WorldWideScience

Sample records for stabilized spheroidal alumina

  1. Stability of a charged, conducting, spheroidal droplet

    Science.gov (United States)

    Krappe, H. J.

    2018-02-01

    The stability of spheroidal, charged, conducting droplets is investigated. The effect of rotation and of external homogeneous electric fields on the equilibrium shape and on the limit of stability is also studied in close analogy to the behavior of volume-charged droplets considered in nuclear physics.

  2. Stabilization of Self-Assembled Alumina Mesophases

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Perdriau, Sebastien; ten Brink, Gert; Kooi, Bart J.; Heeres, Hero Jan; Melian-Cabrera, Ignacio

    2013-01-01

    An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum

  3. Tribological and stability investigations of alkylphosphonic acids on alumina surface

    International Nuclear Information System (INIS)

    Cichomski, M.; Kośla, K.; Grobelny, J.; Kozłowski, W.; Szmaja, W.

    2013-01-01

    Alumina substrates are commonly used for various micro-/nanoelectromechanical systems (MEMS/NEMS). For efficient and lifetime longevity of these devices, lubricant films of self-assembled monolayers (SAMs) with nanometer thickness are increasingly being employed. In the present paper, we report preparation, tribological and stability investigations of alkylphosphonic acids on the alumina surface. The alkylphosphonic acids were prepared on the alumina surface using the liquid phase deposition method. The effectiveness of modification of the alumina surface by alkylphosphonic acids was investigated using water contact angle measurements, secondary ion mass spectrometry, X-ray photoelectron and infrared spectroscopy. Frictional behavior in milinewton load range was studied by microtribometry. It is shown that surface modification of the alumina surface by alkylphosphonic acids reduces the coefficient of friction values compared to the unmodified alumina. In comparison to the non-modified alumina surface, all tested alkylphosphonic acids cause a decrease in the friction coefficients in friction tests for counterparts made from different materials, such as steel, zirconia and silicon nitride. It is also found that the alumina surface modified by alkylphosphonic acids with longer chain has a higher degree of hydrophobicity and lower coefficient of friction. The best frictional properties are obtained for the system consisting of the alumina surface modified by n-octadecylphosphonic acid and silicon nitride counterpart. Stability tests in different environmental conditions: laboratory, acidic and alkaline solutions were also monitored.

  4. Dynamical stability of the alpha and theta phases of alumina

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Parlinski, K.

    2003-01-01

    Using density functional calculations the phonon dispersion relations, phonon density of states, and free energy of theta and alpha phases of alumina are investigated. The temperature dependence of the free energy indicates that entropy contributes to the destabilization of the alpha phase...... cations in alumina, and suggest that some other than entropic mechanism exists, which stabilizes transition aluminas up to 1400 K. The present calculations go beyond the ground state energy calculations [C. Wolverton and K.C. Hass, Phys. Rev. B 63, 24102 (2001)], and give an additional understanding...

  5. Alumina-base plasma-sprayed materials part I: Phase stability of alumina and alumina-chromia

    Science.gov (United States)

    Chráska, P.; Dubsky, J.; Neufuss, K.; Písacka, J.

    1997-09-01

    Aluminum oxide is a relatively cheap, abundant material that is widely used for plasma- spray applications. This material, however, exists in many crystallographic modifications with different properties. In addition, most of these modifications are metastable and cannot be used in applications employed at elevated temperatures. Usually γ, δ, or other phases form after spraying, while α phase (corundum) is often the most desirable phase due to high corrosion resistance and hardness. This paper first reviews the method of α stabilization in the as- sprayed materials offered in literature. Then, as an example, it summarizes the results of an extensive study of chromia additions to alumina. Chromia was chosen because of its complete solid solubility in alumina and its crystal lattice type, which is similar to that of alumina. It was demonstrated that the addition of approximately 20 wt% chromia results in the formation of one solid solution of (Al- Cr)2O3 in the α- modification. Finally, this paper discusses the thermal stability of various alumina phases. Phase change routes of heating for different starting alumina modifications are discussed, and a case study of alumina- chromia is presented. Both types of as-sprayed structures, a mixture of α, δ, and γ phases, and 100% (Al- Cr)2O3 were annealed up to 1300 °C and the phase composition checked. At lower temperatures and shorter holding times, the amount of α phase decreases while another metastable θ phase appears, and the fraction of γ + δ, if present, increases. At temperature above 1100 °C, the amount of α phase increases again.

  6. Dependence of the Stabilization of -Alumina on the Spray Process

    Czech Academy of Sciences Publication Activity Database

    Stahr, C.Ch.; Saaro, S.; Berger, L.-M.; Herrmann, M.; Dubský, Jiří; Neufuss, Karel

    2007-01-01

    Roč. 16, 5-6 (2007), s. 822-830 ISSN 1059-9630 R&D Projects: GA ČR(CZ) GA106/05/0483 Institutional research plan: CEZ:AV0Z20430508 Keywords : -Al2O3 stabilization * alumina * chromia * solid solution * X-ray diffraction Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.204, year: 2007

  7. Influence of additives on the stability of the phases of alumina; Influencia de aditivos na estabilidade das fases da alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D.C.C.; Gouvea, D., E-mail: deisedorosario@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Processos Ceramicos

    2011-07-01

    Problems with the stability of gamma alumina in catalytic reactions have been solved with the inclusion of additives during the synthesis of alumina. These additives stabilize the temperature of phase transition allowing the use of metastable alumina at high temperatures, but the mechanisms of action of additives are not well defined. It is known that each family of additive or additives behaves in different ways for this stabilization. This work aimed to study the performance of MgO and ZrO{sub 2}, respectively at different concentrations in alumina synthesized via Pechini. The samples were analyzed by DSC, X-ray diffraction, measurement of specific surface area by BET analysis, and infrared analysis. The results showed an increase in transition temperature for both additives, and a different changes for specific surface area, showing that MgO and ZrO{sub 2} work on improving the stability but with distinct mechanisms. (author)

  8. Glycine functionalized alumina nanoparticles stabilize collagen in ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... ... with collagen fibres was demonstrated using HRSEM, EDX, differential scanning calorimetry and FT-IR analysis. The thermal stability of collagen is enhanced to 74°C upon interaction with Gly@Al2O3 nanoparticles thereby suggesting applications in leather making, biomedicine and cosmetic fields.

  9. Glycine functionalized alumina nanoparticles stabilize collagen in ...

    Indian Academy of Sciences (India)

    perse well in organic solvents rather than in water. SiO2 nanoparticles were used to crosslink the collagen and enhance the thermal stability significantly [14]. The use of functionalized iron oxide nanoparticles for collagen stabi- lization both in aqueous and non-aqueous media was in recent times [15,16]. Castaneda et al ...

  10. Stability of amorphous silica-alumina in hot liquid water.

    Science.gov (United States)

    Hahn, Maximilian W; Copeland, John R; van Pelt, Adam H; Sievers, Carsten

    2013-12-01

    Herein, the hydrothermal stability of amorphous silica-alumina (ASA) is investigated under conditions relevant for the catalytic conversion of biomass, namely in liquid water at 200 °C. The hydrothermal stability of ASA is much higher than that of pure silica or alumina. Interestingly, the synthetic procedure used plays a major role in its resultant stability: ASA prepared by cogelation (CG) lost its microporous structure, owing to hydrolysis of the siloxane bonds, but the resulting mesoporous material still had a considerable surface area. ASA prepared by deposition precipitation (DP) contained a silicon-rich core and an aluminum-rich shell. In hot liquid water, the latter structure was transformed into a layer of amorphous boehmite, which protected the particle from further hydrolysis. The surface area showed relatively minor changes during the transformation. Independent of the synthetic method used, the ASAs retained a considerable concentration of acid sites. The concentration of acid sites qualitatively followed the changes in surface area, but the changes were less pronounced. The performance of different ASAs for the hydrolysis of cellobiose into glucose is compared. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dependence of the Stabilization of α-Alumina on the Spray Process

    Science.gov (United States)

    Stahr, Carl Christoph; Saaro, Sabine; Berger, Lutz-Michael; Dubský, Jiri; Neufuss, Karel; Herrmann, Mathias

    2007-12-01

    A phase change from α-alumina (corundum) in the feedstock powder to predominantly other alumina phases, such as γ-alumina in the coating normally takes place, as a result of the spray process. It is expected that the prevention of this phase transformation will significantly improve the mechanical, electrical, and other properties of thermally sprayed alumina coatings. The results regarding the possibility of stabilization of α-alumina through addition of chromia published in the literature are ambiguous. In this work, stabilization using different spray processes (water-stabilized plasma (WSP), gas-stabilized plasma (APS), and high-velocity oxy-fuel spray (HVOF)) was studied. Mechanical mixtures of alumina and chromia were used, as were prealloyed powders consisting of solid solutions. The investigations focused on mechanical mixtures with both APS and WSP and on prealloyed powders with WSP. The coatings were studied by x-ray diffraction, including Rietveld analysis, and analysis of the lattice parameters. Microstructures were investigated by optical microscopy using metallographic cross-sections. It was shown that in the case of the mechanically mixed powders, the stabilization predominantly depends on the applied spray process. The stabilization of the α phase by use of the WSP process starting from mechanical mixtures was confirmed. It appears that stabilization exhibits a complex dependence on the spray process, the process parameters (in particular the thermal history), the nature of the powder (mechanically mixed or prealloyed), and the chromia content.

  12. A simple hydrothermal route to bimodal mesoporous nanorod {gamma}-alumina with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Han, Dezhi; Xue, Hongxia; Liu, Xinmei; Yan, Zifeng [China Univ. of Petroleum, Qingdao (China). State Key Lab. of Heavy Oil Processing

    2011-12-15

    In the presence of polyethylene glycol, bimodal mesoporous nanorod {gamma}-alumina was successfully synthesized via the thermal decomposition of ammonium aluminium carbonate hydroxide precursor which was prepared via hydrothermal processing with inorganic aluminium salt. The alumina exhibits high surface area (494 m{sup 2}g{sup -1}), large porosity (1.1 m{sup 3}g{sup -1}) and a particular double-pore structure after calcination at 500 C. The smaller pore diameter is concentrated on about 3 nm and the larger one is exhibited in the range of 10 - 38 nm. The scaffold-like aggregation of {gamma}-alumina nanorods endows this novel material with excellent thermal stability. A possible formation mechanism of bimodal mesoporous structure is also proposed in this study. (orig.)

  13. Plasma etching to enhance the surface insulating stability of alumina for fusion applications

    Directory of Open Access Journals (Sweden)

    M. Malo

    2016-12-01

    Full Text Available A significant increase in the surface electrical conductivity of alumina, considered one of the most promising insulating materials for numerous applications in fusion devices, has been observed during ion bombardment in vacuum due to oxygen loss by preferential sputtering. Although this is expected to cause serious limitations to insulating components functionality, recent studies showed it is possible to restore the damaged lattice by oxygen reincorporation during thermal treatments in air. These studies also revealed a correlation between conductivity and ion beam induced luminescence, which is being used to monitor surface electrical conductivity degradation and help qualify the post irradiation recovery. Work now carried out for Wesgo alumina considers oxygen implantation and plasma etching as additional methods to improve recovered layer depth and quality. Both conductivity and luminescence results indicate the potential use of plasma etching not only for damage recovery, but also as a pre-treatment to enhance material stability during irradiation.

  14. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Science.gov (United States)

    Gómez-Villarraga, Fernando; Radnik, Jörg; Martin, Andreas; Köckritz, Angela

    2016-06-01

    Bimetallic nanoparticles (NPs) containing gold and various second metals ( M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.

  15. Influência do pH sobre a estabilidade de suspensões de alumina estabilizadas eletroestericamente Influence of pH on the stability of alumina suspensions electrosterically stabilized

    Directory of Open Access Journals (Sweden)

    Luciano Leal de Morais Sales

    2007-02-01

    Full Text Available In this work, aqueous suspensions of aluminas with different particle sizes were evaluated. The effect of pH on the electrosteric stabilization using PMAA-NH4 (ammonium polymethacrylate as deflocculant was studied. The amount of deflocculant was optimized and rheologic properties were determined at four different pH values. Sedimentation was also evaluated. For suspensions with pH 4, an electrostatic mechanism of stabilization was observed, probably due to a flat adsorption of PMMA- on the alumina surface, leading to a small efficiency in relation to steric stabilization. For a suspension with pH 12, the steric mechanism of stabilization prevails. Suspensions with pH 7 and 9 present a higher flocculation degree. In relation to particle size, A-1000 samples present a smaller particle size, leading to a smaller interparticle distance (IPS, making stabilization more difficult.

  16. Influence of anionic stabilization of alumina particles in 2-propanol medium on the electrophoretic deposition and mechanical properties of deposits

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Bartoníčková, E.; Hadraba, Hynek; Cihlář, J.

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3365-3371 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Anionic stabilization * Electric conductivity * Alumina * Electrophoretic deposition Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  17. THE ALUMINA-SILICATES IN STABILIZATION PROCESSES IN FLUIDIZED-BED ASH

    Directory of Open Access Journals (Sweden)

    IVANA PERNA

    2011-03-01

    Full Text Available Presented study of coal fluidized-bed ash solidification was accompanied with specific studies of alumino-silicates residues in ashes. The specific technology of fluid coal burning and its relatively low temperature combustion combines coal burning and decomposition of calcium carbonate added to the fluid layer in the main endeavor to capture all sulfur oxides. The burning temperature seems be decisive to the behavior of clayed residues and calcium carbonate decomposition in connection for the future solidification of fluidized bed ash. The calcareous substances in combination with alumino-silicate residues form solid bodies where silicates play decisive role of long-term stability and insolubility of obtained solids. The position of aluminum ions in clayed residues of burned coal were studied by MAS-NMR with attention on aluminum ion coordination to oxygen and formation of roentgen amorphous phase of poly-condensed calcium alumina-silicate.

  18. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Villarraga, Fernando, E-mail: ferchogomezv@gmail.com; Radnik, Jörg; Martin, Andreas; Köckritz, Angela [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (Germany)

    2016-06-15

    Bimetallic nanoparticles (NPs) containing gold and various second metals (M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.Graphical Abstract.

  19. Stability, rheology and thermal analysis of functionalized alumina- thermal oil-based nanofluids for advanced cooling systems

    International Nuclear Information System (INIS)

    Ilyas, Suhaib Umer; Pendyala, Rajashekhar; Narahari, Marneni; Susin, Lim

    2017-01-01

    Highlights: • Alumina nanoparticles are functionalized with oleic acid. • Functionalization of alumina nanoparticles gives better dispersion in thermal oil. • Thermophysical properties of nanofluids are experimentally measured. • TGA confirms the improvement in life of nanofluids. - Abstract: Thermal oils are widely used as cooling media in heat transfer processes. However, their potential has not been utilised exquisitely in many applications due to low thermal properties. Thermal oil-based nanofluids are prepared by dispersing functionalized alumina with varying concentrations of 0.5–3 wt.% to enhance thermal properties of oil for advanced cooling systems. The oleic acid coated alumina is prepared and then dispersed in the oil to overcome the aggregation of nanoparticles in base fluid. The surface characterizations of functionalized nanoparticles are performed using different analysis such as XRD, EDS, SEM, TEM and FTIR. Dispersion behaviour and agglomeration studies are conducted at natural and functionalized conditions using different analysis to ensure long-term stability of nanofluids. In addition, rheological behaviour of non-Newtonian nanofluids is studied at high shear rates (100–2000 s −1 ). Effective densities and enhancement in thermal conductivities are measured for different nanofluids concentrations. Specific heat capacity is measured using Differential Scanning Calorimetry. The correlations are developed for thermophysical properties of nanofluids. Thermogravimetric analysis is performed with respect to temperature and time to exploit the effect of the addition of nanoparticles on the degradation of nanofluids. Significant improvement in the thermal properties of oil is observed using highly stable functionalized alumina nano-additives.

  20. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.

    Science.gov (United States)

    Peng, Shan; Tian, Dong; Yang, Xiaojun; Deng, Wenli

    2014-04-09

    In this study, a large-area superhydrophobic alumina surface with a series of superior properties was fabricated via an economical, simple, and highly effective one-step anodization process, and subsequently modified with low-surface-energy film. The effects of the anodization parameters including electrochemical anodization time, current density, and electrolyte temperature on surface morphology and surface wettability were investigated in detail. The hierarchical alumina pyramids-on-pores (HAPOP) rough structure which was produced quickly through the one-step anodization process together with a low-surface-energy film deposition [1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA)] confer excellent superhydrophobicity and an extremely low sliding angle. Both the PDES-modified superhydrophobic (PDES-MS) and the STA-modified superhydrophobic (STA-MS) surfaces present fascinating nonwetting and extremely slippery behaviors. The chemical stability and mechanical durability of the PDES-MS and STA-MS surfaces were evaluated and discussed. Compared with the STA-MS surface, the as-prepared PDES-MS surface possesses an amazing chemical stability which not only can repel cool liquids (water, HCl/NaOH solutions, around 25 °C), but also can show excellent resistance to a series of hot liquids (water, HCl/NaOH solutions, 30-100 °C) and hot beverages (coffee, milk, tea, 80 °C). Moreover, the PDES-MS surface also presents excellent stability toward immersion in various organic solvents, high temperature, and long time period. In particular, the PDES-MS surface achieves good mechanical durability which can withstand ultrasonication treatment, finger-touch, multiple fold, peeling by adhesive tape, and even abrasion test treatments without losing superhydrophobicity. The corrosion resistance and durability of the diverse-modified superhydrophobic surfaces were also examined. These fascinating performances makes the present method suitable for large

  1. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D., E-mail: music@mch.rwth-aachen.de; Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Bednarcik, J.; Michalikova, J. [Deutsches Elektronen Synchrotron DESY, FS-PE group, Notkestrasse 85, D-22607 Hamburg (Germany)

    2015-01-14

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O{sub 2} atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al{sub 2}O{sub 3} formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO{sub 2} at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al{sub 2}O{sub 3} with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds.

  2. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    Science.gov (United States)

    Ozawa, Masakuni; Nishio, Yoshitoyo

    2016-09-01

    Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO2. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al2O3 showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al2O3 samples. LaAlO3 nanoparticle formed among alumina particles by the solid phase reaction of Al2O3 and La2O3. The increase of the surface basicity of La modified alumina was demonstrated using CO2 temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  3. Chemical stability of soda-alumina-zirconia-silica glasses to Na, Na2S4, and S

    International Nuclear Information System (INIS)

    Bloom, S.I.; Bradley, J.; Nelson, P.A.; Roche, M.F.

    1985-01-01

    Twenty-two glasses with a broad range of compositions, spanning the quaternary soda-alumina-zirconia-silica system, have been prepared to allow characterization of the various properties of the system. The glasses were characterized by their resistivities, energies of activation for conduction, and glass transition temperatures. The glasses were screened for compositions of especially high chemical stability of static corrosion tests in Na, S, and Na 2 S 4 for 1000h at 400 0 C. Among the glasses tested, the high soda glasses showed the smallest weight change after exposure to the three media. The weight change observed was comparable to that seen in the Dow borate glass and beta'' alumina

  4. Microstructure and high-temperature mechanical behavior of alumina/alumina-yttria-stabilized tetragonal zirconia multilayer composites

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Melendo, M.; Clauss, C.; Dominguez-Rodriguez, A. [Dept. de Fisica de la Materia Condensada, Sevilla (Spain); Sanchez-Herencia, A.J.; Moya, J.S. [CSIC, Madrid (Spain). Inst. de Ciencias de Materiales

    1997-08-01

    Layered composites of alternate layers of pure Al{sub 2}O{sub 3} (thickness of 125 {micro}m) and 85 vol% Al{sub 2}O{sub 3}-15 vol% ZrO{sub 2} that was stabilized with 3 mol% Y{sub 2}O{sub 3} (thickness of 400 {micro}m) were obtained by sequential slip casting and then fired at either 1,550 or 1,700 C. Constant-strain-rate tests were conducted on these materials in air at 1,400 C at an initial strain rate of 2 {times} 10{sup {minus}5} s{sup {minus}1}. The load axis was applied both parallel and perpendicular to the layer interfaces. Catastrophic failure occurred for the composite that was fired at 1,700 C, because of the coalescence of cavities that had developed in grain boundaries of the Al{sub 2}O{sub 3} layers. In comparison, the composite that was fired at 1,550 C demonstrated the ductility of the Al{sub 2}O{sub 3} + YTZP layer, but at a flow stress level that was determined by the Al{sub 2}O{sub 3} layer.

  5. Effect of the presence of cationic polyacrylamide on the surface properties of aqueous alumina suspension-stability mechanism

    Science.gov (United States)

    Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa

    2014-11-01

    The effects of solution pH and the content of cationic groups in polyacrylamide (PAM) macromolecules on the stability mechanism of aqueous alumina suspension were investigated. The following experimental techniques were applied: spectrophotometry, potentiometric titration, microelectrophoresis, viscosimetry and turbidimetry. They enable determination of polymer adsorbed amount, surface charge density and zeta potential of solid particles in the presence and absence of PAM, as well as thickness of polymer adsorption layer, size of macromolecules in the solution and stability of the Al2O3-polymer systems, respectively. The obtained results indicate that adsorption of PAM increases with the increasing pH, whereas the thickness of polymeric adsorption layer decreases. Additionally, the greater the number of cationic groups in the PAM chains is, the higher adsorption was found. The polymer presence influences on the alumina suspension stability. At pH 3 and 6 the slight deterioration of stability conditions of solid particle covered with polyacrylamide was observed. At pH 9 the systems containing polymer are unstable, similarly to the suspension without PAM, but the mechanism of their destabilization is different.

  6. Influence of alumina phases on the molybdenum adsorption capacity and chemical stability for {sup 99}Mo/{sup 99m}Tc generators columns

    Energy Technology Data Exchange (ETDEWEB)

    Guedes-Silva, Cecilia C.; Ferreira, Thiago dos Santos; Paula, Carolina M. de; Otubo, Larissa, E-mail: cecilia.guedes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carvalho, Flavio M.S. [Universidade de Sao Paulo (IGC/USP), SP (Brazil). Instituto de Geociencias

    2016-07-15

    Technetium-{sup 99m} is the clinically most used radionuclide worldwide. Although many techniques can be applied to separate {sup 99}Mo and {sup 99m}Tc, the most commonly used method is the column chromatography with alumina as stationary phase. However, the alumina nowadays used has limited adsorption capacity of molybdate ions which implies the need to develop or improve materials to produce high specific activity generators. In this paper, alumina was obtained by a solid state method and heat treatments at different conditions. The powders had a microstructure with porous particles of γ, δ, θ and α-Al{sub 2}O{sub 3} phases as well as specific surface area between 36 and 312 m{sup 2} g{sup -1}. Most interesting results were reached by powders calcined at 900 deg C for 5 hours which had high chemical stability and a molybdenum adsorption capacity of 92.45 mg Mo per g alumina. (author)

  7. Novel Approach to Link between Viscosity and Structure of Silicate Melts via Darken's Excess Stability Function: Focus on the Amphoteric Behavior of Alumina

    Science.gov (United States)

    Park, Joo Hyun; Kim, Hyuk; Min, Dong Joon

    2008-02-01

    The effect of alumina on the relationship between viscosity and structure of the CaO-SiO2-Al2O3-MgO system is investigated by employing viscometer using the rotating cylinder method and Fourier transform infrared (FT-IR) spectra, respectively. In addition, the original Darken’s excess stability function was introduced in order to understand the thermophysical phenomena and the role of alumina based on thermodynamics. Alumina behaves as an amphoteric oxide in the CaO-SiO2-Al2O3-MgO melts, and this is not only experimentally confirmed but also thermodynamically proved by taking the Darken’s excess stability function into account.

  8. Evaluation of five primers and two opaque resins for bonding ceria-stabilized zirconia/alumina nanocomposite

    Directory of Open Access Journals (Sweden)

    Kohji Kamada

    2017-03-01

    Full Text Available The purpose of this study was to evaluate the effect of five primers [Super-Bond C&B Monomer (SB, Clearfil Ceramic Primer, Alloy Primer, M.L. Primer, and AZ Primer] and two undercoating opaque resins [Super-Bond C&B (S-opaque and Ceramage Pre-opaque (C-opaque] on the bonding of a resin composite veneering material to a ceria-stabilized tetragonal zirconia polycrystals/alumina nanocomposite (Ce-TZP/Al2O3. Disk-shaped specimens of Ce-TZP/Al2O3 were sandblasted with alumina and primed. The undercoating opaque resins and resin composites were subsequently applied to the specimen, and then light cured. After 5000 thermocycles at 4°C and 60°C, shear bond strengths were determined. Data were analyzed using analysis of variance, Tukey–Kramer honest significant difference test, and Student t test (n = 10, α = 0.05. With the exception of SB/S-opaque, all S-opaque groups exhibited significantly higher bond strengths than C-opaque groups. The use of S-opaque resin is recommended when veneering frameworks made of Ce-TZP/Al2O3.

  9. Thermal stability of alumina thin films containing γ-Al.sub.2./sub.O.sub.3./sub. phase prepared by reactive magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Musil, Jindřich; Blažek, J.; Zeman, P.; Prokšová, Š.; Šašek, M.; Čerstvý, R.

    2010-01-01

    Roč. 257, č. 3 (2010), s. 1058-1062 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z10100520 Keywords : Al 2 O 3 (alumina) * annealing * thermal stability * nanocrystalline material * sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.795, year: 2010

  10. The thermal stability of sodium beta'-Alumina solid electrolyte ceramic in AMTEC cells

    International Nuclear Information System (INIS)

    Williams, Roger M.; Ryan, Margaret A.; Homer, Margie L.; Lara, Liana; Manatt, Ken; Shields, Virgil; Cortez, Roger H.; Kulleck, James

    1999-01-01

    A critical component of alkali metal thermal-to electric converter (AMTEC) devices for long duration space missions is the beta'-alumina solid electrolyte ceramic (BASE), for which there exists no substitute. The temperature and environmental conditions under which BASE remains stable control operational parameters of AMTEC devices. We have used mass loss experiments in vacuum to 1573K to characterize the kinetics of BASE decomposition, and conductivity and exchange current measurements in sodium vapor filled exposure cells to 1223K to investigate changes in the BASE which affect its ionic conductivity. There is no clear evidence of direct thermal decomposition of BASE below 1273K, although limited soda loss may occur. Reactive metals such as Mn or Cr can react with BASE at temperatures at least as low as 1223K

  11. Silver nanoparticles with an armor layer embedded in the alumina matrix to form nanocermet thin films with sound thermal stability.

    Science.gov (United States)

    Gao, Junhua; Tu, Chengjun; Liang, Lingyan; Zhang, Hongliang; Zhuge, Fei; Wu, Liang; Cao, Hongtao; Yu, Ke

    2014-07-23

    In this article, we demonstrate that the Al-alloyed Ag nanoparticle-embedded alumina nanocermet films lead to excellent thermal stability, even at 500 °C for 130 h under an ambient nitrogen atmosphere. The outward diffusion of Al atoms from the AgAl bimetallic alloy nanoparticles and their easy oxidation create an armor layer to suppress the mobility of Ag atoms. Then, the AlAg particles or/and agglomerates with a uniform spherical shape favor higher dispersion concentration within the host matrix, which is beneficial both for high absorptance in the visible range and for the solid localized surface plasmon absorption features in the AgAl-Al2O3 nanocermet films. Based on the AgAl-Al2O3 absorbing layer with sound optical and microstructural stability, we successfully constructed a high-temperature-endurable solar selective absorber. The multilayer stacked absorber demonstrates a high solar absorptance of ∼94.2% and a low thermal emittance of ∼15% (@ 673 K) after annealing at 450 °C for 70 h in an ambient nitrogen atmosphere.

  12. Theoretical study on the adsorption and relative stability of conformers of L-ascorbic acid on γ - alumina (100) surface

    Science.gov (United States)

    Mozaffari Majd, M.; Dabbagh, H. A.; Farrokhpour, H.; Najafi Chermahini, A.

    2017-11-01

    The adsorption energies (Eads) and relative stabilities of selected conformers of the most stable tautomer of L-ascorbic acid (vitamin C) on the dehydroxylated γ-alumina (100) surface were calculated in both gas phase and solvent (water) using the density functional theory (DFT) method. The selected conformers were related to the different rotational angles of OH groups of L-ascorbic acid. The conformational analysis of bare tautomer in both gas and water showed that the conformer No.20 (conf. 20) and 13 (conf. 13) with the dihedral angles of H15sbnd O10sbnd C11sbnd C9 (-73°) and H20sbnd O19sbnd C9sbnd C11 (-135°) were the most stable and unstable conformers, respectively. The performed calculations in the presence of surface showed that the interaction of the conformers with the surface changes their relative stabilities and structures in both gas phase and water. The Ead of each conformer was calculated and it was determined that conf. 8 and conf. 16 have the highest value of Ead in the gas phase (-62.56 kcal/mol) and water (-54.44 kcal/mol), respectively. The optimized structure of each conformer on the surface and the number of hydrogen bonds between it and surface along with their bond lengths were determined.

  13. Ab initio study of effects of substitutional additives on the phase stability of γ-alumina

    International Nuclear Information System (INIS)

    Jiang Kaiyun; Music, Denis; Sarakinos, Kostas; Schneider, Jochen M

    2010-01-01

    Using ab initio calculations, we have evaluated two structural descriptions of γ-Al 2 O 3 , spinel and tetragonal hausmannite, and explored the relative stability of γ-Al 2 O 3 with respect to α-Al 2 O 3 with 2.5 at.% of Si, Cr, Ti, Sc, and Y additives to identify alloying element induced electronic structure changes that impede the γ to α transition. The total energy calculations indicate that Si stabilizes γ-Al 2 O 3 , while Cr stabilizes α-Al 2 O 3 . As Si is added, a bond length increase in α-Al 2 O 3 is observed, while strong and short Si-O bonds are formed in γ-Al 2 O 3 , consequently stabilizing this phase. On the other hand, Cr additions induce a smaller bond length increase in α-Al 2 O 3 than in γ-Al 2 O 3 , therefore stabilizing the α-phase. The bulk moduli of γ-Al 2 O 3 with these additives show no significant changes. The phase stability and elastic property data discussed here underline the application potential of Si alloyed γ-Al 2 O 3 for applications at elevated temperatures. Furthermore it is evident that the tetragonal hausmannite structure is a suitable description for γ-Al 2 O 3 .

  14. Microstructural stability of zirconia-alumina composite coatings during hot corrosion test at 1050 {sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, A., E-mail: akeyvani@ut.ac.i [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Saremi, M., E-mail: saremi@ut.ac.i [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Heydarzadeh Sohi, M., E-mail: mhsohi@ut.ac.i [School of Metallurgy and Materials, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2010-09-10

    In the present work hot corrosion behavior of plasma sprayed zirconia-alumina coatings on Ni-base, IN-738, super alloy substrate was studied compared with normal zirconia. Hot corrosion resistance of the coatings was measured at 1050 {sup o}C using an atmospheric electrical furnace and a fused mixture of vanadium pentoxide and sodium sulfate salt. The hot corrosion test duration was 4 h in each cycle, while the specimens were cooled in the furnace. The general and peripheral conditions of the specimens were inspected. If there were any cracks or spallation in coating wedge the test was stopped, the time was recorded and coating microstructure was studied. Composite coatings of zirconia-alumina having alumina as a top coat or a mixed zirconia-alumina layer, showed better resistance in hot corrosion tests. It was concluded that alumina overlay on zirconia has promoted the hot corrosion resistance of the coatings.

  15. Ab initio study of effects of substitutional additives on the phase stability of {gamma}-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Kaiyun; Music, Denis; Sarakinos, Kostas; Schneider, Jochen M, E-mail: jiang@mch.rwth-aachen.d [Materials Chemistry, RWTH Aachen University, Mies van der Rohe Strasse 10, D-52074 Aachen (Germany)

    2010-12-22

    Using ab initio calculations, we have evaluated two structural descriptions of {gamma}-Al{sub 2}O{sub 3}, spinel and tetragonal hausmannite, and explored the relative stability of {gamma}-Al{sub 2}O{sub 3} with respect to {alpha}-Al{sub 2}O{sub 3} with 2.5 at.% of Si, Cr, Ti, Sc, and Y additives to identify alloying element induced electronic structure changes that impede the {gamma} to {alpha} transition. The total energy calculations indicate that Si stabilizes {gamma}-Al{sub 2}O{sub 3}, while Cr stabilizes {alpha}-Al{sub 2}O{sub 3}. As Si is added, a bond length increase in {alpha}-Al{sub 2}O{sub 3} is observed, while strong and short Si-O bonds are formed in {gamma}-Al{sub 2}O{sub 3}, consequently stabilizing this phase. On the other hand, Cr additions induce a smaller bond length increase in {alpha}-Al{sub 2}O{sub 3} than in {gamma}-Al{sub 2}O{sub 3}, therefore stabilizing the {alpha}-phase. The bulk moduli of {gamma}-Al{sub 2}O{sub 3} with these additives show no significant changes. The phase stability and elastic property data discussed here underline the application potential of Si alloyed {gamma}-Al{sub 2}O{sub 3} for applications at elevated temperatures. Furthermore it is evident that the tetragonal hausmannite structure is a suitable description for {gamma}-Al{sub 2}O{sub 3}.

  16. Ligand Exchange-Mediated Activation and Stabilization of a Re-Based Olefin Metathesis Catalyst by Chlorinated Alumina.

    Science.gov (United States)

    Gallo, Alessandro; Fong, Anthony; Szeto, Kai C; Rieb, Julia; Delevoye, Laurent; Gauvin, Régis M; Taoufik, Mostafa; Peters, Baron; Scott, Susannah L

    2016-10-05

    Extensive chlorination of γ-Al 2 O 3 results in the formation of highly Lewis acidic surface domains depleted in surface hydroxyl groups. Adsorption of methyltrioxorhenium (MTO) onto these chlorinated domains serves to activate it as a low temperature, heterogeneous olefin metathesis catalyst and confers both high activity and high stability. Characterization of the catalyst reveals that the immobilized MTO undergoes partial ligand exchange with the surface, whereby some Re sites acquire a chloride ligand from the modified alumina while donating an oxo ligand to the support. More specifically, Re L III -edge EXAFS and DFT calculations support facile ligand exchange between MTO and Cl-Al 2 O 3 to generate [CH 3 ReO 2 Cl + ] fragments that interact with a bridging oxygen of the support via a Lewis acid-base interaction. According to IR and solid-state NMR, the methyl group remains intact, and does not evolve spontaneously to a stable methylene tautomer. Nevertheless, the chloride-promoted metathesis catalyst is far more active and productive than MTO/γ-Al 2 O 3 , easily achieving a TON of 100 000 for propene metathesis in a flow reactor at 10 °C (compared to TON < 5000 for the nonchlorinated catalyst). Increased activity is a consequence of both a larger fraction of active sites and a higher intrinsic activity for the new sites. Increased stability is tentatively attributed to a stronger interaction between MTO and chlorinated surface regions, as well as extensive depletion of the Brønsted acidic surface hydroxyl population. The reformulated catalyst represents a major advance for Re-based metathesis catalysts, whose widespread use has thus far been severely hampered by their instability.

  17. Ca stabilized zirconia based composites by wet consolidation of zirconia and high alumina cement mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Bruni, Y.L.; Garrido, L.B.; Aglietti, E.F., E-mail: lgarrido@cetmic.unlp.edu.ar [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC/CIC-CONICET La Plata), Buenos Aires (Argentina)

    2012-07-01

    Composites of the CaO-Al{sub 2}O{sub 3}-ZrO{sub 2} system are widely used in many industrial applications. In this study, porous Ca stabilized ZrO{sub 2} composites were developed from a starting mixture of m-ZrO{sub 2} and calcium aluminate cement. Ceramics were produced by wet consolidation of aqueous suspensions with and without corn starch as pore former agent and sintering at 1000-1500 °C. The influence of processing parameters on crystalline phases, sintering behavior and textural characteristics was examined. Stabilized c-ZrO{sub 2} formed with the composition of Ca{sub 0.15}Zr{sub 0.85}O{sub 1.85}. The sintering of the mixtures lead to porous composites materials. Textural properties were analyzed considering the initial composition and the present crystalline phases. (author)

  18. Stabilization of supported platinum nanoparticles on gamma-alumina catalysts by addition of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Jose L., E-mail: jlcl@correo.azc.uam.m [Universidad Autonoma Metropolitana-Azcapotzalco. Energia, CBI, Av. Sn. Pablo 180, Col. Reynosa, 02200, Mexico, D.F. (Mexico); Universidad Autonoma Metropolitana-Iztapalapa Depto. Ingenieria de Procesos e Hidraulica, A.P. 55-534, 09340 Mexico, D.F. (Mexico); Fuentes, Gustavo A. [Universidad Autonoma Metropolitana-Iztapalapa Depto. Ingenieria de Procesos e Hidraulica, A.P. 55-534, 09340 Mexico, D.F. (Mexico); Zeifert, Beatriz; Salmones, Jose [Instituto Politecnico Nacional, ESIQIE, Av. IPN s/n Edif. 8, UPALM, Mexico, D.F. 07738 (Mexico)

    2009-08-26

    The thermal stabilization of Al{sub 2}O{sub 3} using W{sup 6+} ions has been found useful to the synthesis of Pt/Al{sub 2}O{sub 3} catalysts. The simultaneous and sequential methods were used to study the effect of W{sup 6+} upon Pt/gamma-Al{sub 2}O{sub 3} reducibility, Pt dispersion, and benzene hydrogenation. The W/Pt atomic ratios were from 0.49 to 12.4. In the first method we found that the W{sup 6+} ions delayed reduction of a fraction of Pt{sup 4+} atoms beyond 773 K. At the same time, W{sup 6+}inhibited sintering of the metallic crystallites once they were formed on the surface. For the sequential sample with a W/Pt atomic ratio of 3.28 W{sup 6+} did not inhibit the H{sub 2} reduction of Pt oxides even below of 773 K, the Pt oxides were reduced completely. After reduction at 1073 K, sequential samples impregnating Pt on WO{sub x}-gamma-Al{sub 2}O{sub 3} were more active and stable during benzene hydrogenation. TOF of the reaction did not change when the W/Pt atomic ratio, preparation technique and reduction temperature changed and its value was of 1.1 s{sup -1}. W{sup 6+} ions promoted high thermal stability of Pt crystallites when sequential catalysts were reduced at 1073 K and decreased their Lewis acidity.

  19. Shear bond strength between veneering ceramics and ceria-stabilized zirconia/alumina.

    Science.gov (United States)

    Fischer, Jens; Stawarczyk, Bogna; Sailer, Irena; Hämmerle, Christoph H F

    2010-05-01

    Ceria-stabilized tetragonal ZrO(2)/Al(2)O(3) nanocomposite (Ce-TZP/A) offers superior properties compared to yttria-stabilized zirconia (Y-TZP). However, the bond quality to veneering ceramics has not been investigated. The purpose of this study was to evaluate the bond strength of different veneering ceramics to Ce-TZP/A. Cubes of Ce-TZP/A (NANOZR) (edge length, 10 mm) were layered with veneering ceramics (5 mm in thickness) with or without application of a liner and sheared at the interface. The effect of different surface treatments (polished with 3-mum diamond paste or airborne-particle abraded) was evaluated with 1 veneering ceramic (Cerabien ZR). Shear bond strength of 5 additional veneering ceramics (IPS e.max, Initial ZR, Triceram, Vintage ZR, or VITA VM 9) to polished Ce-TZP/A was measured (n=10). Polished Y-TZP (Hint-ELs ZrO(2) HIP) veneered with 2 ceramics (Cerabien ZR, Vintage ZR) served as the control. Mean shear bond strength values (MPa) were calculated. The means were statistically analyzed with 2-way ANOVA for the effect of surface treatment and liner, 2-way ANOVA for the effect of different veneering ceramic brands and liner, and 3-way ANOVA for the effect of substrate, veneering ceramic brands, and liner, as well as 1-way ANOVA for the differences between the veneering ceramics. A post hoc Scheffé test was used (alpha=.05). The effects of surface treatment (P=.007) or application of liner (Pveneering ceramics showed bond strength values with means ranging between 14.2 +/-1.7 MPa (IPS e.max with liner) and 27.5 +/-4.2 MPa (VITA VM 9). A significant difference was found between the results of shear bond tests with Y-TZP and Ce-TZP/A (P=.022). The application of a liner on Y-TZP had no significant effect. Airborne-particle abrasion is not necessary to enhance the shear bond strength of the evaluated veneering ceramics to Ce-TZP/A. Liners impair the shear bond strength of veneering ceramics to Ce-TZP/A.

  20. Mesoporous electrode material from alumina-stabilized anatase TiO.sub.2./sub. for lithium ion batteries

    Czech Academy of Sciences Publication Activity Database

    Attia, Adel; Zukalová, Markéta; Rathouský, Jiří; Zukal, Arnošt; Kavan, Ladislav

    2005-01-01

    Roč. 9, č. 3 (2005), s. 134-145 ISSN 1432-8488 R&D Projects: GA ČR(CZ) GA203/03/0824 Institutional research plan: CEZ:AV0Z40400503 Keywords : titanium dioxide * alumina * lithium battery * mesoporous materials Subject RIV: CG - Electrochemistry Impact factor: 1.158, year: 2005

  1. Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles.

    Science.gov (United States)

    Xia, Wenhao; Xu, Biyi; Duan, Huanan; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-03-02

    Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10(-4) S cm(-1)). The ionic conductivity maintains 3.6 × 10(-4) S cm(-1) after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10(-4) S cm(-1) and drops to 2.39 × 10(-5) S cm(-1) 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability.

  2. Encapsulation by Janus spheroids

    OpenAIRE

    Li, Wei; Liu, Ya; Brett, Genevieve; Gunton, James D.

    2011-01-01

    The micro/nano encapsulation technology has acquired considerable attention in the fields of drug delivery, biomaterial engineering, and materials science. Based on recent advances in chemical particle synthesis, we propose a primitive model of an encapsulation system produced by the self-assembly of Janus oblate spheroids, particles with oblate spheroidal bodies and two hemi-surfaces coded with dissimilar chemical properties. Using Monte Carlo simulation, we investigate the encapsulation sys...

  3. Effect of Support Pretreatment Temperature on the Performance of an Iron Fischer–Tropsch Catalyst Supported on Silica-Stabilized Alumina

    Directory of Open Access Journals (Sweden)

    Kamyar Keyvanloo

    2018-02-01

    Full Text Available The effect of support material pretreatment temperature, prior to adding the active phase and promoters, on Fischer–Tropsch activity and selectivity was explored. Four iron catalysts were prepared on silica-stabilized alumina (AlSi supports pretreated at 700 °C, 900 °C, 1100 °C or 1200 °C. Addition of 5% silica to alumina made the AlSi material hydrothermally stable, which enabled the unusually high support pretreatment temperatures (>900 °C to be studied. High-temperature dehydroxylation of the AlSi before impregnation greatly reduces FeO·Al2O3 surface spinel formation by removing most of the support-surface hydroxyl groups leading to more effectively carbided catalyst. The activity increases more than four-fold for the support calcined at elevated temperatures (1100–1200 °C compared with traditional support calcination temperatures of <900 °C. This unique pretreatment also facilitates the formation of ε′-Fe2.2C rather than χ-Fe2.5C on the AlSi support, which shows an excellent correlation with catalyst productivity.

  4. Fixed Dental Prostheses and Single-Tooth Crowns Based on Ceria-Stabilized Tetragonal Zirconia/Alumina Nanocomposite Frameworks: Outcome After 2 Years in a Clinical Trial.

    Science.gov (United States)

    Hüttig, Fabian; Keitel, Jan P; Prutscher, Andreas; Spintzyk, Sebastian; Klink, Andrea

    This clinical trial tested bilayered restorations based on ceria-stabilized tetragonal zirconia/alumina frameworks veneered with feldspathic ceramic. A total of 67 crowns and 40 fixed dental prostheses (FDPs) were luted in 57 patients with self-etching/self-adhesive composite resin cement. Dental status and integrity of restorations were evaluated at 2 weeks, 6 months, and then annually. A total of 66 crowns and 36 FDPs (88% posterior) survived for success rates of 93.4% for crowns and 89% for FDPs at 2 years. In particular, 11 cohesive ceramic chippings were observed in 5 crowns and 6 FDPs. The material allows excellent marginal adaptation. Susceptibility to veneering failures might be due to framework design and the necessities of esthetics.

  5. Alumina-Reinforced Zirconia Composites

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  6. Acetic acid mediated interactions between alumina surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kimiyasu, E-mail: sato.kimiyasu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Y Latin-Small-Letter-Dotless-I lmaz, Hueseyin [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Gebze Institute of Technology, Materials Science and Engineering Department, 41400, Gebze-Kocaeli (Turkey); Ijuin, Atsuko; Hotta, Yuji; Watari, Koji [National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan)

    2012-02-01

    Low-molecular-weight organic acids have been known to modify colloidal stability of alumina-based suspensions. We investigated interaction forces between alumina surfaces mediated by acetic acid which is one of the simplest organic acids. Forces between alumina surfaces were measured using the colloid-probe method of atomic force microscope (AFM). Repulsive forces attributed to steric repulsion due to adsorbed molecules and electrostatic repulsion dominated the interaction. Results of rheological characterization of the alumina slurry containing acetic acid supported the finding.

  7. Prolate spheroidal quantum cloak

    Energy Technology Data Exchange (ETDEWEB)

    Syue, Cheng-De; Lin, De-Hone, E-mail: dhlin@mail.nsysu.edu.tw [Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2015-04-15

    To understand the propagation behavior of an oblique incident matter wave in a three-dimensional non-spherical quantum cloak, we perform the transformation design for the prolate spheroidal coordinate system and obtain a quantum cloak with an ellipsoidal shape. The mass parameters and effective potential for the creation of a perfect prolate spheroidal invisibility region are given. The analytic representations of the cloaked matter wave and probability current in the cloaking shell are presented. Special attention is paid to the discussions of the probability current in the cloaking shell for only that current can manifestly exhibit how the wave vector of the matter wave is curved, rotated, and guided in the cloaking shell to flow around the non-spherically invisible region. With the current analysis, one shows that the presented cloak can perfectly guide the matter wave in the situation of any oblique incidence. The proposed prolate spheroidal cloak for matter waves provides the first non-spherically three-dimensional setup for quantum cloaking.

  8. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    Science.gov (United States)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an

  9. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  10. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  11. Ultrasonic characterization of zirconia-toughened alumina ceramics

    International Nuclear Information System (INIS)

    Phani, K.K.; Mukherjee, S.; Basu, D.

    1996-01-01

    Ultrasonic pulse-echo technique was used for the characterization of sintered zirconia-toughened alumina (ZTA) ceramics. The variation of the ultrasonic velocity and elastic constants with the volume fraction of zirconia in the alumina matrix was studied. The ultrasonic velocity variation in these materials also was modeled using a mean-value approach. The zirconia grains in ZTA were modeled by oblate spheroids, whose aspect ratio was estimated from the two-dimensional microstructure of the material using stereological relations. The aspect ratio was then used as a parameter to estimate the ultrasonic velocity variation in the material using self-consistent spheroidal inclusion theory, and the model was validated by comparing the estimated data with the measured velocity values, which showed very good agreement

  12. Bistable flows in precessing spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Cébron, D, E-mail: david.cebron@ujf-grenoble.fr [Université Grenoble Alpes, CNRS, ISTerre, Grenoble (France)

    2015-04-15

    Precession driven flows are found in any rotating container filled with liquid, when the rotation axis itself rotates about a secondary axis that is fixed in an inertial frame of reference. Because of its relevance for planetary fluid layers, many works consider spheroidal containers, where the uniform vorticity component of the bulk flow is reliably given by the well-known equations obtained by Busse (1968 J. Fluid Mech. 33 739–51). So far however, no analytical result for the solutions is available. Moreover, the cases where multiple flows can coexist have not been investigated in detail since their discovery by Noir et al (2003 Geophys. J. Int. 154 407–16). In this work we aim at deriving analytical results for the solutions, aiming in particular at first estimating the ranges of parameters where multiple solutions exist, and second studying quantitatively their stability. Using the models recently proposed by Noir and Cébron (2013 J. Fluid Mech. 737 412–39), which are more generic in the inviscid limit than the equations of Busse, we analytically describe these solutions, their conditions of existence, and their stability in a systematic manner. We then successfully compare these analytical results with the theory of Busse (1968). Dynamical model equations are finally proposed to investigate the stability of the solutions, which describe the bifurcation of the unstable flow solution. We also report for the first time the possibility that time-dependent multiple flows can coexist in precessing triaxial ellipsoids. Numerical integrations of the algebraic and differential equations have been efficiently performed with the dedicated script FLIPPER (supplementary material). (paper)

  13. Influence of Different Framework Designs on the Fracture Properties of Ceria-Stabilized Tetragonal Zirconia/Alumina-Based All-Ceramic Crowns

    Directory of Open Access Journals (Sweden)

    Tomofumi Sawada

    2016-05-01

    Full Text Available The aim of this study was to evaluate the fracture load and failure mode of all-ceramic crowns with different ceria-stabilized tetragonal zirconia/alumina nanocomposite (Ce-TZP/A framework designs. Four frameworks (anatomical shape: AS, with a buccal or lingual supporting structure: BS and LS, or buccal and lingual supporting structures: BLS were fabricated. All frameworks were veneered with porcelain to fabricate all-ceramic crowns followed by cementation to tooth analogs. The fracture load of each crown either without or with pre-loading (1.2 million cycles, 49 N was measured. The failure mode was classified into partial or complete fracture. Differences were tested for significance (p < 0.05 by a two-way Analysis of Variance (ANOVA, followed by Tukey’s test and by Fisher’s exact test, respectively. Without pre-loading, supporting structures did not influence the fracture load or failure mode. Partial fractures were the most common failure mode. Pre-loading promoted the severity of the failure mode, although the fracture load among the framework designs was not influenced. In the AS group, prefailures were observed during pre-loading, and complete fractures were significantly increased after pre-loading. In contrast, the failure mode of the BLS group remained unchanged, showing only partial fracture even after pre-loading. This Ce-TZP/A framework design, comprised of an anatomical shape with additional buccal and lingual structures, has the potential to reduce the chipping of the veneering porcelain.

  14. Spheroid droplets evaporation of water solutions

    Directory of Open Access Journals (Sweden)

    Misyura S.Y.

    2017-01-01

    Full Text Available Droplet film boiling on a horizontal heating surface was studied experimentally. The heat transfer coefficient of droplet water solution in the spheroidal state decreases with a rise of wall overheating and spheroid diameter. Evaporation of small spheroid (diameter d 20 mm. At the evaporation of large spheroids a spheroid shape changes in time that significantly affect coefficients of generalizing curves that use dimensionless numbers.

  15. Processing of Alumina-Toughened Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  16. Global Landslides on Rapidly Spinning Spheroids

    Science.gov (United States)

    Scheeres, Daniel J.; Sanchez, P.

    2013-10-01

    The angle of repose and conditions for global landslides on the surfaces of small, rapidly spinning, spheroidal asteroids are studied. Applying techniques of soil mechanics, we develop a theory for, and examples of, how regolith will fail and flow in this microgravity environment. Our motivation is to develop an understanding of the "top-shaped" class of asteroids based on analytical soil mechanics. Our analysis transforms the entire asteroid surface into a local frame where we can model it as a conventional granular pile with a surface slope, acceleration and height variations as a function of the body's spin rate, shape and density. A general finding is that the lowest point on a rapidly spinning spheroid is at the equator with the effective height of surface material monotonically increasing towards the polar regions, where the height can be larger than the physical radius of the body. We study the failure conditions of both cohesionless and cohesive regolith, and develop specific predictions of the surface profile as a function of the regolith angle of friction and the maximum spin rate experienced by the body. The theory also provides simple guidelines on what the shape may look like, although we do not analyze gravitationally self-consistent evolution of the body shape. The theory is tested with soft-sphere discrete element method granular mechanics simulations to better understand the dynamical aspects of global asteroid landslides. We find significant differences between failure conditions for cohesive and cohesionless regolith. In the case of cohesive regolith, we show that extremely small values of strength (much less than that found in lunar regolith) can stabilize a surface even at very rapid spin rates. Cohesionless surfaces, as expected, fail whenever their surface slopes exceed the angle of friction. Based on our analysis we propose that global landslides and the flow of material towards the equator on spheroidal bodies are precipitated by exogenous

  17. SIZE AND SHAPE FACTOR EXTREMES OF SPHEROIDS

    Directory of Open Access Journals (Sweden)

    Daniel Hlubinka

    2011-05-01

    Full Text Available In the paper we consider random prolate (oblate spheroids and their random profiles. The limiting distribution of the extremal characteristics of the spheroids is related to the limiting distribution of the corresponding extremal characteristics of the profiles. The difference between the analysis of the prolate and oblate spheroids is discussed. We propose the possible application of the theoretical results.

  18. Reuse of activated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Hobensack, J.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  19. Studies of alumina additions in zirconia - magnesia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1987-01-01

    Ionic conductivity measurements have been carried out in the 500 0 C - 1000 0 C temperature range in Mg - PSZ (Partially Stabilized Zirconia) with 0.5 to 10 mol % alumina additions. All specimens were prepared by pressing followed by pre - and sintering at 1000 0 C/2h and1450 0 C/4h, respectively. Thermal histerysis of the ionic conductivity have been detected, probably due to phase changes in the Mg-PSZ samples. The results show that alumina additions up to 2.1% enhances densification with no major variations in electrical resistivity values. (Author) [pt

  20. Spheroidization of inorganic compounds by the LPPS method

    Czech Academy of Sciences Publication Activity Database

    Mastný, L.; Brožek, Vlastimil; Medřický, Jan; Marek, I.

    2017-01-01

    Roč. 13, č. 1 (2017), s. 162 ISSN 1336-7242. [Zjazd chemikov /69./. 11.09.2017-15.09.2017, Vysoké Tatry, Starý Smokovec] R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : Water stabilized plasma * Liquid precursor plasma spraying * nanoparticles * spheroidization Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics)

  1. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  2. Role of Alumina Basicity in CO2Uptake in 3-Aminopropylsilyl-Grafted Alumina Adsorbents.

    Science.gov (United States)

    Potter, Matthew E; Cho, Kyeong Min; Lee, Jason J; Jones, Christopher W

    2017-05-22

    Oxide-supported amine materials are widely known to be effective CO 2 sorbents under simulated flue-gas and direct-air-capture conditions. Most work has focused on amine species loaded onto porous silica supports, though potential stability advantages may be offered through the use of porous alumina supports. Unlike silica materials, which are comparably inert, porous alumina materials can be tuned to have substantial acidity and/or basicity. Owing to their amphoteric nature, alumina supports play a more active role in CO 2 sorption than silica supports, potentially directly participating in the adsorption process. In this work, primary amines associated with 3-aminopropyltriethoxysilane are grafted onto two different mesoporous alumina materials having different levels of basicity. Adsorbent materials with different amine loadings are prepared, and the CO 2 -adsorption behavior of similar amines on the two alumina supports is demonstrated to be different. At low amine loadings, the inherent properties of the support surface play a significant role, whereas at high amine loadings, when the alumina surface is effectively blocked, the sorbents prepared on the two supports behave similarly. At high amine loadings, amine-CO 2 -amine interactions are shown to dominate, leading to adsorbed species that appear similar to the species formed over silica-supported amine materials. The sorbent properties are comprehensively characterized using N 2 physisorption analysis, in situ FTIR spectroscopy, and adsorption microcalorimetry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  4. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  5. Advances in multicellular spheroids formation.

    Science.gov (United States)

    Cui, X; Hartanto, Y; Zhang, H

    2017-02-01

    Three-dimensional multicellular spheroids (MCSs) have a complex architectural structure, dynamic cell-cell/cell-matrix interactions and bio-mimicking in vivo microenvironment. As a fundamental building block for tissue reconstruction, MCSs have emerged as a powerful tool to narrow down the gap between the in vitro and in vivo model. In this review paper, we discussed the structure and biology of MCSs and detailed fabricating methods. Among these methods, the approach in microfluidics with hydrogel support for MCS formation is promising because it allows essential cell-cell/cell-matrix interactions in a confined space. © 2017 The Author(s).

  6. Effects of Variable Aspect-Ratio Inclusions on the Electrical Impedance of an Alumina Zirconia Composite at Intermediate Temperatures

    Science.gov (United States)

    Goldsby, Jon C.

    2010-01-01

    A series of alumina-yttria-stabilized zirconia composites containing either a high aspect ratio (5 and 30 mol%) hexagonal platelet alumina or an alumina low aspect ratio (5 and 30 mol%) spherical particulate was used to determine the effect of the aspect ratio on the temperature-dependent impedance of the composite material. The highest impedance across the temperature range of 373 to 1073 K is attributed to the grain boundary of the hexagonal platelet second phase in this alumina zirconia composite.

  7. Alumina Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  8. Bauxite and alumina

    Science.gov (United States)

    Bray, E.L.

    2010-01-01

    The article reports on the global market performance of bauxite and alumina in 2009 and presents an outlook for their 2010 performance. There were only several U.S. states that could produce bauxite and bauxitic clays including Georgia, Arkansas, and Alabama. The prices for imported refractory-grade calcined bauxite ranged between 426 U.S. dollars and 554 dollars per ton.

  9. alumina solid electrolyte

    Indian Academy of Sciences (India)

    -β/β -alumina; solid electrolyte; calcium impurity; specific resistance. 1. Introduction. Since its development in the 1980s, the Na/S battery has been one of the most promising candidates for energy storage applications. The Na/S battery functions based on the elec- trochemical reaction between sodium and sulphur to form.

  10. alumina solid electrolyte

    Indian Academy of Sciences (India)

    alumina was synthesized using a solid-state reaction. The changes in ... sive, because of its abundant lowcost raw materials and is suitable for high-volume mass production. The battery is composed of a sodium anode, a sulphur cathode, and. Na. +.

  11. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  12. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  13. Unsuccessful mitosis in multicellular tumour spheroids.

    Science.gov (United States)

    Molla, Annie; Couvet, Morgane; Coll, Jean-Luc

    2017-04-25

    Multicellular spheroids are very attractive models in oncology because they mimic the 3D organization of the tumour cells with their microenvironment. We show here using 3 different cell types (mammary TSA/pc, embryonic kidney Hek293 and cervical cancer HeLa), that when the cells are growing as spheroids the frequency of binucleated cells is augmented as occurs in some human tumours.We therefore describe mitosis in multicellular spheroids by following mitotic markers and by time-lapse experiments. Chromosomes alignment appears to be correct on the metaphasic plate and the passenger complex is well localized on centromere. Moreover aurora kinases are fully active and histone H3 is phosphorylated on Ser 10. Consequently, the mitotic spindle checkpoint is satisfied and, anaphase proceeds as illustrated by the transfer of survivin on the spindle and by the segregation of the two lots of chromosomes. However, the segregation plane is not well defined and oscillations of the dividing cells are observed. Finally, cytokinesis fails and the absence of separation of the two daughter cells gives rise to binucleated cells.Division orientation is specified during interphase and persists throughout mitosis. Our data indicate that the cancer cells, in multicellular spheroids, lose their ability to regulate their orientation, a feature commonly encountered in tumours.Moreover, multicellular spheroid expansion is still sensitive to mitotic drugs as pactlitaxel and aurora kinase inhibitors. The spheroids thus represent a highly relevant model for studying drug efficiency in tumours.

  14. Uranyl sorption onto alumina

    International Nuclear Information System (INIS)

    Jacobsson, A.M.M.

    1997-01-01

    The mechanism for the adsorption of uranyl onto alumina from aqueous solution was studied experimentally and the data were modeled using a triple layer surface complexation model. The experiments were carried out at low uranium concentrations (9 x 10 -11 --5 x 10 -8 M) in a CO 2 free environment at varying electrolyte concentrations (0.01--1 M) and pH (4.5--12). The first and second acid dissociation constants, pK a1 and pK a2 , of the alumina surface were determined from potentiometric titrations to be 7.2 ± 0.6 and 11.2 ± 0.4, respectively. The adsorption of uranium was found to be independent of the electrolyte concentration. The authors therefore conclude that the uranium binds as an inner sphere complex. The results were modeled using the code FITEQL. Two reactions of uranium with the surface were needed to fit the data, one forming a uranyl complex with a single surface hydroxyl and the other forming a bridged or bidentate complex reacting with two surface hydroxyls of the alumina. There was no evidence from these experiments of site heterogeneity. The constants used for the reactions were based in part on predictions made utilizing the Hard Soft Acid Base, HSAB, theory, relating the surface complexation constants to the hydrolysis of the sorbing metal ion and the acid dissociation constants of the mineral oxide surface

  15. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation

    Science.gov (United States)

    Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang

    2018-04-01

    By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.

  16. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    Science.gov (United States)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  17. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    Science.gov (United States)

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  18. Manganese in dwarf spheroidal galaxies

    Science.gov (United States)

    North, P.; Cescutti, G.; Jablonka, P.; Hill, V.; Shetrone, M.; Letarte, B.; Lemasle, B.; Venn, K. A.; Battaglia, G.; Tolstoy, E.; Irwin, M. J.; Primas, F.; François, P.

    2012-05-01

    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including α and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/α] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H] ~ -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/α] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/α] behavior can be interpreted as a result of the metal-dependent Mn yields of Type II and Type Ia supernovae. We also computed chemical evolution models for star formation histories matching those determined empirically for Sculptor, Fornax, and Carina, and for the Mn yields of SNe Ia, which were assumed to be either constant or variable with metallicity. The observed [Mn/Fe] versus [Fe/H] relation in Sculptor, Fornax, and Carina can be reproduced only by the chemical evolution models that include a metallicity-dependent Mn yield from the SNe Ia. Based on observations made with the FLAMES-GIRAFFE multi-object spectrograph mounted on the Kuyen VLT telescope at ESO-Paranal Observatory (programs 171.B-0588, 074.B-0415 and 076.B-0146).Appendices are available in electronic form at http://www.aanda.org

  19. Bauxite Mining and Alumina Refining

    Science.gov (United States)

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  20. Misorientations in spheroidal graphite: some new insights about spheroidal graphite growth in cast irons

    Science.gov (United States)

    Lacaze, J.; Theuwissen, K.; Laffont, L.; Véron, M.

    2016-03-01

    Local diffraction patterning, orientation mapping and high resolution transmission electron microscopy imaging have been used to characterize misorientations in graphite spheroids of cast irons. Emphasis is put here on bulk graphite, away from the nucleus as well as from the outer surface of the spheroids in order to get information on their growth during solidification. The results show that spheroidal graphite consists in conical sectors made of elementary blocks piled up on each other. These blocks are elongated along the prismatic a direction of graphite with the c axes roughly parallel to the radius of the spheroids. This implies that the orientation of the blocks rotates around the spheroid centre giving low angle tilting misorientations along tangential direction within each sector. Misorientations between neighbouring sectors are of higher values and their interfaces show rippled layers which are characteristic of defects in graphene. Along a radius of the spheroid, clockwise and anticlockwise twisting between blocks is observed. These observations help challenging some of the models proposed to explain spheroidal growth in cast ions.

  1. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  2. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  3. Differential thermo-resistance of multicellular tumor spheroids

    International Nuclear Information System (INIS)

    Khoei, S.; Goliaei, B.; Neshasteh-Rize, A.

    2004-01-01

    Many cell lines, when cultured under proper conditions, can form three dimensional structures called multicellular spheroids. These spheroids resemble in vivo tumor models in several aspects. Therefore, studying growth characteristics and behavior of spheroids is beneficial in understanding the behavior of tumors under various experimental conditions. In this work, we have studied the growth properties, along with the thermal characteristics of spheroids of Du 145 human prostate carcinoma cell lines and compared the results to monolayer cultures of these cells. For this purpose, The Du 145 cells were cultured either as monolayer or spheroids. At various times after initiation of cultures, the growth properties of spheroids as a function of seeding cell number was determined. To evaluate the thermal characteristics of spheroids, they were heated at various stages of growth at 43 d ig c for various periods. The thermal response was judged by the survival fraction of colony forming cells in spheroids or monolayer culture following heat treatment. The results showed spheroids were more resistant to heat than monolayer cultures at all stages of development. However, the extent of this thermal resistant was dependent on the age, and consequently, the size of the spheroid. The result suggests that the differential thermal resistance of the spheroid cultures develop gradually during the growth of spheroid cultures of Du 145 cell line

  4. Zirconia-alumina composites of high mechanical strength

    International Nuclear Information System (INIS)

    Pyda, W.; Pyda, A.

    2004-01-01

    Commercial zirconia (stabilized with 3 mol% yttria) and alumina powders of submicron size were used to produce ceramic matrix composites in the ZrO 2 -Al 2 O 3 system. Homogeneous mixtures of both constituent powders were prepared by means pf physical mixing in water exploiting a heterofloculation effect. The mixtures were consolidated using two methods: (i). Cold isostatic pressing of the samples under 300 MPa followed by pressureless sintering in air, (ii). hot pressing under 25 MPa in argon. The samples were sintered for 2 h at 1500-1650 o C. Detailed characterization was made with respect of the powder properties, packing of the particles in green compacts and microstructure of the consolidated composites. Studied was an influence of alumina content and the consolidation method on mechanical properties of the composites. A bending strength of 17±0.2 GPa was measured for the TZP material which contained 5 vol.% of alumina particles. (author)

  5. Glycine functionalized alumina nanoparticles stabilize collagen in ...

    Indian Academy of Sciences (India)

    Research Initiatives for Waterless Tanning' (RIWT-. CSC0202) is greatly acknowledged. CSIR-CLRI Communi- cation no. 1156. References. [1] Ramachandran G N and Kartha G 1955 Nature 176 593. [2] Usha R and Ramasami T 1999 Thermochim.

  6. Vertical and horizontal spheroidal boundary-value problems

    Science.gov (United States)

    Šprlák, Michal; Tangdamrongsub, Natthachet

    2017-12-01

    Vertical and horizontal spheroidal boundary-value problems (BVPs), i.e., determination of the external gravitational potential from the components of the gravitational gradient on the spheroid, are discussed in this article. The gravitational gradient is decomposed into the series of the vertical and horizontal vector spheroidal harmonics, before being orthogonalized in a weighted sense by two different approaches. The vertical and horizontal spheroidal BVPs are then formulated and solved in the spectral and spatial domains. Both orthogonalization methods provide the same analytical solutions for the vertical spheroidal BVP, and give distinct, but equivalent, analytical solutions for the horizontal spheroidal BVP. A closed-loop simulation is performed to test the correctness of the analytical solutions, and we investigate analytical properties of the sub-integral kernels. The systematic treatment of the spheroidal BVPs and the resulting mathematical equations extend the theoretical apparatus of geodesy and of the potential theory.

  7. Making coke a more efficient catalyst in the oxidative dehydrogenation of ethylbenzene using wide-pore transitional aluminas

    NARCIS (Netherlands)

    Zarubina, V.; Nederlof, C.; Linden, B. van der; Kapteijn, F.; Heeres, H.J.; Makkee, M.; Melián-Cabrera, I.

    The thermal activation of a silica-stabilized gamma-alumina impacts positively on the oxidative dehydrogenation of ethylbenzene (EB) to styrene (ST). A systematic thermal study reveals that the transition from gamma-alumina into transitional phases at 1050 degrees C leads to an optimal enhancement

  8. Impact of concentration and Si doping on the properties and phase transformation behavior of nanocrystalline alumina prepared via solvothermal synthesis

    International Nuclear Information System (INIS)

    Mekasuwandumrong, Okorn; Tantichuwet, Panutin; Chaisuk, Choowong; Praserthdam, Piyasan

    2008-01-01

    Solvothermal reaction of 20 g aluminum isopropoxide (AIP) in mineral oil at 300 deg. C for 2 h gave χ-alumina showing high thermal stability while the reaction with higher amounts of starting AIP (30 and 40 g) contributed contamination of pseudoboehmite. The χ-alumina thus obtained directly transformed into α-alumina completely at approximately 1400 deg. C bypassing the other transition alumina phases whereas some part of the contaminated product transformed to γ-alumina through θ-alumina and finally α-alumina. When silicon was doped in the alumina matrix (5, 10, 20 and 50 at.%) using tetraethylorthosilicate as the silicon (Si) precursor, χ-alumina was still observed without any contaminations at low concentration doping (5-20 at.%). Amorphous structure was obtained by doping 50 at.% Si. The phase transformation temperature was shifted to the high temperature after loading the Si. The α-phase transformation did not go to completion even after calcinations at 1500 deg. C. This could be due to the incorporation of Si atom in alumina lattice forming SiO 2 -Al 2 O 3 solid solution

  9. Mass Spectrometry Analyses of Multicellular Tumor Spheroids.

    Science.gov (United States)

    Acland, Mitchell; Mittal, Parul; Lokman, Noor A; Klingler-Hoffmann, Manuela; Oehler, Martin K; Hoffmann, Peter

    2017-12-11

    Multicellular tumor spheroids (MCTS) are a powerful biological in vitro model, which closely mimics the 3D structure of primary avascularized tumors. Mass spectrometry (MS) has established itself as a powerful analytical tool, not only to better understand and describe the complex structure of MCTS, but also to monitor their response to cancer therapeutics. The first part of this review focuses on traditional mass spectrometry approaches with an emphasis on elucidating the molecular characteristics of these structures. Then the mass spectrometry imaging (MSI) approaches used to obtain spatially defined information from MCTS is described. Finally the analysis of primary spheroids, such as those present in ovarian cancer, and the great potential that mass spectrometry analysis of these structures has for improved understanding of cancer progression and for personalized in vitro therapeutic testing is discussed. © 2017 The Authors. PROTEOMICS - Clinical Applications Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Alumina Yield in the Bayer Process

    Science.gov (United States)

    Den Hond, R.

    The alumina industry has historically been able to reduce alumina production costs, by increasing the liquor alumina yield. To know the potential for further yield increases, the phase diagram of the ternary system Na2O-Al2O -H2O at various temperature levels was analysed. It was found that the maximum theorical precipitation alumina yield is 160 g/l, while that for digestion was calculated to be 675 g/l.

  11. Attrition resistant gamma-alumina catalyst support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  12. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    % alumina dissolves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors revealed that ...

  13. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Study of alumina–magnesia binary phase diagram reveals that around 40–50 wt% alumina dis- solves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors.

  14. Dynamic tensile response of alumina-Al composites

    International Nuclear Information System (INIS)

    Atisivan, R.; Bandyopadhyay, A.; Gupta, Y. M.

    2002-01-01

    Plate impact experiments were carried out to examine the high strain-rate tensile response of alumina-aluminum (Al) composites with tailored microstructures. A novel processing technique was used to fabricate interpenetrating phase alumina-aluminum composites with controlled microstructures. Fused deposition modeling (FDM), a commercially available rapid prototyping technique, was used to produce the controlled porosity mullite ceramic preforms. Alumina-Al composites were then processed via reactive metal infiltration of porous mullite ceramics. With this approach, both the micro as well as the macro structures can be designed via computer aided design (CAD) to tailor the properties of the composites. Two sets of dynamic tensile experiments were performed. In the first, the metal content was varied between 23 and 39 wt. percent. In the second, the microstructure was varied while holding the metal content nearly constant. Samples with higher metal content, as expected, displayed better spall resistance. For a given metal content, samples with finer metal diameter showed better spall resistance. Relationship of the microstructural parameters on the dynamic tensile response of the structured composites is discussed here

  15. Transport properties of alumina nanofluids

    International Nuclear Information System (INIS)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-01-01

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m -1 K -1 was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various

  16. Transport properties of alumina nanofluids.

    Science.gov (United States)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  17. Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina.

    Science.gov (United States)

    Naik, Y P; Gupta, N K; Pillai, K T; Rao, G A Rama; Venugopal, V

    2012-01-06

    The stationary phase of alumina adsorbents, prepared by different chemical processes, was used to study the separation behaviour of hydrogen isotopes. Three types of alumina, obtained by conventional hydroxide route alumina coated with silicon oxide and alumina prepared by internal gelation process (IGP), were used as packing material to study the separation of HT and T(2) in a mixture at various temperatures. The conventional alumina and silicon oxide coated alumina resolved HT and T(2) at 77K temperature with different retention times. The retention times on SiO(2) coated columns were found to be higher than those of other adsorbents. However, the column filled with IGP alumina was found to be ideal for the separation of HT and T(2) at 240 K. The peaks were well resolved in less than 5 min on this column. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Crystallography of Alumina-YAG-Eutectic

    Science.gov (United States)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  19. Alumina column Rb-82 generator

    International Nuclear Information System (INIS)

    Yano, Y.; Roth, E.P.

    1977-10-01

    The use of an alumina column for the adsorption of radioactive Sr for the generator production of 75-sec 82 Rb was evaluated in both batches and column experiments using 85 Sr and cyclotron-produced 82 Sr. Comparisons of alumina, Bio-Rex 70 and Chelex 100 ion exchangers were made to determine Sr adsorption, 82 Rb elution yield and Sr breakthrough. The adsorption of Sr is similar for alumina and Chelex 100 but different for Bio-Rex 70. Alumina and Chelex 100 exhibit a small fraction of poorly bound Sr which appears as higher breakthrough in the early elution volumes. The remaining Sr activity is strongly bound to these ion exchangers and the breakthrough remains stable at a lower breakthrough value through a large number of elutions. Bio-Rex 70 on the other hand does not exhibit the poorly bound Sr fraction and the breakthrough of Sr remains the lowest of the three ion exchangers through a moderate number of elutions and then the Sr breakthrough gradually increases with each additional elution

  20. Process for producing uranium carbide spheroids

    International Nuclear Information System (INIS)

    Shennan, J.V.; Ford, L.H.

    1977-01-01

    The invention deals with a method to fabricate UC spheroids which are filled into moulds made of refractory material for fuel elements. The UC fuel particles are double-coated: a first thin layer of pyrolytic carbon is coated at low temperature 1200-1400 0 C, a record layer of pyrolytic material (e.g. Si c) is coated at a higher temperature (above 1500 0 C) which holds back the fission products. The method is described more closely by means of an example. (GSC) [de

  1. Process for producing uranium carbide spheroids

    International Nuclear Information System (INIS)

    Shennan, J.V.; Ford, L.H.

    1976-01-01

    The invention deals with a method to produce UC spheroids which are filled into molded bodies of fire-proof material for fuel elements. The UC fuel particles are doubly coated: a first thin layer of pyrolytic carbon is coated at low temperature (1,200-1,400 0 C), a second layer of fire-proof material (e.g. SiC) is coated at a higher temperature (above 1,500 0 C) which holds back the fission products. The process is explained in more detail using an example. (GSCH) [de

  2. Microstructural changes in copper-graphite-alumina nanocomposites produced by mechanical alloying.

    Science.gov (United States)

    Rodrigues, Ivan; Guedes, Mafalda; Ferro, Alberto C

    2015-02-01

    Microstructural features of nanostructured copper-matrix composites produced via high-energy milling were studied. Copper-graphite-alumina batches were planetary ball milled up to 16 h; copper-graphite batches were also prepared under the same conditions to evaluate the effect of contamination from the milling media. The microstructure of the produced materials was characterized by field emission gun scanning electron microscopy/energy-dispersive spectroscopy and related to Raman, X-ray diffraction, and particle size analysis results. Results showed that alumina was present in all milled powders. However, size reduction was effective at shorter times in the copper-graphite-alumina system. In both cases the produced powders were nanostructured, containing graphite and alumina nanoparticles homogeneously distributed in the copper matrix, especially for longer milling times and in the presence of added alumina. Copper crystallite size was significantly affected above 4 h milling; nanographite size decreased and incipient amorphization occurred. A minimum size of 15 nm was obtained for the copper crystallite copper-alumina-graphite composite powders, corresponding to 16 h of milling. Contamination from the media became more significant above 8 h. Results suggest that efficient dispersion and bonding of graphite and alumina nanoparticles in the copper matrix is achieved, envisioning high conductivity, high strength, and thermal stability.

  3. Short-term effects of radiation in gliolalstoma spheroids

    DEFF Research Database (Denmark)

    Petterson, Stine Asferg; Jakobsen, Ida Pind; Jensen, Stine Skov

    2016-01-01

    was to investigate the short-term effects of radiation of spheroids containing tumor-initiating stem-like cells. We used a patient-derived glioblastoma stem cell enriched culture (T76) and the standard glioblastoma cell line U87. Primary spheroids were irradiated with doses between 2 and 50 Gy and assessed after two...

  4. Multicellular spheroids as an in vitro tumor model

    International Nuclear Information System (INIS)

    Kozubek, S.; Erzgraber, G.

    1982-01-01

    Experiments with fractionated irradiation of multicellular spheroids were performed. Our data as well as the data of other works have been evaluated by means of simple mathematical formulae on the basis of several hypothesis. The spheroids are shown to exhibit similar behaviour as in vivo carcinomas. They offer the possibility of investigation of quantitative correlations for practical purposes

  5. Plasma spheroidization of nickel powders in a plasma reactor

    Indian Academy of Sciences (India)

    Unknown

    Heat treatment and phase changes. • Use of the plasma environment to synthesis metastable ... aimed for thermal treatment of powder (spheroidization, densification and purification) use either arc or inductive plasma ... cles leave the flame and get quenched. During the pro- cess the molten particles get spheroidized due to ...

  6. Development of controlled release spheroids using Buchananiacochinchinesis gum

    Directory of Open Access Journals (Sweden)

    Narayan Babulal Gaikwad

    2013-03-01

    Full Text Available Chirauli nut gum was isolated from the bark of Buchanania cochinchinesis (fam. Anacadiacea and was used as a release modifier for the preparation of Diclofenac sodium spheroids using the extrusion spheronization technique. The process was studied for the effects on variables when making spheroids with satisfactory particle shape, size and size distribution. The prepared spheroids were characterized for surface morphology, qualitative surface porosity, friability, bulk density and flow properties. In vitro studies demonstrated that the release exhibited Fickian diffusion kinetics which was confirmed by the Higuchi and the Korsmeyer-Peppas models. The physico-chemical parameters of the gum could be correlated to the in vitro dissolution profile of the spheroids. The spheroids were not able to sustain the drug releases over 12 hours. A greater concentration of Chirauli nut gum and a process that can accommodate such greater concentrations may produce a formulation capable of significant sustained release.

  7. Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD)

    Science.gov (United States)

    Wider, C; Van Gerpen, J A.; DeArmond, S; Shuster, E A.; Dickson, D W.; Wszolek, Z K.

    2009-01-01

    Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and familial pigmentary orthochromatic leukodystrophy (POLD) present as adult-onset dementia with motor impairment and epilepsy. They are regarded as distinct diseases. We review data from the literature that support their being a single entity. Apart from a slightly older age at onset, a more rapid course, and more prominent pyramidal tract involvement, familial POLD is clinically similar to HDLS. Moreover, the pathologic hallmarks of the two diseases, axonal spheroids in HDLS and pigmented macrophages in POLD, can be identified in both conditions. This supports HDLS and POLD being referred collectively as adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). GLOSSARY ALSP = adult-onset leukoencephalopathy with axonal spheroids and pigmented glia; HDLS = hereditary diffuse leukoencephalopathy with axonal spheroids; OLD = orthochromatic leukodystrophy; POLD = pigmentary orthochromatic leukodystrophy. PMID:19487654

  8. Can zinc aluminate-titania composite be an alternative for alumina as microelectronic substrate?

    Science.gov (United States)

    Roshni, Satheesh Babu; Sebastian, Mailadil Thomas; Surendran, Kuzhichalil Peethambharan

    2017-01-13

    Alumina, thanks to its superior thermal and dielectric properties, has been the leading substrate over several decades, for power and microelectronics circuits. However, alumina lacks thermal stability since its temperature coefficient of resonant frequency (τ f ) is far from zero (-60 ppmK -1 ). The present paper explores the potentiality of a ceramic composite 0.83ZnAl 2 O 4 -0.17TiO 2 (in moles, abbreviated as ZAT) substrates for electronic applications over other commercially-used alumina-based substrates and synthesized using a non-aqueous tape casting method. The present substrate has τ f of + 3.9 ppmK -1 and is a valuable addition to the group of thermo-stable substrates. The ZAT substrate shows a high thermal conductivity of 31.3 Wm -1 K -1 (thermal conductivity of alumina is about 24.5 Wm -1 K -1 ), along with promising mechanical, electrical and microwave dielectric properties comparable to that of alumina-based commercial substrates. Furthermore, the newly-developed substrate material shows exceptionally good thermal stability of dielectric constant, which cannot be met with any of the alumina-based HTCC substrates.

  9. Synthesis of Fe3O4 core/alumina shell nanospheres for partial hydrogenation of benzene

    Science.gov (United States)

    He, T. T.; Mu, S. L.; Fu, Q. T.; Liu, C. G.

    2018-01-01

    We report a novel synthesis of Fe3O4 core/alumina shell nanosphere composite for partial hydrogenation of benzene. Fe3O4 core/alumina shell (MFeCA) structured nanospheres were obtained by reducing a hematite core/alumina precursor shell (HFeCAP) nanosphere precursor under H2/N2 gas flow. The magnetic alumina nanospheres (MFeCAs) possess not only uniform size (180∼350nm) but also adjusted saturation magnetization value. A novel Ru-based magnetic catalyst was synthesized for the partial hydrogenation of benzene in magnetically stabilized bed (MSB). The performance of magnetic catalyst in MSB demonstrates that it’s an effective and highly selective method for partial hydrogenation of benzene. The chain regime of the MSB reactor’s operation conditions is responsible for the high selectivity of cyclohexene.

  10. The origin of spheroidal patterns of weathering in the Pados-Tundra mafic-ultramafic complex, Kola Peninsula, Russia

    Directory of Open Access Journals (Sweden)

    A.Y. Barkov

    2016-12-01

    Full Text Available We document a new and unusual occurrence of patterns of protruding spheroidal weathering developed in a dunitic rock of the Pados-Tundra mafic-ultramafic complex of Early Proterozoic age, Kola Peninsula, Russia. It provides an example similar to that reported recently from a mineralized harzburgite in the Monchepluton layered complex in the same region. These patterns are genetically different from common results of “normal spheroidal weathering” sensu stricto. The spheroidally weathered dunite at Pados-Tundra consists of a high-Fo olivine, Ol (Fo 87. 5, which is, in fact, not altered. Accessory grains of aluminous chromite are present. Relief spheroids (1.5 to 4 cm in diameter; up to ~5 vol. % are distributed sparsely and heterogeneously. They are hosted by the olivine matrix and composed of talc, Tlc, and tremolite, Tr, (Mg# = 95-96 formed presumably at the expense of orthopyroxene, Opx, (i.e., pre-existing oikocrysts during a deuteric (autometasomatic alteration. In contrast, oikocrystic Opx (En 86.0 is quite fresh in related spheroids at Monchepluton, in which only minor deuteric alteration (Tlc + Tr are observed. We infer that (1 the ball-shaped morphology of the weathered surface is a reflection of the presence of oikocrysts of Opx, which crystallized after Ol at the magmatic stage; they were entirely replaced by the deuterically induced Tlc + Tr at Pados-Tundra. (2 Differential rates of weathering are implied for rock-forming minerals in these ultramafic rocks, with a higher resistance of Opx vs. Fo-rich Ol, and Tlc + Tr vs. Fo-rich Ol. (3 The ball-like shape of the large spheroids, produced by magmatic processes, may likely represent an additional factor of their higher stability to weathering in the superficial environment. Similar patterns can be expected in other mafic-ultramafic complexes, especially in layered intrusions.

  11. Cell number per spheroid and electrical conductivity of nanowires influence the function of silicon nanowired human cardiac spheroids.

    Science.gov (United States)

    Tan, Yu; Richards, Dylan; Coyle, Robert C; Yao, Jenny; Xu, Ruoyu; Gou, Wenyu; Wang, Hongjun; Menick, Donald R; Tian, Bozhi; Mei, Ying

    2017-03-15

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide an unlimited cell source to treat cardiovascular diseases, the leading cause of death worldwide. However, current hiPSC-CMs retain an immature phenotype that leads to difficulties for integration with adult myocardium after transplantation. To address this, we recently utilized electrically conductive silicon nanowires (e-SiNWs) to facilitate self-assembly of hiPSC-CMs to form nanowired hiPSC cardiac spheroids. Our previous results showed addition of e-SiNWs effectively enhanced the functions of the cardiac spheroids and improved the cellular maturation of hiPSC-CMs. Here, we examined two important factors that can affect functions of the nanowired hiPSC cardiac spheroids: (1) cell number per spheroid (i.e., size of the spheroids), and (2) the electrical conductivity of the e-SiNWs. To examine the first factor, we prepared hiPSC cardiac spheroids with four different sizes by varying cell number per spheroid (∼0.5k, ∼1k, ∼3k, ∼7k cells/spheroid). Spheroids with ∼3k cells/spheroid was found to maximize the beneficial effects of the 3D spheroid microenvironment. This result was explained with a semi-quantitative theory that considers two competing factors: 1) the improved 3D cell-cell adhesion, and 2) the reduced oxygen supply to the center of spheroids with the increase of cell number. Also, the critical role of electrical conductivity of silicon nanowires has been confirmed in improving tissue function of hiPSC cardiac spheroids. These results lay down a solid foundation to develop suitable nanowired hiPSC cardiac spheroids as an innovative cell delivery system to treat cardiovascular diseases. Cardiovascular disease is the leading cause of death and disability worldwide. Due to the limited regenerative capacity of adult human hearts, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have received significant attention because they provide a patient specific

  12. Bauxite Mining and Alumina Refining

    OpenAIRE

    Donoghue, A. Michael; Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust,...

  13. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  14. Fluid absorption related to ion transport in human airway epithelial spheroids

    DEFF Research Database (Denmark)

    Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L

    1999-01-01

    in non-CF than in CF spheroids, 3) Cl(-)-channel inhibitors increased fluid absorption in amiloride-treated non-CF spheroids to a level equal to that of amiloride-treated CF spheroids, 4) hydrochlorothiazide reduced the amiloride-insensitive fluid absorption in both non-CF and CF spheroids, and 5...

  15. Electron, proton, neutron as spheroidical particles

    International Nuclear Information System (INIS)

    Bagge, E.R.

    1993-01-01

    It is shown that it is possible to describe the electron and the proton at rest within the framework of Dirac's relativistic theory of particles as electro-magnetic stable, spheroidal particles like balloons with very thin envelopes. Their properties, especially their spins and their magnetic momenta, are exactly those, which have been measured at first and later on derived by Dirac. In this picture the neutron plays the role of a system of two concentric and synchronically rotating balloons with a small distance between them at a positive energetic minimum of balance at 1.26 MeV. The magnetic moment of this particle has a negative sign and is of the correct size. (orig.)

  16. Preparation and characterization of multilayer mesoporous γ-alumina membrane obtained via sol-gel using new precursors

    Directory of Open Access Journals (Sweden)

    Tafrishi R.

    2015-12-01

    Full Text Available In this paper, a mesoporous γ-alumina membrane coated on a macroporous α-alumina support via sol-gel method has been reported. A crack-free γ-alumina membrane was obtained by adding PVA to the alumina solution and optimum parameters of roughness, temperature and porosity were achieved. The support was dip-coated in different solutions using two new different solvents with different particle size distributions. Using these two solvents led to the uniform distribution of pore size in the final membrane. The alumina sols showed particle size distributions in the range of 20 to 55 nm which was measured by a DLS Zeta Sizer. X-ray diffraction technique, atomic force microscopy and scanning electron microscopy were used to characterize the membrane layer. XRD and DTA data for the γ-alumina membrane showed its thermal stability up to around 600 °C. The thickness of the mesoporous γ-alumina membrane was about 4 μm with 16 nm of surface roughness and 5 nm pore size. The resultant crack-free mesoporous membrane shows that the membrane preparation procedure was optimum. In this work, it has been investigated the performance of γ-alumina membranes for single gas permeation and separation of binary gas mixtures.

  17. Abrasive resistance of metastable V-Cr-Mn-Ni spheroidal carbide cast irons using the factorial design method

    Science.gov (United States)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Pastukhova, T. V.; Chabak, Yu. G.; Kusumoto, K.

    2016-06-01

    Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C-4wt%Mn-1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%-10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920°C. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%-10.0wt% for V and 2.5wt%-4.5wt% for Cr, which corresponds to the alloys containing 9vol%-15vol% spheroidal VC carbides, 8vol%-16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9-2.3 times that of the traditional 12wt% V-13wt% Mn spheroidal carbide cast iron.

  18. Chemical Evolution of Mn in Three Dwarf Spheroidal Galaxies Men ...

    Indian Academy of Sciences (India)

    ∗ & Jie Zhang1. 1Institute of ... for three local dwarf spheroidal galaxies (dSphs), considering the detailed. SNe yield and explosion rates for different .... progenitor are two degenerate white dwarfs. Acknowledgements. This work is supported ...

  19. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.

    2009-01-01

    focus our attention to the measurements with the MCP array. The alumina capillaries were prepared by electro-chemical oxidation of aluminium foils. For the present experiments guiding of 3-6 keV Ne ions has been studied in two samples with capillary diameter of about 140 nm and 260 nm and with capillary...... length of about 15 μm. At these energies, the ions have been efficiently guided by the capillaries up to few degrees tilt angle. In this work, we compare the results obtained by the energy dispersive spectrometer to those studied by the MCP array....

  20. Preparation of alumina-β'

    International Nuclear Information System (INIS)

    Casarini, J.R.; Souza, D.P.F.

    1984-01-01

    Alumina - (β + β') in powder, with composition of 8.85% Na 2 0 + 0.75% Li 2 0 + 90.40% Al 2 O 3 is obtained using the zeta process. The phase transformation β→β' can be seen with powder X-ray diffraction. It was observed that the efficiency of the transformation is related to the processing and purity of the raw material. Impurities as Ca and Si difficult the phase transformation β→β'. (E.G.) [pt

  1. Ordering of Octahedral Vacancies in Transition Aluminas

    NARCIS (Netherlands)

    Wang, Yuan Go; Bronsveld, Paul M.; Hosson, Jeff Th.M. De; Djuričić, Boro; McGarry, David; Pickering, Stephen

    1998-01-01

    The microstructure of transition aluminas obtained via the dehydration of boehmite has been characterized by using transmission electron microscopy (TEM). The presence of γ-, δ-, and θ-aluminas was identified by using selected-area electron diffraction. Modifications that resulted from the

  2. alumina phase transformation from thermal decomposition

    African Journals Online (AJOL)

    HOD

    Alumina is one of the major components used as catalyst support, which is especially important with regard to ... alumina, has been a major catalytic support in automotive and petroleum industries, as well as in adsorption ..... Catalyst in Steam Reforming of Dimethyl ether: Cu/γ-Al2O3/Al Catalyst Degradation Behaviors and.

  3. Dielectric properties of alumina/zirconia composites at millimeter wavelengths

    International Nuclear Information System (INIS)

    Molla, J.; Heidinger, R.; Ibarra, A.; Link, G.

    1994-01-01

    Alumina-zirconia composites with ZrO 2 contents up to 20% and negligible porosity were investigated at millimeter (mm) wavelengths to determine the changes appearing in the dielectric properties of pure alumina ceramics when unstabilized or partially stabilized ZrO 2 is added to improve the mechanical strength. It is demonstrated that it essential to distinguish between the contributions of the monoclinic and the tetragonal phase of zirconia (m-ZrO 2 , t-ZrO 2 ). Permittivity is raised with increasing content of either phases; the effective permittivity can be assessed by the rule of mixtures (Maxwell-Garnett formulation of the generalized Clasussius-Mossotti relation) using permittivity values of 10 for Al 2 O 3 , 14-21 for m-ZrO 2 and 40-45 for t-ZrO 2 . The permittivity data show only a small variation in the investigated range of 9-145 GHz. For the dielectric loss, there is evidence of a predominant contribution of m-ZrO 2 ; in addition, the marked increase in loss with frequency becomes sharper. The t-ZrO 2 , which is responsible for strengthening, does not show any significant influence on losses. It is therefore concluded, that ZrO 2 strengthening of alumina is feasible without affecting mm-wave losses at room temperature as long as the presence of m-ZrO 2 is avoided

  4. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    Directory of Open Access Journals (Sweden)

    Morteza Aramesh

    2015-08-01

    Full Text Available A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

  5. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  6. Effects of additives in α- and θ-alumina: an ab initio study

    International Nuclear Information System (INIS)

    Wallin, Erik; Andersson, Jon M; Chirita, Valeriu; Helmersson, Ulf

    2004-01-01

    It is of high fundamental and practical importance to be able to control the formation and stability of the different crystalline phases of alumina (Al 2 O 3 ). In this study, we have used density functional theory methods to investigate the changes induced in the thermodynamically stable α phase and the metastable θ phase as one eighth of the Al atoms are substituted for different additives (Sc, W, Mo, Cr, Cu, Si, and B). The calculations predict that the additives strongly affect the relative stability between the two phases. Most tested additives are shown to shift the relative stability towards, and in some cases completely stabilize, the θ phase, while Cu doping is predicted to increase the relative stability of the α phase. The reasons for these effects are discussed, as are possible implications on the growth and use of doped aluminas in practical applications. In addition, the effects of the additives on bulk moduli and densities of states have been investigated

  7. Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence

    Directory of Open Access Journals (Sweden)

    Natasha S Lewis

    2017-04-01

    Full Text Available Multicellular spheroids are an established system for three-dimensional cell culture. Spheroids are typically generated using hanging drop or non-adherent culture; however, an emerging technique is to use magnetic levitation. Herein, mesenchymal stem cell spheroids were generated using magnetic nanoparticles and subsequently cultured within a type I collagen gel, with a view towards developing a bone marrow niche environment. Cells were loaded with magnetic nanoparticles, and suspended beneath an external magnet, inducing self-assembly of multicellular spheroids. Cells in spheroids were viable and compared to corresponding monolayer controls, maintained stem cell phenotype and were quiescent. Interestingly, core spheroid necrosis was not observed, even with increasing spheroid size, in contrast to other commonly used spheroid systems. This mesenchymal stem cell spheroid culture presents a potential platform for modelling in vitro bone marrow stem cell niches, elucidating interactions between cells, as well as a useful model for drug delivery studies.

  8. Coprecipitated nickel-alumina methanation catalysts

    International Nuclear Information System (INIS)

    Kruissink, E.C.

    1981-01-01

    In the last few years there has been a renewed interest in the methanation reaction CO+3H 2 =CH 4 +H 2 O. The investigations described in this thesis were performed in relation to the application of this reaction, within the framework of the so-called 'NFE' project, also called 'ADAM' and 'EVA' project. This project, which has been under investigation in West Germany for some years, aims at the investigation of the feasibility of transporting heat from a nuclear high temperature reactor by means of a chemical cycle. A promising possibility to realize such a cycle exists in applying the combination of the endothermic steam reforming of methane and the exothermic methanation reaction. This thesis describes the investigations into a certain type of methanation catalyst, viz. a coprecipitated nickel-alumina catalyst, with the aim to give more insight into the interrelationship between the preparation conditions on the one hand and catalyst properties such as activity and stability on the other hand. (Auth.)

  9. Stiffness analysis of 3D spheroids using microtweezers.

    Directory of Open Access Journals (Sweden)

    Devina Jaiswal

    Full Text Available We describe a novel mechanical characterization method that has directly measured the stiffness of cancer spheroids for the first time to our knowledge. Stiffness is known to be a key parameter that characterizes cancerous and normal cells. Atomic force microscopy or optical tweezers have been typically used for characterization of single cells with the measurable forces ranging from sub pN to a few hundred nN, which are not suitable for measurement of larger 3D cellular structures such as spheroids, whose mechanical characteristics have not been fully studied. Here, we developed microtweezers that measure forces from sub hundred nN to mN. The wide force range was achieved by the use of replaceable cantilevers fabricated from SU8, and brass. The chopstick-like motion of the two cantilevers facilitates easy handling of samples and microscopic observation for mechanical characterization. The cantilever bending was optically tracked to find the applied force and sample stiffness. The efficacy of the method was demonstrated through stiffness measurement of agarose pillars with known concentrations. Following the initial system evaluation with agarose, two cancerous (T47D and BT474 and one normal epithelial (MCF 10A breast cell lines were used to conduct multi-cellular spheroid measurements to find Young's moduli of 230, 420 and 1250 Pa for BT474, T47D, and MCF 10A, respectively. The results showed that BT474 and T47D spheroids are six and three times softer than epithelial MCF10A spheroids, respectively. Our method successfully characterized samples with wide range of Young's modulus including agarose (25-100 kPa, spheroids of cancerous and non-malignant cells (190-200 μm, 230-1250 Pa and collagenase-treated spheroids (215 μm, 130 Pa.

  10. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential.

    Directory of Open Access Journals (Sweden)

    Francesca Oltolina

    Full Text Available A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM. We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.

  11. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel

    2009-01-01

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in ∼ sun yr -1 , and each clump converts into stars in ∼0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z ∼ 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z ∼ 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  12. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses.

    Science.gov (United States)

    De Aza, A H; Chevalier, J; Fantozzi, G; Schehl, M; Torrecillas, R

    2002-02-01

    Mono-phase bio-ceramics (alumina and zirconia) are widely used as femoral heads in total hip replacements (THR) as an alternative to metal devices. Unfortunately, the orthopaedic community reports significant in-vivo failures. Material scientists are already familiar with composites like alumina zirconia. Since both are biocompatible, this could prove to be a new approach to implants. This paper deals with a new generation of alumina-zirconia nano-composites having a high resistance to crack propagation, and as a consequence may offer the option to improve lifetime and reliability of ceramic joint prostheses. The reliability of the above mentioned three bio-ceramics (alumina, zirconia and zirconia toughened alumina) for THR components is analysed based on the study of their slow crack-growth behaviour. The influence of the processing conditions on the microstructure development, of the zirconia toughened alumina composites and the effect of these microstructures, on its mechanical properties, are discussed.

  13. Dissolution Kinetics of Alumina Calcine

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  14. [Development and property study of zirconia toughened nano-composite alumina ceramic powder for dental application].

    Science.gov (United States)

    Zhao, Ke; Chao, Yong-lie; Yang, Zheng

    2003-09-01

    To prepare zirconia toughened nano-composite alumina ceramic powder for dental application. Physical and chemical property of the prepared material were tested, and the effect of development technology on composite powder was also studied in this study. Nano-composite alumina powder was prepared by surface-induced precipitation method. The effect of pH value and dispersing agent content on volume of alumina suspension sediment was recorded. The effect of ultrasonic time on agglomeration was measured also. X ray diffraction (XRD) was used to analyze powder phase before and after the stabilizer was added. Scanning electronic microscope (SEM) was applied for characterizing the specimen. The dispersion was better at pH=9 and wt (dispersing agent) = 0.2% approximately 0.3%. Selecting proper ultrasonic time can decrease the agglomeration of powders and lower the average particle size. XRD analysis indicated that the phase composition of the prepared nano-composite ceramic powder was shown as alpha-Al2O3, t-ZrO2 and a small amount of m-ZrO2 after the addition of stabilizer. Through SEM observation, nanometer-sized ZrO2 particles (80 approximately 100 nm) were uniformly located on the surface of submicrometer alumina grains. By choosing appropriate preparation method, weakly agglomerated powders with fine particle size can be obtained. The zirconia part of nano-composite powder was transmitted to partially stabled zirconia after the use of stabilizer.

  15. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  16. Control of porosity in alumina for catalytic purposes - a review; Controle de porosidade em aluminas para fins cataliticos - uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Moure, Gustavo Torres [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Hidrorrefino, Lubrificantes e Parafinas; Morgado Junior, Edisson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Craqueamento Catalitico; Figueiredo, Cecilia Maria C.

    1999-12-01

    In recent years, the Alumina Group, of the Catalysts Division of CENPES, has dedicated research to develop and characterize alumina for the catalytic processes of interest to PETROBRAS. Control of the texture of the alumina and, consequently, the alumina based catalysts, is crucially important to their adequacy and performance. Knowledge of the porosity formation mechanisms in alumina was fundamental for the development of catalysts to satisfy the demand from PETROBRAS. This comprises the scope of this review. (author)

  17. Cell proliferation kinetics and radiation response in 9L tumor spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Sweigert, S.E.

    1984-05-01

    Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 ..mu..m to over 900 ..mu..m in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables.

  18. Cell proliferation kinetics and radiation response in 9L tumor spheroids

    International Nuclear Information System (INIS)

    Sweigert, S.E.

    1984-05-01

    Cell kinetic parameters, including population doubling-time, cell cycle time, and growth fraction, were measured in 9L gliosarcoma spheroids. These parameters were studied as the spheroids grew from 50 μm to over 900 μm in diameter. Experiments relating the cell kinetic parameters to the radiation response of 9L spheroids were also carried out. The major findings were that the average cell cycle time (T/sub c/), is considerably longer in large spheroids than in exponentially-growing monolayers, the radiosensitivity of noncycling (but still viable) cells in spheroids is not significantly different from that of cycling spheroid cells, and the radiation-induced division delay is approximately twice as long in spheroid cells as in monolayer cells given equal radiation doses. The cell loss factor for spheroids of various sizes was calculated, by using the measured kinetic parameters in the basic equations for growth of a cell population. 157 references, 6 figures, 3 tables

  19. Spontaneous spheroid budding from monolayers: a potential contribution to ovarian cancer dissemination.

    Science.gov (United States)

    Pease, Jillian C; Brewer, Molly; Tirnauer, Jennifer S

    2012-07-15

    Ovarian cancer is the most lethal gynaecologic cancer, in large part because of its early dissemination and rapid development of chemotherapy resistance. Spheroids are clusters of tumor cells found in the peritoneal fluid of patients that are thought to promote this dissemination. Current models suggest that spheroids form by aggregation of single tumor cells shed from the primary tumor. Here, we demonstrate that spheroids can also form by budding directly as adherent clusters from a monolayer. Formation of budded spheroids correlated with expression of vimentin and lack of cortical E-cadherin. We also found that compared to cells grown in monolayers, cells grown as spheroids acquired progressive resistance to the chemotherapy drugs Paclitaxel and Cisplatin. This resistance could be completely reversed by dissociating the spheroids. Our observations highlight a previously unappreciated mode of spheroid formation that might have implications for tumor dissemination and chemotherapy resistance in patients, and suggest that this resistance might be reversed by spheroid dissociation.

  20. CONCENTRIC MACLAURIN SPHEROID MODELS OF ROTATING LIQUID PLANETS

    International Nuclear Information System (INIS)

    Hubbard, W. B.

    2013-01-01

    I present exact expressions for the interior gravitational potential V of a system of N concentric constant-density (Maclaurin) spheroids. I demonstrate an iteration procedure to find a self-consistent solution for the shapes of the interfaces between spheroids, and for the interior gravitational potential. The external free-space potential, expressed as a multipole expansion, emerges as part of the self-consistent solution. The procedure is both simpler and more precise than perturbation methods. One can choose the distribution and mass densities of the concentric spheroids so as to reproduce a prescribed barotrope to a specified accuracy. I demonstrate the method's efficacy by comparing its results with several published test cases.

  1. Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids

    OpenAIRE

    Mueller-Klieser, W.

    1984-01-01

    A method has been developed for the quantitative evaluation of oxygen tension (PO2) distributions in multicellular spheroids measured with O2-sensitive microelectrodes. The experimental data showed that multicellular tumor spheroids in stirred growth media were characterized by a diffusion-depleted zone surrounding the spheroids. This zone was elicited by an unstirred layer of medium next to the spheroid leading to a continuous decrease in the PO2 values from the bulk medium towards the spher...

  2. A model for sound absorption by spheroidal particles.

    Science.gov (United States)

    Hipp, Alexander K

    2009-06-01

    This paper describes a mathematical model for the scattering of acoustic waves in dispersions of prolate or oblate non-spherical particles. Based on fundamental equations of change for mass, momentum, and energy, wave equations are derived and solved in spheroidal coordinates. The examination of the boundary-value problem of an aligned spheroidal particle in a continuous medium, excited by a plane wave, leads to a description of the viscoinertial, thermal, and diffractive phenomena. The model is analogous to the Epstein-Carhart-Allegra-Hawley theory for spherical particles, and suggests itself for studying non-sphericity in the acoustic analysis of industrial dispersions.

  3. Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration

    NARCIS (Netherlands)

    Fehlauer, Fabian; Muench, Martina; Rades, Dirk; Stalpers, Lukas J. A.; Leenstra, Sieger; van der Valk, Paul; Slotman, Ben; Smid, Ernst J.; Sminia, Peter

    2005-01-01

    Investigation of cell migration and proliferation of human glioma cell line spheroids (CLS) and evaluation of morphology, apoptosis, and immunohistochemical expression of MIB-1, p53, and p21 of organotypic muticellular spheroids (OMS) following cisplatin (CDDP) and irradiation (RT). Spheroids of the

  4. Effect of hydrothermal process for inorganic alumina sol on crystal structure of alumina gel

    Directory of Open Access Journals (Sweden)

    K. Yamamura

    2016-09-01

    Full Text Available This paper reports the effect of a hydrothermal process for alumina sol on the crystal structure of alumina gel derived from hydrothermally treated alumina sol to help push forward the development of low temperature synthesis of α-Al2O3. White precipitate of aluminum hydroxide was prepared with a homogeneous precipitation method using aluminum nitrate and urea in aqueous solution. The obtained aluminum hydroxide precipitate was peptized by using acetic acid at room temperature, which resulted in the production of a transparent alumina sol. The alumina sol was treated with a hydrothermal process and transformed into an alumina gel film by drying at room temperature. Crystallization of the alumina gel to α-Al2O3 with 900 °C annealing was dominant for a hydrothermal temperature of 100 °C and a hydrothermal time of 60 min, as production of diaspore-like species was promoted with the hydrothermal temperature and time. Excess treatments with hydrothermal processes at higher hydrothermal temperature for longer hydrothermal time prevented the alumina gel from being crystallized to α-Al2O3 because the excess hydrothermal treatments promoted production of boehmite.

  5. Combustion chemical vapor deposition (CCVD) of LaPO4 monazite and beta-alumina on alumina fibers for ceramic matrix composites

    International Nuclear Information System (INIS)

    Hwang, T.J.; Hendrick, M.R.; Shao, H.; Hornis, H.G.; Hunt, A.T.

    1998-01-01

    This research used the low cost, open atmosphere combustion chemical vapor deposition (CCVD SM ) method to efficiently deposit protective coatings onto alumina fibers (3M Nextel TM 610) for use in ceramic matrix composites (CMCs). La-monazite (LaPO 4 ) and beta-alumina were the primary candidate debonding coating materials investigated. The coated fibers provide thermochemical stability, as well as desired debonding/sliding interface characteristics to the CMC. Dense and uniform La-phosphate coatings were obtained at deposition temperatures as low as 900-1000 C with minimal degradation of fibers. However, all of the β-alumina phases required high deposition temperatures and, thus, could not be applied onto the Nextel TM 610 alumina fibers. The fibers appeared to have complete and relatively uniform coatings around individual filaments when 420 and 1260 filament tows were coated via the CCVD process. Fibers up to 3 feet long were fed through the deposition flame in the laboratory of MicroCoating Technologies (MCT). TEM analyses performed at Wright-Patterson AFB on the CCVD coated fibers showed a 10-30 nm thick La-rich layer at the fiber/coating interface, and a layer of columnar monazite 0.1-1 μm thick covered with sooty carbon of <50 nm thick on the outside. A single strength test on CCVD coated fibers performed by 3M showed that the strength value fell in the higher end of data from other CVD coated samples. (orig.)

  6. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  7. Void nucleation in spheroidized steels during tensile deformation

    International Nuclear Information System (INIS)

    Fisher, J.R. Jr.

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy

  8. Sulphur, zinc and carbon in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Skúladóttir, Ása

    2016-01-01

    The Sculptor dwarf spheroidal galaxy is a Milky Way satellite with predominantly old stellar population, and therefore the ideal target to study early chemical evolution. The chemical abundances of photospheres of stars reveal the composition of their birth environment; studying stars of different

  9. Chemical Evolution of Mn in Three Dwarf Spheroidal Galaxies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... ... SNeIa and CCSNe, we studied Mn evolution for three local dwarf spheroidal galaxies (dSphs), considering the detailed SNe yield and explosion rates for different types of progenitors. The results can explain the main observation ofMn abundance for tens stars in those dSphs, and give some constraints ...

  10. Void nucleation in spheroidized steels during tensile deformation

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Jr, J R

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy.

  11. The dynamical and chemical evolution of dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Revaz, Y.; Jablonka, P.; Sawala, T.; Hill, V.; Letarte, B.; Irwin, M.; Battaglia, G.; Helmi, A.; Shetrone, M. D.; Tolstoy, E.; Venn, K. A.

    We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial

  12. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    Science.gov (United States)

    Novák, Pavel; Šprlák, Michal

    2017-12-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  13. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    analogue of Tolman's solutions. Recently, Ponce de Leon and Cruz [11] have con- sidered higher dimensional Schwarzschild space-time and studied the influence of the extra dimensions on the equilibrium configuration of stars. Vaidya and Tikekar. [12] have discussed spheroidal space-time and obtained an exact model ...

  14. Zinc abundances in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Skúladóttir, Á.; Tolstoy, E.; Salvadori, S.; Hill, V.; Pettini, M.

    2017-01-01

    From ESO VLT/FLAMES/GIRAFFE spectra, abundance measurements of Zn have been made in ≈100 individual red giant branch (RGB) stars in the Sculptor dwarf spheroidal galaxy. This is the largest sample of individual Zn abundance measurements within a stellar system beyond the Milky Way. In the observed

  15. Optical properties of spherical and oblate spheroidal gold shell colloids

    NARCIS (Netherlands)

    Penninkhof, J.J.; Moroz, A.; van Blaaderen, A.; Polman, A.

    2008-01-01

    The surface plasmon modes of spherical and oblate spheroidal core−shell colloids composed of a 312 nm diameter silica core and a 20 nm thick Au shell are investigated. Large arrays of uniaxially aligned core−shell colloids with size aspect ratios ranging from 1.0 to 1.7 are fabricated using a novel

  16. Numerical simulations of the metallicity distribution in dwarf spheroidal galaxies

    NARCIS (Netherlands)

    Ripamonti, E.; Tolstoy, E.; Helmi, A.; Battaglia, G.; Abel, T.

    2006-01-01

    Abstract: Recent observations show that the number of stars with very low metallicities in the dwarf spheroidal satellites of the Milky Way is low, despite the low average metallicities of stars in these systems. We undertake numerical simulations of star formation and metal enrichment of dwarf

  17. The mass content of the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Battaglia, G.; Helmi, A.; Tolstoy, E.; Irwin, M.; Andersen, J; BlandHawthorn, J; Nordstrom, B

    2009-01-01

    We present a new determination of the mass content of the Sculptor dwarf spheroidal galaxy, based on a novel approach which takes into account the two distinct stellar populations present in this galaxy. This method helps to partially break the well-known mass-anisotropy degeneracy present in the

  18. Cryopreservation of organotypic multicellular spheroids from human gliomas

    NARCIS (Netherlands)

    Kaaijk, P.; van den Berg, F.; van Amstel, P.; Troost, D.

    1996-01-01

    Fresh human glioma tissue can be cultured on agarose to form organotypic multicellular spheroids (OMS). The major advantage of OMS is the preservation of the cellular heterogeneity and the tumour architecture, which is lost in conventional monolayer cultures. The present study was undertaken to

  19. Estimation of scattering from a moist rough surface with spheroidal ...

    Indian Academy of Sciences (India)

    Administrator

    less than 5⋅5% of the magnetic wavelength. We empha- size that the surface deviation is responsible for scattering at a given electromagnetic wavelength. 2. Theoretical consideration (basic theory). We consider a horizontally rough surface with slight per- centage of moisture (2–4⋅5%) with spheroidal dust parti- cles.

  20. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    Science.gov (United States)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  1. The dwarf spheroidal galaxies around the milky way

    NARCIS (Netherlands)

    Tolstoy, E.; Battaglia, G.; Helmi, A.; Irwin, M. J.; Hill, V.; Vallenari, A; Tantalo, R; Portinari, L; Moretti, A

    2007-01-01

    We review the progress of ESO/WFI Imaging and VLT/FLAMES spectroscopy of large numbers of individual stars in nearby dwarf spheroidal galaxies by the Dwarf Abundances and Radial-velocities Team (DART). These observations have allowed us to show that neither the kinematics nor the abundance nor the

  2. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine

    DEFF Research Database (Denmark)

    Jeppesen, Maria; Hagel, Grith; Glenthoj, Anders

    2017-01-01

    and no difference in growth rate was observed for spheroids of different sizes. Comparison of spheroids with the original tumour revealed that spheroid culture generally preserved adenocarcinoma histology and expression patterns of cytokeratin 20 and carcinoembryonic antigen. Interestingly, spheroids had a tendency...

  3. The local strength of individual alumina particles

    Science.gov (United States)

    Pejchal, Václav; Fornabaio, Marta; Žagar, Goran; Mortensen, Andreas

    2017-12-01

    We implement the C-shaped sample test method and micro-cantilever beam testing to measure the local strength of microscopic, low-aspect-ratio ceramic particles, namely high-purity vapor grown α-alumina Sumicorundum® particles 15-30 μm in diameter, known to be attractive reinforcing particles for aluminum. Individual particles are shaped by focused ion beam micromachining so as to probe in tension a portion of the particle surface that is left unaffected by ion-milling. Mechanical testing of C-shaped specimens is done ex-situ using a nanoindentation apparatus, and in the SEM using an in-situ nanomechanical testing system for micro-cantilever beams. The strength is evaluated for each individual specimen using bespoke finite element simulation. Results show that, provided the particle surface is free of readily observable defects such as pores, twins or grain boundaries and their associated grooves, the particles can achieve local strength values that approach those of high-perfection single-crystal alumina whiskers, on the order of 10 GPa, outperforming high-strength nanocrystalline alumina fibers and nano-thick alumina platelets used in bio-inspired composites. It is also shown that by far the most harmful defects are grain boundaries, leading to the general conclusion that alumina particles must be single-crystalline or alternatively nanocrystalline to fully develop their potential as a strong reinforcing phase in composite materials.

  4. Fluid absorption related to ion transport in human airway epithelial spheroids

    DEFF Research Database (Denmark)

    Pedersen, P S; Holstein-Rathlou, N H; Larsen, P L

    1999-01-01

    , and amiloride inhibited both values. Fluid transport rates were calculated from repeated measurements of spheroid diameters. The results showed that 1) non-CF and CF spheroids absorbed fluid at identical rates (4.4 microl x cm(-2) x h(-1)), 2) amiloride inhibited fluid absorption to a lower residual level...... in non-CF than in CF spheroids, 3) Cl(-)-channel inhibitors increased fluid absorption in amiloride-treated non-CF spheroids to a level equal to that of amiloride-treated CF spheroids, 4) hydrochlorothiazide reduced the amiloride-insensitive fluid absorption in both non-CF and CF spheroids, and 5......) osmotic water permeabilities were equal in non-CF and CF spheroids ( approximately 27 x 10(-7) cm x s(-1) x atm(-1))....

  5. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    Science.gov (United States)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  6. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  7. Joining of alumina via copper/niobium/copper interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.; Glaeser, Andreas M.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized alumina bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.

  8. Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis

    Science.gov (United States)

    Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.

    2018-04-01

    Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.

  9. Synthesis and characterization of alumina precursor and alumina to be used as nano composite; Sintese e caracterizacao de precursores de alumina e alumina para uso em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, M.L.P., E-mail: malu@sorocaba.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Santos, H. Souza [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Santos, P. Souza [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica

    2009-07-01

    With the evolution of nanomaterials technology, mainly in the 90s, it was possible to observe produced composites with alumina matrix and nanomaterial as reinforcing materials. It results in a significant improvement of mechanical proprieties of these composites. Thenceforth the study of synthesis and characterization of nanostructured materials has attracted great scientific interest. In this perspective, the aim of this work is to present an experimental procedure to obtain nordstrandite (aluminum hydroxide) with nanometric dimensions. Nordstrandite synthesis, obtained by the reaction of slightly amalgamated aluminum foil with aqueous ethylene glycol, which allows the control of the size of crystal produced. This control could be confirmed by X-Ray Diffraction and Electron Microscopy. Thermal transformation study is also presented. This study allowed the identification of transition aluminas that have potential to produce nanometric aluminas. (author)

  10. Electrochemically produced alumina as TL detector

    International Nuclear Information System (INIS)

    Osvay, M.

    1996-01-01

    The goal of this work was to compare the TL properties of various electrochemically produced alumina layers (E-AIO) in order to investigate the effect of the electrolyte and the Mg content on the alloys. It has been found that the TL sensitivity of oxidised layers is more influenced by the type of electrolyte, than by the composition of alloy. Hard oxide layer evolved in reduction electrolyte has rather different character compared to other alumina production investigated. The effect of reducing media seems to be very important during preparation of alumina layer. One of the advantages properties of E-AIO is, that it serve a promising method to increase the measuring range of TL method above 10 kGy as well. (author)

  11. Beta-alumina solid electrolyte separators

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.H.; Stead, R.J.

    1989-06-14

    A method of making a composite beta-alumina artifact such as a separator tube for an electrochemical cell, comprising two beta-alumina portions which are sealed together in a sealing zone, namely an inner portion and an outer portion which extends peripherally around the inner portion and embraces it in the sealing zone, comprises pressing the inner and outer portions from powders which, when finally sintered, shrink and form integral beta-alumina artifacts. The portions are made so that the outer portion undergoes a greater degree of shrinkage during sintering than the inner portion and the portions are pressed so that the spacing between the portions where the outer portion extends around and embraces the inner portion is such that, upon sintering, the outer portion shrinks on to the inner portion to provide a hermetic peripheral seal between the portions. (author).

  12. Hydrogen diffusion in Pb β''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.; Dudney, N.J.; Wang, J.C.

    1985-01-01

    The mobile Na + ions in Na β''-alumina can be completely exchanged with Pb 2+ ions by treatment in molten PbCl 2 . When this exchange was carried out in the presence of air, protons in the form of OH - were introduced into the conduction layers along with lead ions. Although the concentration of OH - was low, on the order of 5 x 10 -3 per formula unit of Pb/sub 0.84/Mg/sub 0.67/Al/sub 10.33/O_1_7, the distribution of OH - after ion exchange indicated that the proton mobility in Pb β''-alumina is high. The potential use of Pb β''-alumina as a fast proton conductor that is stable at 400 0 C motivated further studies of hydrogen diffusion. In this report, the results of tracer diffusion measurements by isotope exchange will be presented

  13. Blocking of grain reorientation in self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Ramirez-Rico, J.; Torrecillas, R.

    2011-01-01

    Alumina nanoparticles 10-20 nm in diameter were nucleated on alumina particles, 150 nm average diameter, by a colloidal route followed by calcination. It is shown that after sintering, the final grain size is up to 20% smaller due to the addition of the alumina nanoparticles. Electron backscattered diffraction analysis shows that whereas a correlation in the relative crystalline orientations between neighbouring grains exists in the pure materials, the addition of alumina nanoparticles results in a random crystalline orientation.

  14. Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents

    International Nuclear Information System (INIS)

    Efremenko, Vasily; Pastukhova, Tatiana; Chabak, Yuliia; Efremenko, Alexey; Shimizu, Kazumichi; Kusumoto, Kenta; Brykov, Michail

    2018-01-01

    The effect of heat treatment and chromium contents (up to 9.1 wt.%) on the wear resistance of spheroidal carbide cast iron (9.5 wt.% V) was studied using optical and scanning electron microscopy, X-ray diffractometry, dilatometry and three-body abrasive testing. It was found that quenching from 760 C and 920 C improved the alloys' wear resistance compared to the as-cast state due to the formation of metastable austenite transforming into martensite under abrasion. The wear characteristics of alloys studied are 1.6 - 2.3 times higher than that of reference cast iron (12 wt.% V) having stable austenitic matrix. Chromium addition decreases surface damage due to the formation of M_7C_3 carbides, while it reduces wear resistance owing to austenite stabilization to abrasion-induced martensite transformation. The superposition of these factors results in decreasing the alloys' wear behaviour with chromium content increase.

  15. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  16. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    Engr Solomn Gajere

    Gamma-alumina was produced at 850°C with 3 h soaking time, having specific surface area of 166 m2/g. The weight percent of Al2O3 ... conversion and gasoline octane number. (Scherzer, 1993). Among the different alumina ... common method of producing alumina is by the hydrothermal technique and the reaction takes.

  17. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  18. Characterization of alumina using small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro

    2007-01-01

    Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)

  19. Ionic and molecular transport in beta- and beta''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.

    1984-03-01

    Investigations of rapid transport of cations and water molecules in the β- and β''-alumina family of superionic conductors are reviewed. Particular topics that are discussed include the Haven ratio and mixed-ion effects in β-alumina, and the influence of superlattice ordering on ionic transport in β''-alumina

  20. Tritium compatibility of alumina and Fosterite

    Energy Technology Data Exchange (ETDEWEB)

    Coffin, D.O.

    1979-09-01

    Many pressure measurements are required to control processing of the fuel gases associated with fusion power reactors. Since most pressure transducers respond to changes in pressure sensitive electrical parameters, insulators will be required to withstand chronic exposures to concentrated tritium. For this investigation samples of alumina and Fosterite were exposed to concentrated tritium gas for 11 weeks. Gas phase impurities were then analyzed for clues that would indicate decomposition of the exposed materials. The only gaseous impurity resulting from these tritium exposures was tritio-methane, which is always produced when tritium is stored in stainless steel containers. There was no evidence that either alumina or Fosterite decomposed in the presence of tritium.

  1. Zirconia dispersion as a toughening agent in alumina - Influence of the cerium oxide

    International Nuclear Information System (INIS)

    Gritti, Olivier

    1987-01-01

    The improvement of mechanical properties of alumina can be obtained by fine dispersion of zirconia particles. The addition of cerium oxide as a stabilizer of the tetragonal phase has been examined. Different powder preparations, based on impregnation of the alumina powder by zirconium and cerium precursor salts, have been studied. Parameters, such as properties of alumina powder and cerium oxide content, for the production of reactive powders have been determined by two laboratory processes. The sintering of these powders in air at 1600 deg. C has resulted in dense materials with homogeneous microstructure. The mechanical properties, in particular the biaxial flexure strength and the toughness, have been determined in the temperature range 20 deg. C-900 deg. C. A reinforcement of about 80 pc in comparison with alumina is achieved. The optimal composition is (Al 2 O 3 ) 0.8 (ZrO 2 ) 0.18 (CeO 2 ) 0.02 . In the other hand, powder preparation by spray drying has been chosen for an approach to a larger scale process. The sintered ceramics made with these powders present a double microstructure which does not affect the mechanical properties. The presence of cerium oxide produces the following improvements: - increased mobility of the intergranular zirconia inclusions which results in a faster densification; - stabilization of a tetragonal phase without prohibiting the stress induced transformation; - increase of the critical sizes of the tetragonal → monoclinic transformation; - a large decrease in the transformation kinetic in water at 300 deg. C in comparison with that observed for alumina-zirconia doped with yttrium oxide. (author) [fr

  2. Secular stability of rotating stars

    International Nuclear Information System (INIS)

    Imamura, J.N.; Friedman, J.L.; Durisen, R.H.

    1984-01-01

    In this work, we calculate the secular stability limits of rotating polytropes to nonaxisymmetric perturbations of low m. We consider polytropic indices ranging from 1 to 3 and several angular momentum distributions. Results are most conveniently presented in terms of the t-parameter, defined as the ratio of the rotational kinetic energy to the absolute value of the gravitational energy of the fluid. Previous work on polytropes considered only the m = 2 mode, which is unstable for values of the t-parameter greater than 0.14 +- 0.01 for the n values n = 1.5 and 3 and the angular momentum distributions tested (see Durisen and Imamura 1981). The GRR secular stability limit of the m = 2 mode for the Maclaurin spheroids (n = O) was determined by Chandrasekhar (1970). GRR stability limits of higher m modes for the Maclaurin spheroids were located approximately by Comins (1979a,b) and more precisely by Friedman (1983)

  3. Relations between pH, oxygen partial pressure and growth in cultured cell spheroids.

    Science.gov (United States)

    Carlsson, J; Acker, H

    1988-11-15

    The pH gradients, oxygen partial-pressure gradients and growth curves were measured for 7 different types of spheroids. Growth curves were measured in liquid overlay culture and thereafter the spheroids were attached to cover glasses and transferred to a chamber for micro-electrode measurements. The spheroids were randomly divided for pH or pO2 measurements which then were made under conditions as identical as possible. The decreases in pO2 and pH, delta pO2 and delta pH were calculated as the difference between the values in the culture medium and the values 200 micron inside the spheroids. Each type of spheroid had a certain relation between delta pO2 and delta pH. The human colon carcinoma HT29, the mouse mammary carcinoma EMT6 and the hamster lung V79-379A spheroids had high values of the quotient delta pO2/delta pH. The human thyroid carcinoma HTh7 spheroids and the 3 types of human glioma spheroids had lower quotients. There was a tendency for fast-growing spheroids to have high quotients. Two extreme types of spheroids, HT29 (high quotient) and U-118 MG (low quotient) were analyzed for lactate production and oxygen consumption. The U-118 MG spheroids produced about 3 times more lactate and consumed about 3 times less oxygen than the HT29 spheroids. The differences in lactate production could not be explained by differences in the pyruvate Km values of lactate dehydrogenase. The results indicate that there are significant metabolic differences between the spheroid systems studied.

  4. Dissociation of mono- and co-culture spheroids into single cells for subsequent flow cytometric analysis.

    Science.gov (United States)

    Grässer, Ute; Bubel, Monika; Sossong, Daniela; Oberringer, Martin; Pohlemann, Tim; Metzger, Wolfgang

    2018-03-01

    Spheroids are considered to reflect the natural organization of cells better than 2D cell cultures, but their analysis by flow cytometry requires dissociation into single cells. We established protocols for dissociation of mono- and co-culture spheroids consisting of human fibroblasts and human endothelial cells. Cell recovery rate and viability after dissociation were evaluated with hemocytometer and by flow cytometry. The diameter of cells and the amount of cell aggregates were quantified by Casy ® -technology and the cellular composition was analyzed by flow cytometry. Optimal dissociation conditions with low cell aggregation were determined by size, cultivation time and cellular composition of the spheroids. Smaller spheroids (10,000 cells) could be dissociated with Accutase ® , whereas larger spheroids (50,000 cells) required more stringent dissociation conditions. The size of the cells decreased with increasing cultivation time. Cell recovery rate was dependent upon cellular composition and spheroid size. The highest cell recovery rate was found for co-culture spheroids. The highest cell viability was detected for dissociated fibroblast spheroids. A quantitative analysis of the cellular composition of dissociated co-culture spheroids was possible. Spheroids can be successfully dissociated into singular cells for subsequent flow cytometric analysis. Dissociation conditions as well as cell recovery rate and cell viability depend on size, cultivation time and cellular composition of the spheroids. The observed decrease in cell size in spheroids over time might be responsible for the well-known time-dependent decrease in spheroid size. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kaul, R.; Ganesh, P.; Shiroman, Ram; Tiwari, Pragya; Sridhar, R.; Kukreja, L.M.

    2013-01-01

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  6. Eutectic solidification mode of spheroidal graphite cast iron and graphitization

    Directory of Open Access Journals (Sweden)

    Hideo Nakae

    2007-02-01

    Full Text Available The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal graphite cast iron. The eutectic solidification rate of the SG cast iron is controlled by the diffusion of carbon through the austenite shell, and the final thickness is 1.4 times the radius of the SG, therefore, the reduction of the SG size, namely, the increase in the number, is the main solution of these problems.

  7. Mass transfer inside oblate spheroidal solids: modelling and simulation

    Directory of Open Access Journals (Sweden)

    J. E. F. Carmo

    2008-03-01

    Full Text Available A numerical solution of the unsteady diffusion equation describing mass transfer inside oblate spheroids, considering a constant diffusion coefficient and the convective boundary condition, is presented. The diffusion equation written in the oblate spheroidal coordinate system was used for a two-dimensional case. The finite-volume method was employed to discretize the basic equation. The linear equation set was solved iteratively using the Gauss-Seidel method. As applications, the effects of the Fourier number, the Biot number and the aspect ratio of the body on the drying rate and moisture content during the process are presented. To validate the methodology, results obtained in this work are compared with analytical results of the moisture content encountered in the literature and good agreement was obtained. The results show that the model is consistent and it may be used to solve cases such as those that include disks and spheres and/or those with variable properties with small modifications.

  8. Current Trends in Nanoporous Anodized Alumina Platforms for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Ganesan Sriram

    2016-01-01

    Full Text Available Pristine aluminum (Al has received great deal of attention on fabrication of nanoporous anodized alumina (NAA with arrays of nanosized uniform pores with controllable pore sizes and lengths by the anodization process. There are many applications of NAA in the field of biosensors due to its numerous key factors such as ease of fabrication, high surface area, chemical stability and detection of biomolecules through bioconjugation of active molecules, its rapidness, and real-time monitoring. Herein, we reviewed the recent trends on the fabrication of NAA for high sensitive biosensor platforms like bare sensors, gold coated sensors, multilayer sensors, and microfluidic device supported sensors for the detection of various biomolecules. In addition, we have discussed the future prospectus about the improvement of NAA based biosensors for the detection of biomolecules.

  9. Rheological properties of concentrated alumina slurries: influence of ph and dispersant agent

    International Nuclear Information System (INIS)

    Ewais, E.M.M.

    2004-01-01

    The relationship between the ph, the electrolyte concentrations and the rheological properties of high concentrated alumina slurries in aqueous medium is of great importance because it is considered to be the key to control the stability of the slurries from flocculation. Zeta potential of alumina slurries with and without Duramax C (dispersant agent) as a function of ph was studied. Two ph around the zero point of charge of alumina slurries were selected for the investigation of rheological properties. The rheological properties of aqueous alumina slurries with respect to different parameters, e.g.: viscosity, elastic modulus (storage modulus G) and viscous modulus (loss modulus G), were investigated. Viscosity measurements of the slurries as a function of Duramax C content at both ph 8.4 and 9.4) were used to determine the state of slurries. Three states of slurries, termed flocculated, partially de flocculated and fully de flocculated, were selected for further investigation. The viscosity of the three slurries at both ph as a function of shear rate was determined. Fully de flocculated slurry shows Newtonian behavior at all shear rates at both tested ph compared by the partial de flocculated and flocculated system. Results of investigation of G and G at ph of 9.4 as a function of applied stress explored the critical stress

  10. Estimation of scattering from a moist rough surface with spheroidal ...

    Indian Academy of Sciences (India)

    Administrator

    zontally polarized elastic wave propagating through the x, z plane, then the total scattered fields due to moisture spheroidal dust particles in rough surface is given as. (Dobson and Ulaby 1981),. 1. ( , ) d .d ,. 2 x x x y x y. E. U K K f K K π. ∞. −∞. = ∫ ∫. (3). 1. ( , ) d .d. 2 y y x y x y. E. U K K f K K π. ∞. −∞. = ∫ ∫. + cos cos.

  11. Scaffold-free Prevascularized Microtissue Spheroids for Pulp Regeneration.

    Science.gov (United States)

    Dissanayaka, W L; Zhu, L; Hargreaves, K M; Jin, L; Zhang, C

    2014-12-01

    Creating an optimal microenvironment that mimics the extracellular matrix (ECM) of natural pulp and securing an adequate blood supply for the survival of cell transplants are major hurdles that need to be overcome in dental pulp regeneration. However, many currently available scaffolds fail to mimic essential functions of natural ECM. The present study investigated a novel approach involving the use of scaffold-free microtissue spheroids of dental pulp stem cells (DPSCs) prevascularized by human umbilical vein endothelial cells (HUVECs) in pulp regeneration. In vitro-fabricated microtissue spheroids were inserted into the canal space of tooth-root slices and were implanted subcutaneously into immunodeficient mice. Histological examination revealed that, after four-week implantation, tooth-root slices containing microtissue spheroids resulted in well-vascularized and cellular pulp-like tissues, compared with empty tooth-root slices, which were filled with only subcutaneous fat tissue. Immunohistochemical staining indicated that the tissue found in the tooth-root slices was of human origin, as characterized by the expression of human mitochondria, and contained odontoblast-like cells organized along the dentin, as assessed by immunostaining for nestin and dentin sialoprotein (DSP). Vascular structures formed by HUVECs in vitro were successfully anastomosed with the host vasculature upon transplantation in vivo, as shown by immunostaining for human CD31. Collectively, these findings demonstrate that prevascularized, scaffold-free, microtissue spheroids can successfully regenerate vascular dental pulp-like tissue and also highlight the significance of the microtissue microenvironment as an optimal environment for successful pulp-regeneration strategies. © International & American Associations for Dental Research.

  12. SANS investigation of nanoporous alumina membranes

    Czech Academy of Sciences Publication Activity Database

    Ryukhtin, Vasyl; Šaroun, Jan; Turkevych, I.

    -, č. 6 (2007), s. 35-36 ISSN 0344-9629 R&D Projects: GA ČR(CZ) GP202/06/P198 Institutional research plan: CEZ:AV0Z10480505 Keywords : nanopor * alumina membrane * netron scattering Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. Reparative Spheroids in HPV-Associated Chronic Cervicitis

    Directory of Open Access Journals (Sweden)

    Gennadiy T. Sukhikh

    2013-09-01

    Full Text Available Background: Spheroid cell structures (SCS described in cell culture are used to study cell-cell and cell-matrix interactions. However, the role of the SCS in the repair process in vivo remains unexplored. The aim of the study was to examine the cellular composition of the spherical structures and their functional significance in the repair of the squamous epithelium in human papilloma virus-associated chronic cervicitis (HPV-CC. Methods and Results: The cytology and biopsy materials from 223 patients with HPV-CC were subjected to molecular testing for HPV DNA by Real-Time Polymerase Chain Reaction (Real-Time PCR with genotyping and chromogenic in situ hybridization (CISH, as well as immunocytological and immunohistochemical analyses of p16INK4A, Ki67, SMA, Vimentin, CD34, E-cadherin, Oct4, CD44, CKW markers. In the stem cell niche zone, these spheroid structures were discovered having proliferative activity and showing signs of producing stem cells involved in the repair of the cervical mucosa in HPV-CC. Conclusion: The persistence of the HPV in the stem cell niche zone cells in the cervix determines the chronization of inflammation in this area, with the ability to perform pathological repair. The immunophenotype of the spheroid cell structures in the HPV-CC includes cells with signs of stem cells (‘stemness’ and the mesenchymal-epithelial transition.

  14. Synthesis of alumina-α using aluminium acetate; Sintese de alumina-α utilizando acetato de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Cartaxo, J.M.; Galdino, M.N.; Neves, G.A., E-mail: lulianamelo25@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Menezes, R.R.; Ferreira, H.S. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Engenharia de Materiais

    2011-07-01

    In the face of great technological importance of alumina, this paper aims to synthesize the α-alumina using chemical activation from aluminum acetate. The synthesized powders were characterized by X-ray diffraction and thermal analysis. The results obtained proved the thermal decomposition of the precursor, as well as possible metastable phases of alumina before the phase transformation in α. There was also difficult to obtain α-alumina from aluminum acetate, on the other hand there was, comparatively, that the chemical activation accelerated the synthesis of α-alumina. (author)

  15. INSIDIA: A FIJI Macro Delivering High-Throughput and High-Content Spheroid Invasion Analysis.

    Science.gov (United States)

    Moriconi, Chiara; Palmieri, Valentina; Di Santo, Riccardo; Tornillo, Giusy; Papi, Massimiliano; Pilkington, Geoff; De Spirito, Marco; Gumbleton, Mark

    2017-10-01

    Time-series image capture of in vitro 3D spheroidal cancer models embedded within an extracellular matrix affords examination of spheroid growth and cancer cell invasion. However, a customizable, comprehensive and open source solution for the quantitative analysis of such spheroid images is lacking. Here, the authors describe INSIDIA (INvasion SpheroID ImageJ Analysis), an open-source macro implemented as a customizable software algorithm running on the FIJI platform, that enables high-throughput high-content quantitative analysis of spheroid images (both bright-field gray and fluorescent images) with the output of a range of parameters defining the spheroid "tumor" core and its invasive characteristics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Dao, Trung Dung; Jeong, Han Mo; Anjanapura, Raghu V.; Aminabhavi, Tejraj M.

    2015-01-01

    Graphene was oxidized with H 2 O 2 to introduce additional anchoring sites for effective alumina coating on graphene by the sol–gel method. The X-ray photoelectron spectroscopy studies showed that the oxygen-containing groups such as hydroxyl group useful for coating were introduced by the oxidation. The transmission electron microscopy images and thermogravimetric analysis data demonstrated that the additional anchoring sites enhanced the efficiency of the alumina coating. A small amount of alumina-coated graphene synergistically improved the thermal conductivity of the alumina sphere/thermoplastic polyurethane (TPU) composite without any increase in the electrical conductivity, because the electrical conductivity of graphene effectively decreased by the alumina coating. Moreover, the synergistic effect of a small amount of graphene was enhanced by the alumina coating, and the stiffening of the alumina sphere/TPU composite due to the added graphene was alleviated by the alumina coating. - Highlights: • Oxidation of graphene with H 2 O 2 introduced anchoring sites for alumina coating. • The anchoring sites improved the efficiency of alumina coating on graphene. • The alumina-coated graphene synergistically enhanced the thermal conductivity

  17. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  18. Response of the MG-63 human osteosarcoma cell line grown as multicellular spheroids to neutron irradiation

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Kakehi, Masae; Matsubara, Shou; Koike, Sachiko; Ando, Koichi.

    1993-01-01

    Multicellular tumor spheroids are composed of the mixed populations of cells with regard to cell proliferation, nutrition, oxygenation and radiosensitivity. Human osteogenic sarcoma is generally considered clinically radioresistant. However, the in vitro cell survival curves for human osteogenic sarcoma cell lines do not differ from those of other tumor cell lines. In this study, the responses of human osteogenic sarcoma cell line to gamma ray and neutrons were investigated by using spheroid system. The spheroids of the osteogenic sarcoma cell line are considered to be a good in vitro model of radioresistant tumors. The purpose of this study is to measure the response of the spheroids to fast neutron irradiation. MG-63 human osteogenic sarcoma cell line was used for this study. The cell line was cultured in alpha-MEM with supplement. Cell survival was estimated after the trypsinization of spheroids 24 hours after irradiation. The method of measuring spheroid cure is explained. The mean number of surviving cells per spheroid can be obtained from the mean clonogenic number and cell survival curve. The cell survival of MG-63 spheroids exposed to gamma ray and neutrons and the dose effect curves for spheroid cure after irradiation are shown. (K.I.)

  19. Vascularization of human glioma spheroids implanted into rat cortex is conferred by two distinct mechanisms.

    Science.gov (United States)

    Goldbrunner, R H; Bernstein, J J; Plate, K H; Vince, G H; Roosen, K; Tonn, J C

    1999-02-15

    Aim of this study was to develop and characterize an applicable in vivo model to investigate angiogenesis of human gliomas. An established glioblastoma spheroid model was used to investigate the neovascularization of a standardized avascular solid tumor mass. Spheroids of two human glioma cell lines were labeled with an in vivo fluorescent dye. Single spheroids were implanted into the cortex of athymic rats. After 1, 3, 7, 14, and 21 days, brain sections containing the spheroid were immunostained for endothelial cells or vascular endothelial growth factor (VEGF). The dye-stained glioma spheroid and the endothelial cells were visualized by confocal microscopy. Two distinct mechanisms of tumor vascularization could be observed. (1) "Classical" angiogenesis with new vessels sprouting from existing host vessels into the spheroid was seen. (2) Individual endothelial cells were found to migrate towards and into the center of the spheroid where they coalesced to form new vessels. This process occurred as early as 24 hr after spheroid implantation. Spheroid vascularization was accompanied by an increase of VEGF expression, which peaked 7 days after implantation and returned to normal patterns by 14-21 days. Besides the "classical" angiogenesis by angiogenic blood vessels, the recruitment of individual endothelial cells seems to be an additional mechanism in early glioma vascularization. Our model proves to be a reliable, reproducible system to study in vivo angiogenesis of human gliomas. Copyright 1999 Wiley-Liss, Inc.

  20. Cell death induced by a 131I-labeled monoclonal antibody in ovarian cancer multicell spheroids

    International Nuclear Information System (INIS)

    Filippovich, I.V.; Sorokina, N.; Robillard, N.; Faivre-Chauvet, A.; Bardies, M.; Chatal, J.F.

    1996-01-01

    Treatment of OVCAR-3 spheroids with 131 I-OC125 monoclonal antibody produced a decrease in spheroid volume and a concomitant rise in necrotic cell number. No increase in apoptotic cell number was observed during incubation of spheroids with the labeled antibody. Necrosis began early, reaching a maximum after 3 Gy of accumulated dose delivered at a dose rate of 1.8 cGy/h. Higher accumulated doses induced necrosis for longer incubation times. Thus, dose rate and time are both determinants of ultimate radiation effects when spheroids are incubated with labeled antibodies, although dose rate is the most important factor

  1. Cell death induced by a 131I-labeled monoclonal antibody in ovarian cancer multicell spheroids.

    Science.gov (United States)

    Filippovich, I V; Sorokina, N; Robillard, N; Faivre-Chauvet, A; Bardies, M; Chatal, J F

    1996-07-01

    Treatment of OVCAR-3 spheroids with 131I-OC125 monoclonal antibody produced a decrease in spheroid volume and a concomitant rise in necrotic cell number. No increase in apoptotic cell number was observed during incubation of spheroids with the labeled antibody. Necrosis began early, reaching a maximum after 3 Gy of accumulated dose delivered at a dose rate of 1.8 cGy/h. Higher accumulated doses induced necrosis for longer incubation times. Thus, dose rate and time are both determinants of ultimate radiation effects when spheroids are incubated with labeled antibodies, although dose rate is the most important factor.

  2. Measuring the light scattering and orientation of a spheroidal particle using in-line holography.

    Science.gov (United States)

    Seo, Kyung Won; Byeon, Hyeok Jun; Lee, Sang Joon

    2014-07-01

    The light scattering properties of a horizontally and vertically oriented spheroidal particle under laser illumination are experimentally investigated using digital in-line holography. The reconstructed wave field shows the bright singular points as a result of the condensed beam formed by a transparent spheroidal particle acting as a lens. The in-plane (θ) and out-of-plane (ϕ) rotating angles of an arbitrarily oriented spheroidal particle are measured by using these scattering properties. As a feasibility test, the 3D orientation of a transparent spheroidal particle suspended in a microscale pipe flow is successfully reconstructed by adapting the proposed method.

  3. Molybdenum Sulphoselenophosphide Spheroids as an Effective Catalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Bose, Ranjith; Jothi, Vasanth Rajendiran; Koh, Beomsoo; Jung, Chiyoung; Yi, Sung Chul

    2018-02-01

    Electrocatalytic splitting of water is the most convincing and straight forward path to extract hydrogen, but the efficiency of this process relies heavily on the catalyst employed. Here, molybdenum sulphoselenophosphide (MoS 45.1 Se 11.7 P 6.1 ) spheroids are reported as an active catalyst for the hydrogen evolution reaction (HER) and this is the first attempt to study on ternary anion based molybdenum chalcogenides. As-prepared MoS x Se y P z catalyst reveals a unique morphology of microspheroids capped by stretched-out nanoflakes that exhibits excellent electrocatalytic activity (   j-10 mA cm -2 @ 93 mV, Tafel slope of 50.1 mV dec -1 , TOF-0.40 s -1 ) fairly closer to the performance of platinum (Pt) and predominant to those of the pre-existing Mo-chalcogenides and phosphides. Such an increase in performance stems from the copious amount of active edge sites, the presence of nanoflakes, and high circumferential area exposed by the spheroids. Besides, the electrode with MoS 45.1 Se 11.7 P 6.1 displays excellent stability in acidic medium over 10 h of continuous operation. This work paves way for improving the catalytic activity of existing Mo-chalcogenide compounds by doping suitable mixed anions and also reveals the integral role of anions as well as their synergetic effects on the surface physiochemical properties and the HER catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification

    Energy Technology Data Exchange (ETDEWEB)

    Lamouri, S.; Hamidouche, M.; Bouaouadja, N.; Belhouchet, H.; Garnier, V.; Fantozzi, G.; Trelkat, J.F.

    2017-07-01

    In this work, we studied the aptitude to sintering green bodies using γ-Al2O3 transition alumina as raw powder. We focused on the influence of the heating rate on densification and microstructural evolution. Phase transformations from transition alumina γ→δ→θ→α-Al2O3 were studied by in situ X-rays diffraction from the ambient to 1200°C. XRD patterns revealed coexistence of various phase transformations during the heating cycle. DTA and dilatometry results showed that low heating rate leads to a significant reduction of the temperature of the α-Al2O3 alumina formation. Around 1190, 1217 and 1240°C were found when using 5, 10 and 20°C/min of heating rate, respectively. The activation energy for θ-Al2O3→α-Al2O3 transformation calculated by Kissinger and JMA equations using dilatometry method were 464.29 and 488.79kJ/mol, respectively and by DTA method were 450.72 and 475.49kJ/mol, respectively. In addition, the sintering of the green bodies with low heating rate promotes the rearrangement of the grains during θ-Al2O3→α-Al2O3 transformation, enhancing the relative density to 95% and preventing the development of a vermicular structure. (Author)

  5. Influence of alumina characteristics on glaze properties

    Directory of Open Access Journals (Sweden)

    Arrufat, S.

    2010-10-01

    Full Text Available Aluminium oxide is a synthetic raw material manufactured from bauxite by the Bayer process, whose Al2O3 content typically exceeds 99%. Four main types of alumina can be defined, depending on the processing used: hydrargillite Al(OH3, boehmite AlOOH, transition aluminas (calcined at low temperatures, 1000 °C, with an intermediary crystallographic structure between hydrates and alpha alumina, and α-Al2O3 (calcined at high temperatures, >1100 °C. In glaze manufacturing, α-Al2O3 is the main type of alumina used. This raw material acts as a matting agent: the matt effect depends on alumina particle size and content in the glaze. This study examines the effect of the degree of alumina calcination on glaze technical and aesthetic properties. For this purpose, aluminas with different degrees of calcination were added to a glaze formulated with a transparent frit and kaolin, in order to simplify the system to be studied. The results show that, depending on the degree of calcination, alumina particles can react with the glaze components (SiO2, CaO, and ZnO to form new crystalline phases (anorthite and gahnite. Both crystallisations extract CaO and ZnO from the glassy phase, increasing glassy phase viscosity. The variation in crystalline phases and glassy phase viscosity yields glazes with different technical and aesthetic properties.

    El óxido de aluminio es una materia prima sintética fabricada a partir de la bauxita por medio del proceso Bayer, cuyo contenido de Al2O3 supera, por regla general, el 99%. Se pueden definir cuatro tipos de alúmina, en función del tipo de proceso usado: hidrargilita Al(OH3, boehmita AlOOH, alúminas de transición (calcinadas a bajas temperaturas, 1000 °C, con una estructura cristalográfica intermedia entre los hidratos y la alfa alúmina, y la α-Al2O3 (calcinada a

  6. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  7. Silica containing highly porous alumina ceramic

    Science.gov (United States)

    Svinka, R.; Svinka, V.; Zake, I.

    2011-04-01

    Porous alumina ceramic were produced by slip casting of aqueous alumina slurry with added small amount of metallic aluminium powder. Pores form in result of chemical reaction of aluminum with water by hydrogen gas evolution reaction and solidification of suspension. Porosity of such materials sintered at a temperature of 1600 - 1750°C varies from 60 to 90%. Pore size distribution and mechanical strength of these materials depend largely on the grain size of used raw materials. The major part of pores in the materials produced without additive of silica are larger than 10 ±m, but with 5 - 10 wt.% additive of silica in the raw mix pore size decreases considerably. The sintering shrinkage decreases to 2.5%. Coefficient of thermal expansion equally decreases from 8.9-10-6 K-1 to 7.1 10-6 K-1 and classification temperature increases to 1600°C, while deformation at high temperature decreases considerably.

  8. Kaolin as a Source of Silica and Alumina For Synthesis of Zeolite Y and Amorphous Silica Alumina

    Directory of Open Access Journals (Sweden)

    Sri Rahayu Endang

    2018-01-01

    Full Text Available Kaolin is the clay mineral which containing silica (SiO2 and alumina (Al2O3 in a high percentage, that can be used as a nutrient in the synthesis of zeolites and amorphous silica alumina (ASA. The objective of this research is to convert the Belitung kaolin into silica and alumina as nutrients for the synthesis of zeolites and amorphous silica alumina, which are required in the preparation of the catalysts. Silica and alumina contained in the kaolin were separated by leaching the active kaolin called as metakaolin, using HCL solution, giving a solid phase rich silica and a liquid phase rich alumina. The solid phase rich silica was synthesized to zeolite Y by adding seed of the Y Lynde type, through the hydrothermal process with an alkaline condition. While, the liquid phase rich alumina was converted into an amorphous silica alumina through a co precipitation method. Characterization of zeolite and ASA were done using XRD, surface area and pore analyzer and SEM. The higher of alumina in liquid phase as a result of the rising molar of HCL in the leaching process was observed, but it didn’t work for its rising time. Products of ASA and zeolite Y were obtained by using liquid phase rich alumina and solid phase rich silica, respectively, which resulted through leaching metakaolin in 2.5 M HCl at temperature of 100° C for 2 hours.

  9. In-beam dielectric properties of alumina

    International Nuclear Information System (INIS)

    Molla, J.; Ibarra, A.; Hodgson, E.R.

    1995-01-01

    The dielectric properties (permittivity and loss tangent) of a 99.7% purity alumina grade have been measured over a wide frequency range (1 kHz-15 GHz) before and after 2 MeV electron irradiation at different temperatures. The dielectric properties at 15 GHz were measured during irradiation. Both prompt and fluence effects are observed together with permanent changes which continue to evolve following irradiation. The behaviour is complex, consistent with both radiation induced electronic effects and aggregation processes. ((orig.))

  10. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  11. Nitrogen Adsorption Study of Organised Mesoporous Alumina

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Žilková, Naděžda; Rathouský, Jiří; Zukal, Arnošt

    2001-01-01

    Roč. 3, č. 22 (2001), s. 5076-5081 ISSN 1463-9076 R&D Projects: GA AV ČR IAA4040001; GA MŠk ME 404 Grant - others:NATO(XE) SfP 974217 Institutional research plan: CEZ:AV0Z4040901 Keywords : nitrogen adsorption study * organised mesoporous alumina * reference nonporous solid Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.787, year: 2001

  12. Preparation and Characterization of Activated Alumina

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Activated alumina is a high surface area and highly porous form of aluminum oxide that can be employed for contaminant species adsorb from ether gases or liquids without changing its form. The research in getting this material has generated huge interested. Thus, this paper presented preparation of activated alumina from chemical process. Pure aluminum (99.9% pure) reacted at room temperature with an aqueous NaOH in a reactor to produce a solution of sodium aluminate (NaAlO2). This solution was passed through filter paper and the clear filtrate was neutralized with H2SO4, to pH 6, 7 or 8, resulting in the precipitation of a white gel, Al(OH)3·XH2O. The washed gel for sulfate ions were dried at 80 °C for 6 h, a 60 mesh sieve was to separate and sort them into different sizes. The samples were then calcined (burn) for 3h in a muffle furnace, in air, at a heating rate of 2 °C min-1. The prepared activated alumina was further characterized for better understanding of its physical properties in order to predict its chemical mechanism.

  13. Size dependent phase and morphological transformation of alumina nanoparticles

    Science.gov (United States)

    Dommisa, D. B.; Dash, R. K.

    2018-03-01

    The size effect of the alumina nanoparticles on the phase and morphological transition by thermal treatment at various temperatures is investigated by choosing two different sizes alumina nanoparticles. Our experimental results revealed that phase and morphological transformation behavior is significantly different for smaller size alumina nanoparticles than that of larger size. The more stable alpha phase transformation occurs at a higher temperature for smaller size alumina nanoparticles in comparison to that of the larger size alumina nanoparticles. Moreover, the experimental facts also elucidated that the nucleation and growth process at the nanoscale for the phase transition is also size dependent. Our experimental result from the FESEM and TEM analysis also revealed that there is a direct correlation between phase and morphological transition of alumina nanoparticles size which is consistent with the XRD results. Therefore, we believe that our experimental findings can be extended to other complex nanomaterials for understanding the size-dependent phase and morphological transformation at the nanoscale.

  14. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  15. Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics

    Directory of Open Access Journals (Sweden)

    Bin Qian

    2014-06-01

    Full Text Available Additive manufacturing of alumina by laser is a delicate process and small changes of processing parameters might cause less controlled and understood consequences. The real-time monitoring of temperature profiles, spectrum profiles and surface morphologies were evaluated in off-axial set-up for controlling the laser sintering of alumina ceramics. The real-time spectrometer and pyrometer were used for rapid monitoring of the thermal stability during the laser sintering process. An active illumination imaging system successfully recorded the high temperature melt pool and surrounding area simultaneously. The captured images also showed how the defects form and progress during the laser sintering process. All of these real-time monitoring methods have shown a great potential for on-line quality control during laser sintering of ceramics.

  16. Characterisation of austempered spheroidal graphite aluminium cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Boutorabi, S.M.A. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Metallurgy and Materials

    1997-06-01

    The micro constituents of austempered spheroidal graphite aluminium cast iron were investigated. The heat tinting, special etching and microhardness measurement techniques were used. The results showed that the colour of each micro constituents and the hardness values in austempered ductile iron depend on the carbon content of each phase. The above techniques were supported by using an special etching which showed similar differences in each phase. It was shown that the heat tinting and special etching are reliable tools to characterise the complex matrix of ADI. The microhardness data supported interestingly the colour changes in above technique. (orig.)

  17. Wall effects on Reiner-Rivlin liquid spheroid

    Directory of Open Access Journals (Sweden)

    Jaiswal B. R.

    2014-12-01

    Full Text Available An analysis is carried out to study the flow characteristics of creeping motion of an inner non-Newtonian Reiner-Rivlin liquid spheroid r = 1+ ∑_{k=2}^∞α_kG_k(cos θ, here α_k is very small shape factor and G_k is Gegenbauer function of first kind of order k, at the instant it passes the centre of a rigid spherical container filled with a Newtonian fluid. The shape of the liquid spheroid is assumed to depart a bit at its surface from the shape a sphere. The analytical expression for stream function solution for the flow in spherical container is obtained by using Stokes equation. While for the flow inside the Reiner-Rivlin liquid spheroid, the expression for stream function is obtained by expressing it in a power series of S, characterizing the cross-viscosity of Reiner-Rivlin fluid. Both the flow fields are then determined explicitly by matching the boundary conditions at the interface of Newtonian fluid and non-Newtonian fluid and also the condition of impenetrability and no-slip on the outer surface to the first order in the small parameter ε, characterizing the deformation of the liquid sphere. As an application, we consider an oblate liquid spheroid r = 1+2εG_2(cos θ and the drag and wall effects on the body are evaluated. Their variations with regard to separation parameter, viscosity ratio λ, cross-viscosity, i.e., S and deformation parameter are studied and demonstrated graphically. Several well-noted cases of interest are derived from the present analysis. Attempts are made to compare between Newtonian and Reiner-Rivlin fluids which yield that the cross-viscosity μ_c is to decrease the wall effects K and to increase the drag D_N when deformation is comparatively small. It is observed that drag not only varies with λ, but as η increases, the rate of change in behavior of drag force increases also.

  18. Galaxy And Mass Assembly (GAMA): blue spheroids within 87 Mpc

    Science.gov (United States)

    Mahajan, Smriti; Drinkwater, Michael J.; Driver, S.; Hopkins, A. M.; Graham, Alister W.; Brough, S.; Brown, Michael J. I.; Holwerda, B. W.; Owers, Matt S.; Pimbblet, Kevin A.

    2018-03-01

    In this paper, we test if nearby blue spheroid (BSph) galaxies may become the progenitors of star-forming spiral galaxies or passively evolving elliptical galaxies. Our sample comprises 428 galaxies of various morphologies in the redshift range 0.002 well as spirals in the multidimensional space mapped by luminosity-weighted age, metallicity, dust mass, and specific star formation rate. We use H I data to reveal that some of the BSphs are (further) developing their discs, hence their blue colours. They may eventually become spiral galaxies - if sufficient gas accretion occurs - or more likely fade into low-mass red galaxies.

  19. PREDICTION OF THE EXTREMAL SHAPE FACTOR OF SPHEROIDAL PARTICLES

    Directory of Open Access Journals (Sweden)

    Daniel Hlubinka

    2011-05-01

    Full Text Available In the stereological unfolding problem for spheroidal particles the extremal shape factor is predicted. The theory of extreme values has been used to show that extremes of the planar shape factor of particle sections tend to the same limit distribution as extremes of the original shape factor for both the conditional and marginal distribution. Attention is then paid to the extreme shape factor conditioned by the particle size. Normalizing constants are evaluated for a parametric model and the numerical procedure is tested on real data from metallography.

  20. Two-electron atomic systems confined within spheroidal boxes

    Energy Technology Data Exchange (ETDEWEB)

    Corella-Madueno, A.; Rosas, R.A.; Marin, J.L.; Riera, R.

    2000-03-15

    The direct variational method is used to estimate some interesting physical properties of the He atom and the Li{sup +} ion confined within impenetrable spheroidal boxes. A comparative investigation f the ground=state energy, pressure, polarizability, dipole, and quadrupole moments with those of the He atom inside boxes with paraboloidal walls is made. The overall results show a similar qualitative behavior. However, for Li{sup +} there are quantitative differences on such properties due to its major nuclear charge, as expected. The trial wave function is constructed as a product of two hydrogenic wave functions adapted to the geometry of the confining boxes.

  1. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  2. Method for preparing Pb-.beta."-alumina ceramic

    Science.gov (United States)

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  3. Spheroid culture as a tool for creating 3D complex tissues

    NARCIS (Netherlands)

    Fennema, E.M.; Rivron, N.C.; Rouwkema, Jeroen; van Blitterswijk, Clemens; de Boer, Jan

    2013-01-01

    3D cell culture methods confer a high degree of clinical and biological relevance to in vitro models. This is specifically the case with the spheroid culture, where a small aggregate of cells grows free of foreign materials. In spheroid cultures, cells secrete the extracellular matrix (ECM) in which

  4. Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks.

    Science.gov (United States)

    Lin, Haishuang; Li, Qiang; Lei, Yuguo

    2017-04-24

    A recently emerged approach for tissue engineering is to biofabricate tissues using cellular spheroids as building blocks. Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), can be cultured to generate large numbers of cells and can presumably be differentiated into all the cell types of the human body in vitro, thus are an ideal cell source for biofabrication. We previously developed a hydrogel-based cell culture system that can economically produce large numbers of hPSC spheroids. With hPSCs and this culture system, there are two potential methods to biofabricate a desired tissue. In Method 1, hPSC spheroids are first utilized to biofabricate an hPSC tissue that is subsequently differentiated into the desired tissue. In Method 2, hPSC spheroids are first converted into tissue spheroids in the hydrogel-based culture system and the tissue spheroids are then utilized to biofabricate the desired tissue. In this paper, we systematically measured the fusion rates of hPSC spheroids without and with differentiation toward cortical and midbrain dopaminergic neurons and found spheroids' fusion rates dropped sharply as differentiation progressed. We found Method 1 was appropriate for biofabricating neural tissues.

  5. Oxygenation and response to irradiation of organotypic multicellular spheroids of human glioma.

    Science.gov (United States)

    Sminia, Peter; Acker, Helmut; Eikesdal, Hans Petter; Kaaijk, Patricia; Enger, Per øvind; Slotman, Ben; Bjerkvig, Rolf

    2003-01-01

    Investigation of the oxygenation status of organotypic multicellular spheroids (OMS) and their response to irradiation. Tumour specimens of glioblastoma multiforme patients (n = 16) were initiated as OMS. Following 20 Gy gamma-irradiation, the cell migratory capacity was evaluated. Spheroid oxygenation was determined by micro-electrode pO2 measurements and pimonidazole immunostaining. Spheroids prepared from established human glioma cell lines were used as a reference. Irradiation inhibited spheroid outgrowth by 12 to 88% relative to the non-irradiated controls. A large interpatient variation was noticed. Oxygen measurements revealed a gradual decrease in pO2 level from the periphery to the core of the spheroids, but the pO2 values remained within an oxygenated range. However, in the cell line spheroids an intermediate layer of hypoxia surrounding the central core was observed. Cell line spheroids with a hypoxic cell fraction and well-oxygenated OMS both show high resistance to irradiation, indicating that hypoxia may not be the biological factor determining the radioresistance of glioma spheroids in vitro.

  6. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Delyan P Ivanov

    Full Text Available Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  7. A theoretical study of the spheroidal droplet evaporation in forced convection

    International Nuclear Information System (INIS)

    Li, Jie; Zhang, Jian

    2014-01-01

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time. - Highlights: • Fully algebraic solutions for the spheroidal droplet evaporation rate is obtained. • We examine the effect of aspect ratio on the droplet evaporation. • We propose a calculation method of Nusselt number for spheroidal droplet

  8. High-Throughput Spheroid Screens Using Volume, Resazurin Reduction, and Acid Phosphatase Activity.

    Science.gov (United States)

    Ivanov, Delyan P; Grabowska, Anna M; Garnett, Martin C

    2017-01-01

    Mainstream adoption of physiologically relevant three-dimensional models has been slow in the last 50 years due to long, manual protocols with poor reproducibility, high price, and closed commercial platforms. This chapter describes high-throughput, low-cost, open methods for spheroid viability assessment which use readily available reagents and open-source software to analyze spheroid volume, metabolism, and enzymatic activity. We provide two ImageJ macros for automated spheroid size determination-for both single images and images in stacks. We also share an Excel template spreadsheet allowing users to rapidly process spheroid size data, analyze plate uniformity (such as edge effects and systematic seeding errors), detect outliers, and calculate dose-response. The methods would be useful to researchers in preclinical and translational research planning to move away from simplistic monolayer studies and explore 3D spheroid screens for drug safety and efficacy without substantial investment in money or time.

  9. Effect of hierarchical meso–macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenation

    International Nuclear Information System (INIS)

    Witoon, Thongthai; Bumrungsalee, Sittisut; Chareonpanich, Metta; Limtrakul, Jumras

    2015-01-01

    Highlights: • CO 2 hydrogenation over Cu-loaded unimodal and hierarchical alumina catalysts. • Cu-loaded hierarchical catalyst exhibited higher methanol selectivity and stability. • The presence of macropores reduced the probability of side reaction. - Abstract: Effects of pore structures of alumina on the catalytic performance of copper catalysts for CO 2 hydrogenation were investigated. Copper-loaded hierarchical meso–macroporous alumina (Cu/HAl) catalyst exhibited no significant difference in terms of CO 2 conversion with copper-loaded unimodal mesoporous alumina (Cu/UAl) catalyst. However, the selectivity to methanol and dimethyl ether of the Cu/HAl catalyst was much higher than that of the Cu/UAl catalyst. This was attributed to the presence of macropores which diminished the occurrence of side reaction by the shortening the mesopores diffusion path length. The Cu/HAl catalyst also exhibited much higher stability than the Cu/UAl catalyst due to the fast diffusion of water out from the catalyst pellets, alleviating the oxidation of metallic copper to CuO

  10. Universal timescales in the rheology of spheroid cell aggregates

    Science.gov (United States)

    Yu, Miao; Mahtabfar, Aria; Beleen, Paul; Foty, Ramsey; Zahn, Jeffrey; Shreiber, David; Liu, Liping; Lin, Hao

    2017-11-01

    The rheological properties of tissue play important roles in key biological processes including embryogenesis, cancer metastasis, and wound healing. Spheroid cell aggregate is a particularly interesting model system for the study of these phenomena. In the long time, they behave like drops with a surface tension. In the short, viscoelasticity also needs to be considered. In this work, we discover two coupled and universal timescales for spheroid aggregates. A total of 12 aggregate types (total aggregate number n =290) derived from L and GBM (glioblastoma multiforme) cells are studied with microtensiometer to obtain their surface tension. They are also allowed to relax upon release of the compression forces. The two timescales are observed during the relaxation process; their values do not depend on compression time nor the degree of deformation, and are consistent among all 12 types. Following prior work (Yu et al., Phys. Rev. Lett., 115:128303; Liu et al., J. Mech. Phys. Solids, 98:309-329) we use a rigorous mathematical theory to interpret the results, which reveals intriguing properties of the aggregates on both tissue and cellular levels. The mechanics of multicellular organization reflects both complexity and regularity due to strong active regulation.

  11. The stability of the hydroxylated (0001) surface of alpha-Al2O3

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Nørskov, Jens Kehlet; Stoltze, Per

    2003-01-01

    -alumina. The stability of the hydrated surface resolves the discrepancies between the morphology of the alpha-alumina (0001) surface observed under ultra-high vacuum, and at ambient conditions. A method for the calculation of the equilibrium surface stoichiometry is proposed. The proposed approach provides a valuable...... connection between theoretical calculations and experiments with metal oxides....

  12. Evaluation of atomic layer deposited alumina as a protective layer for domestic silver articles: Anti-corrosion test in artificial sweat

    Science.gov (United States)

    Park, Suk Won; Han, Gwon Deok; Choi, Hyung Jong; Prinz, Fritz B.; Shim, Joon Hyung

    2018-05-01

    This study evaluated the effectiveness of alumina fabricated by atomic layer deposition (ALD) as a protective coating for silver articles against the corrosion caused by body contact. An artificial sweat solution was used to simulate body contact. ALD alumina layers of varying thicknesses ranging from 20 to 80 nm were deposited on sputtered silver samples. The stability of the protective layer was evaluated by immersing the coated samples in the artificial sweat solution at 25 and 35 °C for 24 h. We confirmed that a sufficiently thick layer of ALD alumina is effective in protecting the shape and light reflectance of the underlying silver, whereas the uncoated bare silver is severely degraded by the artificial sweat solution. Inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy were used for in-depth analyses of the chemical stability of the ALD-coated silver samples after immersion in the sweat solution.

  13. Shockless spalling damage of alumina ceramic

    Science.gov (United States)

    Erzar, B.; Buzaud, E.

    2012-05-01

    Ceramic materials are commonly used to build multi-layer armour. However reliable test data is needed to identify correctly models and to be able to perform accurate numerical simulation of the dynamic response of armour systems. In this work, isentropic loading waves have been applied to alumina samples to induce spalling damage. The technique employed allows assessing carefully the strain-rate at failure and the dynamic strength. Moreover, specimens have been recovered and analysed using SEM. In a damaged but unbroken specimen, interactions between cracks has been highlighted illustrating the fragmentation process.

  14. Low Temperature MOCVD-Processed Alumina Coatings

    OpenAIRE

    Gleizes, Alain; Sovar, Maria-Magdalena; Samélor, Diane; Vahlas, Constantin

    2006-01-01

    We first present a Review about the preparation of alumina as thin films by the technique of MOCVD at low temperature (550°C and below). Then we present our results about thin films prepared by the low pressure MOCVD technique, using aluminium tri-isopropoxide as a source, and characterized by elemental analysis (EMPA, EDS, ERDA, RBS), FTIR, XRD and TGA. The films were grown in a horizontal, hot-wall reactor, with N2 as a carrier gas either pure or added with water vapour. The deposition t...

  15. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  16. Characterization of silane coated hollow sphere alumina-reinforced ...

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  17. Chemical modification/grafting of mesoporous alumina with polydimethylsiloxane (PDMS)

    NARCIS (Netherlands)

    Pinheiro de Melo, A.F.; Nijmeijer, Arian; Sripathi, V.G.P.; Winnubst, Aloysius J.A.

    2015-01-01

    A method for polydimethylsiloxane grafting of alumina powders is described which involves chemical modification of the surface of mesoporous (5 nm) γ-alumina flakes with a linker (3-aminopropyltriethoxysilane: APTES), either by a solution phase (SPD) or a vapour phase (VPD) reaction, followed by

  18. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    Alumina balls worn out ( 14.2 × 10 − 1 mm 3 ) very rapidly with zero wear for diamond ceramic coatings. Since the generation of wear particle is the main problem for load-bearing prosthetic joints, it was concluded that the PCD material can potentially replace existing alumina bio-ceramic for their bettertribological properties ...

  19. Micrometer size grains of hot isostatically pressed alumina and its ...

    Indian Academy of Sciences (India)

    Administrator

    The. Vickers hardness in 5⋅5 μm grain microstructure is around 20 GPa in comparison to about 18 GPa in micro- structure with smaller grains of 2⋅2 μm size. Keywords. Alumina ... the technology of alumina ceramics (Munro 1997; Raha- man et al 2007) by purer ... reported interface-reaction-controlled kinetics of HIPing.

  20. Processing and characterization of alumina/LAS bioceramics for ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Alumina allows to recreate the functionality and aesthetics of natural teeth. However, its low frac- ture toughness rises concern regarding use in dental restoration. Structural reliability is addressed here by formulating a material containing alumina and a glass–ceramic from LAS system. The presence of LAS in the.

  1. Processing and characterization of alumina/LAS bioceramics for ...

    Indian Academy of Sciences (India)

    Alumina allows to recreate the functionality and aesthetics of natural teeth. However, its low fracture toughness rises concern regarding use in dental restoration. Structural reliability is addressed here by formulating a material containing alumina and a glass–ceramic from LAS system. The presence of LAS in the mixtures ...

  2. APPLICATION OF VARIOUS TYPES OF ALUMINA AND NANO-γ ...

    African Journals Online (AJOL)

    Preferred Customer

    reported for the synthesis of α-aminonitriles, nucleophilic addition of cyanide ion to imines. (Strecker reaction), is of .... Application of various types of alumina and nano-γ-alumina sulfuric acid. Bull. Chem. Soc. ..... After purification by chromatography on silica gel (ethyl acetate/n-hexane 20:80) α-aminonitriles were obtained.

  3. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  4. UVES Abundances of Stars in Nearby Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Tolstoy, Eline; Venn, Kim; Shetrone, Matt; Primas, Francesca; Hill, Vanessa; Kaufer, Andreas; Szeifert, Thomas

    2002-07-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I & Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for

  5. Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2016-12-01

    Full Text Available Nature-mimetic hydrophobic membranes with high wetting resistance have been designed for seawater desalination via vacuum membrane distillation (VMD in this study. This is achieved through molecular engineering of metal–organic framework (MOF-functionalized alumina surfaces. A two-step synthetic strategy was invented to design the hydrophobic membranes: (1 to intergrow MOF crystals on the alumina tube substrate and (2 to introduce perfluoro molecules onto the MOF functionalized membrane surface. With the first step, the surface morphology, especially the hierarchical roughness, can be controlled by tuning the MOF crystal structure. After the second step, the perfluoro molecules function as an ultrathin layer of hydrophobic floss, which lowers the surface energy. Therefore, the resultant membranes do not only possess the intrinsic advantages of alumina supports such as high stability and high water permeability, but also have a hydrophobic surface formed by MOF functionalization. The membrane prepared under an optimum condition achieved a good VMD flux of 32.3 L/m2-h at 60 °C. This study may open up a totally new approach for design of next-generation high performance membrane distillation membranes for seawater desalination.

  6. Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application

    International Nuclear Information System (INIS)

    Gorokh, G.; Mozalev, A.; Solovei, D.; Khatko, V.; Llobet, E.; Correig, X.

    2006-01-01

    Thin nanoporous anodic alumina films, of low aspect ratio (1:1), with two distinctive pore sizes and morphologies were prepared by two-step constant-current anodising of aluminium layers on SiO 2 /Si substrates in 0.4 mol dm -3 tartaric (TA) and malonic acid (MA) electrolytes and then modified by open-circuit dissolution. The anodic films were employed as a support material for sputtering-deposition of thin WO 3 layers in view of exploiting their gas sensing properties. The films and deposits were characterized by scanning electron microscopy, X-ray diffraction and electric resistance measurements at fixed temperatures in the range of 100-300 deg. C upon NH 3 and CO gas exposures. Test sensors prepared from the annealed and stabilized alumina-supported WO 3 active layers were insensitive to CO but showed considerably enhanced responses to NH 3 at 300 deg. C, the sensitivity depending upon the anodic film nature, the pore size and the surface morphology. The increased sensor sensitivity is due to the substantially enlarged film surface area of the TA-supported WO 3 films and the nanostructured, camomile-like morphology of the MA-supported WO 3 films. Sensing mechanisms in the alumina-supported WO 3 active layers are discussed

  7. Modification by SiO2 of Alumina Support for Light Alkane Dehydrogenation Catalysts

    Directory of Open Access Journals (Sweden)

    Giyjaz E. Bekmukhamedov

    2016-10-01

    Full Text Available Due to the continuously rising demand for C3–C5 olefins it is important to improve the performance of catalysts for dehydrogenation of light alkanes. In this work the effect of modification by SiO2 on the properties of the alumina support and the chromia-alumina catalyst was studied. SiO2 was introduced by impregnation of the support with a silica sol. To characterize the supports and the catalysts the following techniques were used: low-temperature nitrogen adsorption; IR-spectroscopy; magic angle spinning 29Si nuclear magnetic resonance; temperature programmed desorption and reduction; UV-Vis-, Raman- and electron paramagnetic resonance (EPR-spectroscopy. It was shown that the modifier in amounts of 2.5–7.5 wt % distributed on the support surface in the form of SiOx-islands diminishes the interaction between the alumina support and the chromate ions (precursor of the active component. As a result, polychromates are the compounds predominantly stabilized on the surface of the modified support; under thermal activation of the catalyst and are reduced to the amorphous Cr2O3. This in turn leads to an increase in the activity of the catalyst in the dehydrogenation of isobutane.

  8. Characterization and sintering of niobium-ATR alumina

    International Nuclear Information System (INIS)

    Sibuya, N.H.; Iwasaki, H.; Suzuki, C.K.; Pinatti, D.G.

    1987-01-01

    In the niobium aluminothermy a slag is produced, composed mostly of alumina and other compounds such as niobium oxide and silica. The phase composition of this ATR alumina was characterized by X-ray powder diffractometry, and afterwards this alumina was subjected to leaching processes. It was noticed that the original content of 70% α-alumina in slag rose to 95% after the calcination. ATR alumina (leached and calcined, and without any treatment) was used to make pressed bodies which were fired in air at 1200 to 1400 0 C for 1 to 10,5 hours; and in vacuum at 1550 to 1800$0C for 2 hours. Characterization was done by density measurements, X-ray diffractometry and ultrasonic analysis. Ultrasonic analysis of some vacuum fired bodies showed londitudinal velocities close to the value found in literature. Correlation of several techniques measurements disclosed the niobium oxide interference in sintering. (Author) [pt

  9. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  10. The mineralogy of bauxite for producing smelter-grade alumina

    Science.gov (United States)

    Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.

    2001-12-01

    Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.

  11. Identification of Lgr5-Independent Spheroid-Generating Progenitors of the Mouse Fetal Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Roxana C. Mustata

    2013-10-01

    Full Text Available Immortal spheroids were generated from fetal mouse intestine using the culture system initially developed to culture organoids from adult intestinal epithelium. Spheroid proportion progressively decreases from fetal to postnatal period, with a corresponding increase in production of organoids. Like organoids, spheroids show Wnt-dependent indefinite self-renewing properties but display a poorly differentiated phenotype reminiscent of incompletely caudalized progenitors. The spheroid transcriptome is strikingly different from that of adult intestinal stem cells, with minimal overlap of Wnt target gene expression. The receptor LGR4, but not LGR5, is essential for their growth. Trop2/Tacstd2 and Cnx43/Gja1, two markers highly enriched in spheroids, are expressed throughout the embryonic-day-14 intestinal epithelium. Comparison of in utero and neonatal lineage tracing using Cnx43-CreER and Lgr5-CreERT2 mice identified spheroid-generating cells as developmental progenitors involved in generation of the prenatal intestinal epithelium. Ex vivo, spheroid cells have the potential to differentiate into organoids, qualifying as a fetal type of intestinal stem cell.

  12. Evaluation of bioactivity of octacalcium phosphate using osteoblastic cell aggregates on a spheroid culture device

    Directory of Open Access Journals (Sweden)

    Takahisa Anada

    2016-03-01

    Full Text Available Much attention has been paid to three-dimensional cell culture systems in the field of regenerative medicine, since three-dimensional cellular aggregates, or spheroids, are thought to better mimic the in vivo microenvironments compared to conventional monolayer cultured cells. Synthetic calcium phosphate (CaP materials are widely used as bone substitute materials in orthopedic and dental surgeries. Here we have developed a technique for constructing a hybrid spheroid consisting of mesenchymal stem cells (MSCs and synthetic CaP materials using a spheroid culture device. We found that the device is able to generate uniform-sized CaP/cell hybrid spheroids rapidly and easily. The results showed that the extent of osteoblastic differentiation from MSCs was different when cells were grown on octacalcium phosphate (OCP, hydroxyapatite (HA, or β-tricalcium phosphate (β-TCP. OCP showed the greatest ability to increase the alkaline phosphatase activity of the spheroid cells. The results suggest that the spheroids with incorporated OCP may be an effective implantable hybrid consisting of scaffold material and cells for bone regeneration. It is also possible that this CaP–cell spheroid system may be used as an in vitro method for assessing the osteogenic induction ability of CaP materials.

  13. The Carina dwarf spheroidal galaxy - How dark is it?

    Science.gov (United States)

    Mateo, Mario; Olszewski, Edward W.; Pryor, Carlton; Welch, Douglas L.; Fischer, Philippe

    1993-01-01

    Precise radial velocities obtained with a photon-counting echelle spectrograph for a sample of 17 red giants in the Carina dwarf spheroidal galaxy are presented. The calculation of the systemic velocity and central velocity dispersion of Carina is described, the existing data constraining the structural parameters of Carina are reviewed, and an estimate of the central surface brightness of the galaxy is derived. These data are used to estimate the central mass density of Carina, as well as central and global mass-to-light ratios. It is concluded that the inferred mass densities and mass-density limits for all acceptable models imply the presence of a significant DM component in Carina. DM properties of all well-studied dSph systems are summarized and compared.

  14. CARBOHYDRATE-BASED CELL ADHESION: ANALYSIS OF SPHEROID FORMATION

    Directory of Open Access Journals (Sweden)

    Marco Antonio Vieira Macedo Grinet

    2017-04-01

    Full Text Available Carbohydrates are vast constituents of cell surfaces and in many systems where cell adhesion plays a critical role, carbohydrate binding proteins have been shown to bind to cell surface carbohydrates and participate in cell-cell interactions. Jurkat cells are suspension cells that grow in clumps and have 20.7 (± 2.2 hours of population doubling time (PDT. In this experiment, Jurkat cells are studied to compare the effects of wheat germ agglutinin (WGA lectin, and Maackia amurensis (MAA lectin, for clumping and spheroid formation studies, as well as carbohydrate analog solutions in ethanol (C2H6O Ac4ManNAc, and Ac5ManNTGc for concentration effect studies.

  15. Numerical simulations of bistable flows in precessing spheroidal shells

    Science.gov (United States)

    Vormann, J.; Hansen, U.

    2018-05-01

    Precession of the rotation axis is an often neglected mechanical driving mechanism for flows in planetary interiors, through viscous coupling at the boundaries and topographic forcing in non-spherical geometries. We investigate precession-driven flows in spheroidal shells over a wide range of parameters and test the results against theoretical predictions. For Ekman numbers down to 8.0 × 10-7, we see a good accordance with the work of Busse, who assumed the precession-driven flow to be dominated by a rigid rotation component that is tilted to the main rotation axis. The velocity fields show localized small-scale structures for lower Ekman numbers and clear signals of inertial waves for some parameters. For the case of moderate viscosity and strong deformation, we report the realization of multiple solutions at the same parameter combination, depending on the initial condition.

  16. Pervasive plastisphere: First record of plastics in egagropiles (Posidonia spheroids).

    Science.gov (United States)

    Pietrelli, Loris; Di Gennaro, Alessia; Menegoni, Patrizia; Lecce, Francesca; Poeta, Gianluca; Acosta, Alicia T R; Battisti, Corrado; Iannilli, Valentina

    2017-10-01

    The ability of Posidonia oceanica spheroids (egagropiles, EG) to incorporate plastics was investigated along the central Italy coast. Plastics were found in the 52.84% of the egagropiles collected (n = 685). The more represented size of plastics has range within 1-1.5 cm, comparable to the size of natural fibres. Comparing plastics occurring both in EG and in surrounding sand, Polyethylene, Polyester and Nylon were the most abundant polymers in EG, while PSE, PE, PP and PET were the most represented in sand. In particular PE and PP were significantly more represented in sand, while PE, Nylon, Polyester and microfibers (as pills) were more represented in EG. Within plastics found in EG, 26.9% were microfibers as small pills (PET mixing. These microfibers might be produced by discharges from washing machines and currently represents an emerging pollutant with widespread distribution in marine and freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Scattering center models of backscattering waves by dielectric spheroid objects.

    Science.gov (United States)

    Guo, Kun-Yi; Han, Xiao-Zhe; Sheng, Xin-Qing

    2018-02-19

    Scattering center models provide a simple and effective way of describing the complex electromagnetic scattering phenomena of targets and have been successfully applied in radar applications. However, the existing models are limited to conducting objects. Numerical results show that scattering centers of dielectric objects are far more complex than conducting objects and most of them are distributed beyond the object. For the lossless and low-loss media, the major scattering contributions to total fields are surface waves and multiple internal reflections rather than the direct reflection. Concise scattering center models for backscattering from dielectric spheroid objects are proposed in this work, which can characterize the backscattered waves by scattering centers with sparse and physical parameters. Good agreement has been demonstrated between the high resolution range profiles simulated by this model with those obtained by Mie series and the full wave numerical method.

  18. Quantitative Microfluidic Dynamics Of Spheroidal Particles Within Periodic Optical Landscapes

    Science.gov (United States)

    Conover, Brandon Lee

    2011-12-01

    Over the past 4 decades, research and development of optical manipulation techniques has been primarily focused on observable phenomena. Trapping, sorting, mixing, aligning, and organizing particles---often times spheres on the order of 1 -- 100mum---has been shown by several groups using many different optical trapping and optical potential techniques. However, relatively little been reported on either the quantification of the various forces on the particles or on the theoretical aspects of the motion of the particles. Even less has been reported regarding the theoretical aspects of the motion of non-spherical particles within optical traps and landscapes. It is the objective of this dissertation to address these deficits by means of modeling and experimentally verifying the behavior of particles within periodic optical landscapes. First, we report on our development of a quantifiable analysis of these phenomena by means of a form factor model of spheroidal particle motion in periodic optical landscapes. Using this model, we show that shape does indeed have a quantifiable impact on a particle's motion in an optical landscape. We conclude that a collection of particles will all traverse an optical landscape differently based directly on their respective sizes, refractive indices, and shapes, sometimes with a high degree of dispersion. Next, we report on our development of a second model of spheroidal particle motion in periodic optical landscapes. Based on the T-matrix scattering approach, this model addresses the scattering forces and the electric field polarization effects on the particles' motion. We conclude that as the particle size gets larger, the scattering forces become greater and very quickly rise above an order of magnitude larger than the gradient forces of the optical landscape. Our conclusions provide quantifiable conditions for when scattering forces and electric field-induced torques within an optical landscape are significant and should not be

  19. Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD): a single entity?

    Science.gov (United States)

    Wider, C; Van Gerpen, J A; DeArmond, S; Shuster, E A; Dickson, D W; Wszolek, Z K

    2009-06-02

    Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and familial pigmentary orthochromatic leukodystrophy (POLD) present as adult-onset dementia with motor impairment and epilepsy. They are regarded as distinct diseases. We review data from the literature that support their being a single entity. Apart from a slightly older age at onset, a more rapid course, and more prominent pyramidal tract involvement, familial POLD is clinically similar to HDLS. Moreover, the pathologic hallmarks of the two diseases, axonal spheroids in HDLS and pigmented macrophages in POLD, can be identified in both conditions. This supports HDLS and POLD being referred collectively as adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP).

  20. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium

    DEFF Research Database (Denmark)

    Marthin, June Kehlet; Stevens, Elizabeth Munkebjerg; Larsen, Lars Allan

    2017-01-01

    BACKGROUND: Three-dimensional explant spheroid formation is an ex vivo technique previously used in studies of airway epithelial ion and water transport. Explanted cells and sheets of nasal epithelium form fully differentiated spheroids enclosing a partly fluid-filled lumen with the ciliated apical...... in a single healthy person. CONCLUSION: Patient-specific three-dimensional explant spheroid formation from a minimal invasive nasal brush biopsy is a feasible, fast and valid ex vivo method to assess ciliary function with potential of aiding the diagnosis of PCD. In addition, it may be a useful model...

  1. Development and characterization of floating spheroids of atorvastatin calcium loaded NLC for enhancement of oral bioavailability.

    Science.gov (United States)

    Sharma, Kritika; Hallan, Supandeep Singh; Lal, Bharat; Bhardwaj, Ankur; Mishra, Neeraj

    2016-09-01

    The obejctive of the present study was to investigate the potential use of floating spheroids of Atorvastatin Calcium (ATS) Loaded nanostructured lipid carriers (NLCs). The final formula of floating spheroids was optimized on the basis of shape (spherical), diameter (0.47 mm), lag time (20 s), and floating time (> 32 h). The results were further confirmed by different pharmacokinetic parameters-it was observed that the developed optimized floating ATS spheroid-loaded NLCs formulation has significantly improved relative bioavailability, that is, 3.053-folds through oral route in comparison to marketed formulation.

  2. A novel lab-on-a-chip platform for spheroid metabolism monitoring.

    Science.gov (United States)

    Alexander, Frank; Eggert, Sebastian; Wiest, Joachim

    2018-02-01

    Sensor-based cellular microphysiometry is a technique that allows non-invasive, label-free, real-time monitoring of living cells that can greatly improve the predictability of toxicology testing by removing the influence of biochemical labels. In this work, the Intelligent Mobile Lab for In Vitro Diagnostics (IMOLA-IVD) was utilized to perform cellular microphysiometry on 3D multicellular spheroids. Using a commercial 3D printer, 3 × 3 microwell arrays were fabricated to maintain nine previously cultured HepG2 spheroids on a single BioChip. Integrated layers above and under the spheroids allowed fluidic contact between spheroids in microwells and BioChip sensors while preventing wash out from medium perfusion. Spheroid culturing protocols were optimized to grow spheroids to a diameter of around 620 μm prior to transfer onto BioChips. An ON/OFF pump cycling protocol was developed to optimize spheroid culture within the designed microwells, intermittently perfuse spheroids with fresh culture medium, and measure the extracellular acidification rate (EAR) and oxygen uptake rate (OUR) with the BioChips of the IMOLA-IVD platform. In a proof-of-concept experiment, spheroids were perfused for 36 h with cell culture medium before being exposed to medium with 1% sodium dodecyl sulphate (SDS) to lyse cells as a positive control. These microphysiometry studies revealed a repeatable pattern of extracellular acidification throughout the experiment, indicating the ability to monitor real-time metabolic activity of spheroids embedded in the newly designed tissue encapsulation. After perfusion for 36 h with medium, SDS exposure resulted in an instant decrease in EAR and OUR signals from 37 mV/h (± 5) to 8 mV/h (± 8) and from 308 mV/h (± 21) to -2 mV/h (± 13), respectively. The presented spheroid monitoring system holds great potential as a method to automate screening and analysis of pharmaceutical agents using 3D multicellular spheroid models.

  3. Structured Ni catalysts on porous anodic alumina membranes for methane dry reforming: NiAl 2 O 4 formation and characterization

    KAUST Repository

    Zhou, Lu

    2015-06-29

    This communication presents the successful design of a structured catalyst based on porous anodic alumina membranes for methane dry reforming. The catalyst with a strong Ni-NiAl2O4 interaction shows both excellent activity and stability. This journal is © The Royal Society of Chemistry.

  4. Experiences with sol-gel bonded high porosity alumina fiber materials for filter applications

    OpenAIRE

    Handrick, Karin E.; Mohlratzer, August; Ostertag, Rolf; Sporn, Dieter; Schmidt, Helmut K.

    1988-01-01

    High porous alumina fiber structures appear promising for hot gas filtration in particular for diesel particulate traps. For this purpose, however, a method is required for manufacturing of stable shapes resisant to the blow-out by the gas flow. The sol-gel process was expected to be the best suited method for fiber bonding to provide the required stability. The main tasks of the development-work were a uniform isotropic fiber-distribution, the adaptation of the sol-gel-process to the applica...

  5. Ni Catalysts Supported on Modified Alumina for Diesel Steam Reforming

    Directory of Open Access Journals (Sweden)

    Antonios Tribalis

    2016-01-01

    Full Text Available Nickel catalysts are the most popular for steam reforming, however, they have a number of drawbacks, such as high propensity toward coke formation and intolerance to sulfur. In an effort to improve their behavior, a series of Ni-catalysts supported on pure and La-, Ba-, (La+Ba- and Ce-doped γ-alumina has been prepared. The doped supports and the catalysts have been extensively characterized. The catalysts performance was evaluated for steam reforming of n-hexadecane pure or doped with dibenzothiophene as surrogate for sulphur-free or commercial diesel, respectively. The undoped catalyst lost its activity after 1.5 h on stream. Doping of the support with La improved the initial catalyst activity. However, this catalyst was completely deactivated after 2 h on stream. Doping with Ba or La+Ba improved the stability of the catalysts. This improvement is attributed to the increase of the dispersion of the nickel phase, the decrease of the support acidity and the increase of Ni-phase reducibility. The best catalyst of the series doped with La+Ba proved to be sulphur tolerant and stable for more than 160 h on stream. Doping of the support with Ce also improved the catalytic performance of the corresponding catalyst, but more work is needed to explain this behavior.

  6. One-pot organometallic synthesis of alumina-embedded Pd nanoparticles.

    Science.gov (United States)

    Costa, Natália J S; Vono, Lucas L R; Wojcieszak, Robert; Teixiera-Neto, Érico; Philippot, Karine; Rossi, Liane M

    2017-10-24

    Herein we report a one pot organometallic strategy to access alumina-embedded Pd nanoparticles. Unexpectedly, the decomposition of the organometallic complex tris(dibenzylideneacetone)dipalladium(0), Pd 2 (dba) 3 , by dihydrogen in the presence of aluminum isopropoxide, Al(iPrO) 3 , and without extra stabilizers, was found to be an efficient method to generate a Pd colloidal solution. Careful characterization studies revealed that the so-obtained Pd nanoparticles were stabilized by an aluminum isopropoxide tetramer and 1,5-diphenyl-pentan-3-one, which was produced after reduction of the dba ligand from the organometallic precursor. Moreover, calcination of the obtained nanomaterial in air at 773 K for 2 h resulted in a nanocomposite material containing Pd nanoparticles embedded in Al 2 O 3 . This stabilization strategy opens new possibilities for the preparation of transition metal nanoparticles embedded in oxides.

  7. Microstructural evaluation of alumina-niobium and alumina- niobium-zircon ceramics for ballistic application

    International Nuclear Information System (INIS)

    Mota, Juliana Machado da; Lopes, Cristina Moniz Araujo; Melo, Francisco Lourenco Cristovao de

    2009-01-01

    This study aimed to evaluate the microstructural of Alumina- Niobium and Alumina- Niobium-Zircon ceramics. Samples with 3.5 x 4.5 x 34 mm dimensions were prepared by uniaxial pressure (50 MPa) followed by isostatic pressure (300 MPa). The samples were sintered at 1500 ° C for 1 hour. The ceramics obtained were characterized by scanning electron microscopy (SEM) and X-ray diffraction, to evaluate the phases and microstructures. In order to analyze the microstructure, by SEM the samples were prepared using two techniques: heat treatment (1350 ° C for 5 minutes) and thermochemical treatment (500 ° C for 8 minutes in a solution of NaOH and KOH) on polished and fractured surfaces. The results showed that despite differences between the two etchings, both were effective to analyze the microstructure. (author)

  8. Dissolution kinetics for alumina in cryolite melts. Distribution of alumina in the electrolyte of industrial aluminium cells

    Energy Technology Data Exchange (ETDEWEB)

    Kobbeltvedt, Ove

    1997-12-31

    This thesis contributes to the understanding of which factors determine the rate of dissolution of alumina added to the bath in alumina reduction cells. Knowing this may help reduce the occurrences of operation interruptions and thus make it possible to produce aluminium using less energy. When alumina powder was added to a stirred cryolite melt, the alumina dissolved in two distinct main stages. In the first stage, the dissolution rate was very high, which reflects dissolution of single alumina grains that are being dispersed in the bath upon addition. In the second stage, lumps of alumina infiltrated with bath dissolved at a rate considerably slower than that of the first stage. The formation of these alumina agglomerates is the most important contributor to slow dissolution. The parameters varied in the experiments were convection, batch size, and temperature of the bath and of the added alumina. Increased gas stirring of the bath speeded up dissolution in both stages but the size of the batch was of little significance. Increasing the bath temperature had no effect in the first stage but speeded up dissolution considerably in the second stage. Compared to adding alumina at room temperature, preheating it to a high temperature (600 {sup o}C) increased the dissolution rate in the first stage while preheating to lower temperatures (100-300 {sup o}C) decreased the dissolution rate. In the second stage, preheating slowed the dissolution. The two latter phenomena of reduced dissolution rates are ascribed to the removal of moisture from the alumina upon preheating. The bath flow and the distribution of alumina in the bath were measured in four different types of cells. It was found that if a certain asymmetry of the magnetic field traverse to the cell was present, due to the presence of risers, then loops of high velocity bath flow occurred near the short ends of the cell. Thus, alumina added near the short ends is effectively transferred away from the feeding

  9. Study of human prostate spheroids treated with zinc using X-ray microfluorescence

    International Nuclear Information System (INIS)

    Leitao, Roberta G.; Lopes, Ricardo T.; Pereira, Gabriela R.; Santos, Carlos A.N.; Palumbo Junior, Antonio; Nasciutti, Luiz E.; Souza, Pedro A.V.R.; Anjos, Marcelino J.

    2013-01-01

    Spheroids cell culture is a useful technique for tissue engineering or regenerative medicine re-search, pharmacological and toxicological studies, and fundamental studies in cell biology. In this study, we investigated Zn distribution in cell spheroids in benign prostate hyperplasia (BPH) and prostate cancer (DU145) and analyzed the differences in the response to Zinc (0-150 μM) treatment. The measurements were performed in standard geometry of 45 deg incidence, exciting with a white beam and using an optical capillary with 20 μm diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed non-uniform distribution of Zn in all the spheroids analyzed. The differential response to zinc of DU145 and BPH cell spheroids suggests that zinc may have an important role in prostate cancer and BPH diagnosis. (author)

  10. Magnetic Hysteresis Loop as a Tool for the Evaluation of Spheroidization of Cementites in Pearlitic Steels

    Science.gov (United States)

    Mohapatra, J. N.; Kamada, Y.

    2015-04-01

    Pearlitic Fe-0.76wt.% C binary alloy was isothermally annealed at 700 °C up to 100 h to study the spheroidization of cementites and its effect on both the mechanical and magnetic properties with the aim to use the magnetic techniques for the evaluation of spheroidization in steels. Micro-Vickers hardness, magnetic hysteresis loop (MHL) measurements, optical and scanning electron microscopy studies were carried out at various lengths of time by interrupting the test. Microhardness and coercivity were decreased with increase in annealing time due to reduction in dislocation pinning and magnetic domain wall pinning for the breaking of cementite lamella and their subsequent transformation to spheroidal form. The microhardness and coercivity showed a very good correlation with the change in microstructure indicating that MHL would be a suitable non-destructive evaluation tool for the evaluation of spheroidized pearlitic steels.

  11. Processes of Formation of Spheroidal Concretions and Inferences for "Blueberries" in Meridiani Planum Sediments

    Science.gov (United States)

    Coleman, M. L.

    2005-03-01

    Formation of spheroidal concretions on Earth results generally from reactions of organic matter in oxidized sediments. Had organic matter been present in Merididani Planum it could have produced a reduced iron mineral phase later oxidized to hematite.

  12. Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids

    Science.gov (United States)

    Jin, Shubin; Ma, Xiaowei; Ma, Huili; Zheng, Kaiyuan; Liu, Juan; Hou, Shuai; Meng, Jie; Wang, Paul C.; Wu, Xiaochun; Liang, Xing-Jie

    2012-12-01

    We investigated the penetration and thermotherapy efficiency of different surface coated gold nanorods (Au NRs) in multicellular tumor spheroids. The current data show that negatively charged Au NRs, other than positively charged Au NRs, can penetrate deep into the tumor spheroids and achieve a significant thermal therapeutic benefit.We investigated the penetration and thermotherapy efficiency of different surface coated gold nanorods (Au NRs) in multicellular tumor spheroids. The current data show that negatively charged Au NRs, other than positively charged Au NRs, can penetrate deep into the tumor spheroids and achieve a significant thermal therapeutic benefit. Electronic supplementary information (ESI) available: Materials and methods section. See DOI: 10.1039/c2nr31877f

  13. Repair, redistribution and repopulation in V79 spheroids during multifraction irradiation

    International Nuclear Information System (INIS)

    Brown, R.C.; Durand, R.E.

    1994-01-01

    We used cells growing as multicell spheroids to determine whether the initial radiation response would be predictive for multifraction exposures, or whether other factors including repopulation rate should be considered. Potential problems of hypoxia and reoxygenation were avoided by using small spheroids which had not yet developed radiobiologically hypoxic regions. Repair and redistribution dominated the responses in the first two or three exposures, with repopulation playing a minor role. As the fractionation schedule was extended, however, repopulation between fractions largely determined the number of viable cells per spheroid. We conclude that the radiation response of cells from untreated spheroids provides a general indication of net sensitivity, but that repair and redistribution produces considerable variation in radiosensitivity throughout a fractionation protocol. Ultimately, repopulation effects may dominate the multifraction response. (Author)

  14. Study of human prostate spheroids treated with zinc using X-ray microfluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Roberta G.; Lopes, Ricardo T.; Pereira, Gabriela R., E-mail: roberta@lin.ufrj.br, E-mail: gpereira@metalmat.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Santos, Carlos A.N., E-mail: cansantos.bio@gmail.com [Instituto Nacional de Metrologia, Qualidade e Tecnologia (DIPRO/INMETRO), Duque de Caxias, RJ (Brazil). Lab. de Biotecnologia; Palumbo Junior, Antonio; Nasciutti, Luiz E., E-mail: nasciutt@ufrj.br [Universidade Federal do Rio de Janeiro (ICB/CCS/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Interacoes Celulares; Souza, Pedro A.V.R., E-mail: pedroaugustoreis@uol.com.br [Hospital Federal do Andarai (HFA), Rio de Janeiro, RJ (Brazil). Servico de Urologia; Anjos, Marcelino J., E-mail: marcelin@lin.ufrj.br [Universidade Estatual do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2013-07-01

    Spheroids cell culture is a useful technique for tissue engineering or regenerative medicine re-search, pharmacological and toxicological studies, and fundamental studies in cell biology. In this study, we investigated Zn distribution in cell spheroids in benign prostate hyperplasia (BPH) and prostate cancer (DU145) and analyzed the differences in the response to Zinc (0-150 μM) treatment. The measurements were performed in standard geometry of 45 deg incidence, exciting with a white beam and using an optical capillary with 20 μm diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed non-uniform distribution of Zn in all the spheroids analyzed. The differential response to zinc of DU145 and BPH cell spheroids suggests that zinc may have an important role in prostate cancer and BPH diagnosis. (author)

  15. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    Stumpf, Aisha S.G.; Bergmann, Carlos P.; Vicenzi, Juliane; Fetter, Rebecca; Mundstock, Karina S.

    2009-01-01

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 o C. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, K IC , and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 o C, feldspar content up to 10% improved flexural strength and K IC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 o C but a beneficial effect on K IC of ceramics sintered at 1600 o C. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  16. Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry.

    Directory of Open Access Journals (Sweden)

    Laura M Langan

    Full Text Available Advanced in vitro culture from tissues of different origin includes three-dimensional (3D organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells using Electron Paramagnetic Resonance (EPR oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid and absolute size (118±32 μm allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid cultures in biomedical and

  17. Special requirements for alumina ceramic of ESG electrode bowl

    Science.gov (United States)

    Zhang, Jun-An; Xue, Kai; Zhang, Jia-Tai; Zhang, Qiang

    2004-06-01

    At present ESG (Electrostatic Suspended Gyro) is the most precise inertia element in the world. The electrode bowl, which has direct effect on the precision of ESG, is a key part to ESG. Through the analysis of the function and characteristic of the electrode bowl in hollow rotor ESG and the present situation of new material development in the world, the alumina ceramic is regarded as the best material for the electrode bowl of hollow rotor ESG. By analyzing the present situation of alumina ceramic in the world, main technique requirements have been put forward for the alumina ceramic of ESG electrode bowl which is also fit for solid rotor ESG.

  18. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  19. Fabrication of Highly Ordered Gold Nanorods Film Using Alumina Nanopores

    Directory of Open Access Journals (Sweden)

    Z. Soltani

    2012-06-01

    Full Text Available A simple method for fabrication of highly ordered gold nanorod film is introduced in this article. The procedure is based on thermal evaporation of gold into a porous anodic alumina film (PAA. The PPA film was fabricated by combining the hard and mild anodization. This combination effectively decreases the processing time of fabrication of highly ordered porous anodic alumina film with controlled pore diameter and length.  It was found that gold nanorods configuration affected by the porous anodic alumina film structure such as pore diameter and length. Furthermore the evaporation process change the rods diameter along the nanopores via the decreasing the pore mouth during the gold deposition.

  20. Nucleation and growth characteristics of cavities during the early stages of tensile creep deformation in a superplastic zirconia-20 wt% alumina composite

    International Nuclear Information System (INIS)

    Owen, D.M.; Chokshi, A.H.; Nutt, S.R.

    1997-01-01

    Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions

  1. Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr

    International Nuclear Information System (INIS)

    Fedrigo, Carlos A; Rocha, Adriana B da; Grivicich, Ivana; Schunemann, Daniel P; Chemale, Ivan M; Santos, Daiane dos; Jacovas, Thais; Boschetti, Patryck S; Jotz, Geraldo P; Filho, Aroldo Braga

    2011-01-01

    Radiation therapy is routinely prescribed for high-grade malignant gliomas. However, the efficacy of this therapeutic modality is often limited by the occurrence of radioresistance, reflected as a diminished susceptibility of the irradiated cells to undergo cell death. Thus, cells have evolved an elegant system in response to ionizing radiation induced DNA damage, where p53, Hsp70 and/or EGFr may play an important role in the process. In the present study, we investigated whether the content of p53, Hsp70 and EGFr are associated to glioblastoma (GBM) cell radioresistance. Spheroids from U-87MG and MO59J cell lines as well as spheroids derived from primary culture of tumor tissue of one GBM patient (UGBM1) were irradiated (5, 10 and 20 Gy), their relative radioresistance were established and the p53, Hsp70 and EGFr contents were immunohistochemically determined. Moreover, we investigated whether EGFr-phospho-Akt and EGFr-MEK-ERK pathways can induce GBM radioresistance using inhibitors of activation of ERK (PD098059) and Akt (wortmannin). At 5 Gy irradiation UGBM1 and U-87MG spheroids showed growth inhibition whereas the MO59J spheroid was relatively radioresistant. Overall, no significant changes in p53 and Hsp70 expression were found following 5 Gy irradiation treatment in all spheroids studied. The only difference observed in Hsp70 content was the periphery distribution in MO59J spheroids. However, 5 Gy treatment induced a significant increase on the EGFr levels in MO59J spheroids. Furthermore, treatment with inhibitors of activation of ERK (PD098059) and Akt (wortmannin) leads to radiosensitization of MO59J spheroids. These results indicate that the PI3K-Akt and MEK-ERK pathways triggered by EGFr confer GBM radioresistance

  2. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  3. Alumina strength degradation in the elastic regime

    International Nuclear Information System (INIS)

    Furnish, Michael D.; Chhabildas, Lalit C.

    1998-01-01

    Measurements of Kanel et al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. 'Failure' (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime

  4. Optimized alumina coagulants for water treatment

    Science.gov (United States)

    Nyman, May D [Albuquerque, NM; Stewart, Thomas A [Albuquerque, NM

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  5. Modification of the temperatures of phase transformations of alumina by the insertion of MgO and ZrO2

    International Nuclear Information System (INIS)

    Rosario, D.C.C.; Gouvea, D.

    2010-01-01

    Due to the stability and diversity of alumina polymorph, it becomes a very interesting material for stability studies considering changes in surface energy. The gamma phase is metastable and extensively studied due its properties and applications in catalysis. Studies have been conducted with the purpose to changing the transformation temperature gamma-alpha, considering modification on surface energy of nanomaterials. Thereby, this study aims to understand the phase transition amorphous-gamma of alumina by inserting additives (MgO and ZrO 2 ), taking into account the effects on specific surface area and surface energy. The assessment of stability was performed by analysis of DTA, X-ray diffraction and measurements of specific surface area, showing an increase in surface area with additives concentration, followed by a decrease of surface energy, then stability of gamma phase. (author)

  6. Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study

    OpenAIRE

    Mohammadi, Maryam; Davoodi, Jamal; Javanbakht, Mahdi; Rezaei, Hamidreza

    2017-01-01

    In this study, the effect of alumina and modified alumina nanoparticles in a PMMA/alumina nanocomposite was investigated. To attain this goal, the glass transition behavior of poly methyl methacrylate (PMMA), PMMA/alumina and PMMA/hydroxylated alumina nanocomposites were investigated by molecular dynamic simulations (MD). All the MD simulations were performed using the Materials Studio 6.0 software package of Accelrys. To obtain the glass transition temperature, the variation of density vs. t...

  7. High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately.

    Science.gov (United States)

    Chen, Wenjin; Wong, Chung; Vosburgh, Evan; Levine, Arnold J; Foran, David J; Xu, Eugenia Y

    2014-07-08

    The increasing number of applications of three-dimensional (3D) tumor spheroids as an in vitro model for drug discovery requires their adaptation to large-scale screening formats in every step of a drug screen, including large-scale image analysis. Currently there is no ready-to-use and free image analysis software to meet this large-scale format. Most existing methods involve manually drawing the length and width of the imaged 3D spheroids, which is a tedious and time-consuming process. This study presents a high-throughput image analysis software application - SpheroidSizer, which measures the major and minor axial length of the imaged 3D tumor spheroids automatically and accurately; calculates the volume of each individual 3D tumor spheroid; then outputs the results in two different forms in spreadsheets for easy manipulations in the subsequent data analysis. The main advantage of this software is its powerful image analysis application that is adapted for large numbers of images. It provides high-throughput computation and quality-control workflow. The estimated time to process 1,000 images is about 15 min on a minimally configured laptop, or around 1 min on a multi-core performance workstation. The graphical user interface (GUI) is also designed for easy quality control, and users can manually override the computer results. The key method used in this software is adapted from the active contour algorithm, also known as Snakes, which is especially suitable for images with uneven illumination and noisy background that often plagues automated imaging processing in high-throughput screens. The complimentary "Manual Initialize" and "Hand Draw" tools provide the flexibility to SpheroidSizer in dealing with various types of spheroids and diverse quality images. This high-throughput image analysis software remarkably reduces labor and speeds up the analysis process. Implementing this software is beneficial for 3D tumor spheroids to become a routine in vitro model

  8. Development of biomimetic system for scale up of cell spheroids - building blocks for cell transplantation.

    Science.gov (United States)

    Baba, Kazutomo; Sankai, Yoshiyuki

    2017-07-01

    Artificial assembly of mature tissues in vitro is challenging from many viewpoints. Therefore, production of intermediate building blocks - cell spheroids expected to be a viable alternative. The purpose of this research is to develop a biomimetic system for scale up maintenance of spheroids in vitro, and to confirm basic performance of the device. The system consists of a 3D culture unit and a medium perfusion unit. The 3D culture unit is dedicated for spheroid culture without using scaffolds, eliminating concerns about biocompatibility of artificial materials. our culture vessel allows easy disassembly and tissue extraction, as well as the resulting tissue can be formed into an any desirable shape. The spheroids are cultured in a sealed environment and their life are sustained by hollow fiber perfusion fluidics. We confirmed by visual and by microscopic examination that no contamination did occur before and after spheroid inoculation. Moreover, we confirmed growth and fusion between cells when C2C12 spheroids were cultured in this system.

  9. Advances in the formation, use and understanding of multi-cellular spheroids.

    Science.gov (United States)

    Achilli, Toni-Marie; Meyer, Julia; Morgan, Jeffrey R

    2012-10-01

    Developing in vitro models for studying cell biology and cell physiology is of great importance to the fields of biotechnology, cancer research, drug discovery, toxicity testing, as well as the emerging fields of tissue engineering and regenerative medicine. Traditional two-dimensional (2D) methods of mammalian cell culture have several limitations and it is increasingly recognized that cells grown in a three-dimensional (3D) environment more closely represent normal cellular function due to the increased cell-to-cell interactions, and by mimicking the in vivo architecture of natural organs and tissues. In this review, we discuss the methods to form 3D multi-cellular spheroids, the advantages and limitations of these methods, and assays used to characterize the function of spheroids. The use of spheroids has led to many advances in basic cell sciences, including understanding cancer cell interactions, creating models for drug discovery and cancer metastasis, and they are being investigated as basic units for engineering tissue constructs. As so, this review will focus on contributions made to each of these fields using spheroid models. Multi-cellular spheroids are rich in biological content and mimic better the in vivo environment than 2D cell culture. New technologies to form and analyze spheroids are rapidly increasing their adoption and expanding their applications.

  10. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Karhemo, Piia-Riitta [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Räsänen, Kati [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland); Laakkonen, Pirjo [Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 (Finland); Vaheri, Antti [Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, P.O. Box 21, FIN-00014 (Finland)

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.

  11. The effect of spheroidizing by thermal cycling in low concentration Cr-Mo alloy steel

    International Nuclear Information System (INIS)

    Yun, H.S.; Kang, C.Y.

    1979-01-01

    An intensive study was carried out on spheroidizing of pearlite (Sph) and number of spherical carbide in proeutectoid ferrite (No/100) of low concentration Cr-Mo steel with thermal cycling. Physical and mechanical properties of steel containing 0.33 % C with thermal cycling were compared with those of low concentration Cr-Mo steel with thermal cycling. The effect of normal heat treatment and cooling rate on spheroidizing of pearlite and precipitation of fine spherical carbide in the steels were investigated. The results obtained were as follows: 1) Thermal cycling of low concentration Cr-Mo steel promoted the spheroidizing of pearlite compared with that of steel without Cr and Mo to steel had significant effect on spheroidizing of pearlite. 2) Number of fine spherical carbides of low concentration Cr-Mo steel with thermal cycling was over 5 times to that of fine spherical carbides of hypoeutectoid steel with thermal cycling. 3) Spheroidizing of pearlite and number of fine spherical carbide in proeutectoid ferrite of low concentration Cr-Mo steel with increasing thermal cycle and cooling rate. 4) Hardness of steel with thermal cycling was decreased. However, low concentration Cr-Mo steel had little decreasing rate in hardness with increasing thermal cycle on the basis of 100 times in thermal cycle. Therefore, toughness was considered to be increased with increasing spheroidizing of pearlite without changing mechanical properties. (author)

  12. Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio

    Science.gov (United States)

    Gong, Zhixiong; Li, Wei; Mitri, Farid G.; Chai, Yingbin; Zhao, Yao

    2016-11-01

    In this paper, the T-matrix (null-field) method is applied to investigate the acoustic scattering by a large-aspect-ratio rigid spheroid immersed in a non-viscous fluid under the illumination of an unbounded zeroth-order Bessel beam with arbitrary orientation. Based on the proposed method, a MATLAB software package is constructed accordingly, and then verified and validated to compute the acoustic scattering by a rigid oblate or prolate spheroid in the Bessel beam. Several numerical examples are carried out to investigate the novel phenomenon of acoustic scattering by spheroids in Bessel beams with arbitrary incidence, with particular emphasis on the aspect ratio (i.e. the ratio of the polar radius over the equatorial radius of the spheroid), the half-cone angle of Bessel beam, the dimensionless frequency, as well as the angle of incidence. The quasi-periodic oscillations are observed in the plots of the far-field backscattering form function modulus versus the dimensionless frequency, owing to the interference between the specular reflection and the Franz wave circumnavigating the spheroid in the surrounding fluid. Furthermore, the 3D far-field scattering directivity patterns at end-on incidence and 2D polar plots at arbitrary angles of incidence are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by flat or elongated spheroid. This research work may provide an impetus for the application of acoustic Bessel beam in engineering practices.

  13. Spheroids Formation on Non-Adhesive Surfaces by Liquid Overlay Technique: Considerations and Practical Approaches.

    Science.gov (United States)

    Costa, Elisabete C; de Melo-Diogo, Duarte; Moreira, André F; Carvalho, Marco P; Correia, Ilídio J

    2018-01-01

    Scalable and reproducible production of 3D cellular spheroids is highly demanded, by pharmaceutical companies, for drug screening purposes during the pre-clinical evaluation phase. These 3D cellular constructs, unlike the monolayer culture of cells, can mimic different features of human tissues, including cellular organization, cell-cell and cell-extracellular matrix (ECM) interactions. Up to now, different techniques (scaffold-based and -free) have been used for spheroids formation, being the Liquid Overlay Technique (LOT) one of the most explored methodologies, due to its low cost and easy handling. Additionally, during the last few decades, this technique has been widely investigated in order to enhance its potential for being applied in high-throughput analysis. Herein, an overview of the LOT advances, practical approaches, and troubleshooting is provided for those researchers that intend to produce spheroids using LOT, for drug screening purposes. Moreover, the advantages of the LOT over the other scaffold-free techniques used for the spheroids formation are also addressed. Highlights • 2D cell culture drawbacks are summarized; • spheroids mimic the features of human tissues; • scaffold-based and scaffold-free technologies for spheroids production are discussed; • advantages of LOT over other scaffold-free techniques are highlighted; • LOT advances, practical approaches and troubleshooting are underlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization of variants isolated from BCNU-treated 9L multicellular spheroids

    International Nuclear Information System (INIS)

    Hoff, M.H.B.; Deen, D.F.

    1984-01-01

    Multicellular spheroids of the 9L rat brain tumor cell line were treated with a single high-dose to produce cells of varying sensitivity. Treatment of 350-450 μm diameter 9L spheroids with 45 μM BCNU for 1 hr at 37 0 C produced 5 log cell kill. Some of the treated spheroids were dissociated immediately after treatment; others were dissociated after 1 wk. From these populations, twenty clones were selected and passaged as monolayers. Each clone was assayed at passage 2 for BCNU-induced damage using colony forming efficiency and sister chromatid exchange. 60% of the clones were resistant to BCNU, 15% were unchanged, and 15% appeared hypersensitive as compared with the control, which were uncloned 9L cells. All of the hypersensitive clones originated from the spheroids that remained in suspension after treatment. Three clones were studied during subsequent passage in monolayer. Two resistant clones maintained their resistance to BCNU over -- 25 passages, while one hypersensitive clone appeared to become progressively more resistant during passage. Thus, as with monolayer and in vivo 9L cells, a single high-dose treatment with BCNU produces a spectrum of sensitivities to BCNU. Some of these phenotypes are stable over many passages and have been used to initiate 9L spheroids having varying sensitivity to BCNU. These spheroids will be used to investigate drug-radiation interactions

  15. Effects of ball milling and sintering on alumina and alumina-boron compounds

    Science.gov (United States)

    Cross, Thomas

    Alumina has a wide variety of applications, but the processing of alumina based materials can be costly. Mechanically milling alumina has been shown to enhance the sintering properties while decreasing the sintering temperature. Additions of boron have also proven to increase sintering properties of alumina. These two processes, mechanical milling and boron additions, will be combined to test the sintering properties and determine if they are improved upon even further compared to the individual processes. Multiple samples of pure alumina, 0.2 weight percent boron, and 1.0 weight percent boron are batched and processed in a ball mill for different time intervals. These samples are then characterized to observe the structure and properties of the samples after milling but before sintering. Pellets are dry pressed from the milled powders, sintered at 1200°C for one to 10 hours, and characterized to determine the impact of processing. X-ray diffractometry (XRD) was used on each sample to determine crystallite size and lattice parameters at different stages throughout the experiment. XRD was also used to identify any samples with an aluminum borate phase. Scanning electron microscopy (SEM) was used to observe the powder and pellet morphology and to measure bulk chemical composition. Samples were sputter coated with an Au-Pd coating observed in the SEM to characterize the topography as a function of variables such as milling time, boron composition, and sintering time. Additionally, porosity and change in diameter were measured to track the sintering process. Milling sample for longer periods of time would be unnecessary due to the crystallite size leveling off between 10 and 12 hours of milling time. Samples of alumina with 0.2 weight percent boron prove to have very little effect on the sintering properties. At 1.0 weight percent boron, there are changes in diffraction patterns and topography after being sintered for one hour. The porosities of all of the sintered

  16. Characterization of the Uptake of Nitrogen Oxides on Alumina Adsorbents

    National Research Council Canada - National Science Library

    Pocengal, David

    1999-01-01

    ...) to quantify nitrate and nitrite (NOx) in aqueous solutions that contained NOx exposed alumina and to correlate the quantities of these surface NOx species with the quantity of gaseous NOx sorbed...

  17. Synthesis of α-Alumina (Corundum) and its Application

    International Nuclear Information System (INIS)

    Nay Thwe Kyi; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    This paper described the preparation of aluminium isopropoxide from aluminium sheet at different heating times.Aluminium sheet is found to have a reaction with absolute isopropyl alcohol and mercury (II) chloride as a catalyst under nitrogen atmosphere. Aluminium isopropoxide was characterized by NMR, XRD and IR. Aluminium isopropoxide serves as a molecular precursor to derive pure alumina gel by hydrolysis under both homogeneous and heterogeneous conditions. Pyrolysis to this alumina gel transforms it into -aluminia (corundum) at 1200'C. The phase transformation during pyrolysis was characterized by XRD, SEM and TEM. The alumina (corundum) has porous crystalline nature with high surface aera, which may be used as efficient adsorbent packing material in coloumn chromatography for the seperation of vitamin A from the leaves. -alumina can be also used in catalysis

  18. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  19. Synthesis of beta alumina from aluminum hydroxide and oxyhydroxide precursors

    CSIR Research Space (South Africa)

    Van Zyl, A

    1993-02-01

    Full Text Available Two aluminium oxyhydroxides, boehmite and pseudoboehmite, and two aluminium hydroxides, bayerite and gibbsite, have been investigated as precursors for the synthesis of the solid electrolyte, beta alumina. Reaction pathways and products have been...

  20. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  1. Superhydrophobic alumina surface based on stearic acid modification

    Energy Technology Data Exchange (ETDEWEB)

    Feng Libang, E-mail: lepond@hotmail.com [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China); Zhang Hongxia; Mao Pengzhi; Wang Yanping; Ge Yang [School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2011-02-15

    A novel superhydrophobic alumina surface is fabricated by grafting stearic acid layer onto the porous and roughened aluminum film. The chemical and phase structure, morphology, and the chemical state of the atoms at the superhydrophobic surface were investigated by techniques as FTIR, XRD, FE-SEM, and XPS, respectively. Results show that a super water-repellent surface with a contact angle of 154.2{sup o} is generated. The superhydrophobic alumina surface takes on an uneven flowerlike structure with many nanometer-scale hollows distribute in the nipple-shaped protrusions, and which is composed of boehmite crystal and {gamma}-Al{sub 2}O{sub 3}. Furthermore, the roughened and porous alumina surface is coated with a layer of hydrophobic alkyl chains which come from stearic acid molecules. Therefore, both the roughened structure and the hydrophobic layer endue the alumina surface with the superhydrophobic behavior.

  2. Pressure driven water flow through hydrophilic alumina nanomembranes

    Science.gov (United States)

    Beskok, Ali; Koklu, Anil; Sengor, Sevinc

    2017-11-01

    We present an experimental study that focuses on pressure-driven flow of distilled water through alumina membranes with 5, 10 and 20 nm pore radii. The nanopore geometry, pore size and porosity are characterized using scanning electron microscopy images taken pre and post-flow experiments. Comparisons of these images have shown reduction in the pore size, which is attributed to precipitation of hydroxyl groups on alumina surfaces. Measured flowrates compared with the Hagen-Poiseuille flow relations consistently predict 2.2 nm reductions in the pore size for three different membranes. This behavior can be explained by the formation of a thick stick layer of water molecules over hydroxylated alumina surfaces, evidenced by water droplet contact angle measurements that exhibit increased hydrophilicity of alumina surfaces. Other possible effects of the mismatch between theory and experiments such as unaccounted pressure losses in the system or the streaming potential effects were also considered, but shown to be negligible for current experimental conditions.

  3. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  4. Ceramic joining through reactive wetting of alumina with calcium ...

    Indian Academy of Sciences (India)

    investigations are carried out in non-oxide ceramics such as AlN, Si3N4, SiC etc while ZrO2 and Al2O3 are the usu- ally considered oxide materials for many applications. The literature about alumina joining is very much limited when compared to other ceramics like Si3N4 and SiC. Alumina, both as single crystal and in ...

  5. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  6. A kinematic study of the Fornax dwarf spheroidal galaxy

    Science.gov (United States)

    Mateo, Mario; Olszewski, Edward; Welch, Douglas L.; Fischer, Philippe; Kunkel, William

    1991-01-01

    Precise radial velocities of 44 stars and four globular clusters located in two fields of the Fornax dwarf spheroidal galaxy are obtained on the basis of photon-counting echelle spectroscopy with a resolution of approximately 14 km/s. BV CCD photometry of the giant branch of Fornax in both fields are presented as well. A variety of kinematic and photometric criteria are used to identify 10-12 probable nonmembers in the present sample of spectroscopically observed stars. Based on the most probable members, the mean heliocentric systemic velocity of Fornax is 53.0 + or - 1.8 km/s, with no evidence of any significant rotation about the minor axis. The intrinsic velocity dispersion of the stars in Fornax's central field is 9.9 + or - 1.7 km/s, while for the outer field the velocity dispersion is 1.20 + or - 2.8 km/s. The true central velocity dispersion is not more than 1.6 km/s larger than the observed central dispersions for a number of reasonable models.

  7. Zinc abundances in the Sculptor dwarf spheroidal galaxy

    Science.gov (United States)

    Skúladóttir, Á.; Tolstoy, E.; Salvadori, S.; Hill, V.; Pettini, M.

    2017-10-01

    From ESO VLT/FLAMES/GIRAFFE spectra, abundance measurements of Zn have been made in ≈100 individual red giant branch (RGB) stars in the Sculptor dwarf spheroidal galaxy. This is the largest sample of individual Zn abundance measurements within a stellar system beyond the Milky Way. In the observed metallicity range, -2.7 ≤ [Fe/H] ≤ -0.9, the general trend of Zn abundances in Sculptor is similar to that of α-elements. That is, super-solar abundance ratios of [Zn/Fe] at low metallicities, which decrease with increasing [Fe/H], eventually reaching subsolar values. However, at the higher metallicities in Sculptor, [Fe/H] ≳ -1.8, we find a significant scatter, -0.8 ≲ [Zn/Fe] ≲ +0.4, which is not seen in any α-element. Our results are consistent with previous observations of a limited number of stars in Sculptor and in other dwarf galaxies. These results suggest that zinc has a complex nucleosynthetic origin, behaving neither completely like an α- nor an iron-peak element. Based on observations made with ESO/VLT/FLAMES at the La Silla Paranal observatory under program ID 092.B-0194(A).Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A71

  8. Spheroid model study comparing the biocompatibility of Biodentine and MTA.

    Science.gov (United States)

    Pérard, Matthieu; Le Clerc, Justine; Watrin, Tanguy; Meary, Fleur; Pérez, Fabienne; Tricot-Doleux, Sylvie; Pellen-Mussi, Pascal

    2013-06-01

    The primary objective of this study was to assess the biological effects of a new dentine substitute based on Ca₃SiO₅ (Biodentine™) for use in pulp-capping treatment, on pseudo-odontoblastic (MDPC-23) and pulp (Od-21) cells. The secondary objective was to evaluate the effects of Biodentine and mineral trioxide aggregate (MTA) on gene expression in cultured spheroids. We used the acid phosphatase assay to compare the biocompatibility of Biodentine and MTA. Cell differentiation was investigated by RT-qPCR. We investigated the expression of genes involved in odontogenic differentiation (Runx2), matrix secretion (Col1a1, Spp1) and mineralisation (Alp). ANOVA and PLSD tests were used for data analysis. MDPC-23 cells cultured in the presence of MTA had higher levels of viability than those cultured in the presence of Biodentine and control cells on day 7 (P = 0.0065 and P = 0.0126, respectively). For Od-21 cells, proliferation rates on day 7 were significantly lower in the presence of Biodentine or MTA than for control (P Biodentine and in control cells. Biodentine and MTA may modify the proliferation of pulp cell lines. Their effects may fluctuate over time, depending on the cell line considered. The observed similarity between Biodentine and MTA validates the indication for direct pulp-capping claimed by the manufacturers.

  9. A Chemical Evolution Model for the Fornax Dwarf Spheroidal Galaxy

    Directory of Open Access Journals (Sweden)

    Yuan Zhen

    2016-01-01

    Full Text Available Fornax is the brightest Milky Way (MW dwarf spheroidal galaxy and its star formation history (SFH has been derived from observations. We estimate the time evolution of its gas mass and net inflow and outflow rates from the SFH usinga simple star formation law that relates the star formation rate to the gas mass. We present a chemical evolution model on a 2D mass grid with supernovae (SNe as sources of metal enrichment. We find that a key parameter controlling the enrichment is the mass Mx of the gas to mix with the ejecta from each SN. The choice of Mx depends on the evolution of SN remnants and on the global gas dynamics. It differs between the two types of SNe involved and between the periods before and after Fornax became an MW satellite at time t = tsat. Our results indicate that due to the global gas outflow at t > tsat, part of the ejecta from each SN may directly escape from Fornax. Sample results from our model are presented and compared with data.

  10. Crack defect formation during manufacture of fused cast alumina refractories

    Science.gov (United States)

    Au, Dominic; Cockcroft, Steve; Maijer, Daan

    2002-07-01

    A sequentially coupled mathematical thermal-stress model, based on the commercial finite-element code ABAQUS, has been developed to rationalize crack defect formation in fused cast αβ-alumina refractories used in the glass industry. The thermal model was validated against thermocouple and pyrometer measurements obtained in an industrial setting. The temperature predictions obtained from the thermal model were employed as input to the elastic strain-rate-independent plastic stress model. The constitutive behavior of αβ-alumina has been determined over a range of temperatures for input to the stress model. The distribution of β-alumina that forms in the center of the casting due to rejection of Na2O during solidifcation was introduced in the stress model through a user-defined subroutine in order to account for the effect of differences in the thermal contraction behavior and elastic modulus of the αβ- and β-alumina phases. The stress analysis indicates that temperature gradients as well as the different dilatational behavior of the αβ- and β-alumina phases are the main drivers of stress and strain evolution during solidification and subsequent cooling. The β-alumina core, in particular, plays an important role in the generation of tensile stresses and likely gives rise to the generation of the internal cracks observed in industrial castings.

  11. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  12. Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy

    Directory of Open Access Journals (Sweden)

    Arya MB

    2006-03-01

    Full Text Available Abstract Background Multicellular spheroids, an appropriate in vitro system for simulating 3-D tumor micro-milieu can be used for evaluating and predicting tumor response to therapeutic agents including metabolic inhibitors. However, detailed understanding of the nature, distribution and sensitivity/responses of cellular sub-populations to potential therapeutic agents/strategies is required for using this unique model with optimal precision. Spheroid characteristics may also vary considerably with the origin and type of cell line used, and thorough characterization of viable and dissociated glioma cell spheroids is not yet completely known. In order to evaluate in vivo responses of gliomas to various therapeutic strategies, especially the metabolic inhibitors capable of penetrating the blood brain barrier, we have characterized continuously growing spheroids of a human glioma cell line (BMG-1 with respect to organization, growth, viability, cell survival, cell death, metabolic and mitochondrial status, oxidative stress and radiation response using microscopy, flow cytometry and enzymatic assays. Spheroids were fed daily with fresh medium in order to maintain nutrient supply to outer cellular layers while hypoxia/necrosis developed in the innermost cells of enlarging spheroids. Results Volume of spheroids, fed daily with fresh medium, increased exponentially during 7–28 days of growth through three population doublings. Proportion of G1-phase cells was higher (~60% than exponentially growing monolayer cells (~48%. A significant fraction of S-phase cells turned metabolically inactive (disengaged in DNA synthesis with increasing age of the spheroids, unlike in quiescent monolayer cultures, where the fraction of S-phase cells was less than 5%. With increasing spheroid size, increasing sub-populations of cells became non-viable and entered apoptosis or necrosis revealed by Annexin-V-FITC/PI staining. PI positive (necrotic cells were not confined to

  13. Applying Taguchi method for optimization of the synthesis condition of nano-porous alumina membrane by slip casting method

    Energy Technology Data Exchange (ETDEWEB)

    Barmala, Molood [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Moheb, Ahmad, E-mail: ahmad@cc.iut.ac.i [Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Emadi, Rahmatollah [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-10-19

    In this work thin disc type pure alumina membranes have been prepared by slip casting technique. The colloidal stabilization of micro-sized alumina suspensions with different amount of 1,2-dihydroxy-3,5-benzenedisulfonic acid disodium salt (Tiron) at various suspension concentration were examined and the suspension stability was characterized by measuring sedimentation height. Also the necessary ball milling time (used as a deflocculating process) to prepare defect free membranes was investigated. A statistical experimental design method (Taguchi method with L9 orthogonal array design) was implemented to optimize experimental conditions for the preparation of Al{sub 2}O{sub 3} nano-porous membrane. Sintering temperature, solid content and polyvinyl alcohol (PVA) content were recognized and selected as important effecting parameters. Also structural studies by means of isopropanol adsorption and scanning electron microscopy were carried out on membranes. As the result of Taguchi analysis in this study, sintering temperature was the most influencing parameter on the membrane porosity. Reasonable membrane characteristics were obtained at an optimum temperature of 1400 deg. C, 20% solid content and 20 cc PVA solution per 100 g of alumina powder.

  14. Retrieval of spheroid particle size distribution from spectral extinction data in the independent mode using PCA approach

    International Nuclear Information System (INIS)

    Tang, Hong; Lin, Jian-Zhong

    2013-01-01

    An improved anomalous diffraction approximation (ADA) method is presented for calculating the extinction efficiency of spheroids firstly. In this approach, the extinction efficiency of spheroid particles can be calculated with good accuracy and high efficiency in a wider size range by combining the Latimer method and the ADA theory, and this method can present a more general expression for calculating the extinction efficiency of spheroid particles with various complex refractive indices and aspect ratios. Meanwhile, the visible spectral extinction with varied spheroid particle size distributions and complex refractive indices is surveyed. Furthermore, a selection principle about the spectral extinction data is developed based on PCA (principle component analysis) of first derivative spectral extinction. By calculating the contribution rate of first derivative spectral extinction, the spectral extinction with more significant features can be selected as the input data, and those with less features is removed from the inversion data. In addition, we propose an improved Tikhonov iteration method to retrieve the spheroid particle size distributions in the independent mode. Simulation experiments indicate that the spheroid particle size distributions obtained with the proposed method coincide fairly well with the given distributions, and this inversion method provides a simple, reliable and efficient method to retrieve the spheroid particle size distributions from the spectral extinction data. -- Highlights: ► Improved ADA is presented for calculating the extinction efficiency of spheroids. ► Selection principle about spectral extinction data is developed based on PCA. ► Improved Tikhonov iteration method is proposed to retrieve the spheroid PSD.

  15. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    International Nuclear Information System (INIS)

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G.

    1989-01-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity

  16. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device

    Science.gov (United States)

    Patra, Bishnubrata; Peng, Chien-Chung; Liao, Wei-Hao; Lee, Chau-Hwang; Tung, Yi-Chung

    2016-02-01

    Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications.

  17. Cell death induced by a {sup 131}I-labeled monoclonal antibody in ovarian cancer multicell spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Filippovich, I.V.; Sorokina, N.; Robillard, N.; Faivre-Chauvet, A.; Bardies, M.; Chatal, J.F

    1996-07-01

    Treatment of OVCAR-3 spheroids with {sup 131}I-OC125 monoclonal antibody produced a decrease in spheroid volume and a concomitant rise in necrotic cell number. No increase in apoptotic cell number was observed during incubation of spheroids with the labeled antibody. Necrosis began early, reaching a maximum after 3 Gy of accumulated dose delivered at a dose rate of 1.8 cGy/h. Higher accumulated doses induced necrosis for longer incubation times. Thus, dose rate and time are both determinants of ultimate radiation effects when spheroids are incubated with labeled antibodies, although dose rate is the most important factor.

  18. Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.

  19. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing.

    Directory of Open Access Journals (Sweden)

    Xue Gong

    Full Text Available Three dimensional multicellular aggregate, also referred to as cell spheroid or microtissue, is an indispensable tool for in vitro evaluating antitumor activity and drug efficacy. Compared with classical cellular monolayer, multicellular tumor spheroid (MCTS offers a more rational platform to predict in vivo drug efficacy and toxicity. Nevertheless, traditional processing methods such as plastic dish culture with nonadhesive surfaces are regularly time-consuming, laborious and difficult to provide uniform-sized spheroids, thus causing poor reproducibility of experimental data and impeding high-throughput drug screening. In order to provide a robust and effective platform for in vitro drug evaluation, we present an agarose scaffold prepared with the template containing uniform-sized micro-wells in commercially available cell culture plates. The agarose scaffold allows for good adjustment of MCTS size and large-scale production of MCTS. Transparent agarose scaffold also allows for monitoring of spheroid formation under an optical microscopy. The formation of MCTS from MCF-7 cells was prepared using different-size-well templates and systematically investigated in terms of spheroid growth curve, circularity, and cell viability. The doxorubicin cytotoxicity against MCF-7 spheroid and MCF-7 monolayer cells was compared. The drug penetration behavior, cell cycle distribution, cell apoptosis, and gene expression were also evaluated in MCF-7 spheroid. The findings of this study indicate that, compared with cellular monolayer, MCTS provides a valuable platform for the assessment of therapeutic candidates in an in vivo-mimic microenvironment, and thus has great potential for use in drug discovery and tumor biology research.

  20. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  1. Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores

    Science.gov (United States)

    Chanda, Prolay Krishna; Das, Subinoy

    2017-04-01

    We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.

  2. Modification of the temperatures of phase transformations of alumina by the insertion of MgO and ZrO{sub 2}; Modificacao das temperaturas de transformacoes de fases da alumina atraves da insercao de MgO e ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D.C.C.; Gouvea, D., E-mail: deisedorosario@usp.b [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    Due to the stability and diversity of alumina polymorph, it becomes a very interesting material for stability studies considering changes in surface energy. The gamma phase is metastable and extensively studied due its properties and applications in catalysis. Studies have been conducted with the purpose to changing the transformation temperature gamma-alpha, considering modification on surface energy of nanomaterials. Thereby, this study aims to understand the phase transition amorphous-gamma of alumina by inserting additives (MgO and ZrO{sub 2}), taking into account the effects on specific surface area and surface energy. The assessment of stability was performed by analysis of DTA, X-ray diffraction and measurements of specific surface area, showing an increase in surface area with additives concentration, followed by a decrease of surface energy, then stability of gamma phase. (author)

  3. Lethal Effects of Radiation and Platinum Analogues on Multicellular Spheroids of HeLa Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Eon [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    Multicellul ar tumor spheroids of HeLa cells have been grown in a static culture system. Samples of spheroids were exposed for 2 h to graded concentration of sis-platinum and its analogue, carboplatin, and then response assayed by survival of clonogenic cells. The purpose of present experiment is to clarify the effectiveness of these platinum compounds and to evaluate intrinsic radiosensitivity of cells using spheroids of HeLa cells as an experimental in vitro model. Variations of the drug sensitivity of monolayers as well as spheroids were also evaluated in cell-survival curves. In cia-platinum concentration-survival cutie, there was a large shoulder extending as far as Cq=3.4 mM, after which there was exponential decrease in survival curve having a Co Value of 1,2 {mu}M in spheroids. While the Co for the spheroids was essentially no significant change, but Cq value was larger than that of monolayers. This suggest that the effect of cis-platinum is greater in the monolayer with actively proliferating cells than hypoxic one. In the carboplatin concentration-survival curves, the Co value of spheroids was 15.0 mM and the ratio with the Co from monolayer cell (32.5 mM) was 0.46, thus indicating that the spheroids had a greater sensitivity to carboplatin than monolayers. Therefore, the effect of carboplatin is mainly on the deeper layers of spheroids acting as hypoxic cell sensitizer. The enhanced effect was obtained for monolayer cells using combined X-ray and carboplatin treatment 2 hours before irradiation. The result shown in isobologram analysis for the level of surviving fraction at 0.01 indicated that the effect of two agents was truly supra-additive. From this experimental data, carboplatin has excited much receipt interest as one of the most promising, since it is almost without nephrotoxicity and causes less gastrointestinal toxicity than cia-platinum. Interaction between carboplatin and radiation might play an important role for more effective local tumor

  4. Rotenone exerts developmental neurotoxicity in a human brain spheroid model.

    Science.gov (United States)

    Pamies, David; Block, Katharina; Lau, Pierre; Gribaldo, Laura; Pardo, Carlos A; Barreras, Paula; Smirnova, Lena; Wiersma, Daphne; Zhao, Liang; Harris, Georgina; Hartung, Thomas; Hogberg, Helena T

    2018-02-08

    Growing concern suggests that some chemicals exert (developmental) neurotoxicity (DNT and NT) and are linked to the increase in incidence of autism, attention deficit and hyperactivity disorders. The high cost of routine tests for DNT and NT assessment make it difficult to test the high numbers of existing chemicals. Thus, more cost effective neurodevelopmental models are needed. The use of induced pluripotent stem cells (iPSC) in combination with the emerging human 3D tissue culture platforms, present a novel tool to predict and study human toxicity. By combining these technologies, we generated multicellular brain spheroids (BrainSpheres) from human iPSC. The model has previously shown to be reproducible and recapitulates several neurodevelopmental features. Our results indicate, rotenone's toxic potency varies depending on the differentiation status of the cells, showing higher reactive oxygen species (ROS) and higher mitochondrial dysfunction during early than later differentiation stages. Immuno-fluorescence morphology analysis after rotenone exposure indicated dopaminergic-neuron selective toxicity at non-cytotoxic concentrations (1 μM), while astrocytes and other neuronal cell types were affected at (general) cytotoxic concentrations (25 μM). Omics analysis showed changes in key pathways necessary for brain development, indicating rotenone as a developmental neurotoxicant and show a possible link between previously shown effects on neurite outgrowth and presently observed effects on Ca2+ reabsorption, synaptogenesis and PPAR pathway disruption. In conclusion, our BrainSpheres model has shown to be a reproducible and novel tool to study neurotoxicity and developmental neurotoxicity. Results presented here support the idea that rotenone can potentially be a developmental neurotoxicant. Copyright © 2018. Published by Elsevier Inc.

  5. Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour.

    Directory of Open Access Journals (Sweden)

    Silvia Blacher

    Full Text Available The endothelial cell spheroid assay provides a suitable in vitro model to study (lymph angiogenesis and test pro- and anti-(lymph angiogenic factors or drugs. Usually, the extent of cell invasion, observed through optical microscopy, is measured. The present study proposes the spatial distribution of migrated cells as a new descriptor of the (lymph angiogenic response. The utility of this novel method rests with its capacity to locally characterise spheroid structure, allowing not only the investigation of single and collective cell invasion but also the evolution of the spheroid core itself. Moreover, the proposed method can be applied to 2D-projected spheroid images obtained by optical microscopy, as well as to 3D images acquired by confocal microscopy. To validate the proposed methodology, endothelial cell invasion was evaluated under different experimental conditions. The results were compared with widely used global parameters. The comparison shows that our method prevents local spheroid modifications from being overlooked and leading to the possible misinterpretation of results.

  6. On the spheroidal graphite growth and the austenite solidification in ductile irons

    Science.gov (United States)

    Qing, Jingjing

    Evolutions of austenite and nodular/spheroidal graphite particles during solidifications of ductile irons were experimentally investigated. Spheroidal graphite particle and austenite dendrite were found nucleated independently in liquid. Austenite dendrite engulfed the spheroidal graphite particles after contact and an austenite shell formed around a spheroidal graphite particle. The graphite diameter at which the austenite shell closed around nodule was determined. Statistically determined graphite size distributions indicated multiple graphite nucleation events during solidification. Structures in a graphite nodule varied depending on the growth stages of the nodule in ductile iron. Curved graphene layers appearing as faceted growth ledges swept circumferentially around the surface of a graphite nodule at early growth stages. Mismatches between the growth fronts created gaps which divided a nodule into radially oriented conical substructures (3-D). Columnar substructure was observed in the periphery of a nodule (formed during the intermediate growth stages) on its 2-D cross section. A columnar substructure consisted of parallel peripheral grains, with their c-axes approximately parallel. Graphene layers continued building up in individual conical substructure, and a graphite nodule increased its size accordingly. Method for characterizing the crystal structures of graphite based on the selected area diffraction pattern was developed. Both hexagonal structure and rhombohedral structure were found in the spheroidal graphite particles. Possible crystallographic defects associated with hexagonal-rhombohedral structure transition were discussed. Schematic models for introducing tilt angles to the graphite lattice with basal plane tilt boundaries were constructed.

  7. Insights into the dynamics of hereditary diffuse leukoencephalopathy with axonal spheroids

    Science.gov (United States)

    Van Gerpen, J A.; Wider, C; Broderick, D F.; Dickson, D W.; Brown, L A.; Wszolek, Z K.

    2008-01-01

    Objective: To report a new American family with hereditary diffuse leukoencephalopathy with spheroids (HDLS), including serial, presymptomatic and symptomatic, cranial MRIs from the proband. Methods: We report clinical and genealogic investigations of an HDLS family, sequential brain MRIs of the proband, and autopsy slides of brain tissue from the proband’s father. Results: We identified seven affected family members (five deceased). The mean age at symptomatic disease onset was 35 years (range: 20–57), and the mean disease duration was 16 years (range: 3–46). Five affected individuals initially manifested memory disturbance and behavioral changes, whereas two experienced a mood disorder as their presenting symptom. Our proband’s father had been diagnosed clinically with vascular dementia, but his brain autopsy was consistent with HDLS. The proband had a cranial MRI prior to symptom onset, with two subsequent MRIs performed during follow-up. These serial images reveal a progressive, confluent, frontal-predominant leukoencephalopathy with symmetric cortical atrophy. Conclusions: The proband of our newly identified hereditary diffuse leukoencephalopathy with spheroids (HDLS) kindred had subtle evidence of an incipient leukoencephalopathy on a presymptomatic cranial MRI. Conceivably, MRI may facilitate identifying affected presymptomatic individuals within known HDLS kindreds, increasing the likelihood of isolating the causative genes. GLOSSARY DLS = diffuse leukoencephalopathy with spheroids; FLAIR = fluid-attenuated inversion recovery; HDLS = hereditary diffuse leukoencephalopathy with spheroids; LENAS = leukoencephalopathy with neuroaxonal spheroids; LFB = Luxol fast blue; NAL = neuroaxonal leukodystrophy; POLD = pigmentary type of orthochromatic leukodystrophy. PMID:18794495

  8. Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries.

    Science.gov (United States)

    Chalut, Kevin J; Giacomelli, Michael G; Wax, Adam

    2008-08-01

    Inverse light scattering analysis seeks to associate measured scattering properties with the most probable theoretical scattering distribution. Although Mie theory is a spherical scattering model, it has been used successfully for discerning the geometry of spheroidal scatterers. The goal of this study was an in-depth evaluation of the consequences of analyzing the structure of spheroidal geometries, which are relevant to cell and tissue studies in biology, by employing Mie-theory-based inverse light scattering analysis. As a basis for this study, the scattering from spheroidal geometries was modeled using T-matrix theory and used as test data. In a previous study, we used this technique to investigate the case of spheroidal scatterers aligned with the optical axis. In the present study, we look at a broader scope which includes the effects of aspect ratio, orientation, refractive index, and incident light polarization. Over this wide range of parameters, our results indicate that this method provides a good estimate of spheroidal structure.

  9. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    Directory of Open Access Journals (Sweden)

    Qijun Li

    Full Text Available Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decrease of particle size, a transformation from typical dendrite solidification structure to fine cell microstructure occurs. The surface of the spheroidized powder is coated by a layer of oxides consisting mainly of TiO2 and Nb2O5. Probabilities of sinter-neck formation and particle coalescence increases with increasing sintering temperature. Porous skeleton with relatively homogeneous pore distribution and open pore channel is formed after vacuum sintering at 1700 °C, and the porosity is 32%. The sintering kinetic analysis indicates that grain boundary diffusion is the primary mass transport mechanism during sintering process. Keywords: Powder metallurgy, Nb-Ti based alloy, Porous material, Mechanical alloying, Plasma spheroidizing, Solidification microstructure

  10. Elemental mapping by synchrotron radiation X-Ray microfluorescence in cellular spheroid of prostate tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R.G.; Anjos, M.J.; Lopes, R.T., E-mail: roberta@lin.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear; Santos, C.A.N. [Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ (Brazil). Lab. de Biotecnologia; Palumbo Junior, A.; Souza, P.A.V.R.; Nasciutti, L.E. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Ciencias Biomedicas; Pereira, G.R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Ensaios Nao Destrutivos, Corrosao e Soldagem

    2013-08-15

    Prostate cancer is the sixth most common type of cancer and the third most common in males in Western industrialized countries. Cellular spheroid serves as excellent physiologic tumor models as they mimic avascular tumors and micrometastases. Trace elements play a significant role in biological processes. They are capable of affecting human health by competing with essential elements for available binding sites and by the activation or inhibition of reactions between metabolic enzymes. It is well known that zinc levels in the peripheral zone of dorsal and lateral lobes of the prostate are almost 10 times higher than in other soft tissues. Prostate tumor cells were isolated of the prostate tissue samples that were collected from patients submitted to surgery. The measurements were performed in XRF beam line at the Synchrotron Light National Laboratory (LNLS) in Campinas, Brazil. The results showed that all elements were heterogeneously distributed in different areas of the spheroids analyzed. P, S and Cl showed similar elemental distribution in all the samples analyzed while K, Ca, Fe, and Cu showed different elemental distribution. In all spheroids analyzed, Zn presented more intense distributions in the central region of the spheroid. The relationship between the function of Zn in the secretory epithelial cells and the carcinogenic process suggests that more studies on elemental mapping in spheroids are necessary. (author)

  11. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Alumina-on-alumina total hip replacement for femoral neck fracture in healthy patients

    Directory of Open Access Journals (Sweden)

    Moretti Lorenzo

    2011-02-01

    Full Text Available Abstract Background Total hip replacement is considered the best option for treatment of displaced intracapsular fractures of the femoral neck (FFN. The size of the femoral head is an important factor that influences the outcome of a total hip arthroplasty (THA: implants with a 28 mm femoral head are more prone to dislocate than implants with a 32 mm head. Obviously, a large head coupled to a polyethylene inlay can lead to more wear, osteolysis and failure of the implant. Ceramic induces less friction and minimal wear even with larger heads. Methods A total of 35 THAs were performed for displaced intracapsular FFN, using a 32 mm alumina-alumina coupling. Results At a mean follow-up of 80 months, 33 have been clinically and radiologically reviewed. None of the implants needed revision for any reason, none of the cups were considered to have failed, no dislocations nor breakage of the ceramic components were recorded. One anatomic cementless stem was radiologically loose. Conclusions On the basis of our experience, we suggest that ceramic-on-ceramic coupling offers minimal friction and wear even with large heads.

  13. Nickel-Silver Monotectic in Alumina Crucible for Use with Contact Thermometry

    Science.gov (United States)

    Gotoh, M.; Dedyulin, S. N.

    2017-07-01

    Previously, the authors have published work describing a pure Ni fixed point within alumina crucibles. The success of this study stimulated working with the Ni-Ag monotectic point in alumina crucibles. Similar to eutectic points, the Ni-Ag monotectic temperature is an invariant point but it differs from a eutectic reaction in such a way that the monotectic phase change takes place from Ni-Ag liquid solution to Ni-Ag solid solution and Ag rich Ni-Ag liquid solution. In the phase diagram references, the Ni-Ag monotectic phase transition temperature is assigned to be about 20°C below the pure Ni melting/freezing point. As is the case for pure Ni, mechanical stability is one of the concerns. Therefore, proper cell design is necessary to avoid breakage of the alumina crucible. The techniques used for the fabrication and measurement of the pure Ni cell were applied to the Ni-Ag cell as well. The cells have been successfully fabricated and the temperature measurement at the fixed point was carried out for more than 20 thermal cycles in total. A Pt/Pd thermocouple was used to measure the temperature and was calibrated from the tin point to the gold point to measure the ITS-90. Freezing plateaus are realized with the technique of "recurrent offset freezing method with reserved solid". The duration of each freezing plateau is a minimum of 30 min. The monotectic transformation temperature for the best performed cell is determined as 1428.27°C with a combined uncertainty of ±0.06°C ({k}=1).

  14. Efficiency of Nepheline Ore Processing for Alumina Production

    Science.gov (United States)

    Arlyuk, B. I.; Pivnev, A. I.

    The comparative economical analysis and energetic analysis of alumina production from various kinds of raw materials were carried out basing on industrial data. The main process parameters of nepheline raw materials processing through sintering adopted at large industrial scale are given. The said technology allows the wasteless utilization of nepheline to produce alumina, soda, potash, potassium sulphate and chloride, portland cement and gallium without polluting the environment. According to industrial data the production cost of alumina while using the sintering of nepheline raw material is considerably lower than in processing of high grade bauxites by the Bayer way due to complete utilization of wastes, and as for capital investments into the process facilities they are lower than those into alumina production from bauxites, production of soda, potash and cement by traditional methods taken together. Are cited the flowsheets of alumina, soda, potash and portland cement production from nepheline ore, the process interrelationships determining the efficiency of raw material processing, and ways of further improvement of the process.

  15. The energy of a prolate spheroidal shell in a uniform magnetic field

    Science.gov (United States)

    Koksharov, Yu. A.

    2017-04-01

    The problem of the energy of a spheroidal magnetic shell, solved by methods of classical electrodynamics, arises, in particular, upon the study of thin-wall biocompatible microcapsules in connection with a pressing issue of targeted drug delivery. The drug inside a microcapsule should be released from the shell at a required instant of time by destroying the capsule's shell. The placement inside a shell of magnetic nanoparticles sensitive to an external magnetic field theoretically makes it possible to solve both problems: to transport a capsule to the required place and to destroy its shell. In particular, the shell can be destroyed under the action of internal stress when the shape of a capsule is changed. In this paper, the analysis of the model of a magnetic microcapsule in the form of a prolate spheroidal shell is performed and formulas for the magnetostatic and magnetic free energy when the magnetic field is directed along the major axis of the spheroid are derived.

  16. Monitoring the Activation of the DNA Damage Response Pathway in a 3D Spheroid Model.

    Science.gov (United States)

    Mondesert, Odile; Frongia, Céline; Clayton, Olivia; Boizeau, Marie-Laure; Lobjois, Valérie; Ducommun, Bernard

    2015-01-01

    Monitoring the DNA-Damage Response (DDR) activated pathway in multicellular tumor spheroid models is an important challenge as these 3D models have demonstrated their major relevance in pharmacological evaluation. Herein we present DDR-Act-FP, a fluorescent biosensor that allows detection of DDR activation through monitoring of the p21 promoter p53-dependent activation. We show that cells expressing the DDR-Act-FP biosensor efficiently report activation of the DDR pathway after DNA damage and its pharmacological manipulation using ATM kinase inhibitors. We also report the successful use of this assay to screen a small compound library in order to identify activators of the DDR response. Finally, using multicellular spheroids expressing the DDR-Act-FP we demonstrate that DDR activation and its pharmacological manipulation with inhibitory and activatory compounds can be efficiently monitored in live 3D spheroid model. This study paves the way for the development of innovative screening and preclinical evaluation assays.

  17. Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory

    Science.gov (United States)

    Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Longo Proper, M.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zhou, H.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV–100 TeV gamma-rays and cosmic rays. It can also perform diverse indirect searches for dark matter annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma-rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma-rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the field of view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC. We also present the HAWC flux upper limits of the 15 dwarf spheroidal galaxies in half-decade energy bins.

  18. Processes of Formation of Spheroidal Concretions and Inferences for "Blueberries" in Meridiani Planum Sediments

    Science.gov (United States)

    Coleman, Max

    2005-01-01

    The MER Opportunity Athena Science team has described spheroidal hematite nodules in sediments at Meridiani Planum on Mars [1]. They were informally referred to as "Blueberries" in the initial press releases and for brevity that is the name to be used in this abstract. Not all spheroidal objects in sediments are nodular concretions, but this paper will discuss the diagenetic processes possibly relevant to understanding the origin of the Blueberries. There are many occurrences of spheroidal diagenetic concretions in terrestrial sediments and detailed work has been done to understand the processes of their formation. In particular, it is possible to reconstruct the controls on their shapes and compositions, both mineral and chemical. Although there may not be good analogs for the Meridiani Planum hematite spherules on Earth, it may be possible to deduce the former environmental conditions that led to their formation and whether they might retain (or even be) biosignatures.

  19. Cell-free DNA in a three-dimensional spheroid cell culture model

    DEFF Research Database (Denmark)

    Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.

    2017-01-01

    state, may be of significant benefit for cfDNA research. Methods CfDNA was isolated from the growth medium of C3A spheroid cultures in rotating bioreactors during both normal growth and treatment with acetaminophen. Spheroid growth was monitored via planimetry, lactate dehydrogenase activity and glucose...... environment. Combining 3D culture and cfDNA research could, therefore, optimize both research fields.......Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...

  20. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice

    Directory of Open Access Journals (Sweden)

    Jong-il Park

    2016-02-01

    Full Text Available The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs and normal colonic fibroblasts (NCFs and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation.

  1. Control of porphyrin biosynthesis in Rhodopseudomonas spheroides and Propionibacterium shermanii. A direct 13C nuclear-magnetic-resonance spectroscopy study.

    Science.gov (United States)

    Burton, G; Jordan, P M; MacKenzie, N E; Fagerness, P E; Scott, A I

    1981-01-01

    The facultative anaerobes Rhodopseudomonas spheroides and Propionibacterium shermanii were grown under anaerobic and aerobic conditions. The effect of light was studied with the photosynthetic R. spheroides, and the adaptation of both species to dark anaerobic life was monitored by direct observation of 5-amino[5-13C]laevulinic acid metabolism by using 13C nuclear-magnetic-resonance spectroscopy. PMID:6975620

  2. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    Directory of Open Access Journals (Sweden)

    Amir Eshghinejadfard

    2017-09-01

    Full Text Available Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ=2 or 4 or spherical (λ=1. Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM. In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling. Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  3. Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study

    Science.gov (United States)

    Eshghinejadfard, Amir; Hosseini, Seyed Ali; Thévenin, Dominique

    2017-09-01

    Particles are present in many natural and industrial multiphase flows. In most practical cases, particle shape is not spherical, leading to additional difficulties for numerical studies. In this paper, DNS of turbulent channel flows with finite-size prolate spheroids is performed. The geometry includes a straight wall-bounded channel at a frictional Reynolds number of 180 seeded with particles. Three different particle shapes are considered, either spheroidal (aspect ratio λ =2 or 4) or spherical (λ =1 ). Solid-phase volume fraction has been varied between 0.75% and 1.5%. Lattice Boltzmann method (LBM) is used to model the fluid flow. The influence of the particles on the flow field is simulated by immersed boundary method (IBM). In this Eulerian-Lagrangian framework, the trajectory of each particle is computed individually. All particle-particle and particle-fluid interactions are considered (four-way coupling). Results show that, in the range of examined volume fractions, mean fluid velocity is reduced by addition of particles. However, velocity reduction by spheroids is much lower than that by spheres; 2% and 1.6%, compared to 4.6%. Maximum streamwise velocity fluctuations are reduced by addition of particle. By comparing particle and fluid velocities, it is seen that spheroids move faster than the fluid before reaching the same speed in the channel center. Spheres, on the other hand, move slower than the fluid in the buffer layer. Close to the wall, all particle types move faster than the fluid. Moreover, prolate spheroids show a preferential orientation in the streamwise direction, which is stronger close to the wall. Far from the wall, the orientation of spheroidal particles tends to isotropy.

  4. Nuclear Star Clusters and the Stellar Spheroids of their Host Galaxies

    OpenAIRE

    Leigh, Nathan; Böker, Torsten; Knigge, Christian

    2012-01-01

    (Abridged) We combine published photometry for the nuclear star clusters (NSCs) and stellar spheroids of 51 low-mass, early-type galaxies in the Virgo cluster with empirical mass-to-light ratios, in order to complement previous studies that explore the dependence of NSC masses (M_{NSC}) on various properties of their host galaxies. We confirm a roughly linear relationship between M_{NSC} and luminous host spheroid mass (M_{Sph}), albeit with considerable scatter (0.57 dex). We estimate veloci...

  5. Diffusion-influenced reaction rates for active "sphere-prolate spheroid" pairs and Janus dimers

    Science.gov (United States)

    Traytak, Sergey D.; Grebenkov, Denis S.

    2018-01-01

    The purpose of this paper is twofold. First, we provide a concise introduction to the generalized method of separation of variables for solving diffusion problems in canonical domains beyond conventional arrays of spheres. Second, as an important example of its application in the theory of diffusion-influenced reactions, we present an exact solution of the axially symmetric problem on diffusive competition in an array of two active particles (including Janus dumbbells) constructed of a prolate spheroid and a sphere. In particular, we investigate how the reaction rate depends on sizes of active particles, spheroid aspect ratio, particles' surface reactivity, and distance between their centers.

  6. Diffusion-influenced reaction rates for active "sphere-prolate spheroid" pairs and Janus dimers.

    Science.gov (United States)

    Traytak, Sergey D; Grebenkov, Denis S

    2018-01-14

    The purpose of this paper is twofold. First, we provide a concise introduction to the generalized method of separation of variables for solving diffusion problems in canonical domains beyond conventional arrays of spheres. Second, as an important example of its application in the theory of diffusion-influenced reactions, we present an exact solution of the axially symmetric problem on diffusive competition in an array of two active particles (including Janus dumbbells) constructed of a prolate spheroid and a sphere. In particular, we investigate how the reaction rate depends on sizes of active particles, spheroid aspect ratio, particles' surface reactivity, and distance between their centers.

  7. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids.

    Science.gov (United States)

    Murphy, Kaitlin C; Whitehead, Jacklyn; Zhou, Dejie; Ho, Steve S; Leach, J Kent

    2017-12-01

    Mesenchymal stem cells (MSCs) secrete endogenous factors such as vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE 2 ) that promote angiogenesis, modulate the inflammatory microenvironment, and stimulate wound repair, and MSC spheroids secrete more trophic factors than dissociated, individual MSCs. Compared to injection of cells alone, transplantation of MSCs in a biomaterial can enhance their wound healing potential by localizing cells at the defect site and upregulating trophic factor secretion. To capitalize on the therapeutic potential of spheroids, we engineered a fibrin gel delivery vehicle to simultaneously enhance the proangiogenic and anti-inflammatory potential of entrapped human MSC spheroids. We used multifactorial statistical analysis to determine the interaction between four input variables derived from fibrin gel synthesis on four output variables (gel stiffness, gel contraction, and secretion of VEGF and PGE 2 ). Manipulation of the four input variables tuned fibrin gel biophysical properties to promote the simultaneous secretion of VEGF and PGE 2 by entrapped MSC spheroids while maintaining overall gel integrity. MSC spheroids in stiffer gels secreted the most VEGF, while PGE 2 secretion was highest in more compliant gels. Simultaneous VEGF and PGE 2 secretion was greatest using hydrogels with intermediate mechanical properties, as small increases in stiffness increased VEGF secretion while maintaining PGE 2 secretion by entrapped spheroids. The fibrin gel formulation predicted to simultaneously increase VEGF and PGE 2 secretion stimulated endothelial cell proliferation, enhanced macrophage polarization, and promoted angiogenesis when used to treat a wounded three-dimensional human skin equivalent. These data demonstrate that a statistical approach is an effective strategy to formulate fibrin gel formulations that enhance the wound healing potential of human MSCs. Mesenchymal stem cells (MSCs) are under investigation for wound

  8. Composition of the spheroidal objects in KhN77TYuR-VD alloy

    International Nuclear Information System (INIS)

    Kotkis, M.A.; Nabutovskii, L.S.; Ostrov, A.E.; Zil'berman, A.G.

    1986-01-01

    The authors make an element analysis of the spheroidal objects in KhN77TYuR-VD alloy with the use of the energy dispersion microanalyzer with which the Stereoscan S-180 scanning electron microscope is equipped. Examples of the qualitative element analysis are shown. The results of the investigations show that the composition of the spheroidal inclusions includes nickel, chromium, titanium, iron, and also silicon and sulfur. The information obtained makes it possible to make an assumption on the mechanism of origin of these objects

  9. Fabrication of TiO2 Nanotanks Embedded in a Nanoporous Alumina Template

    Directory of Open Access Journals (Sweden)

    C. Massard

    2015-01-01

    Full Text Available The feasibility of surface nanopatterning with TiO2 nanotanks embedded in a nanoporous alumina template was investigated. Self-assembled anodized aluminium oxide (AAO template, in conjunction with sol gel process, was used to fabricate this nanocomposite object. Through hydrolysis and condensation of the titanium alkoxide, an inorganic TiO2 gel was moulded within the nanopore cavities of the alumina template. The nanocomposite object underwent two thermal treatments to stabilize and crystallize the TiO2. The morphology of the nanocomposite object was characterized by Field Emission Scanning Electron Microscopy (FESEM. The TiO2 nanotanks obtained have cylindrical shapes and are approximately 69 nm in diameter with a tank-to-tank distance of 26 nm. X-ray diffraction analyses performed by Transmission Electron Microscopy (TEM with selected area electron diffraction (SAED were used to investigate the TiO2 structure. The optical properties were studied using UV-Vis spectroscopy.

  10. Phase field study of interfacial diffusion-driven spheroidization in a composite comprized of two mutually insoluble phases

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory

    2014-03-27

    The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.

  11. The increase in radioresistance of Chinese hamster cells cultured as spheroids is correlated to changes in nuclear morphology

    International Nuclear Information System (INIS)

    Gordon, D.J.; Milner, A.E.; Beaney, R.P.; Grdina, D.J.; Vaughan, A.T.

    1990-01-01

    Chinese hamster V79 cells grown as spheroids in roller culture are more radioresistant than those grown as monolayers. The supercoiled structure of chromatin, as salt-extracted nucleoids, has been examined using flow cytometry. Irradiated viable cells from spheroid culture contain restraints to supercoil relaxation that are absent in monolayer cells. Further analysis of the chromatin organization from each growth form shows that the radioresistant spheroid cells contain a DNA-protein matrix that is more resistant to detergent-induced degradation. The increase in structural integrity may be due to the retention of a 55-60 kDa protein that is apparent in the nucleoids of spheroid, but not monolayer cells. The increase in structural integrity of the spheroid cells may explain their greater radioresistance by providing a more stable platform for high-fidelity DNA damage repair

  12. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Leitao, Roberta G.; Canellas, Catarine G.L.; Anjos, Marcelino J.; Lopes, Ricardo T.; Santos, Carlos Antonio N.; Palumbo Junior, Antonio; Souza, Pedro A.V.R.; Nasciutti, Luiz E.

    2011-01-01

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg incidence, exciting with a white beam and using an optical capillary with 20 μm diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed. (author)

  13. Influence Of The Triple Spheroidization On Surface Hardness From Drilling Resistance Behavior Of Powder Coated Gray Cast Iron

    Directory of Open Access Journals (Sweden)

    Subhakij Khaonetr

    2015-08-01

    Full Text Available The objective of this study on the influence of the triple spheroidization on surface hardness from drilling resistance Dry drilling of powder coated gray cast iron using universal testing machine Compressive mode the surface hardness in powder coating areas normal hardness and Charpy impact resistance were considered. The spheroidizing temperatures were 300amp61616C 450amp61616C and 600amp61616C the spheroidizing time spanned the range of 6 hours and cooled down in the furnace to room temperature for 24 hours. The drilling resistance test the high-speed twist drill diameter of 3 mm the rotating speed of 1000 revmin and the crosshead speed of 5-25 mmmin were investigated. It was found that the surface hardness from drilling resistance normal hardness and Charpy impact resistance increased as the spheroidizing temperatures increased. The maximum surface hardness was found at the third spheroidization.

  14. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    Science.gov (United States)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  15. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Roberta G.; Canellas, Catarine G.L.; Anjos, Marcelino J.; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Energia Nuclear; Santos, Carlos Antonio N. [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (INMETRO), Duque de Caxias, RJ (Brazil). Lab. de Biotecnologia - Bioengenharia; Palumbo Junior, Antonio; Souza, Pedro A.V.R.; Nasciutti, Luiz E., E-mail: nasciutt@ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Interacoes Celulares

    2011-07-01

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg incidence, exciting with a white beam and using an optical capillary with 20 {mu}m diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed. (author)

  16. Spatial distribution of elements in the spheroids by prostate tumor cells using synchrotron radiation x-ray fluorescence

    International Nuclear Information System (INIS)

    Leitao, Roberta G.; Santos, Carlos Antonio N.; Junior, Antonio Palumbo; Souza, Pedro A. V. R.; Canellas, Catarine G. L.; Anjos, Marcelino J.; Nasciutti, Luiz E.; Lopes, Ricardo T.

    2012-01-01

    The formation of three-dimensional cell microspheres such as spheroids has attracted attention as a useful culture technique. In this study, we investigated the trace elemental distribution (mapping) in spheroids derived from tissue prostate cancer (PCa). The measurements were performed in standard geometry of 45 deg. incidence, exciting with a white beam and using an optical capillary with 20 μm diameter collimation in the XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results showed that most elements analyzed presented non-uniform distribution. P, S and Cl showed similar elemental distribution in all the samples analyzed. K, Ca, Fe, and Cu showed different elemental distribution for the spheroids analyzed. Zinc presented more intense distributions in the spheroid central region for all spheroids analyzed.

  17. Retrospective dosimetry with alumina substrate from electronic components

    International Nuclear Information System (INIS)

    Ekendahl, D.; Judas, L.

    2012-01-01

    Alumina substrate can be found in electronic components used in portable electronic devices. The material is radiation sensitive and can be applied in dosimetry using thermally or optically stimulated luminescence. Electronic portable devices such as mobile phones, USB flash discs, mp3 players, etc., which are worn close to the body, can represent personal dosemeters for members of the general public in situations of large-scale radiation accidents or malevolent acts with radioactive materials. This study investigated dosimetric properties of alumina substrates and aspects of using mobile phones as personal dosemeters. The alumina substrates exhibited favourable dosimetry characteristics. However, anomalous fading had to be properly corrected in order to achieve sufficient precision in dose estimate. Trial dose reconstruction performed by means of two mobile phones proved that mobile phones can be used for reconstruction of personal doses. (authors)

  18. Modifying alumina red mud to support a revegetation cover

    Science.gov (United States)

    Xenidis, A.; Harokopou, A. D.; Mylona, E.; Brofas, G.

    2005-02-01

    Alumina red mud, a fine-textured, iron-rich, alkaline residue, is the major waste product of bauxite digestion with caustic soda to remove alumina. The high alkalinity and salinity as well as the poor nutrient status are considered to be the major constraints of red mud revegetation. This research was conducted to evaluate the ameliorating effect of gypsum, sewage sludge, ferrous sulfate, ammonium sulfate, ammonium nitrate, and calcium phosphate on alumina red mud. The effectiveness of the mixtures was evaluated by applying extraction tests and performing experiments using six plant species. Gypsum amendment significantly reduced the pH, electrical conductivity, and sodium and aluminum content of red mud. Sewage sludge application had an extended effect in improving both the soil structure and the nutrient status of the gypsum-amended red mud. Together with the gypsum and sewage sludge, calcium phosphate application into red mud enhanced plant growth and gave the most promising results.

  19. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  20. Membranes obtained from alumina from separation water/oil

    International Nuclear Information System (INIS)

    Rosas Neto, M.I.; Lira, H.L; Guimaraes, I.O; Franca, K.B.

    2016-01-01

    This study aims to evaluate by flow test emulsion water/oil a membrane obtained from a crude residue of the alumina industry and see if this membrane is able to filter this emulsion within the limits specified by CONAMA. In this work, tubular membranes composed of the alumina and the residue bentonite clay were produced by extrusion and were sintered at 900, 1000 and 1100 ° C. tangential flow tests were conducted with deionized water and subsequently with an emulsion of water / oil, all done with a pressure of 1.5 bar. The results showed that membranes produced from the crude residue the alumina industry were quite efficient the emulsion's oil removal, reducing the concentration of about 100 ppm in the feed, to below 5ppm and flow rates of around 30L/h.m 2 . (author)

  1. Radiation silver paramagnetic centers in a beta-alumina crystal

    International Nuclear Information System (INIS)

    Badalyan, A.G.; Zhitnikov, R.A.

    1985-01-01

    Silver paramagnetic centers in a β-alumina crystal, formed after X-ray radiation at 77 K, are investigated by the EPR method. Silver enters the β-alumina crystal, substituting sodium and potassium ions in a mirror plane. Crystals with substitution from 0.1 to 100% of alkali metal ions by Ag + ions are investigated. Silver atomic centers (Ag 0 -centers), formed by electron capture with the Ag + ion, are firstly detected and investigated in the β-alumina. Hole Ag 2+ -centers are investigated and detected in crystals with high concentration of Ag + . By studying the orientation dependence of a g-factor it is established that hole capture by the Ag + ion is accompanied by Ag 2+ ion displacement from the position, Ag + being primarity taken up (Beavers-Roth or anti- Beavers-Roth) to the position between two oxygen ions in the mirror plane

  2. Synthesis of alumina powders by precipitation method and solvothermal treatment

    International Nuclear Information System (INIS)

    Politchuk, J.O.; Lima, N.B.; Lazar, D.R.R.; Ussui, V.; Yoshito, W.K.

    2012-01-01

    The improvement of alumina powders synthesis processes has been focused on the preparation of ceramic powders with well defined crystalline structure and with high specific surface area and nanometric particle size without formation of hard agglomerates. For this purpose the precipitation step should be studied and and also the temperature of alumina crystallization should be reduced. The aim of this study was to obtain alumina powders by hydroxide precipitation with ammonia in the presence of cationic surfactant, followed by solvothermal treatment and calcination. The powders were characterized by TG/DTA, X-ray diffraction, surface area measurements by gas adsorption (BET) and scanning electron microscopy. The results showed that powders produced by solvothermal treatment without surfactant have higher crystallinity. However the presence of CTAB enhances 240% the specific surface area compared with powders produced without this reagent (author)

  3. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  4. The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells.

    Science.gov (United States)

    Metzger, Wolfgang; Sossong, Daniela; Bächle, Annick; Pütz, Norbert; Wennemuth, Gunther; Pohlemann, Tim; Oberringer, Martin

    2011-09-01

    The 3-dimensional (3-D) culture of various cell types reflects the in vivo situation more precisely than 2-dimensional (2-D) cell culture techniques. Spheroids as 3-D cell constructs have been used in tumor research for a long time. They have also been used to study angiogenic mechanisms, which are essential for the success of many tissue-engineering approaches. Several methods of forming spheroids are known, but there is a lack of systematic studies evaluating the performance of these techniques. We evaluated the performance of the hanging drop technique, carboxymethyl cellulose technique and liquid overlay technique to form both mono- and co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. The performance of the three techniques was evaluated in terms of rate of yield and reproducibility. The size of the generated spheroids was determined systematically. The liquid overlay technique was the most suitable for generating spheroids reproducibly. The rate of yield for this technique was between 60% and 100% for monoculture spheroids and 100% for co-culture spheroids. The size of the spheroids could be adjusted easily and precisely by varying the number of seeded cells organized in one spheroid. The formation of co-culture spheroids consisting of three different cell types was possible. Our results show that the most suitable technique for forming spheroids can vary from the chosen cell type, especially if primary cells are used. Co-culture spheroids consisting of three different cell types will be used to study angiogenic phenomena in further studies.

  5. On the physical and chemical details of alumina atomic layer deposition: A combined experimental and numerical approach

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dongqing; Ma, Lulu; Xie, Yuanyuan; Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Jen, Tien Chien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 and School of Engineering, University of Alaska Anchorage, Anchorage, Alaska 99508 (United States)

    2015-03-15

    Alumina thin film is typically studied as a model atomic layer deposition (ALD) process due to its high dielectric constant, high thermal stability, and good adhesion on various wafer surfaces. Despite extensive applications of alumina ALD in microelectronics industries, details on the physical and chemical processes are not yet well understood. ALD experiments are not able to shed adequate light on the detailed information regarding the transient ALD process. Most of current numerical approaches lack detailed surface reaction mechanisms, and their results are not well correlated with experimental observations. In this paper, the authors present a combined experimental and numerical study on the details of flow and surface reactions in alumina ALD using trimethylaluminum and water as precursors. Results obtained from experiments and simulations are compared and correlated. By experiments, growth rate on five samples under different deposition conditions is characterized. The deposition rate from numerical simulation agrees well with the experimental results. Details of precursor distributions in a full cycle of ALD are studied numerically to bridge between experimental observations and simulations. The 3D transient numerical model adopts surface reaction kinetics and mechanisms based on atomic-level studies to investigate the surface deposition process. Surface deposition is shown as a strictly self-limited process in our numerical studies. ALD is a complex strong-coupled fluid, thermal and chemical process, which is not only heavily dependent on the chemical kinetics and surface conditions but also on the flow and material distributions.

  6. Preparation of α-alumina nanoparticles with various shapes via hydrothermal phase transformation under supercritical water conditions

    Science.gov (United States)

    Hakuta, Y.; Nagai, N.; Suzuki, Y.-H.; Kodaira, T.; Bando, K. K.; Takashima, H.; Mizukami, F.

    2013-12-01

    Alumina (Al2O3) fine particles are widely used as industrial materials including fillers for metal or plastics, paints, polisher, cosmetics and electric substrates, due to its high hardness, chemical stability, and high thermal conductivity. The performance of those industrial products is closely related to the particle size or shape of the alumina particles used, and thus a new synthetic method to control size, shape, and crystal structure of the aluminum oxide is desired for the improvement of the performance. Hydrothermal phase transformation using various aluminum compounds such as oxide, hydroxide, and salt as a staring material, is known as one of the synthetic methods for producing alumina fine particles; however, the influence about the size and shape of the starting aluminum compounds has been little mentioned, although they strongly affect the size and shape of the final products. In this study, we investigated the influence of the shape, size and crystal structure of the starting aluminum compounds on those of the products, and newly succeeded in the production of rod-like α-Al2O3 nanoparticles from fibrous boehmite nanoparticles using hydrothermal phase transformation under supercritical water conditions.

  7. Two steps sintering alumina doped with niobia; Sinterizacao em duas etapas de alumina aditivada com niobia

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, L.B.; Hatzfeld, J.; Heck, M.; Pokorny, A.; Bergmann, C.P., E-mail: lucas.gomes@ufrgs.br [Universidade Federal do Rio Grande do Sul (LACER/UFRGS) Porto Alegre, RS (Brazil). Laboratorio de Materiais Ceramicos

    2014-07-01

    In this work, high surface area commercial alumina was doped with niobia and sintered in two steps in order to obtain dense materials with lower processing temperatures. The powders were milled and uniaxially pressed (200 MPa). The first step of sintering took place at 1100°C for 3, 6, 9 and 12 hours, followed by the second step at 1350°C for 3 hours. The relative density, porosity and water absorption of the samples were determined by the Archimedes method. The crystalline phases were analyzed by X-ray Diffraction (XRD) and the morphology of the samples after sintering, evaluated by Scanning Electron Microscopy (SEM). The results indicate that the use of niobia combined with the two steps sintering promotes an increase in the density of the material, even at lower sintering temperatures. (author)

  8. Distribution of nickel between copper-nickel and alumina saturated iron silicate slags

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, R.G.; Acholonu, C.C.

    1984-03-01

    The solubility of nickel in slag is determined in this article by equilibrating copper-nickel alloys with alumina-saturated iron silicate slags in an alumina crucible at 1573 K. The results showed that nickel dissolves in slag both as nickel oxide and as nickel metal. The presence of alumina is shown to increase the solubility of nickel in slags.

  9. Modeling photopolarimetric characteristics of comet dust as a polydisperse mixture of polyshaped rough spheroids

    Science.gov (United States)

    Kolokolova, L.; Das, H.; Dubovik, O.; Lapyonok, T.

    2013-12-01

    It is widely recognized now that the main component of comet dust is aggregated particles that consist of submicron grains. It is also well known that cometary dust obey a rather wide size distribution with abundant particles whose size reaches dozens of microns. However, numerous attempts of computer simulation of light scattering by comet dust using aggregated particles have not succeeded to consider particles larger than a couple of microns due to limitations in the memory and speed of available computers. Attempts to substitute aggregates by polydisperse solid particles (spheres, spheroids, cylinders) could not consistently reproduce observed angular and spectral characteristics of comet brightness and polarization even in such a general case as polyshaped (i.e. containing particles of a variety of aspect ratios) mixture of spheroids (Kolokolova et al., In: Photopolarimetry in Remote Sensing, Kluwer Acad. Publ., 431, 2004). In this study we are checking how well cometary dust can be modeled using modeling tools for rough spheroids. With this purpose we use the software package described in Dubovik et al. (J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619d, 2006) that allows for a substantial reduction of computer time in calculating scattering properties of spheroid mixtures by means of using pre-calculated kernels - quadrature coefficients employed in the numerical integration of spheroid optical properties over size and shape. The kernels were pre-calculated for spheroids of 25 axis ratios, ranging from 0.3 to 3, and 42 size bins within the size parameter range 0.01 - 625. This software package has been recently expanded with the possibility of simulating not only smooth but also rough spheroids that is used in present study. We consider refractive indexes of the materials typical for comet dust: silicate, carbon, organics, and their mixtures. We also consider porous particles accounting on voids in the spheroids through effective medium approach. The

  10. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications; Sintese e processamento de compositos a base de alumina e zirconia com infiltracao de fase vitrea para aplicacoes odontologicas

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Daniel Gomes

    2009-07-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning

  11. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  12. Controllable synthesis and characterization of alumina/MWNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Zoltan; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, 6720 Szeged (Hungary); Marko, Kata; Erdohelyi, Andras [Department of Physical Chemistry and Material Science, University of Szeged, Aradi ter 2, 6720 Szeged (Hungary); Forro, Laszlo [Laboratory of Physics of Complex Matter, IPMC, EPFL, 1026 Ecublens (Switzerland)

    2011-11-15

    The aim of this work is to develop a controllable synthesis pathway which produces a stable alumina layer on the surface of carbon nanotubes by impregnation method. Precursor compounds such as aluminium isopropoxide and aluminium-acetyl-acetonate were used to cover the surface of multiwalled carbon nanotubes (MWNTs) under different solvent conditions. As-prepared alumina coverages were characterized by TEM, SEM, SEM-EDX, TG and X-ray diffraction techniques. Results revealed that homogeneous coverage can be achieved in a controllable way. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  14. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  15. Effect of Impurities on O and Al Boundary Diffusion in Alumina: Application Alumina Scale Growth in Alloys

    Science.gov (United States)

    2012-01-24

    500ppm Hafnium doped E 3 25000 01 20000 re 0- • 1250 Q. 15000 • 1400 c 10000 O re •0 ’x 5000 O " K- =1.70*10 15 mVs —• 0 1...jjp, 25000 I s3 20000 15000 10000 5000 Lxperimental data (1300°C 60 h) - Fitting using the quasi steady-state model • Fitting using the...c o I 01 > 3 E 3 Comparison between Yttrium doped and Pur« alumina -•-Yttrium doped -•-Pure alumina 100 110 120 130 140 ISO

  16. Stokes flow of micropolar fluid past a viscous fluid spheroid with non ...

    Indian Academy of Sciences (India)

    The Stokes axisymmetric flow of an incompressible micropolar fluid past a viscous fluid spheroid whose shape deviates slightly from that of a sphere is studied analytically. The boundary conditions used are the vanishing of the normal velocities, the continuity of the tangential velocities, continuity of shear stresses and ...

  17. Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid

    Science.gov (United States)

    Horimoto, Yasufumi; Simonet-Davin, Gabriel; Katayama, Atsushi; Goto, Susumu

    2018-04-01

    We experimentally investigate the flow transition to developed turbulence in a precessing spheroid with a small ellipticity. Fully developed turbulence appears through a subcritical transition when we fix the Reynolds number (the spin rate) and gradually increase the Poincaré number (the precession rate). In the transitional range of the Poincaré number, two qualitatively different turbulent states (i.e., fully developed turbulence and quiescent turbulence with a spin-driven global circulation) are stable and they are connected by a hysteresis loop. This discontinuous transition is in contrast to the continuous transition in a precessing sphere, for which neither bistable turbulent states nor hysteresis loops are observed. The small ellipticity of the container makes the global circulation of the confined fluid more stable, and it requires much stronger precession of the spheroid, than a sphere, for fully developed turbulence to be sustained. Nevertheless, once fully developed turbulence is sustained, its flow structures are almost identical in the spheroid and sphere. The argument [Lorenzani and Tilgner, J. Fluid Mech. 492, 363 (2003), 10.1017/S002211200300572X; Noir et al., Geophys. J. Int. 154, 407 (2003), 10.1046/j.1365-246X.2003.01934.x] on the basis of the analytical solution [Busse, J. Fluid Mech. 33, 739 (1968), 10.1017/S0022112068001655] of the steady global circulation in a weak precession range well describes the onset of the fully developed turbulence in the spheroid.

  18. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  19. Determination of Drug Toxicity Using 3D Spheroids Constructed From an Immortal Human Hepatocyte Cell Line

    DEFF Research Database (Denmark)

    Fey, S. J.; Wrzesinski, Krzysztof

    2012-01-01

    , diclofenac, metformin, phenformin, and valproic acid) to LD50 data (mg compound/mg cellular protein) showed that the variation in LD50 values was generally less than that suggested by the original LC50 data. Toxicological analysis of these six compounds in 3D spheroid culture (either published or presented...

  20. Cardiac spheroids as promising in vitro models to study the human heart microenvironment

    DEFF Research Database (Denmark)

    Polonchuk, Liudmila; Chabria, Mamta; Badi, Laura

    2017-01-01

    Three-dimensional in vitro cell systems are a promising alternative to animals to study cardiac biology and disease. We have generated three-dimensional in vitro models of the human heart ("cardiac spheroids", CSs) by co-culturing human primary or iPSC-derived cardiomyocytes, endothelial cells an...

  1. Influence of boron on ferrite formation in copper-added spheroidal graphite cast iron

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2014-07-01

    Full Text Available This paper reviews the original work of the authors published recently, describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron. The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material. Also, this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron. The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method. However, in the B-added sample, no Cu film could be found, while the secondary graphite was formed on the surface of the spheroidal graphite. The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn. The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.

  2. The first carbon-enhanced metal-poor star found in the Sculptor dwarf spheroidal

    NARCIS (Netherlands)

    Skúladóttir, Á.; Tolstoy, E.; Salvadori, S.; Hill, V.; Pettini, M.; Shetrone, M. D.; Starkenburg, E.

    The origin of carbon-enhanced metal-poor (CEMP) stars and their possible connection with the chemical elements produced by the first stellar generation is still highly debated. In contrast to the Galactic halo, not many CEMP stars have been found in the dwarf spheroidal galaxies around the Milky

  3. The star formation and chemical evolution history of the sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    de Boer, T. J. L.; Tolstoy, E.; Hill, V.; Saha, A.; Olsen, K.; Starkenburg, E.; Lemasle, B.; Irwin, M. J.; Battaglia, G.

    We have combined deep photometry in the B, V and I bands from CTIO/MOSAIC of the Sculptor dwarf spheroidal galaxy, going down to the oldest main sequence turn-offs, with spectroscopic metallicity distributions of red giant branch stars. This allows us to obtain the most detailed and complete star

  4. The Star Formation & Chemical Evolution Timescales of Two Nearby Dwarf Spheroidal Galaxies

    NARCIS (Netherlands)

    de Boer, Thomas; Tolstoy, E.; Hill, V.; Saha, A.; Olsen, K.; Starkenburg, E.; Irwin, M.; Battaglia, G.

    We present wide-field photometry of resolved stars in the nearby Sculptor and Fornax dwarf spheroidal galaxies, going down to the oldest Main Sequence Turn-Off. The accurately flux calibrated wide-field Colour-Magnitude Diagrams are used directly in combination with spectroscopic metallicities of

  5. The star formation and chemical evolution history of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    de Boer, T. J. L.; Tolstoy, E.; Hill, V.; Saha, A.; Olszewski, E. W.; Mateo, M.; Starkenburg, E.; Battaglia, G.; Walker, M. G.

    We present deep photometry in the B, V and I filters from CTIO/MOSAIC for about 270 000 stars in the Fornax dwarf spheroidal galaxy, out to a radius of rell ≈ 0.8 degrees. By combining the accurately calibrated photometry with the spectroscopic metallicity distributions of individual red giant

  6. The influence of austenitization temperature on the anizothermal eutectoid transformation of spheroidal cast iron

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-07-01

    Full Text Available In the work one can find the research of anizothermal eutectoid transformation of unalloyed austenitized spheroidal cast iron in thetemperature 875 or 1000oC. By means of the matallographic method one prepered TTT diagrams. On the basis of the quantitativematallographic analysis the influence of austenitization temperature on the mechanism and kinetics of the eutectoid transformation wasinterpreted.

  7. Structure of spheroidal HDL particles revealed by combined atomistic and coarse-grained simulations

    NARCIS (Netherlands)

    Catte, Andrea; Patterson, James C.; Bashtovyy, Denys; Jones, Martin K.; Gu, Feifei; Li, Ling; Rampioni, Aldo; Sengupta, Durba; Vuorela, Timo; Niemela, Perttu; Karttunen, Mikko; Marrink, Siewert Jan; Vattulainen, Ilpo; Segrest, Jere P.

    2008-01-01

    Spheroidal high-density lipoprotein (HDL) particles circulating in the blood are formed through an enzymatic process activated by apoA-1, leading to the esterification of cholesterol, which creates a hydrophobic core of cholesteryl ester molecules in the middle of the discoidal phospholipid bilayer.

  8. The DART imaging and CaT survey of the Fornax dwarf spheroidal galaxy

    NARCIS (Netherlands)

    Battaglia, G.; Tolstoy, E.; Helmi, A.; Irwin, M. J.; Letarte, B.; Jablonka, P.; Hill, V.; Venn, K. A.; Shetrone, M. D.; Arimoto, N.; Primas, F.; Kaufer, A.; Francois, P.; Szeifert, T.; Abel, T.; Sadakane, K.

    2006-01-01

    Aims. As part of the DART project we have used the ESO ESO/2.2m Wide Field Imager in conjunction with the VLT/FLAMES(star star) GIRAFFE spectrograph to study the detailed properties of the resolved stellar population of the Fornax dwarf spheroidal galaxy out to and beyond its tidal radius. Fornax

  9. Detailed Studies of the Sculptor Dwarf Spheroidal Galaxy in the Milky Way halo

    NARCIS (Netherlands)

    Tolstoy, Eline

    In and around the Milky Way halo there are a number of low mass low luminosity dwarf galaxies. Several of these systems have been studied in great detail. I describe recent photometric and spectroscopic studies of the Sculptor dwarf spheroidal galaxy made as part of the DART survey of nearby dwarf

  10. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. I. Nucleosynthesis and abundance ratios

    NARCIS (Netherlands)

    Shetrone, M; Venn, KA; Tolstoy, E; Primas, F; Hill, [No Value; Kaufer, A

    We have used the Ultraviolet Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giants in the Sculptor, Fornax, Carina, and Leo I dwarf spheroidal galaxies (dSph's). We measure the abundances of alpha-, iron peak, first s-process, second

  11. VLT/UVES abundances in four nearby dwarf spheroidal galaxies. II. Implications for understanding galaxy evolution

    NARCIS (Netherlands)

    Tolstoy, E; Venn, KA; Shetrone, M; Primas, F; Hill, [No Value; Kaufer, A; Szeifert, T

    We have used the Ultraviolet Visual-Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giant stars in the centers of four nearby dwarf spheroidal galaxies (dSph's) : Sculptor, Fornax, Carina, and Leo I. We measure the abundance variations of

  12. Adult onset leukodystrophy with neuroaxonal spheroids: Clinical, neuroimaging and neuropathologic observations

    Science.gov (United States)

    Freeman, Stefanie H.; Hyman, Bradley T.; Sims, Katherine B.; Hedley-Whyte, E. T.; Vossough, Arastoo; Frosch, Matthew P.; Schmahmann, Jeremy D.

    2009-01-01

    Pigmented orthochromatic leukodystrophy (POLD) and Hereditary diffuse leukoencephalopathy with spheroids HDLS are two adult onset leukodystrophies with neuroaxonal spheroids presenting with prominent neurobehavioral, cognitive, and motor symptoms. These are familial or sporadic disorders characterized by cerebral white matter degeneration including myelin and axonal loss, gliosis, macrophages, and axonal spheroids. We report clinical, neuroimaging and pathological correlations of four women ages 34–50 years with adult onset leukodystrophy. Their disease course ranged from 1.5–8 years. Three patients had progressive cognitive and behavioral changes whereas one had acute onset. Neuroimaging revealed white matter abnormalities characterized by symmetric, bilateral, T2 hyperintense and T1 hypointense MRI signal involving frontal lobe white matter in all patients. Extensive laboratory investigations were negative apart from abnormalities in some mitochondrial enzymes and immunologic parameters. Autopsies demonstrated severe leukodystrophy with myelin and axonal loss, axonal spheroids, and macrophages with early and severe frontal white matter involvement. The extent and degree of changes outside the frontal lobe appeared to correlate with disease duration. The prominent neurobehavioral deficits and frontal white matter disease provides clinical-pathologic support for association pathways linking distributed neural circuits subserving cognition. These observations lend further support to the notion that white matter disease alone can account for dementia. PMID:18422757

  13. A spheroidal control volume for the quantitative measurement of regurgitant flow by cardiac MRI.

    Science.gov (United States)

    Kortright, Eduardo; Rayarao, Geetha; Li, Longchuan; Anayiotos, Andreas S; Biederman, Robert W W; Doyle, Mark

    2008-01-01

    We sought to show that a spheroidally shaped control volume (CV), formed from a minimal MRI data set, can be used to measure regurgitant flow through a defective cardiac valve consistently and accurately under a variety of flow conditions. Using a pulsatile flow pump and phantoms simulating severe valvular regurgitation, we acquired 31 scans of two or three radially oriented slices, using a variety of flow waveforms and regurgitant volumes of 12 to 55 ml. Data sets included high- and low-resolution scans, and variable-rate sparse sampling was also applied to reduce the scan time. An oblate spheroid was placed in the pump chamber opposite the jet and fit as tightly as possible to isomagnitude velocity contours at 25% of the velocity encoding limit. Normalized regurgitant volumes (NRVs) expressed as a percentage of the pump setting were obtained from the product of the spheroid surface area with the velocities normal to it. Mean +/- SD NRV values were 96.8 +/- 6.6% for all scans. Imaging times in the breath-hold range were obtained using reduced resolution and variable-rate sparse sampling approaches without significant degradation in accuracy. In our preliminary findings, the spheroidal CV method showed clear potential for the development of a robust, clinically feasible technique for the measurement of regurgitant volume.

  14. Daunorubicin and doxorubicin but not BCNU have deleterious effects on organotypic multicellular spheroids of gliomas

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; de Boer, O. J.; van Amstel, P.; Bakker, P. J.; Leenstra, S.; Bosch, D. A.

    1996-01-01

    In the present study organotypic multicellular spheroids (OMS) were used to study the effects of chemotherapeutic agents on malignant gliomas. Compared with the frequently used cell line models, OMS have several advantages with respect to the preservation of the cellular heterogeneity and the

  15. Rapid Generation of In Vitro Multicellular Spheroids for the Study of Monoclonal Antibody Therapy

    Directory of Open Access Journals (Sweden)

    Yen T. Phung, Dario Barbone, V. Courtney Broaddus, Mitchell Ho

    2011-01-01

    Full Text Available Tumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates and are difficult to study in vitro. Cells cultured as monolayers typically exhibit less resistance to therapy than those grown in vivo. Therefore, it is important to develop an alternative research model that better represents in vivo tumors. We have developed a protocol to produce multicellular spheroids, a simple and more relevant model of in vivo tumors that allows for further investigations of the microenvironmental effects on drug penetration and tumor cell killing. The protocol is used to produce in vitro three-dimensional tumor spheroids from established human cancer cell lines and primary cancer cells isolated from patients without the use of any extracellular components. To study the ability of tumor-targeting immunoconjugates to penetrate these tumor spheroids in vitro, we have used an immunotoxin targeting mesothelin, a surface protein expressed in malignant mesotheliomas. This method for producing consistent, reproducible 3D spheroids may allow for improved testing of novel monoclonal antibodies and other agents for their ability to penetrate solid tumors for cancer therapy.

  16. Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up.

    Science.gov (United States)

    Chimenti, Isotta; Massai, Diana; Morbiducci, Umberto; Beltrami, Antonio Paolo; Pesce, Maurizio; Messina, Elisa

    2017-04-01

    Improved protocols/devices for in vitro culture of 3D cell spheroids may provide essential cues for proper growth and differentiation of stem/progenitor cells (S/PCs) in their niche, allowing preservation of specific features, such as multi-lineage potential and paracrine activity. Several platforms have been employed to replicate these conditions and to generate S/PC spheroids for therapeutic applications. However, they incompletely reproduce the niche environment, with partial loss of its highly regulated network, with additional hurdles in the field of cardiac biology, due to debated resident S/PCs therapeutic potential and clinical translation. In this contribution, the essential niche conditions (metabolic, geometric, mechanical) that allow S/PCs maintenance/commitment will be discussed. In particular, we will focus on both existing bioreactor-based platforms for the culture of S/PC as spheroids, and on possible criteria for the scaling-up of niche-like spheroids, which could be envisaged as promising tools for personalized cardiac regenerative medicine, as well as for high-throughput drug screening.

  17. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  18. Polyethylene/synthetic boehmite alumina nanocomposites: Structure, thermal and rheological properties

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Synthetic boehmite alumina (BA has been incorporated up to 8 wt% in low density polyethylene (LDPE and high density polyethylene (HDPE, respectively, by melt compounding. The primary nominal particle size of these two BA grades was 40 and 60 nm, respectively. The dispersion of the BA in polyethylene (PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM. The thermal (melting and crystallization, thermooxidative (oxidation induction temperature and time, and rheological behaviors of the nanocomposites were determined. It was found that BA is nanoscale dispersed in both LDPE and HDPE without any surface treatment and additional polymeric compatibilizer. BA practically did not influence the thermal (melting and crystallization and rheological properties of the parent PEs. On the other hand, BA worked as a powerful thermooxidative stabilizer for LDPE, and especially for HDPE nanocomposites.

  19. Effect of high thermal expansion glass infiltration on mechanical properties of alumina-zirconia composite

    International Nuclear Information System (INIS)

    Balakrishnan, A.; Panigrahi, B.B.; Chu, Min-Cheol; Cho, Seong-Jai; Sanosh, K.P.; Kim, T.N.

    2009-01-01

    This work studies the effect on the mechanical properties of alumina-10 wt% zirconia (3 mol % yttria stabilized) composite by infiltrating glass of a higher thermal expansion (soda lime glass) on the surface at high temperature. The glass improved the strength of composite at room temperature as well as at high temperature. This could be attributed to the drastic drop in the coefficient of thermal expansion due to the compositional change in the soda lime glass during infiltration. There was a significant improvement in the Weibull modulus after glass infiltration. Glass infiltrated samples showed better thermal shock resistance. The magnitude of strength increment was found to be in the order of the surface residual stress generated by thermo-elastic properties mismatch between the composite and the penetrated glass. (author)

  20. High-frequency characteristics of glass/ceramic composite and alumina multilayer structures

    International Nuclear Information System (INIS)

    Niwa, K.; Suzuki, H.; Yokoyama, H.; Kamechara, N.; Tsubone, K.; Tanisawa, H.; Sugiki, H.

    1990-01-01

    This paper reports the transmission characteristics of glass/ceramic composite (borosilicate glass/alumina) and alumina multilayer structures examined. The triplate stripline formed in the glass/ceramic multilayer shows low conductor and dielectric loss. Alumina multilayer, however, has twice the transmission loss at 10 GHz, because the resistivity of W in the alumina multilayer is higher than the Cu in the glass/ceramic multilayer. Crosstalk between striplines in the glass/ceramics is less than -80 dB up to 11 GHz and 9 GHz for alumina

  1. Alumina Extraction from a Pennsylvania Diaspore Clay by an Ammonium Sulfate Process

    Science.gov (United States)

    Fetterman, J. W.; Sun, Shou-Chuan

    A method is proposed for the extraction of alumina from the minerals diaspore, kaolinite and boehmite, the major alumina usinerais in Pennsylvania diaspore clay. The conditions required for optimum alumina extraction and minimum ammonium sulfate loss as determined for the alumina minerals are applied to a naturally occurring diaspore clay. The proposed flowsheet thus obtained is examined in its parts and such variables as particle size, ammonium sulfate to alumina mole ratio, roasting temperature, roasting time, heating rate, leaching cohditions, and purification methods are discussed.

  2. Simulator of Non-homogenous Alumina and Current Distribution in an Aluminum Electrolysis Cell to Predict Low-Voltage Anode Effects

    Science.gov (United States)

    Dion, Lukas; Kiss, László I.; Poncsák, Sándor; Lagacé, Charles-Luc

    2018-04-01

    Perfluorocarbons are important contributors to aluminum production greenhouse gas inventories. Tetrafluoromethane and hexafluoroethane are produced in the electrolysis process when a harmful event called anode effect occurs in the cell. This incident is strongly related to the lack of alumina and the current distribution in the cell and can be classified into two categories: high-voltage and low-voltage anode effects. The latter is hard to detect during the normal electrolysis process and, therefore, new tools are necessary to predict this event and minimize its occurrence. This paper discusses a new approach to model the alumina distribution behavior in an electrolysis cell by dividing the electrolytic bath into non-homogenous concentration zones using discrete elements. The different mechanisms related to the alumina distribution are discussed in detail. Moreover, with a detailed electrical model, it is possible to calculate the current distribution among the different anodic assemblies. With this information, the model can evaluate if low-voltage emissions are likely to be present under the simulated conditions. Using the simulator will help the understanding of the role of the alumina distribution which, in turn, will improve the cell energy consumption and stability while reducing the occurrence of high- and low-voltage anode effects.

  3. Effects of grain size and humidity on fretting wear in fine-grained alumina, Al{sub 2}O{sub 3}/TiC, and zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Krell, A. [Fraunhofer Inst. for Ceramic Technologies and Sintered Materials, Dresden (Germany); Klaffke, D. [Federal Inst. for Materials Research and Testing, Berlin (Germany)

    1996-05-01

    Friction and wear of sintered alumina with grain sizes between 0.4 and 3 {micro}m were measured in comparison with Al{sub 2}O{sub 3}/TiC composites and with tetragonal ZrO{sub 2} (3 mol% Y{sub 2}O{sub 3}). The dependence on the grain boundary toughness and residual microstresses is investigated, and a hierarchical order of influencing parameters is observed. In air, reduced alumina grain sizes improve the micromechanical stability of the grain boundaries and the hardness, and reduced wear is governed by microplastic deformation, with few pullout events. Humidity and water slightly reduce the friction of all of the investigated ceramics. In water, this effect reduces the wear of coarser alumina microstructures. The wear of aluminas and of the Al{sub 2}O{sub 3}/TiC composite is similar; it is lower than observed in zirconia, where extended surface cracking occurs at grain sizes as small as 0.3 {micro}m.

  4. Simulator of Non-homogenous Alumina and Current Distribution in an Aluminum Electrolysis Cell to Predict Low-Voltage Anode Effects

    Science.gov (United States)

    Dion, Lukas; Kiss, László I.; Poncsák, Sándor; Lagacé, Charles-Luc

    2018-01-01

    Perfluorocarbons are important contributors to aluminum production greenhouse gas inventories. Tetrafluoromethane and hexafluoroethane are produced in the electrolysis process when a harmful event called anode effect occurs in the cell. This incident is strongly related to the lack of alumina and the current distribution in the cell and can be classified into two categories: high-voltage and low-voltage anode effects. The latter is hard to detect during the normal electrolysis process and, therefore, new tools are necessary to predict this event and minimize its occurrence. This paper discusses a new approach to model the alumina distribution behavior in an electrolysis cell by dividing the electrolytic bath into non-homogenous concentration zones using discrete elements. The different mechanisms related to the alumina distribution are discussed in detail. Moreover, with a detailed electrical model, it is possible to calculate the current distribution among the different anodic assemblies. With this information, the model can evaluate if low-voltage emissions are likely to be present under the simulated conditions. Using the simulator will help the understanding of the role of the alumina distribution which, in turn, will improve the cell energy consumption and stability while reducing the occurrence of high- and low-voltage anode effects.

  5. Comparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C

    Directory of Open Access Journals (Sweden)

    Farzad Sadeghi-Tohidi

    2014-01-01

    Full Text Available The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH while they are one order of magnitude larger for alumina compared to titania at 80 °C, 90% RH. The improved fatigue performance is believed to be related to the improved stability of the ALD titania coating with water compared to ALD alumina, which may in part be related to the fact that ALD titania is crystalline, while ALD alumina is amorphous. Static fatigue crack nucleation and propagation was not observed. The underlying fatigue mechanism is different from previously documented mechanisms, such as stress corrosion cracking, and appears to result from the presence of compressive stresses and a rough coating–substrate interface.

  6. Heat-Resistant SiO2-Al2O3-TiO2 Ceramics with Nanostructured Alumina Filler and Their Properties

    Science.gov (United States)

    Ulyanova, T. M.; Krutko, N. P.; Vitiaz, P. A.; Ovseenko, L. V.; Titova, L. V.

    This chapter deals with preparation processes of SiO2-Al2O3-TiO2 composite materials doped by nanostructured fibrous powders γ- and α-Al 2O3. Physical and chemical interaction of active nanostructured fillers γ-and α-Al2O3 with a ceramic matrix of SiO2-Al2O3-TiO2 was investigated. Introduction of nanostructured fibrous powders γ- and α-alumina initiated solid-phase reactions—formation of mullite and tialite when heating in the field of temperatures in the range of 1350-1500 °C. The formed acicular crystals of mullite served as the centers of energy dissipation and strengthened a composite. The compounds of alumina titanate reduced the value of linear expansion thermal coefficient of composite material and increased its thermal stability. It has been shown that alumina nanostructured fillers changed structure and improved the properties of silica-alumina-titania composite materials.

  7. Studying alumina boundary migration using combined microscopy techniques

    International Nuclear Information System (INIS)

    Riesterer, J L; Farrer, J K; Munoz, N E; Gilliss, S R; Ravishankar, N; Carter, C B

    2006-01-01

    Thermal grooving and migration of grain boundaries in alumina have been investigated using a variety of microscopy techniques. Using two different methods, polycrystalline alumina was used to investigate wet (implying the presence of a glassy phase), and dry grain boundaries. In the first, single-crystal Al 2 O 3 was hot-pressed via liquid phase sintering (LPS) to polycrystalline alumina with an anorthite glass film at the interface. Pulsed laser deposition was used to deposit approximately 100-nm thick glass films. Specimens were annealed in air at 1650 deg. C for 20 h to induce boundary migration. Boundary characterization was carried out using visible light (VLM) and scanning electron (SEM) microscopies. Effects on migration due to surface orientation of grains were investigated using electron backscatter diffraction (EBSD). The second method dealt with heat treating dry boundaries in polycrystalline alumina to monitor boundary migration behavior via remnant thermal grooves. Heat treatments were conducted at 1650 deg. C for 30 min. The same region of the sample was mapped using VLM and atomic force microscopy (AFM) and followed over a series of 30 min heat treatments. Boundary migration through a pore trapped inside the grain matrix was of particular interest

  8. Studying alumina boundary migration using combined microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Riesterer, J L [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States); Farrer, J K [Now at Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Munoz, N E [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States); Gilliss, S R [Now at Robins, Kaplan, Miller and Ciresi, L.L.P., Minneapolis, MN 55402 (United States); Ravishankar, N [Now at Materials Research Centre, Indian Institute of Science, Bangalore, 560 012 (India); Carter, C B [Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave, SE., Minneapolis, MN 55455 (United States)

    2006-02-22

    Thermal grooving and migration of grain boundaries in alumina have been investigated using a variety of microscopy techniques. Using two different methods, polycrystalline alumina was used to investigate wet (implying the presence of a glassy phase), and dry grain boundaries. In the first, single-crystal Al{sub 2}O{sub 3} was hot-pressed via liquid phase sintering (LPS) to polycrystalline alumina with an anorthite glass film at the interface. Pulsed laser deposition was used to deposit approximately 100-nm thick glass films. Specimens were annealed in air at 1650 deg. C for 20 h to induce boundary migration. Boundary characterization was carried out using visible light (VLM) and scanning electron (SEM) microscopies. Effects on migration due to surface orientation of grains were investigated using electron backscatter diffraction (EBSD). The second method dealt with heat treating dry boundaries in polycrystalline alumina to monitor boundary migration behavior via remnant thermal grooves. Heat treatments were conducted at 1650 deg. C for 30 min. The same region of the sample was mapped using VLM and atomic force microscopy (AFM) and followed over a series of 30 min heat treatments. Boundary migration through a pore trapped inside the grain matrix was of particular interest.

  9. Exchange of alkanes with deuterium over γ-alumina

    International Nuclear Information System (INIS)

    John, C.S.; Kemball, C.; Pearce, E.A.; Pearman, A.J.

    1979-01-01

    Exchange reactions of hydrocarbons with deuterium over γ-alumina have been extensively studied but less attention has been directed to the effect of catalyst activation temperature. It has been shown that activity for propane/D 2 exchange passes through a sharp maximum at approximately 823 K and similar behaviour has been shown for the various exchange processes of propene. In this work, the first objective was to examine the effect of varying catalyst activation temperature, Tsub(a), on the subsequent activity of γ-alumina for the exchange of cyclopentane with D 2 ; the effect of chloriding the alumina was also studied. The second objective was to study the influence on the activity for cyclopentane/D 2 exchange of pretreating the catalyst with alkene at various temperatures to determine whether poisoning occurred. The literature indicates that for alkene exchange with deuterium on alumina reaction occurs preferentially for the vinyl hydrogen atoms as opposed to the hydrogen atoms attached to saturated carbon atoms. On this evidence one might expect the presence of alkene to interfere with the exchange of alkanes and indeed there is work which reports that alkene poisons both CH 4 /D 2 and H 2 /D 2 exchange. Finally, the effect of chain-length on the relative rates of methylene and methyl exchange in straight-chain hydrocarbons was examined to follow up previous work on propane and butane. The results are presented and discussed. (author)

  10. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Macroporous silica–alumina composites with mesopores have been prepared by employing polymethylmethacrylate beads as templates in the presence of the cationic surfactant, N-cetyl-N,N,N-trimethylammonium bromide. The Si/Al ratio in the composites has been varied between 4.5 and 48 and the occurrence of ...

  11. Grafting of alumina on SBA-15: Effect of surface roughness

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Šiklová, Helena; Čejka, Jiří

    2008-01-01

    Roč. 24, č. 17 (2008), s. 9837-9842 ISSN 0743-7463 R&D Projects: GA AV ČR KAN100400701 Institutional research plan: CEZ:AV0Z40400503 Keywords : alumina-grafted materials * SBA-15 * Nitrogen adsorption Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.097, year: 2008

  12. Significance of structure–property relationship in alumina based ...

    Indian Academy of Sciences (India)

    Unknown

    plimented by drastic reduction in failure and quality pro- blems experienced by insulator manufacturers (Lieberman). However, even alumina insulators manufactured (for use in 25 kV railway traction lines) under stringent ..... early showed plastic deformation and large cracks in and around the indents. Figure 7c shows the ...

  13. Controlled growth of single nanowires within a supported alumina template

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Faniel, S.

    2006-01-01

    A simple technique for fabricating single nanowires with well-defined position is presented. The process implies the use of a silicon nitride mask for selective electrochemical growth of the nanowires in a porous alumina template. We show that this method allows the realization of complex nanowire...

  14. Macroporous silica–alumina composites with mesoporous walls

    Indian Academy of Sciences (India)

    Unknown

    surfactant N-cetyl-N,N,N-trimethylammonium bromide. (CTAB). We describe the macroporous–mesoporous silica– alumina composites with satisfactory/high surface areas. 2. Experimental. Polymethylmethacrylate (PMMA) spheres of diameter. 275 nm were obtained from Soken Chemicals, Japan. These were taken as 1% ...

  15. Encapsulation of proteins into tunable and giant mesocage alumina.

    Science.gov (United States)

    El-Safty, Sherif A; Shenashen, Mohamed A; Ismael, Moahmed; Khairy, Mohamed

    2012-07-07

    Protein bioadsorption has rapidly attracted attention partially because of the promising advances in diagnostic assays, sensors, separations, and gene technology. Tunable and giant mesocage alumina cavities (5 nm to 20 nm) show capability in size-selective encapsulation and diffusivity of large proteins into interior pores.

  16. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    1CSIR–Central Glass & Ceramic Research Institute, Kolkata 700032, India. 2Department of Chemistry, National ... knee implants, etc.), since the coefficient of friction (COF) of diamond is lower than alumina. In this tribological ... Adhesion, friction and wear are the main factors of tribology of contacting or sliding interfaces.

  17. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 µm and. 25 µm, and a sintered silicon ... the sintered silicon carbide was found out to be linked to its previous thermal history. Keywords. Indentation fatigue .... This presence of a grain size effect in the RIF behaviour of the ...

  18. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    In view of potential applications in neutron-sensitive ion chambers used in reactor control instru- mentation, studies were carried out on alumina 100 μ to 500 μ thick coatings on copper, aluminium and SS components. The electrical insulation varied from 10 ohms to 10. 骄 ohms for coating thick- nesses above 200 μ.

  19. Effect of alumina coating and extrusion deformation on ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... (a) TGA–DSC curves of as-received SCF, SCF preform and alumina-coated SCF preforms and (b) XRD .... In order to determine the presence of the reaction product, the composites were fur- ther examined by XRD with a much lower scan speed of. 0.25. ◦ min .... than being parallel to the observing plane.

  20. Alumina and Zirconia Based Layered Composites:Part 1 Preparation

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Maca, K.; Chlup, Zdeněk

    2009-01-01

    Roč. 412, - (2009), s. 221-226 ISSN 1013-9826 R&D Projects: GA ČR(CZ) GA106/06/0724 Institutional research plan: CEZ:AV0Z20410507 Keywords : electrophoretic deposition * alumina * zirconia Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  1. Effect of chemical composition and alumina content on structure and ...

    Indian Academy of Sciences (India)

    Abstract. In the present work, six electrical porcelain compositions with different amount of alumina and silica have been prepared and fired in an industrial furnace at 1300 ◦C. Density, porosity, bending strength and electrical strength were measured in the samples. In order to find a relationship between properties and ...

  2. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte ...

  3. Plasma Processes: Plasma sprayed alumina coatings for radiation ...

    Indian Academy of Sciences (India)

    Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our Research ...

  4. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  5. Microwave-assisted brazing of alumina ceramics for electron tube ...

    Indian Academy of Sciences (India)

    2, April 2016, pp. 587–591. c Indian Academy of Sciences. Microwave-assisted brazing of alumina ceramics for electron tube applications. MAYUR SHUKLA1,2 ... 1Academy of Scientific and Innovative Research (AcSIR), CSIR—-Central Glass and Ceramic Research Institute, ... element is the most popular method [2].

  6. Plasmonic properties of gold-coated nanoporous anodic alumina ...

    Indian Academy of Sciences (India)

    Abstract. Anodization of aluminium surfaces containing linearly oriented scratches leads to the formation of nanoporous anodic alumina (NAA) with the nanopores arranged preferentially along the scratch marks. NAA, when coated with a thin gold film, support plasmonic resonances. Dark-field spectroscopy revealed that ...

  7. State of the art: alumina ceramics for energy applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1978-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development

  8. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Abstract. Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our ...

  9. Optimization of nanocrystalline γ-alumina coating for direct spray ...

    Indian Academy of Sciences (India)

    7, December 2014, pp. 1583–1588. c Indian Academy of Sciences. Optimization of nanocrystalline γ-alumina coating for direct spray water-cooling of optical devices. S N ALAM1,2,∗. , M ANARAKY3, Z SHAFEIZADEH3 and P J PARBROOK1. 1Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, ...

  10. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    In compounded zeolite catalyst it serves as the active matrix which aids the conversion of the bulkiest molecules in the feed owing to its larger pore size than zeolite. Large specific surface area gamma-alumina (γ-Al2O3) was synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment ...

  11. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara

    2014-02-27

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  12. Obtaining alumina-mullite-zirconia composites using alternative raw materials; Avaliacao microestrural de compositos alumina-mulita-zirconia preparados a partir de bauxita como fonte alternativa de alumina

    Energy Technology Data Exchange (ETDEWEB)

    Nakachima, P.M., E-mail: peter.nakachima@curimbaba.com.br [Mineracao Curimbaba Ltda, Pocos de Caldas, MG (Brazil); Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Rodrigues, J.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    Traditionally, ceramic composites of alumina-mullite-zirconia are obtained by the sintering of a mixture of alumina and zircon powders at temperatures above 1570°C. Due to the high purity of these raw materials, the cost of this composite is relatively high and sometimes prohibitive for certain applications. This fact motivated the development of a composite using zircon and bauxite (as an alternative source of alumina). The work herein demonstrates the feasibility of using these raw materials to obtain the desired phases, together with other contaminant phases due to the presence of other oxides in the bauxite, in addition to the SiO{sub 2} and Al{sub 2}O{sub 3}. However, the procedure used was not successful on obtaining the desired amount of ZrO{sub 2}, since the dissociation of the zircon was not complete. Composites were chemically and mineralogically characterized using the X-ray fluorescence and the Rietveld method with X-ray diffraction data, respectively, besides the scanning electron microscopy for the microstructure evaluation. (author)

  13. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  14. HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain; Powell, Leila C.; Duc, Pierre-Alain; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Contini, Thierry; Epinat, Benoit; Shapiro, Kristen L.

    2011-01-01

    Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the interstellar medium as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.

  15. Differentiation and selection of hepatocyte precursors in suspension spheroid culture of transgenic murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Elke Gabriel

    Full Text Available Embryonic stem cell-derived hepatocyte precursor cells represent a promising model for clinical transplantations to diseased livers, as well as for establishment of in vitro systems for drug metabolism and toxicology investigations. This study aimed to establish an in vitro culture system for scalable generation of hepatic progenitor cells. We used stable transgenic clones of murine embryonic stem cells possessing a reporter/selection vector, in which the enhanced green fluorescent protein- and puromycin N-acetyltransferase-coding genes are driven by a common alpha-fetoprotein gene promoter. This allowed for "live" monitoring and puromycin selection of the desired differentiating cell type possessing the activated alpha-fetoprotein gene. A rotary culture system was established, sequentially yielding initially partially selected hepatocyte lineage-committed cells, and finally, a highly purified cell population maintained as a dynamic suspension spheroid culture, which progressively developed the hepatic gene expression phenotype. The latter was confirmed by quantitative RT-PCR analysis, which showed a progressive up-regulation of hepatic genes during spheroid culture, indicating development of a mixed hepatocyte precursor-/fetal hepatocyte-like cell population. Adherent spheroids gave rise to advanced differentiated hepatocyte-like cells expressing hepatic proteins such as albumin, alpha-1-antitrypsin, cytokeratin 18, E-cadherin, and liver-specific organic anion transporter 1, as demonstrated by fluorescent immunostaining. A fraction of adherent cells was capable of glycogen storage and of reversible up-take of indocyanine green, demonstrating their hepatocyte-like functionality. Moreover, after transplantation of spheroids into the mouse liver, the spheroid-derived cells integrated into recipient. These results demonstrate that large-scale hepatocyte precursor-/hepatocyte-like cultures can be established for use in clinical trials, as well as in

  16. Emerging tumor spheroids technologies for 3D in vitro cancer modeling.

    Science.gov (United States)

    Rodrigues, Tânia; Kundu, Banani; Silva-Correia, Joana; Kundu, S C; Oliveira, Joaquim M; Reis, Rui L; Correlo, Vitor M

    2018-04-01

    Cancer is a leading cause of mortality and morbidity worldwide. Around 90% of deaths are caused by metastasis and just 10% by primary tumor. The advancement of treatment approaches is not at the same rhythm of the disease; making cancer a focal target of biomedical research. To enhance the understanding and prompts the therapeutic delivery; concepts of tissue engineering are applied in the development of in vitro models that can bridge between 2D cell culture and animal models, mimicking tissue microenvironment. Tumor spheroid represents highly suitable 3D organoid-like framework elucidating the intra and inter cellular signaling of cancer, like that formed in physiological niche. However, spheroids are of limited value in studying critical biological phenomenon such as tumor-stroma interactions involving extra cellular matrix or immune system. Therefore, a compelling need of tailoring spheroid technologies with physiologically relevant biomaterials or in silico models, is ever emerging. The diagnostic and prognostic role of spheroids rearrangements within biomaterials or microfluidic channel is indicative of patient management; particularly for the decision of targeted therapy. Fragmented information on available in vitro spheroid models and lack of critical analysis on transformation aspects of these strategies; pushes the urge to comprehensively overview the recent technological advancements (e.g. bioprinting, micro-fluidic technologies or use of biomaterials to attain the third dimension) in the shed of translationable cancer research. In present article, relationships between current models and their possible exploitation in clinical success is explored with the highlight of existing challenges in defining therapeutic targets and screening of drug efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Two-Photon Microscopy Analysis of Gold Nanoparticle Uptake in 3D Cell Spheroids.

    Directory of Open Access Journals (Sweden)

    Tushar D Rane

    Full Text Available Nanomaterials can be synthesized from a wide range of material systems in numerous morphologies, creating an extremely diverse portfolio. As result of this tunability, these materials are emerging as a new class of nanotherapeutics and imaging agents. One particularly interesting nanomaterial is the gold nanoparticle. Due to its inherent biocompatibility and tunable photothermal behavior, it has made a rapid transition from the lab setting to in vivo testing. In most nanotherapeutic applications, the efficacy of the agent is directly related to the target of interest. However, the optimization of the AuNP size and shape for efficacy in vitro, prior to testing in in vivo models of a disease, has been largely limited to two dimensional monolayers of cells. Two dimensional cell cultures are unable to reproduce conditions experienced by AuNP in the body. In this article, we systematically investigate the effect of different properties of AuNP on the penetration depth into 3D cell spheroids using two-photon microscopy. The 3D spheroids are formed from the HCT116 cell line, a colorectal carcinoma cell line. In addition to studying different sizes and shapes of AuNPs, we also study the effect of an oligo surface chemistry. There is a significant difference between AuNP uptake profiles in the 2D monolayers of cells as compared to the 3D cell spheroids. Additionally, the range of sizes and shapes studied here also exhibit marked differences in uptake penetration depth and efficacy. Finally, our results demonstrate that two-photon microscopy enables quantitative AuNP localization and concentration data to be obtained at the single spheroid level without fluorescent labeling of the AuNP, thus, providing a viable technique for large scale screening of AuNP properties in 3D cell spheroids as compared to tedious and time consuming techniques like electron microscopy.

  18. Application of various types of alumina and nano--alumina sulfuric acid in the synthesis of α-aminonitriles derivatives: comparative study

    Directory of Open Access Journals (Sweden)

    A. Teimouri

    2014-09-01

    Full Text Available An efficient and green protocol for the synthesis of α-aminonitrile derivatives by one-pot reaction of different aldehydes with amines and trimethylsilyl cyanide has been developed using natural alumina, alumina sulfuric acid (ASA, nano-g-alumina, nano-g-alumina sulfuric acid (nano-g-ASA under microwave irradiation and solvent-free conditions. The advantages of methods are short reaction times, high yields, milder conditions and easy work up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency. DOI: http://dx.doi.org/10.4314/bcse.v28i3.13

  19. Surface hydrophobicity and acidity effect on alumina catalyst in catalytic methanol dehydration reaction.

    Science.gov (United States)

    Osman, Ahmed I; Abu-Dahrieh, Jehad K; Rooney, David W; Thompson, Jillian; Halawy, Samih A; Mohamed, Mohamed A

    2017-12-01

    Methanol to dimethyl ether (MTD) is considered one of the main routes for the production of clean bio-fuel. The effect of copper loading on the catalytic performance of different phases of alumina that formed by calcination at two different temperatures was examined for the dehydration of methanol to dimethyl ether (DME). A range of Cu loadings of (1, 2, 4, 6, 10 and 15% Cu wt/wt) on Al 2 O 3 calcined at 350 and 550 °C were prepared and characterized by TGA, XRD, BET, NH 3 -TPD, TEM, H 2 -TPR, SEM, EDX, XPS and DRIFT-Pyridine techniques. The prepared catalysts were used in a fixed bed reactor under reaction conditions in which the temperature ranged from 180-300 °C with weight hourly space velocity (WHSV) = 12.1 h -1 . It was observed that all catalysts calcined at 550 °C (γ-Al 2 O 3 support phase) exhibited higher activity than those calcined at 350 °C (γ-AlOOH), and this is due to the phase support change. Furthermore, the optimum Cu loading was found to be 6% Cu/γ-Al 2 O 3 with this catalyst also showing a high degree of stability under steady state conditions and this is attributed to the enhancement in surface acidity and hydrophobicity. The addition of copper to the support improved the catalyst properties and activity. For all the copper modified catalysts, the optimum catalyst with high degree of activity and stability was 6% copper loaded on gamma alumina. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  20. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, Shunta; Kikuchi, Tatsuya, E-mail: kiku@eng.hokudai.ac.jp; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Highlights: • Anodic porous alumina was formed in an arsenic acid solution. • Potential difference (voltage) anodizing at 340 V was achieved. • The porous alumina was slightly ordered under the appropriate conditions. • Pore sealing behavior was not observed in boiling distilled water. • The porous alumina exhibits a white photoluminescence emission under UV irradiation. - Abstract: Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1–0.5 M arsenic acid solutions at 310–340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  1. A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)

    Energy Technology Data Exchange (ETDEWEB)

    Anil Virkar

    2008-03-31

    This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, Na

  2. Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis.

    Science.gov (United States)

    Henry, Eric; Cores, Jhon; Hensley, M Taylor; Anthony, Shirena; Vandergriff, Adam; de Andrade, James B M; Allen, Tyler; Caranasos, Thomas G; Lobo, Leonard J; Cheng, Ke

    2015-11-01

    Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis. ©AlphaMed Press.

  3. Continuous long-term cytotoxicity monitoring in 3D spheroids of beetle luciferase-expressing hepatocytes by nondestructive bioluminescence measurement.

    Science.gov (United States)

    Yasunaga, Mayu; Fujita, Yasuko; Saito, Rumiko; Oshimura, Mitsuo; Nakajima, Yoshihiro

    2017-06-20

    Three-dimensional (3D) spheroids are frequently used in toxicological study because their morphology and function closely resemble those of tissue. As these properties are maintained over a long term, repeated treatment of the spheroids with a test object is possible. Generally, in the repeated treatment test to assess cytotoxicity in the spheroids, ATP assay, colorimetric measurement using pigments or high-content imaging analysis is performed. However, continuous assessment of cytotoxicity in the same spheroids using the above assays or analysis is impossible because the spheroids must be disrupted or killed. To overcome this technical limitation, we constructed a simple monitoring system in which cytotoxicity in the spheroids can be continuously monitored by nondestructive bioluminescence measurement. Mouse primary hepatocytes were isolated from transchromosomic (Tc) mice harboring a mouse artificial chromosome (MAC) vector expressing beetle luciferase Emerald Luc (ELuc) under the control of cytomegalovirus immediate early enhancer/chicken β-actin promoter/rabbit β-globin intron II (CAG) promoter, and used in 3D cultures. We confirmed that both luminescence and albumin secretion from the spheroids seeded in the 96-well format Cell-able TM were maintained for approximately 1 month. Finally, we repetitively treated the luminescent 3D spheroids with representative hepatotoxicants for approximately 1 month, and continuously and nondestructively measured bioluminescence every day. We successfully obtained daily changes of the dose-response bioluminescence curves for the respective toxicants. In this study, we constructed a monitoring system in which cytotoxicity in the same 3D spheroids was continuously and sensitively monitored over a long term. Because this system can be easily applied to other cells, such as human primary cells or stem cells, it is expected to serve as the preferred platform for simple and cost-effective long-term monitoring of cellular events

  4. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    Science.gov (United States)

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  5. Synthesis and structural evaluation of freeze-cast porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Douglas F., E-mail: souzadf@outlook.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Pimenta, Daiana S.; Vasconcelos, Daniela C.L. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nascimento, Jailton F.; Grava, Wilson [Petrobras/CENPES, Avenida Horácio Macedo 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ CEP:21941-915 (Brazil); Houmard, Manuel [Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 1, sala 3304 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil)

    2014-10-15

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observed that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.

  6. Study on the bound water of several high specific surface-area oxides (beryllia, alumina, silica-alumina)

    International Nuclear Information System (INIS)

    Rouquerol, J.

    1964-11-01

    This study is concerned with the bound water of several oxides (beryllia, alumina, silica-alumina) at different steps of their dehydration (heating temperatures between 150 and 1100 deg. C). The following techniques have been used simultaneously: Thermal analysis (a new method has been developed), nitrogen adsorption (study of the texture), Diborane hydrolysis (qualitative and quantitative analysis of surface water), Infra-red spectrography (in the absorption range of water), Nuclear magnetic resonance (in the resonance range of protons). Thanks to these different techniques, five kinds of bound water have been observed. Attention is called on the great influence of the thermal treatment conditions on the evolution of the products resulting from the decomposition of alumina α-trihydrate Al(OH) 3 and beryllium α-hydroxide, in the course of the dehydration. Moreover, the author emphasizes the peculiar properties of the two kinds of oxides (alumina and beryllia) prepared through a new method of treatment under low pressure and constant speed of decomposition. Such particular features concern mainly texture, bound water, and consequently, also catalytic activity. (author) [fr

  7. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  8. Estudo da conformação de substratos cerâmicos por laminação a partir de suspensões concentradas de alumina Rolling study of ceramic substrates from concentrate alumina suspensions

    Directory of Open Access Journals (Sweden)

    L. F. G. Setz

    2011-12-01

    Full Text Available A produção de substratos cerâmicos por laminação, ou conformação viscoplástica, é interessante, pois minimiza problemas inerentes ao processamento como a aglomeração dos pós. Quando a preparação das massas a serem conformadas por esta técnica é realizada a partir de suspensões estáveis, estes problemas quase inexistem, possibilitando a obtenção de produtos íntegros com microestrutura homogênea. Neste trabalho é apresentado o comportamento reológico das suspensões concentradas e das massas de alumina contendo diferentes teores do espessante/plastificante hidroxipropil metilcelulose (HPMC e também o estudo das variáveis de processo envolvidas na conformação por calandragem. Como resultado deste estudo foi possível obter substratos de alumina calandrados densos, utilizando-se uma suspensão concentrada (60% vol., estabilizada com 0,02% de Viscocrete 20HE e com adição de 1,5%m. de HPMC.The ceramic substrates production by calendering, or viscous plastic processing, is interesting because inherent problems as a powder agglomeration is minimized. When the ceramic pastes shaping for this technique are produced from stabilized suspensions these problems almost inexist. This work presents the concentrate suspensions and pastes with different hydroxypropyl methyl cellulose (HPMC thickener content rheological behaviors. The variables involved in calendering shaping were studied, too. The production of dense alumina substrates shaped by calendaring from concentrate suspensions (60 vol.%, stabilized with 0.02 wt.% Viscocrete 20HE and 1.5 wt.% HPMC is possible.

  9. Imobilização da pancreatina em carvão ativado e em alumina para o preparo de hidrolisados de soro de leite = Immobilization of pancreatin in activated carbon and in alumina for preparing whey hydrolysates

    Directory of Open Access Journals (Sweden)

    Viviane Dias Medeiros Silva

    2005-07-01

    Full Text Available Tendo como objetivo a redução de custos do processo de fabricação dehidrolisados protéicos, estudou-se neste trabalho a imobilização da pancreatina, por adsorção, em carvão ativado e em alumina. Para isso, foram testadas diferentes condições de imobilização (30, 60 e 90min a 25°C, e 12h a 5°C. Para verificar a taxa de imobilização, determinou-se indiretamente a enzima não adsorvida nos suportes. Ao se utilizar o carvão ativado, não foi observada diferença significativa entre as condições testadas, tendo-se obtido 100% de imobilização enzimática. Para a alumina, a melhor condição foi a de 90min, na qual se obteve 37% de imobilização. A medida do grau de exposição da fenilalanina, pela espectrofotometria derivada segunda, foi empregada para a determinação da estabilidade operacional da enzima, tendo sido mostrado que a imobilização em carvão ativado e emalumina permitiu a reutilização da pancreatina por até 5 vezes e 2 vezes, respectivamente.Immobilization of pancreatin in activated carbon and in alumina was studied for producing protein hydrolysates, in order to reduce the process costs. Different immobilization conditions were tested (30, 60 and 90min at 25°C, and 12h at 5°C. For estimating the immobilization rate the amount of the non-adsorbed enzyme on the supports was indirectly determined. When activated carbon was used, no significant difference was observed among the tested conditions, obtaining 100% of enzymatic immobilization. In case of alumina, the best condition showed to be the 90min treatment which produced 37% of immobilization. The evaluation of the degree of exposition ofphenylalanine, by second derivative spectrophotometry, was used for the determination of the enzyme operational stability, and showed that the immobilization in activated carbon and in alumina allowed the reusability of the pancreatin for 5 times and 2 times,respectively.

  10. Characterization of metallized alumina: properties. [Diamonite P-3142-1, Wesgo Al-500 alumina ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Swearengen, J.C.; Burchett, O.L., Gieske, J.H.

    1976-12-01

    The effects of metallizing and brazing on the mechanical properties of Diamonite P-3142-1 and Wesgo A1-500 alumina ceramics were evaluated. The information was required for analytical prediction of the performance of ceramic-to-metal joints formed by the metallize-braze process. Residual stresses and fracture strengths were monitored before and after metallizing treatments; micromechanical modelling and surface acoustic wave experiments were utilized to determine density, thermal expansion and elastic moduli within the metallized region of the ceramics. It was observed that the metallizing elements penetrate the ceramics to a depth of about 005 ..mu..m and measurably modify the properties to a depth of about 300 ..mu..m. The moduli and density are increased approximately five percent within the penetration zone. The thermal expansion coefficients are not modified significantly by metallizing; the warping which occurs during metallizing results from microstructural changes within the ceramics and not differential thermal contraction. Fracture toughness of the Diamonite ceramic is greater than that of the Wesgo, although the metallizing treatments increase the toughness of each. Fracture strength of the Diamonite was degraded on the metallized surface, whereas the strength of the Wesgo was essentially unchanged by metallizing. Macroscopic compressive residual stresses, which exist at the surfaces of the ceramics, do not significantly affect the fracture strengths. The implications of these results for calculations of joint performance are discussed.

  11. From Coating to Dopant: How the Transition Metal Composition Affects Alumina Coatings on Ni-Rich Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Binghong [Chemical; Key, Baris [Chemical; Lapidus, Saul H. [Chemical; Garcia, Juan C. [Chemical; Iddir, Hakim [Chemical; Vaughey, John T. [Chemical; Dogan, Fulya [Chemical

    2017-11-14

    Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this paper, we systematically studied the effect of the composition of Ni-rich LiNixMnyCo1–x–yO2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi0.5Mn0.3Co0.2O2 (NMC532) to LiNi0.6Mn0.2Co0.2O2 (NMC622) and LiNi0.8Mn0.1Co0.1O2 (NMC811) was found to facilitate the diffusion of surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials. These results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.

  12. Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids

    Directory of Open Access Journals (Sweden)

    Tetu Bernard

    2008-02-01

    Full Text Available Abstract Background Chemotherapy (CT resistance in ovarian cancer (OC is broad and encompasses diverse unrelated drugs, suggesting more than one mechanism of resistance. To better understand the molecular mechanisms controlling the immediate response of OC cells to CT exposure, we have performed gene expression profiling in spheroid cultures derived from six OC cell lines (OVCAR3, SKOV3, TOV-112, TOV-21, OV-90 and TOV-155, following treatment with 10,0 μM cisplatin, 2,5 μM paclitaxel or 5,0 μM topotecan for 72 hours. Results Exposure of OC spheroids to these CT drugs resulted in differential expression of genes associated with cell growth and proliferation, cellular assembly and organization, cell death, cell cycle control and cell signaling. Genes, functionally involved in DNA repair, DNA replication and cell cycle arrest were mostly overexpressed, while genes implicated in metabolism (especially lipid metabolism, signal transduction, immune and inflammatory response, transport, transcription regulation and protein biosynthesis, were commonly suppressed following all treatments. Cisplatin and topotecan treatments triggered similar alterations in gene and pathway expression patterns, while paclitaxel action was mainly associated with induction of genes and pathways linked to cellular assembly and organization (including numerous tubulin genes, cell death and protein synthesis. The microarray data were further confirmed by pathway and network analyses. Conclusion Most alterations in gene expression were directly related to mechanisms of the cytotoxics actions in OC spheroids. However, the induction of genes linked to mechanisms of DNA replication and repair in cisplatin- and topotecan-treated OC spheroids could be associated with immediate adaptive response to treatment. Similarly, overexpression of different tubulin genes upon exposure to paclitaxel could represent an early compensatory effect to this drug action. Finally, multicellular

  13. Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids.

    Science.gov (United States)

    L'Espérance, Sylvain; Bachvarova, Magdalena; Tetu, Bernard; Mes-Masson, Anne-Marie; Bachvarov, Dimcho

    2008-02-26

    Chemotherapy (CT) resistance in ovarian cancer (OC) is broad and encompasses diverse unrelated drugs, suggesting more than one mechanism of resistance. To better understand the molecular mechanisms controlling the immediate response of OC cells to CT exposure, we have performed gene expression profiling in spheroid cultures derived from six OC cell lines (OVCAR3, SKOV3, TOV-112, TOV-21, OV-90 and TOV-155), following treatment with 10,0 microM cisplatin, 2,5 microM paclitaxel or 5,0 microM topotecan for 72 hours. Exposure of OC spheroids to these CT drugs resulted in differential expression of genes associated with cell growth and proliferation, cellular assembly and organization, cell death, cell cycle control and cell signaling. Genes, functionally involved in DNA repair, DNA replication and cell cycle arrest were mostly overexpressed, while genes implicated in metabolism (especially lipid metabolism), signal transduction, immune and inflammatory response, transport, transcription regulation and protein biosynthesis, were commonly suppressed following all treatments. Cisplatin and topotecan treatments triggered similar alterations in gene and pathway expression patterns, while paclitaxel action was mainly associated with induction of genes and pathways linked to cellular assembly and organization (including numerous tubulin genes), cell death and protein synthesis. The microarray data were further confirmed by pathway and network analyses. Most alterations in gene expression were directly related to mechanisms of the cytotoxics actions in OC spheroids. However, the induction of genes linked to mechanisms of DNA replication and repair in cisplatin- and topotecan-treated OC spheroids could be associated with immediate adaptive response to treatment. Similarly, overexpression of different tubulin genes upon exposure to paclitaxel could represent an early compensatory effect to this drug action. Finally, multicellular growth conditions that are known to alter gene

  14. Study of the effect of vitamins C and E on the radiation response of multicell spheroids treated with Adriamycin

    International Nuclear Information System (INIS)

    Sridhar, R.; Stroude, E.; Inch, W.R.

    1979-01-01

    Treatment with Adriamycin (0.6 μg/ml for 60 min) was not cytotoxic to multicell spheroids. At this concentration, the drug was not a sensitizer of hypoxic cells in V79 multicell spheroids, which were irradiated at 37 0 C in medium equilibrated with a mixture of 5% O 2 :3% CO 2 :92% N 2 . The addition of vitamins C and E did not increase the radiation sensitivity of Adriamycin-treated spheroids. In some experiments, catalase was included in the growth medium to overcome the toxic effect of hydrogen peroxide, which is known to be formed in solutions containing vitamin C and also in Adriamycin solutions treated with vitamin C or microsomal preparations. As a result of these experiments, it was found that catalase increased the radiation killing in multicell spheroids

  15. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine

    DEFF Research Database (Denmark)

    Jeppesen, Maria; Hagel, Grith; Glenthoj, Anders

    2017-01-01

    Chemotherapy treatment of cancer remains a challenge due to the molecular and functional heterogeneity displayed by tumours originating from the same cell type. The pronounced heterogeneity makes it difficult for oncologists to devise an effective therapeutic strategy for the patient. One approach...... for increasing treatment efficacy is to test the chemosensitivity of cancer cells obtained from the patient's tumour. 3D culture represents a promising method for modelling patient tumours in vitro. The aim of this study was therefore to evaluate how closely short-term spheroid cultures of primary colorectal...... cancer cells resemble the original tumour. Colorectal cancer cells were isolated from human tumour tissue and cultured as spheroids. Spheroid cultures were established with a high success rate and remained viable for at least 10 days. The spheroids exhibited significant growth over a period of 7 days...

  16. High-Throughput Platform for Patient-Derived, Small Cell Number, Three-Dimensional Ovarian Cancer Spheroids

    Science.gov (United States)

    2014-09-01

    mimicry of the physiological barriers to drug toxicity and delivery in vivo, spheroid can serve as an improved assay format for testing these. 2) Being...to OvCa cells. D) Optimized several nutrient compositions that could eliminate the need for animal -derived serum while promoting the formation and...nutrient compositions that could eliminate the need for animal -derived serum while promoting the formation and growth of spheroids from patient ascites

  17. Study of preparation and surface morphology of self-ordered nanoporous alumina; Estudo da preparacao e da morfologia de superficie de alumina nanoporosa auto-organizada

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com, E-mail: MG.mdm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG. (Brazil); Silva, Ronald Arreguy, E-mail: arregsilva@yahoo.com.br [Centro Universitario de Belo Horizonte (UniBH), Belo Horizonte, MG (Brazil)

    2013-07-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  18. Suspected Perinatal Depression Revealed to be Hereditary Diffuse Leukoencephalopathy with Spheroids.

    Science.gov (United States)

    Blume, Josefine; Weissert, Robert

    2017-01-01

    Early motor symptoms of neurodegenerative diseases often appear in combination with psychiatric symptoms, such as depression or personality changes, and are in danger of being misdiagnosed as psychogenic in young patients. We present the case of a 32-year-old woman who presented with rapid-onset depression, followed by a hypokinetic movement disorder and cognitive decline during pregnancy. Genetic testing revealed a mutation in the colony-stimulating factor 1 receptor gene, which led to the diagnosis of hereditary diffuse leukoencephalopathy with spheroids. Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is probably an under-recognized disease. HDLS should be considered in patients with rapidly progressing parkinsonian symptoms and dementia accompanied by white matter lesions.

  19. Suspected Perinatal Depression Revealed to be Hereditary Diffuse Leukoencephalopathy with Spheroids

    Directory of Open Access Journals (Sweden)

    Josefine Blume

    2017-01-01

    Full Text Available Early motor symptoms of neurodegenerative diseases often appear in combination with psychiatric symptoms, such as depression or personality changes, and are in danger of being misdiagnosed as psychogenic in young patients. We present the case of a 32-year-old woman who presented with rapid-onset depression, followed by a hypokinetic movement disorder and cognitive decline during pregnancy. Genetic testing revealed a mutation in the colony-stimulating factor 1 receptor gene, which led to the diagnosis of hereditary diffuse leukoencephalopathy with spheroids. Hereditary diffuse leukoencephalopathy with spheroids (HDLS is probably an under-recognized disease. HDLS should be considered in patients with rapidly progressing parkinsonian symptoms and dementia accompanied by white matter lesions.

  20. Acute hypoxia induces upregulation of microRNA-210 expression in glioblastoma spheroids

    DEFF Research Database (Denmark)

    Rosenberg, Tine Agerbo; Thomassen, Mads; Jensen, Stine Skov

    2015-01-01

    AIM: Tumor hypoxia and presence of tumor stem cells are related to therapeutic resistance and tumorigenicity in glioblastomas. The aim of the present study was therefore to identify microRNAs deregulated in acute hypoxia and to identify possible associated changes in stem cell markers. MATERIALS...... & METHODS: Glioblastoma spheroid cultures were grown in either 2 or 21% oxygen. Subsequently, miRNA profiling was performed and expression of ten stem cell markers was examined. RESULTS: MiRNA-210 was significantly upregulated in hypoxia in patient-derived spheroids. The stem cell markers displayed...... a complex regulatory pattern. CONCLUSION: MiRNA-210 appears to be upregulated in hypoxia in immature glioblastoma cells. This miRNA may represent a therapeutic target although it is not clear from the results whether this miRNA may be related to specific cancer stem cell functions....

  1. Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number

    Science.gov (United States)

    Meibohm, Jan; Candelier, Fabien; Rosen, Tomas; Einarsson, Jonas; Lundell, Fredrik; Mehlig, Bernhard

    2016-11-01

    We analyse the angular velocity of a small neutrally buoyant spheroid log rolling in a simple shear. When the effect of fluid inertia is negligible the angular velocity ω -> equals half the fluid vorticity. We compute by singular perturbation theory how weak fluid inertia reduces the angular velocity in an unbounded shear, and how this reduction depends upon the shape of the spheroid (on its aspect ratio). In addition we determine the angular velocity by direct numerical simulations. The results are in excellent agreement with the theory at small but not too small values of the shear Reynolds number, for all aspect ratios considered. For the special case of a sphere we find ω / s = - 1 / 2 + 0 . 0540Re 3 / 2 where s is the shear rate and Re is the shear Reynolds number. This result differs from that derived by Lin et al. who obtained a numerical coefficient roughly three times larger.

  2. [Spheroids: A reference model for in vitro culture of solid tumors?

    Science.gov (United States)

    Larsen, Christian-Jacques

    2018-01-01

    The recognition that solid tumors are complex entities composed of the tumor cell mass itself and a stromal micro-environnement providing a variety of cells from the host (fibroblasts, endothelial cells, immune cells) led to recognize that this heterogeneity could not be recapitulated in vitro by conventional bidimensional (2-D) cultures. This justified numerous attempts to develop tridimensional (3-D) cultures that provided better tools for approaching tumor complexity and more convincing drug testing systems. Among various 3-D technologies, tumor spheroids are more likely suited to provide in vitro platforms for apprehending specific aspects of different processes specifically defining each tumor category as well as testing drug delivery systems. This review summarizes current features of multicellular tumor spheroids and their suitability for studying different aspects of cancer cell biology, patient-specific therapies and drug treatment. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  3. Characterization of genetic intratumor heterogeneity in colorectal cancer and matching patient-derived spheroid cultures

    DEFF Research Database (Denmark)

    Árnadóttir, Sigrid S; Jeppesen, Maria; Lamy, Philippe

    2018-01-01

    Patient-derived in vitro cultures of colorectal cancer (CRC) may help guide treatment strategies prior to patient treatment. However, most previous studies have been performed on a single biopsy per tumor. The purpose of this study was to analyze multiple spatially distinct biopsies from CRCs...... and spheroids contained private mutations. Therefore, multiple cultures from spatially distinct sites of the tumor increase the insight into the genetic profile of the entire tumor. Molecular subtypes were called from RNA sequencing data. When based on transcripts from both cancer and noncancerous cells......, the subtypes were largely independent of sampling site. In contrast, subtyping based on cancer cell transcripts alone was dependent on sample site and genetic ITH. In conclusion, all examined CRC tumors showed genetic ITH. Spheroid cultures partly reflected this ITH, and having multiple cultures from distinct...

  4. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  5. Simulating photoacoustic waves produced by individual biological particles with spheroidal wave functions

    Science.gov (United States)

    Li, Yong; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2015-10-01

    Under the usual approximation of treating a biological particle as a spheroidal droplet, we consider the analysis of its size and shape with the high frequency photoacoustics and develop a numerical method which can simulate its characteristic photoacoustic waves. This numerical method is based on the calculation of spheroidal wave functions, and when comparing to the finite element model (FEM) calculation, can reveal more physical information and can provide results independently at each spatial points. As the demonstration, red blood cells (RBCs) and MCF7 cell nuclei are studied, and their photoacoustic responses including field distribution, spectral amplitude, and pulse forming are calculated. We expect that integrating this numerical method with the high frequency photoacoustic measurement will form a new modality being extra to the light scattering method, for fast assessing the morphology of a biological particle.

  6. Structural Transition in a Fluid of Spheroids: A Low-Density Vestige of Jamming.

    Science.gov (United States)

    Cohen, A P; Dorosz, S; Schofield, A B; Schilling, T; Sloutskin, E

    2016-03-04

    A thermodynamically equilibrated fluid of hard spheroids is a simple model of liquid matter. In this model, the coupling between the rotational degrees of freedom of the constituent particles and their translations may be switched off by a continuous deformation of a spheroid of aspect ratio t into a sphere (t=1). We demonstrate, by experiments, theory, and computer simulations, that dramatic nonanalytic changes in structure and thermodynamics of the fluids take place, as the coupling between rotations and translations is made to vanish. This nonanalyticity, reminiscent of a second-order liquid-liquid phase transition, is not a trivial consequence of the shape of an individual particle. Rather, free volume considerations relate the observed transition to a similar nonanalyticity at t=1 in structural properties of jammed granular ellipsoids. This observation suggests a deep connection to exist between the physics of jamming and the thermodynamics of simple fluids.

  7. Towards a more representative in vitro method for fish ecotoxicology: morphological and biochemical characterisation of three-dimensional spheroidal hepatocytes.

    Science.gov (United States)

    Baron, Matthew G; Purcell, Wendy M; Jackson, Simon K; Owen, Stewart F; Jha, Awadhesh N

    2012-11-01

    The use of fish primary cells and cell lines offer an in vitro alternative for assessment of chemical toxicity and the evaluation of environmental samples in ecotoxicology. However, their uses are not without limitations such as short culture periods and loss of functionality, particularly with primary tissue. While three-dimensional (spheroid) technology is now established for in vitro mammalian toxicity studies, to date it has not been considered for environmental applications in a model aquatic species. In this study we report development of a reproducible six-well plate, gyratory-mediated method for rainbow trout (Oncorhynchus mykiss) hepatocyte spheroid culture and compare their functional and biochemical status with two-dimensional (2D) monolayer hepatocytes. Primary liver spheroid formation was divided into two stages, immature (1-5 days) and mature (≥6 days) according to size, shape and changes in functional and biochemical parameters (protein, glucose, albumin and lactate dehydrogenase). Mature spheroids retained the morphological characteristics (smooth outer surface, tight cell-cell contacts) previously described for mammalian spheroids as demonstrated by light and scanning electron microscopy. Glucose production and albumin synthesis were significantly higher in mature spheroids when compared to conventional 2D monolayer cultures (P ecotoxicological studies.

  8. Expansion of a zero-order Bessel beam in spheroidal coordinates by generalized Lorenz–Mie theory

    International Nuclear Information System (INIS)

    Han, L.; Han, Y.P.; Cui, Z.W.; Wang, J.J.

    2014-01-01

    An analytic solution to the scattering of the zero-order Bessel beam by a spheroidal particle is constructed on the basis of the generalized Lorenz–Mie theory (GLMT). The spheroidal beam shape coefficients (BSCs) of the zero-order Bessel beam are directly expressed in spheroidal coordinates and computed conveniently using an intrinsic method. Utilizing the tangential continuity of the electromagnetic fields, the expression coefficients of scattered and internal fields are determined. Numerical results concerning scattered field in the far zone are displayed for various parameters of the incident electromagnetic beam and of the scatter. These results are expected to provide useful insights into the scattering of a Bessel beam by spheroidal particles and particle manipulation applications using Bessel beams. - Highlights: • The scattering of zero-order Bessel beam by dielectric spheroid is investigated. • The analytic solution is constructed within the framework of the GLMT. • The spheroidal beam shape coefficients of the zero-order Bessel beam are computed by use an intrinsic method. • Numerical results concerning scattered field are displayed for various parameters

  9. Novel fluid shear-based dissociation device for improved single cell dissociation of spheroids and cell aggregates.

    Science.gov (United States)

    Triantafillu, Ursula L; Nix, Jaron N; Kim, Yonghyun

    2018-01-01

    Biological industries commonly rely on bioreactor systems for the large-scale production of cells. Cell aggregation, clumping, and spheroid morphology of certain suspension cells make their large-scale culture challenging. Growing stem cells as spheroids is indispensable to retain their stemness, but large spheroids (>500 µm diameter) suffer from poor oxygen and nutrient diffusion, ultimately resulting in premature cell death in the centers of the spheroids. Despite this, most large-scale bioprocesses do not have an efficient method for dissociating cells into single cells, but rely on costly enzymatic dissociation techniques. Therefore, we tested a proof-of-concept fluid shear-based mechanical dissociator that was designed to dissociate stem cell spheroids and aggregates. Our prototype was able to dissociate cells while retaining high viability and low levels of apoptosis. The dissociator also did not impact long-term cell growth or spheroid formation. Thus, the dissociator introduced here has the potential to replace traditional dissociation methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:293-298, 2018. © 2017 American Institute of Chemical Engineers.

  10. Controlled fabrication of patterned lateral porous alumina membranes

    International Nuclear Information System (INIS)

    Gowtham, M; Eude, L; Cojocaru, C S; Marquardt, B; Jeong, H J; Legagneux, P; Song, K K; Pribat, D

    2008-01-01

    Confined lateral alumina templates are fabricated with different pore sizes by changing the acid electrolyte and the anodization voltage. The control of the number of pore rows down to one dimension is also achieved, by controlling the thickness of the starting aluminum film as well as the anodization voltage. We observe that the mechanism of pore formation in the lateral regime is very similar to that in the classical vertical situation

  11. Glass properties in the yttria-alumina-silica system

    Science.gov (United States)

    Hyatt, M. J.; Day, D. E.

    1987-01-01

    The glass formation region in the yttria-alumina-silica system was investigated. Properties of glasses containing 25 to 55 wt pct yttria were measured and the effect of the composition was determined. The density, refractive index, thermal-expansion coefficient, and microhardness increased with increasing yttria content. The dissolution rate in 1N HCl increased with increasing yttria content and temperature. These glasses were also found to have high electrical resistivity.

  12. Porous Alumina and Zirconia Ceramics With Tailored Thermal Conductivity

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, Jiří

    2012-01-01

    Roč. 395, č. 1 (2012), 012022-012022 ISSN 1742-6588. [European Thermal Sciences Conference (Eurotherm)/6./. Poitiers, 04.09.2012-07.09.2012] Institutional support: RVO:61389021 Keywords : Ceramics * alumina * zirconia * porosity * thermal conductivity * pore-forming agent * oxide ceramics * starch * porosity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://iopscience.iop.org/1742-6596/395/1/012022/pdf/1742-6596_395_1_012022.pdf

  13. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N.T.

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  14. Efective infrared reflectivity and dielectric function of polycrystalline alumina ceramics

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Borodavka, Fedir; Vaněk, Přemysl; Šimek, Daniel; Trunec, D.; Maca, K.

    2017-01-01

    Roč. 254, č. 5 (2017), s. 1-8, č. článku 1600607. ISSN 0370-1972 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : alumina * ceramics * effective dielectric function * effective medium approximation * geometrical resonances * infrared reflectivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.674, year: 2016

  15. Organized Mesoporous Alumina: Synthesis, Structure and Potential in Catalysis

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří

    2003-01-01

    Roč. 254, - (2003), s. 327-338 ISSN 0926-860X R&D Projects: GA AV ČR IAA4040001; GA ČR GA104/02/0571; GA MŠk ME 404 Institutional research plan: CEZ:AV0Z4040901 Keywords : organized mesoporous alumina * mesoporous molecular sieves * synthesis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.825, year: 2003

  16. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  17. Development of Internal Stresses in Alumina-Zirconia Laminates

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Hadraba, Hynek; Drdlík, D.; Maca, K.; Dlouhý, Ivo

    2012-01-01

    Roč. 507, č. 1 (2012), s. 221-226 ISSN 1013-9826. [International Conference on Electrophoretic Deposition: Fundamentals and Applications /4./. Puerto Vallarta, 02.10.2011-27.10.2011] R&D Projects: GA ČR(CZ) GAP108/11/1644 Institutional research plan: CEZ:AV0Z20410507 Keywords : Alumina * Zirconia * Residual stresses Subject RIV: JL - Materials Fatigue, Friction Mechanics http://www.scientific.net/KEM.507

  18. Advances in Zirconia Toughened Alumina Biomaterials for Total Joint Replacement

    Science.gov (United States)

    Kurtz, Steven M.; Kocagöz, Sevi; Arnholt, Christina; Huet, Roland; Ueno, Masaru; Walter, William L.

    2014-01-01

    The objective of this article is to provide an up-to-date overview of zirconia-toughened alumina (ZTA) components used in total hip arthroplasties. The structure, mechanical properties, and available data regarding the clinical performance of ZTA are summarized. The advancements that have been made in understanding the in vivo performance of ZTA are investigated. This article concludes with a discussion of gaps in the literature related to ceramic biomaterials and avenues for future research. PMID:23746930

  19. MeV ion beam polishing of anodically grown alumina

    International Nuclear Information System (INIS)

    Daudin, B.; Martin, P.

    1988-01-01

    When bombarded with 1 MeV N + ions, the surface of anodically grown alumina films is smoothened. This polishing effect was studied as a function of the ion bombardment fluence and of the substrate temperature in the range 80 - 650 K. The techniques used to characterize the surface roughness were Rutherford Backscattering Spectrometry, Scanning Electron Microscopy and small angle X-rays diffusion. It is suggested that atomic and/or electronic sputtering is responsible for the smoothing effect which was observed

  20. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  1. Vitrification of high-level alumina nuclear waste

    International Nuclear Information System (INIS)

    Brotzman, J.R.

    1979-01-01

    Borophosphate glass compositions have been developed for the vitrification of a high-alumina calcined defense waste. The effect of substituting SiO 2 , P 2 O 5 and CuO for B 2 O 3 on the viscosity and leach resistance was measured. The effect of the alkali to borate ratio and the Li 2 O:Na 2 O ratio on the melt viscosity and leach resistance was also measured

  2. Fractography of Alumina Fibre Reinforced Ex-polysiloxane Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Rudnayová, E.; Glogar, Petr

    2002-01-01

    Roč. 223, - (2002), s. 119-124 ISSN 1013-9826. [Fractography of Advanced Ceramic s 2001. Stará Lesná, 13.05.2001-16.05.2001] R&D Projects: GA ČR GA104/00/1140; GA ČR GA106/99/0096 Institutional research plan: CEZ:AV0Z3046908 Keywords : alumina fibre * fibrous composite * fracture features Subject RIV: JI - Composite Materials Impact factor: 0.497, year: 2002

  3. Multipoles and Force on External Points for a Two-layered Spheroidal Liquid Mass Rotating Differentialy

    International Nuclear Information System (INIS)

    Cisneros-Parra, Joel U.; Martinez-Herrera, Francisco J.; Montalvo-Castro, J. Daniel

    2017-01-01

    We recently reported on a series of equilibrium figures for a self-gravitating heterogeneous liquid body, consisting of two concentric distorted spheroids, “nucleus” and “atmosphere,” each endowed with its own internal motion of differential rotation. In our current work, we calculate the body’s force at external points and obtain a multipolar expansion of the potential. We also give an account of figures with prolate nuclei, which remained unnoticed by us in our former paper.

  4. Energy metabolism and biotransformation as endpoints to pre-screen hepatotoxicity using a liver spheroid model

    International Nuclear Information System (INIS)

    Xu Jinsheng; Purcell, Wendy M.

    2006-01-01

    The current study investigated liver spheroid culture as an in vitro model to evaluate the endpoints relevant to the status of energy metabolism and biotransformation after exposure to test toxicants. Mature rat liver spheroids were exposed to diclofenac, galactosamine, isoniazid, paracetamol, m-dinitrobenzene (m-DNB) and 3-nitroaniline (3-NA) for 24 h. Pyruvate uptake, galactose biotransformation, lactate release and glucose secretion were evaluated after exposure. The results showed that pyruvate uptake and lactate release by mature liver spheroids in culture were maintained at a relatively stable level. These endpoints, together with glucose secretion and galactose biotransformation, were related to and could reflect the status of energy metabolism and biotransformation in hepatocytes. After exposure, all of the test agents significantly reduced glucose secretion, which was shown to be the most sensitive endpoint of those evaluated. Diclofenac, isoniazid, paracetamol and galactosamine reduced lactate release (P < 0.01), but m-DNB increased lactate release (P < 0.01). Diclofenac, isoniazid and paracetamol also reduced pyruvate uptake (P < 0.01), while galactosamine had little discernible effect. Diclofenac, galactosamine, paracetamol and m-DNB also reduced galactose biotransformation (P < 0.01), by contrast, isoniazid did not. The metabolite of m-DNB, 3-NA, which served as a negative control, did not cause significant changes in lactate release, pyruvate uptake or galactose biotransformation. It is concluded that pyruvate uptake, galactose biotransformation, lactate release and glucose secretion can be used as endpoints for evaluating the status of energy metabolism and biotransformation after exposure to test agents using the liver spheroid model to pre-screen hepatotoxicity

  5. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  6. Model-independent constraints on dark matter annihilation in dwarf spheroidal galaxies

    OpenAIRE

    Boddy, Kimberly; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-01-01

    We present a general, model-independent formalism for determining bounds on the production of photons in dwarf spheroidal galaxies via dark matter annihilation, applicable to any set of assumptions about dark matter particle physics or astrophysics. As an illustration, we analyze gamma-ray data from the Fermi Large Area Telescope to constrain a variety of nonstandard dark matter models, several of which have not previously been studied in the context of dwarf galaxy searches.

  7. Spheroidal degeneration in H626R TGFBI variant lattice dystrophy: a multimodality analysis.

    Science.gov (United States)

    Lai, Kevin; Reidy, Jason; Bert, Benjamin; Milman, Tatyana

    2014-07-01

    The aim of this study was to describe clinical, imaging, molecular genetic, histopathologic, immunohistochemical, and ultrastructural characteristics of coexistent amyloid and spheroidal degeneration-type deposits in a family with histidine-626-arginine transforming growth factor beta-induced (H626R TGFBI) variant lattice dystrophy. This is a retrospective clinical-pathological and genetic analysis of one family with H626R variant lattice dystrophy. Pedigree analysis showed an autosomal dominant inheritance pattern of the disease. Examination of 3 affected family members revealed asymmetric, thick, branching lattice-like deposits associated with corneal haze. Sequencing of the TGFBI gene revealed a high-penetrance disease-causing sequence variation (H626R CAT>CGT heterozygous). Optical coherence tomography demonstrated fusiform, poorly demarcated hyperechoic stromal deposits with focal hypoechoic central regions. Histology of the corneal discs from 2 affected family members showed stromal deposits consistent with TGFBI amyloid. Some amyloid deposits contained a central nidus of spheroidal degeneration-type material that demonstrated autofluorescence, stained with elastic and Masson trichrome stains, did not stain with periodic acid-Schiff or Congo red stains, was nonbirefringent, and did not immunoreact with keratoepithelin antibodies. Transmission electron microscopy confirmed the presence of amyloid fibrils with central, electrodense, homogeneous, discrete, spheroidal degeneration-type deposits. The presence of spheroidal deposits in a subset of affected patients, variability in presentation within an individual and between family members, predominant anterior corneal stromal location and nonimmunoreactivity of deposits for keratoepithelin suggest that these deposits are degenerative in nature. The deposits may arise from ultraviolet light-altered proteins diffused from the limbus, which form a nidus for keratoepithelin deposition.

  8. Multipoles and Force on External Points for a Two-layered Spheroidal Liquid Mass Rotating Differentialy

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros-Parra, Joel U. [Facultad de Ciencias, UASLP, Zona Universitaria, San Luis Potosi, S,L,P, 78290 (Mexico); Martinez-Herrera, Francisco J.; Montalvo-Castro, J. Daniel [Instituto de Fisica, UASLP, Zona Universitaria, San Luis Potosi, S,L,P, 78290 (Mexico)

    2017-10-20

    We recently reported on a series of equilibrium figures for a self-gravitating heterogeneous liquid body, consisting of two concentric distorted spheroids, “nucleus” and “atmosphere,” each endowed with its own internal motion of differential rotation. In our current work, we calculate the body’s force at external points and obtain a multipolar expansion of the potential. We also give an account of figures with prolate nuclei, which remained unnoticed by us in our former paper.

  9. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.

    Science.gov (United States)

    Ong, Louis Jun Ye; Islam, Anik; DasGupta, Ramanuj; Iyer, Narayanan Gopalakkrishna; Leo, Hwa Liang; Toh, Yi-Chin

    2017-09-11

    The advent of 3D printing technologies promises to make microfluidic organ-on-chip technologies more accessible for the biological research community. To date, hydrogel-encapsulated cells have been successfully incorporated into 3D printed microfluidic devices. However, there is currently no 3D printed microfluidic device that can support multicellular spheroid culture, which facilitates extensive cell-cell contacts important for recapitulating many multicellular functional biological structures. Here, we report a first instance of fabricating a 3D printed microfluidic cell culture device capable of directly immobilizing and maintaining the viability and functionality of 3D multicellular spheroids. We evaluated the feasibility of two common 3D printing technologies i.e. stereolithography (SLA) and PolyJet printing, and found that SLA could prototype a device comprising of cell immobilizing micro-structures that were housed within a microfluidic network with higher fidelity. We have also implemented a pump-free perfusion system, relying on gravity-driven flow to perform medium perfusion in order to reduce the complexity and footprint of the device setup, thereby improving its adaptability into a standard biological laboratory. Finally, we demonstrated the biological performance of the 3D printed device by performing pump-free perfusion cultures of patient-derived parental and metastatic oral squamous cell carcinoma tumor and liver cell (HepG2) spheroids with good cell viability and functionality. This paper presents a proof-of-concept in simplifying and integrating the prototyping and operation of a microfluidic spheroid culture device, which will facilitate its applications in various drug efficacy, metabolism and toxicity studies.

  10. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP): Integrating the literature on hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD).

    Science.gov (United States)

    Adams, Scott J; Kirk, Andrew; Auer, Roland N

    2018-02-01

    Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a progressive degenerative white matter disorder. ALSP was previously recognized as two distinct entities, hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD). However, recent identification of mutations in the tyrosine kinase domain of the colony stimulating factor 1 receptor (CSF1R) gene, which regulates mononuclear cell lineages including microglia, have provided genetic and mechanistic evidence that POLD and HDLS should be regarded as a single clinicopathologic entity. We describe two illustrative cases of ALSP which presented with neuropsychiatric symptoms, progressive cognitive decline, and motor and gait disturbances. Antemortem diagnoses of autopsy-confirmed ALSP vary significantly, and include primary progressive multiple sclerosis, frontotemporal dementia, Alzheimer disease, atypical cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), corticobasal syndrome, and atypical Parkinson disease, suggesting that ALSP may be significantly underdiagnosed. This article presents a systematic review of ALSP in the context of two illustrative cases to help integrate the literature on HDLS and POLD. Consistent use of the term ALSP is suggested for clarity in the literature going forward. Copyright © 2017. Published by Elsevier Ltd.

  11. Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants.

    Science.gov (United States)

    Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc

    2016-12-01

    Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the

  12. Synthesis and characterization of metal oxide promoted alumina catalyst for biofuel production

    Science.gov (United States)

    Anisuzzaman, S. M.; Krishnaiah, D.; Bono, A.; Abang, S.; Sundang, M.; Suali, E.; Lahin, F. A.; Shaik Alawodeen, A.

    2016-06-01

    Alumina has been widely used as a support in catalysis process which owing to its extremely thermal and mechanical stability, high surface area, large pore size and pore volume. The aim of this study was to synthesize calcium oxide-supported basic alumina catalysts (CaO/Al2O3) by impregnation method and to characterize the properties of the catalyst based on its surface area and porosity, functional group, surface morphology and particle size. Impregnation method was chosen for the synthesization of catalyst which involved contacting the support with the impregnating solution for a particular period of time, drying the support to remove the imbibed liquid and calcination process. In the preparation of catalyst, catalytic performance of CaO/Al2O3 catalyst was measured at different calcined temperatures (650°C, 750°C and 800°C). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Mercury intrusion porosimetry (MIP), and particle size analyzer (Zetasizer) was used to characterize the catalyst. The highest total specific area and the total porosity of the catalyst was obtained at 750oC. FTIR analysis basically studied on the functional groups present in each catalyst synthesized, while SEM analysis was observed to have pores on its surface. Moreover, CaO/Al2O3 catalysts at 650°C produced the smallest particle size (396.1 mn), while at 750°C produced the largest particle size (712.4 mn). Thus it can be concluded that CaO/Al2O3 catalysts has great potential coimnercialization since CaO has attracted many attentions compared to other alkali earth metal oxides especially on the transesterification reaction.

  13. γ-radiolysis of methane adsorbed on γ-alumina

    International Nuclear Information System (INIS)

    Norfolk, D.J.; Swan, T.

    1978-01-01

    An earlier study showed that γ-alumina surfaces outgassed above 570 K contain sites involving exposed lattice ions at which methane is chemisorbed during γ-irradiation. When the species so formed are heated they decompose yielding C 1 , C 2 and C 3 alkanes and alkanes together with hydrogen. The present study investigates the kinetics of the reactions occurring during irradiation. These reactions are shown to be the activation of surface sites and the dissociative chemisorption of methane, in accord with the mechanism previously suggested. Overall product yields are chiefly determined by the rate at which excited charge carriers reach the surface, the highest rate observed being G(- CH 4 ) = 2.0 but declining when fewer than approximately 3 x 10 15 m -2 chemisorption sites remain unoccupied. A kinetic scheme is proposed to account for the variation in yields with methane coverage, radiation dose and dose rate, and specific surface area of the γ-alumina. It is also shown that the individual products formed when the precursors decompose depend on the configuration of the methane chemisorption sites, and so on the origin of the γ-alumina and the outgassing temperature used. Two subsidiary reactions are identified. The first of these resembles normal radiolysis but occurs at sites less accessible to methane. In the second, however, new surface species are formed when irradiation continues after either the methane or the chemisorption sites have been exhausted. These scavenge part of the adsorbed hydrocarbon material. (author)

  14. Investigation of vapor explosions with alumina droplets in sodium

    International Nuclear Information System (INIS)

    Zimmer, H.J.

    1991-02-01

    Within the analysis of severe hypothetical fast breeder accidents the consequence of a fuel-coolant interaction has to be considered i.e. the thermal interaction between hot molten fuel and sodium. Experiments have been performed to study the thermal fragmentation of a molten alumina droplet in sodium. Alumina temperatures up to 3100 K and sodium temperatures up to 1143 K were used. For the first time film boiling of alumina drops in sodium was achieved. With some droplets undergoing film boiling, the fragmentation was triggered by an externally applied pressure wave. The trigger was followed promptly by a strong reaction pressure wave if and only if a contact temperature threshold of T I =2060±160 K was exceeded. In agreement with similar experiments in which other materials were studied this threshold corresponds to an interfacial temperature close to the homogeneous nucleation temperature of the vaporising liquid. Based on the present and previous experimental results a model concept of thermal fragmentation is developed. (orig.) [de

  15. Physical Properties of Copper Based MMC Strengthened with Alumina

    Directory of Open Access Journals (Sweden)

    Kaczmar J. W.

    2014-06-01

    Full Text Available The aim of this work is the development of Cu-Al2O3 composites of copper Cu-ETP matrix composite materials reinforced by 20 and 30 vol.% Al2O3 particles and study of some chosen physical properties. Squeeze casting technique of porous compacts with liquid copper was applied at the pressure of 110 MPa. Introduction of alumina particles into copper matrix affected on the significant increase of hardness and in the case of Cu-30 vol. % of alumina particles to 128 HBW. Electrical resistivity was strongly affected by the ceramic alumina particles and addition of 20 vol. % of particles caused diminishing of electrical conductivity to 20 S/m (34.5% IACS. Thermal conductivity tests were performed applying two methods and it was ascertained that this parameter strongly depends on the ceramic particles content, diminishing it to 100 Wm-1K-1 for the composite material containing 30 vol.% of ceramic particles comparing to 400 Wm-1K-1 for the unreinforced copper. Microstructural analysis was carried out using SEM microscopy and indicates that Al2O3 particles are homogeneously distributed in the copper matrix. EDS analysis shows remains of silicon on the surface of ceramic particles after binding agent used during preparation of ceramic preforms.

  16. Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor.

    Science.gov (United States)

    Nguyen, Binh Thi Thanh; Peh, Alister En Kai; Chee, Celine Yue Ling; Fink, Katja; Chow, Vincent T K; Ng, Mary M L; Toh, Chee-Seng

    2012-12-01

    The Faradaic electrochemical impedance technique is employed to characterize the impedance change of a nanoporous alumina biosensor in response towards the specific binding of dengue serotype 2 (Denv2) viral particles to its serotype 2-specific immunoglobulin G antibody within the thin alumina layer. The optimal equivalent circuit model that matches the impedimetric responses of the sensor describes three distinct regions: the electrolyte solution (R(s)), the porous alumina channels (including biomaterials) (Q(1), R(1)) and the conductive electrode substrate layer (Q(2), R(2)). Both channel resistance R(1) and capacitance Q(1) change in response to the increase of the Denv2 virus concentration. A linear relationship between R(1) and Denv2 concentration from 1 to 900 plaque forming unit per mL (pfu mL(-1)) can be derived using Langmuir-Freundlich isotherm model. At 1pfu mL(-1) Denv2 concentration, R(1) can be distinguished from that of the cell culture control sample. Moreover, Q(1) doubles when Denv2 is added but remains unchanged in the presence of two other non-specific viruses - West Nile virus and Chikungunya virus indicates biosensor specificity can be quantitatively measured using channel capacitance. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids

    Science.gov (United States)

    Freedman, Benjamin S.; Brooks, Craig R.; Lam, Albert Q.; Fu, Hongxia; Morizane, Ryuji; Agrawal, Vishesh; Saad, Abdelaziz F.; Li, Michelle K.; Hughes, Michael R.; Werff, Ryan Vander; Peters, Derek T.; Lu, Junjie; Baccei, Anna; Siedlecki, Andrew M.; Valerius, M. Todd; Musunuru, Kiran; McNagny, Kelly M.; Steinman, Theodore I.; Zhou, Jing; Lerou, Paul H.; Bonventre, Joseph V.

    2015-01-01

    Human-pluripotent-stem-cell-derived kidney cells (hPSC-KCs) have important potential for disease modelling and regeneration. Whether the hPSC-KCs can reconstitute tissue-specific phenotypes is currently unknown. Here we show that hPSC-KCs self-organize into kidney organoids that functionally recapitulate tissue-specific epithelial physiology, including disease phenotypes after genome editing. In three-dimensional cultures, epiblast-stage hPSCs form spheroids surrounding hollow, amniotic-like cavities. GSK3β inhibition differentiates spheroids into segmented, nephron-like kidney organoids containing cell populations with characteristics of proximal tubules, podocytes and endothelium. Tubules accumulate dextran and methotrexate transport cargoes, and express kidney injury molecule-1 after nephrotoxic chemical injury. CRISPR/Cas9 knockout of podocalyxin causes junctional organization defects in podocyte-like cells. Knockout of the polycystic kidney disease genes PKD1 or PKD2 induces cyst formation from kidney tubules. All of these functional phenotypes are distinct from effects in epiblast spheroids, indicating that they are tissue specific. Our findings establish a reproducible, versatile three-dimensional framework for human epithelial disease modelling and regenerative medicine applications. PMID:26493500

  18. Effect of Nanoadditives on the Wear Behavior of Spheroidal Graphite Cast Irons

    Directory of Open Access Journals (Sweden)

    J. Kaleicheva

    2017-09-01

    Full Text Available The tribological characteristics of spheroidal graphite cast irons with and without nanosized additives are investigated. The tests are performed as in cast iron condition as well after austempering. The spheroidal graphite irons are undergone to austempering in the bainite field, including heating at 900 °С for an hour, after that isothermal retention at 280 °С, 2 h and at 380 °C, 2 h. The lower bainitic and upper bainitic structures are formed during the process. Nanosized additives of titanium carbonitride and titanium nitride TiCN+TiN influence on the graphite phase characteristics and on the microstructure of the cast and austempered spheroidal graphite irons. The changes in the micro structure the irons with nanoadditives lead to an abrasive wear resistance increase. The formation of the strain induced martensite from the retained austenite in the friction contact area during wear is determined in the austempered irons. This is the reason for the wear resistance increase of the irons. The experimental testing of the wear is carried out by cinematic scheme tapper-discunder friction on the fixed abrasive. The microstructure of the patterns is observed by optical and quantitative metallography, X-Ray analysis, SEM and EDX analysis. The hardness testing is performed by Brinnel and Vickers methods.

  19. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors.

    Directory of Open Access Journals (Sweden)

    Winyoo Chowanadisai

    Full Text Available The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05 (S2 Table. Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.

  20. Classification of materials for conducting spheroids based on the first order polarization tensor

    Science.gov (United States)

    Khairuddin, TK Ahmad; Mohamad Yunos, N.; Aziz, ZA; Ahmad, T.; Lionheart, WRB

    2017-09-01

    Polarization tensor is an old terminology in mathematics and physics with many recent industrial applications including medical imaging, nondestructive testing and metal detection. In these applications, it is theoretically formulated based on the mathematical modelling either in electrics, electromagnetics or both. Generally, polarization tensor represents the perturbation in the electric or electromagnetic fields due to the presence of conducting objects and hence, it also desribes the objects. Understanding the properties of the polarization tensor is necessary and important in order to apply it. Therefore, in this study, when the conducting object is a spheroid, we show that the polarization tensor is positive-definite if and only if the conductivity of the object is greater than one. In contrast, we also prove that the polarization tensor is negative-definite if and only if the conductivity of the object is between zero and one. These features categorize the conductivity of the spheroid based on in its polarization tensor and can then help to classify the material of the spheroid.