Sample records for stabilized semiconductor laser

  1. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji


    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  2. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji


    This third edition of “Semiconductor Lasers, Stability, Instability and Chaos” was significantly extended.  In the previous edition, the dynamics and characteristics of chaos in semiconductor lasers after the introduction of the fundamental theory of laser chaos and chaotic dynamics induced by self-optical feedback and optical injection was discussed. Semiconductor lasers with new device structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are interesting devices from the viewpoint of chaotic dynamics since they essentially involve chaotic dynamics even in their free-running oscillations. These topics are also treated with respect to the new developments in the current edition. Also the control of such instabilities and chaos control are critical issues for applications. Another interesting and important issue of semiconductor laser chaos in this third edition is chaos synchronization between two lasers and the application to optical secure communication. One o...

  3. Semiconductor Lasers Stability, Instability and Chaos

    CERN Document Server

    Ohtsubo, Junji


    This monograph describes fascinating recent progress in the field of chaos, stability and instability of semiconductor lasers. Applications and future prospects are discussed in detail. The book emphasizes the various dynamics induced in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Recent results of both theoretical and experimental investigations are presented. Demonstrating applications of semiconductor laser chaos, control and noise, Semiconductor Lasers describes suppression and chaotic secure communications. For those who are interested in optics but not familiar with nonlinear systems, a brief introduction to chaos analysis is presented.

  4. Stabilization of the Absolute Frequency and Phase of a Compact, Low Jitter Modelocked Semiconductor Diode Laser

    National Research Council Canada - National Science Library

    Delfyett, Peter J., Jr


    .... To achieve this, an intracavity Pound-Drever-Hall technique was used on a 10 GHz harmonically mode-locked semiconductor ring laser and obtained a simultaneous optical frequency comb stabilization...

  5. A High Reliability Frequency Stabilized Semiconductor Laser Source Project (United States)

    National Aeronautics and Space Administration — NASA needs high stability laser source of 1W output power for Lidar applications. Princeton Optronics has developed ultra-stable, narrow linewidth diode pumped solid...

  6. Semiconductor Laser Measurements Laboratory (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  7. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui


    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  8. Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers (United States)

    Junges, Leandro; Gallas, Jason A. C.


    The dynamics of two mutually delay-coupled semiconductor lasers has been frequently studied experimentally, numerically, and analytically either for weak or strong detuning between the lasers. Here, we present a systematic numerical investigation spanning all detuning ranges. We report high-resolution stability diagrams for wide ranges of the main control parameters of the laser, as described by the Lang-Kobayashi model. In particular, we detail the parameter influence on dynamical performance and map the distribution of chaotic pulsations and self-generated periodic spiking with arbitrary periodicity. Special attention is given to the unfolding of regular pulse packages for both symmetric and non-symmetric configurations with respect to detuning. The influence of the delay -time on the self-organization of periodic and chaotic laser phases as a function of the coupling and detuning is also described in detail.

  9. Thermal stability of multi-longitudinal mode laser beating frequencies in hybrid semiconductor-fiber ring lasers (United States)

    Shebl, Ahmed; Hassan, Khaled; Al-Arifi, Fares; Al-Otaibi, Mohammed; Sabry, Yasser; Khalil, Diaa


    The temperature dependence of the beating frequencies in multi-longitudinal mode hybrid semiconductor-fiber based ring lasers is studied theoretically and experimentally. The variation of the beating frequency with temperature is found to be smaller for larger cavity length and lower beating order. Measured frequency variation as low as -0.24 Hz/°C is obtained for cavity length of 2.7 km. The stability of the frequency is evaluated using the Allan variance technique. The measurement is carried out for different beating frequency orders. The lowest order beating frequency has about 20x better long-term frequency stability than the beating frequency of the 100th order.

  10. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W


    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l


    Directory of Open Access Journals (Sweden)

    Remzi YILDIRIM


    Full Text Available In this study, dynamic stability analysis of semiconductor laser diodes with external optical feedback has been realized. In the analysis the frequency response of the transfer function of laser diode H jw( , the transfer m function of laser diode with external optical feedback TF jw( , and optical feedback transfer function m K jw( obtained from small signal equations has been m accomplished using Nyquist stability analysis in complex domain. The effect of optical feedback on the stability of the system has been introduced and to bring the laser diode to stable condition the working critical boundary range of dampig frequency and reflection power constant (R has been determined. In the study the reflection power has been taken as ( .

  12. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel


    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  13. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro


    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  14. Temperature controller of semiconductor laser

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Vít; Číp, Ondřej


    Roč. 73, č. 3 (2003), s. 10 - 12 ISSN 0928-5008 Institutional research plan: CEZ:AV0Z2065902 Keywords : temperature controller * semiconductor laser * laser diode Subject RIV: BH - Optics, Masers, Lasers

  15. Single filament semiconductor laser

    International Nuclear Information System (INIS)

    Botez, D.


    A semiconductor laser comprising: a body of semiconductor material including a substrate having a surface and a pair of spaced, substantially parallel dove-tailed shaped grooves in said surface, said body having a pair of end surfaces between which said grooves extend, said end surfaces being reflective to light with at least one of said end surfaces being partially transparent to light a first epitaxial layer over said surface of the substrate and the surfaces of the grooves, said first epitaxial layer having a flat surface portion over the portion of the substrate surface between the grooves, a thin second epitaxial layer over said first epitaxial layer, a third epitaxial layer over said second epitaxial layer, said first and third epitaxial layers being of opposite conductivity types and the second epitaxial layer being the active recombination region of the laser with the light being generated therein in the vicinity of the portion which is over the flat surface portion of the first epitaxial layer, and a pair of contacts on said body with one contact being over said third epitaxial body and the other being on said substrate

  16. Semiconductor film Cherenkov lasers (United States)

    Walsh, John E.


    The technical achievements for the project 'Semiconductor Film Cherenkov Lasers' are summarized. Described in the fourteen appendices are the operation of a sapphire Cherenkov laser and various grating-coupled oscillators. These coherent radiation sources were operated over the spectral range extending from 3 mm down to 400 micrometers. The utility of various types of open, multi-grating resonators and mode-locked operation were also demonstrated. In addition to these experiments, which were carried out with a 10-100 kV pulse generator, a low-energy (3-3.6 MeV) Van de Graaff generator and a low-energy RF linac (2.8 MeV) were used to investigate the properties of continuum incoherent Smith-Purcell radiation. It was shown that levels of intensity comparable to the infrared beam lines on a synchrotron could be obtained and thus that grating-coupled sources are potentially an important new source for Fourier transform spectroscopy. Finally, a scanning electron microscope was adapted for investigating mu-electron-beam-driven far-infrared sources. At the close of the project, spontaneous emission over the 288-800 micrometers band had been observed. Intensity levels were in accord with expectations based on theory. One or more of the Appendices address these topics in detail.

  17. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry


    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  18. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.


    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  19. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.


    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  20. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati


    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  1. Semiconductor processing with excimer lasers

    International Nuclear Information System (INIS)

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.


    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications

  2. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.


    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...

  3. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.


    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  4. Chaotic bursting in semiconductor lasers (United States)

    Ruschel, Stefan; Yanchuk, Serhiy


    We investigate the dynamic mechanisms for low frequency fluctuations in semiconductor lasers subjected to delayed optical feedback, using the Lang-Kobayashi model. This system of delay differential equations displays pronounced envelope dynamics, ranging from erratic, so called low frequency fluctuations to regular pulse packages, if the time scales of fast oscillations and envelope dynamics are well separated. We investigate the parameter regions where low frequency fluctuations occur and compute their Lyapunov spectra. Using the geometric singular perturbation theory, we study this intermittent chaotic behavior and characterize these solutions as bursting slow-fast oscillations.

  5. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.


    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  6. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui


    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  7. Measurement of spectral linewidths of semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Du Xiaocheng; He Zhengchuan; Tang Sulan


    Based on the van der Pol equation, formulas describing the measurement of spectral linewidths of semiconductor lasers with the delayed self-heterodyne method were deduced and the influence of the spectral parameters on the measurement are given. Experimental results of single frequency semiconductor lasers are reported.

  8. Resonator fiber optic gyro employing a semiconductor laser. (United States)

    Jin, Zhonghe; Yu, Xuhui; Ma, Huilian


    Resonator fiber optic gyro (RFOG) based on the Sagnac effect has the potential to achieve the inertial navigation system requirement with a short sensing coil. Semiconductor laser is one of the key elements for integration and miniaturization of the RFOG. In this paper, an RFOG employing a semiconductor laser is demonstrated. The model of the laser frequency noise induced error in the RFOG is described. To attenuate the laser frequency noise induced error, active frequency stabilization is applied. An online laser frequency noise observation is built, as a powerful optimum criterion for the loop parameters. Moreover, the laser frequency noise observation method is developed as a new measurement tool. With a fast digital proportional integrator based on a single field programmable gate array applied in the active stabilization loop, the laser frequency noise is reduced to 0.021 Hz (1σ). It is equivalent to a rotation rate of 0.07°/h, and close to the shot noise limit for the RFOG. As a result, a bias stability of open-loop gyro output is 9.5°/h (1σ) for the integration time 10 s in an hour observed in the RFOG. To the best of our knowledge, this result is the best long-term stability using the miniature semiconductor laser.

  9. Miniature thermoelectric coolers for semiconductor lasers

    International Nuclear Information System (INIS)

    Semenyuk, V.A.; Pilipenko, T.V.; Albright, G.C.; Ioffe, L.A.; Rolls, W.H.


    The problem of matching thermoelectric coolers and semiconductor lasers with respect to heat flow densities and electrical currents is discussed. It is shown that the solution of this problem is accomplished by the reduction of thermoelement dimensions to the submillimeter level. Assembled with extruded thermoelectric materials, miniature coolers with a thermoelement length as short as 0.1 mm and a cross section of 0.2x0.2 mm 2 are demonstrated. Using 0.5 mm thick aluminum ceramic plates, the overall height of these miniature coolers can be as low as 1.1 mm. The devices are designed for cooling and thermally stabilizing miniature optoelectronic elements, especially semiconductor lasers. The results of device testing over a wide range of temperature and heat loads are given. This novel approach in thermoelectric cooler design represents a new step in miniaturization and reduced current requirements, with little or no loss in maximum attainable temperature difference. A ΔT max of 68 K is demonstrated with input current of 200 mA. Due to the small thermoelement length, extremely large heat flow densities at cold junctions are practical (up to 100 W/cm 2 at ΔT=0), making these devices ideal for heat intensive local sources such as injection laser diodes. Due to the extremely small sizes, these coolers have a high speed of response where a ΔT of 35 K in specimens with the thermoelement length of 0.1 mm is approximately 150 milliseconds. These micro coolers are ideal for use within the semiconductor device housing and under conditions where limitations of power, size, and electrical current predominate. copyright 1995 American Institute of Physics

  10. Towards Laser Cooling of Semiconductors (United States)

    Hassani nia, Iman

    This dissertation reports on novel theoretical concepts as well as experimental efforts toward laser cooling of semiconductors. The use of quantum well system brings the opportunity to engineer bandstructure, effective masses and the spatial distribution of electrons and holes. This permits the incorporation of novel quantum mechanical phenomena to manipulate the temperature change of the material upon light-matter interaction. Inspired by the fact that Coulomb interaction can lead to blueshift of radiation after photo-absorption, the theory of Coulomb assisted laser cooling is proposed and investigated for the first time. In order to design suitable multiple quantum well (MQW) structures with Coulomb interaction a Poisson-Schrodinger solver was devised using MATLAB software. The software is capable of simulating all III-V material compositions and it results have been confirmed experimentally. In the next step, different MQW designs were proposed and optimized to exploit Coulomb interaction for assisting of optical refrigeration. One of the suitable designs with standard InGaAsP/InAlAs/InP layers was used to grow the MQW structures using metal organic vapor deposition (MOCVD). Novel techniques of fabrication were implemented to make suspended structures for detecting ultralow thermal powers. By fabricating accurate thermometers, the temperature changes of the device upon laser absorption were measured. The accurate measurement of the temperature encouraged us to characterize the electrical response of the device as another important tool to promote our understanding of the 4 underlying physical phenomena. This is in addition to the accurate spectral and time-resolved photoluminescence measurements that provided us with a wealth of information about the effects of stress, Auger recombination and excitonic radiance in such structures. As the future works, important measurements for finding the quantum efficiency of the devices via electrical characterization and

  11. Laser Cooling of 2-6 Semiconductors (United States)


    AFRL-AFOSR-JP-TR-2016-0067 Laser Cooling of II-VI Semiconductors Qihua Xiong NANYANG TECHNOLOGICAL UNIVERSITY Final Report 08/12/2016 DISTRIBUTION A...From - To) 15 May 2013 to 14 May 2016 4. TITLE AND SUBTITLE Laser Cooling of II-VI Semiconductors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1...13. SUPPLEMENTARY NOTES 14. ABSTRACT The breakthrough of laser cooling in semiconductor has stimulated strong interest in further scaling up towards

  12. Study on guided waves in semiconductor lasers

    International Nuclear Information System (INIS)

    Pudensi, M.A.A.


    In This work we studied the guided waves in semiconductor lasers. In the first part we carried on the experimental measurements on lasers with stripe nonorthogonal to the mirrors. In the second part we developed a matrix method for the study of propagation and reflection of guided waves in lasers. (author) [pt

  13. Effect of gain nonlinearity in semiconductor lasers

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Christiansen, Peter Leth; Skovgaard, Ove


    Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2+1)-dimensi......Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2...

  14. A hybrid semiconductor-glass waveguide laser

    NARCIS (Netherlands)

    Fan, Y.; Oldenbeuving, R.M.; Klein, E.J.; Lee, C.J.; Song, H.; Khan, M.R.H.; Offerhaus, H.L.; Van der Slot, P.J.M.; Boller, K.J.


    We report on a novel type of laser in which a semiconductor optical amplifier (SOA) receives frequency-selective feedback from a glass-waveguide circuit. The laser we present here is based on InP for operation in the 1.55 µm wavelength range. The Si3N4/SiO2 glass waveguide circuit comprises two

  15. A hybrid semiconductor-glass waveguide laser

    NARCIS (Netherlands)

    Fan, Youwen; Oldenbeuving, Ruud; Klein, E.J.; Lee, Christopher James; Song, H.; Khan, M.R.H.; Offerhaus, Herman L.; van der Slot, Petrus J.M.; Boller, Klaus J.; Mackenzie, J.I.; Jelinkova, H.; Taira, T.; Ahmed, M.A.


    abstract .We report on a novel type of laser in which a semiconductor optical amplifier (SOA) receives frequency-selective feedback from a glass-waveguide circuit. The laser we present here is based on InP for operation in the 1.55 μm wavelength range. The Si3N4/SiO2 glass waveguide circuit

  16. Semiconductor laser using multimode interference principle (United States)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao


    Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.

  17. Semiconductor Laser Tracking Frequency Distance Gauge (United States)

    Phillips, James D.; Reasenberg, Robert D.


    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require a spaceworthy laser distance gauge of substantially improved performance. The Tracking Frequency Gauge (TFG) uses a single beam, locking a laser to the measurement interferometer. We have demonstrated this technique with pm (10(exp -12) m) performance. We report on the version we are now developing based on space-qualifiable, fiber-coupled distributed-feedback semiconductor lasers.

  18. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit


    Cappuccio, Joseph C., Jr.


    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  19. Teradiode's high brightness semiconductor lasers (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz


    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  20. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter


    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  1. Laser cooling in semiconductors (Conference Presentation) (United States)

    Zhang, Jun


    Laser cooling of semiconductor is very important topic in science researches and technological applications. Here we will report our progresses on laser cooling in semiconductors. By using of strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, we observe a net cooling by about 40 K starting from 290 kelvin with 514-nm pumping and about 15 K starting from100 K with 532-nm pumping in a semiconductor using group-II-VI cadmium sulphide nanobelts. We also discuss the thickness dependence of laser cooing in CdS nanobelts, a concept porotype of semiconductor cryocooler and possibility of laser cooling in II-VI semiconductor family including CdSSe、CdSe, CdSe/ZnTe QDs and bulk CdS et al., Beyond II-VI semiconductor, we will present our recent progress in laser cooling of organic-inorganic perovskite materials, which show a very big cooling power and external quantum efficiency in 3D and 2D case. Further more, we demonstrate a resolved sideband Raman cooling of a specific LO phonon in ZnTe, in which only one specific phonon resonant with exciton can be cooled or heated. In the end, we will discuss the nonlinear anti-Stokes Raman and anti-Stokes photoluminescence upcoversion in very low temperature as low as down to liquid 4.2 K. In this case, the anti-Stokes resonance induces a quadratic power denpendece of anti-Stokes Raman and anti-Stokes PL. We proposed a CARS-like process to explain it. This nonlinear process also provides a possible physics picture of ultra-low temperatures phonon assisted photoluminescence and anti-Stokes Raman process.

  2. MBE System for Antimonide Based Semiconductor Lasers

    National Research Council Canada - National Science Library

    Lester, Luke


    .... SLR-770 inductively coupled plasma (ICP) processing system. The SLR-770 has been invaluable in the study of plasma etching of AlGaAsSb and GaSb-materials that form the backbone of antimonide-based semiconductor lasers...

  3. Method and system for powering and cooling semiconductor lasers (United States)

    Telford, Steven J; Ladran, Anthony S


    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  4. Laser-based semiconductor fabrication

    International Nuclear Information System (INIS)

    Wachter, J.R.


    This paper discusses research that has concentrated on methods for direct processing of integrated circuits (IC's), such as defect reduction in epitaxial silicon, large grain polysilicon growth, laser-assisted etching and film deposition methods, and removal of dislocation networks

  5. Exciton formation and stability in semiconductor heterostructures (United States)

    Siggelkow, S.; Hoyer, W.; Kira, M.; Koch, S. W.


    The formation and stability of excitons in semiconductors is studied on the basis of a microscopic model that includes Coulomb interacting fermionic electrons and holes as well as phonons. Whereas quasiequilibrium calculations predict substantial exciton fractions coexisting with an electron-hole plasma at low temperatures and densities, dynamic calculations reveal that the exciton formation times under these conditions exceed the characteristic lifetimes. At elevated densities, good agreement between dynamical and quasiequilibrium calculations is obtained.

  6. Asymmetrically excited semiconductor injection laser

    International Nuclear Information System (INIS)

    Ladany, I.; Marinelli, D.P.; Kressel, H.; Cannuli, V.M.


    A diode laser is improved in order to produce an output in a single longitudinal mode. The laser has a rectangular body with two regions of differing conductivity type material. Extending from one surface of the rectangular body and into one of the regions of differing conductivity material is a third region. Although the third region is composed of the same general conductivity type material as the region into which it extends, it is more highly doped with conductivity modifiers (more conductive). This third region extends along one surface between the ends of the body and is spaced from the sides of the body. An electrical contact stripe is positioned on the one surface so that a portion of its width overlaps a portion of the width of the third region

  7. Microresonators for organic semiconductor and fluidic lasers


    Vasdekis, Andreas E.


    This thesis describes a number of studies of microstructured optical resonators, designed with the aim of enhancing the performance of organic semiconductor lasers and exploring potential applications. The methodology involves the micro-engineering of the photonic environment in order to modify the pathways of the emitted light and control the feedback mechanism. The research focuses on designing new organic microstructures using established semi-analytical and numerical method...

  8. Resonant activation in bistable semiconductor lasers

    International Nuclear Information System (INIS)

    Lepri, Stefano; Giacomelli, Giovanni


    We theoretically investigate the possibility of observing resonant activation in the hopping dynamics of two-mode semiconductor lasers. We present a series of simulations of a rate-equation model under random and periodic modulation of the bias current. In both cases, for an optimal choice of the modulation time scale, the hopping times between the stable lasing modes attain a minimum. The simulation data are understood by means of an effective one-dimensional Langevin equation with multiplicative fluctuations. Our conclusions apply to both edge-emitting and vertical cavity lasers, thus opening the way to several experimental tests in such optical systems

  9. Squeezing in an injection-locked semiconductor laser (United States)

    Inoue, S.; Machida, S.; Yamamoto, Y.; Ohzu, H.


    The intensity-noise properties of an injection-locked semiconductor laser were studied experimentally. The constant-current-driven semiconductor laser producing the amplitude-squeezed state whose intensity noise was reduced below the standard quantum limit (SQL) by 0.72 dB was injection-locked by an external master laser. The measured intensity-noise level of the injection-locked semiconductor laser was 0.91 dB below the SQL. This experimental result indicates that a phase-coherent amplitude-squeezed state or squeezed vacuum state together with a reference local oscillator wave can be generated directly by semiconductor laser systems.

  10. EDITORIAL: Semiconductor lasers: the first fifty years Semiconductor lasers: the first fifty years (United States)

    Calvez, S.; Adams, M. J.


    Anniversaries call for celebrations. Since it is now fifty years since the first semiconductor lasers were reported, it is highly appropriate to celebrate this anniversary with a Special Issue dedicated to the topic. The semiconductor laser now has a major effect on our daily lives since it has been a key enabler in the development of optical fibre communications (and hence the internet and e-mail), optical storage (CDs, DVDs, etc) and barcode scanners. In the early 1960s it was impossible for most people (with the exception of very few visionaries) to foresee any of these future developments, and the first applications identified were for military purposes (range-finders, target markers, etc). Of course, many of the subsequent laser applications were made possible by developments in semiconductor materials, in the associated growth and fabrication technology, and in the increased understanding of the underlying fundamental physics. These developments continue today, so that the subject of semiconductor lasers, although mature, is in good health and continues to grow. Hence, we can be confident that the pervasive influence of semiconductor lasers will continue to develop as optoelectronics technology makes further advances into other sectors such as healthcare, security and a whole host of applications based on the global imperatives to reduce energy consumption, minimise environmental impact and conserve resources. The papers in this Special Issue are intended to tell some of the story of the last fifty years of laser development as well as to provide evidence of the current state of semiconductor laser research. Hence, there are a number of papers where the early developments are recalled by authors who played prominent parts in the story, followed by a selection of papers from authors who are active in today's exciting research. The twenty-fifth anniversary of the semiconductor laser was celebrated by the publication of a number of papers dealing with the early

  11. The pursuit of electrically-driven organic semiconductor lasers

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Takenobu, Taishi; Iwasa, Yoshihiro


    Organic semiconductors have many favourable and plastic-like optical properties that are promising for the development of low energy consuming laser devices. Although optically-pumped organic semiconductor lasers have been demonstrated since the early days of lasers, electrically-driven organic

  12. The features of modelling semiconductor lasers with a wide contact

    Directory of Open Access Journals (Sweden)

    Rzhanov Alexey


    Full Text Available The aspects of calculating the dynamics and statics of powerful semiconductor laser diodes radiation are investigated. It takes into account the main physical mechanisms influencing power, spectral composition, far and near field of laser radiation. It outlines a dynamic distributed model of a semiconductor laser with a wide contact and possible algorithms for its implementation.

  13. Guiding effect of quantum wells in semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Aleshkin, V Ya; Dikareva, Natalia V; Dubinov, A A; Zvonkov, B N; Karzanova, Maria V; Kudryavtsev, K E; Nekorkin, S M; Yablonskii, A N


    The guiding effect of InGaAs quantum wells in GaAs- and InP-based semiconductor lasers has been studied theoretically and experimentally. The results demonstrate that such waveguides can be effectively used in laser structures with a large refractive index difference between the quantum well material and semiconductor matrix and a large number of quantum wells (e.g. in InP-based structures). (semiconductor lasers. physics and technology)

  14. Laser thermoreflectance for semiconductor thin films metrology (United States)

    Gailly, P.; Hastanin, J.; Duterte, C.; Hernandez, Y.; Lecourt, J.-B.; Kupisiewicz, A.; Martin, P.-E.; Fleury-Frenette, K.


    We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.

  15. Novel concepts for designing semiconductor lasers (United States)

    Shchukin, V. A.; Ledentsov, N. N.; Maximov, M. V.; Gordeev, N. Yu; Shernyakov, Yu M.; Payusov, A. S.; Zhukov, A. E.


    We review novel concepts and demonstrate recent experimental data for edge- emitting semiconductor lasers with broad vertical waveguide. The ultimate case for waveguide extension in the vertical direction can be implemented by using the Tilted Wave Laser (TWL) approach. A TWL is composed of a thin active waveguide (typically 0.3-2 μm) optically coupled to a thick passive waveguide (10-150 μm). A TWL with a 26 μm-thick passive waveguide demonstrated low internal loss of 1.4 cm-1, maximum pulsed power 18 W and maximum CW power 4.7 W. Vertical far field of the TWL consists of two tilted narrow lobs of 2 degrees full width at half maximum each.

  16. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.


    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  17. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...

  18. Design and construct of a tunable semiconductor laser

    Directory of Open Access Journals (Sweden)

    J. Sabbaghzadeh


    Full Text Available   In this paper we explain in detail the design of a semiconductor laser coupled with the reflected beams from a grating. Since the beams reflected are diffracted at different angles, only one component of them can be resonated in the cavity. This technique reduces the output frequency of the laser and increases its stability.   Since this system has various applications in the spectroscopy, gas concentrations, air pollution measurements, investigation of atomic and molecular structure, and so on, system is believed to be simple and accurate. This design is made for the first time in Iran and its reliability has been tested by the measurement of the rubidium atom, and the result is given.

  19. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    International Nuclear Information System (INIS)

    Deri, R.J.


    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a ∼ 200 (micro)s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  20. Effective Linewidth of Semiconductor Lasers for Coherent Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Pang, Xiaodan; Schatz, Richard


    We discuss the implications of using monolithically integrated semiconductor lasers in high capacity optical coherent links suitable for metro applications, where the integration capabilities of semiconductor lasers make them an attractive candidate to reduce transceiver cost. By investigating...... semiconductor laser frequency noise profiles we show that carrier induced frequency noise plays an important role in system performance. We point out that, when such lasers are employed, the commonly used laser linewidth fails to estimate system performance, and we propose an alternative figure of merit that we...... name “Effective Linewidth”. We derive this figure of merit analytically, explore it by numerical simulations and experimentally validate our results by transmitting a 28 Gbaud DP-16QAM over an optical link. Our investigations cover the use of semiconductor lasers both in the transmitter side...

  1. Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling. (United States)

    Fordell, Thomas; Wallin, Anders E; Lindvall, Thomas; Vainio, Markku; Merimaa, Mikko


    Laser cooling of trapped atoms and ions in optical clocks demands stable light sources with precisely known absolute frequencies. Since a frequency comb is a vital part of any optical clock, the comb lines can be used for stabilizing tunable, user-friendly diode lasers. Here, a light source for laser cooling of trapped strontium ions is described. The megahertz-level stability and absolute frequency required are realized by stabilizing a distributed-feedback semiconductor laser to a frequency comb. Simple electronics is used to lock and scan the laser across the comb lines, and comb mode number ambiguities are resolved by using a separate, saturated absorption cell that exhibits easily distinguishable hyperfine absorption lines with known frequencies. Due to the simplicity, speed, and wide tuning range it offers, the employed technique could find wider use in precision spectroscopy.

  2. Laser method for simulating the transient radiation effects of semiconductor (United States)

    Li, Mo; Sun, Peng; Tang, Ge; Wang, Xiaofeng; Wang, Jianwei; Zhang, Jian


    In this paper, we demonstrate the laser simulation adequacy both by theoretical analysis and experiments. We first explain the basic theory and physical mechanisms of laser simulation of transient radiation effect of semiconductor. Based on a simplified semiconductor structure, we describe the reflection, optical absorption and transmission of laser beam. Considering two cases of single-photon absorption when laser intensity is relatively low and two-photon absorption with higher laser intensity, we derive the laser simulation equivalent dose rate model. Then with 2 types of BJT transistors, laser simulation experiments and gamma ray radiation experiments are conducted. We found good linear relationship between laser simulation and gammy ray which depict the reliability of laser simulation.

  3. Thermoreflectance spectroscopy—Analysis of thermal processes in semiconductor lasers (United States)

    Pierścińska, D.


    This review focuses on theoretical foundations, experimental implementation and an overview of experimental results of the thermoreflectance spectroscopy as a powerful technique for temperature monitoring and analysis of thermal processes in semiconductor lasers. This is an optical, non-contact, high spatial resolution technique providing high temperature resolution and mapping capabilities. Thermoreflectance is a thermometric technique based on measuring of relative change of reflectivity of the surface of laser facet, which provides thermal images useful in hot spot detection and reliability studies. In this paper, principles and experimental implementation of the technique as a thermography tool is discussed. Some exemplary applications of TR to various types of lasers are presented, proving that thermoreflectance technique provides new insight into heat management problems in semiconductor lasers and in particular, that it allows studying thermal degradation processes occurring at laser facets. Additionally, thermal processes and basic mechanisms of degradation of the semiconductor laser are discussed.

  4. Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian


    A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines .......A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines ....

  5. The Modulation Response of a Semiconductor Laser Amplifier

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, Antonio; Eisenstein, Gadi


    We present a theoretical analysis of the modulation response of a semiconductor laser amplifier. We find a resonance behavior similar to the well-known relaxation oscillation resonance found in semiconductor lasers, but of a different physical origin. The role of the waveguide (scattering) loss...... are analyzed. The nonlinear transparent waveguide, i.e. an amplifier saturated to the point where the stimulated emission balances the internal losses, is shown to be analytically solvable and is a convenient vehicle for gaining qualitative understanding of the dynamics of modulated semiconductor optical...

  6. Quantum confined laser devices optical gain and recombination in semiconductors

    CERN Document Server

    Blood, Peter


    The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...

  7. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out....... The studies presented in this work open novel possibilities for alternative and simple strategies for surpassing the state-of-the-art laser stabilization and for realizing active light sources involving collective emission from narrow-line atoms....

  8. Demonstration of a home projector based on RGB semiconductor lasers. (United States)

    Zhang, Yunfang; Dong, Hui; Wang, Rui; Duan, Jingyuan; Shi, Ancun; Fang, Qing; Liu, Yuliang


    In this paper, we demonstrate a high-definition 3-liquid-crystal-on-silicon (3-LCOS) home cinema projection system based on RGB laser source modules. Both red and blue laser modules are composed of an array of laser diodes, and the green laser is based on an optically pumped semiconductor laser. The illumination engine is designed to realize high energy efficiency, uniform illumination, and suppression of speckle noise. The presented laser projection system producing 1362 lm D65 light has a volume of about 450×360×160  mm3.

  9. Polarization feedback laser stabilization (United States)

    Esherick, P.; Owyoung, A.


    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  10. Bifurcation analysis of a semiconductor laser with filtered optical feedback

    NARCIS (Netherlands)

    Erzgraeber, H.; Krauskopf, B.; Lenstra, D.


    We study the dynamics and bifurcations of a semiconductor laser with delayed filtered optical feedback, where a part of the output of the laser reenters after spectral filtering. This type of coherent optical feedback is more challenging than the case of conventional optical feedback from a simple

  11. Synchronization scenario of two distant mutually coupled semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mirasso, Claudio; Heil, Tilmann


    We present numerical and experimental investigations of the synchronization of the coupling-induced instabilities in two distant mutually coupled semiconductor lasers. In our experiments, two similar Fabry-Perot lasers are coupled via their coherent optical fields. Our theoretical framework is ba...

  12. Active Stabilization of a Diode Laser Injection Lock


    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep


    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudde...

  13. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le


    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  14. Noise equivalent circuit of a semiconductor laser diode


    Harder, Christoph; Katz, Joseph; Margalit, S.; Shacham, J.; Yariv, A.


    The noise equivalent circuit of a semiconductor laser diode is derived from the rate equations including Langevin noise sources. This equivalent circuit allows a straightforward calculation of the noise and modulation characteristics of a laser diode combined with electronic components. The intrinsic junction voltage noise spectrum and the light intensity fluctuation of a current driven laser diode are calculated as a function of bias current and frequency.

  15. Active stabilization of a diode laser injection lock. (United States)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep


    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  16. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.


    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  17. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    International Nuclear Information System (INIS)

    Minaev, V P


    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  18. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser

    International Nuclear Information System (INIS)

    Garcia, E.; Soto, H.; Marquez, H.; Valles V, N.


    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  19. Ultrafast dynamics and laser action of organic semiconductors

    CERN Document Server

    Vardeny, Zeev Valy


    Spurred on by extensive research in recent years, organic semiconductors are now used in an array of areas, such as organic light emitting diodes (OLEDs), photovoltaics, and other optoelectronics. In all of these novel applications, the photoexcitations in organic semiconductors play a vital role. Exploring the early stages of photoexcitations that follow photon absorption, Ultrafast Dynamics and Laser Action of Organic Semiconductors presents the latest research investigations on photoexcitation ultrafast dynamics and laser action in pi-conjugated polymer films, solutions, and microcavities.In the first few chapters, the book examines the interplay of charge (polarons) and neutral (excitons) photoexcitations in pi-conjugated polymers, oligomers, and molecular crystals in the time domain of 100 fs-2 ns. Summarizing the state of the art in lasing, the final chapters introduce the phenomenon of laser action in organics and cover the latest optoelectronic applications that use lasing based on a variety of caviti...

  20. 980-nm 14-pin butterfly module dual-channel CW QW semiconductor laser for pumping (United States)

    Deng, Yun; Yan, Changling; Qu, Yi; Li, Hui; Wang, Yuxia; Gao, Xin; Qiao, Zhongliang; Li, Mei; Qu, Bowen; Lu, Peng; Bo, Baoxue


    Nowadays, with its mature progress, the 790 nm - 1000 nm wavelength semiconductor laser is widely used in the fields of laser machining, laser ranging, laser radar, laser imaging, laser anti-counterfeit, biomedical and etc. Best of all, the 980 nm wavelength laser has its widespread application in the pumping source of Er3+ -doped fiber amplifier, optic fiber gyroscopes and other devices. The output wavelength of the fiber amplifier which takes the 980 nm wavelength laser as its pumping source is between 1060 nm and 1550 nm. This type of laser has its extremely wide range of applications in optical communication and other fields. Moreover, some new application domains keep constantly being developed. The semiconductor laser with the dual-channel ridge wave guide and the 980 nm emission wavelength is presented in this paper. In our work, we fabricated Lasers with the using of multi-quantum well (MQW) wafer grew by MBE, and the PL-wavelength of the MQW was 970 nm. The standard photofabrication method and the inductively coupled plasma (ICP) etching technology are adopted in the process of making dual-channel ridge wave guide with the width of 4 μm and height of 830 nm. In the state of continuous work at room temperature, the laser could output the single mode beam of 70 mW stably under the current of 100 mA. The threshold current of the laser diode is 17 mA and the slope efficiency is 0.89 W/A. The 3 dB spectrum bandwidth of the laser beam is 0.2 nm. This laser outputs its beam by a pigtail fiber on which Bragg grating for frequency stabilization is carved. The laser diode, the tail fiber, and the built-in refrigeration and monitoring modules are sealed in a 14-pin butterfly packaging. It can be used directly as the pumping source of Er3+ - doped fiber amplifier or optic fiber gyroscopes.

  1. Molecular laser stabilization for LISA (United States)

    Halloin, Hubert; Acef, Ouali; Argence, Berengere; Jeannin, Olivier; Prat, Pierre; de Vismes, Eden; Plagnol, Eric; Brillet, Alain; Mondin, Linda; Berthon, Jacques; Turazza, Oscar


    The expected performance of LISA relies on two main technical challenges: the ability for the spacecrafts to precisely follow the free-flying masses and the outstanding precision of the phase shift measurement. This latter constraint requires frequency stabilized lasers and efficient numerical algorithms to account for the redundant, delayed noise propagation, thus cancelling laser phase noise by many orders of magnitude (TDI methods). Recently involved in the technical developments for LISA, the goal of our team at APC (France) is to contribute on these two subjects: frequency reference for laser stabilization and benchtop simulation of the interferometer. In the present design of LISA, two stages of laser stabilization are used (not accounting for the "post-processed" TDI algorithm): laser pre-stabilization on a frequency reference and lock on the ultra stable distance between spacecrafts (arm-locking). While the foreseen (and deeply studied) laser reference consists of a Fabry-Perot cavity, other techniques may be suitable for LISA or future metrology missions. In particular, locking to a molecular reference (namely iodine in the case of the LISA Nd:YAG laser) is an interesting alternative. It offers the required performance with very good long-term stability (absolute frequency reference) though the reference can be slightly tuned to account for arm-locking. This technique is currently being investigated by our team and optimized for LISA (compactness, vacuum compatibility, ease of use and initialization, etc.). A collaboration with a French laboratory (the SYRTE) had been started aiming to study a second improved technique consisting in inserting the iodine cell in a Fabry-Perot cavity. Ongoing results and prospects to increase the performance of the system are presented in the present article.

  2. Management of gingival hyperpigmentation by semiconductor diode laser

    Directory of Open Access Journals (Sweden)

    Geeti Gupta


    Full Text Available Gingival hyperpigmentation is caused by excessive deposition of melanin in the basal and suprabasal cell layers of the epithelium. Although melanin pigmentation of the gingiva is completely benign, cosmetic concerns are common, particularly in patients having a very high smile line (gummy smile. Various depigmentation techniques have been employed, such as scalpel surgery, gingivectomy, gingivectomy with free gingival autografting, cryosurgery, electrosurgery, chemical agents such as 90% phenol and 95% alcohol, abrasion with diamond burs, Nd:YAG laser, semiconductor diode laser, and CO 2 laser. The present case report describes simple and effective depigmentation technique using semiconductor diode laser surgery - for gingival depigmentation, which have produced good results with patient satisfaction.

  3. Synchronization properties of chaotic semiconductor lasers and applications to encryption (United States)

    Mirasso, Claudio R.; Vicente, Raúl; Colet, Pere; Mulet, Josep; Pérez, Toni


    We review the main properties of two unidirectionally coupled single-mode semiconductor lasers ( master-slave configuration). Our analysis is based on numerical simulations of a rate equations model. The emitter, or master laser, is assumed to be an external-cavity single-mode semiconductor laser subject to optical feedback that operates in a chaotic regime. The receiver, or slave laser, is similar to the emitter but can either operate in a chaotic regime, as the emitter (closed loop configuration), or without optical feedback and consequently under CW when it is uncoupled (open loop configuration). This configuration is one of the most simple and useful configuration for chaos based communication systems and data encryption. To cite this article: C.R. Mirasso et al., C. R. Physique 5 (2004).

  4. All semiconductor laser Doppler anemometer at 1.55 microm. (United States)

    Hansen, René Skov; Pedersen, Christian


    We report to our best knowledge the first all semiconductor Laser Doppler Anemometer (LIDAR) for wind speed determination. We will present the design and first experimental results on a focusing coherent cw laser Doppler anemometer for measuring atmospheric wind velocities in the 10 meters to 300 meters distance range. Especially, we will demonstrate that both the output power as well as the demanding coherence properties required from the laser source can be accomplished by an all semiconductor laser. Preliminary tests at a distance of 40 meters indicate a typical signal to noise ratio of 9 dB. This result is obtained at a clear day with an up-date rate of 12 Hz.

  5. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan


    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  6. Active stabilization of a diode laser injection lock

    Energy Technology Data Exchange (ETDEWEB)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)


    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  7. Active stabilization of a diode laser injection lock

    International Nuclear Information System (INIS)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep


    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  8. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Losev, S N; Soboleva, K K; Deryagin, A G; Kuchinskii, V I; Sibbett, W; Rafailov, E U


    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M 2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  9. Dispersion-managed semiconductor mode-locked ring laser. (United States)

    Resan, Bojan; Archundia, Luis; Delfyett, Peter J; Alphonse, Gerard


    A novel breathing-mode external sigma-ring-cavity semiconductor mode-locked laser is developed. Intracavity pulse compression and stretching produce linearly chirped pulses with an asymmetric exponential temporal profile. External dispersion compensation reduces the pulse duration to 274 fs (within 10% of the bandwidth limit).

  10. Dual-Wavelength Internal-Optically-Pumped Semiconductor Laser Diodes (United States)

    Green, Benjamin

    Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the

  11. Doping Optimization for High Efficiency in Semiconductor Diode Lasers and Amplifiers (United States)


    JOURNAL OF QUANTUM ELECTRONICS, VOL. , NO. , 1 Doping Optimization for High Efficiency in Semiconductor Diode Lasers and Amplifiers Dominic F...Siriani, Member, IEEE Abstract—A generalized theoretical formalism is derived that optimizes the doping profile of semiconductor diode lasers and amplifiers...Diode lasers, semiconductor lasers, semiconduc- tor optical amplifiers. I. INTRODUCTION ELECTRICALLY injected diode lasers have been demon-strated in many

  12. Absolute Distance Measurements with Tunable Semiconductor Laser

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44 ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  13. On the nonlinear theory of Fabry–Perot semiconductor lasers

    International Nuclear Information System (INIS)

    Noppe, Michael G


    Fundamentals of the nonlinear theory of Fabry–Perot semiconductor lasers have been developed, an integral part of which is natural linewidth theory. The formula for gain depending on the energy flux specifies the basic nonlinear effect in a laser. Necessary conditions for stimulated emission of the first and second kind are presented. Maxwell’s equations in the gain medium are applied to obtain equations for energy flux and for the description of non-linear phase effect. Based on the nonlinear theory, a number of experiments have been simulated; it indicates that the nonlinear theory is a new paradigm in laser theory. The nonlinear theory has provided recommendations for the development of lasers with improved properties, such as lasers with increased power and lasers with reduced natural linewidth. (paper)

  14. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten


    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of......, and ways to reduce high-frequency jitter is discussed. The main result of the thesis is a new design of the epitaxial structure that both enables simplified fabrication and improves the properties of monolithic lasers. 40 GHz monolithic lasers with record low jitter and high power is presented as well...

  15. Theoretical Study of Semiconductor Laser under Modulation (United States)

    Boukari, O.; Hassine, L.; Dherbecourt, P.; Latry, O.; Ketata, M.; Bouchriha, H.


    In this paper we present a description of the chirp induced in a direct modulated DFB laser. Our study is follows two different approaches. The first approach is based on a resolution of the rate equations of laser; the second, on a simulation of a heterodyne system with the Optisystem software. This study enables us to visualize the chirp in the RF field. We also characterize it according to the injection current i(t) parameters, such as the amplitude and the frequency of the modulation. The aim of our study is to choose the appropriate values of these parameters, in order to use the direct modulated DFB laser as an optical tunable source for Coherent Optical Frequency Domain Reflectometry technique (C-OFDR). We demonstrate that the optical frequency of these lasers can be controlled via the injection current i(t) and it can be linearly swept (chirped) over some tens of gigahertz.


    DEFF Research Database (Denmark)


    The present invention relates to a compact, reliable and low-cost coherent LIDAR (Light Detection And Ranging) system for remote wind-speed determination, determination of particle concentration, and/or temperature based on an all semiconductor light source and related methods. The present...... invention provides a coherent LIDAR system comprising a semiconductor laser for emission of a measurement beam of electromagnetic radiation directed towards a measurement volume for illumination of particles in the measurement volume, a reference beam generator for generation of a reference beam, a detector...

  17. Gain and Index Dynamics in Semiconductor Lasers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    changed character from bulk semiconductor to quantum wells and most recently to quantum dots. By quantum confinement of the carriers, the light-matter interactions can be significantly modified and the optical properties, including dynamics, can be engineered to match the required functionalities...... and specifications. We have measured ultrafast gain and index dynamics of SOAs in pump-and-probe experiments applying 100 fs pulses and a heterodyne detection scheme, where both amplitude and phase of the probe pulses are determined. The gain depletion, and associated index change, and the subsequent recovery afte...

  18. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.


    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  19. Design and Characterisation of III-V Semiconductor Nanowire Lasers (United States)

    Saxena, Dhruv

    The development of small, power-efficient lasers underpins many of the technologies that we utilise today. Semiconductor nanowires are promising for miniaturising lasers to even smaller dimensions. III-V semiconductors, such as Gallium Arsenide (GaAs) and Indium Phosphide (InP), are the most widely used materials for optoelectronic devices and so the development of nanowire lasers based on these materials is expected to have technologically significant outcomes. This PhD dissertation presents a comprehensive study of the design of III-V semiconductor nanowire lasers, with bulk and quantum confined active regions. Based on the design, various III-V semiconductor nanowire lasers are demonstrated, namely, GaAs nanowire lasers, GaAs/AlGaAs multi-quantum well (MQW) nanowire lasers and InP nanowire lasers. These nanowire lasers are shown to operate at room temperature, have low thresholds, and lase from different transverse modes. The structural and optoelectronic quality of nanowire lasers are characterised via electron microscopy and photoluminescence spectroscopic techniques. Lasing is characterised in all these devices by optical pumping. The lasing characteristics are analysed by rate equation modelling and the lasing mode(s) in these devices is characterised by threshold gain modelling, polarisation measurements and Fourier plane imaging. Firstly, GaAs nanowire lasers that operate at room temperature are demonstrated. This is achieved by determining the optimal nanowire diameter to reduce threshold gain and by passivating nanowires to improve their quantum efficiency (QE). High-quality surface passivated GaAs nanowires of suitable diameters are grown. The growth procedure is tailored to improve both QE and structural uniformity of nanowires. Room-temperature lasing is demonstrated from individual nanowires and lasing is characterised to be from TM01 mode by threshold gain modelling. To lower threshold even further, nanowire lasers with GaAs/AlGaAs coaxial multi

  20. Review on the dynamics of semiconductor nanowire lasers (United States)

    Röder, Robert; Ronning, Carsten


    Semiconductor optoelectronic devices have contributed tremendously to the technological progress in the past 50-60 years. Today, they also play a key role in nanophotonics stimulated by the inherent limitations of electronic integrated circuits and the growing demand for faster communications on chip. In particular, the field of ‘nanowire photonics’ has emerged including the search for coherent light sources with a nano-scaled footprint. The past decade has been dedicated to find suitable semiconductor nanowire (NW) materials for such nanolasers. Nowadays, such NW lasers consistently work at room temperature covering a huge spectral range from the ultraviolet down to the mid-infrared depending on the band gap of the NW material. Furthermore, first approaches towards the modification and optimization of such NW laser devices have been demonstrated. The underlying dynamics of the electronic and photonic NW systems have also been studied very recently, as they need to be understood in order to push the technological relevance of nano-scaled coherent light sources. Therefore, this review will first present novel measurement approaches in order to study the ultrafast temporal and optical mode dynamics of individual NW laser devices. Furthermore, these fundamental new insights are reviewed and deeply discussed towards the efficient control and adjustment of the dynamics in semiconductor NW lasers.

  1. Synchronous characterization of semiconductor microcavity laser beam. (United States)

    Wang, T; Lippi, G L


    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  2. Ten years optically pumped semiconductor lasers: review, state-of-the-art, and future developments (United States)

    Kannengiesser, Christian; Ostroumov, Vasiliy; Pfeufer, Volker; Seelert, Wolf; Simon, Christoph; von Elm, Rüdiger; Zuck, Andreas


    Optically Pumped Semiconductor Lasers - OPSLs - have been introduced in 2001. Their unique features such as power scalability and wavelength flexibility, their excellent beam parameters, power stability and reliability opened this pioneering technology access to a wide range of applications such as flow cytometry, confocal microscopy, sequencing, medical diagnosis and therapy, semiconductor inspection, graphic arts, forensic, metrology. This talk will introduce the OPSL principles and compare them with ion, diode and standard solid state lasers. It will revue the first 10 years of this exciting technology, its current state and trends. In particular currently accessible wavelengths and power ranges, frequency doubling, ultra-narrow linewidth possibilities will be discussed. A survey of key applications will be given.

  3. Laser cooling of a semiconductor by 40 kelvin. (United States)

    Zhang, Jun; Li, Dehui; Chen, Renjie; Xiong, Qihua


    Optical irradiation accompanied by spontaneous anti-Stokes emission can lead to cooling of matter, in a phenomenon known as laser cooling, or optical refrigeration, which was proposed by Pringsheim in 1929. In gaseous matter, an extremely low temperature can be obtained in diluted atomic gases by Doppler cooling, and laser cooling of ultradense gas has been demonstrated by collisional redistribution of radiation. In solid-state materials, laser cooling is achieved by the annihilation of phonons, which are quanta of lattice vibrations, during anti-Stokes luminescence. Since the first experimental demonstration in glasses doped with rare-earth metals, considerable progress has been made, particularly in ytterbium-doped glasses or crystals: recently a record was set of cooling to about 110 kelvin from the ambient temperature, surpassing the thermoelectric Peltier cooler. It would be interesting to realize laser cooling in semiconductors, in which excitonic resonances dominate, rather than in systems doped with rare-earth metals, where atomic resonances dominate. However, so far no net cooling in semiconductors has been achieved despite much experimental and theoretical work, mainly on group-III-V gallium arsenide quantum wells. Here we report a net cooling by about 40 kelvin in a semiconductor using group-II-VI cadmium sulphide nanoribbons, or nanobelts, starting from 290 kelvin. We use a pump laser with a wavelength of 514 nanometres, and obtain an estimated cooling efficiency of about 1.3 per cent and an estimated cooling power of 180 microwatts. At 100 kelvin, 532-nm pumping leads to a net cooling of about 15 kelvin with a cooling efficiency of about 2.0 per cent. We attribute the net laser cooling in cadmium sulphide nanobelts to strong coupling between excitons and longitudinal optical phonons (LOPs), which allows the resonant annihilation of multiple LOPs in luminescence up-conversion processes, high external quantum efficiency and negligible background

  4. Noise equivalent circuit of a semiconductor laser diode (United States)

    Harder, C.; Margalit, S.; Yariv, A.; Katz, J.; Shacham, J.


    A small-signal model of a semiconductor laser is extended to include the effects of intrinsic noise by adding current and voltage noise sources. The current noise source represents the shot noise of carrier recombination, while the voltage noise source represents the random process of simulated emission. The usefulness of the noise equivalent circuit is demonstrated by calculating the modulation and noise characteristics of a current-driven diode as a function of bias current and frequency.

  5. Nonlinear gain suppression in semiconductor lasers due to carrier heating

    International Nuclear Information System (INIS)

    Willatzen, M.; Uskov, A.; Moerk, J.; Olesen, H.; Tromborg, B.; Jauho, A.P.


    We present a simple model for carrier heating in semiconductor lasers, from which the temperature dynamics of the electron and hole distributions can be calculated. Analytical expressions for two new contributions to the nonlinear gain coefficient ε are derived, which reflect carrier heating due to stimulated emission and free carrier absorption. In typical cases, carrier heating and spectral holeburning are found to give comparable contributions to nonlinear gain suppression. The results are in good agreement with recent measurements on InGaAsP laser diodes. (orig.)

  6. Return-map for semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Sabbatier, H.


    It is well known that a semiconductor laser exposed to moderate optical feedback and biased near threshold exhibits the phenomenon of low-frequency intensity fluctuations (LFF). While this behavior can be numerically simulated using the so-called Lang-Kobayshi model, the interpretation...... recently. These results give insight into the behavior observed on a short time-scale, but do not explain some of the pronounced features of the LFF seen for moderate feedback levels; namely the stepwise build-up and its characteristic time of about 15 steps close to the solitary laser threshold. We...

  7. Field-glass range finder with a semiconductor laser (United States)

    Iwanejko, Leszek; Jankiewicz, Zdzislaw; Jarocki, Roman; Marczak, Jan


    This paper presents the project of a laboratory model of a field-glasses range-finger. The optical transmitter of the device contains a commercial pulse semiconductor laser which generates IR wavelength around 905 nm. Some of the technical parameters of this device are: a maximum range of up to 3 km; an accuracy of +/- 5 m, divergence of a laser beam of 1 mrad; a repetition rate of 1 kHz. Dichroic elements of the receiver ensure a capability of an optimization of a field of view, without the worsening of luminance and size of an observation field.

  8. Modes in light wave propagating in semiconductor laser (United States)

    Manko, Margarita A.


    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  9. Toward continuous-wave operation of organic semiconductor lasers. (United States)

    Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya


    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.

  10. Toward continuous-wave operation of organic semiconductor lasers (United States)

    Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya


    The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042

  11. Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry. (United States)

    Keeley, James; Freeman, Joshua; Bertling, Karl; Lim, Yah L; Mohandas, Reshma A; Taimre, Thomas; Li, Lianhe H; Indjin, Dragan; Rakić, Aleksandar D; Linfield, Edmund H; Davies, A Giles; Dean, Paul


    The effects of optical feedback (OF) in lasers have been observed since the early days of laser development. While OF can result in undesirable and unpredictable operation in laser systems, it can also cause measurable perturbations to the operating parameters, which can be harnessed for metrological purposes. In this work we exploit this 'self-mixing' effect to infer the emission spectrum of a semiconductor laser using a laser-feedback interferometer, in which the terminal voltage of the laser is used to coherently sample the reinjected field. We demonstrate this approach using a terahertz frequency quantum cascade laser operating in both single- and multiple-longitudinal mode regimes, and are able to resolve spectral features not reliably resolved using traditional Fourier transform spectroscopy. We also investigate quantitatively the frequency perturbation of individual laser modes under OF, and find excellent agreement with predictions of the excess phase equation central to the theory of lasers under OF.

  12. Introduction to semiconductor lasers for optical communications an applied approach

    CERN Document Server

    Klotzkin, David J


    This textbook provides a thorough and accessible treatment of semiconductor lasers from a design and engineering perspective. It includes both the physics of devices as well as the engineering, designing, and testing of practical lasers. The material is presented clearly with many examples provided. Readers of the book will come to understand the finer aspects of the theory, design, fabrication, and test of these devices and have an excellent background for further study of optoelectronics. This book also: ·         Provides a multi-faceted approach to explaining the theories behind semiconductor lasers, utilizing mathematical examples, illustrations, and written theoretical presentations ·         Offers a balance of relevant optoelectronic topics, with specific attention given to distributed feedback lasers, growth techniques, and waveguide cavity design ·         Provides a summary of every chapter, worked examples, and problems for readers to solve ·         Empasizes...

  13. Delay induced high order locking effects in semiconductor lasers (United States)

    Kelleher, B.; Wishon, M. J.; Locquet, A.; Goulding, D.; Tykalewicz, B.; Huyet, G.; Viktorov, E. A.


    Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular, provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers, the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales are of very different orders, and mutual resonances do not occur. Optical feedback endows the system with a third time scale: the external cavity repetition rate. This is typically much longer than the device cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and lead to spontaneous mode-locking. Two different laser types-—a quantum dot based device and a quantum well based device—are analysed experimentally yielding qualitatively identical dynamics. A rate equation model is also employed showing an excellent agreement with the experimental results.

  14. Transient thermal analysis of semiconductor diode lasers under pulsed operation (United States)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.


    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  15. Semiconductor Laser Complex Dynamics: From Optical Neurons to Optical Rogue Waves (United States)


    AFRL-AFOSR-UK-TR-2017-0009 Semiconductor laser complex dynamics: from optical neurons to optical rogue waves Christina Masoller UNIVERSIDAD...11-02-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 30 Sep 2014 to 29 Sep 2016 4. TITLE AND SUBTITLE Semiconductor laser complex dynamics...dynamics of semiconductor lasers with two main goals: i) to advance our understanding of nonlinear and stochastic phenomena and ii) to exploit the

  16. Metal-Semiconductor Reaction Phenomena and Microstructural Investigations of Laser Induced Regrowth of Silicon on Insulators. (United States)


    tion. 3 _.34 5.0 LASER ASSISTED DIFFUSION AND ACTIVATION OF TIN FROM AN SnO 2/SiO 2 SOURCE The diffusion of impurities into a semiconductor substrate...11111.0 2 25 l22 1111111 . 12L5 .4 51 METAL- SEMICONDUCTOR REACTION PHENOMENA AND MICROSTRUCTURAL INVESTIGATIONS OF LASER INDUCED REGROWTH OF SILICON... Semiconductor Reaction Phenomena and Final Report Microstructural Investigations of Laser-Induced _Jan. I_9 t0_njani92 _ Regrowth of Silicon on

  17. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...... application in MLLs. Improved QW laser performance was demonstrated using the asymmetric barrier layer approach. The analysis of the gain characteristics showed that the high population inversion beneficial for noise reduction cannot be achieved for 10 GHz QW MLLs and would have required lowering the modal....... This work has considered the role of the combined ultrafast gain and absorption dynamics in MLLs as a main factor limiting laser performance. An independent optimization of MLL amplifier and saturable absorber active materials was performed. Two promising approaches were considered: quantum dot (QD...

  18. Fast physical random bit generation with chaotic semiconductor lasers (United States)

    Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter


    Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.

  19. Flexible optical clock recovery utilizing a multi-function semiconductor fiber laser (United States)

    Feng, H.; Zhao, W.; Xie, X. P.; Qian, F. C.; Wang, W.; Huang, X.; Hu, H.


    We demonstrate a multi-function fiber laser based on cross-gain modulation in a semiconductor optical amplifier (SOA). Depending on the input signals, the fiber cavity can emit a continuous wave (CW) laser, mode-locked pulses, or act as a clock recovery device. With an extra CW light overcoming the pattern effect in the clock recovery process, a 10-GHz synchronous clock sequence with <0.1 power fluctuation and <120-fs timing jitter is extracted from the transmission return-to-zero data stream. We further analyze the recovered clock properties as a function of the input signal, and find that the clock recovery system presents good stability over a large range of input signal characteristics. The multi-function fiber laser exhibits the advantages of compact configuration and low cost, which is very convenient and attractive for optical communications and signal processing.

  20. Modeling bidirectionally coupled single-mode semiconductor lasers

    International Nuclear Information System (INIS)

    Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.


    We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power

  1. Antimicrobial efficacy of semiconductor laser irradiation on implant surfaces. (United States)

    Kreisler, Matthias; Kohnen, Wolfgang; Marinello, Claudio; Schoof, Jürgen; Langnau, Ernst; Jansen, Bernd; d'Hoedt, Bernd


    This study was conducted to investigate the antimicrobial effect of an 809-nm semiconductor laser on common dental implant surfaces. Sandblasted and acid-etched (SA), plasma-sprayed (TPS), and hydroxyapatite-coated (HA) titanium disks were incubated with a suspension of S. sanguinis (ATCC 10556) and subsequently irradiated with a gallium-aluminum-arsenide (GaAlAs) laser using a 600-microm optical fiber with a power output of 0.5 to 2.5 W, corresponding to power densities of 176.9 to 884.6 W/cm2. Bacterial reduction was calculated by counting colony-forming units on blood agar plates. Cell numbers were compared to untreated control samples and to samples treated with chlorhexidine digluconate (CHX). Heat development during irradiation of the implants placed in bone blocks was visualized by means of shortwave thermography. In TPS and SA specimens, laser irradiation led to a significant bacterial reduction at all power settings. In an energy-dependent manner, the number of viable bacteria was reduced by 45.0% to 99.4% in TPS specimens and 57.6% to 99.9% in SA specimens. On HA-coated disks, a significant bacterial kill was achieved at 2.0 W (98.2%) and 2.5 W (99.3%) only (t test, P < .05). For specimens treated with CHX, the bacterial counts were reduced by 99.99% in TPS and HA-coated samples and by 99.89% in SA samples. The results of the study indicate that the 809-nm semiconductor laser is capable of decontaminating implant surfaces. Surface characteristics determine the necessary power density to achieve a sufficient bactericidal effect. The bactericidal effect, however, was lower than that achieved by a 1-minute treatment with 0.2% CHX. The rapid heat generation during laser irradiation requires special consideration of thermal damage to adjacent tissues. No obvious advantage of semiconductor laser treatment over conventional methods of disinfection could be detected in vitro.

  2. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper


    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  3. Nonlinear Optics and Nonlinear Dynamics in Semiconductor Lasers Subject to External Optical Injection

    National Research Council Canada - National Science Library

    Simpson, Thomas


    ...) arrays, and analysis of chaotic dynamics that can be induced by optical injection. Under external optical injection, all semiconductor lasers tested, conventional edge emitting Fabry Perot laser diodes, VCSELs, and distributed feedback (DFB...

  4. Photon statistics and bunching of a chaotic semiconductor laser (United States)

    Guo, Yanqiang; Peng, Chunsheng; Ji, Yulin; Li, Pu; Guo, Yuanyuan; Guo, Xiaomin


    The photon statistics and bunching of a semiconductor laser with external optical feedback are investigated experimentally and theoretically. In a chaotic regime, the photon number distribution is measured and undergoes a transition from Bose-Einstein distribution to Poisson distribution with increasing the mean photon number. The second order degree of coherence decreases gradually from 2 to 1. Based on Hanbury Brown-Twiss scheme, pronounced photon bunching is observed experimentally for various injection currents and feedback strengths, which indicates the randomness of the associated emission light. Near-threshold injection currents and strong feedback strengths modify exactly the laser performance to be more bunched. The macroscopic chaotic dynamics is confirmed simultaneously by high-speed analog detection. The theoretical results qualitatively agree with the experimental results. It is potentially useful to extract randomness and achieve desired entropy source for random number generator and imaging science by quantifying the control parameters.

  5. The dynamical complexity of optically injected semiconductor lasers

    International Nuclear Information System (INIS)

    Wieczorek, S.; Krauskopf, B.; Simpson, T.B.; Lenstra, D.


    This report presents a modern approach to the theoretical and experimental study of complex nonlinear behavior of a semiconductor laser with optical injection-an example of a widely applied and technologically relevant forced nonlinear oscillator. We show that the careful bifurcation analysis of a rate equation model yields (i) a deeper understanding of already studied physical phenomena, and (ii) the discovery of new dynamical effects, such as multipulse excitability. Different instabilities, cascades of bifurcations, multistability, and sudden chaotic transitions, which are often viewed as independent, are in fact logically connected into a consistent web of bifurcations via special points called organizing centers. This theoretical bifurcation analysis has predictive power, which manifests itself in good agreement with experimental measurements over a wide range of parameters and diversity of dynamics. While it is dealing with the specific system of an optically injected laser, our work constitutes the state-of-the-art in the understanding and modeling of a nonlinear physical system in general

  6. Laser oscillator with a wavelength stabilizing device

    International Nuclear Information System (INIS)

    Terada, T.; Yamaguchi, I.


    The laser tube constantly maintains a desired uniform wavelength of the laser beam. At least one of the two mirror members of the laser tube is movable, and is coupled magnetically with an electromagnetic stabilizing mechanism. The magnetic power of the electromagnetic mechanism is adjustable so that the distance between the two mirror members can be maintained constant irrespective of temperature changes and the like. As a result, a laser beam having a constant desired uniform wavelength is obtained. (auth)

  7. Packaged semiconductor laser optical phase locked loop for photonic generation, processing and transmission of microwave signals

    DEFF Research Database (Denmark)

    Langley, L.N.; Elkin, M.D.; Edege, C.


    In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitte...

  8. Spatial and Spectral Brightness Enhancement of High Power Semiconductor Lasers (United States)

    Leidner, Jordan Palmer

    The performance of high-power broad-area diode lasers is inhibited by beam filamentation induced by free-carrier-based self-focusing. The resulting beam degradation limits their usage in high-brightness, high-power applications such as pumping fiber lasers, and laser cutting, welding, or marking. Finite-difference propagation method simulations via RSoft's BeamPROP commercial simulation suite and a custom-built MATLAB code were used for the study and design of laser cavities that suppress or avoid filamentation. BeamPROP was used to design a tapered, passive, multi-mode interference cavity for the creation of a self-phase-locking laser array, which is comprised of many single-mode gain elements coupled to a wide output coupler to avoid damage from local high optical intensities. MATLAB simulations were used to study the effects of longitudinal and lateral cavity confinement on lateral beam quality in conventional broad-area lasers. This simulation was expanded to design a laser with lateral gain and index prescription that is predicted to operate at or above state-of-the-art powers while being efficiently coupled to conventional telecom single-mode optical fibers. Experimentally, a commercial broad-area laser was coupled in the far-field to a single-mode fiber Bragg grating to provide grating-stabilized single-mode laser feedback resulting in measured spectral narrowing for efficient pump absorption. Additionally a 19 GHz-span, spatially resolved, self-heterodyne measurement was made of a broad-area laser to study the evolution/devolution of the mode content of the emitted laser beam with increasing power levels.

  9. Blue semiconductor laser research at the University of Florida (United States)

    Zory, P. S.


    In October 1988, a research program was initiated at the University of Florida (UF) with rhe goal of developing epitaxial diode structures capable of efficient light emission in the blue-green region of the electromagnetic spectrum. Devices such as semiconductor lasers fabricated from such material would be of considerable value in areas such as high density optical storage and high definition color displays. Although diode lasers have not yet been demonstrated, considerable progress has been made in showing that ZnSe is a very good candidate for room temperature diode laser action at 470 nm. For example, room temperature photo pumped lasing was demonstrated for the first time in epitaxial thin films of ZnSe grown by MBE and MOCVD on GaAs substrates. Although GaAs is very absorbing at 470 nm, the actual waveguide losses were small leading to the possibility of developing efficient, antiguide diode light emitters. Also demonstrated were ZnSe:N/ZnSe:Cl p-n homojunction light emitting diodes fabricated using a novel nitrogen atom beam doping procedure during MBE growth. These and other results achieved in the UF blue diode laser program will be reviewed.

  10. Timing and amplitude jitter in a gain-switched multimode semiconductor laser (United States)

    Wada, Kenji; Kitagawa, Naoaki; Matsukura, Satoru; Matsuyama, Tetsuya; Horinaka, Hiromichi


    The differences in timing jitter between a gain-switched single-mode semiconductor laser and a gain-switched multimode semiconductor laser are examined using rate equations that include Langevin noise. The timing jitter in a gain-switched multimode semiconductor laser is found to be effectively suppressed by a decrease in the coherence time of the amplified spontaneous emission (ASE) based on a broad bandwidth of multimode oscillation. Instead, fluctuations in the ASE cause amplitude jitter in the pulse components of the respective modes. A pulse train of gain-switched pulses from a multimode semiconductor laser with timing jitter is equivalently simulated by assuming a high spontaneous emission factor and a short coherence time of the ASE in the single-mode semiconductor laser rate equations.

  11. Mode-locked semiconductor laser for long and absolute distance measurement based on laser pulse repetition frequency sweeping: a comparative study between three types of lasers (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, Alexandre; Rebordão, J. M.


    In this work we present a study on three types of semiconductor mode-locked lasers as possible sources for a high precision absolute distance metrology measurement concept based on pulse repetition frequency (PRF) sweep. In this work, we evaluated one vertical emission laser and two transversal emission sources. The topology of the gain element is quantum-well, quantum-dot and quantum-dash, respectively. Only the vertical emission laser has optical pump, whilst the others operate with electric pumping. The quantum-dash laser does not have a saturable absorber in its configuration but relies on a dispersion compensating fiber for generating pulses. The bottleneck of vertical emission laser is his high power density pump (4.5W/165μm), increasing the vulnerability of damaging the gain element. The other lasers, i.e., the single (quantum-dash) and double section (quantum-dot) lasers present good results either in terms of applicability to the metrology system or in terms of robustness. Using RF injection on the gain element, both lasers show good PRF stabilization results (better than σy(10ms) = 10-9 ) which is a requirement for the mentioned metrology technique.

  12. A design of atmospheric laser communication system based on semiconductor laser (United States)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang


    This paper uses semiconductor laser with 905nm wave length as light source to design a set of short-distance atmospheric laser communication system. This system consists of laser light source, launch modulation circuit, detector, receiving and amplifying circuit and so on. First, this paper analyzes the factors which lead to the decrease of luminous power of laser communication link under the applicable environment-specific sea level, then this paper elicits the relationship of luminous power of receiving optical systems and distance, slant angle and divergence angle which departures from the laser beam axis by using gaussian beam geometric attenuation mode. Based on the two reasons that PPM modulation theory limits the transmission rate of PPM modulation, that is, this paper makes an analysis on repetition frequency and pulse width of laser, makes theoretical calculation for typical parameters of semiconductor laser and gets the repetition frequency which is 10KHz, pulse width is50ns, the transmission rate is 71.66 Kb/s, at this time, modulation digit is 9; then this paper selects frame synchronization code of PPM modulation and provides implementation method for test; lastly, programs language based on Verilog, uses the FPGA development board to realize PPM modulation code and does simulation test and hardware test. This paper uses APD as the detector of receiving and amplifying circuit. Then this paper designs optical receiving circuit such as amplifying circuit, analog-digital conversion circuit based on the characteristics of receipt.

  13. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser; Construccion de un amplificador optico de semiconductor a partir de un laser de semiconductor Fabry-Perot

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.; Soto, H.; Marquez, H.; Valles V, N. [Departamento de Electronica y Telecomunicaciones, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, Baja California (Mexico)


    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  14. All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Klinkhammer, Sönke; Christiansen, Mads Brøkner


    Organic semiconductor lasers are of particular interest as tunable visible laser light sources. For bringing those to market encapsulation is needed to ensure practicable lifetimes. Additionally, fabrication technologies suitable for mass production must be used. We introduce all-polymer chips...... comprising encapsulated distributed feedback organic semiconductor lasers. Several chips are fabricated in parallel by thermal nanoimprint of the feedback grating on 4? wafer scale out of poly(methyl methacrylate) (PMMA) and cyclic olefin copolymer (COC). The lasers consisting of the organic semiconductor...

  15. Laser-induced cluster-ions from thin foils of metals and semiconductors

    International Nuclear Information System (INIS)

    Fuerstenau, N.; Hillenkamp, F.


    Interaction of focused, very high-energy pulses of UV laser light of some 10 8 W cm -2 with thin foils of metals and semiconductors induces solid-gas phase-transitions and ionization of microvolumes of the target material. Mass-spectrometric analysis of the microplasma reveals singly ionized cluster-ions as final products of the interaction processes. Cluster-ion distributions are measured and compared with those obtained in thermal evaporation, high-frequency spark and SIMS experiments. The distributions are shown to be characteristic of the investigated material. While some of their features can be understood in terms of theories of cluster stability, other qualities, also observed in SIMS and evaporation experiments, are thought to be due to the partially non-equilibrium character of the solid-gas phase-transition. Furthermore, estimations concerning parameters of the laser-induced microplasma can be drawn from the distributions. (orig.)

  16. Deep-red semiconductor monolithic mode-locked lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kong, L.; Bajek, D.; White, S. E.; Forrest, A. F.; Cataluna, M. A., E-mail: [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, H. L.; Pan, J. Q. [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Wang, X. L.; Cui, B. F. [Key Laboratory of Opto-electronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124 (China); Ding, Y. [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom)


    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications.

  17. Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers


    Soriano, Miguel C.; Garcia-Ojalvo, Jordi; Mirasso, Claudio R.; Fischer, Ingo


    Complex phenomena in photonics, in particular, dynamical properties of semiconductor lasers due to delayed coupling, are reviewed. Although considered a nuisance for a long time, these phenomena now open interesting perspectives. Semiconductor laser systems represent excellent test beds for the study of nonlinear delay-coupled systems, which are of fundamental relevance in various areas. At the same time delay-coupled lasers provide opportunities for photonic applications. In this review an i...

  18. Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O' Malley, Martin W.; Zutavern, Fred J.


    High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

  19. Improved performance of semiconductor laser tracking frequency gauge (United States)

    Kaplan, D. M.; Roberts, T. J.; Phillips, J. D.; Reasenberg, R. D.


    We describe new results from the semiconductor-laser tracking frequency gauge, an instrument that can perform sub-picometer distance measurements and has applications in gravity research and in space-based astronomical instruments proposed for the study of light from extrasolar planets. Compared with previous results, we have improved incremental distance accuracy by a factor of two, to 0.9 pm in 80 s averaging time, and absolute distance accuracy by a factor of 20, to 0.17 μm in 1000 s. After an interruption of operation of a tracking frequency gauge used to control a distance, it is now possible, using a nonresonant measurement interferometer, to restore the distance to picometer accuracy by combining absolute and incremental distance measurements.

  20. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.


    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  1. Improved low-power semiconductor diode lasers for photodynamic therapy in veterinary medicine (United States)

    Lee, Susanne M.; Mueller, Eduard K.; Van de Workeen, Brian C.; Mueller, Otward M.


    Cryogenically cooling semiconductor diode lasers provides higher power output, longer device lifetime, and greater monochromaticity. While these effects are well known, such improvements have not been quantified, and thus cryogenically operated semiconductor lasers have not been utilized in photodynamic therapy (PDT). We report quantification of these results from laser power meter and photospectrometer data. The emission wavelengths of these low power multiple quantum well semiconductor lasers were found to decrease and become more monochromatic with decreasing temperature. Significant power output improvements also were obtained at cryogenic temperatures. In addition, the threshold current, i.e. the current at which lasing begins, decreased with decreasing temperature. This lower threshold current combined with the increased power output produced dramatically higher device efficiencies. It is proposed that cryogenic operation of semiconductor diode lasers will reduce the number of devices needed to produce the requisite output for many veterinary and medical applications, permitting significant cost reductions.

  2. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.


    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III-V semiconductor quantum wells. The group III-V semiconductor can include AlSb, AlAs, Aln, AlP, BN, GaSb, GaAs, GaN, GaP, InSb, InAs, InN, and InP, and group III-V ternary semiconductors alloys such as AlxGai.xAs. The methods can results in a blue shifting of about 20 meV to 350 meV, which can be used for example to make group III-V semiconductor quantum well laser diodes with an emission that is orange or yellow. Methods of making semiconductor quantum well laser diodes and semiconductor quantum well laser diodes made therefrom are also provided.

  3. Portable semiconductor laser system to stop internal bleeding (United States)

    Rediker, Robert H.; Durville, Frederic M.; Cho, George; Boll, James H.


    One significant cause of death during a sever trauma (gun wound or stab wound) is internal bleeding. A semiconductor diode laser system has been used in in vitro studies of cauterizing veins and arteries to stop bleeding. The conditions of laparoscopic surgery, including bleeding conditions (blood flow and pressure), are simulated. Results have been obtained both with and without using a hemostat (e.g., forceps) to temporarily stop the bleeding prior to the cautery. With the hemostat and a fiber-coupled 810-nm laser, blood vessels of up to 5 mm diameter were cauterized with an 8 W output from the fiber. Great cautions must be used in extrapolating from these in vitro results, since the exact conditions of bleeding in a living being are impossible to exactly reproduce in a laboratory in-vitro experiment. In a living being, when blood flow stops the cessation of nourishment to the vessels results in irreversible physiological changes. Also, the blood itself is different from blood in a living being because an anti-clotting agent (heparin) was added in order to inhibit the blood's natural tendency to coagulate.

  4. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal


    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser...

  5. Study of the effects of semiconductor laser irradiation on peripheral nerve injury (United States)

    Xiong, G. X.; Li, P.


    In order to study to what extent diode laser irradiation effects peripheral nerve injury, the experimental research was made on rabbits. Experimental results show that low-energy semiconductor laser can promote axonal regeneration and improve nervous function. It is also found that simultaneous exposure of the injured peripheral nerve and corresponding spinal segments to laser irradiation may achieve the most significant results.

  6. Cubic zirconia as a high-quality facet coating for semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chin, A.K.; Satyanarayan, A.; Zarrabi, J.H.; Vetterling, W.


    In this paper we describe the properties of high-quality, semiconductor laser facet coatings based on yttria-stabilizied cubic zirconia (90-m% ZrO/sub 2//10-m% Y/sub 2/O/sub 3/). We have found that cubic zirconia films can be reproducibly deposited by electron-beam evaporation with an index of refraction of 1.98 at 6328 A, almost ideal for use as a single-layer antireflection coating for GaAs/GaAlAs-based lasers. ZrO/sub 2/ has a monoclinic crystal structure at room temperature, but changes to tetragonal, hexagonal, and cubic phases upon heating to higher temperatures. However, the addition of the Y/sub 2/O/sub 3/ stabilizes ZrO/sub 2/ in the cubic form, thus allowing electron-beam deposition of thin films of this material to be more controllable and reproducible without the usual addition of oxygen into the vacuum chamber during deposition. Preliminary aging tests of high-power GaAs/GaAlAs lasers show that cubic zirconia films suppress the photo-enhanced oxidation of laser facets that degrades device performance.

  7. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera (United States)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning


    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  8. Low power lasers on genomic stability. (United States)

    Trajano, Larissa Alexsandra da Silva Neto; Sergio, Luiz Philippe da Silva; Stumbo, Ana Carolina; Mencalha, Andre Luiz; Fonseca, Adenilson de Souza da


    Exposure of cells to genotoxic agents causes modifications in DNA, resulting to alterations in the genome. To reduce genomic instability, cells have DNA damage responses in which DNA repair proteins remove these lesions. Excessive free radicals cause DNA damages, repaired by base excision repair and nucleotide excision repair pathways. When non-oxidative lesions occur, genomic stability is maintained through checkpoints in which the cell cycle stops and DNA repair occurs. Telomere shortening is related to the development of various diseases, such as cancer. Low power lasers are used for treatment of a number of diseases, but they are also suggested to cause DNA damages at sub-lethal levels and alter transcript levels from DNA repair genes. This review focuses on genomic and telomere stabilization modulation as possible targets to improve therapeutic protocols based on low power lasers. Several studies have been carried out to evaluate the laser-induced effects on genome and telomere stabilization suggesting that exposure to these lasers modulates DNA repair mechanisms, telomere maintenance and genomic stabilization. Although the mechanisms are not well understood yet, low power lasers could be effective against DNA harmful agents by induction of DNA repair mechanisms and modulation of telomere maintenance and genomic stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Optical label switching in telecommunication using semiconductor lasers, amplifiers and electro-absorption modulators

    DEFF Research Database (Denmark)

    Chi, Nan; Christiansen, Lotte Jin; Jeppesen, Palle


    We demonstrate all-optical label encoding and updating for an orthogonally labeled signal in combined IM/FSK modulation format utilizing semiconductor lasers, semiconductor optical amplifiers and electro-absorption modulators. Complete functionality of a network node including two-hop transmissio...

  10. Power stabilized CO2 gas transport laser

    International Nuclear Information System (INIS)

    Foster, J.D.; Kirk, R.F.; Moreno, F.E.; Ahmed, S.A.


    The output power of a high power (1 kW or more) CO 2 gas transport laser is stabilized by flowing the gas mixture over copper plated baffles in the gas channel during operation of the laser. Several other metals may be used instead of copper, for example, nickel, manganese, palladium, platinum, silver and gold. The presence of copper in the laser gas circuit stabilizes output power by what is believed to be a compensation of the chemical changes in the gas due to the cracking action of the electrical discharge which has the effect of diminishing the capactiy of the carbon dioxide gas mixture to maintain the rated power output of the laser. (U.S.)

  11. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy

    International Nuclear Information System (INIS)

    Li Nian-Qiang; Pan Wei; Yan Lian-Shan; Luo Bin; Xu Ming-Feng; Tang Yi-Long


    Symbolic transfer entropy (STE) is employed to quantify the dominant direction of information flow between two chaotic-semiconductor-laser time series. The information flow in unidirectionally and bidirectionally coupled systems was analyzed systematically. Numerical results show that the dependence relationship can be revealed if there exists any coupling between two chaotic semiconductor lasers. More importantly, in both unsynchronized and good synchronization regimes, the STE can be used to quantify the direction of information flow between the lasers, although the former case leads to a better identification. The results thus establish STE as an effective tool for quantifying the direction of information flow between chaotic-laser-based systems

  12. Extracting physical properties of arbitrarily shaped laser-doped micro-scale areas in semiconductors

    International Nuclear Information System (INIS)

    Heinrich, Martin; Kluska, Sven; Hameiri, Ziv; Hoex, Bram; Aberle, Armin G.


    We present a method that allows the extraction of relevant physical properties such as sheet resistance and dopant profile from arbitrarily shaped laser-doped micro-scale areas formed in semiconductors with a focused pulsed laser beam. The key feature of the method is to use large laser-doped areas with an identical average number of laser pulses per area (laser pulse density) as the arbitrarily shaped areas. The method is verified using sheet resistance measurements on laser-doped silicon samples. Furthermore, the method is extended to doping with continuous-wave lasers by using the average number of passes per area or density of passes

  13. Development of a Single-Frequency Narrow Linewidth 1.5mm Semiconductor Laser Suitable for Spaceflight Operation Project (United States)

    National Aeronautics and Space Administration — In this Phase II proposal we plan to design and develop a semiconductor, low phase/frequency noise, single-frequency, external cavity semiconductor laser (ECL)...

  14. Robust laser frequency stabilization by serrodyne modulation. (United States)

    Kohlhaas, Ralf; Vanderbruggen, Thomas; Bernon, Simon; Bertoldi, Andrea; Landragin, Arnaud; Bouyer, Philippe


    We report the relative frequency stabilization of a distributed feedback erbium-doped fiber laser on an optical cavity by serrodyne frequency shifting. A correction bandwidth of 2.3 MHz and a dynamic range of 220 MHz are achieved, which leads to a strong robustness against large disturbances up to high frequencies. We demonstrate that serrodyne frequency shifting reaches a higher correction bandwidth and lower relative frequency noise level compared to a standard acousto-optical modulator based scheme. Our results allow us to consider promising applications in the absolute frequency stabilization of lasers on optical cavities.

  15. Stabilized lasers for advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Kwee, P; Seifert, F; Frede, M; Kracht, D; Puncken, O; Schulz, B; Veltkamp, C; Wagner, S; Wessels, P; Winkelmann, L; King, P; Savage, R L Jr


    Second generation gravitational wave detectors require high power lasers with more than 100 W of output power and with very low temporal and spatial fluctuations. To achieve the demanding stability levels required, low noise techniques and adequate control actuators have to be part of the high power laser design. In addition feedback control and passive noise filtering is used to reduce the fluctuations in the so-called prestabilized laser system (PSL). In this paper, we discuss the design of a 200 W PSL which is under development for the Advanced LIGO gravitational wave detector and will present the first results. The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described

  16. All semiconductor laser Doppler anemometer at 1.55 μm

    DEFF Research Database (Denmark)

    Hansen, Rene Skov; Pedersen, Christian


    We report to our best knowledge the first all semiconductor Laser Doppler Anemometer (LIDAR) for wind speed determination. We will present the design and first experimental results on a focusing coherent cw laser Doppler anemometer for measuring atmospheric wind velocities in the 10 meters to 300...

  17. Development of semiconductor laser based Doppler lidars for wind-sensing applications

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian


    We summarize the progress we have made in the development of semiconductor laser (SL) based Doppler lidar systems for remote wind speed and direction measurements. The SL emitter used in our wind-sensing lidar is an integrated diode laser with a tapered (semiconductor) amplifier. The laser source...... based wind sensors have a strong potential in a number of applications such as wind turbine control, wind resource assessment, and micrometeorology (e.g. as alternative to the construction of meteorological towers with anemometers and wind vanes)....

  18. A study on the optical parts for a semiconductor laser module

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jun-Girl; Lee, Dong-Kil; Kim, Yang-Gyu; Lee, Kwang-Hoon; Park, Young-Sik [Korea Photonics Technology Institute, Gwangju (Korea, Republic of); Jang, Kwang-Ho [Hanvit Optoline, Gwangju (Korea, Republic of); Kang, Seung-Goo [COSET, Gwangju (Korea, Republic of)


    A semiconductor laser module consists of a LD (laser diode) chip that generates a laser beam, two cylindrical lenses to collimate the laser beam, a high-reflection mirror to produce a large output by collecting the laser beam, a collimator lens to guide the laser beam to an optical fiber and a protection filter to block reflected laser light that might damage the LD chip. The cylindrical lenses used in a semiconductor laser module are defined as FACs (fast axis collimators) and SACs (slow axis collimators) and are attached to the system module to control the shape of the laser beam. The FAC lens and the SAC lens are made of a glass material to protect the lenses from thermal deformation. In addition, they have aspheric shapes to improve optical performances. This paper presents a mold core grinding process for an asymmetrical aspheric lens and a GMP (glass molding press), what can be used to make aspheric cylindrical lenses for use as FACs or SACs, and a protection filter made by using IAD (ion-beam-assisted deposition). Finally, we developed the aspheric cylindrical lenses and the protection filter for a 10-W semiconductor laser module.

  19. Periodic dark pulse emission induced by delayed feedback in a quantum well semiconductor laser

    Directory of Open Access Journals (Sweden)

    L. Li


    Full Text Available We report the experimental observation of periodic dark pulse emission in a quantum-well semiconductor laser with delayed optical feedback. We found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse was also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser.

  20. Semiconductor laser with a birefringent external cavity for information systems with wavelength division multiplexing

    Energy Technology Data Exchange (ETDEWEB)

    Paranin, V D; Matyunin, S A; Tukmakov, K N [S.P. Korolev Samara State Aerospace University, Samara (Russian Federation)


    The spectrum of a semiconductor laser with a birefringent external Gires – Tournois cavity is studied. The generation of two main laser modes corresponding to the ordinary and extraordinary wave resonances is found. It is shown that the radiation spectrum is controlled with a high energy efficiency without losses for spectral filtration. The possibility of using two-mode lasing in optical communication systems with wavelength division multiplexing is shown. (control of laser radiation parameters)

  1. Game Analysis of Determinants of Stability of Semiconductor Modular Production Networks

    Directory of Open Access Journals (Sweden)

    Wei He


    Full Text Available In today’s rapidly changing environment, semiconductor manufacturers compete more in the area of modular production networks. However, the instability of semiconductor modular production networks can to a large extent lead to the failure of these networks. The aim of this paper is to discuss the significance and explore the maintenance of the stability of these semiconductor modular production networks. Firstly, this paper qualitatively and quantitatively defines the stability of semiconductor modular production networks. Based on this, by establishing game models, this paper analyzes the influence mechanism of the main factors: external market fluctuation, the internal benefit allocation mechanism, and opportunism, which can jeopardize the stability of these networks. We find that: the greater the benefits a member enterprise derives from the common benefits, the more likely it is the member enterprise will not exit the modular production network; the adaptive ability of the networks to the external environment is closely related to the stability of the modular production networks; the supervision and punishment in networks can be substituted for each other and the level of supervision, punishment and trust can exert great influence on the stability of semiconductor modular production networks. Lastly, we propose some specific suggestions.

  2. Theory of semiconductor lasers from basis of quantum electronics to analyses of the mode competition phenomena and noise

    CERN Document Server

    Yamada, Minoru


    This book provides a unified and complete theory for semiconductor lasers, covering topics ranging from the principles of classical and quantum mechanics to highly advanced levels for readers who need to analyze the complicated operating characteristics generated in the real application of semiconductor lasers.   The author conducts a theoretical analysis especially on the instabilities involved in the operation of semiconductor lasers. A density matrix into the theory for semiconductor lasers is introduced and the formulation of an improved rate equation to help understand the mode competition phenomena which cause the optical external feedback noise is thoroughly described from the basic quantum mechanics. The derivation of the improved rate equation will allow readers to extend the analysis for the different types of semiconductor materials and laser structures they deal with.   This book is intended not only for students and academic researchers but also for engineers who develop lasers for the market, ...

  3. Trends in packaging of high power semiconductor laser bars

    Energy Technology Data Exchange (ETDEWEB)

    Solarz, R.W.; Emanuel, M.A.; Skidmore, J.A.; Freitas, B.L.; Krupke, W.F.


    Several different approaches to packaging high power diode laser bars for pumping solid state lasers or for direct diode laser applications are examined. The benefit and utility of each package is strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made.

  4. Study on the characteristic and application of DFB semiconductor lasers under optical injection for microwave photonics (United States)

    Pu, Tao; Wang, Wei wei


    In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.

  5. Accuracy of pulsed laser atom probe tomography for compound semiconductor analysis

    International Nuclear Information System (INIS)

    Müller, M; Gault, B; Smith, G D W; Grovenor, C R M


    Atom probe tomography has recently experienced a renaissance, strongly promoted by the revival of pulsed laser atom probe. The technique is now widely employed to study semiconductor materials at the nanometre level. This paper summarises some aspects of the accuracy of pulsed laser atom probe relevant to semiconductor applications. It is shown that laser pulsing can reduce the lateral resolution due to thermally stimulated surface migration. Moreover, the commonly observed cluster ions can undergo field dissociation which results in an increased probability of ion loss due to pile-up effects at the detector. Field dissociation can also induce a new type of local magnification that increases spatial inaccuracy in the data reconstruction. These effects can be reduced by an appropriate choice of experimental parameters. Despite these difficulties, the atom probe technique can provide unparalleled insight into the nanoscale structure and chemistry of a wide range of semiconductor devices.

  6. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo


    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized.......We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  7. Thermal stability of semiconductor sulfide phases in air

    International Nuclear Information System (INIS)

    Tsiulyanv, I.I.; Lyalikova, K.Y.; Zhitar, V.F.


    This paper investigates the semiconductor sulfide phases Zn 3 In 2 S 6 , Zn 3 Ga 2 S 6 , and Zn 3 GaInS 6 , produced by chemical transport reactions in a sealed space. A typical derivatogram is shown. Up to 873 K no weight changes appear in the TG curve. As indium atoms are replaced by gallium atoms the kinetic oxidation parameters of the sulfide phases change regularly, and they correlate with the calculated heat of atomization, which characterizes bond strength. The dependence of the temperature of the start of oxidation on composition shows that zinc thiogallate is the most stable when heated in air

  8. A review of energy bandgap engineering in III V semiconductor alloys for mid-infrared laser applications (United States)

    Yin, Zongyou; Tang, Xiaohong


    Semiconductor lasers emitting in mid-infrared (IR) range, 2-5 μm, have many important applications in semiconductor industries, military, environmental protection, telecommunications, molecular spectroscopy, biomedical surgery and researches. Different designs of the reactive regions in mid-IR laser structures have been investigated for achieving high performance devices. In this article, semiconductor mid-IR lasers with double heterostructure, quantum well, quantum cascade, quantum wire, quantum dash and quantum dot active regions have been reviewed. The performance of the lasers with these different active regions and the development of the newly emerging III-V-N materials for mid-IR applications have been discussed in details.

  9. Bistability and self-oscillations effects in a polariton-laser semiconductor microcavity

    International Nuclear Information System (INIS)

    Cotta, E A; Matinaga, F M


    We report an experimental observation of polaritonic optical bistability of the laser emission in a planar semiconductor microcavity with a 100 0 A GaAs single quantum well in the strong-coupling regime. The bistability curves show crossings that indicate a competition between a Kerr-like effect induced by the polariton population and thermal effects. Associated with the bistability, laser-like emission occurs at the bare cavity mode

  10. Mode-Locking in Broad-Area Semiconductor Lasers Enhanced by Picosecond-Pulse Injection


    Kaiser, J; Fischer, I; Elsasser, W; Gehrig, E; Hess, O


    We present combined experimental and theoretical investigations of the picosecond emission dynamics of broad-area semiconductor lasers (BALs). We enhance the weak longitudinal self-mode-locking that is inherent to BALs by injecting a single optical 50-ps pulse, which triggers the output of a distinct regular train of 13-ps pulses. Modeling based on multimode Maxwell-Bloch equations illustrates how the dynamic interaction of the injected pulse with the internal laser field efficiently couples ...

  11. Prospects and merits of metal-clad semiconductor lasers from nearly UV to far IR


    Khurgin, Jacob B.


    Using metal-clad (or plasmonic) waveguide structures in semiconductor lasers carries a promise of reduced size, threshold, and power consumption. This promise is put to a rigorous theoretical test, that takes into account increased waveguide loss, Auger recombination, and Purcell enhancement of spontaneous recombination. The conclusion is that purported benefits of metal waveguides are small to nonexistent for all the band-to-band and intersubband lasers operating from UV to Mid-IR range, wit...

  12. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating (United States)

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin


    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.

  13. Atomic stabilization in superintense laser fields

    International Nuclear Information System (INIS)

    Gavrila, Mihai


    Atomic stabilization is a highlight of superintense laser-atom physics. A wealth of information has been gathered on it; established physical concepts have been revised in the process; points of contention have been debated. Recent technological breakthroughs are opening exciting perspectives of experimental study. With this in mind, we present a comprehensive overview of the phenomenon. We discuss the two forms of atomic stabilization identified theoretically. The first one, 'quasistationary (adiabatic) stabilization' (QS), refers to the limiting case of plane-wave monochromatic radiation. QS characterizes the fact that ionization rates, as calculated from single-state Floquet theory, decrease with intensity (possibly in an oscillatory manner) at high values of the field. We present predictions for QS from various forms of Floquet theory: high frequency (that has led to its discovery and offers the best physical insight), complex scaling, Sturmian, radiative close coupling and R-matrix. These predictions all agree quantitatively, and high-accuracy numerical results have been obtained for hydrogen. Predictions from non-Floquet theories are also discussed. Thereafter, we analyse the physical origin of QS. The alternative form of stabilization, 'dynamic stabilization' (DS), is presented next. This expresses the fact that the ionization probability at the end of a laser pulse of fixed shape and duration does not approach unity as the peak intensity is increased, but either starts decreasing with the intensity (possibly in an oscillatory manner), or flattens out at a value smaller than unity. We review the extensive research done on one-dimensional models, that has provided valuable insights into the phenomenon; two- and three-dimensional models are also considered. Full three-dimensional Coulomb calculations have encountered severe numerical handicaps in the past, and it is only recently that a comprehensive mapping of DS could be made for hydrogen. An adiabatic

  14. Tests and Analysis of Electromagnetic Models for Semiconductor-Metal Quantum-Well Lasers (United States)

    Shih, Meng-Mu


    This work tests the proposed electromagnetic models for quantum-well lasers by using several materials of semiconductors and metals. Different combinations of semiconductors and metals can generate various wavelengths and mode-couplings in such semiconductor waveguide structures with built-in metal-gratings. The numerical results of these models are computed by the photonic approach and verified by the optical approach. Even for the weak mode-coupling cases, the numerical results computed by both approaches have close values. Numerical results with post-analysis can summarize how the key parameters, such as grating geometry, well thickness, and layer thickness, affect the mode-couplings. The above results can be further interpreted by physics intuition and fundamental concepts so as to provide insights into the modeling and design of lasers for more applications.

  15. High gain semiconductor optical amplifier — Laser diode at visible wavelength

    KAUST Repository

    Shen, Chao


    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  16. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor

    NARCIS (Netherlands)

    Serov, Alexander; Steenbergen, Wiendelt; de Mul, F.F.M.


    We utilized a complimentary metal oxide semiconductor video camera for fast f low imaging with the laser Doppler technique. A single sensor is used for both observation of the area of interest and measurements of the interference signal caused by dynamic light scattering from moving particles inside

  17. A theoretical analysis for gigabit/second pulse code modulation of semiconductor lasers

    DEFF Research Database (Denmark)

    Danielsen, Magnus


    Investigation of the rate equations of a semiconductor laser suggests that bit rates of 3-4 Gbit/s can be achieved. Delay, ringing transients, and charge-storage effects can be removed by adjusting the dc-bias current and the peak and width of the current pulse to values prescribed by simple...

  18. Study on biological effect on mice and use safety of 830 nm semiconductor laser

    International Nuclear Information System (INIS)

    Li Keqiu; Li Jian; Miao Xuhong; Liu Shujuan; Li Guang


    Objective: To study biological effect on mice by 830 nm semiconductor laser in different dosage, and determine the optimal irradiating dosage by observing and analyzing the immunoregulation and cytogenetical damage of mice after irradiation. Methods: The spleen and thymus areas of Kunming mice were irradiated in vitro by 830 nm semiconductor laser of 30 mW for 5 min, 10 min and 20 min per day respectively, then the blood samples were collected from orbital vein. Further, the spleen tissue and sternum marrow were collected soon after the mice were killed. Afterwards, IgG, dopamine, serotonin in serum were detected respectively. Besides these, the rate of lymphocyte transformation and the rate of micronuclei in marrow polychromatic erythrocytes were also determined. Results: With the extending of irradiating time, the detected factors changed differently. Statistically, there were differences in IgG concentration and the rate of lymphocyte transformation between 10 min group, 20 min group and control group respectively, but no difference between each experimental group were found. /compare with control group, serotonin concentration in 10 min group increased, and there was statistical difference between these two groups, while there was no difference in dopamine concentration among each group. Besides these, the rate of micronuclei in 20 min group increased. Conclusion: In this study, irradiation by semiconductor laser for appropriate time can improve immuno function of mice, but irradiation in high dosage will result in the damage of genetic material. The optimal time of irradiation by 830 nm semiconductor laser was 10 min. (authors)

  19. A transportable methane stabilized He-Ne laser (United States)

    Akimoto, Yoshiaki


    The performance of a transportable methane stabilized He-Ne laser system, developed for a wavelength-optical frequency standard according to the 1983 Comite Consultatif pour la Definition du Metier, is discussed. An offset-locked laser system using a phase comparison technique is described which is used to evaluate the stabilized laser system. A frequency stability of 2.5 x 10 to the -12th tau exp -1/2, and a resettability of 1 x 10 to the -11th, are estimated for the stabilized laser system.

  20. Laser beam shaping optical system design methods and their application in edge-emitting semiconductor laser-based LIDAR systems (United States)

    Serkan, Mert

    LIDAR (Light Detection And Ranging) systems are employed for numerous applications such as remote sensing, military applications, optical data storage, display technology, and material processing. Furthermore, they are superior to other active remote sensing tools such as RADAR systems, considering their higher accuracy and more precise resolution due to their much shorter wavelengths and narrower beamwidth. Several types of lasers can be utilized as the radiation source of several LIDAR systems. Semiconductor laser-based LIDAR systems have several advantages such as low cost, compactness, broad range of wavelengths, and high PRFs (Pulse Repetition Frequency). However, semiconductor lasers have different origins and angles of divergence in the two transverse directions, resulting in the inherent astigmatism and elliptical beam shape. Specifically, elliptical beam shape is not desirable for several laser-based applications including LIDAR systems specifically designed to operate in the far-field region. In this dissertation, two mirror-based and two lens-based beam shapers are designed to circularize, collimate, and expand an edge-emitting semiconductor laser beam to a desired beam diameter for possible application in LIDAR systems. Additionally, most laser beams including semiconductor laser beams have Gaussian irradiance distribution. For applications that require uniform illumination of an extended target area, Gaussian irradiance distribution is undesirable. Therefore, a specific beam shaper is designed to transform the irradiance distribution from Gaussian to uniform in addition to circularizing, collimating, and expanding the semiconductor laser beam. For the design of beam shapers, aperture sizes of the surfaces are preset for desired power transmission and allowed diffraction level, surface parameters of the optical components and the distances between these surfaces are determined. Design equations specific to these beam shaping optical systems are

  1. Compact 2050 nm Semiconductor Diode Laser Master Oscillator, Phase I (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to develop DFB laser master oscillators at the novel wavelength of 12050 nm. Two prototypes will be built, tested, and delivered ....

  2. Application of laser spot cutting on spring contact probe for semiconductor package inspection (United States)

    Lee, Dongkyoung; Cho, Jungdon; Kim, Chan Ho; Lee, Seung Hwan


    A packaged semiconductor has to be electrically tested to make sure they are free of any manufacturing defects. The test interface, typically employed between a Printed Circuit Board and the semiconductor devices, consists of densely populated Spring Contact Probe (SCP). A standard SCP typically consists of a plunger, a barrel, and an internal spring. Among these components, plungers are manufactured by a stamping process. After stamping, plunger connecting arms need to be cut into pieces. Currently, mechanical cutting has been used. However, it may damage to the body of plungers due to the mechanical force engaged at the cutting point. Therefore, laser spot cutting is considered to solve this problem. The plunger arm is in the shape of a rectangular beam, 50 μm (H) × 90 μm (W). The plunger material used for this research is gold coated beryllium copper. Laser parameters, such as power and elapsed time, have been selected to study laser spot cutting. Laser material interaction characteristics such as a crater size, material removal zone, ablation depth, ablation threshold, and full penetration are observed. Furthermore, a carefully chosen laser parameter (Etotal = 1000mJ) to test feasibility of laser spot cutting are applied. The result show that laser spot cutting can be applied to cut SCP.

  3. Electrical Spin Injection and Threshold Reduction in a Semiconductor Laser (United States)

    Holub, M.; Shin, J.; Saha, D.; Bhattacharya, P.


    A spin-polarized vertical-cavity surface-emitting laser is demonstrated with electrical spin injection from an Fe/Al0.1Ga0.9As Schottky tunnel barrier. Laser operation with a spin-polarized current results in a maximum threshold current reduction of 11% and degree of circular polarization of 23% at 50 K. A cavity spin polarization of 16.8% is estimated from spin-dependent rate equation analysis of the observed threshold reduction.

  4. Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate (United States)

    Mazur, Eric [Concord, MA; Shen, Mengyan [Arlington, MA


    The present invention generally provides semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.

  5. Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate (United States)

    Mazur, Eric; Shen, Mengyan


    The present invention generally provides a semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.

  6. Structure and stability of surface passivation layers on semiconductor materials (United States)

    Kluth, George Jonathan

    The structure and stability of passivating layers on silicon surfaces have been examined on the molecular level using the methods of surface science. Hydrogen-terminated surfaces were prepared through wet chemical treatment with ammonium fluoride. The oxidation of these surfaces was studied using high resolution electron energy loss spectroscopy (HREELS), which showed that oxidation occurred through oxygen insertion in silicon backbonds, while the hydrogen termination remained intact. Oxygen was observed in both the surface layer and bulk layers, suggesting that initial oxidation was not restricted to layer-by-layer growth. Because the surface did oxidize with time, other passivating treatments, specifically self-assembled monolayers, were examined. The thermal stability of alkylsiloxane monolayers on oxidized Si(100) was studied in vacuum. Using HREELS it was found that the monolayers were stable up to 740 K. Above that temperature, they began to decompose through cleavage of C-C bonds, resulting in a reduction in chain length. The thermal stability of alkyl monolayers, which form directly on silicon without requiring an oxide layer, was also examined. These monolayers were stable to 620 K, significantly lower than the alkylsiloxane monolayers. Desorption was accompanied by the appearance of Si-H bonds, suggesting that desorption took place through a hydrogen elimination reaction. The thermal behavior of these two different monolayers highlighted the importance of bonding between the surface and the chains. The bonding of alkylsiloxane monolayers was examined in more detail by forming them on both SiOsb2 and Sisb3Nsb4. It was found that cross linking between adjacent head groups was critical to the formation of high quality monolayers. Bonding between the chains and the surface was of secondary importance, but played a key role in the initial stages of growth, when nucleation occurred. The chemical stability of alkylsiloxane monolayers on oxidized silicon was also

  7. Doppler wind lidar using a MOPA semiconductor laser at stable single-frequency operation

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian


    A compact master-oscillator power-amplifier semiconductor laser (MOPA-SL) is a good candidate for a coherent light source (operating at 1550 nm) in a Doppler wind Lidar. The MOPA-SL requires two injection currents: Idfb for the distributed-feedback (DFB) laser section (master oscillator) and Iamp...... for the tapered amplifier section. The specified maximum current values are 0.7 A and 4.0 A for Idfb and Iamp. Although the MOPA-SL has been proven capable of producing single-frequency CW output beam, stable operation at this spectral condition has also been known to highly depend on the drive currents...... to the laser. This was done by observing the spectral characteristic of the laser using an optical spectrum at different drive current combinations. When using the laser for a Doppler wind Lidar application, a combination of (Idfb, Iamp) which is close to the center of an identified stable single...

  8. Laser frequency stabilization and large detuning by Doppler-free ...

    Indian Academy of Sciences (India)

    We present results of a study of frequency stabilization of a diode laser ( = 780 nm) using the Doppler-free dichroic lock (DFDL) technique and its use for laser cooling of atoms. Quantitative measurements of frequency stability were performed and the Allan variance was found to be 6.9 × 10−11 for an averaging time of 10 ...

  9. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers (United States)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula


    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  10. Fully digital frequency stabilization of IR fiber-coupled laser

    Czech Academy of Sciences Publication Activity Database

    Jedlička, Petr; Lazar, Josef; Číp, Ondřej


    Roč. 77, č. 6 (2006), 063111:1-5 ISSN 0034-6748 R&D Projects: GA AV ČR IAA200650504; GA MŠk(CZ) LC06007 Institutional research plan: CEZ:AV0Z20650511 Keywords : DFB laser * laser stabilization * dissociated iodine * linear absorption Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.541, year: 2006

  11. Effects of gain medium parameters on the sensitivity of semiconductor ring laser gyroscope (United States)

    Khandelwal, Arpit; Hossein, Y. S.; Syed, Azeemuddin; Sayeh, M. R.; Nayak, Jagannath


    The semiconductor gain medium has rich non-linear dynamics and several internal parameters influence the generation and propagation of light through it. With the gain medium being an integral part of semiconductor ring laser gyroscope (SRLG) cavity, its parameters affect the overall performance of the gyro. The effect is further elevated in integrated SRLG due to stronger confinement of charge carriers and photons leading to a more intense interaction between them. In this paper, we evaluate the influence of semiconductor gain medium parameters such as gain saturation coefficient, linewidth, internal quantum efficiency etc. on the sensitivity of bulk fiber-optic SRLG. Ways of controlling these parameters and optimizing their values to enhance the performance of SRLG are also discussed.

  12. Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers. (United States)

    Boldt, Klaus; Bruns, Oliver T; Gaponik, Nikolai; Eychmüller, Alexander


    Due to their greater photostability compared to established organic fluorescence markers, semiconductor quantum dots provide an attractive alternative for the biolabeling of living cells. On the basis of a comparative investigation using differently sized thiol-stabilized CdTe nanocrystals in a variety of commonly used biological buffers, a method is developed to quantify the stability of such a multicomponent system. Above a certain critical size, the intensity of the photoluminescence of the nanocrystals is found to diminish with pseudo-zero-order kinetics, whereas for specific combinations of particle size, ligand, and buffer there appears to be no decay below this critical particle size, pointing out the necessity for thorough investigations of this kind in the view of prospect applications of semiconductor nanocrystals in the area of biolabeling.

  13. Reduced Auger Recombination in Mid-Infrared Semiconductor Lasers (POSTPRINT) (United States)


    image of AlSb /GaSb superlattices produced prior to laser growth. InxGa1xSb structures are also produced to calibrate in- dium composition in the quantum...HR-XRD H2H rocking curves of AlSb /GaSb superlattices along with calculated diffraction pattern, represent- ing faithful reproduction material

  14. Theory of Passively Mode-Locked Photonic Crystal Semiconductor Lasers

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper


    We report the first theoretical investigation of passive mode-locking in photonic crystal mode-locked lasers. Related work has investigated coupled-resonator-optical-waveguide structures in the regime of active mode-locking [Opt. Express 13, 4539-4553 (2005)]. An extensive numerical investigation...

  15. A High Reliability Frequency Stabilized Semiconductor Laser Source, Phase II (United States)

    National Aeronautics and Space Administration — Ultrastable, narrow linewidth, high reliability MOPA sources are needed for high performance LIDARs in NASA for, wind speed measurement, surface topography and earth...

  16. Phase stability and ordering in diluted magnetic III-V semiconductors

    Czech Academy of Sciences Publication Activity Database

    Drchal, Václav; Kudrnovský, Josef; Turek, Ilja; Máca, František; Weinberger, P.


    Roč. 84, č. 18 (2004), s. 1889-1905 ISSN 1478-6435 R&D Projects: GA AV ČR IAA1010203; GA MŠk OC P5.30 Institutional research plan: CEZ:AV0Z1010914 Keywords : diluted ferromagnetic semiconductors * phase stability * Ga-Mn-As alloy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.167, year: 2004

  17. Hair removal using an 810 nm gallium aluminum arsenide semiconductor diode laser: A preliminary study. (United States)

    Williams, R M; Gladstone, H B; Moy, R L


    Laser hair removal is a popular treatment method for removing unwanted hair. Several laser systems are available for laser hair removal. The gallium aluminum arsenide semiconductor diode (GAASD) laser is one of the newer laser modalities to be studied. To evaluate the efficacy of the GAASD laser system in removing unwanted hair. Twenty-six patients with brown or black hair growth were treated with the GAASD laser at fluences of 20-80 J/cm2. Hair regrowth was measured 4 weeks after the first treatment, 4 weeks after the second treatment, 4 weeks after the third treatment, and 4 weeks, 8 weeks, and 8 months after the fourth treatment. GAASD laser treatment resulted in hair growth delay in all treated regions. Repeated laser treatments did not produce an increased number of vellus hairs. The percentage of hair reduction fluctuated between 5% and 13% with the second or third treatment averaging the highest percent reduction. In all cases, the percentage of hair reduction of the treatment sites evaluated at 8 months after the fourth treatment was less than both the second and third treatments (highest average percent reduction) and the fourth (last) treatment.

  18. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    Directory of Open Access Journals (Sweden)

    Takashi Nakayama


    Full Text Available We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001 with experimental results. In addition, the Ga diffusion length on GaAs(001 during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed.

  19. N.G. Basov and early works on semiconductor lasers at P.N. Lebedev Physics Institute

    International Nuclear Information System (INIS)

    Eliseev, P G


    A survey is presented of works on creation and investigation of semiconductor lasers during 1957 – 1977 at the P.N. Lebedev Physics Institute. Many of these works were initiated by N.G. Basov, starting from pre-laser time, when N.G. Basov and his coworkers formulated principal conditions of creation of lasers on interband transitions in semiconductors. Main directions of further works were diode lasers based on various materials and structures, their characteristics of output power, high-speed operation and reliability. (special issue devoted to the 90th anniversary of n.g. basov)

  20. Influence of Carrier Cooling on the Emission Dynamics of Semiconductor Microcavity Lasers (United States)

    Hilpert, M.; Hofmann, M.; Ellmers, C.; Oestreich, M.; Schneider, H. C.; Jahnke, F.; Koch, S. W.; Rühle, W. W.; Wolf, H. D.; Bernklau, D.; Riechert, H.


    We investigate the influence of carrier relaxation on the emission dynamics of a semiconductor microcavity laser. The structure is optically excited with energies of 1.477 down to 1.346 eV (resonant excitation). The stimulated emission dynamics clearly becomes faster for decreasing excitation energy and the influence of the light hole on the emission dynamics is demonstrated. Theoretical calculations reproduce the results only if the nonequilibrium carrier dynamics is treated on the basis of a microscopic model.

  1. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Christiansen, Peter Leth


    Near-threshold operation of a semiconductor laser exposed to moderate optical feedback may lead to low-frequency fluctuations. In the same region, a kink is observed in the light-current characteristic. Here it is demonstrated that these nonlinear phenomena are predicted by a noise driven multimode...... traveling-wave model. The dynamics of the low-frequency fluctuations are explained qualitatively in terms of bistability through an iterative description...

  2. Spiking Excitable Semiconductor Laser as Optical Neurons: Dynamics, Clustering and Global Emerging Behaviors (United States)


    N. Rubido, J. Tiana-Alsina, M. C. Torrent , and C. Masoller, Distinguishing signatures of deter- minism and stochasticity in spiking complex systems...Cohen, A. Aragoneses, D. Rontani, M. C. Torrent , C. Masoller and D. J. Gauthier, Multidimensional subwavelength position sensing using a...semiconductor laser with optical feedback, Opt. Lett. 38, 4331 (2013). Download 10. A. Aragoneses, T. Sorrentino, S. Perrone, D. J. Gauthier, M. C. Torrent and C

  3. Theoretical description of spontaneous pulse formation in a semiconductor microring laser

    International Nuclear Information System (INIS)

    Gil, L.; Columbo, L.


    We theoretically describe the spontaneous formation of stable pulses in a GaAs bulk semiconductor microring laser. These pulses are obtained without active or passive mode locking. We show that the parameter regime associated with their existence is limited on one side by the phase instability of the continuous-wave solution, and on the other side by the failure of Lamb's mode-locking criterion. Bistability between the continuous-wave solution and the spontaneous pulses is observed.

  4. Modelling laser-induced phase transformations in semiconductors

    Czech Academy of Sciences Publication Activity Database

    Gatskevich, E.; Přikryl, Petr; Ivlev, G.


    Roč. 76, č. 1 (2007), s. 65-72 ISSN 0378-4754. [MODELLING 2005. Plzeň, 04.07.2005-08.07.2005] R&D Projects: GA ČR GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : laser-induced phase transitions * moving boundary problem * non-equilibrium phase changer Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007

  5. Electroluminescence Analysis by Tilt Polish Technique of InP-Based Semiconductor Lasers (United States)

    Ichikawa, Hiroyuki; Sasaki, Kouichi; Hamada, Kotaro; Yamaguchi, Akira


    We developed an effective electroluminescence (EL) analysis method to specify the degraded region of InP-based semiconductor lasers. The EL analysis method is one of the most important methods for failure analysis. However, EL observation was difficult because opaque electrodes surround an active layer. A portion of each electrode had to be left intact for wiring to inject the current. Thus, we developed a partial polish technique for the bottom electrode. Tilt polish equipment with a rotating table was introduced; a flat polished surface and a sufficiently wide remaining portion of the bottom electrode were obtained. As a result, clear EL from the back surface of the laser was observed.

  6. Width-tunable pulse laser via optical injection induced gain modulation of semiconductor optical amplifiers (United States)

    Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan


    A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.

  7. Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser. (United States)

    Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy


    We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.

  8. Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors. (United States)

    Akhavan, Omid; Ghaderi, Elham; Shirazian, Soheil A


    Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ∼ 1 eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of neurons than glia. The higher hNSC differentiation on the rGONM than the reduced GO (rGO) was assigned to the stimulation effects of the low-energy photoexcited electrons injected from the rGONM semiconductors into the cells, while the high-energy photoelectrons of the rGO (as a zero band-gap semiconductor) could suppress the cell proliferation and/or even cause cell damages. Using conventional heating of the culture media up to ∼ 43 °C (the temperature typically reached under the laser irradiation), no significant differentiation was observed in dark. This further confirmed the role of photoelectrons in the hNSC differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Improvements to tapered semiconductor MOPA laser design and testing (United States)

    Beil, James A.; Shimomoto, Lisa; Swertfeger, Rebecca B.; Misak, Stephen M.; Campbell, Jenna; Thomas, Jeremy; Renner, Daniel; Mashanovitch, Milan; Leisher, Paul O.; Liptak, Richard W.


    This paper expands on previous work in the field of high power tapered semiconductor amplifiers and integrated master oscillator power amplifier (MOPA) devices. The devices are designed for watt-class power output and single-mode operation for free-space optical communication. This paper reports on improvements to the fabrication of these devices resulting in doubled electrical-to-optical efficiency, improved thermal properties, and improved spectral properties. A newly manufactured device yielded a peak power output of 375 mW continuous-wave (CW) at 3000 mA of current to the power amplifier and 300 mA of current to the master oscillator. This device had a peak power conversion efficiency of 11.6% at 15° C, compared to the previous device, which yielded a peak power conversion efficiency of only 5.0% at 15° C. The new device also exhibited excellent thermal and spectral properties, with minimal redshift up to 3 A CW on the power amplifier. The new device shows great improvement upon the excessive self-heating and resultant redshift of the previous device. Such spectral improvements are desirable for free-space optical communications, as variation in wavelength can degrade signal quality depending on the detectors being used and the medium of propagation.

  10. Spontaneous exchange of leader-laggard relationship in mutually coupled synchronized semiconductor lasers. (United States)

    Kanno, Kazutaka; Hida, Takuya; Uchida, Atsushi; Bunsen, Masatoshi


    We investigate the instantaneous behavior of synchronized temporal wave forms in two mutually coupled semiconductor lasers numerically and experimentally. The temporal wave forms of two lasers are synchronized with a propagation delay time, with one laser oscillating in advance of the other, known as the leader-laggard relationship. The leader-laggard relationship can be determined by measuring the cross-correlation between the two temporal wave forms with the propagation delay time. The leader can be identified when the optical carrier frequency of the leader laser is higher than that of the other laser. However, spontaneous exchange between the leader and laggard lasers can be observed in low-frequency fluctuations by short-term cross-correlation measurements, even for a fixed initial optical frequency detuning. The spontaneous exchange of the leader-laggard relationship originates from alternation of partial optical frequency locking between the two lasers. This observation is analyzed using a phase space trajectory on steady-state solutions for mutually coupled lasers with optical frequency detuning.

  11. Subpicometer Length Measurement Using Semiconductor Laser Tracking Frequency Gauge (United States)

    Thapa, Rajesh; Phillips, James D.; Rocco, Emanuele; Reasenburg, Robert D.


    We have demonstrated heretofore unattained distance precision of 0:14pm (2pm) incremental and 14nm (2.9 micrometers) absolute in a resonant (nonresonant) interferometer at an averaging time of 1 s, using inexpensive telecommunications diode lasers. We have controlled the main source of error, that due to spurious reflection and the resulting amplitude modulation. In the resonant interferometer, absolute distance precision is well under lambda/6. Therefore, after an interruption, an absolute distance measurement can be used to return to the same interferometer order.

  12. Delay differential equations for mode-locked semiconductor lasers. (United States)

    Vladimirov, Andrei G; Turaev, Dmitry; Kozyreff, Gregory


    We propose a new model for passive mode locking that is a set of ordinary delay differential equations. We assume a ring-cavity geometry and Lorentzian spectral filtering of the pulses but do not use small gain and loss and weak saturation approximations. By means of a continuation method, we study mode-locking solutions and their stability. We find that stable mode locking can exist even when the nonlasing state between pulses becomes unstable.

  13. High power conversion efficiency and wavelength-stabilized narrow bandwidth 975nm diode laser pumps (United States)

    Kanskar, M.; Cai, J.; Galstad, C.; He, Y.; Macomber, S. H.; Stiers, E.; Tatavarti-Bharatam, S. R.; Botez, D.; Mawst, L. J.


    We report on improvement from 50% to 70% power conversion efficiency on a 5-bar stack with 500 W of CW power at 25C coolant temperature resulting from a multi-pronged optimization approach. We also report on wavelength stabilization (0.07 nm/C) and emission bandwidth narrowing (0.3 nm at FWHM) of diode laser pump sources for precision pumping the upper transition levels of lasers that require narrow and stable pump sources such as Er/Yb co-doped or Yb:YAG lasers. These results have been achieved by integration of a Bragg grating inside a semiconductor laser cavity forming a low-loss, weak distributed feedback (DFB) laser, which results in record 53% wall-plug efficiency at 3 W CW operation and 25°C heatsink temperature from a 100-μm aperture diode laser and 45 W of wavelength-locked CW power from a 20% fill factor bar. This technique can be readily applied to diode laser structures for other strategic pump wavelengths.

  14. Semiconductor laser engineering, reliability and diagnostics a practical approach to high power and single mode devices

    CERN Document Server

    Epperlein, Peter W


    This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performa...

  15. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.


    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  16. Optical-feedback semiconductor laser Michelson interferometer for displacement measurements with directional discrimination

    International Nuclear Information System (INIS)

    Rodrigo, Peter John; Lim, May; Saloma, Caesar


    An optical-feedback semiconductor laser Michelson interferometer (OSMI) is presented for measuring microscopic linear displacements without ambiguity in the direction of motion. The two waves from the interferometer arms, one from the reference mirror and the other from the reflecting moving target, are fed back into the lasing medium (λ=830 nm), causing variations in the laser output power. We model the OSMI into an equivalent Fabry-Perot resonator and derive the dependence of the output power (and the junction voltage) on the path difference between the two interferometer arms. Numerical and experimental results consistently show that the laser output power varies periodically (period, λ/2) with path difference. The output power variation exhibits an asymmetric behavior with the direction of motion, which is used to measure, at subwavelength resolution, the displacement vector (both amplitude and direction) of the moving sample. Two samples are considered in the experiments: (i) a piezoelectric transducer and (ii) an audio speaker

  17. TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback

    International Nuclear Information System (INIS)

    Heil, T.; Uchida, A.; Davis, P.; Aida, T.


    We present a comprehensive experimental characterization of the dynamics of semiconductor lasers subject to polarization-rotated optical feedback. We find oscillatory instabilities appearing for large feedback levels and disappearing at large injection currents, which we classify in contrast to the well-known conventional optical-feedback-induced dynamics. In addition, we compare our experiments to theoretical results of a single-mode model assuming incoherence of the optical feedback, and we identify differences concerning the average power of the laser. Hence, we develop an alternative model accounting for both polarizations, where the emission of the dominant TE mode is injected with delay into the TM mode of the laser. Numerical simulations using this model show good qualitative agreement with our experimental results, correctly reproducing the parameter dependences of the dynamics. Finally, we discuss the application of polarization-rotated-feedback induced instabilities in chaotic carrier communication systems

  18. Simplified laser frequency stabilization using spatial-mode interference (United States)

    National Aeronautics and Space Administration — We will demonstrate a laser frequency stabilization technique based on spatial-mode interference that promises reductions in complexity, mass and power consumption...

  19. Iodine Stabilized Seed Laser for Space Applications Project (United States)

    National Aeronautics and Space Administration — The overall goal of this SBIR effort is development of a space qualifiable, compact, frequency stabilized seed laser with low SWaP for routine use in NASA LaRC's...

  20. Compact ultrafast semiconductor disk laser for nonlinear imaging in living organisms (United States)

    Aviles-Espinosa, Rodrigo; Filippidis, G.; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo


    Ultrashort pulsed laser systems (such as Ti:sapphire) have been used in nonlinear microscopy during the last years. However, its implementation is not straight forward as they are maintenance-intensive, bulky and expensive. These limitations have prevented their wide-spread use for nonlinear imaging, especially in "real-life" biomedical applications. In this work we present the suitability of a compact ultrafast semiconductor disk laser source, with a footprint of 140x240x70 mm, to be used for nonlinear microscopy. The modelocking mechanism of the laser is based on a quantumdot semiconductor saturable absorber mirror (SESAM). The laser delivers an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. Its center wavelength is 965 nm which is ideally suited for two-photon excitation of the widely used Green Fluorescent Protein (GFP) marker as it virtually matches its twophoton action cross section. We reveal that it is possible to obtain two photon excited fluorescence images of GFP labeled neurons and secondharmonic generation images of pharynx and body wall muscles in living C. elegans nematodes. Our results demonstrate that this compact laser is well suited for long-term time-lapse imaging of living samples as very low powers provide a bright signal. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its wide-spread adoption in "real-life" applications.

  1. Laser amplitude stabilization for advanced interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Barr, B W; Strain, K A; Killow, C J


    We present results of experiments into the stabilization of the amplitude of Nd:YAG lasers for use in advanced gravitational wave detectors. By feeding back directly to the pump-diode driving current we achieved shot-noise-limited stabilization at frequencies up to several kHz with some residual noise at lower frequencies (sub ∼100 Hz). The method used is applicable to higher powered laser systems planned for advanced interferometric gravitational wave detectors

  2. Laser frequency stabilization and large detuning by Doppler-free ...

    Indian Academy of Sciences (India)

    method for frequency stabilization of these lasers is based on saturated absorption spectroscopy (SAS) [3]. The laser frequency is locked either at the center or at the side of a narrow peak in the Doppler-free high-resolution saturated absorp- tion spectrum of the atom. Locking at the side of the peak is straightforward and.

  3. Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback (United States)

    Jaurigue, Lina; Krauskopf, Bernd; Lüdge, Kathy


    Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

  4. Determination and stabilization of the altitude of an aircraft in space using semi-conductor detectors

    International Nuclear Information System (INIS)

    Gilly, L.


    The device studied in this report can be used as altimeter or as altitude stabilizer (B.F. number PV 100-107, March 23, 1967). It includes essentially a 'surface barrier' semiconductor detector which counts alpha particles of a radioactive source. Two sources are used corresponding to two possible utilizations of the device. This report describes experiences made in laboratory which comprises electronic tests and a physic study. Systematic analysis of experimental errors is made comparatively with aneroid altimeters. An industrial device project is given. (author) [fr

  5. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Bakry, A. [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia); Abdulrhmann, S. [Jazan University, 114, Department of Physics, Faculty of Sciences (Saudi Arabia); Ahmed, M., E-mail: [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia)


    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  6. Effect of Suyuping combined with semiconductor laser irradiation on wound healing after anal fistula surgery

    Directory of Open Access Journals (Sweden)

    Min Zhao


    Full Text Available Objective: To explore the effect of Suyuping combined with semiconductor laser irradiation on the wound healing after anal fistula surgery. Methods: A total of 180 patients with anal fistula who were admitted in our hospital from October, 2013 to May, 2015 for surgery were included in the study and randomized into the treatment group and the control group with 90 cases in each group. The patients in the control group were given the conventional surgical debridement dressing, a time a day. On this basis, the patients in the treatment group were given Suyuping smearing on the wound sinus tract combined with semiconductor laser irradiation, a time a day for 10 min, continuous irradiation until wound healing. The postoperative wound swelling fading, wound surface secretion amount, and the clinical efficacy in the two groups were recorded. Results: The wound surface swelling degree and wound pain degree at each timing point after operation in the treatment group were significantly lower than those in the control group (P<0.05. The wound surface area at each timing point after operation in the treatment group was significantly lower than that in the control group (P<0.05. The wound surface secretion amount 6, 9, and 12 days after operation in the treatment group was significantly lower than that in the control group (P<0.05. The total effective rate in the treatment group was significantly higher than that in the control group (P<0.05. The average healing time in the treatment group was significantly faster than that in the control group (P<0.05. Conclusions: Suyuping combined with semiconductor laser irradiation in the treatment of patients after anal fistula can effectively improve the local blood and lymphatic circulation of wound surface, promote the growth of granulation tissues, and contribute the wound healing.

  7. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R


    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  8. Mathematical modelling and linear stability analysis of laser fusion cutting

    International Nuclear Information System (INIS)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich


    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  9. Return-map for low-frequency fluctuations in semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Sabbatier, H.; Sørensen, Mads Peter


    We show that the phenomenon of low-frequency fluctuations (LFF) , commonly observed in semiconductor lasers with optical feedback, can be explained by a simple return-map, implying a tremendous simplification in the description of the slow time-scale dynamics of the system. Experimentally observed...... parameter dependencies are simply explained by the calculated return-maps. Our approach partly decouples the slow and the fast time-scale behaviour. The latter is often described in terms of chaotic itinerary, but this does not provide an explanation for the low-frequency fluctuations themselves....

  10. Spectral characteristics of DFB lasers in presence of a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.


    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A numerical model combining finite element calculations in the transverse x - y plane and a longitudinal model...... based on the Green's function method is used for that purpose. Simple expressions for the linewidth in the case of AR-coated SOA output facets are derived and simulation results are given in the case of an output facet with a non-vanishing reflectivity. It is found that optimal conditions for a narrow...

  11. Field performance of an all-semiconductor laser coherent Doppler lidar

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian


    We implement and test what, to our knowledge, is the first deployable coherent Doppler lidar (CDL) system based on a compact, inexpensive all-semiconductor laser (SL). To demonstrate the field performance of our SL-CDL remote sensor, we compare a 36 h time series of averaged radial wind speeds...... measured by our instrument at an 80 m distance to those simultaneously obtained from an industry-standard sonic anemometer (SA). An excellent degree of correlation (R2=0.994 and slope=0.996) is achieved from a linear regression analysis of the CDL versus SA wind speed data. The lidar system is capable...

  12. Semiconductor laser having a non-absorbing passive region with beam guiding (United States)

    Botez, Dan (Inventor)


    A laser comprises a semiconductor body having a pair of end faces and including an active region comprising adjacent active and guide layers which is spaced a distance from the end face and a passive region comprising adjacent non-absorbing guide and mode control layers which extends between the active region and the end face. The combination of the guide and mode control layers provides a weak positive index waveguide in the lateral direction thereby providing lateral mode control in the passive region between the active region and the end face.

  13. Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.


    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A modified expression for the linewidth in the case of antireflection-coated SOA output facets is derived...... and simulation results are given in the case of output facets with a nonvanishing reflectivity. A numerical model combining finite-element calculations in the transverse x-y plane and a longitudinal model based on the Green's function method is used for that purpose....

  14. Investigation of frequency stability and design criteria of ring lasers

    DEFF Research Database (Denmark)

    Pedersen, Christian; Lichtenberg Hansen, P.; Buchhave, Preben


    We present a comprehensive Jones matrix analysis of two commonly used ring laser resonators. Different aspects on how to obtain low loss eigenmodes and/or high loss difference between the two directions of the cavity, and thus high frequency stability, are investigated. Also different approximati...... approximations are evaluated. Since the theory has been kept general, the derived results can be applied to a large class of ring laser designs. Finally the influence of backscattered light on the stability is considered. Experimental results on two ring lasers are discussed.......We present a comprehensive Jones matrix analysis of two commonly used ring laser resonators. Different aspects on how to obtain low loss eigenmodes and/or high loss difference between the two directions of the cavity, and thus high frequency stability, are investigated. Also different...

  15. Laser frequency stabilization and shifting by using modulation transfer spectroscopy (United States)

    Cheng, Bing; Wang, Zhao-Ying; Wu, Bin; Xu, Ao-Peng; Wang, Qi-Yu; Xu, Yun-Fei; Lin, Qiang


    The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F = 2 → F' = 3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro—optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump- and probe-beams are used. By optimizing the temperature of the vapor, the pump- and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.

  16. Pulsed laser deposition of II-VI and III-V semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Mele, A.; Di Palma, T.M.; Flamini, C.; Giardini Guidoni, A. [Rome, Univ. `La Sapienza` (Italy). Dep. di Chimica


    Pulsed laser irradiation of a solid target involves electronic excitation and heating, followed by expansion from the target of the elliptical gas cloud (plume) which can be eventually condensed on a suitable substrate. Pulsed laser ablation has been found to be a valuable technique to prepare II-VI and III-V thin films of semiconductor materials. Pulsed laser ablation deposition is discussed in the light of the results of an investigation on CdS, CdSe, CdTe and CdSe/CdTe multilayers and AIN, GaN and InN together with Al-Ga-In-N heterostructures. [Italiano] L`irradiazione di un target solido, mediante un fascio laser impulsato, genera una serie di processi che possono essere schematizzati come segue: riscaldamento ed eccitazione elettronica del target, da cui consegue l`espulsione di materiale sotto forma di una nube gassosa di forma ellissoidale (plume), che espande e puo` essere fatta depositare su un opportuno substrato. L`ablazione lasersi e` rivelata una tecnica valida per preparare film sottili di composti di elementi del II-VI e del III-V gruppo della tavola periodica. La deposizione via ablazione laser viene discussa alla luce dei risultati ottenuti nella preparazione di film di CdS, CdSe, CdTe e di film multistrato di CdSe/CdTe, di film di AIN, GaN, InN e di eterostrutture di Al-Ga-In-N.

  17. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser (United States)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song


    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  18. Wavelength stabilized multi-kW diode laser systems (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens


    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  19. Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback

    International Nuclear Information System (INIS)

    Osborne, S; Heinricht, P; Brandonisio, N; Amann, A; O’Brien, S


    The wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented. These devices incorporate slotted regions etched into the laser ridge waveguide for tailoring the output spectrum. Experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability. Measured switching dynamics with modulated optical injection are shown to be in excellent agreement with numerical simulations based on a simple rate equation model. We also demonstrate experimentally that time-delayed optical feedback can induce wavelength bistability for short external cavity lengths. Numerical simulations indicate that this two-colour optical feedback system can provide fast optical memory functionality based on injected optical pulses without the need for an external holding beam. (paper)

  20. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers (United States)

    Li, Guang-Hui; Wang, An-Bang; Feng, Ye; Wang, Yang


    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.

  1. Comparative study of the performance of semiconductor laser based coherent Doppler lidars

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian


    Coherent Doppler Lidars (CDLs), operating at an eye-safe 1.5-micron wavelength, have found promising applications in the optimization of wind-power production. To meet the wind-energy sector's impending demand for more cost-efficient industrial sensors, we have focused on the development of conti......Coherent Doppler Lidars (CDLs), operating at an eye-safe 1.5-micron wavelength, have found promising applications in the optimization of wind-power production. To meet the wind-energy sector's impending demand for more cost-efficient industrial sensors, we have focused on the development...... of continuous-wave CDL systems using compact, inexpensive semiconductor laser (SL) sources. In this work, we compare the performance of two candidate emitters for an allsemiconductor CDL system: (1) a monolithic master-oscillator-power-amplifier (MOPA) SL and (2) an external-cavity tapered diode laser (ECTDL)....

  2. New semiconductor laser technology for gas sensing applications in the 1650nm range (United States)

    Morrison, Gordon B.; Sherman, Jes; Estrella, Steven; Moreira, Renan L.; Leisher, Paul O.; Mashanovitch, Milan L.; Stephen, Mark; Numata, Kenji; Wu, Stewart; Riris, Haris


    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. CH4 also contributes to pollution in the lower atmosphere through chemical reactions leading to ozone production. Recent developments of LIDAR measurement technology for CH4 have been previously reported by Goddard Space Flight Center (GSFC). In this paper, we report on a novel, high-performance tunable semiconductor laser technology developed by Freedom Photonics for the 1650nm wavelength range operation, and for LIDAR detection of CH4. Devices described are monolithic, with simple control, and compatible with low-cost fabrication techniques. We present 3 different types of tunable lasers implemented for this application.

  3. GaN nanostructure-based light emitting diodes and semiconductor lasers. (United States)

    Viswanath, Annamraju Kasi


    GaN and related materials have received a lot of attention because of their applications in a number of semiconductor devices such as LEDs, laser diodes, field effect transistors, photodetectors etc. An introduction to optical phenomena in semiconductors, light emission in p-n junctions, evolution of LED technology, bandgaps of various semiconductors that are suitable for the development of LEDs are discussed first. The detailed discussion on photoluminescence of GaN nanostructures is made, since this is crucial to develop optical devices. Fabrication technology of many nanostructures of GaN such as nanowires, nanorods, nanodots, nanoparticles, nanofilms and their luminescence properties are given. Then the optical processes including ultrafast phenomena, radiative, non-radiative recombination, quantum efficiency, lifetimes of excitons in InGaN quantum well are described. The LED structures based on InGaN that give various important colors of red, blue, green, and their design considerations to optimize the output were highlighted. The recent efforts in GaN technology are updated. Finally the present challenges and future directions in this field are also pointed out.

  4. Method of stabilizing a laser apparatus with wavelength converter

    DEFF Research Database (Denmark)


    A method of controlling beam quality and stability of a laser apparatus, the laser apparatus comprising, a diode laser (10) providing first radiation of at least a first wavelength, and a frequency conversion unit (12) configured to frequency-convert the first radiation from the diode laser......) into the first section (222), a second contact (221) for injecting a second current (I2) into the second section (223), and means for controlling a temperature of the diode laser; wherein the method comprises monitoring a first parameter indicative of the power content of a dominant lobe of the first radiation...... and to output the frequency-converted radiation (213), the frequency-converted radiation having at least a second wavelength different from the first wavelength, the diode laser (10) comprising at least a first and a second section (222,223), a first contact (220) for injecting a first current (I1...

  5. Selective mode coupling in microring resonators for single mode semiconductor lasers (United States)

    Arbabi, Amir

    Single mode semiconductor laser diodes have many applications in optical communications, metrology and sensing. Edge-emitting single mode lasers commonly use distributed feedback structures, or narrowband reflectors such as distributed Bragg reflectors (DBRs) and sampled grating distributed Bragg reflectors (SGDBRs). Compact, narrowband reflectors with high reflectivities are of interest to replace the commonly used DBRs and SGDBRs. This thesis presents our work on the simulation, design, fabrication, and characterization of devices operating based on the coupling of degenerate modes of a microring resonator, and investigation of the possibility of using them for improving the performance of laser diodes. In particular, we demonstrate a new type of compact, narrowband, on-chip reflector realized by selectively coupling degenerate modes of a microring resonator. For the simulation and design of reflective microring resonators, a fast and accurate analysis method is required. Conventional numerical methods for solving Maxwell's equations such as the finite difference time domain and the finite element method (FEM) provide accurate results but are computationally intense and are not suitable for the design of large 3D structures. We formulated a set of coupled mode equations that, combined with 2D FEM simulations, can provide a fast and accurate tool for the modeling and design of reflective microrings. We developed fabrication processing recipes and fabricated passive reflective microrings on silicon substrates with a silicon nitride core and silicon dioxide cladding. Narrowband single wavelength reflectors were realized which are 70 times smaller than a conventional DBR with the same bandwidth. Compared to the conventional DBR, they have faster roll-off, and no side modes. The smaller footprint saves real estate, reduces tuning power and makes these devices attractive as in-line mirrors for low threshold narrow linewidth laser diodes. Self-heating caused by material

  6. Bifurcation to square-wave switching in orthogonally delay-coupled semiconductor lasers: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Masoller, C. [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11, ES-08222 Terrassa, Barcelona (Spain); Sukow, D. [Institute for Cross-Disciplinary Physics and Complex Systems, Campus Universitat de les Illes Balears, ES-07122 Palma de Mallorca (Spain); Gavrielides, A. [Air Force Research Laboratory, AFRL/EOARD, 86 Blenheim Crescent, Ruislip Middlesex HA4 7HB (United Kingdom); Sciamanna, M. [Optics and Electronics (OPTEL) Research Group, Laboratoire Materiaux Optiques, Photonique et Systemes (LMOPS), Supelec, 2 Rue Edouard Belin, FR-57070 Metz (France)


    We analyze the dynamics of two semiconductor lasers with so-called orthogonal time-delayed mutual coupling: the dominant TE (x) modes of each laser are rotated by 90 deg. (therefore, TM polarization or y) before being coupled to the other laser. Although this laser system allows for steady-state emission in either one or in both polarization modes, it may also exhibit stable time-periodic dynamics including square waveforms. A theoretical mapping of the switching dynamics unveils the region in parameter space where one expects to observe long-term time-periodic mode switching. Detailed numerical simulations illustrate the role played by the coupling strength, the mode frequency detuning, or the mode gain to loss difference. We complement our theoretical study with several experiments and measurements. We present time series and intensity spectra associated with the characteristics of the square waves and other waveforms observed as a function of the strength of the delay coupling. The experimental observations are in very good agreement with the analysis and the numerical results.

  7. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

    International Nuclear Information System (INIS)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael


    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  8. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser (United States)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael


    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  9. High temperature semiconductor diode laser pumps for high energy laser applications (United States)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel


    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  10. Programmable current source for diode lasers stabilized optical fiber

    International Nuclear Information System (INIS)

    Gomez, J.; Camas, J.; Garcia, L.


    In this paper, we present the electronic design of a programmable stabilized current source. User can access to the source through a password, which, it has a database with the current and voltage operating points. This source was successfully used as current source in laser diode in optical fiber sensors. Variations in the laser current were carried out by a monitoring system and a control of the Direct Current (DC), which flowing through a How land source with amplifier. The laser current can be stabilized with an error percent of ± 1 μA from the threshold current (Ith) to its maximum operation current (Imax) in DC mode. The proposed design is reliable, cheap, and its output signal of stabilized current has high quality. (Author)

  11. High stability lasers for lidar and remote sensing (United States)

    Heine, Frank; Lange, Robert; Seel, Stefan; Smutny, Berry


    Tesat-Spacecom is currently building a set flight models of frequency stabilized lasers for the ESA Missions AEOLUS and LTP. Lasers with low intensity noise in the kHz region and analogue tuning capabilities for frequency and output power are developed for the on board metrology of the LTP project, the precursor mission for LISA. This type of laser is internally stabilized by precise temperature control, approaching an ALLAN variance of 10-9 for 100 sec. It can be easily locked to external frequency references with LIDAR) is used as the master frequency reference and is stabilized internally by a optical cavity. It shows a 3* 10-11 Allan variance from time intervals 1 sec - 1000 sec. Furthermore it is step-tunable for calibration of the receiver instrument with a speed of GHz / sec by a digital command interface. Performance and environmental test results will be presented.

  12. Microscopic Foundation and Simulation of Coupled Carrier-Temperature Diffusions in Semiconductor Lasers (United States)

    Li, J.; Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)


    A typical semiconductor-based optoelectronic device, such as a diode laser, consists of three subsystems: an optical field, an electron-hole plasma (EHP), and a host crystal lattice. The physics of such a device involves the interplay of optical, electrical and thermal processes. A proper description of such a device requires that all three processes are treated on equal footing and in a self-consistent fashion. Furthermore, since a semiconductor laser has intrinsic spatial inhomogeneity, such a self-consistency naturally leads to a set of partial differential equations in space and time. There is a significant lacking of research interest and results on the transport aspects of optical devices in the literature with only a few exceptions. Even the most important carrier diffusion coefficient has not been properly derived and studied so far for optically excited plasma, while most of the work adopted results from electronics community where heavily doped semiconductors with mainly one type of carriers are dealt with. The corresponding transport equation for plasma energy or temperature has received even less attention. In this talk we describe our recent results on such a self-consistent derivation of temperature and carrier-density diffusion equations coupled with the lasing process. Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltzmann transport terms in the distribution function equations for electrons and holes, we derived a closed set of diffusion equations for carrier densities and temperatures with self-consistent coupling to Maxwell's equation and to an effective optical polarization equation. The coherent many-body effects are included within the screened Hartree-Fock approximation, while scatterings are treated within the second Born approximation including both the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO (c-LO) phonon scatterings are directly used to derive the momentum

  13. A Laser Stabilization System for Rydberg Atom Physics (United States)


    that is generated in a multi-pass frequency doubling cavity. In addition, the master laser wavelengths of 1020 nm and 960 nm lie in the near infra - red ...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 laser stabilization, precision measurement REPORT DOCUMENTATION...Field Measurements Using Cs Rydberg Atoms in Vapor Cells,” H. Fan, S. Kumar and J.P. Shaffer, DAMOP, Columbus, OH (2015). “Interacting Rydberg Atoms

  14. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices (United States)

    Horn, Kevin M.


    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  15. Ultrafast Pulsed-Laser Applications for Semiconductor Thin Film Deposition and Graphite Photoexfoliation (United States)

    Oraiqat, Ibrahim Malek

    This thesis focuses on the application of ultrafast lasers in nanomaterial synthesis. Two techniques are investigated: Ultrafast Pulsed Laser Deposition (UFPLD) of semiconductor nanoparticle thin films and ultrafast laser scanning for the photoexfoliation of graphite to synthesize graphene. The importance of the work is its demonstration that the process of making nanoparticles with ultrafast lasers is extremely versatile and can be applied to practically any material and substrate. Moreover, the process is scalable to large areas: by scanning the laser with appropriate optics it is possible to coat square meters of materials (e.g., battery electrodes) quickly and inexpensively with nanoparticles. With UFPLD we have shown there is a nanoparticle size dependence on the laser fluence and the optical emission spectrum of the plume can be used to determine a fluence that favors smaller nanoparticles, in the range of 10-20 nm diameter and 3-5 nm in height. We have also demonstrated there are two structural types of particles: amorphous and crystalline, as verified with XRD and Raman spectroscopy. When deposited as a coating, the nanoparticles can behave as a quasi-continuous thin film with very promising carrier mobilities, 5-52 cm2/Vs, substantially higher than for other spray-coated thin film technologies and orders of magnitude larger than those of colloidal quantum dot (QD) films. Scanning an ultrafast laser over the surface of graphite was shown to produce both filamentary structures and sheets which are semi-transparent to the secondary-electron beam in SEM. These sheets resemble layers of graphene produced by exfoliation. An ultrafast laser "printing" configuration was also identified by coating a thin, transparent substrate with graphite particles and irradiating the back of the film for a forward transfer of material onto a receiving substrate. A promising application of laser-irradiated graphene coatings was investigated, namely to improve the charge

  16. Optical gain and laser properties of semiconductor quantum-dot systems

    Energy Technology Data Exchange (ETDEWEB)

    Lorke, Michael


    For practical applications of quantum dots in light emitters as well as for fundamental studies of their emission properties, the understanding of many-body processes plays a central role. We employ a microscopic theory to study the optical properties of semiconductor quantum dots. The excitation-induced polarization dephasing due to carrier-phonon and carrier-carrier Coulomb interaction as well as the corresponding lineshifts of the optical interband transitions are determined on the basis of a quantum-kinetic treatment of correlation processes. Our theoretical model includes non-Markovian effects as well as renormalized single-particle states. Thus we achieve an accurate description of the partial compensation between different dephasing contributions and are able to systematically study their temperature and density dependencies. Applications of this theoretical model include optical gain spectra for quantum-dot systems that reveal a novel effect, not present in other gain materials. For large carrier densities, the maximum gain can decrease with increasing carrier density. This behavior arises from a delicate balancing of state filling and dephasing, and implies the necessity of an accurate treatment of the carrier-density dependence of correlations. Measurements of the coherence properties of the light emitted from semiconductor quantum-dot lasers have raised considerable attention in recent years. We study the correlations between individual emission events on the basis of a microscopic semiconductor laser theory. This allows for a study of effects like Pauli blocking, modifications to the source term of spontaneous emission, and the absence of complete inversion, that strongly influence the emission characteristics of quantum dot based devices. A new and challenging material system for applications in the visible spectral range are nitride semiconductors. As crystal symmetry and bandmixing effects strongly influence the optical selection rules, the single

  17. Absolute frequency shifts of iodine cells for laser stabilization

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Hrabina, Jan; Jedlička, Petr; Číp, Ondřej


    Roč. 46, č. 5 (2009), s. 450-456 ISSN 0026-1394 R&D Projects: GA AV ČR IAA200650504; GA MŠk(CZ) LC06007; GA MŠk 2C06012; GA AV ČR KAN311610701; GA MPO 2A-1TP1/127; GA MPO FT-TA3/133 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser stabilization * Nd :YAG laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.634, year: 2009

  18. High stability space frame for a large fusion laser

    International Nuclear Information System (INIS)

    Hurley, C.A.; Myall, J.O.


    The Shiva laser system is a large neodymium glass laser target irradiation facility being constructed at LLL to perform laser fusion experiments. A frame is being constructed to support the large number of laser components that make up the Shiva system. Twenty laser chains composed of amplifiers, spatial filters, polarizers, rotators, and mirrors will be arranged in an optimum geometry so that each beam arrives at the target simultaneously and within alignment tolerances. This frame is capable of supporting approximately 600 individual component assemblies and maintaining a tolerance of +-4-μrad rotation between any two points over a period of 100 s. Consideration has been given to the positional stability and support of the components, the geometrical array of stacked beams with respect to the oscillator and target, the flow of utilities (e.g., power cables and cooling gas pipes), good accessibility for operation and maintenance, and adaptability for change and growth

  19. Improving the Stability of Organic Semiconductors: Distortion Energy versus Aromaticity in Substituted Bistetracene

    KAUST Repository

    Thomas, Simil


    Polycyclic aromatic hydrocarbons (PAHs) have been widely explored as molecular semiconductors in organic electronic devices such as field-effect transistors or solar cells. However, their tendency to undergo photooxidation is a primary limitation to their practical applications. Bistetracene derivatives have recently been demonstrated to possess much larger photo oxidation stability than the widely investigated pentacene and rubrene, while maintaining high charge-carrier mobilities. Here, using several levels of density functional theory, we identify the origin of the increased stability of bistetracene with respect to molecular oxygen by systematically investigating the [4 + 2] cycloaddition (Diels Alder) photooxidation reaction mechanism. Importantly, our computational results indicate that endoperoxide formation in bis(2-(trimethylsilyl)ethynyl) bistetracene (BT) occurs not on the ring with least aromaticity, but rather on the ring with smallest distortion energy. This feature was subsequently confirmed by experimental NMR analyses. The oxidation activation barriers of bistetracene, pentacene, and rubrene are found to be 17.7, 13.6, and 14.4 kcal/mol, respectively, in agreement with the observed order of stability of these molecules with respect to oxidation reactions in solution. In the cases of BT and pentacene, the rates of electron transfer to create charged species (PAH(+) and O-2) are at least two orders of magnitude lower than that of the charge recombination process (back to PAH and O-2); for rubrene, both of these processes are calculated to be of the same order of magnitude, in agreement with experimental electron paramagnetic resonance spectroscopy observations.

  20. Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    Directory of Open Access Journals (Sweden)

    Medvid Artur


    Full Text Available Abstract On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity.

  1. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto


    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  2. Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing

    International Nuclear Information System (INIS)

    Gu Quan; Hayes-Gill, Barrie R.; Morgan, Stephen P.


    A 4x4 pixel array with analog on-chip processing has been fabricated within a 0.35 μm complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate ω 0.5 filter at the pixel level, this has been approximated using the ''roll off'' of a high-pass filter with a cutoff frequency set at 10 kHz. The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging

  3. Evolution of the Novalux extended cavity surface-emitting semiconductor laser (NECSEL) (United States)

    McInerney, John G.


    Novalux Inc was an enterprise founded by Aram Mooradian in 1998 to commercialise a novel electrically pumped vertical extended cavity semiconductor laser platform, initially aiming to produce pump lasers for optical fiber telecommunication networks. Following successful major investment in 2000, the company developed a range of single- and multi-mode 980 nm pump lasers emitting from 100-500 mW with excellent beam quality and efficiency. This rapid development required solution of several significant problems in chip and external cavity design, substrate and DBR mirror optimization, thermal engineering and mode selection. Output coupling to single mode fiber was exceptional. Following the collapse of the long haul telecom market in late 2001, a major reorientation of effort was undertaken, initially to develop compact 60-100 mW hybrid monolithically integrated pumplets for metro/local amplified networks, then to frequency-doubled blue light emitters for biotech, reprographics and general scientific applications. During 2001-3 I worked at Novalux on a career break from University College Cork, first as R&D Director managing a small group tasked with producing new capabilities and product options based on the NECSEL platform, including high power, pulsed and frequency doubled versions, then in 2002 as Director of New Product Realization managing the full engineering team, leading the transition to frequency doubled products.

  4. ABC-model analysis of gain-switched pulse characteristics in low-dimensional semiconductor lasers (United States)

    Bao, Xumin; Liu, Yuejun; Weng, Guoen; Hu, Xiaobo; Chen, Shaoqiang


    The gain-switching dynamics of low-dimensional semiconductor lasers is simulated numerically by using a two-dimensional rate-equation model. Use is also made of the ABC model, where the carrier recombination rate is described by a function of carrier densities including Shockley – Read – Hall (SRH) recombination coefficient A, spontaneous emission coefficient B and Auger recombination coefficient C. Effects of the ABC parameters on the ultrafast gain-switched pulse characteristics with high-density pulse excitation are analysed. It is found that while the parameter A has almost no obvious effects, the parameters B and C have distinctly different effects: B influences significantly the delay time of the gain-switched pulse, while C affects mainly the pulse intensity.

  5. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper


    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order...... to improve the mode-locking performance, such as reducing the pulsewidth and time-bandwidth product as much as possible. Timing jitter is determined by means of extensive numerical simulations of the model, demontrating that an external modulation is required in order to maintain moderate timing......-jitter and phase-noise levels at low frequencies. The effect of the driving conditions is investigated in order to achieve short pulses and low timing jitter. Our results are in qualitative agreement with reported experiments and predictions obtained from the master equation for mode-locking....

  6. Ultrasensitive detection of cell lysing in an microfabricated semiconductor laser cavity

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; French, T.; McDonald, A.E.; Shields, E.A. [Sandia National Labs., Albuquerque, NM (United States); Gourley, M.F. [Washington Hospital Center, Washington, DC (United States)


    In this paper the authors report investigations of semiconductor laser microcavities for use in detecting changes of human blood cells during lysing. By studying the spectra before and during mixing of blood fluids with de-ionized water, they are able to quantify the cell shape and concentration of hemoglobin in real time during the dynamical process of lysing. The authors find that the spectra can detect subtle changes that are orders of magnitude smaller than can be observed by standard optical microscopy. Such sensitivity in observing cell structural changes has implications for measuring cell fragility, monitoring apoptotic events in real time, development of photosensitizers for photodynamic therapy, and in-vitro cell micromanipulation techniques.

  7. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity

    Energy Technology Data Exchange (ETDEWEB)

    Tronciu, V Z; Mirasso, Claudio R; Colet, Pere [Instituto de Fisica Interdisciplinar y Sistemas Complejos (IFISC) CSIC-UIB, Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)], E-mail:


    We report the results of numerical investigations of the dynamical behaviour of an integrated device composed of a semiconductor laser and a double cavity that provides optical feedback. Due to the influence of the feedback, under the appropriate conditions, the system displays chaotic behaviour appropriate for chaos-based communications. The optimal conditions for chaos generation are identified. It is found that the double cavity feedback requires lower feedback strengths for developing high complexity chaos when compared with a single cavity. The synchronization of two unidirectional coupled (master-slave) systems and the influence of parameters mismatch on the synchronization quality are also studied. Finally, examples of message encoding and decoding are presented and discussed.

  8. Active layer position optimization in asymmetric AlGaInAs/AlGaAs semiconductor laser diode structures (United States)

    Abbasi, Seyed Peyman; Mahdieh, Mohammad Hossein


    In semiconductor lasers design, asymmetric structure can be used to improve laser characteristics. In this paper we proposed asymmetric AlGaInAs/AlGaAs structure for 808 nm laser diode to increase the n-cladding layer effect in beam propagation. In our proposed design, the active layer position in waveguide region was optimized for obtaining maximum optical power and minimum threshold current. The results show that the active layer position in waveguide related linearly to the asymmetric parameter. The results also show that in compare with usual structure, our proposed asymmetric structure can enhance the optical fiber coupling efficiency.


    Directory of Open Access Journals (Sweden)

    V. L. Kozlov


    Full Text Available Construction techniques of precision measuring instruments of optical characteristics on the basis of two-wave lasers with use of basic and nephelometer methods are presented. System stability to changes of hardware constants, influence of an environment, pollution of optics is shown. The system automatically takes into account changes of a controllable line length that expands functionalities of a measuring instrument. 

  10. Heavy-Tailed Fluctuations in the Spiking Output Intensity of Semiconductor Lasers with Optical Feedback.

    Directory of Open Access Journals (Sweden)

    Boon Leong Lan

    Full Text Available Although heavy-tailed fluctuations are ubiquitous in complex systems, a good understanding of the mechanisms that generate them is still lacking. Optical complex systems are ideal candidates for investigating heavy-tailed fluctuations, as they allow recording large datasets under controllable experimental conditions. A dynamical regime that has attracted a lot of attention over the years is the so-called low-frequency fluctuations (LFFs of semiconductor lasers with optical feedback. In this regime, the laser output intensity is characterized by abrupt and apparently random dropouts. The statistical analysis of the inter-dropout-intervals (IDIs has provided many useful insights into the underlying dynamics. However, the presence of large temporal fluctuations in the IDI sequence has not yet been investigated. Here, by applying fluctuation analysis we show that the experimental distribution of IDI fluctuations is heavy-tailed, and specifically, is well-modeled by a non-Gaussian stable distribution. We find a good qualitative agreement with simulations of the Lang-Kobayashi model. Moreover, we uncover a transition from a less-heavy-tailed state at low pump current to a more-heavy-tailed state at higher pump current. Our results indicate that fluctuation analysis can be a useful tool for investigating the output signals of complex optical systems; it can be used for detecting underlying regime shifts, for model validation and parameter estimation.

  11. Key Topics in Producing New Ultraviolet Led and Laser Devices Based on Transparent Semiconductor Zinc Oxide

    International Nuclear Information System (INIS)

    Tuezemen, S.


    Recently, it has been introduced that ZnO as II-VI semiconductor is promising various technological applications, especially for optoelectronic short wavelength light emitting devices due to its wide and direct band gap profile. The most important advantage of ZnO over the other currently used wide band gap semiconductors such as GaN is that its nearly 3 times higher exciton binding energy (60 meV), which permits efficient excitonic emission at room temperature and above. As-grown ZnO is normally n-type because of the Zn-rich defects such as zinc interstitials (Zn i ) oxygen vacancies (Vo), natively acting as shallow donors and main source of n-type conductivity in as-grown material. Therefore, making p-type ZnO has been more difficult due to unintentional compensation of possible acceptors by these residual donors. In order to develop electro luminescent and laser devices based on the ultraviolet (UV) exciton emission of ZnO, it will be important to fabricate good p-n junctions. Attempts to observe p-type conductivity in ours and our collaborators' laboratories in USA, either by co-doping with N or tuning O pressure have been first successful achievements, resulting in hole concentrations up to 10 1 9 cm - 3 in reactively sputtered thin layers of ZnO. Moreover, in order to produce ZnO based quantum well lasers similar to the previously introduced n-AlGaAs/GaAs/p-AlGaAs structures; we have attempted to grow Zn 1 -xSn x O thin films to enlarge the band gap energy. An increase up to 170 meV has been observed in Zn 1 -xSn x O thin films and this is enough barrier to be able to trap electron-hole pairs in quantum well structures. As a result, two important key issues; p-type conductivity and enhancement of the band gap energy in order to step forward towards the production of electro luminescent UV LEDs and quantum well lasers have been investigated and will be presented in this study

  12. Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier (United States)

    Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin


    Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.

  13. Various phenomena of self-mode-locked operation in optically pumped semiconductor lasers (United States)

    Tsou, C. H.; Liang, H. C.; Huang, K. F.; Chen, Y. F.


    This work presents several optical experiments to investigate the phenomenon of self-mode locking (SML) in optically pumped semiconductor lasers (OPSLs). First of all, we systematically explore the influence of high-order transverse modes on the SML in an OPSL with a linear cavity. Experimental results reveal that the occurrence of SML can be assisted by the existence of the first high-order transverse mode, and the laser is operated in a well-behaved SML state with the existence of the TEM0,0 mode and the first high-order transverse mode. While more high-order transverse modes are excited, it is found that the pulse train is modulated by more beating frequencies of transverse modes. The temporal behavior becomes the random dynamics when too many high-order transverse modes are excited. We observe that the temporal trace exhibits an intermittent mode-locked state in the absence of high-order transverse modes. In addition to typical mode-locked pulses, we originally observe an intriguing phenomenon of SML in an OPSL related to the formation of bright-dark pulse pairs. We experimentally demonstrated that under the influence of the tiny reflection feedback, the phase locking between lasing longitudinal modes can be assisted to form bright-dark pulse pairs in the scale of round-trip time. A theoretical model based on the multiple reflections in a phase-locked multi-longitudinal-mode laser is developed to confirm the formation of bright-dark pulse pairs.

  14. Thermal stability of atomic layer deposited WCxNy electrodes for metal oxide semiconductor devices (United States)

    Zonensain, Oren; Fadida, Sivan; Fisher, Ilanit; Gao, Juwen; Danek, Michal; Eizenberg, Moshe


    This study is a thorough investigation of the chemical, structural, and electrical stability of W based organo-metallic films, grown by atomic layer deposition, for future use as gate electrodes in advanced metal oxide semiconductor structures. In an earlier work, we have shown that high effective work-function (4.7 eV) was produced by nitrogen enriched films (WCxNy) dominated by W-N chemical bonding, and low effective work-function (4.2 eV) was produced by hydrogen plasma resulting in WCx films dominated by W-C chemical bonding. In the current work, we observe, using x-ray diffraction analysis, phase transformation of the tungsten carbide and tungsten nitride phases after 900 °C annealing to the cubic tungsten phase. Nitrogen diffusion is also observed and is analyzed with time-of-flight secondary ion mass spectroscopy. After this 900 °C anneal, WCxNy effective work function tunability is lost and effective work-function values of 4.7-4.8 eV are measured, similar to stable effective work function values measured for PVD TiN up to 900 °C anneal. All the observed changes after annealing are discussed and correlated to the observed change in the effective work function.

  15. Laser frequency stabilization using linear magneto-optics

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; Budker, Dmitry; Davis, John R.


    The design of a diode laser frequency stabilization system using the Zeeman effect is described. Various regimes of operation are analyzed using the Jones matrix approach. The system is different from the original Joint Institute for Laboratory Astrophysics design in that the magnetic fields are fully contained and thus it can be used in proximity of magnetically sensitive instruments. (c) 2000 American Institute of Physics

  16. A linewidth-narrowed and frequency-stabilized dye laser for application in laser cooling of molecules. (United States)

    Dai, D P; Xia, Y; Yin, Y N; Yang, X X; Fang, Y F; Li, X J; Yin, J P


    We demonstrate a robust and versatile solution for locking the continuous-wave dye laser for applications in laser cooling of molecules which need linewidth-narrowed and frequency-stabilized lasers. The dye laser is first stabilized with respect to a reference cavity by Pound-Drever-Hall (PDH) technique which results in a single frequency with the linewidth 200 kHz and short-term stabilization, by stabilizing the length of the reference cavity to a stabilized helium-neon laser we simultaneously transfer the ± 2 MHz absolute frequency stability of the helium-neon laser to the dye laser with long-term stabilization. This allows the dye laser to be frequency chirped with the maximum 60 GHz scan range while its frequency remains locked. It also offers the advantages of locking at arbitrary dye laser frequencies, having a larger locking capture range and frequency scanning range to be implemented via software. This laser has been developed for the purpose of laser cooling a molecular magnesium fluoride beam.

  17. Final report on LDRD project: Semiconductor surface-emitting microcavity laser spectroscopy for analysis of biological cells and microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; McDonald, A.E. [Sandia National Labs., Albuquerque, NM (United States). Nanostructure and Semiconductor Physics Dept.; Gourley, M.F. [Washington Hospital Center, DC (United States); Bellum, J. [Coherent Technologies, Boulder, CO (United States)


    This article discusses a new intracavity laser technique that uses living or fixed cells as an integral part of the laser. The cells are placed on a GaAs based semiconductor wafer comprising one half of a vertical cavity surface-emitting laser. After placement, the cells are covered with a dielectric mirror to close the laser cavity. When photo-pumped with an external laser, this hybrid laser emits coherent light images and spectra that depend sensitively on the cell size, shape, and dielectric properties. The light spectra can be used to identify different cell types and distinguish normal and abnormal cells. The laser can be used to study single cells in real time as a cell-biology lab-on-a-chip, or to study large populations of cells by scanning the pump laser at high speed. The laser is well-suited to be integrated with other micro-optical or micro-fluidic components to lead to micro-optical-mechanical systems for analysis of fluids, particulates, and biological cells.

  18. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. (United States)

    Fu, Yongping; Zhu, Haiming; Schrader, Alex W; Liang, Dong; Ding, Qi; Joshi, Prakriti; Hwang, Leekyoung; Zhu, X-Y; Jin, Song


    The excellent intrinsic optoelectronic properties of methylammonium lead halide perovskites (MAPbX3, X = Br, I), such as high photoluminescence quantum efficiency, long carrier lifetime, and high gain coupled with the facile solution growth of nanowires make them promising new materials for ultralow-threshold nanowire lasers. However, their photo and thermal stabilities need to be improved for practical applications. Herein, we report a low-temperature solution growth of single crystal nanowires of formamidinium lead halide perovskites (FAPbX3) that feature red-shifted emission and better thermal stability compared to MAPbX3. We demonstrate optically pumped room-temperature near-infrared (∼820 nm) and green lasing (∼560 nm) from FAPbI3 (and MABr-stabilized FAPbI3) and FAPbBr3 nanowires with low lasing thresholds of several microjoules per square centimeter and high quality factors of about 1500-2300. More remarkably, the FAPbI3 and MABr-stabilized FAPbI3 nanowires display durable room-temperature lasing under ∼10(8) shots of sustained illumination of 402 nm pulsed laser excitation (150 fs, 250 kHz), substantially exceeding the stability of MAPbI3 (∼10(7) laser shots). We further demonstrate tunable nanowire lasers in wider wavelength region from FA-based lead halide perovskite alloys (FA,MA)PbI3 and (FA,MA)Pb(I,Br)3 through cation and anion substitutions. The results suggest that formamidinium lead halide perovskite nanostructures could be more promising and stable materials for the development of light-emitting diodes and continuous-wave lasers.

  19. Stabilization effect of Weibel modes in relativistic laser fusion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Belghit, Slimen, E-mail:; Sid, Abdelaziz, E-mail: [Laboratoire de Physique des rayonnements et de leurs interactions avec la matière (PRIMALAB), département de Physique, faculté des Sciences de la Matière, Université de Batna 1, 05000DZ, Batna (Algeria)


    In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.

  20. Diode-pumped passively Q-switched Nd:GGG laser with a Bi-doped GaAs semiconductor saturable absorber (United States)

    Cong, Wen; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Qiao, Hui; Liu, Ji


    Passive Q-switching of a diode-pumped Nd:GGG laser is demonstrated using Bi-doped GaAs as saturable absorber. The Bi-doped GaAs wafer is fabricated by ion implantation and subsequent annealing. Compared with the Q-switched laser by undoped GaAs semiconductor saturable absorber, the laser with Bi-doped GaAs as saturable absorber can produce higher output power, shorter pulses, higher single pulse energies and higher peak powers. These results suggest that Bi-doped GaAs can be a promising new candidate of semiconductor saturable absorber in Q-switched laser.

  1. Frequency-swept laser light source at 1050 nm with higher bandwidth due to multiple semiconductor optical amplifiers in series

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Thrane, Lars; Andersen, Peter E.


    We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance......Hz) the SSOA configuration can maintain a significantly higher bandwidth (~50% higher) compared to the MOPA architecture. Correspondingly narrower point spread functions can be generated in a Michelson interferometer....

  2. Monolithic integration of dual optical elements on high power semiconductor lasers (United States)

    Vaissie, Laurent

    This dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to control the grating coupler duty cycle and shape. The near-field intensity profile outcoupled by the grating is modeled using a combination of finite-difference time domain (FDTD) analysis of the nonuniform grating and a self-consistent model of the broad area active region. Improvement of the near-field intensity profile in good agreement with the FDTD model is demonstrated by varying the duty cycle from 20% to 55% and including the aspect ratio dependent etching (ARDE) for sub-micron features. The grating diffraction efficiency is estimated to be higher than 95% using a detailed analysis of the losses mechanisms of the device. The grating reflectivity is estimated to be as low as 2.10-4. The low reflectivity of the light extraction process is shown to increase the device efficiency and efficiently suppress lasing oscillations if both cleaved facets are replaced by grating couplers to produce 1.5W QCW with 11 nm bandwidth into a single spot a few mm above the device. Peak power in excess of 30W without visible COMD is achieved in this case. Having optimized, the light extraction process, we demonstrate the integration of three different optical functions on the substrate of the surface-emitting laser. First, a 40 level refractive microlens milled using focused ion beam shows a twofold reduction of the full-width half maximum 1mm above the device, showing potential for monolithic integration of coupling optics on the wafer. We then show that differential quantum efficiency of

  3. BRIEF COMMUNICATIONS: Lasing in YAG:Nd3+ and KGdW:Nd3+ crystals pumped with semiconductor lasers (United States)

    Davydov, S. V.; Kulak, I. I.; Mit'kovets, A. I.; Stavrov, A. A.; Shkadarevich, A. P.; Yablonskiĭ, G. P.


    Lasing in crystals with narrow absorption bands was achieved for the first time by excitation with radiation emitted from electron-beam-pumped CdSxSe1-x semiconductor lasers. The lasing thresholds of YAG:Nd3+ and KGdW:Nd3+ crystals pumped with λ = 586 nm radiation were ~ 2 and ~ 1 mJ, respectively. The efficiency of conversion of the pump radiation into the output radiation in the KGdW:Nd3+ laser was 0.27%.

  4. Improvement in semiconductor laser printing using a sacrificial protecting layer for organic thin-film transistors fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Ludovic, E-mail: [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Cibert, Christophe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nenon, Sebastien [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Alloncle, Anne Patricia [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France); Nagel, Matthias [Empa, Swiss Federal Laboratories for Materials Testing and Reasearch, Laboratory for Functional Polymers, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Lippert, Thomas [Paul Scherrer Institut, General Energy Research Department, 5232 Villigen PSI (Switzerland); Videlot-Ackermann, Christine; Fages, Frederic [CINaM (Centre Interdisciplinaire de Nanoscience de Marseille) - UPR 3118 CNRS - Universite Aix Marseille, Case 913, Campus de Luminy, 13288 Marseille Cedex 09 (France); Delaporte, Philippe [Laboratoire LP3 (Lasers, Plasma et Procedes Photoniques) - UMR 6182 CNRS - Universite de la Mediterranee - Campus de Luminy C917, 13288 Marseille Cedex 09 (France)


    Laser-induced forward transfer (LIFT) has been used to deposit pixels of an organic semiconductor, distyryl-quaterthiophenes (DS4T). The dynamics of the process have been investigated by shadowgraphic imaging for the nanosecond (ns) and picosecond (ps) regime on a time-scale from the laser iradiation to 1.5 {mu}s. The morphology of the deposit has been studied for different conditions. Intermediate sacrificial layer of gold or triazene polymer has been used to trap the incident radiation. Its role is to protect the layer to be transferred from direct irradiation and to provide a mechanical impulse strong enough to eject the material.

  5. Simulation of the Optimized Structure of a Laterally Coupled Distributed Feedback (LC-DFB Semiconductor Laser Above Threshold

    Directory of Open Access Journals (Sweden)

    M. Seifouri


    Full Text Available In this paper, the laterally coupled distributed feedback semiconductor laser is studied. In the simulations performed, variations of structural parameters such as the grating amplitude a, the ridge width W, the thickness of the active region d, and other structural properties are considered. It is concluded that for certain values ​​of structural parameters, the laser maintains the highest output power, the lowest distortion Bragg frequency δL and the smallest changes in the wavelength λ. Above threshold, output power more than 40mW and SMSR values greater than 50 dB were achieved.

  6. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers (United States)

    Wysocki, Gerard (Inventor); Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor)


    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  7. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, Reza; Zakaria, Azmi [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Ahangar, Hossein Abbastabar [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Darroudi, Majid [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Zak, Ali Khorsand [Low Dimensional Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Drummen, Gregor P.C., E-mail: [Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio and Nano-Solutions, D-40472 Duesseldorf (Germany)


    Highlights: Black-Right-Pointing-Pointer Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. Black-Right-Pointing-Pointer Nanoparticles of {+-}15 nm are produced with a narrow size distribution. Black-Right-Pointing-Pointer Starch can be used as a template to control nanoparticle size. Black-Right-Pointing-Pointer Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength ({lambda} = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or

  8. Network connectivity enhancement by exploiting all optical multicast in semiconductor ring laser (United States)

    Siraj, M.; Memon, M. I.; Shoaib, M.; Alshebeili, S.


    The use of smart phone and tablet applications will provide the troops for executing, controlling and analyzing sophisticated operations with the commanders providing crucial documents directly to troops wherever and whenever needed. Wireless mesh networks (WMNs) is a cutting edge networking technology which is capable of supporting Joint Tactical radio System (JTRS).WMNs are capable of providing the much needed bandwidth for applications like hand held radios and communication for airborne and ground vehicles. Routing management tasks can be efficiently handled through WMNs through a central command control center. As the spectrum space is congested, cognitive radios are a much welcome technology that will provide much needed bandwidth. They can self-configure themselves, can adapt themselves to the user requirement, provide dynamic spectrum access for minimizing interference and also deliver optimal power output. Sometimes in the indoor environment, there are poor signal issues and reduced coverage. In this paper, a solution utilizing (CR WMNs) over optical network is presented by creating nanocells (PCs) inside the indoor environment. The phenomenon of four-wave mixing (FWM) is exploited to generate all-optical multicast using semiconductor ring laser (SRL). As a result same signal is transmitted at different wavelengths. Every PC is assigned a unique wavelength. By using CR technology in conjunction with PC will not only solve network coverage issue but will provide a good bandwidth to the secondary users.

  9. Electrical addressing and temporal tweezing of localized pulses in passively mode-locked semiconductor lasers (United States)

    Javaloyes, J.; Camelin, P.; Marconi, M.; Giudici, M.


    This work presents an overview of a combined experimental and theoretical analysis on the manipulation of temporal localized structures (LSs) found in passively Vertical-Cavity Surface-Emitting Lasers coupled to resonant saturable absorber mirrors. We show that the pumping current is a convenient parameter for manipulating the temporal Localized Structures, also called localized pulses. While short electrical pulses can be used for writing and erasing individual LSs, we demonstrate that a current modulation introduces a temporally evolving parameter landscape allowing to control the position and the dynamics of LSs. We show that the localized pulses drifting speed in this landscape depends almost exclusively on the local parameter value instead of depending on the landscape gradient, as shown in quasi-instantaneous media. This experimental observation is theoretically explained by the causal response time of the semiconductor carriers that occurs on an finite timescale and breaks the parity invariance along the cavity, thus leading to a new paradigm for temporal tweezing of localized pulses. Different modulation waveforms are applied for describing exhaustively this paradigm. Starting from a generic model of passive mode-locking based upon delay differential equations, we deduce the effective equations of motion for these LSs in a time-dependent current landscape.

  10. Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source. (United States)

    Tang, Xi; Wu, Zheng-Mao; Wu, Jia-Gui; Deng, Tao; Chen, Jian-Jun; Fan, Li; Zhong, Zhu-Qiang; Xia, Guang-Qiong


    Using two mutually coupled semiconductor lasers (MC-SLs) outputs as chaotic entropy sources, a scheme for generating Tbits/s ultra-fast physical random bit (PRB) is demonstrated and analyzed experimentally. Firstly, two entropy sources originating from two chaotic outputs of MC-SLs are obtained in parallel. Secondly, by adopting multiple optimized post-processing methods, two PRB streams with the generation rate of 0.56 Tbits/s are extracted from the two entropy sources and their randomness are verified by using NIST Special Publication 800-22 statistical tests. Through merging the two sets of 0.56 Tbits/s PRB streams by an interleaving operation, a third set of 1.12 Tbits/s PRB stream, which meets all the quality criteria of NIST statistical tests, can be further acquired. Finally, after additionally taking into account the restriction of the min-entropy, the generation rate of two sets of PRB stream from the two entropy sources can still attain 0.48 Tbits/s, and then a third set of merging PRB stream is 0.96 Tbits/s. Moreover, for the sequence length of the order of 10 Gbits, the statistical bias and serial correlation coefficient of three sets of PRB streams are also analyzed.

  11. Laser stabilization with a frequency-to-voltage chip for narrow-line laser cooling. (United States)

    McFerran, J J


    We use integrated circuit-based frequency-to-voltage conversion of a frequency comb beat signal as the means for laser frequency stabilization that is suitable for narrow-line laser cooling. The method is compared to an atomic beam lock where the laser frequency instability for the new scheme shows an improvement of 2 orders of magnitude at sub-1 s and grants a lock-capture range that is approximately 30 times greater. We employ the locking method on a 1111.6 nm laser that is frequency doubled and used in a dual-wavelength magneto-optical trap for Yb171 atoms, producing atomic cloud temperatures of ∼20  μK.

  12. Semiconductor heterojunctions

    CERN Document Server

    Sharma, B L


    Semiconductor Heterojunctions investigates various aspects of semiconductor heterojunctions. Topics covered include the theory of heterojunctions and their energy band profiles, electrical and optoelectronic properties, and methods of preparation. A number of heterojunction devices are also considered, from photovoltaic converters to photodiodes, transistors, and injection lasers.Comprised of eight chapters, this volume begins with an overview of the theory of heterojunctions and a discussion on abrupt isotype and anisotype heterojunctions, along with graded heterojunctions. The reader is then

  13. Quantifying complexity of the chaotic regime of a semiconductor laser subject to feedback via information theory measures (United States)

    Soriano, Miguel C.; Zunino, Luciano; Rosso, Osvaldo A.; Mirasso, Claudio R.


    The time evolution of the output of a semiconductor laser subject to optical feedback can exhibit high-dimensional chaotic fluctuations. In this contribution, our aim is to quantify the complexity of the chaotic time-trace generated by a semiconductor laser subject to delayed optical feedback. To that end, we discuss the properties of two recently introduced complexity measures based on information theory, namely the permutation entropy (PE) and the statistical complexity measure (SCM). The PE and SCM are defined as a functional of a symbolic probability distribution, evaluated using the Bandt-Pompe recipe to assign a probability distribution function to the time series generated by the chaotic system. In order to evaluate the performance of these novel complexity quantifiers, we compare them to a more standard chaos quantifier, namely the Kolmogorov-Sinai entropy. Here, we present numerical results showing that the statistical complexity and the permutation entropy, evaluated at the different time-scales involved in the chaotic regime of the laser subject to optical feedback, give valuable information about the complexity of the laser dynamics.

  14. Dither-free stabilization of CO2 lasers for far infrared pumping: A photoacoustic approach (United States)

    Bennett, C. A., Jr.; Hutchinson, D. P.


    A method based on the photoacoustic technique is described for dither-free frequency stabilization of the optical pump in a CH3OH laser operating at 119 (MU)m. Heterodyne measurements on two independently locked far infrared radiation (FIR) lasers indicate excellent long term frequency and power stability. This stabilization scheme should be applicable to all optially pumped FIR lasants.

  15. [Application of "cold" laser (I.R. with semiconductors) as antalgic and anti-inflammatory therapy in osteo-articular and musculotendinous pathologies]. (United States)

    Petrachi, F; Matzuzzi, G


    The therapeutic efficacy of an I.R. laser appliance with semiconductors (GaAs) and a cooling device (cold laser) has been tried for osteo-articular ad muscle-tendinous painful pathologies. The result in almost all types of disorder has been satisfactory with diminution or disappearance of painful symptomatology and functional recovery.

  16. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices (United States)

    Horn, Kevin M [Albuquerque, NM


    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  17. Stability of a Light Sail Riding on a Laser Beam

    Energy Technology Data Exchange (ETDEWEB)

    Manchester, Zachary [John A. Paulson School of Engineering and Applied Science, Harvard University, 60 Oxford St., Cambridge, MA 02138 (United States); Loeb, Abraham, E-mail: [Astronomy Department, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States)


    The stability of a light sail riding on a laser beam is analyzed both analytically and numerically. Conical sails on Gaussian beams, which have been studied in the past, are shown to be unstable without active control or additional mechanical modifications. A new architecture for a passively stable sail-and-beam configuration is proposed. The novel spherical shell design for the sail is capable of “beam riding” without the need for active feedback control. Full three-dimensional ray-tracing simulations are performed to verify our analytical results.

  18. Influence of Molecular Shape on the Thermal Stability and Molecular Orientation of Vapor-Deposited Organic Semiconductors. (United States)

    Walters, Diane M; Antony, Lucas; de Pablo, Juan J; Ediger, M D


    High thermal stability and anisotropic molecular orientation enhance the performance of vapor-deposited organic semiconductors, but controlling these properties is a challenge in amorphous materials. To understand the influence of molecular shape on these properties, vapor-deposited glasses of three disk-shaped molecules were prepared. For all three systems, enhanced thermal stability is observed for glasses prepared over a wide range of substrate temperatures and anisotropic molecular orientation is observed at lower substrate temperatures. For two of the disk-shaped molecules, atomistic simulations of thin films were also performed and anisotropic molecular orientation was observed at the equilibrium liquid surface. We find that the structure and thermal stability of these vapor-deposited glasses results from high surface mobility and partial equilibration toward the structure of the equilibrium liquid surface during the deposition process. For the three molecules studied, molecular shape is a dominant factor in determining the anisotropy of vapor-deposited glasses.

  19. Molecular beam epitaxy growth and characterization of two-six materials for visible semiconductor lasers (United States)

    Zeng, Linfei

    This thesis proposes the molecular beam epitaxy (MBE) growth and characterization of a new Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se based semiconductor materials system on InP substrates for visible light emitting diodes (LED) and lasers. The growth conditions for lattice-matched Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se layers with the desired bandgap have been established and optimized. A chemical etching technique to measure the defect density of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se materials has been established. The accuracy of this method for revealing stacking faults and dislocations was verified by plan-view TEM. Using the techniques such as III-V buffer layer, Zn-irradiation, low-temperature growth, ZnCdSe interfacial layer and growth interruption to improve the quality of the interface of III-V and II-VI, the material quality of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se has been improved dramatically. Defect density has been reduced from 10sp{10}\\ cmsp{-2} to {˜}5×10sp4\\ cmsp{-2}. The properties of this material system such as the quality and strain state in the epilayer, the dependence of bandgap on temperature, and the band offset have been studied by using double crystal x-ray diffraction, photoluminescence and capacitance voltage measurements. The ZnCdSe/ZnCdMgSe based quantum well (QW) structures have been grown and studied. Optically pumped lasing with emission range from red to blue has been obtained from ZnCdSe/ZnCdMgSe based separate-confinement single QW laser structures. The results demonstrate the potential for these materials as integrated full color display devices. Preliminary studies of the degradation behavior of ZnCdSe/ZnCdMgSe QW were performed. No dark line defects (DLDs) were observed during the degradation. A very strong room temperature differential negative resistance behavior was observed from Al/Znsb{0.61}Cdsb{0.39}Se/nsp+-InP devices, which is useful in millimeter-wave applications. We also found that these devices can be set to either in highly conductive or

  20. Optical dynamics in low-dimensional semiconductor heterostructures. Quantum dots and quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Carsten


    This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and

  1. Applications of confocal laser scanning microscopy in research into organic semiconductor thin films

    DEFF Research Database (Denmark)

    Schiek, Manuela; Balzer, Frank


    At the center of opto-electronic devices are thin layers of organic semiconductors, which need to be sandwiched between planar electrodes. With the growing demand for opto-electronic devices now and in the future, new electrode materials are needed to meet the requirements of organic semiconductors...

  2. Portable semiconductor disk laser for in vivo tissue monitoring: a platform for the development of clinical applications (United States)

    Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo


    Long term in vivo observations at large penetration depths and minimum sample disturbance are some of the key factors that have enabled the study of different cellular and tissue mechanisms. The continuous optimization of these aspects is the main driving force for the development of advanced microscopy techniques such as those based on nonlinear effects. Its wide implementation for general biomedical applications is however, limited as the currently used nonlinear microscopes are based on bulky, maintenance-intensive and expensive excitation sources such as Ti:sapphire ultrafast lasers. We present the suitability of a portable (140x240x70 mm) ultrafast semiconductor disk laser (SDL) source, to be used in nonlinear microscopy. The SDL is modelocked by a quantum-dot semiconductor saturable absorber mirror (SESAM). This enables the source to deliver an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. The laser center wavelength (965 nm) virtually matches the two-photon absorption cross-section of the widely used Green Fluorescent Protein (GFP). This property greatly relaxes the required peak powers, thus maximizing sample viability. This is demonstrated by presenting two-photon excited fluorescence images of GFP labeled neurons and second-harmonic generation images of pharyngeal muscles in living C. elegans nematodes. Our results also demonstrate that this compact laser is well suited for efficiently exciting different biological dyes. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its widespread adoption in biomedical applications.

  3. Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. (United States)

    Honjo, Toshimori; Uchida, Atsushi; Amano, Kazuya; Hirano, Kunihito; Someya, Hiroyuki; Okumura, Haruka; Yoshimura, Kazuyuki; Davis, Peter; Tokura, Yasuhiro


    A high speed physical random bit generator is applied for the first time to a gigahertz clocked quantum key distribution system. Random phase-modulation in a differential-phase-shift quantum key distribution (DPS-QKD) system is performed using a 1-Gbps random bit signal which is generated by a physical random bit generator with chaotic semiconductor lasers. Stable operation is demonstrated for over one hour, and sifted keys are successfully generated at a rate of 9.0 kbps with a quantum bit error rate of 3.2% after 25-km fiber transmission.

  4. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    International Nuclear Information System (INIS)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.


    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  5. A Novel Laser Technology for Nanostructure Formation in Elementary Semiconductors: Quantum Confinement Effect


    Medvids, A; Onufrijevs, P; Dmitruk, M; Dmitruk, I; Pundyk, I


    Nowadays, nanostructures are one of the most investigated objects in solid-state physics, especially Quantum confinement effect in quantum dots, quantum wires and quantum wells. In the case of nanosize structures the energy band diagram of semiconductor has strongly changed. This leads to a crucial change of semiconductor properties such as: electrical (due to the change of free charge carrier concentration and electrons’ and holes’ mobility); optical (absorption coefficient, reflectivity in...

  6. The dynamics of the laser-induced metal-semiconductor phase transition of samarium sulfide (SmS)

    International Nuclear Information System (INIS)

    Kaempfer, Tino


    The present thesis is dedicated to the experimental study of the metal-semiconductor phase transition of samarium sulfide (SmS): Temperature- and time-resolved experiments on the characterization of the phase transition of mixed-valence SmS samples (M-SmS) are presented. The measurement of the dynamics of the laser-induced phase transition pursues via time-resolved ultrashort-time microscopy and by X-ray diffraction with sub-picosecond time resolution. The electronic and structural processes, which follow an excitation of M-SmS with infrared femtosecond laser pulses, are physically interpreted on the base of the results obtained in this thesis and model imaginations. [de

  7. Estimation of entropy rate in a fast physical random-bit generator using a chaotic semiconductor laser with intrinsic noise. (United States)

    Mikami, Takuya; Kanno, Kazutaka; Aoyama, Kota; Uchida, Atsushi; Ikeguchi, Tohru; Harayama, Takahisa; Sunada, Satoshi; Arai, Ken-ichi; Yoshimura, Kazuyuki; Davis, Peter


    We analyze the time for growth of bit entropy when generating nondeterministic bits using a chaotic semiconductor laser model. The mechanism for generating nondeterministic bits is modeled as a 1-bit sampling of the intensity of light output. Microscopic noise results in an ensemble of trajectories whose bit entropy increases with time. The time for the growth of bit entropy, called the memory time, depends on both noise strength and laser dynamics. It is shown that the average memory time decreases logarithmically with increase in noise strength. It is argued that the ratio of change in average memory time with change in logarithm of noise strength can be used to estimate the intrinsic dynamical entropy rate for this method of random bit generation. It is also shown that in this model the entropy rate corresponds to the maximum Lyapunov exponent.

  8. Advanced materials for the optical delay line of frequency pulse modulator on the basis of semiconductor laser

    International Nuclear Information System (INIS)

    Abrarov, S.M.


    In the paper some materials which can be sued as an optical delay line of the pulse frequency modulator are considered. The structure and the principle are described as a modulator consisting of a laser diode with two Fabry Perot resonators and an optical wave guide providing a feedback loop. The optical wave guide fulfills the function of delay line and links the two resonators. The pulse sequence of the radiation of the semiconductor laser arises due to failure and recovery of optical generation. The pulse frequency modulation can be carried out by the action of electrical tension field on the electro optic martial of the wave guide. The selection of three electro-optic crystals for making of the optical wave guide of the considered modulator is justified. (author)

  9. Gas laser having an integral optical resonator with external stabilizing means

    International Nuclear Information System (INIS)

    Hensolt, R.A.; Dowley, M.W.


    A gaseous laser having an internal optical resonator is provided with external stabilizing means for maintaining alignment of mirrors forming the optical resonator. Means are also provided for allowing expansion of the remainder of the gas-confining envelope relative to the stabilized resonator mirrors during the operation of the laser. (U.S.)

  10. Heat transfer modelling and stability analysis of selective laser melting

    International Nuclear Information System (INIS)

    Gusarov, A.V.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.


    The process of direct manufacturing by selective laser melting basically consists of laser beam scanning over a thin powder layer deposited on a dense substrate. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure obtaining functional parts with improved mechanical properties. Experiments with single-line scanning indicate, that an interval of scanning velocities exists where the remelted tracks are uniform. The tracks become broken if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the 'balling' effect. A numerical model of coupled radiation and heat transfer is proposed to analyse the observed instability. The 'balling' effect at high scanning velocities (above ∼20 cm/s for the present conditions) can be explained by the Plateau-Rayleigh capillary instability of the melt pool. Two factors stabilize the process with decreasing the scanning velocity: reducing the length-to-width ratio of the melt pool and increasing the width of its contact with the substrate

  11. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers (United States)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun


    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  12. Magnetoelectric confinement and stabilization of Z pinch in a soft-x-ray Ar(+8) laser. (United States)

    Szasz, J; Kiss, M; Santa, I; Szatmari, S; Kukhlevsky, S V


    Magnetoelectric confinement and stabilization of the plasma column in a soft-x-ray Ar(+8) laser, which is excited by a capillary Z pinch, via the combined magnetic and electric fields of the gliding surface discharge is experimentally demonstrated. Unlike soft-x-ray lasers excited by the conventional capillary Z pinches, the magnetoelectric confinement and stabilization of plasma do provide the laser operation without using any external preionization circuit.

  13. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper


    We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror....... The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse...

  14. Stabilized high-power laser system for the gravitational wave detector advanced LIGO. (United States)

    Kwee, P; Bogan, C; Danzmann, K; Frede, M; Kim, H; King, P; Pöld, J; Puncken, O; Savage, R L; Seifert, F; Wessels, P; Winkelmann, L; Willke, B


    An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments.

  15. Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns Project (United States)

    National Aeronautics and Space Administration — While conventional injection seeding sources (such as DFB diode lasers and rare-earth doped solid-state microchip lasers) are available at 1.5 microns, these sources...

  16. High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review) (United States)

    Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Sakharov, A. V.; Ustinov, V. M.


    The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ˜30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.

  17. A diode laser stabilization scheme for 40Ca+ single-ion spectroscopy (United States)

    Rohde, F.; Almendros, M.; Schuck, C.; Huwer, J.; Hennrich, M.; Eschner, J.


    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40Ca+ ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10-11 between 1 and 100 s.

  18. A diode laser stabilization scheme for 40Ca+ single-ion spectroscopy

    International Nuclear Information System (INIS)

    Rohde, F; Almendros, M; Schuck, C; Huwer, J; Hennrich, M; Eschner, J


    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D 2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40 Ca + . The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D 1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40 Ca + ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10 -11 between 1 and 100 s.

  19. Effects of a low-level semiconductor gallium arsenide laser on local pathological alterations induced by Bothrops moojeni snake venom. (United States)

    Aranha de Sousa, Elziliam; Bittencourt, José Adolfo Homobono Machado; Seabra de Oliveira, Nayana Keyla; Correia Henriques, Shayanne Vanessa; dos Santos Picanço, Leide Caroline; Lobato, Camila Pena; Ribeiro, José Renato; Pereira, Washington Luiz Assunção; Carvalho, José Carlos Tavares; da Silva, Jocivânia Oliveira


    Antivenom therapy has been ineffective in neutralizing the tissue damage caused by snakebites. Among therapeutic strategies to minimize effects after envenoming, it was hypothesized that a low level laser would reduce complications and reduce the severity of local snake venom effects. In the current study, the effect of a low-level semiconductor gallium arsenide (GaAs) laser on the local pathological alterations induced by B. moojeni snake venom was investigated. The experimental groups consisted of five male mice, each administered either B. moojeni venom (VB), B. moojeni venom + antivenom (VAV), B. moojeni venom + laser (VL), B. moojeni venom + antivenom + laser (VAVL), or sterile saline solution (SSS) alone. Paw oedema was induced by intradermal administration of 0.05 mg kg(-1) of B. moojeni venom and was expressed in mm of directly induced oedema. Mice received by subcutaneous route 0.20 mg kg(-1) of venom for evaluating nociceptive activity and the time (in seconds) spent in licking and biting the injected paw was taken as an indicator of pain response. Inflammatory infiltration was determined by counting the number of leukocytes present in the gastrocnemius muscle after venom injection (0.10 mg kg(-1)). For histological examination of myonecrosis, venom (0.10 mg kg(-1)) was administered intramuscularly. The site of venom injection was irradiated by the GaAs laser and some animals received antivenom intraperitoneally. The results indicated that GaAs laser irradiation can help in reducing some local effects produced by the B. moojeni venom in mice, stimulating phagocytosis, proliferation of myoblasts and the regeneration of muscle fibers.

  20. Frequency stabilization of multiple lasers on a single medium-finesse cavity (United States)

    Han, Chengyin; Zhou, Min; Gao, Qi; Li, Shangyan; Zhang, Shuang; Qiao, Hao; Ai, Di; Zhang, Mengya; Lou, Ge; Luo, Limeng; Xu, Xinye


    We present a simple, compact, and robust frequency stabilization system of three lasers operating at 649, 759, and 770 nm, respectively. These lasers are applied in experiments on ytterbium optical lattice clocks, for which each laser needs to have a linewidth of a few hundred or tens of kilohertz while maintaining a favorable long-term stability. Here, a single medium-finesse cavity is adopted as the frequency reference and the standard Pound-Drever-Hall technique is used to stabilize the laser frequencies. Based on the independent phase modulation, multiple-laser locking is demonstrated without mutual intervention. The locked lasers are measured to have a linewidth of 100 kHz and the residual frequency drift is about 78.5 Hz s-1. This kind of setup provides a construction that is much simpler than that in previous work.

  1. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semi-conductor lasers and chirp-to-intensity conversion

    DEFF Research Database (Denmark)

    Company Torres, Victor; Prince, Kamau; Tafur Monroy, Idelfonso


    Optical pulses generated by current modulation of semiconductor lasers are strongly frequency chirped. This effect has been considered pernicious for optical communications. We take advantage of this effect for the generation of ultrawideband microwave signals by using an optical filter to achieve...

  2. Conductors, semiconductors and insulators irradiated with short-wavelength free-electron laser

    Czech Academy of Sciences Publication Activity Database

    Krzywinski, J.; Sobierajski, R.; Jurek, M.; Nietubyc, R.; Pelka, J. B.; Juha, Libor; Bittner, Michal; Létal, V.; Vorlíček, Vladimír; Andrejczuk, A.; Feldhaus, J.; Keitel, B.; Saldin, E.; Schneidmiller, E.A.; Treusch, R.; Yurkov, M. V.


    Roč. 101, č. 4 (2007), 043107/1-043107/4 ISSN 0021-8979 R&D Projects: GA MŠk 1P04LA235; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : free-electron laser * extreme ultraviolet * ablation * laser-matter interaction Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.171, year: 2007

  3. Improvement of Laser Frequency Stabilization for the Optical Pumping Cesium Beam Standard

    International Nuclear Information System (INIS)

    Wang Qing; Duan Jun; Qi Xiang-Hui; Zhang Yin; Chen Xu-Zong


    A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an important factor that limits the long-term frequency stability. We minimize the drift of the light angle by using a fiber-coupled output, and lock the frequency of a distributed-feedback diode laser to the fluorescence spectrum of the atomic beam. The measured frequency stability is about 3.5 × 10 −11 at 1 s and reaches 1.5 × 10 −12 at 2000 s. The Allan variance keeps going down for up to thousands of seconds, indicating that the medium- and long-term stability of the laser frequency is significantly improved and perfectly fulfills the requirement for the optical pumping cesium clock. (paper)

  4. Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser. (United States)

    Moscoso-Mártir, Alvaro; Müller, Juliana; Islamova, Elmira; Merget, Florian; Witzens, Jeremy


    Based on the single channel characterization of a Silicon Photonics (SiP) transceiver with Semiconductor Optical Amplifier (SOA) and semiconductor Mode-Locked Laser (MLL), we evaluate the optical power budget of a corresponding Wavelength Division Multiplexed (WDM) link in which penalties associated to multi-channel operation and the management of polarization diversity are introduced. In particular, channel cross-talk as well as Cross Gain Modulation (XGM) and Four Wave Mixing (FWM) inside the SOA are taken into account. Based on these link budget models, the technology is expected to support up to 12 multiplexed channels without channel pre-emphasis or equalization. Forward Error Correction (FEC) does not appear to be required at 14 Gbps if the SOA is maintained at 25 °C and MLL-to-SiP as well as SiP-to-SOA interface losses can be maintained below 3 dB. In semi-cooled operation with an SOA temperature below 55 °C, multi-channel operation is expected to be compatible with standard 802.3bj Reed-Solomon FEC at 14 Gbps provided interface losses are maintained below 4.5 dB. With these interface losses and some improvements to the Transmitter (Tx) and Receiver (Rx) electronics, 25 Gbps multi-channel operation is expected to be compatible with 7% overhead hard decision FEC.

  5. Semiconductors Investigated by Time Resolved Raman Absorption and Photoluminescence Spectroscopy Using Femtoseond and Picosecond Laser Techniques. (United States)


    High Density Electron-Hole Plasma in Ga0.5 n0.5P under High Power Picosecond Laser Pulse Excitation, H. Zarrabi and R. R. Alfano, SPIE (1983) (in press...Ga0 .5 In0 .5P, H. Zarrabi and R. R. Alfano Proceedings of Society of Photo-optical Engineers, San Diego, Ca., August 24, 1983. 9. Tunable Laser

  6. Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback

    Energy Technology Data Exchange (ETDEWEB)

    Cronin-Golomb; Yariv


    A GaA1As semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. Also reported similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

  7. Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback

    Energy Technology Data Exchange (ETDEWEB)

    Cronin-Golomb, M.; Yariv, A.


    A GaAlAs semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. We also report similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

  8. Self-induced frequency scanning and distributed bragg reflection in semiconductor lasers with phase-conjugate feedback (United States)

    Cronin-Golomb, Mark; Yariv, Amnon


    A GaAlAs semiconductor laser with feedback from a barium titanate photorefractive ring passive phase-conjugate mirror can be made to perform repeating or nonrepeating frequency scans over a 10-nm range toward either the blue or the red. The direction of scanning and whether the scans repeat may be controlled by adjusting the overlap of the interaction beams in the crystal. This overlap region may be adjusted so that the diode frequency spectrum, originally occupying about 10 longitudinal modes, scans and narrows as the conjugate signal builds up, coming to rest often in one, but sometimes two or three, longitudinal modes as a result of self-generated distributed-feedback effects. We also report similar effects caused by feedback from the total-internal-reflection passive phase-conjugate mirror. The alignment-control mechanism of the ring mirror is, however, not available in this case.

  9. Compact, Low-Cost, Frequency-Locked Semiconductor Laser for Injection Seeding High Power Laser, Phase II (United States)

    National Aeronautics and Space Administration — This NASA Small Business Innovative Research Phase II project will develop a compact, low-cost, wavelength locked seed laser for injection locking high powered...

  10. Channeling and stability of laser pulses in plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.


    A laser pulse propagating in a plasma is found to undergo a combination of hose and modulation instabilities. The coupled equations for the laser beam envelope and centroid are derived and solved for a laser pulse of finite length propagating through either a uniform plasma or preformed plasma density channel. The laser envelope equation describes the pulse self-focusing and optical guiding in plasmas and is used to analyze the self-modulation instability. The laser centroid equation describes the transverse motion of the laser pulse (hosing) in plasmas. Significant coupling between the centroid and envelope motion as well as harmonic generation in the envelope can occur. In addition, the transverse profile of the generated wake field is strongly affected by the laser hose instability. Methods to reduce the laser hose instability are demonstrated. copyright 1995 American Institute of Physics

  11. Measurement of laser activated electron tunneling from semiconductor zinc oxide to adsorbed organic molecules by a matrix assisted laser desorption ionization mass spectrometer

    International Nuclear Information System (INIS)

    Zhong Hongying; Fu Jieying; Wang Xiaoli; Zheng Shi


    Highlights: ► Irradiation of photons with energies more than the band gap generates electron–hole pairs. ► Electron tunneling probability is dependent on the electron mobility. ► Tunneling electrons are captured by charge deficient atoms. ► Unpaired electrons induce cleavages of chemical bonds. - Abstract: Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ = 355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO 2 nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry.

  12. Space-Qualifiable High Reliability Frequency-Stabilized CW Laser Source Project (United States)

    National Aeronautics and Space Administration — We propose the SBIR Phase II effort to develop and space-qualify a 1.06 micron high reliability frequency-stabilized CW laser source that fully satisfies the...

  13. Space-Qualifiable High Reliability Frequency-Stabilized CW Laser Source Project (United States)

    National Aeronautics and Space Administration — We propose the development and space qualification of a high reliability frequency-stabilized CW laser source at 1064 nm wavelength region to satisfy the...

  14. Constructing a Laser Stabilization System for a Parity Non-Conservation Experiment with Francium (United States)

    Dehart, A. C.; Gwinner, Gerald; Kossin, Michael; Behr, John; Gorelov, Alexandre; Kalita, Mukut; Pearson, Matthew; Aubin, Seth; Gomez Garcia, Eduardo; Orozco, Luis


    We are developing an experiment at TRIUMF to test the Standard model at low energies by measuring Parity Non-Conservation (PNC) effects in francium. Current efforts include preparations to study the 7s - 8s electric dipole (E1) forbidden transition in francium at 507 nm under the influence of an electric field. Fr has no stable isotope; therefore to frequency-stabilize our laser at 507 nm, we are developing a laser stabilization system by using the Pound-Drever-Hall technique with a Fabry-Perot cavity made of Ultra Low Expansion Glass (ULE) as our stable frequency reference. The system will stabilize a 1014 nm laser, which will be frequency doubled to 507 nm, before sending the light to our cold and trapped francium sample. We will report on our recent experiences with the laser stabilization system. Supported by NSERC, NRC/TRIUMF, DOE, NSF, CONACYT, Fulbright, and U. of Manitoba.

  15. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Matthew; /Auburn U.


    This presentation covers data collected on two commercial laser stabilization systems, Guidestar-II and MRC, and two optical imaging systems. Additionally, general information about LCLS-II and how to go about continuing-testing is covered.

  16. Development of laser technology (Development of the wavelength tuning and the output stabilization technology)

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Hyung Ki; Kim, Sung Ho; Cha, Byung Hun; Rhee, Yong Joo; Lim, Chang Hwan; Yoo, Byung Duk; Song, Kyu Seok; Choe, An Seong; Baik, Dae Hyun; Kim, Jung Bog; Jeong, Do Young; Jung, Euo Chang; Han, Jae Min; Ko, Do Kyeong; Lee, Byung Cheol; Kim, Sun Kook; Nam, Sung Mo; Rho, Si Pyo; Yi, Jong Hoon; Choi, Hwa Rim; Lee, Yong Bum; Kim, Woong Ki


    Various types of the dye laser are developed and investigated for the wavelength tuning and the output stabilization. And a Ti:sapphire laser system was developed to expand the lasing frequency and the injection seeding was executed in this Ti:sapphire laser. New frequency tuning mechanism using a wedge prism was developed and it was proved that better fine frequency tuning can be achieved by rotating the wedge prism instead of the tuning mirror. Efficiency and the parameters of the high power dye laser amplifier system were calculated by the computer simulation. The characteristics of the dye nozzle were examined for the stabilization of the high power, high repetition rate dye laser system and the output characteristics of the dye laser using the nozzle are investigated. (Author)

  17. Comparison of the leading-edge timing walk in pulsed TOF laser range finding with avalanche bipolar junction transistor (BJT) and metal-oxide-semiconductor (MOS) switch based laser diode drivers. (United States)

    Hintikka, Mikko; Hallman, Lauri; Kostamovaara, Juha


    Timing walk error in pulsed time-of-flight based laser range finding was studied using two different types of laser diode drivers. The study compares avalanche bipolar junction transistor (BJT) and metal-oxide-semiconductor field-effect transistor switch based laser pulse drivers, both producing 1.35 ns current pulse length (full width at half maximum), and investigates how the slowly rising part of the current pulse of the avalanche BJT based driver affects the leading edge timing walk. The walk error was measured to be very similar with both drivers within an input signal dynamic range of 1:10 000 (receiver bandwidth of 700 MHz) but increased rapidly with the avalanche BJT based driver at higher values of dynamic range. The slowly rising part does not exist in the current pulse produced by the metal-oxide-semiconductor (MOS) based laser driver, and thus the MOS based driver can be utilized in a wider dynamic range.

  18. Packaging-induced failure of semiconductor lasers and optical telecommunications components

    Energy Technology Data Exchange (ETDEWEB)

    Sharps, J.A. [Corning Inc., NY (United States)


    Telecommunications equipment for field deployment generally have specified lifetimes of > 100,000 hr. To achieve this high reliability, it is common practice to package sensitive components in hermetic, inert gas environments. The intent is to protect components from particulate and organic contamination, oxidation, and moisture. However, for high power density 980 nm diode lasers used in optical amplifiers, the authors found that hermetic, inert gas packaging induced a failure mode not observed in similar, unpackaged lasers. They refer to this failure mode as packaging-induced failure, or PIF. PIF is caused by nanomole amounts of organic contamination which interact with high intensity 980 nm light to form solid deposits over the emitting regions of the lasers. These deposits absorb 980 nm light, causing heating of the laser, narrowing of the band gap, and eventual thermal runaway. The authors have found PIF is averted by packaging with free O{sub 2} and/or a getter material that sequesters organics.

  19. Electronic defect levels in continuous wave laser annealed silicon metal oxide semiconductor devices (United States)

    Cervera, M.; Garcia, B. J.; Martinez, J.; Garrido, J.; Piqueras, J.


    The effect of laser treatment on the bulk and interface states of the Si-SiO2 structure has been investigated. The annealing was performed prior to the gate metallization using a continuous wave Ar+ laser. For low laser powers the interface state density seems to decrease slightly in comparison with untreated samples. However, for the highest irradiating laser powers a new bulk level at 0.41 eV above the valence band with concentrations up to 1015 cm-3 arises probably due to the electrical activation of the oxygen diluted in the Czochralski silicon. Later postmetallization annealings reduce the interface state density to values in the 1010 cm-2 eV-1 range but leave the concentration of the 0.41-eV center nearly unchanged.

  20. Experimental study of self-oscillation frequency in a semiconductor laser with optical injection

    International Nuclear Information System (INIS)

    MartInez-Zerega, B E; Jaimes-Reategui, R; Pisarchik, A N; Liu, J M


    Period-one and period-two oscillations in a diode laser subject to optical injection are experimentally investigated. The changes in the modulation frequency are studied as a function of the detuning frequency and the injection signal strength

  1. Theoretical Modeling of Intensity Noise in InGaN Semiconductor Lasers (United States)


    This paper introduces modeling and simulation of the noise properties of the blue-violet InGaN laser diodes. The noise is described in terms of the spectral properties of the relative intensity noise (RIN). We examine the validity of the present noise modeling by comparing the simulated results with the experimental measurements available in literature. We also compare the obtained noise results with those of AlGaAs lasers. Also, we examine the influence of gain suppression on the quantum RIN. In addition, we examine the changes in the RIN level when describing the gain suppression by the case of inhomogeneous spectral broadening. The results show that RIN of the InGaN laser is nearly 9 dB higher than that of the AlGaAs laser. PMID:25147848

  2. Theoretical Modeling of Intensity Noise in InGaN Semiconductor Lasers

    Directory of Open Access Journals (Sweden)

    Moustafa Ahmed


    Full Text Available This paper introduces modeling and simulation of the noise properties of the blue-violet InGaN laser diodes. The noise is described in terms of the spectral properties of the relative intensity noise (RIN. We examine the validity of the present noise modeling by comparing the simulated results with the experimental measurements available in literature. We also compare the obtained noise results with those of AlGaAs lasers. Also, we examine the influence of gain suppression on the quantum RIN. In addition, we examine the changes in the RIN level when describing the gain suppression by the case of inhomogeneous spectral broadening. The results show that RIN of the InGaN laser is nearly 9 dB higher than that of the AlGaAs laser.

  3. Semiconductor Laser with a Self-Pumped Phase Conjugate External Cavity (United States)


    virtually the case for the DPCM . It shows the greatest potential for laser phasing, of any geometry. In that device, two independent pump beams are... DPCM in that respect, except that only a single pump beam is used. Thus its study falls under the self-imposed guidelines of applicability for laser...PPCM, as in its cousin the DPCM , the beams are constrained so that only a single grating is written. Consequently, the reflection intensity is stable [61

  4. Dynamic and Noise Properties of Tunable Multielectrode Semiconductor Lasers Including Spatial Hole Burning and Nonlinear Gain (United States)


    LASERS WITH UNIFORM INTENSITY :or instance, an increase in electron population due to DISTRIBUTION ýurrent modulation leads to an increase in the output...lasers 1281, the o the spontaneous emission results in a decrease of clcc- field intensity distribution is nearly uniform inside the :on population to...Optics (Academic. 1989). on optical fiber measuremcnts at the Guilin Insti- Dr. Agrawal is a fellow of the Optical Society of America and a member utuc

  5. On the mechanisms governing the repetition rate of mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper


    We investigate the mechanisms influencing the synchronization locking range of mode-locked lasers. We find that changes in repetition rates can be accomodated through a joint interplay of dispersion and pulse shaping effects.......We investigate the mechanisms influencing the synchronization locking range of mode-locked lasers. We find that changes in repetition rates can be accomodated through a joint interplay of dispersion and pulse shaping effects....

  6. Effect of semiconductor GaAs laser irradiation on pain perception in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zarkovic, N.; Manev, H.; Pericic, D.; Skala, K.; Jurin, M.; Persin, A.; Kubovic, M.


    The influence of subacute exposure (11 exposures within 16 days) of mice to the low power (GaAs) semiconductive laser-stimulated irradiation on pain perception was investigated. The pain perception was determined by the latency of foot-licking or jumping from the surface of a 53 degrees C hot plate. Repeated hot-plate testing resulted in shortening of latencies in both sham- and laser-irradiated mice. Laser treatment (wavelength, 905 nm; frequency, 256 Hz; irradiation time, 50 sec; pulse duration, 100 nsec; distance, 3 cm; peak irradiance, 50 W/cm2 in irradiated area; and total exposure, 0.41 mJ/cm2) induced further shortening of latencies, suggesting its stimulatory influence on pain perception. Administration of morphine (20 mg/kg) prolonged the latency of response to the hot plate in both sham- and laser-irradiated mice. This prolongation tended to be lesser in laser-irradiated animals. Further investigations are required to elucidate the mechanism of the observed effect of laser.

  7. Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers

    DEFF Research Database (Denmark)

    Zhukov, Alexey E.; Kryzhanovskaya, Natalia V.; Zubov, Fedor I.


    We fabricated and tested a quantum well laser with asymmetric barrier layers. Such a laser has been proposed earlier to suppress bipolar carrier population in the optical confinement layer and thus to improve temperature-stability of the threshold current. As compared to the conventional reference...

  8. A High Power CH3OH Laser System Using Stark Stabilized CO2 Pump Lasers (United States)

    Hutchinson, D. P.; Bennett, C. A.; Lee, J.; Fl etcher, L. K.; Ma, C. H.; Vander Sluis, K. L.


    A dual channel, 119μm wavelength laser system has been constructed for the ATF experiment at Oak Ridge. The pump lasers utilize external Stark cells for locking the CO2 laser to the absorption frequency of the CH3OH lasers. Stark plates have also been attached to the dielectric waveguide resonators of the FIR lasers to affect precise tuning of the 119 μm lasers.

  9. A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA (United States)

    Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao


    Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.

  10. Nonvolatile memory characteristics in metal-oxide-semiconductors containing metal nanoparticles fabricated by using a unique laser irradiation method

    International Nuclear Information System (INIS)

    Yang, JungYup; Yoon, KapSoo; Kim, JuHyung; Choi, WonJun; Do, YoungHo; Kim, ChaeOk; Hong, JinPyo


    Metal-oxide-semiconductor (MOS) capacitors with metal nanoparticles (Co NP) were successfully fabricated by utilizing an external laser exposure technique for application of non-volatile memories. Images of high-resolution transmission electron microscopy reveal that the spherically shaped Co NP are clearly embedded in the gate oxide layer. Capacitance-voltage measurements exhibit typical charging and discharging effects with a large flat-band shift. The effects of the tunnel oxide thickness and the different tunnel materials are analyzed using capacitance-voltage and retention characteristics. In addition, the memory characteristics of the NP embedded in a high-permittivity material are investigated because the thickness of conventionally available SiO 2 gates is approaching the quantum tunneling limit as devices are scaled down. Finally, the suitability of NP memory devices for nonvolatile memory applications is also discussed. The present results suggest that our unique laser exposure technique holds promise for the NP formation as floating gate elements in nonvolatile NP memories and that the quality of the tunnel oxide is very important for enhancing the retention properties of nonvolatile memory.

  11. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.


    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  12. Co-evaporation of fluoropolymer additives for improved thermal stability of organic semiconductors (United States)

    Price, Jared S.; Wang, Baomin; Grede, Alex J.; Shen, Yufei; Giebink, Noel C.


    Reliability remains an ongoing challenge for organic light emitting diodes (OLEDs) as they expand in the marketplace. The ability to withstand operation and storage at elevated temperature is particularly important in this context, not only because of the inverse dependence of OLED lifetime on temperature, but also because high thermal stability is fundamentally important for high power/brightness operation as well as applications such as automotive lighting, where interior car temperatures often exceed the ambient by 50 °C or more. Here, we present a strategy to significantly increase the thermal stability of small molecule OLEDs by co-depositing an amorphous fluoropolymer, Teflon AF, to prevent catastrophic failure at elevated temperatures. Using this approach, we demonstrate that the thermal breakdown limit of common hole transport materials can be increased from typical temperatures of ˜100 °C to more than 200 °C while simultaneously improving their electrical transport properties. Similar thermal stability enhancements are demonstrated in simple bilayer OLEDs. These results point toward a general approach to engineer morphologically-stable organic electronic devices that are capable of operating or being stored in extreme thermal environments.

  13. Long-term frequency stabilized and linewidth-narrowed cw-laser system for excitation of lithium Rydberg states (United States)

    Saakyan, S. A.; Sautenkov, V. A.; Zelener, B. B.


    We transfer the frequency stability from a diode laser, which was locked to Doppler-free saturation absorption resonance in lithium vapor cell, to a tunable Ti-sapphire laser. We get the laser linewidth stability ±0.5 MHz. The uv laser system which included the stabilized Ti-sapphire laser and frequency doubler has output optical beam with power near 100 mW and wavelength 350 nm. This uv laser system will be used for excitation and study of Rydberg states in lithium atoms.

  14. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T


    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we obta...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz.......We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...

  15. Realization and characterization of a stabilized power supply for a laser diode

    International Nuclear Information System (INIS)

    Houji, Imen


    This final project study is entitled realization and characterization of a stabilized power supply for a diode laser. It was developed at the National Center for Nuclear Sciences and Technology at Sidi Thabet. In a first step, we are interested on the physics of lasers and its applications in different fields. We have also focused on the electronic manufacturing of diode lasers. In a second part, we have presented in detail the current stabilized power supply and the detailed description of the various blocks of this electronic schema. Before the experimental realization, we simulated the electronic schema using the commercial software P roteus 7 . Finally we presented the practical realization of various cards.

  16. Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

    DEFF Research Database (Denmark)

    Schäffer, S. A.; Christensen, B. T.R.; Henriksen, M. R.


    Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approa...... transfer function relating input field to output field. The cavity dynamics is shown to have only little influence on the prospects for laser stabilization, making the system robust towards cavity fluctuations and ideal for the improvement of future narrow linewidth lasers....

  17. Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers

    International Nuclear Information System (INIS)

    Williams, Richard M.; Kelly, James F.; Hartman, John S.; Sharpe, Steven W.; Taubman, Matthew S.; Hall, John L.; Capasso, Federico; Gmachl, Claire; Sivco, Deborah L.; Baillargeon, James N.


    Frequency stabilization of mid-IR quantum cascade (QC) lasers to the kilohertz level has been accomplished by use of electronic servo techniques. With this active feedback, an 8.5-μm QC distributed-feedback laser is locked to the side of a rovibrational resonance of nitrous oxide (N 2 O) at 1176.61 cm -1 . A stabilized frequency-noise spectral density of 42 Hz/√(Hz) has been measured at 100 kHz; the calculated laser linewidth is 12 kHz. (c) 1999 Optical Society of America

  18. Jitter reduction by intracavity active phase modulation in a mode-locked semiconductor laser. (United States)

    Ozharar, Sarper; Ozdur, Ibrahim; Quinlan, Franklyn; Delfyett, Peter J


    We experimentally verify the theory of Haus et al. [IEEE J. Quantum Electron. 40, 41 (2004)] on the effects of timing jitter using intracavity phase modulation on the pulse train of a mode-locked laser. The theory is based on the solution of the Heisenberg-Langevin equation in the presence of dispersion and intracavity phase modulation. Using active intracavity phase modulation, we have reduced the timing jitter on a 10.24 GHz mode-locked diode laser by 50% from 304 to 150 fs integrated from 1 Hz to the Nyquist frequency of 5.12 GHz.

  19. Size effect caused significant reduction of thermal conductivity of GaAs/AlAs distributed Bragg reflector used in semiconductor disk laser (United States)

    Zhang, Peng; Zhu, Renjiang; Jiang, Maohua; Song, Yanrong; Zhang, Dingke; Cui, Yuting


    Thermal properties of the distributed Bragg reflector (DBR) used in the semiconductor gain element are crucial for the performance of a semiconductor disk laser (SDL). For the purpose of more reasonable semiconductor wafer design, so as to improve the thermal management of SDLs, accurate thermal conductivity value of a DBR is under considerable requirement. By the use of equilibrium molecular dynamics method, thermal conductivities of GaAs/AlAs DBRs, which are widely employed in 1 μm waveband SDLs, are calculated, and simulated results are compared with the reported experimental data. Influences of the layer thickness on the thermal conductivities of the DBR structure and the effects of Al composition on the AlxGa1-xAs ternary alloy values are focused and analyzed.

  20. Frequency and amplitude stabilized terahertz quantum cascade laser as local oscillator

    NARCIS (Netherlands)

    Ren, Y.; Hayton, D.J.; Hovenier, J.N.; Cui, M.; Gao, J.R.; Klapwijk, T.M.; Shi, S.C.; Kao, T.Y.; Hu, Q.; Reno, J.L.


    We demonstrate an experimental scheme to simultaneously stabilize the frequency and amplitude of a 3.5 THz third-order distributed feedback quantum cascade laser as a local oscillator. The frequency stabilization has been realized using a methanol absorption line, a power detector, and a

  1. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh


    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  2. Towards passive and active laser stabilization using cavity-enhanced atomic interaction

    DEFF Research Database (Denmark)

    Schäffer, Stefan Alaric; Christensen, Bjarke Takashi Røjle; Rathmann, Stefan Mossor


    Ultra stable frequency references such as the ones used in optical atomic clocks and for quantum metrology may be obtained by stabilizing a laser to an optical cavity that is stable over time. State-of-the-art frequency references are constructed in this way, but their stabilities are currently...... experimental efforts derived from these proposals, to use cavity-enhanced interaction with atomic 88Sr samples as a frequency reference for laser stabilization. Such systems can be realized using both passive and active approaches where either the atomic phase response is used as an error signal, or the narrow...... atomic transition itself is used as a source for a spectrally pure laser. Both approaches shows the promise of being able to compete with the current state of the art in stable lasers and have similar limitations on their ultimately achievable linewidths [1, 2]....

  3. Semiconductors Investigated by Time Resolved Spectroscopy Using Femtosecond and Picosecond Laser Technology. (United States)


    Measured by a Streak Camera, H. Zarrabi , R. R. Alfano, Phys. Rev. B32, 3947 (1985). Picosecond Pulses Produced by Mode Locking an Nd:Glass Laser with Kodak...Excitation" by Hassan J. Zarrabi , 1985, AFOSR General Optronics 3. "Picosecond and Steady State Spectroscopy of Defects in Semi-Insulating CdSe" by David L

  4. Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer

    DEFF Research Database (Denmark)

    Liu, Xin; Klinkhammer, Sönke; Wang, Ziyao


    -wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different...

  5. Tunable mode-locked semiconductor laser with Bragg mirror external cavity

    DEFF Research Database (Denmark)

    Yvind, Kresten; Jørgensen, T.; Birkedal, Dan


    We present a simplified design for a wavelength tunable external cavity mode-locked laser by employing a wedged GaAs/AlGaAs Bragg mirror. The device emits 4-6 ps pulses at 10 GHz and is tunable over 15 nm. Although, in the present configuration, tunability is limited to 15 nm, however, we have...

  6. Physical limits of semiconductor laser operation: A time-resolved analysis of catastrophic optical damage

    DEFF Research Database (Denmark)

    Ziegler, Mathias; Hempel, Martin; Larsen, Henning Engelbrecht


    The early stages of catastrophic optical damage (COD) in 808 nm emitting diode lasers are mapped by simultaneously monitoring the optical emission with a 1 ns time resolution and deriving the device temperature from thermal images. COD occurs in highly localized damage regions on a 30 to 400 ns...

  7. Transient changes of optical properties in semiconductors in response to femtosecond laser pulses

    Czech Academy of Sciences Publication Activity Database

    Tkachenko, V.; Medvedev, Nikita; Ziaja, B.


    Roč. 6, č. 9 (2016), 1-12, č. článku 238. ISSN 2076-3417 Institutional support: RVO:68378271 Keywords : free-electron lasers * transient optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.679, year: 2016

  8. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.


    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  9. Report on the Power and Detector Stability Measurements for the QC Laser Alignment System

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Bonebrake, Christopher A.; Cannon, Bret D.; Suarez, Reynold; Stewart, Timothy L.; Hatchell, Brian K.


    This report summarizes the preliminary tests that PNNL has performed to date for the Quantum Cascade (QC) Laser Alignment System that is being developed for the Using Client for a classified application. PNNL is designing, fabricating, assembling, and testing the QC Laser Alignment System and has a subcontract with Maxion Technologies, Inc. for development and production of the QC laser devices to be used in this system. The QC lasers furnished by Maxion will be incorporated into the QC Laser Alignment System by PNNL. The QC Laser Alignment System consists of five Alignment Source Assemblies (ASAs) and a computer control system with graphical user interface (GUI). Each ASA has two QC lasers along with a temperature sensor. The system design also includes an optical detector for each QC laser to measure the output power of the rear facet for additional stabilization. The system will monitor the voltage across the QC laser, the temperature, the current, and the signal from the optical detectors to ensure the system is within the tolerances specified in the System Specifications. The System Specifications require that the relative power between lasers on the same ASA be maintained at {+-}1% and among the lasers on different ASAs at {+-}2.5%. For the tests reported here, we attempted to examine the power stability of the QC laser as well as the variability of the optical detectors to ensure the system will adhere to these specifications. These preliminary tests did not incorporate the actual ASA mounting scheme or the QC lasers that are being fabricated by Maxion to operate at the specified temperature of -50 C. Thus, we expect the performance from these results to differ from the actual results that can be achieved in the QC Laser Alignment System. Current limitations with the mounting scheme created problems with the power stability due to thermal cycling. Short-term power stability where thermal cycling was not a problem showed power fluctuations within the 1

  10. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T


    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz....

  11. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu


    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  12. Stability of the mode-locking regime in tapered quantum-dot lasers (United States)

    Bardella, P.; Drzewietzki, L.; Rossetti, M.; Weber, C.; Breuer, S.


    We study numerically and experimentally the role of the injection current and reverse bias voltage on the pulse stability of tapered, passively mode-locked, Quantum Dot (QD) lasers. By using a multi-section delayed differential equation and introducing in the model the QD inhomogenous broadening, we are able to predict the onset of leading and trailing edge instabilities in the emitted pulse trains and to identify specific trends of stability in dependence on the laser biasing conditions. The numerical results are confirmed experimentally trough amplitude and timing stability analysis of the pulses.

  13. Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. (United States)

    Lim, Jinkang; Savchenkov, Anatoliy A; Dale, Elijah; Liang, Wei; Eliyahu, Danny; Ilchenko, Vladimir; Matsko, Andrey B; Maleki, Lute; Wong, Chee Wei


    Ultrastable high-spectral-purity lasers have served as the cornerstone behind optical atomic clocks, quantum measurements, precision optical microwave generation, high-resolution optical spectroscopy, and sensing. Hertz-level lasers stabilized to high-finesse Fabry-Pérot cavities are typically used for these studies, which are large and fragile and remain laboratory instruments. There is a clear demand for rugged miniaturized lasers with stabilities comparable to those of bulk lasers. Over the past decade, ultrahigh-Q optical whispering-gallery-mode resonators have served as a platform for low-noise microlasers but have not yet reached the stabilities defined by their fundamental noise. Here, we show the noise characteristics of whispering-gallery-mode resonators and demonstrate a resonator-stabilized laser at this limit by compensating the intrinsic thermal expansion, allowing a sub-25 Hz linewidth and a 32 Hz Allan deviation. We also reveal the environmental sensitivities of the resonator at the thermodynamical noise limit and long-term frequency drifts governed by random-walk-noise statistics.High-quality optical resonators have the potential to provide a miniaturized frequency reference for metrology and sensing but they often lack stability. Here, Lim et al. experimentally characterize the stability of whispering-gallery resonators at their fundamental noise limits.

  14. Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma

    International Nuclear Information System (INIS)

    Papadopoulos, K.; Zigler, A.


    Terahertz (THz) radiation is electromagnetic radiation in the range between several hundred and a few thousand GHz. It covers the gap between fast-wave electronics (millimeter waves) and optics (infrared). This spectral region offers enormous potential for detection of explosives and chemical/biological agents, non-destructive testing of non-metallic structural materials and coatings of aircraft structures, medical imaging, bio-sensing of DNA stretching modes and high-altitude secure communications. The development of these applications has been hindered by the lack of powerful, tunable THz sources with controlled waveform. The need for such sources is accentuated by the strong, but selective absorption of THz radiation during transmission through air with high vapor content. The majority of the current experimental work relies on time-domain spectroscopy using fast electrically biased photoconductive sources in conjunction with femto-second mode-locked Ti:Sapphire lasers. These sources known as Large Aperture Photoconductive Antennas (LAPA) have very limited tunability, relatively low upper bound of power and no bandwidth control. The paper presents a novel source of THz radiation known as Miniature Photoconductive Capacitor Array (MPCA). Experiments demonstrated tunability between .1 - 2 THz, control of the relative bandwidth Δf/f between .5-.01, and controlled pulse length and pulse waveform (temporal shape, chirp, pulse-to-pulse modulation etc.). Direct scaling from the current device indicates efficiency in excess of 30% at 1 THz with 1/f2 scaling at higher frequencies, peak power of 100 kW and average power between .1-1 W. The physics underlying the MPCA is the interaction of a super-luminous ionization front generated by the oblique incidence of a Ti:Sapphire laser pulse on a semiconductor crystal (ZnSe) biased with an alternating electrostatic field, similar to that of a frozen wave generator. It is shown theoretically and experimentally that the

  15. High stability laser for next generation gravity missions (United States)

    Nicklaus, K.; Herding, M.; Wang, X.; Beller, N.; Fitzau, O.; Giesberts, M.; Herper, M.; Barwood, G. P.; Williams, R. A.; Gill, P.; Koegel, H.; Webster, S. A.; Gohlke, M.


    With GRACE (launched 2002) and GOCE (launched 2009) two very successful missions to measure earth's gravity field have been in orbit, both leading to a large number of publications. For a potential Next Generation Gravity Mission (NGGM) from ESA a satellite-to-satellite tracking (SST) scheme, similar to GRACE is under discussion, with a laser ranging interferometer instead of a Ka-Band link to enable much lower measurement noise. Of key importance for such a laser interferometer is a single frequency laser source with a linewidth collaboration the JPL contributions are the instrument electronics, the reference cavity and the single frequency laser, while STI as the German industry prime is responsible for the optical bench and the retroreflector. In preparation of NGGM an all European instrument development is the goal.

  16. Iodine Stabilized Seed Laser for Space Applications Project (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort proposes to establish the feasibility of leveraging advances in compact laser technology with integration of space qualified techniques into...

  17. Generalized bipolariton model. propagation of a ultrashort laser pulse through a thin semiconductor film in the conditions of two-photon generation of biexcitons

    International Nuclear Information System (INIS)

    Igor Beloussov


    A generalized bipolariton model is proposed. Bipolaritons is formed from virtual excitons of four kinds. There exists both attractive and repulsive interaction between these excitons, though only excitons of a specific type can interact with light. A substantial difference between conventional and our models is shown for the case of nonlinear transmission/reflection of ultrashort laser pulses by a thin semiconductor film under two-photon generation of biexcitons. (author)

  18. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Posilović, K. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstrasse 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)


    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm{sup −2} sr{sup −1} are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  19. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    International Nuclear Information System (INIS)

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D.; Posilović, K.; Pohl, J.; Weyers, M.


    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm −2  sr −1 are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  20. Emission characteristics and stability of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Jungwirth, Karel; Ullschmied, Jiří; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowski, J.


    Roč. 85, č. 5 (2010), s. 617-621 ISSN 0042-207X R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * ion emission reproducibility * thermal and fast ions * ion temperature * centre-of-mass velocity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.048, year: 2010

  1. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F


    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  2. Liquid detection with InGaAsP semiconductor lasers having multiple short external cavities. (United States)

    Zhu, X; Cassidy, D T


    A liquid detection system consisting of a diode laser with multiple short external cavities (MSXC's) is reported. The MSXC diode laser operates single mode on one of 18 distinct modes that span a range of 72 nm. We selected the modes by setting the length of one of the external cavities using a piezoelectric positioner. One can measure the transmission through cells by modulating the injection current at audio frequencies and using phase-sensitive detection to reject the ambient light and reduce 1/f noise. A method to determine regions of single-mode operation by the rms of the output of the laser is described. The transmission data were processed by multivariate calibration techniques, i.e., partial least squares and principal component regression. Water concentration in acetone was used to demonstrate the performance of the system. A correlation coefficient of R(2) = 0.997 and 0.29% root-mean-square error of prediction are found for water concentration over the range of 2-19%.

  3. Laser isotope purification of lead for use in semiconductor chip interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Scheibner, K.; Haynam, C.; Worden, E.; Esser, B.


    Lead, used throughout the electronics industries, typically contains small amounts of radioactive {sup 210}Pb (a daughter product of the planets ubiquitous {sup 238}U) whose {sup 210}Po daughter emits an {alpha}-particle that is known to cause soft errors in electronic circuits. The {sup 210}Pb is not separable by chemical means. This paper describes the generic Atomic Vapor Laser Isotope Separation (AVLIS) process developed at the Lawrence Livermore National Laboratory (LLNL) over the last 20 years, with particular emphasis on recent efforts to develop the process physics and component technologies required to remove the offending {sup 210}Pb using lasers. We have constructed a developmental facility that includes a process laser development area and a test bed for the vaporizer and ion and product collectors. We will be testing much of the equipment and demonstrating pilot scale AVLIS on a surrogate material later this year. Detection of the very low alpha emission even from commercially available low-alpha lead is challenging. LLNL`s detection capabilities will be described. The goal of the development of lead purification technology is to demonstrate the capability in FY97, and to deploy a production machine capable of up to several MT/y of isotopically purified material, possible beginning in FY98.

  4. Influence of parameters of gas medium on the fluorescence of iodine molecules 129I2, 127I129I and 127I2 excited by semiconductor laser radiation (United States)

    Kireev, S. V.; Shnyrev, S. L.


    Calculated and experimental results of studies of the influence of vapor temperature of iodine molecules (129I2, 127I129I, and 127I2) and pressure of the analyzed medium on the intensity of fluorescence of the molecules excited by semiconductor laser radiation in the red spectrum region are reported. It is demonstrated that depending on the wavelength of laser radiation there exist different ranges of temperatures and pressure values at which the fluorescence intensities of each of the indicated iodine molecules reach their maximum values.

  5. High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction (United States)

    Tomaka, G.; Grendysa, J.; ŚliŻ, P.; Becker, C. R.; Polit, J.; Wojnarowska, R.; Stadler, A.; Sheregii, E. M.


    Experimental results of the magnetotransport measurements (longitudinal magnetoresistance Rx x and the Hall resistance Rx y) are presented over a wide interval of temperatures for several samples of Hg1 -xCdxTe (x ≈0.13 -0.15 ) grown by MBE—thin layers (thickness about 100 nm) strained and not strained and thick ones with thickness about 1 μ m . An amazing temperature stability of the SdH-oscillation period and amplitude is observed in the entire temperature interval of measurements up to 50 K. Moreover, the quantum Hall effect (QHE) behavior of the Hall resistance is registered in the same temperature interval. These peculiarities of the Rx x and Rx y for strained thin layers are interpreted using quantum Hall conductivity (QHC) on topologically protected surface states (TPSS) [C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011), 10.1103/PhysRevLett.106.126803]. In the case of not strained layers it is assumed that the QHC on the TPSS (or on the resonant interface states) contributes also to the conductance of the bulk samples.

  6. Compact environmental spectroscopy using advanced semiconductor light-emitting diodes and lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, I.J.; Klem, J.F.; Hafich, M.J. [and others


    This report summarizes research completed under a Laboratory Directed Research and Development program funded for part of FY94, FY95 and FY96. The main goals were (1) to develop novel, compound-semiconductor based optical sources to enable field-based detection of environmentally important chemical species using miniaturized, low-power, rugged, moderate cost spectroscopic equipment, and (2) to demonstrate the utility of near-infrared spectroscopy to quantitatively measure contaminants. Potential applications would include monitoring process and effluent streams for volatile organic compound detection and sensing head-space gasses in storage vessels for waste management. Sensing is based on absorption in the 1.3-1.9 {mu}m band from overtones of the C-H, N-H and O-H stretch resonances. We describe work in developing novel broadband light-emitting diodes emitting over the entire 1.4-1.9 {mu}m wavelength range, first using InGaAs quantum wells, and second using a novel technique for growing digital-alloy materials in the InAlGaAs material system. Next we demonstrate the utility of near-infrared spectroscopy for quantitatively determining contamination of soil by motor oil. Finally we discuss the separability of different classes of organic compounds using near-infrared spectroscopic techniques.

  7. Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection. (United States)

    Hung, Yu-Han; Yan, Jhih-Heng; Feng, Kai-Ming; Hwang, Sheng-Kwang


    This study investigates an all-optical scheme based on period-one (P1) nonlinear dynamics of semiconductor lasers, which regenerates the microwave carrier of an orthogonal frequency division multiplexing radio-over-fiber (OFDM-RoF) signal and uses it as a microwave local oscillator for coherent detection. Through the injection locking established between the OFDM-RoF signal and the P1 dynamics, frequency synchronization with highly preserved phase quality is inherently achieved between the recovered microwave carrier and the microwave carrier of the OFDM-RoF signal. A bit-error ratio down to 1.9×10-9 is achieved accordingly using the proposed scheme for coherent detection of a 32-GHz OFDM-RoF signal carrying 4  Gb/s 16-quadrature amplitude modulation data. No electronic microwave generators or electronic phase-locked loops are thus required. The proposed system can be operated up to at least 100 GHz and can be self-adapted to certain changes in the operating microwave frequency.

  8. Short-range remote spectral sensor using mid-infrared semiconductor lasers with orthogonal code-division multiplexing approach (United States)

    Morbi, Zulfikar; Ho, D. B.; Ren, H.-W.; Le, Han Q.; Pei, Shin Shem


    Demonstration of short-range multispectral remote sensing, using 3 to 4-micrometers mid- infrared Sb semiconductor lasers based on code-division multiplexing (CDM) architecture, is described. The system is built on a principle similar to intensity- modulated/direct-detection optical-CDMA for communications, but adapted for sensing with synchronous, orthogonal codes to distinguish different wavelength channels with zero interchannel correlation. The concept is scalable for any number of channels, and experiments with a two-wavelength system are conducted. The CDM-signal processing yielded a white-Gaussian-like system noise that is found to be near the theoretical level limited by the detector fundamental intrinsic noise. With sub-mW transmitter average power, the system was able to detect an open-air acetylene gas leak of 10-2 STP ft3/hr from 10-m away with time-varying, random, noncooperative backscatters. A similar experiment detected and positively distinguished hydrocarbon oil contaminants on water from bio-organic oils and detergents. Projection for more advanced systems suggests a multi-kilometer-range capability for watt-level transmitters, and hundreds of wavelength channels can also be accommodated for active hyperspectral remote sensing application.

  9. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. (United States)

    Sakuraba, Ryohsuke; Iwakawa, Kento; Kanno, Kazutaka; Uchida, Atsushi


    We experimentally demonstrate fast physical random bit generation from bandwidth-enhanced chaos by using three-cascaded semiconductor lasers. The bandwidth-enhanced chaos is obtained with the standard bandwidth of 35.2 GHz, the effective bandwidth of 26.0 GHz and the flatness of 5.6 dB, whose waveform is used for random bit generation. Two schemes of single-bit and multi-bit extraction methods for random bit generation are carried out to evaluate the entropy rate and the maximum random bit generation rate. For single-bit generation, the generation rate at 20 Gb/s is obtained for physical random bit sequences. For multi-bit generation, the maximum generation rate at 1.2 Tb/s ( = 100 GS/s × 6 bits × 2 data) is equivalently achieved for physical random bit sequences whose randomness is verified by using both NIST Special Publication 800-22 and TestU01.

  10. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition (United States)

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang


    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices. PMID:25758749

  11. International Semiconductor Laser Conference. Held in Boston, Massachusetts on August 29 - September 1, 1988 (United States)


    Meehan, W. Stutius, J.E. Williams, and J.H. Zarrabi , Polaroid Corporation, Cambridge, MA, USA ....... .... 156-157 L:6 3.15 pm High-Power Non-Planar... Zarrabi Microelectronics Laboratory, Polaroid Corporation, Cambridge, MA 02139 High power GaAs/GaAIAs diode lasers are finding an increasing number of...C. p. 184-185 Zarrabi , J. H. p. 156-157 Pooladdej, J. p. 48-49 Stephens, R. R. p. 28-29 Vahala, K. J. p. 186-187 Zehr, S. W p. 48-49 Portnoy, E. L.p

  12. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    Czech Academy of Sciences Publication Activity Database

    Levy, Yoann; Derrien, Thibault; Bulgakova, Nadezhda M.; Gurevich, E.L.; Mocek, Tomáš


    Roč. 374, Jun (2016), s. 157-164 ISSN 0169-4332 R&D Projects: GA MŠk ED2.1.00/01.0027 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : LIPSS * modulated temperature relaxation * two-temperature model * nano-melting Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.387, year: 2016

  13. Semiconductor detectors for observation of multi-MeV protons and ions produced by lasers

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Klir, D.; De Marco, Massimo; Cikhardt, J.; Velyhan, Andriy; Řezáč, Karel; Pfeifer, Miroslav; Krouský, Eduard; Ryć, L.; Dostál, Jan; Kaufman, Jan; Ullschmied, Jiří; Limpouch, J.


    Roč. 3, č. 1 (2016), 9-11 ISSN 2336-2626 R&D Projects: GA ČR GA16-07036S; GA MŠk EF15_008/0000162; GA MŠk(CZ) LD14089 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-accelerated ions * ion collectors * SiC detectors * similarity relations * electromagnetic pulse Subject RIV: BL - Plasma and Gas Discharge Physics

  14. A diode laser stabilization scheme for {sup 40}Ca{sup +} single-ion spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, F; Almendros, M; Schuck, C; Huwer, J; Hennrich, M; Eschner, J, E-mail: felix.rohde@icfo.e [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels, Barcelona (Spain)


    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D{sub 2} line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in {sup 40}Ca{sup +}. The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D{sub 1} line. This stability is confirmed by the comparison of an excitation spectrum of a single {sup 40}Ca{sup +} ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10{sup -11} between 1 and 100 s.

  15. Three-Dimensional Numerical Analysis for Posture Stability of Laser Propulsion Vehicle (United States)

    Takahashi, Masayuki; Ohnishi, Naofumi


    We have developed a three-dimensional hydrodynamics code coupling equation of motion of a rigid body for analyzing posture stability of laser propulsion vehicle through numerical simulations of flowfield interacting with unsteady motion of the vehicle. Asymmetric energy distribution is initially added around the focal spot (ring) in order to examine posture stability against an asymmetric blast wave resulting from a laser offset for a lightcraft-type vehicle. The vehicle moves to cancel out the offset from initial offset. However, the Euler angle grows and never returns to zero in a time scale of laser pulse. Also, we found that the vehicle moves to cancel tipping angle when the laser is irradiated to the vehicle with initial tipping angle over the wide angle range, through the vehicle cannot get sufficient restoring force in particular angle, and the tipping angle does not decrease from the initial value for that case.

  16. Frequency stabilization of internal-mirror He-Ne lasers by air cooling. (United States)

    Qian, Jin; Liu, Zhongyou; Shi, Chunying; Liu, Xiuying; Wang, Jianbo; Yin, Cong; Cai, Shan


    Instead of the traditional heating method, the cavity length of an internal-mirror He-Ne laser is controlled by air cooling which is implemented by a mini cooling fan. The responsive property of the cooling fan and the thermal expansion of the internal-mirror laser tube are investigated. According to these investigations, a controlling system is designed to drive the cooling fan controlling the cavity length of the laser. Then the frequency is stabilized by comparing the light intensities of two operating longitudinal modes. The results of beating with an iodine stabilized He-Ne laser show that a relative uncertainty (Δf/f-) of 4.3×10(-9) in 5 months, a frequency fluctuation of <1.4 MHz, and an Allan deviation of 6×10(-11) (τ=10,000 s) in 20 h are obtained.

  17. Stability of the single-mode output of a laser diode array with phase conjugate feedback

    DEFF Research Database (Denmark)

    Juul Jensen, S.; Løbel, M.; Petersen, P.M.


    . The output power and the center wavelength are found to be extremely stable in a 100 h stability measurement. External feedback of the output beam into the laser is seen to decrease both the spatial and the temporal coherence of the output significantly. We outline an approach to obtain a stable single......The stability of the output of a single-mode laser diode array with frequency selective phase conjugate feedback has been investigated experimentally. Both the long-term stability of the laser output and the sensitivity to feedback generated by external reflection of the output beam are examined......-mode output when external feedback is present using spatial filtering in the path of the output beam. (C) 2000 American Institute of Physics....

  18. Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam (United States)

    Smarandache, Adriana; Boni, Mihai; Andrei, Ionut Relu; Handzlik, Jadwiga; Kiec-Kononowicz, Katarzyna; Staicu, Angela; Pascu, Mihail-Lucian


    This paper presents data about photophysics of two novel thio-hydantoins that exhibit promising pharmaceutical properties in multidrug resistance control. Time stability studies are necessary to establish the proper use of these compounds in different applications. As for their administration as drugs, it is imperative to know their shelf life, as well as storage conditions. At the same time, laser induced modified properties of the two new compounds are valuable to further investigate their specific interactions with other materials, including biological targets. The two new thio-hydantoins under generic names SZ-2 and SZ-7 were prepared as solutions in dimethyl sulfoxide at different concentrations, as well as in deionised water. For the stability assay they were kept in various light/temperature conditions up to 60 days. The stability was estimates based on UV-vis absorption measurements. The samples in bulk shape were exposed different time intervals to laser radiation emitted at 266 nm as the fourth harmonic of a Nd:YAG laser. The resonant interaction of the studied compounds with laser beams was analysed through spectroscopic methods UV-vis and FTIR absorption, as well as laser induced fluorescence spectroscopy. As for stability assay, only solutions kept in dark at 4 °C have preserved the absorption characteristics, considering the cumulated measuring errors, less than one week. The vibrational changes that occur in their FTIR and modified fluorescence spectra upon laser beam exposure are also discussed. A result of the experimental analysis is that modifications are induced in molecular structures of the investigated compounds by resonant interaction with laser radiation. This fact evidences that the molecules are photoreactive and their characteristics might be shaped through controlled laser radiation exposure using appropriate protocols. This conclusion opens many opportunities both in the biomedical field, but also in other industrial activities

  19. Helium-neon laser stabilized by saturated absorption in iodine at 612 nm. (United States)

    Cérez, P; Bennett, S J


    Hyperfine structure of iodine has been studied at 612 nm by the technique of saturated absorption in an iodine cell placed in a He-Ne laser modified to operate at this wavelength. The most interesting feature of the laser is the existence of strong inverted Lamb dips at a very low vapor pressure, which provides very good short term frequency stability. Some factors which limit the reproducibility of the device are also investigated.

  20. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography. (United States)

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul


    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  1. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser (United States)

    Zhang, Limeng; Pan, Biwei; Chen, Guangcan; Guo, Lu; Lu, Dan; Zhao, Lingjuan; Wang, Wei


    An ultra-fast physical random number generator is demonstrated utilizing a photonic integrated device based broadband chaotic source with a simple post data processing method. The compact chaotic source is implemented by using a monolithic integrated dual-mode amplified feedback laser (AFL) with self-injection, where a robust chaotic signal with RF frequency coverage of above 50 GHz and flatness of ±3.6 dB is generated. By using 4-least significant bits (LSBs) retaining from the 8-bit digitization of the chaotic waveform, random sequences with a bit-rate up to 640 Gbit/s (160 GS/s × 4 bits) are realized. The generated random bits have passed each of the fifteen NIST statistics tests (NIST SP800-22), indicating its randomness for practical applications.

  2. Combination of Transverse Mode Selection and Active Longitudinal Mode-Locking of Broad Area Semiconductor Lasers

    Directory of Open Access Journals (Sweden)

    Christoph Doering


    Full Text Available Experimental results of the combination of transverse mode selection and active mode-locking with anti-reflection-coated broad area lasers (BALs are presented. The BALs are subject to feedback from a free-space external Fourier-optical 4f-setup with a reflective spatial frequency filter in the Fourier-plane for transverse mode selection. Driving the BALs with a high frequency modulated pump current above threshold active longitudinal mode-locking is achieved. Pulse durations as low as 88 ps are obtained, while the Gaussian-like fundamental or a higher order transverse mode up to mode number 5 is selected on purpose. Pulse duration and shape are nearly independent of the selected transverse mode.

  3. Shot-noise-limited laser power stabilization with a high-power photodiode array. (United States)

    Kwee, Patrick; Willke, Benno; Danzmann, Karsten


    The output power of a cw Nd:YAG laser was stabilized in a dc-coupled feedback loop with a low-noise multiphotodiode detector and an electro-optic amplitude modulator in the frequency band from 1 Hz to 1 kHz. For the first time, to our knowledge, an independently measured relative power noise of 2.4 x 10(-9) Hz(-1/2) at 10 Hz was achieved, fulfilling the power stability requirements of the Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory) gravitational wave detector.

  4. Motion Stabilization by Using Laser Distance Sensor for Biped Walking Robot with Flexible Ankle Joints (United States)

    Ito, Masanori; Oda, Naoki

    This paper describes an approach to motion stabilization by using laser distance sensors for biped robots with flexible ankle joints. To avoid the vibrated zero moment point (ZMP) behavior caused by mechanical resonance, a vibration control method is proposed in the paper. In our approach, the deformation of the ankle joint is measured by using laser distance sensors, and the detected deformation is translated into the equivalent reaction force at the center of gravity. The feedback of the reaction force enables the stabilization of the walking motion in a manner similar to resonance ratio control. The validity of the proposed method is evaluated by several experimental results.

  5. In situ optoacoustic measurement of the pointing stability of femtosecond laser beams (United States)

    Pushkarev, D.; Mitina, E.; Uryupina, D.; Volkov, R.; Karabytov, A.; Savel'ev, A.


    A new method for the in situ acoustic measurement of the beam pointing stability (BPS) of powerful pulsed lasers is tested. A broadband (~6 MHz) piezoelectric transducer placed a few millimeters from the laser spark produces an electric pulse. We show that variation in time of the position of this pulse can be used to assess the BPS down to 1 µrad in a few hundred laser shots. The estimated value coincides well with the BPS estimated using standard measurement in the far field.

  6. Coherent Polariton Laser (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui


    The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  7. Coherent Polariton Laser

    Directory of Open Access Journals (Sweden)

    Seonghoon Kim


    Full Text Available The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  8. Pulsed laser deposition of yttria-stabilized zirconium dioxide with a high repetition rate picosecond fiber laser

    International Nuclear Information System (INIS)

    Salminen, Turkka; Hahtala, Mikko; Seppaelae, Ilkka; Niemi, Tapio; Pessa, Markus


    We report the use of a mode-locked fiber laser in pulsed laser deposition (PLD) of yttria-stabilized zirconium oxide. The fiber laser produces picosecond pulses with megahertz repetition rates at the wavelength of 1060 nm. We have investigated the effects of the time delay and the physical overlapping of the consecutive pulses on the ablation thresholds and the properties of the deposited films. Our results show existence of two distinct evaporation modes: (1) a single pulse evaporation mode observed for low overlapping and long time delays between the pulses and (2) a high repetition rate evaporation mode for high overlapping with short delays. The first mode is characterized by evaporation of nanoparticles and clusters and yields structured films with high surface area. The second mode yields smooth films, with evaporation characteristics closer to those of thermal evaporation than traditional PLD. (orig.)

  9. Stabilization of the quasi-periodic motion of a Q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Kim, Chil-Min; Rim, Sunghwan; Kye, Won-Ho; Kim, Jeong-Moog; Lee, Kang-Soo


    We have developed a stabilization method of quasi-periodicity based on a return map. The method is explained in the forced Van der Pol oscillator, and applied experimentally to a quasi-periodic output of a Q-switched Nd:YAG laser. Even though the attractors have no unstable periodic orbit, we were able to stabilize them to an arbitrarily chosen orbit by targeting the trajectory into it

  10. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum. (United States)

    Seghilani, Mohamed S; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud


    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here "orbital birefringence", based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create "orbital gain dichroism" allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications.

  11. Ultra-short pulse generation in a linear femtosecond fiber laser using a Faraday rotator mirror and semiconductor saturable absorber mirror (United States)

    Hekmat, M. J.; Gholami, A.; Omoomi, M.; Abdollahi, M.; Bagheri, A.; Normohammadi, H.; Kanani, M.; Ebrahimi, A.


    An innovative method for obtaining ultra-short and perfectly stable femtosecond pulses in a linear erbium-doped fiber laser is proposed. A commercial semiconductor saturable absorber mirror and a standard Faraday rotator are used in both sides of the linear fiber optic laser configuration to shorten the pulse duration and suppress undesirable effects on the polarization state. The laser operation is investigated theoretically using a physical model and it is verified using experimental results. The main idea of this research is to apply a Faraday rotator mirror for pulse shortening purposes. For this reason, two types of Er-doped fiber optics with different group velocity dispersion parameters are used to achieve the optimum net group velocity dispersion in the cavity. Output results demonstrate good consistency between theory and experimental results. The output power of the linear oscillator is approximately 45 mW with 135 fs pulses at the 23.5 MHz repetition rate without any pulse compression.

  12. Photobiostimulation effects on germination and early growth of wheat seeds (Triticum aestivum L) produced by a semiconductor laser with λ=980nm

    International Nuclear Information System (INIS)

    Michtchenko, A.; Hernandez, M.


    The effect of the exposure of wheat (Triticum aestivum L) seeds to a IR laser radiation with λ=980nm produced by a semiconductor laser on germination and early growth had been studied under laboratory conditions. Seeds were irradiated to one of two laser intensities 15 mWcm - ''2 or 30 mWcm -2 for different periods of time 30, 60 or 120 s. Seeds exposed to a light intensity of 15mWcm -2 and an exposition time of 30 s. showed an increase on the percentage of seeds germinated normally while the percentage of seeds germinated abnormally decreased. At the same time there is a stimulation effect on the growth of the stem and on the growth of the root of 10% on wheat seedlings over control seedlings. Significant differences (ρ < 0.001) were observed between the control and the above treatment. (Author)

  13. The theory of stability, bistability, and instability in three-mode class-A lasers

    International Nuclear Information System (INIS)

    Jahanpanah, J; Rahdar, A A


    Instability is an inevitable and common problem in all different kinds of lasers when they are oscillating in both single-and multi-mode states. Here, the stability conditions are investigated for a three-mode class-A laser. A set of linear equations is derived for the stable oscillation of the cavity central mode together with its left and right adjacent longitudinal modes. The coefficient determinant of stability equations is Hermitian and equal to zero for the roots of two diagonal arrays. In other words, the novelty of our work is to expand the stability coefficient determinant in terms of main diagonal arrays rather than for one row or one column. These diagonal roots lead to two lower and upper boundary curves in the form of a bifurcation. The lower boundary curve mimics the single-mode laser and delimits the instability region (with no above-threshold oscillating mode) from the bistability region (with two above-threshold oscillating modes). The upper boundary curve mimics the two-mode laser and delimits the bistability region from the stability region, in which all three-longitudinal modes are simultaneously oscillating in the above-threshold state. (paper)

  14. Ultrastable offset-locked frequency-stabilized heterodyne laser source with water cooling. (United States)

    Yang, Hongxing; Yang, Ruitao; Hu, Pengcheng; Tan, Jiubin


    An ultrastable frequency-stabilized He-Ne laser with a water-cooling structure has been developed for a high-speed and high-accuracy heterodyne interferometer. To achieve high frequency stability and reproducibility, a two-mode He-Ne laser was offset locked to an iodine-stabilized laser. An improved synchronous multi-cycle offset frequency-measurement method with a gate time of an integer multiple of the modulation period was employed to remove the frequency-modulation effect on the offset-frequency counter. A water-cooling structure based on the double-helix structure was established to provide a stable and low-temperature working environment. This structure can remarkably reduce the frequency instability arising from the environmental temperature variation and the thermal pollution released from the laser to the environment. The experimental results indicate that the frequency stability according to the Allen variance is better than 2.3×10 -11 (τ=10  s) and the frequency reproducibility is better than 4.5×10 -10 .

  15. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Matthew [Auburn Univ., AL (United States)


    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.

  16. Scheme for improving laser stability via feedback control of intracavity nonlinear loss. (United States)

    Jin, Pixian; Lu, Huadong; Su, Jing; Peng, Kunchi


    We present a novel and efficient scheme to enhance the stability of laser output via feedback control to a nonlinear loss deliberately introduced to the laser resonator. By means of the feedback control to the intracavity nonlinear loss of an all-solid-state continuous-wave single-frequency laser with high output power at 1064 nm, its intensity and frequency stabilities are significantly improved. A lithium triborate crystal is deliberately placed inside the laser resonator to be an element of the nonlinear loss, and the temperature of the crystal is feedback controlled by an electronic loop. The control signal is generated by distinguishing the deviation of the output power and used for manipulating the intracavity nonlinear loss to compensate the deviation of the laser power actively. With the feedback-control loop, the intensity and frequency fluctuations of the output laser at 1064 nm are reduced from ±0.59% and 21.82 MHz without the feedback to ±0.26% and 9.84 MHz, respectively.

  17. Experiments of Laser Pointing Stability in Air and in Vacuum to Validate Micrometric Positioning Sensor

    CERN Document Server

    Stern, G; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S


    Aligning accelerator components over 200m with 10 μm accuracy is a challenging task within the Compact Linear Collider (CLIC) study. A solution based on laser beam in vacuum as straight line reference is proposed. The positions of the accelerator’s components are measured with respect to the laser beam by sensors made of camera/shutter assemblies. To validate these sensors, laser pointing stability has to be studied over 200m. We perform experiments in air and in vacuum in order to know how laser pointing stability varies with the distance of propagation and with the environment. The experiments show that the standard deviations of the laser spot coordinates increase with the distance of propagation. They also show that the standard deviations are much smaller in vacuum (8 μm at 35m) than in air (2000 μm at 200m). Our experiment validates the concept of laser beam in vacuum with camera/shutter assembly for micrometric positioning over 35m. It also gives an estimation of the achievable precision.

  18. Phase stability of photoreceivers in intersatellite laser interferometers. (United States)

    Barranco, Germán Fernández; Gerberding, Oliver; Schwarze, Thomas S; Sheard, Benjamin S; Dahl, Christian; Zender, Bernd; Heinzel, Gerhard


    A photoreceiver (PR) is required for the opto-electrical conversion of signals in intersatellite laser interferometers. Noise sources that originate or couple in the PR reduce the system carrier-to-noise-density, which is often represented by its phase noise density. In this work, we analyze the common noise sources in a PR used for space-based interferometry. Additionally, we present the results from the characterization of the PRs in GRACE-FO, a mission which will pioneer intersatellite laser interferometry. The estimated phase noise is shot-noise limited at 10-4 rad/Hz1/2 down to 10-2 Hz, almost 4 orders of magnitude below the instrument top level requirement (0.5 rad/Hz1/2). Below 10-2 Hz, the PR finite phase response noise dominates but the levels still comply with the instrument requirement. The sub-mHz noise levels and the PR electronic noise have been identified as key design factors for the LISA PR.

  19. Record Pulsed Power Demonstration of a 2 micron GaSb-Based Optically Pumped Semiconductor Laser Grown Lattice-Mismatched on an AlAs/GaAs Bragg Mirror and Substrate (Postprint) (United States)


    when pumped with a pulsed 1064 nm neodymium doped yttrium aluminum garnet laser. 15. SUBJECT TERMS lasers, semiconductor 16. SECURITY...pulsed 1064 nm neodymium doped yttrium aluminum garnet laser. © 2009 American Institute of Physics. DOI: 10.1063/1.3212891 Optically pumped...AlGaAs/GaAs DBR and GaAs substrate but to grow an antimonide RPG stack con- sisting of InGaSb quantum wells embedded in AlGaSb bar- riers on the latter

  20. Laser driven thermal reactor for hazardous waste stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, A. [SAIC, Germantown, MD (United States)


    Increasing attention is being paid to treatment of hazardous waste through stabilization and possible solidification. Among the preferred technologies are thermal processes that detoxify and reduce the volume of hazardous wastes by exposing them to appropriate thermal regimes. However, as with any technology, there are potential problems which may detract from the application of the technology. Environmental pollution from particulate matter and off-gases can occur. Therefore, it is important to develop the technology of hazardous waste stabilization on a strong research base and to determine parameters and conditions of appropriate thermal processes. The purpose of the present work was to determine phenomenological parameters that characterize the processes of hazardous waste stabilization during thermal treatment. These methods can be used for any kind of liquid, solid and multiphase (liquid/solid and gas/solid) hazardous wastes. The method presented herein has been used to find corresponding parameters and conditions in the following applications: decomposition of ozone and nitrocompounds absorbed by activated carbon; sulphur compounds in heavy fuel oil; and appraisals of the explosion hazards involved in coal mining.

  1. Conversion of Stability of Femtosecond Stabilized Mode-locked Laser to Optical Cavity Length

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Radek; Číp, Ondřej; Čížek, Martin; Mikel, Břetislav; Lazar, Josef


    Roč. 57, č. 3 (2010), s. 636-640 ISSN 0885-3010 R&D Projects: GA ČR GA102/09/1276; GA MŠk(CZ) LC06007; GA MŠk 2C06012; GA MPO 2A-1TP1/127; GA MPO FT-TA3/133; GA MPO 2A-3TP1/113; GA ČR GA102/07/1179 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser * Fabry-Perot * interferometer * length etalon Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.460, year: 2010

  2. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien


    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  3. Stability of a short Rayleigh length laser resonator

    Directory of Open Access Journals (Sweden)

    P. P. Crooker


    Full Text Available Motivated by the prospect of constructing a short Rayleigh length free-electron laser in a high-vibration environment, we demonstrate the use of a collection of rays to study the effect of mirror vibration and distortion on the behavior of the fundamental optical mode of a cold-cavity resonator. We find that the ray collection accurately describes both on-axis and off-axis optical beams. We show that a tilt or transverse shift of a mirror causes the optical mode to rock about the original resonator axis, while a longitudinal mirror shift or a change in the mirror’s radius of curvature causes the beam diameter at a mirror to successively dilate and contract on the mirror. Results are in excellent agreement with analytic calculations and wave front propagation simulations as long as the mirrors remain large with respect to the beam diameter.

  4. Stabilized diode seed laser for flight and space-based remote lidar sensing applications (United States)

    McNeil, Shirley; Pandit, Pushkar; Battle, Philip; Rudd, Joe; Hovis, Floyd


    AdvR, through support of the NASA SBIR program, has developed fiber-based components and sub-systems that are routinely used on NASA's airborne missions, and is now developing an environmentally hardened, diode-based, locked wavelength, seed laser for future space-based high spectral resolution lidar applications. The seed laser source utilizes a fiber-coupled diode laser, a fiber-coupled, calibrated iodine reference module to provide an absolute wavelength reference, and an integrated, dual-element, nonlinear optical waveguide component for second harmonic generation, spectral formatting and wavelength locking. The diode laser operates over a range close to 1064.5 nm, provides for stabilization of the seed to the desired iodine transition and allows for a highly-efficient, fully-integrated seed source that is well-suited for use in airborne and space-based environments. A summary of component level environmental testing and spectral purity measurements with a seeded Nd:YAG laser will be presented. A direct-diode, wavelength-locked seed laser will reduce the overall size weight and power (SWaP) requirements of the laser transmitter, thus directly addressing the need for developing compact, efficient, lidar component technologies for use in airborne and space-based environments.

  5. Stability study for matching in laser driven plasma acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, A.R., E-mail: [INFN - MI, via Celoria 16, 20133 Milan (Italy); Anania, M.P. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Bacci, A. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Belleveglia, M.; Bisesto, F.G.; Chiadroni, E. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Cianchi, A. [Tor Vergata University, Physics Department, via della Ricerca Scientifica 1, 00133 Rome (Italy); INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Curcio, A.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Marocchino, A.; Massimo, F. [La Sapienza University, SBAI Department, via A. Scarpa 14, 00161 Rome (Italy); Mostacci, A. [La Sapienza University, SBAI Department, via A. Scarpa 14, 00161 Rome (Italy); INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Petrarca, M. [La Sapienza University, SBAI Department, via A. Scarpa 14, 00161 Rome (Italy); Pompili, R. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); Serafini, L. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Tomassini, P. [University of Milan, Physics Department, via Celoria 16, 20133 Milan (Italy); Vaccarezza, C. [INFN - LNF, v.le E. Fermi, 00044 Frascati (Italy); and others


    In a recent paper [14], a scheme for inserting and extracting high brightness electron beams to/from a plasma based acceleration stage was presented and proved to be effective with an ideal bi-Gaussian beam, as could be delivered by a conventional photo-injector. In this paper, we extend that study, assessing the method stability against some jitters in the properties of the injected beam. We find that the effects of jitters in Twiss parameters are not symmetric in results; we find a promising configuration that yields better performances than the setting proposed in [14]. Moreover we show and interpret what happens when the beam charge profiles are modified.

  6. High-Resolution Differential Thermography of Semiconductor Edifices

    Directory of Open Access Journals (Sweden)

    Vera Marie Sastine


    Full Text Available We develop a cost-effective, high-resolution, and noninvasive imaging technique for thermal mapping of semiconductor edifices in integrated circuits. Initial implementation was done using a power-stabilized optical feedback laser system that detects changes in the optical beam-induced current when the package temperature of the device is increased. The linear change in detected current can be translated to a thermal gradient, which can reveal semiconductor “hotspots”—localized sites with anomalous thermal activity. These locales are possible fault sites or areas susceptible to defects, which are the best jump-off points for failure analysis.

  7. Microscopic analysis of the optoelectronic properties of semiconductor gain media for laser applications; Mikroskopische Analyse optoelektronischer Eigenschaften von Halbleiterverstaerkungsmedien fuer Laseranwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Bueckers, Christina


    A microscopic many-particle theory is applied to model a wide range of semiconductor laser gain materials. The fundamental understanding of the gain medium and the underlying carrier interaction processes allow for the quantitative prediction of the optoelectronic properties governing the laser performance. Detailed theory-experiment-comparisons are shown for a variety of structures demonstrating the application capabilities of the theoretical approach. The microscopically calculated material properties, in particular absorption, optical gain, luminescence and the intrinsic carrier losses due to radiative and Auger-recombination, constitute the critical input to analyse and design laser structures. On this basis, important system features such as laser wavelength or threshold behaviour become predictable. However, the theory is also used in a diagnostic fashion, e.g. to extract otherwise poorly known structural parameter. Thus, novel concepts for the optimisation of laser designs may be developed with regard to the requirements of specific applications. Moreover, the approach allows for the systematic exploration and assessment of completely novel material systems and their application potential. (orig.)

  8. Edge-emitting InGaAs/GaAs laser with high temperature stability of wavelength and threshold current

    International Nuclear Information System (INIS)

    Gordeev, N Yu; Novikov, I I; Chunareva, A V; Il'inskaya, N D; Shernyakov, Yu M; Maximov, M V; Kalyuzhnyy, N A; Mintairov, S A; Lantratov, V M; Payusov, A S; Shchukin, V A; Ledentsov, N N


    We have investigated an edge-emitting tilted wave laser (TWL) with the active region based on GaInAs/GaAs quantum wells. In the TWL the wavelength stabilization is based on the coupling of the laser active waveguide cavity to a specially introduced thick epitaxial layer and the emission wavelength is defined by the combined cavity mode preferably by a single dominating mode. The TWL wafer has been grown by metal-organic chemical vapour deposition. Laser parameters have been investigated both in pulsed and CW mode in the temperature range of 15–60 °C. In the temperature window of 20–50 °C under CW excitation the lasers have shown high wavelength temperature stability with the temperature shift of 0.05 nm K −1 and threshold current stability with the characteristic temperature of 500 K. The data obtained prove the concept of thermal stability in tilted wave lasers

  9. Cryogenic Yb:YAG laser pumped by VBG-stabilized narrowband laser diode at 969 nm

    Czech Academy of Sciences Publication Activity Database

    Jambunathan, Venkatesan; Horáčková, Lucie; Navrátil, Petr; Lucianetti, Antonio; Mocek, Tomáš


    Roč. 128, č. 12 (2016), s. 1328-1331 ISSN 1041-1135 R&D Projects: GA MŠk EE2.3.20.0143; GA ČR GA14-01660S Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : Diode-pumped * cryogenic * volume Bragg grating * Yb doped * solid state lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.375, year: 2016

  10. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Podoskin, A. A., E-mail:; Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)


    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  11. Edge-emitting lasers based on coupled large optical cavity with high beam stability (United States)

    Serin, A.; Gordeev, N.; Payusov, A.; Shernyakov, Y.; Kalyuzhnyy, y.; Mintairov, S.; Maximov, M.


    In this paper we present a study on temperature and current stability of far-field patterns of lasers based on the coupled large optical cavity (CLOC) concept. Previously it has been shown that the CLOC structures allows effective suppressing of high-order mode lasing in broadened waveguides. For the first time we report on transverse single-mode emission from the CLOC lasers with 4.8 μm thick waveguide. Using broadened waveguide allowed us to reduce the divergence of the far-field patterns down to 14° in continuous-wave (CW) regime. Far-field patterns proved to be insensitive to current and temperature changes.

  12. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers

    International Nuclear Information System (INIS)

    Notcutt, Mark; Ma, L.-S.; Ludlow, Andrew D.; Foreman, Seth M.; Ye Jun; Hall, John L.


    We perform detailed studies of state-of-the-art laser stabilization to high finesse optical cavities, revealing fundamental mechanical thermal noise-related length fluctuations. We compare the frequency noise of lasers tightly locked to the resonances of a variety of rigid Fabry-Perot cavities of differing lengths and mirror substrate materials. The results are in agreement with the theoretical model proposed in K. Numata, A. Kemery, and J. Camp [Phys. Rev. Lett. 93, 250602 (2004)]. The results presented here on the fundamental limits of FP references will impact planning and construction of next generation ultrastable optical cavities

  13. Laser source for dimensional metrology: investigation of an iodine stabilized system based on narrow linewidth 633 nm DBR diode

    Czech Academy of Sciences Publication Activity Database

    Řeřucha, Šimon; Yacoot, A.; Pham, Minh Tuan; Čížek, Martin; Hucl, Václav; Lazar, Josef; Číp, Ondřej


    Roč. 28, č. 4 (2017), s. 1-11, č. článku 045204. ISSN 0957-0233 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA TA ČR TE01020233 Institutional support: RVO:68081731 Keywords : optical metrology * DBR laser diode * frequency stabilization * laser interferometry * dimensional metrology * iodine stabilization * displacement measurement Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.585, year: 2016

  14. Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering (United States)

    Qiu, Tiequn; Wu, Jianfeng; Strandjord, Lee K.; Sanders, Glen A.


    A bench-top resonator fiber optic gyroscope (RFOG) was assembled and tested, showing encouraging progress toward navigation grade performance. The gyro employed a fiber length of 19 meters of polarizing fiber for the sensing coil which was wound on an 11.5 cm diameter PZT cylinder. A bias stability of approximately 0.1 deg/hr was observed over a 2 hour timeframe, which is the best bias stability reported to date in an RFOG to our knowledge. Special care was taken to minimize laser phase noise, including stabilization to an optical cavity which was also used for optical filtering, giving angle random walk (ARW) values in the range of 0.008 deg/rt-hr. The ARW performance and bias stability are within 2x and 10x, respectively, of many civil inertial navigation grade requirements.

  15. Study of fuzzy adaptive PID controller on thermal frequency stabilizing laser with double longitudinal modes (United States)

    Mo, Qingkai; Zhang, Tao; Yan, Yining


    There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).

  16. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber (United States)

    Wang, M.; Huang, Y. J.; Ruan, S. C.


    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  17. Slow Light Semiconductor Laser (United States)


    published in non-peer-reviewed journals (N/A for none) (c) Presentations 02/02/2015 Received Paper 7.00 C. T. Santis, S. T. Steger , Y. Vilenchik, A. Vasilyev...Christos Santis, Scott Steger , Naresh Satyan, Amnon Yariv. Theory and observation on non-linear effects limiting thecoherence properties of high-Q hybrid...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Discipline Liu, Hsi-Chun 0.26 Steger , Scott 0.16 Vasilyev, Arseny 0.03 0.45 3 PERCENT_SUPPORTEDNAME FTE

  18. Characterization of Environmental Stability of Pulsed Laser Deposited Oxide Ceramic Coatings

    Energy Technology Data Exchange (ETDEWEB)



    A systematic investigation of candidate hydrogen permeation materials applied to a substrate using Pulsed Laser Deposition has been performed. The investigation focused on application of leading permeation-resistant materials types (oxide, carbides, and metals) on a stainless steel substrate. and evaluation of the stability of the applied coatings. Type 304L stainless steel substrates were coated with aluminum oxide, chromium oxide, and aluminum. Characterization of the coating-substrate system adhesion was performed using scratch adhesion testing and microindentation. Coating stability and environmental susceptibility were evaluated for two conditions-air at 350 degrees Celsius and Ar-H2 at 350 degrees Celsius for up to 100 hours. Results from this study have shown the pulsed laser deposition process to be an extremely versatile technology that is capable of producing a sound coating/substrate system for a wide variety of coating materials.

  19. High passive-stability diode-laser design for use in atomic-physics experiments (United States)

    Cook, Eryn C.; Martin, Paul J.; Brown-Heft, Tobias L.; Garman, Jeffrey C.; Steck, Daniel A.


    We present the design and performance characterization of an external-cavity diode-laser system optimized for high stability, low passive spectral linewidth, low cost, and ease of in-house assembly. The main cavity body is machined from a single aluminum block for robustness to temperature changes and mechanical vibrations, and features a stiff and light diffraction-grating arm to suppress low-frequency mechanical resonances. The cavity is vacuum sealed, and a custom-molded silicone external housing further isolates the system from acoustic noise and temperature fluctuations. Beam shaping, optical isolation, and fiber coupling are integrated, and the design is easily adapted to many commonly used wavelengths. Resonance data, passive-linewidth data, and passive stability characterization of the new design demonstrate that its performance exceeds published specifications for commercial precision diode-laser systems. The design is fully documented and freely available.

  20. Aeolus high energy UV Laser wavelength measurement and frequency stability analysis (United States)

    Mondin, Linda; Bravetti, Paolo


    The Aeolus mission is part of ESA's Earth Explorer program. The goal of the mission is to determine the first global wind data set in near real time to improve numerical weather prediction models. The only instrument on board Aeolus, Aladin, is a backscatter wind LIDAR in the ultraviolet (UV) frequency domain. Aeolus is a frequency limited mission, inasmuch as it relies on the measure of the backscattered signal frequency shift in order to deduce the wind velocity. As such the frequency stability of the LIDAR laser source is a key parameter for this mission. In the following, the characterization of the laser frequency stability, reproducibility and agility in vacuum shall be reported and compared to the mission requirements.

  1. Increased stability in laser metal wire deposition through feedback from optical measurements (United States)

    Heralić, Almir; Christiansson, Anna-Karin; Ottosson, Mattias; Lennartson, Bengt


    Robotized laser metal-wire deposition is a fairly new technique being developed at University West in cooperation with Swedish industry for solid freeform fabrication of fully densed metal structures. It is developed around a standard welding cell and uses robotized fiber laser welding and wire filler material together with a layered manufacturing method to create metal structures. In this work a monitoring system, comprising two cameras and a projected laser line, is developed for on-line control of the deposition process. The controller is a combination of a PI-controller for the bead width and a feed-forward compensator for the bead height. It is evaluated through deposition of single-bead walls, and the results show that the process stability is improved when the proposed controller is used.

  2. Michelson mode selector for spectral range stabilization in a self-sweeping fiber laser. (United States)

    Tkachenko, A Yu; Vladimirskaya, A D; Lobach, I A; Kablukov, S I


    We report on spectral range stabilization in a self-sweeping laser by adding a narrowband fiber Bragg grating (FBG) to the output mirror in the Michelson configuration. The effects of FBG reflectivity and optical path difference in the Michelson interferometer on the laser spectral dynamics are investigated. Optimization of the interferometer allows us to demonstrate broadband (over 16 nm) self-sweeping operation and reduction of the start and stop wavelength fluctuations by two orders and one order of magnitude (∼100 and 15 times) for start and stop bounds, respectively (down to several picometers). The proposed approaches significantly improve quality of the spectral dynamics and facilitate application of the self-sweeping lasers.

  3. A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser (United States)

    Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai


    An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.

  4. Single-Frequency Semiconductor Lasers Operating at 1.5 and 2.0 microns, Phase I (United States)

    National Aeronautics and Space Administration — While conventional injection seeding sources (such as DFB diode lasers and rare-earth doped solid-state microchip lasers) are available at 1.5 microns, these sources...

  5. Methods of laser spectroscopy

    International Nuclear Information System (INIS)

    Prior, Y.; Ben-Reuven, A.; Rosenbluh, M.


    This book presents information on the following topics: the one-atom maser and cavity quantum electrodynamics; Rydberg atoms and radiation; investigation of nonthermal population distributions with femtosecond optical pulses; intra- and intermolecular energy transfer of large molecules in solution after picosecond excitation; new techniques of time-resolved infrared and Raman spectroscopy using ultrashort laser pulses; spectral linewidth of semiconductor lasers; the hydrogen atom in a new light; laser frequency division and stabilization; modified optical Bloch equations for solids; CARS spectroscopy of transient species; off resonant laser induced ring emission; UV laser ionization spectroscopy and ion photochemistry; laser spectroscopy of proton-transfer in microsolvent clusters; recent advances in intramolecular electronic energy transfer; and photoionization and dissociation of the H 2 molecule near the ionization threshold

  6. Wake fields in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.


    It is shown that an intense short laser pulse propagating through a semiconductor plasma will generated longitudinal Langmuir waves in its wake. The measurable wake field can be used as a diagnostic to study nonlinear optical phenomena. For narrow gap semiconductors (for examples InSb) with Kane-type dispersion relation, the system can simulate, at currently available laser powers, the physics underlying wake-field accelerators. (author). 9 refs, 1 fig

  7. Evaluation of the tear film stability after laser in situ keratomileusis using the tear film stability analysis system. (United States)

    Goto, Tomoko; Zheng, Xiaodong; Klyce, Stephen D; Kataoka, Hisashi; Uno, Toshihiko; Yamaguchi, Masahiko; Karon, Mike; Hirano, Sumie; Okamoto, Shigeki; Ohashi, Yuichi


    To evaluate the tear film stability of patients before and after laser in situ keratomileusis (LASIK) using the tear film stability analysis system (TSAS). Prospective observational case series. New videokeratography software for a topographic modeling system (TMS-2N) was developed that can automatically capture consecutive corneal surface images every second for 10 seconds. Thirty-four subjects (64 eyes) who underwent myopia LASIK were enrolled in this study. All subjects were examined with the new system before LASIK and at 1 week, 1 month, 3 months, and 6 months after the surgery. Corneal topographs were analyzed for tear breakup time (TMS breakup time) and breakup area (TMS breakup area). Based on pre-LASIK TSAS analysis, subjects were separated into normal and abnormal TSAS value groups. The criteria for the normal group were either TMS breakup time more than 5 seconds or TMS breakup area less than 0.2. The percentage of the occurrence of superficial punctuate keratitis was compared between the two groups with regard to subject's dry eye signs and symptoms. Tear film stability decreased significantly during the early period after LASIK, as indexed by decreased TMS breakup time and increased TMS breakup area. Tear film instability resolved at 6 months after surgery. Before LASIK, 22 subjects (43 eyes) had normal TSAS evaluation and 12 subjects (21 eyes) were abnormal. After LASIK, among normal TSAS value eyes, 8 of 43 (18.6%) eyes developed superficial punctuate keratitis. In sharp contrast, 14 of 21 (66.7%) eyes in the abnormal group displayed superficial punctuate keratitis, correlating well with the patients' dry eye symptoms. The difference in the presence of superficial punctuate keratitis after LASIK between normal and abnormal TSAS value groups was statistically significant (P <.001). Subjects with abnormal TSAS evaluation also displayed resistance to dry eye treatment and had extended period of recovery. Tear film stability analysis can be a useful

  8. Optoelectronic study and annealing stability of room temperature pulsed laser ablated ZnSe polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Taj Muhammad, E-mail:; Zakria, M.; Ahmad, Mushtaq; Shakoor, Rana I.


    increased from 2.65 eV to 2.7 eV for the annealed crystalline film at 350 °C which was further decreased to 2.56 eV for the annealed amorphous film at 400 °C. The observed results manifested that room temperature pulsed laser ablated ZnSe thin film showed excellent structural, optical and morphological stability up 350 °C for optoelectronic applications. -- Highlights: • Room temperature synthesis of ZnSe thin film by PLD. • Annealing effect on Raman scattering of the deposited material. • Optical properties. • Structural properties. • Semiconductor nanostructures.

  9. Frequency stabilization of ambience-isolated internal-mirror He-Ne lasers by thermoelectric-cooling thermal compensation (United States)

    Shirvani-Mahdavi, Hamidreza; Narges, Yaghoubi


    An approach for frequency stabilization of an ambience-isolated internal-mirror He-Ne laser (632.8 nm) utilizing temperature control of the laser tube with Peltier thermoelectric coolers is demonstrated. Measurements indicate that there are an optimal temperature (23 °C) and an optimal discharge current (5.5 mA) of laser tube for which the laser light power is separately maximized. To prevent the effect of fluctuation of discharge current on the laser stability, an adjustable current source is designed and fabricated so that the current is set to be optimal (5.50 ± 0.01 mA). To isolate the laser tube from the environment, the laser metallic box connected to two Peltier thermoelectric coolers is surrounded by two thermal and acoustic insulator shells. The laser has two longitudinal modes very often. Any change in the frequency of longitudinal modes at the optimal temperature is monitored by sampling the difference of longitudinal modes' intensities. Therefore, using a feedback mechanism, the current of thermoelectric coolers is so controlled that the frequency of modes stays constant on the gain profile of the laser. The frequency stability is measured equal to 1.17 × 10-9 (˜2700×) for less than 1 min and 2.57 × 10-9 (˜1200×) for more than 1 h.

  10. Industrial integration of high coherence tunable single frequency semiconductor lasers based on VECSEL technology for scientific instrumentation in NIR and MIR (United States)

    Lecocq, Vincent; Chomet, Baptiste; Ferrières, Laurence; Myara, Mikhaël.; Beaudoin, Grégoire; Sagnes, Isabelle; Cerutti, Laurent; Denet, Stéphane; Garnache, Arnaud


    Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. The Vertical External Cavity Surface Emitting Laser (VECSEL) technology [1] has been identified for years as a good candidate to reach high power, high coherence and broad tunability while covering a wide emission wavelength range exploiting III-V semiconductor technologies. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based VECSEL technologies seem to be a well suited path to meet the required specifications of demanding applications. Built up in this field, our expertise allows the realization of compact and low power consumption marketable products, with performances that do not exist on the market today in the 0.8-1.1 μm and 2-2.5 μm spectral range. Here we demonstrate highly coherent broadly tunable single frequency laser micro-chip, intracavity element free, based on a patented VECSEL technology, integrated into a compact module with driving electronics. VECSEL devices emitting in the Near and Middle-IR developed in the frame of this work [2] exhibit exciting features compared to diode-pumped solid-state lasers and DFB diode lasers; they combine high power (>100mW) high temporal coherence together with a low divergence diffraction limited TEM00 beam. They exhibit a class-A dynamics with a Relative Intensity Noise as low as -140dB/Hz and at shot noise level reached above 200MHz RF frequency (up to 160GHz), a free running narrow linewidth at sub MHz level (fundamental limit at Hz level) with high spectral purity (SMSR >55dB), a linear polarization (>50dB suppression ratio), and broadband continuous tunability greater than 400GHz (state of the art commercial technologies thanks to a combination of power-coherence-wavelength tunability performances and integration.

  11. Electrical conductivity, optical properties and mechanical stability of 3, 4, 9, 10-perylenetetracarboxylic dianhidride based organic semiconductor (United States)

    Pandey, Mayank; Joshi, Girish M.; Deshmukh, Kalim; Nath Ghosh, Narendra; Nambi Raj, N. Arunai


    The 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) doped polymer films were prepared with Polypyrrole (PPy) and Polyvinyl alcohol (PVA) polymers by solution-casting. The change in structure and chemical composition of samples was identified by XRD and FTIR respectively. The UV-visible spectroscopy demonstrates the optical characteristics and band gap properties of sample. The homogeneous morphology of sample for higher wt% of PTCDA was examined by atomic force microscopy (AFM). The differential scanning calorimetry (DSC) results demonstrate the decrease in melting temperature (Tm) and degree of crystallinity (χc%) of polymeric organic semiconductor. The mechanical property demonstrates the high tensile strength and improved plasticity nature. Impedance spectroscopy was evaluated to determine the conductivity response of polymeric organic semiconductor. The highest DC conductivity (2.08×10-3 S/m) was obtained for 10 wt% of PTCDA at 140 °C. The decrease in activation energy (Ea) represents the non-Debye process and was evaluated from the slope of ln σdc vs. 103/T plot.

  12. Semiconductor statistics

    CERN Document Server

    Blakemore, J S


    In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination.

  13. Reliable Operation for 14500 h of a Wavelength-Stabilized Diode Laser System on a Microoptical Bench at 671 nm

    DEFF Research Database (Denmark)

    Sumpf, Bernd; Maiwald, Martin; Müller, André


    Reliability tests for wavelength-stabilized compact diode laser systems emitting at 671 nm are presented. The devices were mounted on microoptical benches with the dimensions of 13 mm $\\times\\,$4 mm. Reflecting Bragg gratings were used for wavelength stabilization and emission width narrowing...

  14. Active beam position stabilization of pulsed lasers for long-distance ion profile diagnostics at the Spallation Neutron Source (SNS). (United States)

    Hardin, Robert A; Liu, Yun; Long, Cary; Aleksandrov, Alexander; Blokland, Willem


    A high peak-power Q-switched laser has been used to monitor the ion beam profiles in the superconducting linac at the Spallation Neutron Source (SNS). The laser beam suffers from position drift due to movement, vibration, or thermal effects on the optical components in the 250-meter long laser beam transport line. We have designed, bench-tested, and implemented a beam position stabilization system by using an Ethernet CMOS camera, computer image processing and analysis, and a piezo-driven mirror platform. The system can respond at frequencies up to 30 Hz with a high position detection accuracy. With the beam stabilization system, we have achieved a laser beam pointing stability within a range of 2 μrad (horizontal) to 4 μrad (vertical), corresponding to beam drifts of only 0.5 mm × 1 mm at the furthest measurement station located 250 meters away from the light source.

  15. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments

    KAUST Repository

    Al-Alwan, Asem Ibrahim Alwan


    This paper studies the problem of high-precision positioning of laser beams by using a robust Fractional-Order Proportional-Integral-Derivative (FOPID) controller. The control problem addressed in laser beams aims to maintain the position of the laser beam on a Position Sensing Device (PSD) despite the effects of noise and active disturbances. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness to noise and output disturbance rejections. Thus, a control strategy based on FOPID to achieve the control objectives has been proposed. The FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. A comparison to the conventional Proportional-Integral-Derivative (PID) and robust PID is also provided from simulation and experiment set-up. Due to sensor noise, practical PID controllers that filter the position signal before taking the derivative have been also proposed. Experimental results show that the requirements are totally met for the laser beam platform to be stabilized.

  16. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability

    International Nuclear Information System (INIS)

    Dinda, G.P.; Dasgupta, A.K.; Mazumder, J.


    Direct metal deposition technology is an emerging laser aided manufacturing technology based on a new additive manufacturing principle, which combines laser cladding with rapid prototyping into a solid freeform fabrication process that can be used to manufacture near net shape components from their CAD files. In the present study, direct metal deposition technology was successfully used to fabricate a series of samples of the Ni-based superalloy Inconel 625. A high power CO 2 laser was used to create a molten pool on the Inconel 625 substrate into which an Inconel 625 powder stream was delivered to create a 3D object. The structure and properties of the deposits were investigated using optical and scanning electron microscopy, X-ray diffraction and microhardness test. The microstructure has been found to be columnar dendritic in nature, which grew epitaxially from the substrate. The thermal stability of the dendritic morphology was investigated in the temperature range 800-1200 deg. C. These studies demonstrate that Inconel 625 is an attractive material for laser deposition as all samples produced in this study are free from relevant defects such as cracks, bonding error and porosity.

  17. Resonator stability and higher-order modes in free-electron laser oscillators

    Directory of Open Access Journals (Sweden)

    Abhishek Pathak


    Full Text Available Three-dimensional simulation codes genesis and opc are used to investigate the dependence of the resonator stability of free-electron laser (FEL oscillators on the stability parameter, laser wavelength, outcoupling hole size and mirror tilt. We find that to have stable lasing over a wide range of wavelengths, the FEL cavity configuration should be carefully chosen. Broadly, the concentric configuration gives near-Gaussian modes and the best performance. At intermediate configurations the dominant mode often switches to a higher-order mode, which kills lasing. For the same reason, the outcoupled power can also be less. We have constructed a simple analytic model to study resonator stability which gives results that are in excellent agreement with the simulations. This suggests that modes in FEL oscillators are determined more by the cavity configuration and radiation propagation than by the details of the FEL interaction. We find (as in experiments at the CLIO FEL that tilting the mirror can, for some configurations, lead to more outcoupled power than a perfectly aligned mirror because the mode is now a more compact higher-order mode, which may have implications for the mode quality for user experiments. Finally, we show that the higher-order mode obtained is usually a single Gauss-Laguerre mode, and therefore it should be possible to filter out the mode using suitable intracavity elements, leading to better FEL performance.

  18. Semiconductor physics

    CERN Document Server

    Böer, Karl W


    This handbook gives a complete survey of the important topics and results in semiconductor physics. It addresses every fundamental principle and most research topics and areas of application in the field of semiconductor physics. Comprehensive information is provided on crystalline bulk and low-dimensional as well as amporphous semiconductors, including optical, transport, and dynamic properties.

  19. On the way to stabilized laser-driven GeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shao-wei; Weineisen, Tobias; Fuchs, Matthias; Popp, Antonia; Major, Zsuzsanna; Weingartner, Raphael; Ahmad, Izhar; Schmid, Karl; Marx, Benjamin; Krausz, Ferenc; Gruener, Florian; Karsch, Stefan [Max-Planck Institute of Quantum Optics, Munich (Germany); Ludwig-Maximilians University, Munich (Germany); Osterhoff, Jens [LOASIS Program, Lawrence Livermore National Laboratory, Livermore (United States); Schroeder, Hartmut; Haas, Harald [Max-Planck Institute of Quantum Optics, Munich (Germany); Rowlands-Rees, Tom; Hooker, Simon [University of Oxford, Oxford (United Kingdom)


    Laser-driven-wakefield electron accelerators have shown electron beams with energies of up to 1 GeV from a centimeter-scale plasma accelerator. In order to achieve higher electron energies, these acceleration distances need to be increased. This can be realized with a discharge capillary. However, a discharge typically introduces instabilities on both pointing and energy of the generated electrons. In order to improve the stability, we demonstrate a preliminary test of a modified discharge which includes a pre-pulse circuit before the firing of the main pulse. We also show gas density shaping by a laser- machined nozzle which should be able to make a more precise injection in the capillary accelerator thus reducing the energy instability.

  20. Beam stability and warm-up effects of Nd:YAG lasers used in particle image velocimetry

    International Nuclear Information System (INIS)

    Grayson, K; De Silva, C M; Hutchins, N; Marusic, I


    The characteristics and causes of Nd:YAG laser warm-up transients and steady state beam stability effects are investigated in this study. Dynamic laser performance has a particularly noticeable impact on particle image velocimetry (PIV) and other laser-based flow visualisation techniques, where changes in beam pointing can influence the overlap between laser light sheets and thereby degrade the correlation of PIV image pairs. Despite anecdotal knowledge or experience of laser warm-up effects, they have not been formally documented or quantified to date for PIV applications. In this study, the nature of these laser transients are analysed and compared among a selection of typical PIV laser equipment. An investigation into the cause of these transients during the laser warm-up sequence is also presented. Furthermore, the degree of dual cavity transient coupling within a PIV laser system is analysed to determine a practical limit to the laser light sheet overlap that can be expected from PIV experiments. Finally, the results from this study inform a series of recommendations for PIV best practice, which aim to minimise the impact of laser transients on experimental data. (paper)

  1. Laser beam uniformity and stability using homogenizer-based fiber optic launch method: square core fiber delivery (United States)

    Lizotte, Todd E.


    Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.

  2. Feedback-stabilized fractional fringe laser interferometer for plasma density measurements

    International Nuclear Information System (INIS)

    Schneider, J.; Robertson, S.


    A feedback stabilization technique is described for a fractional fringe interferometer measuring plasma electron densities. Using this technique, a CO 2 laser Michelson interferometer with a pyroelectric detector exhibited a sensitivity of 3.4 x 10 -4 fringe on a 1-ms time scale and, due to acoustic pickup, 1.8 x 10 -2 fringe on a 10-ms time scale. The rise time is 45 μs. Stabilization against slow drifts in mirror distances is achieved by an electromechanically translated mirror driven by a servo system having a 0.2-s response time. A mechanical chopper in one of the two beam paths generates the signal which drives the servo system

  3. Development of a Single-Frequency Narrow Linewidth 1.5mm Semiconductor Laser Suitable for Spaceflight Operation Project (United States)

    National Aeronautics and Space Administration — Many space applications rely on the utilization of Light Detection and Raging (LIDAR) techniques. A key component of any LIDAR system is the laser source. Single...

  4. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.


    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  5. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B


    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  6. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng


    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  7. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Christensen, Mathias; Noordegraaf, Danny


    power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination...... of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE...

  8. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser

    Directory of Open Access Journals (Sweden)

    Shougui Ning


    Full Text Available A mid-infrared (mid-IR semiconductor saturable absorber mirror (SESAM based on Fe2+:ZnSe for passively Q-switched Er3+-doped ZBLAN fiber laser has been demonstrated. Fe2+:ZnSe SESAM was fabricated by electron beam evaporation method. Fe2+ was innovatively doped into the reflective Bragg stack, in which ZnSe layer served as both doped matrix and high refractive layer during the fabricating process. By using the Fe2+:ZnSe SESAM, stable passively Q-switched pulses with the minimum pulse width of 0.43 μs under a repetition rate of 160.82 kHz were obtained. The recorded maximum average output power of 873 mW with a peak power of 12.59 W and pulse energy of 5.43 μJ were achieved. The results demonstrated a new method for fabricating Fe2+:ZnSe SESAM, which can be used in compact mid-IR Q-switched fiber laser.

  9. Process stability during fiber laser-arc hybrid welding of thick steel plates (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.


    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  10. Time resolved studies of H{sub 2}{sup +} dissociation with phase-stabilized laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Bettina


    In the course of this thesis, experimental studies on the dissociation of H{sub 2}{sup +}(H{sub 2}{sup +}{yields}p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H{sub 2} molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H{sub 2}{sup +} at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  11. Beam shaping diffuser based fiber injection for increasing stability of industrial robotic laser applications (United States)

    Lizotte, Todd E.; Dickey, Fred M.


    This paper documents the investigation of a diffuser based fiber injection system and its successful implementation and experimental testing in a robotic industrial process. This is a new concept based on the idea that a diffuser that has the angular radiation pattern matching the NA of the fiber can be used to approximate the field pattern at the face of a mode filled fiber. The research considered two approaches to this problem. The two related approaches to the problem were developed conceptually and analytically for two predominant wavelengths of interest, 1030 nm and 532 nm. The first is an implementation that would consist of illuminating the diffuser with a uniform spot having the same shape as the fiber core and imaging the illuminated spot onto the fiber face. The other approach is the use of a far-field (Fourier transform) diffractive element with a transform lens. This paper will provide an overview of the analytics and testing of the later concept (Fourier transform) and the experimental implementation of the design to a laser fiber coupling system to launch a 532 nm pulsed laser beam into a square core fiber optical beam delivery system. Further detail will be shared with the experimental performance of the design when integrated within a multi-axis robotic arm, which has six degrees of freedom. These results will include how the fiber injection system improved laser beam stability during process operations, in comparison to traditional simple lens injection methods.

  12. Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability (United States)

    Li, Yuwei; Peng, Kun; Zhan, Huan; Liu, Shuang; Ni, Li; Wang, Yuying; Yu, Juan; Wang, Xiaolong; Wang, Jianjun; Jing, Feng; Lin, Aoxiang


    By using chelate precursor doping technique and traditional modified chemical vapor deposition system, we fabricated Yb-doped aluminophosphosilicate (Al2O3-P2O5-SiO2, ternary Yb-APS) large-mode-area fiber and reported on its laser performance. The fiber preform was doped with Al, P and Yb with concentration of ∼8000 ppm, ∼1700 ppm and ∼400 ppm in molar percent, respectively. Tested with master oscillator power amplifier system, the home-made Yb-APS fiber was found to present 1.02 kW at 1061.1 nm with a high slope efficiency of 81.2% and excellent laser stability with power fluctuation less than ±1.1% for over 10 h. Compared with Yb-doped aluminosilicate (Al2O3-SiO2, binary Yb-AS) fiber, the introduction of P2O5 effectively suppressed photodarkening effect even the P/Al ratio is much less than 1, indicating that Yb-APS fiber is a better candidate for high power fiber lasers.

  13. Blue 450nm high power semiconductor continuous wave laser bars exceeding rollover output power of 80W (United States)

    König, H.; Lell, A.; Stojetz, B.; Ali, M.; Eichler, C.; Peter, M.; Löffler, A.; Strauss, U.; Baumann, M.; Balck, A.; Malchus, J.; Krause, V.


    Industrial material processing like cutting or welding of metals is rather energy efficient using direct diode or diode pumped solid state lasers. However, many applications cannot be addressed by established infrared laser technology due to fundamental material properties of the workpiece: For example materials like copper or gold have too low absorption in the near infrared wavelength range to be processed efficiently by use of existing high power laser systems. The huge interest to enable high power kW systems with more suitable wavelengths in the blue spectral range triggered the German funded research project 'BLAULAS': Therein the feasibility and capability of CW operating high power laser bars based on the GaN material system was investigated by Osram and Laserline. High performance bars were enabled by defeating fundamental challenges like material quality as well as the chip processes, both of which differ significantly from well-known IR laser bars. The research samples were assembled on actively cooled heat sinks with hard solder technology. For the first time an output power of 98W per bar at 60A drive current was achieved. Conversion efficiency as high as 46% at 50W output power was demonstrated.

  14. Self-focusing, self modulation and stability properties of laser beam propagating in plasma: A variational approach

    International Nuclear Information System (INIS)

    Kaur, Ravinder; Gill, Tarsem Singh; Mahajan, Ranju


    Laboratory as well as Particle in cell (PIC) simulation experiments reveal the strong flow of energetic electrons co-moving with laser beam in laser plasma interaction. Equation governing the evolution of complex envelope in slowly varying envelope approximation is nonlinear parabolic equation. A Lagrangian for the problem is set up and assuming a trial Gaussian profile, we solve the reduced Lagrangian problem for beam width and curvature. Besides self-focusing and self-modulation of laser beam, we observe that stability properties of such plasma system are studied about equilibrium values using this variational approach. We obtained an eigen value equation, which is cubic in nature and investigated the criterion for stability using Hurwitz conditions for laser beam plasma system.

  15. Fundamental aspects of closed optical mode formation in Fabry–Perot semiconductor lasers based on AlGaAs/GaAs (905 nm) asymmetric heterostructures

    International Nuclear Information System (INIS)

    Slipchenko, S O; Podoskin, A A; Pikhtin, N A; Tarasov, I S


    Experimental static and dynamic electro-optical characteristics of 905 nm high power mesa-stripe semiconductor laser diodes based on an AlGaAs/GaAs asymmetric heterostructure operating under Fabry–Perot cavity mode quenching have been investigated. We have shown that Fabry–Perot cavity mode reversible turn-off is due to the fulfillment of a high-Q closed mode threshold condition. The mode is propagating along both gain and passive areas of the laser diode and characterized by nearly zero output optical losses. We have demonstrated that fundamental reasons of closed mode threshold condition fulfillment are (i) gain spectra shift in the long wavelength region due to band gap shrinkage and thermal heating effects and (ii) the band gap absorption decrease in the passive area. It has been shown that the process of closed mode turn-on consists of two stages. In the first stage, Fabry–Perot cavity modes and closed modes are lasing simultaneously under high residual band gap absorption in the passive area. In the second stage, closed mode optical losses become lower than Fabry–Perot cavity mode optical losses due to a positive feedback between the residual absorption and closed mode photon stimulated generation rate. This results in an accumulation of photogenerated carriers in the quantum well active region of the laser diode passive area. As a result, the threshold concentration in the gain area decreases providing lasing emission switching from the Fabry–Perot cavity mode to the closed mode. (paper)

  16. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators. (United States)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru


    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  17. Analysis of feature stability for laser-based determination of tissue thickness (United States)

    Ernst, Floris; Schweikard, Achim; Stüber, Patrick; Bruder, Ralf; Wagner, Benjamin; Wissel, Tobias


    Localisation of the cranium is necessary for accurate stereotactic radiotherapy of malign lesions in the brain. This is achieved by immobilizing the patient's head (typically by using thermoplastic masks, bite blocks or combinations thereof) and x-ray imaging to determine the actual position of the patient with respect to the treatment device. In previous work we have developed a novel method for marker-less and non-invasive tracking of the skull using a combination of laser-based surface triangulation and the analysis of backscattered feature patterns of a tightly collimated NIR laser beam scanned over the patient's forehead. An HDR camera is coupled into the beam path of the laser scanning system to acquire one image per projected laser point. We have demonstrated that this setup is capable of accurately determining the tissue thickness for each triangulation point and consequently allows detecting the surface of the cranial bone with sub-millimetre accuracy. Typical clinical settings (treatment times of 15-90 min) require feature stability over time, since the determination of tissue thickness is achieved by machine learning methods trained on initial feature scans. We have collected initial scans of the forehead as well as long-term backscatter data (20 images per seconds over 30 min) from five subjects and extracted the relevant tissue features from the image streams. Based on the knowledge of the relationship between the tissue feature values and the tissue thickness, the analysis of the long-term data showed that the noise level is low enough to allow robust discrimination of tissue thicknesses of 0.5 mm.

  18. Developing Stabilized Lasers, Measuring their Frequencies, demoting the Metre, inventing the Comb, and further consequences (United States)

    Hall, John L.


    Michelson's 1907 proposal to define the SI Metre in terms of an optical wavelength was realized only in 1960, based on a ^86Krypton discharge lamp. The same year saw the cw HeNe laser arrive and a future redefinition based on laser technology assured. Separation in the late 60's of the laser's gain and spectral-reference-gas functions led to unprecedented levels of laser frequency stability and reproducibility. In addition to HeNe:CH4 system at 3392 nm and HeNe:I2 at 633 nm, systems at 514 nm and 10600 nm were studied. Absolute frequency measurement became the holy grail and some NBS team experiences will be shared. We measured both frequency and wavelength in 1972, and so obtained a speed of light value, improved 100-fold in accuracy. During the next decade, the NBS value of c was confirmed by other national labs, and frequency metrology was extended to the 473 THz (633 nm) Iodine-based wavelength standard. This frequency to ˜10 digit accuracy was obtained in 1983, thus setting the stage for redefining the SI Metre. By consensus choice the value 299 792 458 m/s was adopted for the speed of light, effectively reducing the Metre to a derived SI quantity. Knowledge of the frequency of the particular laser being utilized was controlled by International intercomparisons, but the need for a fast and accurate means to make these laser frequency measurements was obvious. Creative proposals by H"ansch and by Chebotayev were to use ultra-fast repetitive pulses to create an ``Optical Comb,'' but it was years before any technical basis existed to implement their Fourier dreams. Finally, in 1999 the last needed capability was demonstrated -- continuum production at 100 MHz rates and non-destructive power levels. By May 2000 phase-locked combs were operational in both Garching and Boulder, substantially accelerated by their collaborative interactions. Within 18 months all the known proposed ``optical frequency standards'' had been accurately measured via Comb techniques. )

  19. Phenacyl-thiophene and quinone semiconductors designed for solution processability and air-stability in high mobility n-channel field-effect transistors. (United States)

    Letizia, Joseph A; Cronin, Scott; Ortiz, Rocio Ponce; Facchetti, Antonio; Ratner, Mark A; Marks, Tobin J


    Electron-transporting organic semiconductors (n-channel) for field-effect transistors (FETs) that are processable in common organic solvents or exhibit air-stable operation are rare. This investigation addresses both these challenges through rational molecular design and computational predictions of n-channel FET air-stability. A series of seven phenacyl-thiophene-based materials are reported incorporating systematic variations in molecular structure and reduction potential. These compounds are as follows: 5,5'''-bis(perfluorophenylcarbonyl)-2,2':5',- 2'':5'',2'''-quaterthiophene (1), 5,5'''-bis(phenacyl)-2,2':5',2'': 5'',2'''-quaterthiophene (2), poly[5,5'''-(perfluorophenac-2-yl)-4',4''-dioctyl-2,2':5',2'':5'',2'''-quaterthiophene) (3), 5,5'''-bis(perfluorophenacyl)-4,4'''-dioctyl-2,2':5',2'':5'',2'''-quaterthiophene (4), 2,7-bis((5-perfluorophenacyl)thiophen-2-yl)-9,10-phenanthrenequinone (5), 2,7-bis[(5-phenacyl)thiophen-2-yl]-9,10-phenanthrenequinone (6), and 2,7-bis(thiophen-2-yl)-9,10-phenanthrenequinone, (7). Optical and electrochemical data reveal that phenacyl functionalization significantly depresses the LUMO energies, and introduction of the quinone fragment results in even greater LUMO stabilization. FET measurements reveal that the films of materials 1, 3, 5, and 6 exhibit n-channel activity. Notably, oligomer 1 exhibits one of the highest mu(e) (up to approximately = 0.3 cm(2) V(-1) s(-1)) values reported to date for a solution-cast organic semiconductor; one of the first n-channel polymers, 3, exhibits mu(e) approximately = 10(-6) cm(2) V(-1) s(-1) in spin-cast films (mu(e)=0.02 cm(2) V(-1) s(-1) for drop-cast 1:3 blend films); and rare air-stable n-channel material 5 exhibits n-channel FET operation with mu(e)=0.015 cm(2) V(-1) s(-1), while maintaining a large I(on:off)=10(6) for a period greater than one year in air. The crystal structures of 1 and 2 reveal close herringbone interplanar pi-stacking distances (3.50 and 3.43 A, respectively

  20. Lasing from YAG:Nd(3+) and KGdW:Nd(3+) crystals under pumping from semiconductor lasers (United States)

    Davydov, S. V.; Kulak, I. I.; Mit'kovets, A. I.; Stavrov, A. A.; Shkadarevich, A. P.


    The lasing thresholds for YAG:Nd(3+) and KGdW:Nd(3+) under pumping at a wavelength of 586 nm were approximately 2 and 1 mJ, respectively. The efficiency of pump light conversion into KGdW:Nd(3+) laser radiation was 0.27 percent.

  1. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper


    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  2. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, N.; Christensen, Bo Toftmann; Bilde-Sørensen, Jørgen


    Films of yuria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive Xray spectrome......Films of yuria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive Xray...

  3. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V


    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  4. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I


    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  5. IEEE International Semiconductor Laser Conference (14th) Held in Maui, Hawaii on September 19-23, 1994 (United States)


    142 Complete Single Mode Wavelength Coverage over 40 nm with a Super Structure Grating DBR Laser. M. Oberg, P.-J. Rigole , S. Nilsson, T. Klinga, L...F. W3.4, Th3.5 Ohlander, U. Thl.6 Rieger, J. T1.1 Miyashita, M. P25 Ohnoki, N. WI.6 Ries, M. W1.2 Miyazaki, T. P42 Ohtoshi, T. P35 Rigole , P.-J. M4.2

  6. Efficiency of a semiconductor diode laser in disinfection of the root canal system in endodontics: An in vitro study

    Directory of Open Access Journals (Sweden)

    Mithra N Hegde


    Full Text Available Context: The success of endodontic treatment depends on the eradication of microbes from the rootcanal system and prevention of reinfection. The root canal is shaped with hand and rotary instruments under constant irrigation to remove the inflamed and necrotic tissue, microbes/biofilms, and other debris from the root canal space. The main goal of instrumentation is to facilitate effective irrigation, disinfection, and filling. Throughout the history of endodontics, endeavors have continuously been made to develop more effective irrigant delivery and agitation systems for root canal irrigation. Aim: The purpose of this study was to evaluate the efficacy of three different newer irrigation delivery techniques; namely Endovac, Stropko Irrigator, and laser disinfection with 5.25% sodium hypochlorite. Materials and Methods: Forty teeth after disinfection by Occupational Safety and Health Administration (OSHA regulations were instrumented and inoculated with bacterial strains of Enterococcusfaecalis. The teeth were divided into four groups, in the experimental group, the irrigants were delivered with the Endovac, Stropko Irrigator, and laser irradiation and the control group which received no irrigation. The samples were incubated in Muller-Hilton media plates and incubated for 24 h. Statistical analysis used: The colony forming units were determined and statistically analyzed using the chi-square test. Results: According to the results obtained, laser irradiation resulted in complete disinfection of the root canal system. The Endovac system resulted in significant disinfection as compared to the Stropko Irrigator system. Conclusion: Laser irradiation resulted in significantly higher antimicrobial effects compared with the Endovac and Stropko irrigation groups when in conjunction with sodium hypochlorite

  7. Stabilization of the Rayleigh - Taylor instability with convection in an ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Liberman, M.A.


    In the framework of WKB approximation the problem is studied of stabilizing the Rayleigh - Taylor instability with unhomogeneous convective flow, developing in the ablation zone during the ablative acceleration of the laser target plasma. The eigenvalue (instability growth rates) problem is reduced to solving an algebraic equation with the coefficients depending on the unperturbed profile structure of hydrodynamic variables. For the important case of the incompressible plasma subsonic flow, the instability growth rates is shown to vanish at k=k 0 =max(2(g|∇ ln p|) 1/2 /ν). The consistency condition of the model consists in the smallness of the local Froude number in the region of instability development. However, as seen from the comparison with the numerical calculations, the model is well appicable also for the case of the sufficiently abrupt density gradient provided the Froude number is of order of unity

  8. Alignment-stabilized interference filter-tuned external-cavity quantum cascade laser. (United States)

    Kischkat, Jan; Semtsiv, Mykhaylo P; Elagin, Mikaela; Monastyrskyi, Grygorii; Flores, Yuri; Kurlov, Sergii; Peters, Sven; Masselink, W Ted


    A passively alignment-stabilized external cavity quantum cascade laser (EC-QCL) employing a "cat's eye"-type retroreflector and an ultra-narrowband transmissive interference filter for wavelength selection is demonstrated and experimentally investigated. Compared with conventional grating-tuned ECQCLs, the setup is nearly two orders of magnitude more stable against misalignment of the components, and spectral fluctuation is reduced by one order of magnitude, allowing for a simultaneously lightweight and fail-safe construction, suitable for applications outdoors and in space. It also allows for a substantially greater level of miniaturization and cost reduction. These advantages fit in well with the general properties of modern QCLs in the promise to deliver useful and affordable mid-infrared-light sources for a variety of spectroscopic and imaging applications.

  9. Stabilization of Rayleigh-Taylor instability due to the spontaneous magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Ogasawara, Masatada; Takita, Masami.


    Spontaneous magnetic fields due to the temperature gradient nabla T 0 produced by a focussed laser beam on one point of a pellet are taken into account in deriving the dispersion relation of Rayleigh-Taylor instability. Growth rate γ decreases with time. Density fluctuation with wavelength shorter than 1.5(R/L sub(T)) x (n sub(s)/n 0 )sup(1/2) μm is remarkably stabilized, where R, L sub(T), n sub(s) and n 0 are the radius of a pellet, L sub(T)sup(-1) = + nabla T 0 /T 0 + , number densities of solid and the pellet. Validity condition of the theory is γt 0 >> 1 or in another form R >> L, where t 0 is the time of thermal expansion of a pellet and L -1 = + nabla n 0 /n 0 + . (author)

  10. arXiv Mechanical stability of the CMS strip tracker measured with a laser alignment system

    CERN Document Server

    Sirunyan, Albert M; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Dvornikov, Oleg; Makarenko, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; Zykunov, Vladimir; Shumeiko, Nikolai; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Ruan, Manqi; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Tsiakkouri, Demetra; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Lomidze, David; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Lacaprara, Stefano; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Michelotto, Michele; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Weber, Matthias; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Wu, Yujun; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Bein, Samuel; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Sandoval Gonzalez, Irving Daniel; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Kumar, Ajay; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Rupprecht, Nathaniel; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Wang, Fuqiang; Xie, Wei; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel


    The CMS tracker consists of 206 m$^2$ of silicon strip sensors assembled on carbon fibre composite structures and is designed for operation in the temperature range from $-25$ to $+25^\\circ$C. The mechanical stability of tracker components during physics operation was monitored with a few $\\mu$m resolution using a dedicated laser alignment system as well as particle tracks from cosmic rays and hadron-hadron collisions. During the LHC operational period of 2011-2013 at stable temperatures, the components of the tracker were observed to experience relative movements of less than 30$ \\mu$m. In addition, temperature variations were found to cause displacements of tracker structures of about 2$\\mu$m/$^\\circ$C, which largely revert to their initial positions when the temperature is restored to its original value.

  11. Frequency tracking and stabilization of a tunable dual-wavelength external-cavity diode laser (United States)

    Hsu, L.; Chi, L. C.; Wang, S. C.; Pan, Ci-Ling


    We show a unique dual-wavelength external-cavity laser diode with frequency tracking capability and obtain a stable beat frequency between the dual-wavelength output. By using a Fabry-Perot interferometer as the frequency discriminator and the time-gating technique in a servo loop, the peak-to-peak frequency fluctuations were stabilized, with respect to the Fabry-Perot cavity, to 86 kHz in the dual-wavelength output at 802.5 and 804.5 nm, and to 17 kHz in their 0.9 THz beat signal. Similar performance was achieved for tuning of the dual wavelength separation ranging from 0.2 to 4 nm.

  12. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model (United States)

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao


    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  13. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric


    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  14. Thermal stability of amorphous carbon films grown by pulsed laser deposition (United States)

    Friedmann, T. A.; McCarty, K. F.; Barbour, J. C.; Siegal, M. P.; Dibble, Dean C.


    The thermal stability in vacuum of amorphous tetrahedrally coordinated carbon (a-tC) films grown on Si has been assessed by in situ Raman spectroscopy. Films were grown in vacuum on room-temperature substrates using laser fluences of 12, 22, and 45 J/cm2 and in a background gas of either hydrogen or nitrogen using a laser fluence of 45 J/cm2. The films grown in vacuum at high fluence (≳20J/cm2) show little change in the a-tC Raman spectra with temperature up to 800 °C. Above this temperature the films convert to glassy carbon (nanocrystalline graphite). Samples grown in vacuum at lower fluence or in a background gas (H2 or N2) at high fluence are not nearly as stable. For all samples, the Raman signal from the Si substrate (observed through the a-tC film) decreases in intensity with annealing temperature indicating that the transparency of the a-tC films is decreasing with temperature. These changes in transparency begin at much lower temperatures (˜200 °C) than the changes in the a-tC Raman band shape and indicate that subtle changes are occurring in the a-tC films at lower temperatures.

  15. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)


    Sep 9, 2016 ... Abstract. A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation. (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stabil- ity region is identified. Bifurcation analysis is done by smoothly varying the cavity loss ...

  16. Semiconductor nanostructures on silicon. Carrier dynamics, optical amplification and lasing; Halbleiternanostrukturen auf Silizium. Ladungstraegerdynamik, optischer Verstaerker und Laser

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Christoph


    Two material systems that can be grown epitaxially on a silicon substrate are experimentally investigated with respect to their optical properties. Quantum wells (qw) of Germanium were experimentally investigated by spectrally resolved white-light pump-probe-absorption spectroscopy at room temperature. A second material class is Ga(NAsP), which was grown as quantum wells on a silicon substrate matching the lattice constant of the substrate. The basic optical properties were determined using the variable stripe-length method. In order to relate the results to those of established materials, a selection of comparable III/V semiconductors were measured in the same setups. The pump-probe measurements on (GaIn)As quantum wells exhibited a much more rapid scattering. In these material systems, quite similar optical gain values of 10{sup -3}/QW were found with decay times of several 100 ps. For (GaIn)(NAs), slightly higher values were determined. Using the variable stripe-length method, GaSb quantum wells with dot-like morphology were investigated. (orig.)

  17. SUNLITE program. Sub-Hertz relative frequency stabilization of two diode laser pumped Nd:YAG lasers locked to a Fabry-Perot interferometer (United States)

    Byer, R. L.


    Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  18. Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer (United States)

    Day, Timothy; Gustafson, Eric K.; Byer, Robert L.


    Two-diode laser-pumped Nd:YAG lasers have been frequency stabilized to a commercial 6.327-GHz free spectral range Fabry-Perot interferometer yielding a best-case beatnote linewidth of 330 mHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 has been built, and when substituted in place of the commercial interferometer produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  19. Active frequency stabilization of a 1.062-micron, Nd:GGG, diode-laser-pumped nonplanar ring oscillator to less than 3 Hz of relative linewidth (United States)

    Day, T.; Gustafson, E. K.; Byer, R. L.


    Results are presented on the frequency stabilization of two diode-laser-pumped ring lasers that are independently locked to the same high-finesse interferometer. The relative frequency stability is measured by locking the lasers one free spectral range apart and observing the heterodyne beat note. The resultant beat note width of 2.9 Hz is consistent with the theoretical system noise-limited linewidth and is approximately 20 times that expected for shot-noise-limited performance.

  20. Tuning of thermally induced first-order semiconductor-to-metal transition in pulsed laser deposited VO2 epitaxial thin films (United States)

    Behera, Makhes K.; Pradhan, Dhiren K.; Pradhan, Sangram K.; Pradhan, Aswini K.


    Vanadium oxide (VO2) thin films have drawn significant research and development interest in recent years because of their intriguing physical origin and wide range of functionalities useful for many potential applications, including infrared imaging, smart windows, and energy and information technologies. However, the growth of highly epitaxial films of VO2, with a sharp and distinct controllable transition, has remained a challenge. Here, we report the structural and electronic properties of high quality and reproducible epitaxial thin films of VO2, grown on c-axis oriented sapphire substrates using pulsed laser deposition at different deposition pressures and temperatures, followed by various annealing schedules. Our results demonstrate that the annealing of epitaxial VO2 films significantly enhances the Semiconductor to Metal Transition (SMT) to that of bulk VO2 transition. The effect of oxygen partial pressure during the growth of VO2 films creates a significant modulation of the SMT from around room temperature to as high as the theoretical value of 68 °C. We obtained a bulk order transition ≥104 while reducing the transition temperature close to 60 °C, which is comparatively less than the theoretical value of 68 °C, demonstrating a clear and drastic improvement in the SMT switching characteristics. The results reported here will open the door to fundamental studies of VO2, along with tuning of the transition temperatures for potential applications for multifunctional devices.