of the high temperature gas-cooled reactor. As these blocks are simply stacked in array, collisions among neighboring components may occur during earthquakes or accidents. The final objective of the research project is to develop a reliable seismic model of the stacked graphite blocks from which their behavior can be predicted and, thus, they are designed to have sufficient strength to maintain their structural integrity during the anticipated occurrences. The work summarized in this report is a first step toward the big picture and is dedicated to build a realistic impact-contact dynamics model of the graphite block using a commercial FEM package, Abaqus. The developed model will be further used to assist building a reliable lumped dynamics model of these stacked graphite components

  4. 1.5 μm InAs/InGaAsP/InP quantum dot laser with improved temperature stability

    DEFF Research Database (Denmark)

    Zubov, F. I.; Gladii, S. P.; Shernyakov, Yu M.

    2016-01-01

    Temperature characteristics of InAs/InGaAsP quantum dot (QD) lasers synthesized on InP (001) substrate are presented. The lasers demonstrate high temperature stability: a threshold current characteristic temperature as high as 205 K in the temperature range between 20 to 50°C was measured. Lasing...

  5. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  6. Synthesis and characterization of electroless Ni–P coated graphite ...

    Indian Academy of Sciences (India)

    Wintec

    trend in deposition is observed up to 50 gl. –1 of stabilizer as well as up to 20 gl. –1 of the reducing .... coating bath solution was stirred manually to keep the graphite particles in suspension to ensure complete ... ing one of these parameters while keeping the other para- meters constant. The variation in deposition was ...

  7. Performance and stability of low temperature hydrogenated amorphous silicon thin film transistors fabricated on stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Kim, Sung Ki; Lee, Jong-Kwon; Lee, Seok-Woo; Lee, Hong Koo; Peak, Seung Han; Park, Yong-In; Kim, Chang-Dong; Hwang, Yong Kee; Chung, In-Jae [LG Display R and D Center, Paju, Gyongki-do, 413-811 (Korea)

    2010-04-15

    The key development issues in the flexible displays are TFT backplane technology, which requires competitive device performance and low temperature process compatible with flexible substrate. Here, we have fabricated low temperature hydrogenated amorphous silicon thin film transistor on a stainless steel substrate coated with organic barrier layer. Then, we have studied initial device performance by varying plasma gas and pressure conditions at a low power and a low temperature during amorphous silicon and silicon nitride deposition steps. Also, we discuss the stability characteristics of this low temperature processed thin film transistor, which reveals enough possibility for use in flexible display applications. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    Science.gov (United States)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  9. Laboratory and Field Test of Movable Conduction-Cooled High-Temperature SMES for Power System Stability Enhancement

    DEFF Research Database (Denmark)

    Fang, Jiakun; Wen, J.; Wang, S.

    2013-01-01

    ’ effectiveness on improvements of system voltage stability and on the oscillation damping. Test results indicate that the SMES system has the features of fast response and four-quadrant power operation. The accessories for the movability of the SEMS system are well designed. The system is feasible to be used...... in power systems.......This paper introduces the first movable conduction-cooled high temperature superconducting magnetic energy storage (SMES) system developed in China. The SMES is rated at 380 V / 35 kJ / 7 kW, consisting of the high temperature magnet confined in a dewar, the cryogenic unit, the converter...

  10. High-temperature stability of the hydrate shell of a Na+ cation in a flat nanopore with hydrophobic walls

    Science.gov (United States)

    Shevkunov, S. V.

    2017-11-01

    The effect of elevated temperature has on the hydrate shell of a singly charged sodium cation inside a flat nanopore with smooth walls is studied using the Monte Carlo method. The free energy and the entropy of vapor molecule attachment are calculated by means of a bicanonical statistical ensemble using a detailed model of interactions. The nanopore has a stabilizing effect on the hydrate shell with respect to fluctuations and a destabilizing effect with respect to complete evaporation. At the boiling point of water, behavior is observed that is qualitatively similar to behavior at room temperature, but with a substantial shift in the vapor pressure and shell size.

  11. Experimental Study and Stabilization Mechanisms of Silica Nanoparticles Based Brine Mud with High Temperature Resistance for Horizontal Shale Gas Wells

    Directory of Open Access Journals (Sweden)

    Xian-yu Yang

    2015-01-01

    Full Text Available Previous studies showed that silica nanoparticles based fresh water drilling muds had good thermal stability up to 160°C; however its performance at high salt concentration was rather poor. Therefore, high performance silica nanoparticles based brine mud (NPBMs with high temperature resistance for horizontal shale gas wells was proposed. Thermal stability tests from ambient temperature to 180°C, along with pressure transmission tests and rheology analysis, were performed to evaluate comprehensive properties of the NPBMs. Results show that the NPBMs embody excellent salt tolerance and thermal resistance for their rheological parameters did not suffer significant fluctuation. Fluid loss of the NPBM-1 (4% NaCl plus 3% KCl at 180°C was only 7.6 mL while the NPBM-2 (10% NaCl plus 3% KCl had a fluid loss of 6.6 mL at 150°C. Low water activity and good lubricity of the NPBMs were beneficial to improve wellbore stability and reduce friction resistance. Pressure transmission tests on the NPBM-1 show that it can mitigate or even prevent the transmission of drilling mud pressure into shale thus improving wellbore stability. Additionally, optimal rheological models for the NPBM-1 and the NPBM-2 were Herschel-Bulkley model and Power Law model separately.

  12. The use of a DNA stabilizer in human dental tissues stored under different temperature conditions and time intervals

    Science.gov (United States)

    TERADA, Andrea Sayuri Silveira Dias; da SILVA, Luiz Antonio Ferreira; GALO, Rodrigo; de AZEVEDO, Aline; GERLACH, Raquel Fernanda; da SILVA, Ricardo Henrique Alves

    2014-01-01

    Objective The present study evaluated the use of a reagent to stabilize the DNA extracted from human dental tissues stored under different temperature conditions and time intervals. Material and Methods A total of 161 teeth were divided into two distinct groups: intact teeth and isolated dental pulp tissue. The samples were stored with or without the product at different time intervals and temperature. After storage, DNA extraction and genomic DNA quantification were performed using real-time PCR; the fragments of the 32 samples that represented each possible condition were analyzed to find the four pre-selected markers in STR analysis. Results The results of the quantification showed values ranging from 0.01 to 10,246.88 ng/μL of DNA. The statistical difference in the quantity of DNA was observed when the factors related to the time and temperature of storage were analyzed. In relation to the use of the specific reagent, its use was relevant in the group of intact teeth when they were at room temperature for 30 and 180 days. The analysis of the fragments in the 32 selected samples was possible irrespective of the amount of DNA, confirming that the STR analysis using an automated method yields good results. Conclusions The use of a specific reagent showed a significant difference in stabilizing DNA in samples of intact human teeth stored at room temperature for 30 and 180 days, while the results showed no justification for using the product under the other conditions tested. PMID:25141206

  13. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Satomi, Junkichi; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within ±8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  14. A temperature-dependent gain control system for improving the stability of Si-PM-based PET systems

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Satomi, Junkichi [Kobe City College of Technology, Kobe (Japan); Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun [Department of Nuclear Medicine and Tracer Kinetics, Osaka University, Graduate School of Medicine, Osaka (Japan); Watabe, Hiroshi; Kanai, Yasukazu, E-mail: s-yama@kobe-kosen.ac.jp [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka (Japan)

    2011-05-07

    The silicon-photomultiplier (Si-PM) is a promising photodetector for the development of new PET systems due to its small size, high gain and relatively low sensitivity to the static magnetic field. One drawback of the Si-PM is that it has significant temperature-dependent gain that poses a problem for the stability of the Si-PM-based PET system. To reduce this problem, we developed and tested a temperature-dependent gain control system for the Si-PM-based PET system. The system consists of a thermometer, analog-to-digital converter, personal computer, digital-to-analog converter and variable gain amplifiers in the weight summing board of the PET system. Temperature characteristics of the Si-PM array are measured and the calculated correction factor is sent to the variable gain amplifier. Without this correction, the temperature-dependent peak channel shifts of the block detector were -55% from 20 deg. C to 35 deg.C. With the correction, the peak channel variations were corrected within {+-}8%. The coincidence count rate of the Si-PM-based PET system was measured using a Na-22 point source while monitoring the room temperature. Without the correction, the count rate inversely changed with the room temperature by 10% for 1.5 deg. C temperature changes. With the correction, the count rate variation was reduced to within 3.7%. These results indicate that the developed temperature-dependent gain control system can contribute to improving the stability of Si-PM-based PET systems.

  15. Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror

    OpenAIRE

    Yuan, Sheng Sam

    2010-01-01

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry currently under development at the ALS.

  16. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  17. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    International Nuclear Information System (INIS)

    Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean; Lavoie, Christian

    2013-01-01

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  18. Stability of Sodium Electrodeposited From a Series of Room Temperature Chloroaluminate Molten Salts

    National Research Council Canada - National Science Library

    Gray, Gary

    1996-01-01

    .... This work&involved the synthesis of room temperature molten salts and the examination of the electrochemical and transport properties of these salts with the goal of developing a room temperature molten salt...

  19. Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability.

    Science.gov (United States)

    Davidov-Pardo, Gabriel; Gumus, Cansu Ekin; McClements, David Julian

    2016-04-01

    Lutein may be utilized in foods as a natural pigment or nutraceutical ingredient to improve eye health. Nevertheless, its use is limited by its poor water-solubility and chemical instability. We evaluated the effect of storage temperature and pH on the physical and chemical stability of lutein-enriched emulsions prepared using caseinate. The emulsions (initial droplet diameter=232 nm) remained physically stable at all incubation temperatures (5-70 °C); however the chemical degradation of lutein increased with increasing temperature (activation energy=38 kJ/mol). Solution pH had a major impact on the physical stability of the emulsions, causing droplet aggregation at pH 4 and 5. Conversely, the chemical stability of lutein was largely independent of the pH, with only a slight decrease in degradation at pH 8. This work provides important information for the rational design of emulsion-based delivery systems for a lipophilic natural dye and nutraceutical. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Study of stability and temperature effects on tetrafluoroethylene irradiated for the safe process of monomer polymerization induced by gamma radiation

    International Nuclear Information System (INIS)

    Moura, E.A.B.; Lugao, A.B.; Silva, L.B.A.

    1997-01-01

    The superior objective of this work the determination of the procedures for the safe process of TFE polymerization induced by radiation. It was studied the effects of the initial temperature on tetrafluoroethylene (TFE) irradiation. It was also studied the efficiency of terpenes (dipentene, terpinolene, α-pinene) on TFE stabilization. Both studies used gamma radiation to induce the polymerization and disproportionation reactions. For the temperature effect study, 40 g of liquid TFE was introduced in a explosion proof vessel and initially irradiated in the range of -78 0 C and 20 0 C to 24 0 C. The inhibition efficiency of terpenes on the TFE polymerization was studied by irradiating TFE with terpenes and without them, using a similar vessel also explosion proof. Surprisingly, the results on the irradiation temperature showed that the reactions in the range 20 0 C to 24 0 C were more controllable than the one in-78 0 C to -64 0 C. The results on TFE stability showed that the TFE polymerization was completely inhibited by the addition of 0.1% of all tested terpenes or 1:1:1 mixture of them. As a final conclusion it was shown that the use of the irradiation induced polymerization of TFE was a safe, satisfactory and more controllable method for the study of TFE stabilization and polymerization in the range of 20 0 C to 24 0 C. (author). 8 refs., 5 figs., 2 tabs

  1. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  2. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide.

    Science.gov (United States)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-04

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  3. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    Science.gov (United States)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  4. Room temperature synthesis of PbSe quantum dots in aqueous solution: Stabilization by interactions with ligands

    Science.gov (United States)

    Primera-Pedrozo, Oliva M.; Arslan, Zikri; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2011-01-01

    An aqueous route of synthesis is described for rapid synthesis of lead selenide quantum dots (PbSe QDs) at room temperature in an attempt to produce water-soluble and stable nanocrystals. Several thiol-ligands, including thioglycolic acid (TGA), thioglycerol (TGC), 3-mercaptopropionic acid (MPA), 2-mercaptoethyleamine hydrochloride (MEA), 6-mercaptohexanoic acid (MHA), and L-cysteine (L-cys), were used for capping/stabilization of PbSe QDs. The effects of the ligands on the stability of PbSe QDs were evaluated for a period of two months at room temperature under normal light conditions and at 4 °C in dark. The TGA- and MEA-capped QDs exhibited the highest stability prior to purification, almost two months when kept in dark at 4 °C. However, the stability of TGA-capped QDs was reduced substantially after purification to about 5 days under same conditions, while MEA-capped QDs did not show any significant instability. The stabilization energies of Pb-thiolate complexes determined by theoretical DFT simulations supported the experimental results. The PbSe QDs capped with TGA, MPA and MEA were successfully purified and re-dispersed in water, while those stabilized with TGC, MHA and L-cys aggregated during purification attempts. The purified PbSe QDs possess very susceptible surface resulting in poor stability for about 30 – 45 min after re-dispersion in water. In the presence of an excess of free ligand, the stability increased up to 5 days for TGA-capped QDs at pH 7.19, 9 –12 days for MPA-capped QDs at pH 7.3–7.5 and 45–47 days for MEA-capped QDs at pH 7.35. X-Ray Diffraction (XRD) results showed that the QDs possess a cubic rock salt structure with the most intense peaks located at 2θ = 25.3° (200) and 2θ = 29.2° (100). TEM images showed that the size of the QDs ranges between 5 and 10 nm. ICP-MS results revealed that Pb:Se ratio was 1.26, 1.28, 3.85, 1.18, and 1.31 for the QDs capped with TGA, MPA, MEA, L-Cys, and TGC, respectively. The proposed method

  5. Surface area-burnoff correlation for the steam--graphite reaction

    International Nuclear Information System (INIS)

    Stark, W.A. Jr.; Malinauskas, A.P.

    1977-01-01

    The oxidation of core graphite by steam of air represents a problem area of significant concern in safety analyses for the high temperature gas cooled reactor (HTGR). Core and core-support graphite integrity and strength deteriorate with oxidation of the graphite, and oxidation furthermore could affect the rate of fission product release under upset conditions. Consequently, modeling of core response during steam or air ingress conditions requires an expression for the rate of graphite interaction with those impurities. The steam--graphite reaction in particular is a complex interaction of mass transport within the graphite with chemi-sorption and reaction on accessible surfaces; experimental results from graphite to graphite are highly variable, and the description of the reaction is not yet completely consistent. A simple etch pit model relating surface area to burnoff has been proposed and shown to provide reasonable correlation with experimental data obtained from steam oxidation studies of nuclear grade H-327 graphite. Unaccounted differences between theory and experiment arise at burnoffs exceeding 3 to 5 percent. The model, while not complete nor comprehensive, is consistent with experimental observations of graphite oxidation by O 2 (air), CO 2 , or H 2 O, and could have some utility in safety analysis

  6. Final report on graphite irradiation test OG-3

    International Nuclear Information System (INIS)

    Price, R.J.; Beavan, L.A.

    1977-01-01

    The results of dimensional, thermal expansivity, thermal conductivity, Young's modulus, and tensile strength measurements on graphite specimens irradiated in capsule OG-3 are presented. The graphite grades investigated included near-isotropic H-451 (three different preproduction lots), TS-1240, and SO818; needle coke H-327; and European coal tar pitch coke grades P 3 JHA 2 N, P 3 JHAN, and ASI2-500. Data were obtained in the temperature range 823 0 K to 1673 0 K. The peak fast neutron fluence in the experiment was 3 x 10 25 n/m 3 (E greater than 29 fJ)/sub HTGR/; the total accumulated fluence exceeded 9 x 10 25 n/m 2 on some H-451 specimens and 6 x 10 25 n/m 2 on some TS-1240 specimens. Irradiation-induced dimensional changes on H-451 graphite differed slightly from earlier predictions. For an irradiation temperature of about 1225 0 K, axial shrinkage rates at high fluences were somewhat higher than predicted, and the fluence at which radial expansion started (about 9 x 10 25 n/m 2 at 1275 0 K) was lower. TS-1240 graphite underwent smaller dimensional changes than H-451 graphite, while limited data on SO818 and ASI2-500 graphites showed similar behavior to H-451. P 3 JHAN and P 3 JHA 2 N graphites displayed anisotropic behavior with rapid axial shrinkage. Comparison of dimensional changes between specimens from three logs of H-451 and of TS-1240 graphites showed no significant log-to-log variations for H-451, and small but significant log-to-log variations for TS-1240. The thermal expansivity of the near-isotropic graphites irradiated at 865-1045 0 K first increased by 5 percent to 10 percent and then decreased. At higher irradiation temperatures the thermal expansivity decreased by up to 50 percent. Changes in thermal conductivity were consistent with previously established curves. Specimens which were successively irradiated at two different temperatures took on the saturation conductivity for the new temperature

  7. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    KAUST Repository

    Hou, Zhipeng

    2018-01-04

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  8. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  9. TSX graphite for extended use in the N-Reactor

    International Nuclear Information System (INIS)

    Kennedy, C.R.

    1985-08-01

    This report reviews the limited amount of irradiation data available for grade TSX graphite with the purpose of obtaining reasonable estimates of material behavior. The results are enhanced by obtaining generalized behavior characteristics demonstrated by similar grades of graphite, such as CSF, AGOT, and PGA. Intent of this work is to furnish the necessary coefficients to describe the material behavior for inclusion in the constitutive equations for the anisotropic graphite grade TSX. Estimates of the free-dimensional changes of TSX graphite as a function of temperature and fluence have been made and shown to be in good agreement with the data. The effects of irradiation on other physical properties, such as elastic moduli, conductivity, and coefficient of thermal expansion, are also described. The irradiation creep characteristics of TSX graphite are also estimated on the basis of data for similar grades of graphite in the US and Europe. Crude approximations of stresses generated in the keyed structure were made to demonstrate the magnitude of the problem. The results clearly predict that the filler-block keys will fail and the tube-block keys will not. It is also indicated that the overall stack height growth will be increased by 25 to 38 mm (1 to 1.5 in.) because of creep

  10. Porosity effects in the neutron total cross section of graphite

    International Nuclear Information System (INIS)

    Santisteban, J. R; Dawidowski, J; Petriw, S. N

    2009-01-01

    Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes. [es

  11. Studies on mechanical properties of graphites for HTGR

    International Nuclear Information System (INIS)

    Oku, T.; Eto, M.; Fujisaki, K.; Yoda, S.; Ishiyama, S.; Sugihara, T.

    1982-01-01

    Recent research on the mechanical properties of HTGR graphites at JAERI is reviewed. The mechanical properties of graphites are required for predicting the stresses induced in the core graphite structures during reactor operation and for evaluating non-failure probabilities of the graphite structures. In this paper, effects of irradiation, stress and oxidation on the mechanical properties and fatigue properties of petroleum coke semi-isotropic and isotropic graphites for HTGRs are primarly described. Young's modulus and bend strength before and after neutron irradiation have been measured to examine irradiation effects on a fracture criterion of graphites. Two kinds of relationships are found between the bend strength and Young's modulus, depending upon the irradiation temperature. Changes in Young's modulus after irradiation are found to be different from those after irradiation creep deformation. Young's modulus under compressive stress is equivalent to that at the onset of unloading. Oxidation gives rise to the decreases in density and modulus, and also brings about a strength degradation. Tension-compression fatigue strengths are obtained and arranged successfully using statistical trivariant method with tension-tension fatigue strength data

  12. Pressure-temperature stability, Ca2+ binding, and pressure-temperature phase diagram of cod parvalbumin: Gad m 1.

    Science.gov (United States)

    Somkuti, Judit; Bublin, Merima; Breiteneder, Heimo; Smeller, László

    2012-07-31

    Fish allergy is associated with IgE-mediated hypersensitivity reactions to parvalbumins, which are small calcium-binding muscle proteins and represent the major and sole allergens for 95% of fish-allergic patients. We performed Fourier transform infrared and tryptophan fluorescence spectroscopy to explore the pressure-temperature (p-T) phase diagram of cod parvalbumin (Gad m 1) and to elucidate possible new ways of pressure-temperature inactivation of this food allergen. Besides the secondary structure of the protein, the Ca(2+) binding to aspartic and glutamic acid residues was detected. The phase diagram was found to be quite complex, containing partially unfolded and molten globule states. The Ca(2+) ions were essential for the formation of the native structure. A molten globule conformation appears at 50 °C and atmospheric pressure, which converts into an unordered aggregated state at 75 °C. At >200 MPa, only heat unfolding, but no aggregation, was observed. A pressure of 500 MPa leads to a partially unfolded state at 27 °C. The complete pressure unfolding could only be reached at an elevated temperature (40 °C) and pressure (1.14 GPa). A strong correlation was found between Ca(2+) binding and the protein conformation. The partially unfolded state was reversibly refolded. The completely unfolded molecule, however, from which Ca(2+) was released, could not refold. The heat-unfolded protein was trapped either in the aggregated state or in the molten globule state without aggregation at elevated pressures. The heat-treated and the combined heat- and pressure-treated protein samples were tested with sera of allergic patients, but no change in allergenicity was found.

  13. Rules for design of nuclear graphite core components - some considerations and approaches

    International Nuclear Information System (INIS)

    Svalbonas, V.; Stilwell, T.C.; Zudans, Z.

    1977-01-01

    In the High Temperature Gas reactor (HTGR) core a large number of elements are constructed of nuclear graphite. This paper discusses the attendant difficulties, and presents some approaches, for ASME code safety-consistent design and analysis. The statistical scatter of material properties, which complicates even the definitions of allowable stress, as well as the brittle, anisotropic, inhomogeneous nature of the graphite was considered. It was found that analytic statistical methods used to arrive at a definition of minimum ultimate strength were totally unrealistic It was concluded on the basis of presently available evidence that the distinctions between secondary and primary stresses are inappropriate to graphite structures. The proposed overall design criteria and stress limits for graphite structure were reviewed. The use of the homologous stress concept is graphite fatigue calculations was reviewed. The overall design philosophy for brittle materials is applied to HTGR core structure design including such areas as graphite oxidation, component proof tests, experimental seismic modeling and fracture analysis. (Auth.)

  14. Studies of the role of molten materials in interactions with UO2 and graphite

    International Nuclear Information System (INIS)

    Fink, J.K.; Heiberger, J.J.; Leibowitz, L.

    1979-01-01

    Graphite, which is being considered as a lower reactor shield in gas-cooled fast reactors, would be contacted by core debris during a core disruptive accident. Information on the interaction of graphite, UO 2 , and stainless steel is needed in assessing the safety of the GCFR. In an ongoing study of the interaction of graphite, UO 2 , and stainless steel, the effects of the steel components have been investigated by electron microprobe scans, x-ray diffraction, and reaction-rate measurements. Experiments to study the role of the reaction product, FeUC 2 , in the interaction suggested that FeUC 2 promotes the interaction by acting as a carrier to bring graphite to the reaction site. Additional experiments using pyrolytic graphite show that while the reaction rate is decreased at 2400 K, at higher temperatures the rate is similar to that using other grades of graphite

  15. The fabrication and high temperature stability of biaxially textured Ni tape by ion beam structure modification method

    International Nuclear Information System (INIS)

    Wu, K.; Wang, S.S.; Meng, J.; Han, Z.

    2004-01-01

    For the conventional rolling assisted biaxially textured metallic substrate (RABiTS) process, a large degree of cold rolling deformation and a subsequent high temperature annealing procedure are required to obtain adequately biaxially textured Ni tape. Recently, we have reported a newly developed process, named as ion beam structure modification (ISM), for fabricating biaxially textured Ni tape by use of low energy argon ion beam bombardment. In this paper, the biaxial texture of ISM processed Ni tape and its thermal stability at high temperatures are investigated. Results show that Ni tape processed under optimum ISM conditions, the (2 0 0) rocking curve FWHM is less than 5.7 deg. , and the (1 1 1) phi-scan FWHM is less than 7.5 deg. . High temperature annealing does not impair the biaxial-texture already developed in ISM processed Ni foils, although ISMs should not be regarded as a complete equilibrium process

  16. Body temperature stability achieved by the large body mass of sea turtles.

    Science.gov (United States)

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses. © 2014. Published by The Company of Biologists Ltd.

  17. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  18. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Soo; Martinson, Alex B. F.

    2015-01-01

    A novel non-hydrolytic (nh) surface chemistry is utilized to allow the direct synthesis of pinhole-fee oxide overlayers directly on conventional hybrid perovskite halide absorbers without damage. Utilizing water-free ALD Al2O3 passivation, a minimum of ten-fold increase in stability against relative humidity (RH) 85% was achieved along with a dramatically improved thermal resistance (up to 250 °C). Moreover, we extend this approach to synthesize nh-TiO2 directly on hybrid perovskites to establish its potential in inverted photovoltaic devices as a dual stabilizing and electron accepting layer, as evidenced by photoluminescence (PL) quenching.

  19. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burchell, Timothy D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  20. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)