WorldWideScience

Sample records for stabilized routine wastes

  1. Ferrocyanide tank waste stability

    International Nuclear Information System (INIS)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove 137 CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes

  2. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    International Nuclear Information System (INIS)

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  3. Glassy slags for minimum additive waste stabilization

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Dietz, N.L.; Gong, M.; Emery, J.W.

    1994-05-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing Minimum Additive Waste Stabilization (MAWS) for supporting DOE's environmental restoration efforts. The glassy slag waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. The MAWS approach was adopted by blending multiple waste streams to achieve up to 100% waste loadings. The crystalline phases, such as spinels, are very durable and contain hazardous and radioactive elements in their lattice structures. These crystalline phases may account for up to 80% of the total volume of slags having over 80% metal loading. The structural bond strength model was used to quantify the correlation between glassy slag composition and chemical durability so that optimized slag compositions were obtained with limited crucible melting and testing. Slag compositions developed through crucible melts were also successfully generated in a pilot-scale Retech plasma centrifugal furnace at Ukiah, California. Utilization of glassy slag waste forms allows the MAWS approach to be applied to a much wider range of waste streams than glass waste forms. The initial work at ANL has indicated that glassy slags are good final waste forms because of (1) their high chemical durability; (2) their ability to incorporate large amounts of metal oxides; (3) their ability to incorporate waste streams having low contents of flux components; (4) their less stringent requirements on processing parameters, compared to glass waste forms; and (5) their low requirements for purchased additives, which means greater waste volume reduction and treatment cost savings

  4. Treatment of radioactive waste - Routine or challenge? Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    The seminar had the following topics: Proposal for new legislation covering radioactive waste management in the EU, new requirements preparations for the later repository, efficient and cost effective treatment of radioactive waste water, intermediate level waste cementation, incineration of spent ion exchange resins in a triphasic mixture, application of THOR-technology on resins, new development for transportation and storage of reactor vessel parts, and conditioning of nuclear fuel containing wastes. (uke)

  5. Stabilizing Waste Materials for Landfills

    Science.gov (United States)

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  6. Sulfur polymer cement, a solidification and stabilization agent for hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Darnell, G.R.

    1992-01-01

    Hydraulic cements have been the primary radioactive waste stabilization agents in the United States for 50 years. Twelve years ago, Brookhaven National Laboratory was funded by the Department of Energy's Defense Low-Level Waste Management Program to test and develop sulfur polymer cement (SPC). It has stabilized routine wastes as well as some troublesome wastes with high waste-to-agent ratios. The Department of Energy's Hazardous Waste Remedial Action Program joined the effort by providing funding for testing and developing sulfur polymer cement as a hazardous-waste stabilization agent. Sulfur polymer cement has passed all the laboratory scale tests required by the US Environmental Protection Agency and US Nuclear Regulatory Commission. Two decades of tests by the US Bureau of Mines and private concrete contractors indicate this agent is likely to exceed other agents in longevity. This bulletin provides technical data from pertinent tests conducted by these various entities

  7. Criteria: waste tank isolation and stabilization

    International Nuclear Information System (INIS)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly

  8. Criteria: waste tank isolation and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  9. STRATIFICATION IN WASTE STABILIZATION PONDS II: MODELLING

    African Journals Online (AJOL)

    NIJOTECH

    The occurrence of thermal stratification in waste stabilization ponds (WSPs) alters the flow pattern of the pond. ... compared favourably with the experimental observation with coefficients of correlation ranging from .... is determined experimentally by sampling in the region of the pond inlet at various depths. Four models exist ...

  10. Stabilization of soil using plastic waste

    International Nuclear Information System (INIS)

    Khan, S.A.

    2005-01-01

    The economy in a soil stabilization project depends on the cost of the stabilizing material. Cheaper the stabilizing material, lesser will be the project cost. Specially manufactured geotextiles are successfully being used for soil stabilization, but the cost is higher. In this study, the cuttings of the waste polyethylene shopper bags have been used to stabilize the soil. The polyethylene shopper bags are transformed to cuttings for easy mixing with the soil by conventional methods. The plastic cuttings acted similar to the non-woven geotextile fibers. Different quantities of the shopper bag cuttings were mixed with the soil. The soil was compacted in the California Bearing Ratio (CBR) test molds according to the British Standards. CBR values of the soil with varying quantities of the plastic cuttings were determined both for the un-soaked and soaked conditions. The tests showed significant increase in the CBR values of the stabilized soil under un-soaked conditions. However, the improvement in the CBR values under the soaked condition was comparatively lesser than that of the un-soaked condition. This method of stabilization proved economical due to low cost of the waste shopper bags. (author)

  11. Stability of disposal rooms during waste retrieval

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ''fair to good'' using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs

  12. Radioactive wastes dispersed in stabilized ash cements

    International Nuclear Information System (INIS)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-01-01

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO 2 ) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO 2 to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO 2 to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms

  13. Radioactive wastes dispersed in stabilized ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  14. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  15. Solid Waste Biodegradation Enhancements and the Evaluation of Analytical Methods Used to Predict Waste Stability

    OpenAIRE

    Kelly, Ryan J.

    2002-01-01

    Conventional landfills are built to dispose of the increasing amount of municipal solid waste (MSW) generated each year. A relatively new type of landfill, called a bioreactor landfill, is designed to optimize the biodegradation of the contained waste to stabilized products. Landfills with stabilized waste pose little threat to the environment from ozone depleting gases and groundwater contamination. Limited research has been done to determine the importance of biodegradation enhancement tech...

  16. RICE-HUSK ASH-CARBIDE-WASTE STABILIZATION OF ...

    African Journals Online (AJOL)

    This paper present results of the laboratory evaluation of the characteristics of carbide waste and rice husk ash stabilized reclaimed asphalt pavement waste with a ... of 5.7 % and resistance to loss in strength of 84.1 %, hence the recommendation of the mixture for use as sub-base material in flexible pavement construction.

  17. Performance Of The Akosombo Waste Stabilization Ponds In Ghana ...

    African Journals Online (AJOL)

    A study was conducted to determine the treatment performance of the Akosombo waste stabilization ponds and the effect of seasonal changes on the final effluent quality. The waste water quality parameters ... Une étude était entreprise pour déterminer le résultat de traitement de bassins de stabilisation du déchet d' ...

  18. Stability of High-Level Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M.; Vienna, John D.

    2005-09-30

    The objective of the proposed effort is to use a new approach to develop solution models of complex waste glass systems and spent fuel that are predictive with regard to composition, phase separation, and volatility. The effort will also yield thermodynamic values for waste components that are fundamentally required for corrosion models used to predict the leaching/corrosion behavior for waste glass and spent fuel material. This basic information and understanding of chemical behavior can subsequently be used directly in computational models of leaching and transport in geologic media, in designing and engineering waste forms and barrier systems, and in prediction of chemical interactions.

  19. Technical area status report for waste destruction and stabilization

    International Nuclear Information System (INIS)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office of Technology Development (OTD) is to develop treatment technologies for DOE's operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities

  20. Technical area status report for waste destruction and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States)

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office of Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.

  1. PASSIVATION LAYER STABILITY OF A METALLIC ALLOY WASTE FORM

    International Nuclear Information System (INIS)

    Williamson, M.; Mickalonis, J.; Fisher, D.; Sindelar, R.

    2010-01-01

    Alloy waste form development under the Waste Forms Campaign of the DOE-NE Fuel Cycle Research and Development program includes the process development and characterization of an alloy system to incorporate metal species from the waste streams generated during nuclear fuel recycling. This report describes the tests and results from the FY10 activities to further investigate an Fe-based waste form that uses 300-series stainless steel as the base alloy in an induction furnace melt process to incorporate the waste species from a closed nuclear fuel recycle separations scheme. This report is focused on the initial activities to investigate the formation of oxyhydroxide layer(s) that would be expected to develop on the Fe-based waste form as it corrodes under aqueous repository conditions. Corrosion tests were used to evaluate the stability of the layer(s) that can act as a passivation layer against further corrosion and would affect waste form durability in a disposal environment.

  2. Stability and Volumetric Properties of Asphalt Mixture Containing Waste Plastic

    Directory of Open Access Journals (Sweden)

    Abd Kader Siti Aminah

    2017-01-01

    Full Text Available The objectives of this study are to determine the optimum bitumen content (OBC for every percentage added of waste plastics in asphalt mixtures and to investigate the stability properties of the asphalt mixtures containing waste plastic. Marshall stability and flow values along with density, air voids in total mix, voids in mineral aggregate, and voids filled with bitumen were determined to obtain OBC at different percentages of waste plastic, i.e., 4%, 6%, 8%, and 10% by weight of bitumen as additive. Results showed that the OBC for the plastic-modified asphalt mixtures at 4%, 6%, 8%, and 10% are 4.98, 5.44, 5.48, and 5.14, respectively. On the other hand, the controlled specimen’s shows better volumetric properties compared to plastic mixes. However, 4% additional of waste plastic indicated better stability than controlled specimen.

  3. Stabilization of mixed waste - Rocky Flats solar ponds

    International Nuclear Information System (INIS)

    Bittner, T.A.; Mathew, S.A.; Henderson, W.C.

    1993-01-01

    Among the wastes that require disposal as part of the Department of Energy's (DOE's) Environmental Restoration Program are large amounts of contaminated sludge and inorganic wastes. Halliburton NUS Corporation was awarded a contract by EG ampersand G Rocky Flats in March 1991 to stabilize mixed waste sludge contained in five solar evaporator ponds and to reprocess billets of solidified waste called Pondcrete and Saltcrete at DOE's Rocky Flats Plant. The scope of the project consists of waste characterization and treatability studies for process development, followed by design, construction and operation of various process trains to remediate different waste forms ranging from solid Pondcrete/Saltcrete blocks to aqueous brine solutions. One of the significant advances made was the development of a durable and certifiable stabilization formulation capable of treating concentrated nitrate solution wastes. The project uses high-volume grout mixing and pumping technologies with process control techniques that accommodate the heterogeneity of the wastes. To comply with all relevant environmental regulations and to provide a safe working atmosphere for plant personnel, Halliburton NUS designed process trains such that all emissions were eliminated during the remediation process. Personnel protection equipment requirements have been downgraded due to safeguards incorporated in the design. The technical and regulatory issues that were encountered would be typical of stabilization efforts underway at other DOE sites. Thus the lessons learned and concepts developed can be expected to have widespread application

  4. Utilization of stabilized wastes for reducing methane emission from municipal solid waste disposal.

    Science.gov (United States)

    Chiemchaisri, Wilai; Chiemchaisri, Chart; Boonchaiyuttasak, Jindaruch

    2013-08-01

    Stabilized solid wastes were utilized to mitigate methane emission from the landfill. Loose texture of plastic wastes encouraged air diffusion from the soil surface whereas fine organic fraction has good water holding capacity and nutrients to stimulate methane oxidation reaction. Biological methane oxidation capacity in stabilized waste layer was found to be up to 34.1 g/m(3)d. Microbial activity test revealed methanotrophic activities of plastic and degraded organic wastes were in the same order. The mixture of plastic and fine degraded organic waste matrix provided sufficient porosity for oxygen transfer and supported the growth of methanotrophs throughout 0.8m depth of waste layer. Fluorescent in situ hybridization (FISH) analysis confirmed the presence of methanotrophs and their population was found varied along waste depth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Solidifications/stabilization treatability study of a mixed waste sludge

    International Nuclear Information System (INIS)

    Spence, R.D.; Stine, E.F.

    1996-01-01

    The Department of Energy Oak Ridge Operations Office signed a Federal Facility Compliance Agreement with the US Environmental Protection Agency Region IV regarding mixed wastes from the Oak Ridge Reservation (ORR) subject to the land disposal restriction provisions of the Resource Conservation and Recovery Act (RCRA). This agreement required treatability studies of solidification/stabilization (S/S) on mixed wastes from the ORR. This paper reports the results of the cementitious S/S studies conducted on a waste water treatment sludge generated from biodenitrification and heavy metals precipitation. For the cementitious waste forms, the additives tested were Portland cement, ground granulated blast furnace slag, Class F fly ash, and perlite. The properties measured on the treated waste were density, free-standing liquid, unconfined compressive strength, and TCLP performance. Spiking up to 10,000, 10,000, and 4,400 mg/kg of nickel, lead, and cadmium, respectively, was conducted to test waste composition variability and the stabilization limitations of the binding agents. The results indicated that nickel, lead and cadmium were stabilized fairly well in the high pH hydroxide-carbonate- ''bug bones'' sludge, but also clearly confirmed the established stabilization potential of cementitious S/S for these RCRA metals

  6. Effects of stretching and warm-up routines on stability and balance during weight-lifting: a pilot investigation

    OpenAIRE

    Adelsberger, Rolf; Tr?ster, Gerhard

    2014-01-01

    Background The efficacy of warm-up and stretching in weight-lifting remains unknown, especially for the weight-lifter?s stability and balance during lifting. Methods 13 subjects were randomly assigned a 10-minute stretching routine (SR) or a 10-minute warm-up routine (WR) and compared against 5 controls (no stretching or warm-up). Before and after the individually assigned routine, the participants? centre of pressure (CoP) was assessed using plantar-pressure sensors. The subjects were measur...

  7. Process Design Concepts for Stabilization of High Level Waste Calcine

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Thomas; A. K. Herbst

    2005-06-01

    The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels

  8. Laser driven thermal reactor for hazardous waste stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, A. [SAIC, Germantown, MD (United States)

    1996-12-31

    Increasing attention is being paid to treatment of hazardous waste through stabilization and possible solidification. Among the preferred technologies are thermal processes that detoxify and reduce the volume of hazardous wastes by exposing them to appropriate thermal regimes. However, as with any technology, there are potential problems which may detract from the application of the technology. Environmental pollution from particulate matter and off-gases can occur. Therefore, it is important to develop the technology of hazardous waste stabilization on a strong research base and to determine parameters and conditions of appropriate thermal processes. The purpose of the present work was to determine phenomenological parameters that characterize the processes of hazardous waste stabilization during thermal treatment. These methods can be used for any kind of liquid, solid and multiphase (liquid/solid and gas/solid) hazardous wastes. The method presented herein has been used to find corresponding parameters and conditions in the following applications: decomposition of ozone and nitrocompounds absorbed by activated carbon; sulphur compounds in heavy fuel oil; and appraisals of the explosion hazards involved in coal mining.

  9. variation of some waste stabilization pond parameters with shape

    African Journals Online (AJOL)

    Waste Stabilization Pond (WSP) are designed to provide control environment for wastewater treatment. The primary purpose of wastewater treatment is the reduction of pathogenic contamination, suspended solids, oxygen demand and nutrient environment. The geometry of the pond could be structured in order to give the ...

  10. variation of some waste stabilization pond parameters with shape

    African Journals Online (AJOL)

    θ θi then σ2 = 2d – 2d2 (1 – e-1/d). - - - - - - - - - - - - - - - - - - - - - - - - - -. (5) the term, d, can be calculated by trial and error where θi. = time after impulse injection, days; and. Ci. = tracer response concentration at the exist stream, mg/l. VARIATION OF SOME WASTE STABILIZATION POND PARAMETERS WITH SHAPE. 111 ...

  11. Variation of some Waste Stabilization Pond Parameters with Shape ...

    African Journals Online (AJOL)

    Waste Stabilization Pond (WSP) are designed to provide control environment for wastewater treatment. The primary purpose of wastewater treatment is the reduction of pathogenic contamination, suspended solids, oxygen demand and nutrient environment. The geometry of the pond could be structured in order to give the ...

  12. Nitrogen mass balance in waste stabilization ponds at the University ...

    African Journals Online (AJOL)

    ... the dominant nitrogen transformation mechanisms, while in secondary facultative pond F3 and maturation pond M, ammonia uptake was the dominant transformation route. The results obtained in this work may be used as a management tool in assessing the levels of nitrogen compounds in waste stabilization ponds and ...

  13. Systems to accelerate in situ stabilization of waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Amdurer, M.; Fellman, R.T.; Roetzer, J.; Russ, C.

    1986-09-01

    In-situ systems to accelerate the stabilization of waste deposits involve three essential elements: selection of a chemical or biological agent (reactant) that can react with and stabilize the waste, a method for delivery of the reactant to the deposit, and a method for recovery of the reaction products or mobilized waste. Four reactant categories were examined: biodegradation, surfactant-assistant flushing, hydrolysis, and oxidation. Of these, biodegradation and surfactant-assisted flushing appear most promising as in-situ treatment techniques. Methods of delivery of reactants based upon gravity include surface flooding, ponding, surface spraying, ditching, and subsurface infiltration beds and galleries. Forced injection (pumping) may also be used. Permeability is an important consideration in selecting the delivery system. Recovery systems using gravity include open ditching and buried drains, and pumped methods include wellpoint and deep well systems. Basically, the same limitations that apply to delivery systems are also true for recovery systems.

  14. Methodology proposal for matrices selection for hazardous wastes stabilization

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Vasconcelos, Vanderley de; Jordao, Elizabete

    2002-01-01

    The issues of environmental pollution by solid waste arised with the onset of the industrial era. Coping with these issues has been even worsen due to the lack of consciousness and planning for a sound waste management. In addition, most of the companies have found it difficult to keep themselves competitive in a global economy due to the lack of information and by not having access to waste management new technologies. On the other hand, solidification/stabilization technologies are usual practices in the nuclear industry. The aim of this paper is to present a proposal to the development of a methodology, for selection of immobilization binders for hazardous waste, based on the available technologies in the nuclear industry. (author)

  15. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz.

    1996-04-01

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of 137 Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes

  16. In situ vitrification: application analysis for stabilization of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

  17. In situ vitrification: application analysis for stabilization of transuranic waste

    International Nuclear Information System (INIS)

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10 -5 parts per year. 32 figures, 30 tables

  18. Stabilization of low-level mixed waste in chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.; Sarkar, A.V.

    1994-06-01

    Mixed waste streams, which contain both chemical and radioactive wastes, are one of the important categories of DOE waste streams needing stabilization for final disposal. Recent studies have shown that chemically bonded phosphate ceramics may have the potential for stabilizing these waste streams, particularly those containing volatiles and pyrophorics. Such waste streams cannot be stabilized by conventional thermal treatment methods such as vitrification. Phosphate ceramics may be fabricated at room temperature into durable, hard and dense materials. For this reason room-temperature-setting phosphate ceramic waste forms are being developed to stabilize these to ''problem waste streams.''

  19. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    Directory of Open Access Journals (Sweden)

    Nidzam Rahmat Mohamad

    2014-01-01

    Full Text Available Palm Oil Fuel Ash (POFA and Rice Husk Ash (RHA are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC. Laboratory investigations were carried out to establish the potential utilization of Malaysian Agricultural wastes POFA and RHA in stabilizing Teluk Kapas Landfill soil. Landfill soil on its own and combination with laterite clay soil were stabilized using POFA or RHA either on its own or in combination with Lime or Portland Cement (PC. The traditional stabilizers of lime or Portland Cement (PC were used as controls. Compacted cylinder test specimens were made at typical stabilizer contents and moist cured for up to 60 days prior to testing for compressive and water absorption tests. The results obtained showed that landfill soil combined with laterite clay (50:50 stabilized with 20% RHA:PC (50:50and POFA: PC (50:50 recorded the highest values of compressive strength compared to the other compositions of stabilizers and soils. However, when the amount of POFA and RHA increased in the system the compressive strength values of the samples tends to increase. These results suggest technological, economic as well as environmental advantages of using POFA and RHA and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste.

  20. Measurements of Mercury Released from Solidified/Stabilized Waste Forms

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2001-01-01

    This report covers work performed during FY 1999-2000 in support of treatment demonstrations conducted for the Mercury Working Group of the U.S. Department of Energy (DOE) Mixed Waste Focus Area. In order to comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of these procedures for wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or an incineration treatment (if the wastes also contain organics). The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE Mixed Waste Focus Area and Mercury Working Group are working with the EPA to determine if some alternative processes could treat these types of waste directly, thereby avoiding for DOE the costly recovery step. They sponsored a demonstration in which commercial vendors applied their technologies for the treatment of two contaminated waste soils from Brookhaven National Laboratory. Each soil was contaminated with ∼4500 ppm mercury; however, one soil had as a major radioelement americium-241, while the other contained mostly europium-152. The project described in this report addressed the need for data on the mercury vapor released by the solidified/stabilized mixed low-level mercury wastes generated during these demonstrations as well as the comparison between the untreated and treated soils. A related work began in FY 1998, with the measurement of the mercury released by amalgamated mercury, and the results were reported in ORNL/TM-13728. Four treatments were performed on these soils. The baseline was obtained by thermal treatment performed by SepraDyne Corp., and three forms of solidification/stabilization were employed: one using sulfur polymer cement (Brookhaven National Laboratory), one using portland cement [Allied Technology Group (ATG)], and a third using proprietary additives (Nuclear Fuel Services)

  1. Measurements of Mercury Released from Solidified/Stabilized Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, C.H.

    2001-04-19

    This report covers work performed during FY 1999-2000 in support of treatment demonstrations conducted for the Mercury Working Group of the U.S. Department of Energy (DOE) Mixed Waste Focus Area. In order to comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of these procedures for wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or an incineration treatment (if the wastes also contain organics). The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE Mixed Waste Focus Area and Mercury Working Group are working with the EPA to determine if some alternative processes could treat these types of waste directly, thereby avoiding for DOE the costly recovery step. They sponsored a demonstration in which commercial vendors applied their technologies for the treatment of two contaminated waste soils from Brookhaven National Laboratory. Each soil was contaminated with {approx}4500 ppm mercury; however, one soil had as a major radioelement americium-241, while the other contained mostly europium-152. The project described in this report addressed the need for data on the mercury vapor released by the solidified/stabilized mixed low-level mercury wastes generated during these demonstrations as well as the comparison between the untreated and treated soils. A related work began in FY 1998, with the measurement of the mercury released by amalgamated mercury, and the results were reported in ORNL/TM-13728. Four treatments were performed on these soils. The baseline was obtained by thermal treatment performed by SepraDyne Corp., and three forms of solidification/stabilization were employed: one using sulfur polymer cement (Brookhaven National Laboratory), one using portland cement [Allied Technology Group (ATG)], and a third using proprietary additives (Nuclear Fuel Services).

  2. In-situ containment and stabilization of buried waste

    International Nuclear Information System (INIS)

    Allan, M.L.; Kukacka, L.E.

    1993-10-01

    In FY 1993 research continued on development and testing of grout materials for in-situ containment and stabilization of buried waste. Specifically, the work was aimed at remediation of the Chemical Waste Landfill (CWL) at Sandia National Laboratories (SNL) in Albuquerque, New Mexico as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). The work on grouting materials was initiated in FY 1992 and the accomplishments for that year are documented in the previous annual report (Allan, Kukacka and Heiser, 1992). The remediation plan involves stabilization of the chromium plume, placement of impermeable vertical and horizontal barriers to isolate the landfill and installation of a surface cap. The required depth of subsurface barriers is approximately 33 m (100 ft). The work concentrated on optimization of grout formulations for use as grout and soil cement barriers and caps. The durability of such materials was investigated, in addition to shrinkage cracking resistance, compressive and flexural strength and permeability. The potential for using fibers in grouts to control cracking was studied. Small scale field trials were conducted to test the practicality of using the identified formulations and to measure the long term performance. Large scale trials were conducted at Sandia as part of the Subsurface Barrier Emplacement Technology Program. Since it was already determined in FY 1992 that cementitious grouts could effectively stabilize the chromium plume at the CWL after pre-treatment is performed, the majority of the work was devoted to the containment aspect

  3. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  4. Stabilize ash using Clemson's sintering process (Part 1 - Phase 1 results): Mixed waste fly ash stabilization. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Incineration of applicable Department of Energy (DOE) mixed wastes has produced a secondary waste stream of radioactive and Resource Conservation and Recovery Act (RCRA) hazardous fly ash that also requires treatment before land disposal. Unlike bottom ash, fly ash usually contains constituents making efficient stabilization difficult. For example, fly ash from the DOE Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) contains volatile metals, metal salts, high concentrations of zinc, and unburned organic residues. All of these constituents can effect the stabilization process. The Department of Energy, and in particular the Mixed Waste Focus Area (MWFA) of EM-50, has stated the need for improved stabilization methods would accept a higher ash waste loading while meeting waste form disposal criteria. These alternative stabilization technologies should include delivery systems to minimize worker exposure and minimize secondary waste generation, while maximizing operational flexibility and radionuclide containment. Currently, the standard practice for stabilizing ash is mixing with Portland cement at room temperature. This standard practice produces a significant increase of waste material volume or has difficulty in adequately stabilizing the components in the fly ash to ensure regulatory requirements are consistently satisfied. To address these fly ash stabilization shortcomings, the MWFA, a DOE/EM-50 program, invested in the development of several fly ash stabilization alternatives, including the Clemson University sintering method

  5. Oxidative stability of biodiesel blends derived from waste frying oils

    Directory of Open Access Journals (Sweden)

    Michael Feroldi

    2017-07-01

    Full Text Available The high cost of biodiesel production is mainly linked to the price of raw material.This factor has favored the use of alternative fats and oils such as those used in frying. Since biodiesel can be obtained from several vegetable and animal raw materials, the physicochemical characteristics of the fuel may vary considerably. One of these characteristics is the fatty acid composition. It directly affects the oxidative stability of biodiesel, which can be impaired when the fuel undergoes exposure to sunlight, metals, oxygen and high temperatures. In order to improve the oxidative stability of biodiesels produced from waste frying oil some studies involving blends of different raw materials have been carried out. In this sense, this work aimed to assess the characteristics resulting from the blending of soybean waste frying oil with other waste biodiesels in what concerns to oxidation. The blends of fatty materials were obtained by means of a 2² factorial design. The induction periods of biodiesel blends were enough to meet the ASTM D6751 standard. Swine fat was responsible for the increase in the induction period values.

  6. Avoiding food waste by Romanian consumers: The importance of planning and shopping routines

    NARCIS (Netherlands)

    Stefan, V.; Herpen, van E.; Tudoran, A.A.; Lähteenmäki, L.

    2013-01-01

    Food waste is generated in immense amounts across the food life cycle, imposing serious environmental, social and economic consequences. Although consumers are the single biggest contributor to this volume, little is known about the drivers of food waste in households. This exploratory study aims to

  7. Slope stability of rectify coal waste embankments on mining areas

    International Nuclear Information System (INIS)

    Klossek, C.

    1999-01-01

    The paper is of a theoretical and experimental character, focusing on the results of field tests on the load-bearing capacity and stability of high (> 20m.) transportation embankments rectified with coal waste. The embankments are located in industrial areas subjected to the intense impact of underground mining. Such phenomena are also accompanied by essential changes in the water conditions of the subsoil. The results of model tests by SIR geo-radar used to non-damaging estimation of the suffusion occurring in the embankment constructed on non-waste materials are discussed. The numerical assessment of the filtration process has been based on the MFE and MBE programs, which are extended calculation procedures enabling the overall estimation of the redistribution of all the stress-strain components in the structure, in consideration of any hypothesis of the boundary state

  8. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  9. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific ''problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs

  10. Effects of stretching and warm-up routines on stability and balance during weight-lifting: a pilot investigation.

    Science.gov (United States)

    Adelsberger, Rolf; Tröster, Gerhard

    2014-12-20

    The efficacy of warm-up and stretching in weight-lifting remains unknown, especially for the weight-lifter's stability and balance during lifting. 13 subjects were randomly assigned a 10-minute stretching routine (SR) or a 10-minute warm-up routine (WR) and compared against 5 controls (no stretching or warm-up). Before and after the individually assigned routine, the participants' centre of pressure (CoP) was assessed using plantar-pressure sensors. The subjects were measured during 10 repetitions of air squat (no load, "AS"), front squat (FS; 20 kg/15 kg bar), overhead squat (OHS; m: 20 kg / f: 15 kg bar), and a deadlift lifting exercise ("DL"; 20 kg/15 kg bar). The impact on CoP dynamics of the warm-up and stretching routines were examined with repeated two-factor analysis of variances (ANOVA) of the mean and the coefficient of variance (CV, shown in %), as proxies for stability and balance. After stretching, the SR athletes shifted the mean CoP towards the toes (≈1 cm; p CoP towards the heels (≈1 cm; p CoP towards the heels (between 0.8 cm and 5.7 cm) compared to WR (≈1.9 cm towards the heels in FS, no significant change in OHS (≈1 mm) and DL (≈3 mm)). The controls did not show any change between pre- and post-datasets. After stretching, the CV decreased for the AS and OHS exercises (AS: 10.2% to 7.0%, OHS 9.8% to 7.8%), but increased after WR (AS: 7.1% to 10.1%) or did not change significantly (OHS). Both WR and SR resulted in increased CV values for FS and DL. No change of CV was observed in the controls. SR had a stronger impact on CoP during the assessed exercises than either WR or controls. A reduction in CV after SR exercises (AS, OHS) suggests a clear improvement in stability and balance during weight-lifting. The lack of a significant effect for complex movements (OHS) suggests only a limited effect of a 10-minute warm-up routine on CoP features. 10 minutes stretching might therefore be more efficient for improving stability than a general

  11. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    International Nuclear Information System (INIS)

    Finkeldei, Sarah Charlotte

    2015-01-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO 2 based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO 2 based pyrochlores. ZrO 2 - Nd 2 O 3 pellets with pyrochlore and defect

  12. Thermal stability of premature infants during routine care under radiant warmers.

    OpenAIRE

    Seguin, J. H.; Vieth, R.

    1996-01-01

    The body temperatures of infants weighing less than 1500 g under radiant warmers during routine care were documented in the first week of life. Ten infants (median gestational age 28 weeks, median birthweight 913 g) were studied. During 30 nursing interventions (mean 9.2 minutes) mean oesophageal and foot temperature changed 0 degrees C and -0.11 degrees C, respectively. A radiant warmer may limit heat loss during interventions because of easy access and rapid radiant warmer responsiveness.

  13. Thermal stability of premature infants during routine care under radiant warmers.

    Science.gov (United States)

    Seguin, J H; Vieth, R

    1996-03-01

    The body temperatures of infants weighing less than 1500 g under radiant warmers during routine care were documented in the first week of life. Ten infants (median gestational age 28 weeks, median birthweight 913 g) were studied. During 30 nursing interventions (mean 9.2 minutes) mean oesophageal and foot temperature changed 0 degrees C and -0.11 degrees C, respectively. A radiant warmer may limit heat loss during interventions because of easy access and rapid radiant warmer responsiveness.

  14. Sulfur polymer cement stabilization of elemental mercury mixed waste

    International Nuclear Information System (INIS)

    Melamed, D.; Fuhrmann, M.; Kalb, P.; Patel, B.

    1998-04-01

    Elemental mercury, contaminated with radionuclides, is a problem throughout the Department of Energy (DOE) complex. This report describes the development and testing of a process to immobilize elemental mercury, contaminated with radionuclides, in a form that is non-dispersible, will meet EPA leaching criteria, and has low mercury vapor pressure. In this stabilization and solidification process (patent pending) elemental mercury is mixed with an excess of powdered sulfur polymer cement (SPC) and additives in a vessel and heated to ∼35 C, for several hours, until all of the mercury is converted into mercuric sulfide (HgS). Additional SPC is then added and the mixture raised to 135 C, resulting in a homogeneous molten liquid which is poured into a suitable mold where is cools and solidifies. The final stabilized and solidified waste forms were characterized by powder X-ray diffraction, as well as tested for leaching behavior and mercury vapor pressure. During this study the authors have processed the entire inventory of mixed mercury waste stored at Brookhaven National Laboratory (BNL)

  15. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    Science.gov (United States)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-06-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO2, TiO2, SiO2) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 - 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm.

  16. Thermal Stability and Material Balance of Nanomaterials in Waste Incineration

    International Nuclear Information System (INIS)

    Paur, H.-R.; Baumann, W.; Hauser, M.; Lang, I.; Teuscher, N.; Seifert, H.; Stapf, D.

    2017-01-01

    Nanostructured materials are widely used to improve the properties of consumer products such as tires, cosmetics, light weight equipment etc. Due to their complex composition these products are hardly recycled and thermal treatment is preferred. In this study we investigated the thermal stability and material balance of nanostructured metal oxides in flames and in an industrial waste incinerator. We studied the size distribution of nanostructured metal oxides (CeO 2 , TiO 2 , SiO 2 ) in a flame reactor and in a heated reaction tube. In the premixed ethylene/air flame, nano-structured CeO 2 partly evaporates forming a new particle mode. This is probably due to chemical reactions in the flame. In addition sintering of agglomerates takes place in the flame. In the electrically heated reaction tube however only sintering of the agglomerated nanomaterials is observed. Ceria has a low background in waste incinerators and is therefore a suitable tracer for investigating the fate of nanostructured materials. Low concentrations of Ceria were introduced by a two-phase nozzle into the post-combustion zone of a waste incinerator. By the incineration of coal dust in a burning chamber the Ceria nanoparticles are mainly found in the size range of the fly ash (1 – 10 µm) because of agglomeration. With gas as a fuel less agglomeration was observed and the Ceria nanoparticles were in the particle size range below 1 µm. (paper)

  17. Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep [Argonne National Lab. (ANL), Argonne, IL (United States); Lorenzo-Martin, Cinta [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-16

    Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.

  18. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment.

    Science.gov (United States)

    Clancy, Tara M; Snyder, Kathryn V; Reddy, Raghav; Lanzirotti, Antonio; Amrose, Susan E; Raskin, Lutgarde; Hayes, Kim F

    2015-12-30

    Cement stabilization of arsenic-bearing wastes is recommended to limit arsenic release from wastes following disposal. Such stabilization has been demonstrated to reduce the arsenic concentration in the Toxicity Characteristic Leaching Procedure (TCLP), which regulates landfill disposal of arsenic waste. However, few studies have evaluated leaching from actual wastes under conditions similar to ultimate disposal environments. In this study, land disposal in areas where flooding is likely was simulated to test arsenic release from cement stabilized arsenic-bearing iron oxide wastes. After 406 days submersed in chemically simulated rainwater, wastes. Presenting the first characterization of cement stabilized waste using μXRF, these results revealed the majority of arsenic in cement stabilized waste remained associated with iron. This distribution of arsenic differed from previous observations of calcium-arsenic solid phases when arsenic salts were stabilized with cement, illustrating that the initial waste form influences the stabilized form. Overall, cement stabilization is effective for arsenic-bearing wastes when acidic conditions can be avoided. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Vermicomposting of Food Waste: Assessing the Stability and Maturity

    Directory of Open Access Journals (Sweden)

    Monireh Majlessi

    2012-12-01

    Full Text Available The vermicompost using earthworms (Eisenia Fetida was produced from food waste and chemical parameters (EC, pH, carbon to nitrogen contents(C/N and germination bioassaywas examined in order to assess the stability and maturity indicators during the vermicomposting process. The seed used in the germination bioassay was cress.The ranges of EC,pH, C/N and germination index were 7.5-4.9 mS/cm, 5.6-7.53, 30.13-14.32% and 12.8- 58.4%, espectively. The germination index (GI value revealed that vermicompost rendered as moderate phytotoxic to cress seed.Pearson correlation coefficient was used to evaluate the relationship between the parameters. High statistically significant correlation coefficient was calculated between the GI value and EC in the vermicompost at the 99% confidence level.The C/N value showed that the vermicompost was stable. As a result of these observations, stability test alone, was not able to ensure high vermicompost quality. Therefore, it appears that determining vermicompost quality requires a simultaneous use of maturity and stability tests.

  20. Stabilization of liquid low-level and mixed wastes: a treatability study

    International Nuclear Information System (INIS)

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-01-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10 -14 to 10 -4 curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095)

  1. Stabilization of liquid low-level and mixed wastes: a treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-02-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10{sup {minus}14} to 10{sup {minus}4} curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095).

  2. Stabilization of inorganic mixed waste to pass the TCLP and STLC tests using clay and pH-insensitive additives

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.S.; Anson, J.R.; Painter, S.M. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-12-31

    Stabilization is a best demonstrated available technology, or BDAT. This technology traps toxic contaminants in a matrix so that they do not leach into the environment. The stabilization process routinely uses pozzolanic materials. Portland cement, fly ash-lime mixes, gypsum cements, and clays are some of the most common materials. In many instances, materials that can pass the Toxicity Characteristic Leaching Procedure (TCLP the federal leach test) or the Soluble Threshold Leachate Concentration (STLC the California leach test) must have high concentrations of lime or other caustic material because of the low pH of the leaching media. Both leaching media, California`s and EPA`s, have a pH of 5.0. California uses citric acid and sodium citrate while EPA uses acetic acid and sodium acetate. The concentration in the leachate is approximately ten times higher for the STLC procedure than the TCLP. These media can form ligands that provide excellent metal leaching. Because of the aggressive nature of the leaching medium, stabilized wastes in many cases will not pass the leaching tests. At the Lawrence Livermore National Laboratory (LLNL), additives such as dithiocarbamates and thiocarbonates, which are pH-insensitive and provide resistance to ligand formation, are used in the waste stabilization process. Attapulgite, montmorillonite, and sepiolite clays are used because they are forgiving (recipe can be adjusted before the matrix hardens) when formulating a stabilization matrix, and they have a neutral pH. By using these clays and additives, LLNL`s highly concentrated wastewater treatment sludges have passed the TCLP and STLC tests. The most frequently used stabilization process consists of a customized recipe involving waste sludge, clay and dithiocarbamate salt, mixed with a double planetary mixer into a pasty consistency. TCLP and STLC data on this waste matrix have shown that the process matrix meets land disposal requirements.

  3. Effects Influencing Plutonium-Absorber Interactions and Distributions in Routine and Upset Waste Treatment Plant Operations

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    This report is the third in a series of analyses written in support of a plan to revise the Hanford Waste Treatment and Immobilization Plant (WTP) Preliminary Criticality Safety Evaluation Report (CSER) that is being implemented at the request of the U.S. Department of Energy (DOE) Criticality Safety Group. A report on the chemical disposition of plutonium in Hanford tank wastes was prepared as Phase 1 of this plan (Delegard and Jones 2015). Phase 2 is the provision of a chemistry report to describe the potential impacts on criticality safety of waste processing operations within the WTP (Freer 2014). In accordance with the request from the Environmental and Nuclear Safety Department of the WTP (Miles and Losey 2012), the Phase 2 report assessed the potential for WTP process conditions within and outside the range of normal control parameters to change the ratio of fissile material to neutron-absorbing material in the waste as it is processed with an eye towards potential implications for criticality safety. The Phase 2 study also considered the implications should WTP processes take place within the credible range of chemistry upset conditions. In the present Phase 3 report, the 28 phenomena described in the Phase 2 report were considered with respect to the disposition of plutonium and various absorber elements. The phenomena identified in the Phase 2 report are evaluated in light of the Phase 1 report and other resources to determine the impacts these phenomena might have to alter the plutonium/absorber dispositions and ratios. The outcomes of the Phase 3 evaluations then can be used to inform subsequent engineering decisions and provide reasonable paths forward to mitigate or overcome real or potential criticality concern in plant operations.

  4. Aging and Phase Stability of Waste Package Outer Barrier

    International Nuclear Information System (INIS)

    F. Wong

    2004-01-01

    This report was prepared in accordance with ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 22, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate. The aging and phase stability model, which is based on fundamental thermodynamic and kinetic concepts and principles, will be used to provide predictive insight into the long-term metallurgical stability of Alloy 22 under relevant repository conditions. The results of this model are used by ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' as reference-only information. These phase stability studies are currently divided into three general areas: Tetrahedrally close-packed (TCP) phase and carbide precipitation in the base metal; TCP and carbide precipitation in welded samples; and Long-range ordering reactions. TCP-phase and carbide precipitates that form in Alloy 22 are generally rich in chromium (Cr) and/or molybdenum (Mo) (Raghavan et al. 1984 [DIRS 154707]). Because these elements are responsible for the high corrosion resistance of Alloy 22, precipitation of TCP phases and carbides, especially at grain boundaries, can lead to an increased susceptibility to localized corrosion in the alloy. These phases are brittle and also tend to embrittle the alloy (Summers et al. 1999 [DIRS 146915]). They are known to form in Alloy 22 at temperatures greater than approximately 600 C. Whether these phases also form at the lower temperatures expected in the repository during the 10,000-year regulatory period must be determined. The kinetics of this precipitation will be determined for both the base metal and the weld heat-affected zone (HAZ). The TCP phases (P, μ, and σ) are present in

  5. Waste Stabilization Pond Design For University Of Ilorin

    Directory of Open Access Journals (Sweden)

    Raji

    2017-06-01

    Full Text Available This present study includes the use of MATLAB R2012b software for the design and analysis of waste stabilization pond for the university of Ilorin. Kwara State. Contamination and pollution resulting from unlawful and increasing wastewater discharge expose the environment to degradation and the populace to health risks. The forecasted population in 25years time was found to be 93606 people. The total volume of wastewater that will be generated in 2042 was found to be 9372.6m3day and the maturation pond had the largest area 43738.80m2 with its dimension being 296m by 148m by 1.5m while the facultative pond had the least area 11715.75m2 with dimensions 501m by 167m by 1.5m.

  6. Routine histopathology of gallbladder after elective cholecystectomy for gallstones: waste of resources or a justified act?

    Science.gov (United States)

    Siddiqui, Faisal G; Memon, Ahmer A; Abro, Arshad H; Sasoli, Nazeer A; Ahmad, Lubna

    2013-07-08

    Selective approach for sending cholecystectomy specimens for histopathology results in missing discrete pathologies such as premalignant benign lesions such as porcelain gallbladder, carcinoma-in-situ, and early carcinomas. To avoid such blunders therefore, every cholecystectomy specimen should be routinely examined histologically. Unfortunately, the practice of discarding gallbladder specimen is standard in most tertiary care hospitals of Pakistan including the primary investigators' own institution. This study was conducted to assess the feasibility or otherwise of performing histopathology in every specimen of gallbladder. This cohort study included 220 patients with gallstones for cholecystectomy. All cases with known secondaries from gallbladder, local invasion from other viscera, traumatic rupture of gallbladder, gross malignancy of gallbladder found during surgery was excluded from the study. Laparoscopic cholecystectomy was performed in majority of cases except in those cases where anatomical distortion and dense adhesions prevented laparoscopy. All gallbladder specimens were sent for histopathology, irrespective of their gross appearance. Over a period of two years, 220 patients with symptomatic gallstones were admitted for cholecystectomy. Most of the patients were females (88%). Ninety two per cent patients presented with upper abdominal pain of varying duration. All specimens were sent for histopathology. Two hundred and three of the specimens showed evidence chronic cholecystitis, 7 acute cholecystitis with mucocele, 3 acute cholecystitis with empyema and one chronic cholecystitis associated with poly. Six gallbladders (2.8%) showed adenocarcinoma of varying differentiation along with cholelithiasis. The histopathological spectrum of gallbladder is extremely variable. Incidental diagnosis of carcinoma gall bladder is not rare; if the protocol of routine histopathology of all gallbladder specimens is not followed, subclinical malignancies would fail to

  7. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes

    International Nuclear Information System (INIS)

    Leguey Jimenez, S.; Cuevas Rodriguez, J.; Ramirez Martin, S.; Vigil de la villa Mencia, R.; Martin Barca, M.

    2002-01-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  8. Assessment of spent-fuel waste-form/stabilizer alternatives for geologic disposal

    International Nuclear Information System (INIS)

    Einziger, R.E.; Himes, D.A.

    1982-06-01

    The Office of Nuclear Waste Isolation (ONWI) is studying the possibility of burying canisterized unreprocessed spent fuel in a deep geologic repository. One aspect of this study is an assessment of the possible spent fuel waste forms. The fuel performance portion of the Waste Form Assessment was to evaluate five candidate spent fuel waste forms for postemplacement performance with emphasis on their ability to retard the release of radionuclides to the repository geology. Spent fuel waste forms under general consideration were: (1) unaltered fuel assembly; (2) fuel assembly with end fittings removed to shorten the length; (3 rods vented to remove gases and resealed; (4) disassembled fuel bundles to close-pack the rods; and (5) rods chopped and fragments immobilized in a matrix material. Thirteen spent fuel waste forms, classified by generic stabilizer type, were analyzed for relative in-repository performance based on: (1) waste form/stabilizer support against lithostatic pressure; (2) long-term stability for radionuclide retention; (3) minimization of cladding degradation; (4) prevention of canister/repository breach due to pressurization; (5) stabilizer heat transfer; (6) the stabilizer as an independent barrier to radionuclide migration; and (7) prevention of criticality. The waste form candidates were ranked as follows: (1) the best waste form/stabilizer combination is the intact assembly, with or without end bells, vented (and resealed) or unvented, with a solid stabilizer; (2) a suitable alternative is the combination of bundled close-packed rods with a solid stabilizer around the outside of the bundle to resist lithostatic pressure; and (3) the other possible waste forms are of lower ranking with the worst waste form/stabilizer combination being the intact assembly with a gas stabilizer or the chopped fuel

  9. Latex-modified grouts for in-situ stabilization of buried transuranic/mixed waste

    International Nuclear Information System (INIS)

    Allan, M.L.

    1996-06-01

    The Department of Applied Science at Brookhaven national Laboratory was requested to investigate latex-modified grouts for in-situ stabilization of buried TRU/mixed waste for INEL. The waste exists in shallow trenches that were backfilled with soil. The objective was to formulate latex-modified grouts for use with the jet grouting technique to enable in-situ stabilization of buried waste. The stabilized waste was either to be left in place or retrieved for further processing. Grouting prior to retrieval reduces the potential release of contaminants. Rheological properties of latex-modified grouts were investigated and compared with those of conventional neat cement grouts used for jet grouting

  10. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    Science.gov (United States)

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  11. Stabilization of inorganic mixed waste to pass the TCLP and STLC tests using clay and pH-insensitive additives

    International Nuclear Information System (INIS)

    Bowers, J.S.; Anson, J.R.; Painter, S.M.; Maitino, R.E.

    1995-03-01

    Stabilization traps toxic contaminants (usually both chemically and physically) in a matrix so that they do not leach into the environment. Typical contaminants are metals (mostly transition metals) that exhibit the characteristic of toxicity. The stabilization process routinely uses pozzolanic materials. Portland cement, fly ash-lime mixes, gypsum cements, and clays are some of the most common materials. In many instances, materials that can pass the Toxicity Characteristic Leaching Procedure (TCLP-the federal leach test) or the Soluble Threshold Leachate Concentration (STLC-the California leach test) must have high concentrations of lime or other caustic material because of the low pH of the leaching media. Both leaching media, California's and EPA's, have a pH of 5.0. California uses citric acid and sodium citrate while EPA uses acetic acid and sodium acetate. These media can form ligands that provide excellent metal leaching. Because of the aggressive nature of the leaching medium, stabilized wastes in many cases will not pass the leaching tests. At the Lawrence Livermore National Laboratory, additives such as dithiocarbamates and thiocarbonates, which are pH-insensitive and provide resistance to ligand formation, are used in the waste stabilization process. Attapulgite, montmorillonite, and sepiolite clays are used because they are forgiving (recipe can be adjusted before the matrix hardens). The most frequently used stabilization process consists of a customized recipe involving waste sludge, clay and dithiocarbamate salt, mixed with a double planetary mixer into a pasty consistency. TCLP and STLC data on this waste matrix have shown that the process matrix meets land disposal requirements

  12. Vitrification of F006 plating waste sludge by Reactive Additive Stabilization Process (RASP)

    International Nuclear Information System (INIS)

    Martin, H.L.; Jantzen, C.M.; Pickett, J.B.

    1994-01-01

    Solidification into glass of nickel-on-uranium plating wastewater treatment plant sludge (F006 Mixed Waste) has been demonstrated at the Savannah River She (SRS). Vitrification using high surface area additives, the Reactive Additive Stabilization Process (RASP), greatly enhanced the solubility and retention of heavy metals In glass. The bench-scale tests using RASP achieved 76 wt% waste loading In both soda-lime-silica and borosilicate glasses. The RASP has been Independently verified by a commercial waste management company, and a contract awarded to vitrify the approximately 500,000 gallons of stored waste sludge. The waste volume reduction of 89% will greatly reduce the disposal costs, and delisting of the glass waste is anticipated. This will be the world's first commercial-scale vitrification system used for environmental cleanup of Mixed Waste. Its stabilization and volume reduction abilities are expected to set standards for the future of the waste management Industry

  13. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  14. Routine Pathologic Evaluation of Plastic Surgery Specimens: Are We Wasting Time and Money?

    Science.gov (United States)

    Fisher, Mark; Alba, Brandon; Bhuiya, Tawfiqul; Kasabian, Armen K; Thorne, Charles H; Tanna, Neil

    2018-03-01

    Recent health care changes have encouraged efforts to decrease costs. In plastic surgery, an area of potential cost savings includes appropriate use of pathologic examination. Specimens are frequently sent because of hospital policy, insurance request, or habit, even when clinically unnecessary. This is an area where evidence-based guidelines are lacking and significant cost-savings can be achieved. All specimen submitted for pathologic examination at two hospitals between January and December of 2015 were queried for tissue expanders, breast implants, fat, skin, abdominal pannus, implant capsule, hardware, rib, bone, cartilage, scar, and keloid. Specimens not related to plastic surgery procedures were excluded. Pathologic diagnosis and cost data were obtained. A total of 759 specimens were identified. Of these, 161 were sent with a specific request for gross examination only. There were no clinically significant findings in any of the specimens. There was one incidental finding of a seborrheic keratosis on breast skin. The total amount billed in 2015 was $430,095. The infrequency of clinically significant pathologic examination results does not support routine pathologic examination of all plastic surgery specimens. Instead, the authors justify select submission only when there is clinical suspicion or medical history that warrants evaluation. By eliminating unnecessary histologic or macroscopic examination, significant cost savings may be achieved.

  15. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  16. Effect of Cement Replacement with Carbide Waste on the Strength of Stabilized Clay Subgrade

    Directory of Open Access Journals (Sweden)

    Muntohar A.S.

    2016-03-01

    Full Text Available Cement is commonly used for soil stabilization and many other ground improvement techniques. Cement is believed to be very good to improve the compressive and split-tensile strength of clay subgrades. In some application cement could be partly or fully replaced with carbide waste. This research is to study the effectiveness of the cement replacement and to find the maximum carbide waste content to be allowed for a clay subgrade. The quantities of cement replaced with the carbide waste were 30, 50, 70, 90, and 100% by its mass. The results show that replacing the cement with carbide waste decreased both the compressive and split tensile strength. Replacing cement content with carbide waste reduced its ability for stabilization. The carbide waste content should be less than 70% of the cement to provide a sufficient stabilizing effect on a clay subgrade.

  17. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  18. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    International Nuclear Information System (INIS)

    1999-01-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  19. Chemically bonded phosphate ceramics for low-level mixed waste stabilization

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Cunnane, J.C.; Mayberry, J.L.

    1994-01-01

    Novel chemically bonded phosphate ceramics (CBPCs) are being developed and fabricated for low-temperature stabilization and solidification of mixed waste streams which are amenable to conventional high-temperature stabilization processes due to presence of volatiles such as heavy metal chloride and fluorides and/or pyrophorics in the wastes. Phosphates of Mg, Mg-Na and Zr are being developed as candidate matrix materials. In this paper, we present the fabrication procedures of phosphate waste forms using surrogates compositions of three typical mixed wastes streams -- ash, cement sludges, and salts. The performance of the final waste forms such as compression strength, leachability of the contaminants, durability in aqueous environment were conducted. In addition, parameteric studies have been conducted to establish the optimal waste loading in a particular binder system. Based on the results, we present potential applications in the treatment of various mixed waste streams

  20. Stabilization of hazardous ash waste with newberyite-rich chemically bonded magnesium phosphate ceramic

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.; Jeong, S.Y.

    1995-11-01

    A novel newberyite-rich magnesium-phosphate ceramic, intended for the stabilization of the US Department of Energy's low-level mixed-waste streams, has been developed by an acid-base reaction between magnesium oxide and a phosphoric acid solution. The reaction slurry, formed at room temperature, sets rapidly and forms a lightweight hard ceramic with low open porosity and a high compression strength of ∼ 6,200 psi. It is a composite of stable mineral phases of newberyite, luenebergite, and residual Mg oxide. Using this matrix, the authors developed superior waste forms for a surrogate ash waste stream. The final waste form is a low-permeability structural-quality ceramic, in which hazardous contaminants are chemically fixed and physically encapsulated. The compression strength of the waste form is an order of magnitude higher than the land disposal requirement, even at high waste loading. The high compression strength is attributed to stronger bonds in the waste form that result from participation of ash waste in the setting reactions. Long-term leaching studies show that the waste form is stable in an aqueous environment. The chemically bonded phosphate ceramic approach in this study may be a simple, inexpensive, and efficient method for fabricating high-performance waste forms either for stabilizing waste streams or for developing value-added construction materials from high-volume benign waste streams

  1. EVALUATION OF CHEMICALLY BONDED PHOSPHATE CERAMICS FOR MERCURY STABILIZATION OF A MIXED SYNTHETIC WASTE

    Science.gov (United States)

    This experimental study was conducted to evaluate the stabilization and encapsulation technique developed by Argonne National Laboratory, called the Chemically Bonded Phosphate Ceramics technology for Hg- and HgCl2-contaminated synthetic waste materials. Leachability ...

  2. Design of waste stabilization pond systems: A review.

    Science.gov (United States)

    Ho, Long T; Van Echelpoel, Wout; Goethals, Peter L M

    2017-10-15

    A better design instruction for waste stabilization ponds is needed due to their growing application for wastewater purification, increasingly strict environmental regulations, and the fact that most of previous design manuals are outdated. To critically review model-based designs of typical pond treatment systems, this paper analyzed more than 150 articles, books, and reports from 1956 to 2016. The models developed in these publications ranged from simple rules and equations to more complex first-order and mechanistic models. From a case study on all four approaches, it appeared that rules of thumb is no longer a proper tool for pond designs due to its low design specification and very high output variability and uncertainty. On the other hand, at the beginning phase of design process or in case of low pressure over land and moderate water quality required, regression equations can be useful to form an idea for pond dimensions. More importantly, mechanistic models proved their capacity of generating more precise and comprehensive designs but still need to overcome their lack of calibration and validation, and overparameterization. In another case study, an essential but often overlooked role of uncertainty analysis in pond designs was investigated via a comparison between deterministic and uncertainty-based approaches. Unlike applying a safety factor representing all uncertainty sources, probabilistic designs quantify the uncertainty of model outputs by including prior uncertainty of inputs and parameters, which generates more scientifically reliable outcomes for decision makers. Based on these findings, we advise engineers and designers to shift from the conventional approaches to more innovative and economic tools which are suitable for dealing with large variations of natural biological systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Thermal phase stability of some simulated Defense waste glasses

    International Nuclear Information System (INIS)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450 0 C to 1100 0 C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7 0 C/hour from an 1100 0 C melt down to 500 0 C where it was removed from the furnace. The following were observed. The slow cooling rate of 7 0 C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO 2 and (Ni, Mn, Fe) 2 O 4 form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500 0 C there is but little devitrification occurring implying that glass canisters stored at 300 0 C may be kinetically stable despite not being thermodynamically so

  4. Thermal phase stability of some simulated Defense waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  5. Dynamic respiration index as a descriptor of the biological stability of organic wastes.

    Science.gov (United States)

    Adani, Fabrizio; Confalonieri, Roberto; Tambone, Fulvia

    2004-01-01

    Analytical methods applicable to different organic wastes are needed to establish the extent to which readily biodegradable organic matter has decomposed (i.e., biological stability). The objective of this study was to test a new respirometric method for biological stability determination of organic wastes. Dynamic respiration index (DRI) measurements were performed on 16 organic wastes of different origin, composition, and biological stability degree to validate the test method and result expression, and to propose biological stability limits. In addition, theoretical DRI trends were obtained by using a mathematical model. Each test lasted 96 h in a 148-L-capacity respirometer apparatus, and DRI was monitored every hour. The biological stability was expressed as both single and cumulative DRI values. Results obtained indicated that DRI described biological stability in relation to waste typology and age well, revealing lower-stability waste characterized by a well-pronounced DRI profile (a marked peak was evident) that became practically flat for samples with higher biological stability. Fitting indices showed good model prediction compared with the experimental data, indicating that the method was able to reproduce the aerobic process, providing a reliable indication of the biological stability. The DRI can therefore be proposed as a useful method to measure the biological stability of organic wastes, and DRI values, calculated as a mean of 24 h of the highest microbial activity, of 1000 and 500 mg O(2) kg(-1) volatile solids (VS) h(-1) are proposed to indicate medium (e.g., fresh compost) and high (e.g., mature compost) biological stabilities, respectively.

  6. STABILIZATION OF SUB GRADE SOIL BY USING FOUNDRY SAND WASTE

    OpenAIRE

    Prashant Kumar*, Prof. M.C.Paliwal, Prof. A.K.Jain

    2016-01-01

    Due to various construction development projects undertaken all over the world there is a substantial increase in the production of waste materials like concrete, fly ash, plastic, rice husk, foundry sand etc. which create disposal problems. Foundry waste sand is produced in large quantity in foundry industries and is disposed in open land. Therefore use of foundry waste sand in foundation of buildings and in road constructions to improve bearing capacity of soil and to reduce the area of ope...

  7. rice-husk ash-carbide-waste stabilization of reclaimed asphalt

    African Journals Online (AJOL)

    user

    2016-07-03

    Jul 3, 2016 ... stabilized reclaimed asphalt pavement waste with a view to determine its suitability for use as flexible pavement material. ... Keywords: Carbide waste, Flexible pavement material, Reclaimed asphalt pavement, Rice husk ash and .... relating to the use of these indices for highway design and construction in.

  8. Stability and Change in Sustainability of Daily Routines and Social Networks in Families of Children with Profound Intellectual and Multiple Disabilities

    Science.gov (United States)

    Wilder, Jenny; Granlund, Mats

    2015-01-01

    Background: Children with profound intellectual and multiple disabilities (PIMD) demand intense family accommodations from birth and onwards. This study used an exploratory and qualitative study design to investigate stability and change in sustainability of daily routines and social networks of Swedish families of children with PIMD. Materials…

  9. Stabilization/Solidification of radioactive molten salt waste via gel-route pretreatment.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Kim, Hwan-Young; Ryu, Seung-Kon; Kim, Joon-Hyung

    2007-02-15

    The volatilization of radionuclides during the stabilization/solidification of radioactive wastes at high temperatures is one of the major problems to be considered in choosing suitable wasteforms, process, material systems, etc. This paper reports a novel method to convert volatile wastes into nonvolatile compounds via a sol-gel process, which is different from the conventional method using metal-alkoxides and organic solvents. The material system was designed with sodium silicate (Si) as a gelling agent, phosphoric acid (P) as a catalyst/stabilizer, aluminum nitrate (Al) as a property promoter, and H20 as a solvent. A novel structural model for the chemical conversion of molten salt waste, named RPRM (Reaction Product in Reaction Module), was established, and the waste could be solidified with glass matrix via a simple procedure. The leached fraction of Cs and Sr by a PCT leaching method was 0.72% and 0.014%, respectively. In conclusion, the RPRM model isto converttargetwastes into stable and manageable products, not to obtain a specific crystalline product for each radionuclide. This paper suggested a new stabilization/solidification method for salt wastes by establishing the gel-forming material system and showing a practical example, not a new synthesis method of stable crystalline phase. This process, named "gel-route stabilization/solidification (GRSS)", will be a prospective alternative with stable chemical process on the immobilization of salt wastes and various mixed radioactive waste for final disposal.

  10. Effectiveness of core stabilization exercises and routine exercise therapy in management of pain in chronic non-specific low back pain: A randomized controlled clinical trial.

    Science.gov (United States)

    Akhtar, Muhammad Waseem; Karimi, Hossein; Gilani, Syed Amir

    2017-01-01

    Low back pain is a frequent problem faced by the majority of people at some point in their lifetime. Exercise therapy has been advocated an effective treatment for chronic low back pain. However, there is lack of consensus on the best exercise treatment and numerous studies are underway. Conclusive studies are lacking especially in this part of the world. Thisstudy was designed to compare the effectiveness of specific stabilization exercises with routine physical therapy exerciseprovided in patients with nonspecific chronic mechanical low back pain. This is single blinded randomized control trial that was conducted at the department of physical therapy Orthopedic and Spine Institute, Johar Town, Lahore in which 120 subjects with nonspecific chronic low back pain participated. Subjects with the age between 20 to 60 years and primary complaint of chronic low back pain were recruited after giving an informed consent. Participants were randomly assigned to two treatment groups A & B which were treated with core stabilization exercise and routine physical therapy exercise respectively. TENS and ultrasound were given as therapeutic modalities to both treatment groups. Outcomes of the treatment were recorded using Visual Analogue Scale (VAS) pretreatment, at 2 nd , 4 th and 6 th week post treatment. The results of this study illustrate that clinical and therapeutic effects of core stabilization exercise program over the period of six weeks are more effective in terms of reduction in pain, compared to routine physical therapy exercise for similar duration. This study found significant reduction in pain across the two groups at 2 nd , 4 th and 6 th week of treatment with p value less than 0.05. There was a mean reduction of 3.08 and 1.71 on VAS across the core stabilization group and routine physical therapy exercise group respectively. Core stabilization exercise is more effective than routine physical therapy exercise in terms of greater reduction in pain in patients with

  11. In-situ stabilization of TRU/mixed waste project at the INEEL

    Energy Technology Data Exchange (ETDEWEB)

    Milian, L.W.; Heiser, J.H.; Adams, J.W.; Rutenkroeger, S.P.

    1997-08-01

    Throughout the DOE complex, buried waste poses a threat to the environment by means of contaminant transport. Many of the sites contain buried waste that is untreated, prior to disposal, or insufficiently treated, by today`s standards. One option to remedy these disposal problems is to stabilize the waste in situ. This project was in support of the Transuranic/Mixed Buried Waste - Arid Soils product line of the Landfill Focus Area, which is managed currently by the Idaho National Engineering Laboratory (BNL) provided the analytical laboratory and technical support for the various stabilization activities that will be performed as part of the In Situ Stabilization of TRU/Mixed Waste project at the INEL. More specifically, BNL was involved in laboratory testing that included the evaluation of several grouting materials and their compatibility, interaction, and long-term durability/performance, following the encapsulation of various waste materials. The four grouting materials chosen by INEL were: TECT 1, a two component, high density cementious grout, WAXFIX, a two component, molten wax product, Carbray 100, a two component elastomeric epoxy, and phosphate cement, a two component ceramic. A simulated waste stream comprised of sodium nitrate, Canola oil, and INEL soil was used in this study. Seven performance and durability tests were conducted on grout/waste specimens: compressive strength, wet-dry cycling, thermal analysis, base immersion, solvent immersion, hydraulic conductivity, and accelerated leach testing.

  12. Plastibloc, a waste stabilization process with thermoplastic binders; Plastibloc procede de stabilisation des dechets par liants thermoplastiques

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, J.P.; Seguy, Y. [OTVD, Omnium de Traitements et de Valorisation des Dechets, 94 - Saint-Maurice (France)

    1997-12-31

    The Plastibloc process is used for the stabilization of various toxic wastes, such as municipal waste incineration residues. The residues are extruded, mixed with plastics issued from municipal wastes or common industrial wastes. The long term behaviour of the extruded material is analyzed and tests are reported concerning the ash extraction by water and salt diffusion in the plastic matrix

  13. Effectiveness of the Vertical Gas Ventilation Pipes for Promoting Waste Stabilization in Post-Closure Phase

    Directory of Open Access Journals (Sweden)

    Yasumasa Tojo

    2015-06-01

    Full Text Available To make inside of the municipal solid waste (MSW landfill aerobic as much as possible is thought to be preferable for promoting waste stabilization, reducing pollutant's load in leachate, minimizing greenhouse gas emission and shortening post-closure-care period. In Japan, installation of semi-aerobic landfill structure has widely spread in order to promote waste stabilization in MSW landfill from 1980s. In semi-aerobic landfill structure, outlet of main leachate collection pipe is opened to atmosphere. Heat generated by aerobic degradation of waste causes natural convection and natural aeration arises from the outlet of leachate collection pipe to the gas vents. It is so-called stack effect. This air flow is thought to be effective for purifying leachate flowing through drainage layer and leachate collection pipes. And it is also thought to be contributing to expanding aerobic region in waste layer in landfill. Recently, measures attempting the promotion of waste stabilization are taken at several landfills at where stabilization of waste delays, in which many vertical gas vents are newly installed and close structure to semi-aerobic landfill is created. However, in many cases, these gas vents are not connected to leachate collection pipes. Many vertical gas vents are just installed without scientific proof regarding whether they can contribute for waste stabilization. In this study, how such installation of gas vents is effective for waste stabilization and aerobization of waste layer was discussed by numerical analysis. In numerical analysis, heat transfer, gas movement by pressure, gas diffusion, biological degradation of organic matter, and heat generation by biodegradation were taken into account. Simulations were carried out by using the general purpose simulator of finite element method. Three types of landfill structure were assumed. As the results, the following information were obtained. In dig-down type landfill, installation of gas

  14. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    International Nuclear Information System (INIS)

    Loomis, G.G.; Farnsworth, R.K.

    1997-01-01

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m 3 of transuranic (TRU) waste is co-mingled with over 170,000 m 3 of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste

  15. STABILIZATION OF DRY SLUDGE OF LIQUID WASTE OF LEATHER TREATMENT BY USING FLY ASH

    Directory of Open Access Journals (Sweden)

    Cahya Widiyati

    2010-06-01

    Full Text Available The experiment of solidification of dry sludge of liquid waste of leather treatment are containing chrome (Cr by using fly ash has been done.  The experiment objective are immobilize Cr in the solid waste by using pozzoland cement was made of fly ash in order to stable in the repository.  The experiment were carried out by solidification of solid waste are containing total chrome of 1480.5 mg/kg sum of 2 - 10 weight % of (water + pozzoland cement by using pozzoland cement was made from the mixture of fly ash and calcite were burned at 1000 oC temperature for 2 hours.  The characterization of the solid composite of stabilization result consist of the compressive strength test and the leaching test by American Nuclear Society (ANS-16.1 method.  The experiment result were shown that pozzoland cement  can binding solid waste sum of 10 weight % of (water + pozzoland cement became the composite of waste concrete with the compressive strength of 577 ton/m2 and the chrome leaching test for 14 days of 0.059 mg/l.  The composite of waste concrete according to Bapedal rule for solidification of toxic waste with minimum compressive strength of 10 ton/m2 and maximum leached chrome of 5 mg/L.   Keywords: stabilization, solid waste, leather treatment, fly ash.

  16. Stabilization of vitrified wastes: Task 4. Topical report, October 1994--September 1995

    International Nuclear Information System (INIS)

    Nowok, J.W.; Pflughoeft-Hassett, D.F.; Hassett, D.J.; Hurley, J.P.

    1995-09-01

    The goal of this task was to work with private industry to refine existing vitrification processes to produce a more stable vitrified product. The initial objectives were to (1) demonstrate a waste vitrification procedure for enhanced stabilization of waste materials and (2) develop a testing protocol to understand the long-term leaching behavior of the stabilized waste form. The testing protocol was expected to be based on a leaching procedure called the synthetic groundwater leaching procedure (SGLP). This task will contribute to the US DOE's identified technical needs in waste characterization, low-level mixed-waste processing, disposition technology, and improved waste forms. The proposed work was to proceed over 4 years in the following steps: literature surveys to aid in the selection and characterization of test mixtures for vitrification, characterization of optimized vitrified test wastes using advanced leaching protocols, and refinement and demonstration of vitrification methods leading to commercialization. For this year, literature surveys were completed, and computer modeling was performed to determine the feasibility of removing heavy metals from a waste during vitrification, thereby reducing the hazardous nature of the vitrified material and possibly producing a commercial metal concentrate. This report describes the following four subtasks: survey of vitrification technologies; survey of cleanup sites; selection and characterization of test mixtures for vitrification and crystallization; and selection of crystallization methods based on thermochemistry modeling

  17. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-01-01

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations (±10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample

  18. Stabilization of vitrified wastes: Task 4. Topical report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Nowok, J.W.; Pflughoeft-Hassett, D.F.; Hassett, D.J.; Hurley, J.P.

    1995-09-01

    The goal of this task was to work with private industry to refine existing vitrification processes to produce a more stable vitrified product. The initial objectives were to (1) demonstrate a waste vitrification procedure for enhanced stabilization of waste materials and (2) develop a testing protocol to understand the long-term leaching behavior of the stabilized waste form. The testing protocol was expected to be based on a leaching procedure called the synthetic groundwater leaching procedure (SGLP). This task will contribute to the US DOE`s identified technical needs in waste characterization, low-level mixed-waste processing, disposition technology, and improved waste forms. The proposed work was to proceed over 4 years in the following steps: literature surveys to aid in the selection and characterization of test mixtures for vitrification, characterization of optimized vitrified test wastes using advanced leaching protocols, and refinement and demonstration of vitrification methods leading to commercialization. For this year, literature surveys were completed, and computer modeling was performed to determine the feasibility of removing heavy metals from a waste during vitrification, thereby reducing the hazardous nature of the vitrified material and possibly producing a commercial metal concentrate. This report describes the following four subtasks: survey of vitrification technologies; survey of cleanup sites; selection and characterization of test mixtures for vitrification and crystallization; and selection of crystallization methods based on thermochemistry modeling.

  19. Treatment of waste using a hybrid gas- water stabilized torch

    Czech Academy of Sciences Publication Activity Database

    Van Oost, G.; Hrabovský, Milan; Kopecký, Vladimír; Konrád, Miloš; Hlína, Michal; Kavka, Tetyana; Beeckman, E.; Verstraeten, J.

    2005-01-01

    Roč. 5, č. 1 (2005), s. 7-12. ISBN 4-9900642-4-8 R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * pyrolysis * waste treatment Subject RIV: BL - Plasma and Gas Discharge Physics

  20. STABILIZATION AND TESTING OF MERCURY CONTAINING WASTES: BORDEN SLUDGE

    Science.gov (United States)

    This report details the stability assessment of a mercury containing sulfide treatment sludge. Information contained in this report will consist of background data submitted by the geneerator, landfill data supplied by EPA and characterization and leaching studies conducted by UC...

  1. The minimum additive waste stabilization (MAWS) for vitrification of borate waste from NPP in china

    International Nuclear Information System (INIS)

    Sheng, Jiawei; Luo, Shanggeng; Tang, Baolong

    1997-01-01

    Vitrification is a technically sound alternative to cementation with larger waste loading and better chemical durability. The MAWS is a more effective vitrification approach which provides an environmentally sound alternative for large amount of low level radioactive waste that exists in NPP. The main object of this work is to search a suitable borosilicate glass matrix which could incorporate relatively high quantity of B and Na. All of B and Na in glass are coming from waste and there isn't any additives of B and Na. It is found that glasses with borate waste of 45-52wt% generally have good chemical durability. The selected waste glass formulation named SL-1 can corporate 45wt% waste oxides, and the melt temperature is lower (1000 .deg.) with less corrosion to melter. The viscosity at 1000 .deg. is about 5.0 Pa.s, which is a suitable value for processing. SL-1 glass also has good chemical durability

  2. A comparison of solidification media for the stabilization of low- level radioactive wastes

    International Nuclear Information System (INIS)

    Cowgill, M.G.

    1991-10-01

    When requirements exist to stabilize low-level radioactive waste (LLW) prior to disposal, efforts to achieve this stability often center on the mixing of the waste with a solidification medium. Although historically the medium of choice has been based on the use of portland cement as the binder material, several other options have been developed and subsequently implemented. These include thermoplastic polymers, thermosetting polymers and gypsum. No one medium has thus far been successful in providing stability to all forms of LLW. The characteristics and attributes of these different binder materials are reviewed and compared. The aspects examined include availability of information, limitations to use, sensitivity to process or waste chemistry changes, radionuclide retention ability, modeling of radionuclide release processes, ease and safety of use, and relative costs

  3. Demonstration Results on the Effects of Mercury Speciation on the Stabilization of Wastes

    International Nuclear Information System (INIS)

    Conley, T.B.; Hulet, G.A.; Morris, M.I.; Osborne-Lee, I.W.

    1999-01-01

    Mercury-contaminated wastes are currently being stored at approximately 19 Department of Energy sites, the volume of which is estimated to be about 16m(sup)3. These wastes exist in various forms including soil, sludges, and debris, which present a particular challenge regarding possible mercury stabilization methods. This reports provides the test results of three vendors, Allied Technology Group, IT Corporation, and Nuclear Fuel Services, Inc., that demonstrate the effects of mercury speciation on the stabilization of the mercury wastes. Mercury present in concentrations that exceed 260 parts per million must be removed by extraction methods and requires stabilization to ensure that the final wasteforms leach less than 0.2mg/L of mercury by the Toxicity Characteristic Leaching Procedure or 0.025 mg/L using the Universal Treatment Standard

  4. Stabilities of nuclear waste forms and their geochemical interactions in repositories

    International Nuclear Information System (INIS)

    White, W.B.

    1980-01-01

    The stabilities of high-level nuclear waste forms in a repository environment are briefly discussed. The advantages and disadvantages of such waste forms as borosilicate glass, supercalcine ceramics, and synthetic minerals are presented in context with the different rock types which have been proposed as possible host rocks for repositories. It is concluded that the growing geochemical evidence favors the use of a silicate rock repository because of the effectiveness of aluminosilicate rocks as chemical barriers for most radionuclides

  5. Nuclear Waste Glasses - Suitability, Surface Studies, and Stability

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1999-01-01

    Every major country involved with long-term management of high-level radioactive waste (HLW) has either selected or is considering glass as the matrix of choice for immobilizing and ultimately, disposing of the potentially hazardous, high-level radioactive material. There are many reasons why glass is preferred. Among the most important considerations are the ability of glass structures to accommodate and immobilize the many different types of radionuclides present in HLW, and to produce a product that not only has excellent technical properties, but also possesses good processing features. Good processability allows the glass to be fabricated with relative ease even under difficult remote-handling conditions necessary for vitrification of highly radioactive material. The single most important property of the waste glass produced is its ability to retain hazardous species within the glass structure and this is reflected by its excellent chemical durability and corrosion resistance to a wide range of environmental conditions

  6. Overview of advanced technologies for stabilization of 238Pu-contaminated waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-02-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed 238 PuO 2 fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of 238 Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes 238 Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239 Pu ), makes disposal of 238 Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all 238 Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from 238 Pu-contaminated waste and recover kilogram quantities of 238 PuO 2 from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented

  7. Overview of advanced technologies for stabilization of 238Pu-contaminated waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-01-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed 238 PuO 2 fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of 238 Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes 238 Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239 Pu), makes disposal of 238 Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all 238 Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from 238 Pu-contaminated waste and recover kilogram quantities of 238 PuO 2 from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented. copyright 1998 American Institute of Physics

  8. Effects of stabilizers on the heat transfer characteristics of a nuclear waste canister

    International Nuclear Information System (INIS)

    Vafai, K.; Ettefagh, J.

    1986-07-01

    This report summarizes the feasibility and the effectiveness of using stabilizers (internal metal structural components) to augment the heat transfer characteristics of a nuclear waste canister. The problem was modeled as a transient two-dimensional heat transfer in two physical domains - the stabilizer and the wedge (a 30-degree-angle canister segment), which includes the heat-producing spent-fuel rods. This problem is solved by a simultaneous and interrelated numerical investigation of the two domains in cartesian and polar coordinate systems. The numerical investigations were performed for three cases. In the first case, conduction was assumed to be the dominant mechanism for heat transfer. The second case assumed that radiation was the dominant mechanism, and in the third case both radiation and conduction were considered as mechanisms of heat transfer. The results show that for typical conditions in a waste package design, the stabilizers are quite effective in reducing the overall temperature in a waste canister. Furthermore, the results show that increasing the stabilizer thickness over the thickness specified in the present design has a negligible effect on the temperature distribution in the canister. Finally, the presence of the stabilizers was found to shift the location of the peak temperature areas in the waste canister

  9. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    International Nuclear Information System (INIS)

    ADAMA, J.W.; BOWERMAN, B.S.; KALB, P.D.

    2002-01-01

    The Environmental Protection Agency (EPA) is currently seeking to validate technologies that can directly treat radioactively contaminated high mercury (Hg) subcategory wastes without removing the mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needs additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 30 wt% dry sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes

  10. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE

    International Nuclear Information System (INIS)

    Adams, J. W.; Bowerman, B. S.; Kalb, P. D.

    2002-01-01

    The Environmental Protection Agency (EPA) is currently evaluating alternative treatment standards for radioactively contaminated high mercury (Hg) subcategory wastes, which do not require the removal of mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needed additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 46 wt% (30 wt% dry) sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide the EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes

  11. Expansive soil stabilization with coir waste and lime for flexible pavement subgrade

    Science.gov (United States)

    Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.

    2018-03-01

    Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.

  12. Cement Waste Matrix Evaluation and Modelling of the Long Term Stability of Cementitious Waste Matrices

    International Nuclear Information System (INIS)

    Martensson, P.; Cronstrand, P.

    2013-01-01

    Cement based materials are often used as a solidification matrix for wet radioactive waste from nuclear power plants such as ion exchange resins, sludge and evaporator concentrates. The mechanical and chemical properties of the cement-waste matrix are affected by the type and the concentration of the waste. For this reason the recipe used in the solidification process has to be carefully adjusted to respond to the variations of the waste. At the Ringhals Nuclear Power Plant (RNPP) an evaporator was to be taken into operation during the mid 2005. As a result of this process an evaporator concentrate containing boric acid was expected. The aims of the present study were to develop a recipe for the solidification of artificial evaporator concentrates, (AEC), containing H 3 BO 3 and measure the compressive strength of the waste/cement matrix over a period of 4 years. The confirmation of the previously reported retarding properties of H 3 BO 3 and the studies of AEC without H 3 BO 3 were also included as a part of this work. Finally, thermodynamic calculations were used as a tool in order to predict the evolution of the mineralogy and integrity for the different cement-waste specimens over very long periods of time, i.e. up to about 100 000 years. The most important finding was that when an optimized waste/cement matrix recipe was used the compressive strength increased during the entire 4 year period and no signs of degradation were noticed. It was also found that the long-term performance of the waste matrices is to a large extent site-specific. In general, the composition of the infiltrating water is more influential than the waste matrices, both on the degradation of the waste matrices itself as well as on the engineered barriers. (author)

  13. Solidification/Stabilization of Elemental Mercury Waste by Amalgamation

    Energy Technology Data Exchange (ETDEWEB)

    Yim, S. P.; Ahn, B. G.; Lee, H. J.; Shon, J. S.; Chung, H.; Kim, K. J.; Lee, C. K.

    2003-02-24

    Experiments on solidification of elemental mercury waste were conducted by amalgamation with several metal powders such as copper, zinc, tin, brass and bronze. Unlike the previous studies which showed a dispersible nature after solidification, the waste forms were found to possess quite large compressive strengths in both copper and bronze amalgam forms. The durability was also confirmed by showing very minor changes of strength after 90 days of water immersion. Leachability from the amalgam forms is also shown to be low: measured mercury concentration in the leachate by the Toxicity Characteristic Leaching Procedure (TCLP) was well below the Environmental Protection Agency (EPA) limit. Long term leaching behavior by Accelerated Leach Test (ALT) has shown that the leaching process was dominated by diffusion and the effective diffusion coefficient was quite low (around 10-19 cm2/sec). The mercury vapor concentration from the amalgam forms were reduced to a 20% level of that for elemental mercury and to one-hundredth after 3 months.

  14. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    Science.gov (United States)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  15. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF LOS ALAMOS NATIONAL LABORATORY MERCURY WASTE

    International Nuclear Information System (INIS)

    ADAMS, J.W.; KALB, P.D.

    2001-01-01

    Brookhaven National Laboratory's Sulfur Polymer Stabilization/Solidification (SPSS) process was used to treat approximately 90kg of elemental mercury mixed waste from Los Alamos National Laboratory. Treatment was carried out in a series of eight batches using a 1 ft(sup 3) pilot-scale mixer, where mercury loading in each batch was 33.3 weight percent. Although leach performance is currently not regulated for amalgamated elemental mercury (Hg) mixed waste, Toxicity Characteristic Leach Procedure (TCLP) testing of SPSS treated elemental mercury waste indicates that leachability is readily reduced to below the TCLP limit of 200 ppb (regulatory requirement following treatment by retort for wastes containingandgt; 260 ppb Hg), and with process optimization, to levels less than the stringent Universal Treatment Standard (UTS) limit of 25 ppb that is applied to waste containingandlt; 260 ppm Hg. In addition, mercury-contaminated debris, consisting of primary glass and plastic containers, as well as assorted mercury thermometers, switches, and labware, was first reacted with SPSS components to stabilize the mercury contamination, then macroencapsulated in the molten SPSS product. This treatment was done by vigorous agitation of the sulfur polymer powder and the comminuted debris. Larger plastic and metal containers were reacted to stabilize internal mercury contamination, and then filled with molten sulfur polymer to encapsulate the treated product

  16. SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF LOS ALAMOS NATIONAL LABORATORY MERCURY WASTE.

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS,J.W.; KALB,P.D.

    2001-11-01

    Brookhaven National Laboratory's Sulfur Polymer Stabilization/Solidification (SPSS) process was used to treat approximately 90kg of elemental mercury mixed waste from Los Alamos National Laboratory. Treatment was carried out in a series of eight batches using a 1 ft{sup 3} pilot-scale mixer, where mercury loading in each batch was 33.3 weight percent. Although leach performance is currently not regulated for amalgamated elemental mercury (Hg) mixed waste, Toxicity Characteristic Leach Procedure (TCLP) testing of SPSS treated elemental mercury waste indicates that leachability is readily reduced to below the TCLP limit of 200 ppb (regulatory requirement following treatment by retort for wastes containing > 260 ppb Hg), and with process optimization, to levels less than the stringent Universal Treatment Standard (UTS) limit of 25 ppb that is applied to waste containing < 260 ppm Hg. In addition, mercury-contaminated debris, consisting of primary glass and plastic containers, as well as assorted mercury thermometers, switches, and labware, was first reacted with SPSS components to stabilize the mercury contamination, then macroencapsulated in the molten SPSS product. This treatment was done by vigorous agitation of the sulfur polymer powder and the comminuted debris. Larger plastic and metal containers were reacted to stabilize internal mercury contamination, and then filled with molten sulfur polymer to encapsulate the treated product.

  17. OVERVIEW OF THE HISTORY, PRESENT STATUS, AND FUTURE DIRECTION OF SOLIDIFICATION/STABILIZATION TECHNOLOGIES FOR HAZARDOUS WASTE TREATMENT

    Science.gov (United States)

    Solidification/stabilization (S/S) technology processes are currently being utilized in the United States to treat inorganic and organic hazardous waste and radioactive waste. These wastes are generated from operating industry or have resulted from the uncontrolled management of ...

  18. STABILIZATION OF A MIXED WASTE SLUDGE SURROGATE CONTAINING MORE THAN 260 PPM MERCURY

    International Nuclear Information System (INIS)

    Smith, W. J.; Feizollahi, F.; Brimley, R.

    2002-01-01

    In an earlier demonstration of an innovative mercury stabilization technology for the Department of Energy, ATG's full-scale process stabilized mercury in soils that initially contained more than 260 ppm of mercury of unknown speciation. The treated waste satisfied the leaching standards for mercury that qualify wastes containing less than 260 ppm for land disposal. This paper describes the extension of that work to demonstrate a full-scale process for the stabilization of a representative sludge that contained more than 260 ppm of Hg of several mercury species. RCRA (Resource Conservation and Recovery Act) regulations now require the recovery of mercury from any waste containing more than 260 ppm of mercury, usually with thermal retorts. The results of this work with a surrogate sludge, and of the previous work with an actual soil, support a proposal now before the U.S. EPA (Environmental Protection Agency) to allow such wastes to be stabilized without retorting. The full-scale demonstration with a sulfide reagent reduced the mercury concentrations in extracts of treated sludge below the relevant leaching standard, a Universal Treatment Standard (UTS) limit of 0.025 mg mercury per liter of leachate generated by the Toxicity Characteristic Leaching Procedure (TCLP). The sulfide formulation reduced the concentration to about onehalf the UTS limit

  19. Ceramic stabilization of hazardous wastes: a high performance room temperature process

    International Nuclear Information System (INIS)

    Maloney, M.D.

    1996-01-01

    ANL has developed a room-temperature process for converting hazardous materials to a ceramic structure. It is similar to vitrification but is achieved at low cost, similar to conventional cement stabilization. The waste constituents are both chemically stabilized and physically encapsulated, producing very low leaching levels and the potential for delisting. The process, which is pH-insensitive, is ideal for inorganic sludges and liquids, as well as mixed chemical-radioactive wastes, but can also handle significant percentages of salts and even halogenated organics. High waste loadings are possible and densification occurs,so that volumes are only slightly increased and in some cases (eg, incinerator ash) are reduced. The ceramic product has strength and weathering properties far superior to cement products

  20. Radioactive nuclear waste stabilization - Aspects of solid-state molecular engineering and applied geochemistry

    Science.gov (United States)

    Haggerty, S. E.

    1983-01-01

    Stabilization techniques for the storage of radioactive wastes are surveyed, with emphasis on immobilization in a primary barrier of synthetic rock. The composition, half-life, and thermal-emission characteristics of the wastes are shown to require thermally stable immobilization enduring at least 100,000 years. Glass materials are determined to be incapable of withstanding the expected conditions, average temperatures of 100-500 C for the first 100 years. The geological-time stability of crystalline materials, ceramics or synthetic rocks, is examined in detail by comparing their components with similar naturally occurring minerals, especially those containing the same radioactive elements. The high-temperature environment over the first 100 years is seen as stabilizing, since it can recrystallize radiation-induced metamicts. The synthetic-rock stabilization technique is found to be essentially feasible, and improvements are suggested, including the substitution of nepheline with freudenbergite and priderite for alkaline-waste stabilization, the maintenance of low oxygen fugacity, and the dilution of the synthetic-rock pellets into an inert medium.

  1. Stability and buffering capacity of the geosphere for long-term isolation of radioactive waste

    International Nuclear Information System (INIS)

    2004-01-01

    Most experts worldwide agree that radioactive waste disposal in engineered facilities, or repositories, located in appropriate formations deep underground, provide a suitable waste management option for protecting humans and the environment now and. in the future. An NEA workshop was organised on 9-11 December 2003 in Braunschweig, Germany, devoted specifically to argillaceous settings for deep geological repositories. The workshop brought together scientists from academic institutions, engineers from various research institutions or companies, consultants, regulatory authorities and national waste management organisations to establish the scientific basis for stability and buffering capacity of deep geological waste management systems. The present report synthesizes the main outcomes of that workshop and presents a compilation of the related abstracts. (author)

  2. Sulfur polymer cement, a new stabilization agent for mixed and low- level radioactive waste

    International Nuclear Information System (INIS)

    Darnell, G.R.

    1991-01-01

    Solidification and stabilization agents for radioactive, hazardous, and mixed wastes are failing to pass governmental tests at alarming rates. The Department of Energy's National Low-Level Waste Management Program funded testing of Sulfur Polymer Cement (SPC) by Brookhaven National Laboratory during the 1980s. Those tests and tests by the US Bureau of Mines (the original developer of SPC), universities, states, and the concrete industry have shown SPC to be superior to hydraulic cements in most cases. Superior in what wastes can be successfully combined and in the quantity of waste that can be combined and still pass the tests established by the US Environmental Protection Agency and the US Nuclear Regulatory Commission

  3. Measurements of Mercury Released From Solidified/Stabilized Waste Forms-FY2002

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2003-01-01

    This report covers work performed during FY 2002 in support of treatment demonstrations conducted for the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) Mercury Working Group. To comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of the following procedures for mixed low-level radioactive wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or (if the wastes also contain organics) an incineration treatment. The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE MWFA Mercury Working Group is working with EPA to determine whether some alternative processes could be used to treat these types of waste directly, thereby avoiding a costly recovery step for DOE. In previous years, demonstrations were performed in which commercial vendors applied their technologies for the treatment of radiologically contaminated elemental mercury as well as radiologically contaminated and mercury-contaminated waste soils from Brookhaven National Laboratory. The test results for mercury release in the headspace were reported in two reports, ''Measurements of Mercury Released from Amalgams and Sulfide Compounds'' (ORNL/TM-13728) and ''Measurements of Mercury Released from Solidified/Stabilized Waste Forms'' (ORNL/TM-2001/17). The current work did not use a real waste; a surrogate sludge had been prepared and used in the testing in an effort to understand the consequences of mercury speciation on mercury release

  4. Long-term anaerobic digestion of food waste stabilized by trace elements

    International Nuclear Information System (INIS)

    Zhang Lei; Jahng, Deokjin

    2012-01-01

    Highlights: ► Korean food waste was found to contain low level of trace elements. ► Stable anaerobic digestion of food waste was achieved by adding trace elements. ► Iron played an important role in anaerobic digestion of food waste. ► Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19–6.64 g VS (volatile solid)/L day and 20–30 days of HRT (hydraulic retention time), a high methane yield (352–450 mL CH 4 /g VS added ) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

  5. Use of a quality-by-design approach to justify removal of the HPLC weight % assay from routine API stability testing protocols.

    Science.gov (United States)

    Skrdla, Peter J; Wang, Tao; Antonucci, Vincent; Dowling, Thomas; Ge, Zhihong; Ellison, Dean; Curran, John; Mohan, Ganapathy; Wyvratt, Jean

    2009-12-05

    Due to the high method variability (typically > or = 0.5%, based on a literature survey and internal Merck experience) encountered in the HPLC weight percent (%) assays of various active pharmaceutical ingredients (APIs), it is proposed that the routine use of the test in stability studies should be discouraged on the basis that it is frequently not sufficiently precise to yield results that are stability-indicating. The high method variability of HPLC weight % methods is not consistent with the current ICH practice of reporting impurities/degradation products down to the 0.05% level, and it can lead to erroneous out-of-specification (OOS) results that are due to experimental error and are not attributable to API degradation. For the vast majority of cases, the HPLC impurity profile provides much better (earlier and more sensitive) detection of low-level degradation products. Based on these observations, a Quality-by-Design (QbD) approach is proposed to phase out the HPLC weight % assay from routine API stability testing protocols.

  6. Development and radiation stability of glasses for highly radioactive wastes

    International Nuclear Information System (INIS)

    Hall, A.R.; Dalton, J.T.; Hudson, B.; Marples, J.A.C.

    1976-01-01

    The variation of formation temperature, crystallizing behaviour and leach resistance with composition changes for sodium-lithium borosilicate glasses suitable for vitrifying Magnox waste are discussed. Viscosities have been measured between 400 and 1050 0 C. The principal crystal phases which occur have been identified as magnesium silicate, magnesium borate and ceria. The leach rate of polished discs in pure water at 100 0 C does not decrease with time if account is taken of the fragile siliceous layer that is observed to occur. The effect of 100 years' equivalent α- and β-irradiation on glass properties is discussed. Stored energy release experiments demonstrated that energy is released over a wide temperature range so that it cannot be triggered catastrophically. Temperatures required to release energy are dependent upon the original storage temperature. Helium release is by Fick's diffusion law up to at least 30% of the total inventory, with diffusion coefficients similar to those for comparable borosilicate glasses. Leach rates were not measurably affected by α-radiation. β-radiation in a Van de Graaff accelerator did not change physical properties, but irradiation in an electron microscope caused minute bubbles in lithium-containing glasses above 200 0 C. (author)

  7. Effect of waste plastic as modifier on thermal stability and degradation kinetics of bitumen/waste plastics blend

    International Nuclear Information System (INIS)

    Naskar, M.; Chaki, T.K.; Reddy, K.S.

    2010-01-01

    Different modified bituminous binders are used in pavement construction for improved durability and for enhanced performance in resisting cracking and permanent deformation of bituminous layers. Waste plastics, whose disposal is a matter of concern, have been used successfully for modifying bitumen. This paper reports the thermogravimetric studies conducted on waste plastic modified bituminous binders. Modified bituminous binders prepared using different plastic contents (0-7 wt% by weight of bitumen) were investigated. The activation energies were determined from thermogravimetric analysis (TGA) data using Kissinger and the Flynn-Wall-Ozawa methods, which do not require knowledge of the reaction mechanism. Modified bitumen (WPMB5) with 5 wt% plastic was found to have the highest thermal stability compared to other binders investigated. Differential scanning calorimetry (DSC) studies were carried out to find crystalline melting temperature and fusion enthalpy. Rheological parameters of modified binders prepared with different plastic contents also suggest that the 5 wt% plastic content is expected to yield optimal performance.

  8. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies.

    Science.gov (United States)

    Salihoglu, Güray

    2014-11-01

    During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations ofpastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopoljymer matrixes. Sodium silicate-sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony.

  9. Beyond waste: new sustainable fillers from fly ashes stabilization, obtained by low cost raw materials

    Directory of Open Access Journals (Sweden)

    N. Rodella

    2016-09-01

    Full Text Available A sustainable economy can be achieved only by assessing processes finalized to optimize the use of resources. Waste can be a relevant source of energy thanks to energy-from-waste processes. Concerns regarding the toxic fly ashes can be solved by transforming them into resource as recycled materials. The commitment to recycle is driven by the need to conserve natural resources, reduce imports of raw materials, save landfill space and reduce pollution. A new method to stabilize fly ash from Municipal Solid Waste Incinerator (MSWI at room temperature has been developed thanks to COSMOS-RICE LIFE+ project (www.cosmos-rice.csmt.eu. This process is based on a chemical reaction that occurs properly mixing three waste fly ashes with rice husk ash, an agricultural by-product. COSMOS inert can replace critical raw materials (i.e. silica, fluorspar, clays, bentonite, antimony and alumina as filler. Moreover the materials employed in the stabilization procedure may be not available in all areas. This paper investigates the possibility of substituting silica fume with corresponding condensed silica fume and to substitute flue-gas desulfurization (FGD residues with low-cost calcium hydroxide powder. The removal of coal fly ash was also considered. The results will be presented and a possible substitution of the materials to stabilize fly ash will be discussed.

  10. In-situ stabilization of mixed waste contaminated soil

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Cline, S.R.; Gilliam, T.M.; Conner, J.R.

    1993-01-01

    A full-scale field demonstration was conducted to evaluate in for stabilizing an inactive RCRA land treatment site at a DOE facility in Ohio. Subsurface silt and clay deposits were contaminated principally with up to 500 mg/kg of trichloroethylene and other halocarbons, but also trace to low levels of Pb, Cr, 235 U, and 99 Tc. In situ solidification was studied in three, 3.1 m diameter by 4.6 m deep columns. During mixing, a cement-based grout was injected and any missions from the mixed region were captured in a shroud and treated by filtration and carbon adsorption. During in situ processing, operation and performance parameters were measured, and soil cores were obtained from a solidified column 15 months later. Despite previous site-specific treatability experience, there were difficulties in selecting a grout with the requisite treatment agents amenable to subsurface injection and at a volume adequate for distribution throughout the mixed region while minimizing volume expansion. observations during the demonstration revealed that in situ solidification was rapidly accomplished (e.g., >90 m 3 /d) with limited emissions of volatile organics (i.e., -6 cm/s vs. 10 -8 cm/s). Leaching tests performed on the treated samples revealed non-detectable to acceptably low concentrations of all target contaminants

  11. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.; Knox, L.; Mayberry, J.

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the open-quotes problemclose quotes DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization

  12. Utilization of stabilized municipal waste combustion ash residues as construction material

    International Nuclear Information System (INIS)

    Shieh, C.S.

    1992-01-01

    Stabilized municipal waste combustion (MWC) ash residues were investigated for their potential as construction material that can be beneficially used in terrestrial and marine environments. End-use products, such as patio stones, brick pavers, solid blocks, and reef units, were fabricated and tested for their engineering and chemical characteristics. engineering feasibility and environmental acceptability of using stabilized ash residues as construction material are discussed in this paper. Ash samples were collected from two mass-burn facilities and one refuse derived fuel (RDF) facility in Florida

  13. Stability of Routine Biochemical Analytes in Whole Blood and Plasma From Lithium Heparin Gel Tubes During 6-hr Storage.

    Science.gov (United States)

    Monneret, Denis; Godmer, Alexandre; Le Guen, Ronan; Bravetti, Clotilde; Emeraud, Cecile; Marteau, Anthony; Alkouri, Rana; Mestari, Fouzi; Dever, Sylvie; Imbert-Bismut, Françoise; Bonnefont-Rousselot, Dominique

    2016-09-01

    The stability of biochemical analytes has already been investigated, but results strongly differ depending on parameters, methodologies, and sample storage times. We investigated the stability for many biochemical parameters after different storage times of both whole blood and plasma, in order to define acceptable pre- and postcentrifugation delays in hospital laboratories. Twenty-four analytes were measured (Modular® Roche analyzer) in plasma obtained from blood collected into lithium heparin gel tubes, after 2-6 hr of storage at room temperature either before (n = 28: stability in whole blood) or after (n = 21: stability in plasma) centrifugation. Variations in concentrations were expressed as mean bias from baseline, using the analytical change limit (ACL%) or the reference change value (RCV%) as acceptance limit. In tubes stored before centrifugation, mean plasma concentrations significantly decreased after 3 hr for phosphorus (-6.1% [95% CI: -7.4 to -4.7%]; ACL 4.62%) and lactate dehydrogenase (LDH; -5.7% [95% CI: -7.4 to -4.1%]; ACL 5.17%), and slightly decreased after 6 hr for potassium (-2.9% [95% CI: -5.3 to -0.5%]; ACL 4.13%). In plasma stored after centrifugation, mean concentrations decreased after 6 hr for bicarbonates (-19.7% [95% CI: -22.9 to -16.5%]; ACL 15.4%), and moderately increased after 4 hr for LDH (+6.0% [95% CI: +4.3 to +7.6%]; ACL 5.17%). Based on RCV, all the analytes can be considered stable up to 6 hr, whether before or after centrifugation. This study proposes acceptable delays for most biochemical tests on lithium heparin gel tubes arriving at the laboratory or needing to be reanalyzed. © 2016 Wiley Periodicals, Inc.

  14. THE EFFECT OF DIFFERENT EXPOSURE CONDITIONS ON THE CHARACTERISTICS OF THE MINERAL MATRICES STABILIZING HAZARDOUS WASTE

    Directory of Open Access Journals (Sweden)

    Anna Król

    2016-05-01

    Full Text Available Mineral binders are more and more often used in the difficult process of disposal of inorganic hazardous waste containing heavy metals. Composites solidifying hazardous waste are deposited in the environment, which exposes them to the interaction of many variable factors. The paper presents the effect of different exposure conditions on physical and mechanical properties of concrete stabilizing galvanic sewage sludge (GO. The effect of the cyclic freezing and thawing, carbon dioxide (carbonation and high temperatures (200 °C, 400 °C, 600 °C on the properties of stabilizing matrices has been described. The results, in most cases, show a loss of durability of composites solidifying sewage sludge (GO by the influence of external conditions.

  15. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    Science.gov (United States)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  16. Role of water balance in the long-term stability of hazardous waste site cover treatments

    International Nuclear Information System (INIS)

    Barnes, F.J.; Rodgers, J.C.; Trujillo, G.

    1986-01-01

    After the 30-year post-closure maintenance period at hazardous waste landfills, long-term stability must be assured without continued intervention. Understanding water balance in the established vegetative cover system is central to predicting such stability. A Los Alamos National Laboratory research project has established a series of experimental cover treatment plots on a closed waste disposal site which will permit the determination of the effects of such critical parameters as soil cover design, leaf area index, and rooting characteristics on water balance under varied conditions. Data from these experiments are being analyzed by water balance modeling and other means. The results show consistent differences in soil moisture storage between soil profiles and between vegetation cover treatments

  17. Tank Waste Transport Stability: Summaries of Hanford Slurry and Salt-Solution Studies in FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-07-08

    This report is a collection of summary articles on FY 2000 studies of slurry transport and salt-well pumping related to Hanford tank waste transfers. These studies are concerned with the stability (steady, uninterrupted flow) of tank waste transfers, a subset of the Department of Energy (DOE) Tanks Focus Area Tank (TFA) Waste Chemistry effort. This work is a collaborative effort of AEA Technology plc, the Diagnostic Instrumentation and Analysis Laboratory at Mississippi State University (DIAL-MSU), the Hemispheric Center for Environmental Technology at Florida International University (HCET-FIU), Numatec Hanford Corporation (NHC), and the Oak Ridge National Laboratory (ORNL). The purpose of this report is to provide, in a single document, an overview of these studies to help the reader identify contacts and resources for obtaining more detailed information and to help promote useful interchanges between researchers and users. Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  18. Oxidative Stability of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hall, Gabriel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walter, Eric D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washton, Nancy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-17

    Technetium (Tc), which exists predominately in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site, is one of the most difficult contaminants to dispose of and/or remediate. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, based on experimentation to-date, a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non-pertechnetate species. The presence of a non pertechnetate species significantly complicates disposition of low-activity waste (LAW), and the development of methods to either convert them to pertechnetate or to separate the non-pertechnetate species directly is needed. The challenge is the uncertainty regarding the nature and stability of the alkaline-soluble, low-valence, non pertechnetate species in the liquid tank waste. One objective of the Tc management project is to address this knowledge gap. This fiscal year (FY) 2015 report summarizes experimental work exploring the oxidative stability of model low-valence Tc(I) tricarbonyl species, derived from the [Tc(CO)3]+ moiety. These compounds are of interest due to their implied presence in several Hanford tank waste supernatants. Work in part was initiated in FY 2014, and a series of samples containing non-pertechnetate Tc generated ex situ or in situ in pseudo-Hanford tank supernatant simulant solutions was prepared and monitored for oxidation to Tc(VII) (Levitskaia et al. 2014). This experimentation continued in FY 2015, and new series of samples containing Tc(I) as [Tc(CO)3]+•Ligand was tested. The monitoring method used for these studies was a combination of 99Tc NMR and EPR spectroscopies.

  19. Demonstration of NFS DeHg Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference Number 2229

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with < 260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3 (Conley, Morris, Osborne-Lee, and Hulet 1998). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels, the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards and to be feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  20. Synergistic and alkaline stability studies of mixtures of simulated high level waste sludge with selected energetic compounds

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    2000-01-01

    This study examined the stability of mercury oxalate and mercury fulminate in alkaline sludge simulating Savannah River Site waste. These compounds represent two classes of energetic compounds previously speculated as potential components in sludge stored without a supernatant liquid

  1. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification.

    Science.gov (United States)

    Wang, Lei; Tsang, Daniel C W; Poon, Chi-Sun

    2015-03-01

    Navigational/environmental dredging of contaminated sediment conventionally requires contained marine disposal and continuous monitoring. This study proposed a green remediation approach to treat and recycle the contaminated sediment by means of stabilization/solidification enhanced by the addition of selected solid wastes. With an increasing amount of contaminated sediment (20-70%), the 28-d compressive strength of sediment blocks decreased from greater than 10MPa to slightly above 1MPa. For augmenting the cement hydration, coal fly ash was more effective than lime and ground seashells, especially at low sediment content. The microscopic and spectroscopic analyses showed varying amounts of hydration products (primarily calcium hydroxide and calcium silicate hydrate) in the presence of coal fly ash, signifying the influence of pozzolanic reaction. To facilitate the waste utilization, cullet from beverage glass bottles and bottom ashes from coal combustion and waste incineration were found suitable to substitute coarse aggregate at 33% replacement ratio, beyond which the compressive strength decreased accordingly. The mercury intrusion porosimetry analysis indicated that the increase in the total pore area and average pore diameter were linearly correlated with the decrease of compressive strength due to waste replacement. All the sediment blocks complied with the acceptance criteria for reuse in terms of metal leachability. These results suggest that, with an appropriate mixture design, contaminated sediment and waste materials are useful resources for producing non-load-bearing masonry units or fill materials for construction uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Minimum Additive Waste Stabilization (MAWS), Phase I: Soil washing final report

    International Nuclear Information System (INIS)

    1995-08-01

    As a result of the U.S. Department of Energy's environmental restoration and technology development activities, GTS Duratek, Inc., and its subcontractors have demonstrated an integrated thermal waste treatment system at Fernald, OH, as part the Minimum Additive Waste Stabilization (MAWS) Program. Specifically, MAWS integrates soil washing, vitrification of mixed waste streams, and ion exchange to recycle and remediate process water to achieve, through a synergistic effect, a reduction in waste volume, increased waste loading, and production of a durable, leach-resistant, stable waste form suitable for disposal. This report summarizes the results of the demonstration/testing of the soil washing component of the MAWS system installed at Fernald (Plant 9). The soil washing system was designed to (1) process contaminated soil at a rate of 0.25 cubic yards per hour; (2) reduce overall waste volume and provide consistent-quality silica sand and contaminant concentrates as raw material for vitrification; and (3) release clean soil with uranium levels below 35 pCi/g. Volume reductions expected ranged from 50-80 percent; the actual volume reduction achieved during the demonstration reached 66.5 percent. The activity level of clean soil was reduced to as low as 6 pCi/g from an initial average soil activity level of 17.6 pCi/g (the highest initial level of soil provided for testing was 41 pCi/g). Although the throughput of the soil washing system was inconsistent throughout the testing period, the system was online for sufficient periods to conclude that a rate equivalent to 0.25 cubic yards per hour was achieved

  3. Measurements of Mercury Released From Solidified/Stabilized Waste Forms-FY2002

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, C.H.

    2003-02-17

    This report covers work performed during FY 2002 in support of treatment demonstrations conducted for the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) Mercury Working Group. To comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of the following procedures for mixed low-level radioactive wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or (if the wastes also contain organics) an incineration treatment. The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE MWFA Mercury Working Group is working with EPA to determine whether some alternative processes could be used to treat these types of waste directly, thereby avoiding a costly recovery step for DOE. In previous years, demonstrations were performed in which commercial vendors applied their technologies for the treatment of radiologically contaminated elemental mercury as well as radiologically contaminated and mercury-contaminated waste soils from Brookhaven National Laboratory. The test results for mercury release in the headspace were reported in two reports, ''Measurements of Mercury Released from Amalgams and Sulfide Compounds'' (ORNL/TM-13728) and ''Measurements of Mercury Released from Solidified/Stabilized Waste Forms'' (ORNL/TM-2001/17). The current work did not use a real waste; a surrogate sludge had been prepared and used in the testing in an effort to understand the consequences of mercury speciation on mercury release.

  4. Stabilization of APC residues from waste incineration with ferrous sulfate on a semi-industrial scale

    DEFF Research Database (Denmark)

    Lundtorp, Kasper; Jensen, Dorthe Lærke; Christensen, Thomas Højlund

    2002-01-01

    A stabilization method for air pollution control (APC) residues from municipal solid waste incineration (MSWI) involving mixing of the residue with water and FeSO4 has been demonstrated on a semi-industrial scale on three types of APC residues: a semidy (SD) APC residue, a fly ash (FA), and an FA...... mixed with sludge (FAS) from a wet flue gas cleaning system. The process was performed in batches of 165-175 kg residue. It generates a wastewater that is highly saline but has a low content of heavy metals such as Cd, Cr, and Pb. The stabilized and raw residues have been subject to a range of leaching...... tests: the batch leacing test, the pH-static leaching test, the availability test, and the column test. These tests showed that the stabilized residues have remarkably improved leaching properties, especially with respect to Pb but also with respect to Cd, Cu, and Zn. The release of Pb was reduced...

  5. Sulfur polymer cement, a solidification and stabilization agent for radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Darnell, R.G.

    1993-01-01

    Sulfur polymer cement (SPC) is made by reacting 95% sulfur with 2.5 % dicyclopentadiene and 2.5% cyclopentadiene oligomers, to produce a product that is much better than unmodified sulfur. SPC is being tested as a solidifying and stabilizing agent for low-level radioactive and hazardous wastes. Heavy loadings (5 wt%) of eight toxic metals were combined individually with SPC and 7 wt% sodium sulfide nonahydrate. The leach rates for mercury, lead, chromium and silver oxides were reduced by six orders of magnitude, while those of arsenic and barium were reduced by four. SPC is good for stabilizing incinerator ash. Ion-exchange resins can be stabilized with SPC after heat treatment with asbestos or diatomite at 220-250 deg C. 19 refs

  6. Transportation risk assessment of radioactive wastes generated by the N-Reactor stabilization program at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Wheeler, T.

    1994-12-01

    The potential radiological and nonradiological risks associated with specific radioactive waste shipping campaigns at the Hanford Site are estimated. The shipping campaigns analyzed are associated with the transportation of wastes from the N-Reactor site at the 200-W Area, both within the Hanford Reservation, for disposal. The analysis is based on waste that would be generated from the N-Reactor stabilization program

  7. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    International Nuclear Information System (INIS)

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties

  8. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  9. Application of landfill treatment approaches for stabilization of municipal solid waste.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2016-09-01

    This research sought to compare the effectiveness of three landfill enhanced treatment approaches aimed at removing releasable carbon and nitrogen after anaerobic landfilling including flushing with clean water (FB 1), leachate recirculation with ex-situ treatment (FB 2), and leachate recirculation with ex-situ treatment and in-situ aeration (FB 3). After extensive treatment of the waste in the FB scenarios, the overall solids and biodegradable fraction were reduced relative to the mature anaerobically treated waste. In terms of the overall degradation, aeration did not provide any advantage over flushing and anaerobic treatment. Flushing was the most effective approach at removing biodegradable components (i.e. cellulose and hemicellulose). Leachate quality improved for all FBs but through different mechanisms. A significant reduction in ammonia-nitrogen occurred in FB 1 and 3 due to flushing and aeration, respectively. The reduction of chemical oxygen demand (COD) in FB 1 was primarily due to flushing. Conversely, the reduction in COD in FBs 2 and 3 was due to oxidation and precipitation during Fenton's Reagent treatment. A mass balance on carbon and nitrogen revealed that a significant fraction still remained in the waste despite the additional treatment provided. Carbon was primarily converted biologically to CH4 and CO2 in the FBs or removed during treatment using Fenton's Reagent. The nitrogen removal occurred through leaching or biological conversion. These results show that under extensive treatment the waste and leachate characteristics did meet published stability values. The minimum stability values achieved were through flushing although FB 2 and 3 were able to improve leachate quality and solid waste characteristics but not to the same extent as FB 1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers.

    Science.gov (United States)

    Luna Galiano, Y; Fernández Pereira, C; Vale, J

    2011-01-15

    The stabilization/solidification (S/S) of a municipal solid waste incineration (MSWI) fly ash containing hazardous metals such as Pb, Cd, Cr, Zn or Ba by means of geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolin, metakaolin and ground blast furnace slag have been used. Mixtures of MSWI waste with these kinds of geopolymeric materials and class F coal fly ash used as silica and alumina source have been processed to study the potential of geopolymers as waste immobilizing agents. To this end, the effects of curing conditions and composition have been tested. S/S solids are submitted to compressive strength and leaching tests to assess the results obtained and to evaluate the efficiency of the treatment. Compressive strength values in the range 1-9 MPa were easily obtained at 7 and 28 days. Concentrations of the metals leached from S/S products were strongly pH dependent, showing that the leachate pH was the most important variable for the immobilization of metals. Comparison of fly ash-based geopolymer systems with classical Portland cement stabilization methods has also been accomplished. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Astaxanthin extraction from shrimp wastes and its stability in 2 model systems.

    Science.gov (United States)

    Franco-Zavaleta, M E; Jiménez-Pichardo, R; Tomasini-Campocosio, A; Guerrero-Legarreta, I

    2010-06-01

    The objective of this work was to study the stability of astaxanthin, obtained from shrimp wastes, and incorporated to 2 model systems: egg albumin protein solution and sunflower oil. Shrimp wastes were ensiled by a treatment with formic/acetic acids (4%-4% v/w wastes) and stored at 4 degrees C for 24 h. The pigment was extracted with organic solvents (petroleum ether:acetone:water, 15 : 75 : 10) and concentrated. The storage parameters studied were: illumination (light/dark), temperature (4/20 degrees C), atmosphere (air/air-free), and storage time (0, 1, 2, 3, 4, 5 wk). Results showed that total xantophylls and astaxanthin were more stable in sunflower oil than in the protein system. Total xantophylls showed more stability than astaxanthin, possibly due to the presence of other, more stable carotenoids quantified together with xantophylls. Astaxanthin concentration was significantly affected by storage time; its degradation followed a first-order reaction rate under all the studied conditions. This pigment was stable only for 17 d, even when stored in air-free flasks, under refrigeration, and in the dark.

  12. In situ vitrification demonstration for the stabilization of buried wastes at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Jacobs, G.K.; Spalding, B.P.; Carter, J.G.; Koegler, S.S.

    1987-01-01

    A demonstration of In Situ Vitrification (ISV) technology for the stabilization of radioactively contaminated soil sites at the Oak Ridge National Laboratory (ORNL) was successfully completed during July 1987. This demonstration is the first application of the ISV process not performed at the Hanford Site, where the technology was developed and patented by Pacific Northwest Laboratory (PNL). The joint ORNL-PNL pilot-scale demonstration was performed on a 3/8-scale trench (2 m deep x 1 m wide x 10 m long) that was constructed to simulate a typical seepage trench used for liquid low-level radioactive waste disposal at ORNL from 1951 to 1966. In the ISV process, electrodes are inserted around a volume of contaminated soil, power is applied to the electrodes, and the entire mass is melted from the surface of the soil down through the contaminated zone, thus making a glassy-to-microcrystalline waste form that incorporates the contaminants. Gases produced during the melting are collected, treated, monitored, and released through an off-gas process trailer. In the ORNL demonstration, a 25-t mass of melted rock approximately 1.2 m thick x 2.1 m wide x 4.9 m long was formed during 110 h of operation that consumed approximately 29 MWh of power. Data obtained on the operational performance of the test and waste-form durability will be used to assess the feasibility of applying the ISV technology to an actual waste trench

  13. In situ vitrification demonstration for the stabilization of buried wastes at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Jacobs, G.K.; Spalding, B.P.; Carter, J.G.; Koegler, S.S.

    1987-01-01

    A demonstration of In Situ Vitrification (ISV) technology for the stabilization of radioactively contaminated soil sites at the Oak Ridge National Laboratory (ORNL) was successfully completed during July 1987. This demonstration is the first application of the ISV process not performed at the Hanford Site, where the technology was developed. The joint ORNL-PNL pilot-scale demonstration was performed on a 3/8-scale trench (2 m deep x 1 m wide x 10 m long) that was constructed to simulate a typical seepage trench used for liquid low-level radioactive waste disposal at ORNL from 1951 to 1966. In the ISV process, electrodes are inserted around a volume of contaminated soil, power is applied to the electrodes, and the entire mass is melted from the surface of the soil down through the contaminated zone, thus making a glassy-to-microcrystalline waste form that incorporates the contaminants. Gases produced during the melting are collected, treated, monitored, and released through an off-gas process trailer. In the ORNL demonstration, a 25-t mass of melted rock approximately 1.2 m thick x 2.1 m wide x 4.9 m long was formed during 110 h of operation that consumed approximately 29 MWh of power. Data obtained on the operational performance of the test and waste-form durability will be used to assess the feasibility of applying the ISV technology to an actual waste trench

  14. Stabilization of lead-rich low-level mixed waste in chemically bonded phosphate ceramic

    International Nuclear Information System (INIS)

    Jeong, S.-Y.

    1999-01-01

    A chemically bonded magnesium potassium phosphate ceramic has been developed by an acid-base reaction at room temperature, for use in stabilizing U.S. Department of Energy low-level mixed waste streams that include hazardous metals and low-level radioactive elements. Using this ceramic, we solidified, in monolithic waste forms, low-level mixed waste streams containing various levels of PbCl 2 and PbCO 3 . These final waste forms were evaluated for their land disposal suitability. The results showed low open porosity (1.48-4.61 vol.%); hence, low permeability, and higher compression strengths (4310-6734 psi) that were one order of magnitude above that required. The level of lead in the leachate following the Toxicity Characteristic Leaching Procedure test was reduced from 50,000 to <0.1 ppm. Leachability indexes from the long-term leaching test (ANS 16.1 test) were between 11.9 and 13.6. This excellent lead retention is due to its chemical fixation as insoluble lead phosphate and to physical encapsulation by the phosphate matrix

  15. Solidification/stabilization of ash from medical waste incineration into geopolymers.

    Science.gov (United States)

    Tzanakos, Konstantinos; Mimilidou, Aliki; Anastasiadou, Kalliopi; Stratakis, Antonis; Gidarakos, Evangelos

    2014-10-01

    In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50°C for 24h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2-8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Influence of fiber treatment on dimensional stabilities of rattan waste composite boards

    Science.gov (United States)

    Zuraida, A.; Insyirah, Y.; Maisarah, T.; Zahurin, H.

    2018-01-01

    The main drawback of using natural fibers in composite boards is its hydrophilic properties which absorb a high volume of moisture. This results in low dimensional stability of the produced composite boards. Hence, the purpose of this study is to investigate the effects of fibers’ treatment processes of the rattan waste fibers on the dimensional stabilities of composite boards. The collected fibers underwent two types of retting processes, namely a water treatment and alkaline treatment retting processes; where the fibers were soaked in water and a 1% sodium hydroxide (NaOH) solution, respectively. The fibers were dried and mixed with poly(lactic) acid (PLA) pellets with ratio of 30% fibers: 70% matrix; before being fabricated into composite boards via a hot-pressing process and were labelled as RF/PLA, WRF/PLA, CRF/PLA for untreated rattan, rattan treated by water retting, rattan treated by chemical retting, respectively. The produced composite boards were cut and soaked in water for 24 hours for dimensional stability in terms of water absorption and thickness swelling tests. The results showed that WRF/PLA has the lowest water absorption (3.2%), and the CRF/PLA had the highest water absorption (23.2%). The thickness swelling showed a similar trend as water absorption. The presence of void contents and fibers damaged the insides of the boards, which contributed to low dimensional stabilities of the composite boards. It can be concluded that water retting facilitated in improving dimensional stability of the produced composite board.

  17. The stability of candidate buffer materials for a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.; Burton, G.R.; Tosello, N.B.; Maves, S.R.; Blimkie, M.E.; Donaldson, J.R.

    1989-11-01

    Inorganic ion-exchangers, clinoptilolite and clay, will be placed on the floor of a low-level radioactive waste repository to be built at Chalk River Nuclear Laboratories. The stability of these ion-exchange materials for a range of potential chemical environments in the repository was investigated. The leaching of waste forms and concrete and biological activity may create acidic or basic environment. The dissolution mechanisms of the ion exchangers for both acid and alkali conditions were established. Changes in distribution coefficients occurred shortly after the commencement of the treatment and were due to changes in the counter-ion content of the ion exchangers. No evidence was found to suggest gradual selective destruction of exchange sites responsible for the high distribution coefficients observed

  18. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper

    2001-01-01

    Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degreesC with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were cotreated, producing one combined...... stream that may be utilized as a secondary road construction material. Scanning electron microscope analysis and grain size distribution analysis indicated that sintering of the particles did not occur. Batch leaching tests at liquid/solid 10 I/kg at a range of pH-values (6-10) quantified with respect...

  19. CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond.

    Science.gov (United States)

    Alvarado, Andres; Sanchez, Esteban; Durazno, Galo; Vesvikar, Mehul; Nopens, Ingmar

    2012-01-01

    Sludge management in waste stabilization ponds (WSPs) is essential for safeguarding the system performance. Sludge accumulation patterns in WSPs are strongly influenced by the pond hydrodynamics. CFD modeling was applied to study the relation between velocity profiles and sludge deposition during 10 years of operation of the Ucubamba WSP in Cuenca (Ecuador). One tracer experiment was performed and three sludge accumulation scenarios based on bathymetric surveys were simulated. A residence time distribution (RTD) analysis illustrated the decrease of residence times due to sludge deposition. Sludge accumulation rates were calculated. The influence of flow pattern on the sludge deposition was studied, enabling better planning of future pond operation and desludging.

  20. Importance of waste stabilization ponds and wastewater irrigation in the generation of vector mosquitoes in Pakistan

    DEFF Research Database (Denmark)

    Mukhtar, Muhammad; Ensink, Jeroen; Van der Hoek, Wim

    2006-01-01

    The objective of the current study was to investigate the role of waste stabilization ponds (WSP) and wastewater-irrigated sites for the production of mosquitoes of medical importance. Mosquito larvae were collected fortnightly from July 2001 to June 2002 in Faisalabad, Pakistan. In total, 3...... an overwhelming preference for anaerobic ponds, which receive untreated wastewater. Facultative ponds generated lower numbers of both Anopheles and Culex mosquitoes, whereas the last ponds in the series, the maturation ponds, were the least productive for both mosquito genera. An. subpictus and Anopheles...

  1. Changes in soil aggregate stability under different irrigation doses of waste water

    Science.gov (United States)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  2. Demonstration of GTS Duratek Process for Stabilizing Mercury Contaminated (<260 ppm) Mixed Wastes. Mixed Waste Focus Area. OST Reference No. 2409

    International Nuclear Information System (INIS)

    1999-01-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities, totaling approximately 6,000 m 3 . Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. They must also be proven feasible in terms of economics, operability, and safety. This report summarizes the findings from a stabilization technology demonstration conducted by GTS Duratek, Inc. Phase I of the study involved receipt and repackaging of the material, followed by preparations for waste tracking. Phase II examined the bench-scale performance of grouting at two different loadings of waste to grouted mass. Phase III demonstrated in-drum mixing and solidification using repackaged drums of sludge. Phase IV initially intended to ship final residues to Envirocare for disposal. The key results of the demonstration are as follows: (1) Solidification tests were performed at low and high waste loading, resulting in stabilization of mercury to meet the Universal Treatment Standard of 0.025 mg/L at the low loading and for two of the three runs at the high loading. The third high-loading run had a Toxicity Characteristic Leaching Procedure (TCLP) of 0.0314 mg/L. (2) Full-drum stabilization using the low loading formula was demonstrated. (3) Organic compound levels were discovered to be higher than originally reported, including the presence of some pesticides. Levels of some radionuclides were much higher than initially reported. (4

  3. Demonstration of GTS Duratek Process for Stabilizing Mercury Contaminated (<260 ppm) Mixed Wastes. Mixed Waste Focus Area. OST Reference No. 2409

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities, totaling approximately 6,000 m3. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. They must also be proven feasible in terms of economics, operability, and safety. This report summarizes the findings from a stabilization technology demonstration conducted by GTS Duratek, Inc. Phase I of the study involved receipt and repackaging of the material, followed by preparations for waste tracking. Phase II examined the bench-scale performance of grouting at two different loadings of waste to grouted mass. Phase III demonstrated in-drum mixing and solidification using repackaged drums of sludge. Phase IV initially intended to ship final residues to Envirocare for disposal. The key results of the demonstration are as follows: (1) Solidification tests were performed at low and high waste loading, resulting in stabilization of mercury to meet the Universal Treatment Standard of 0.025 mg/L at the low loading and for two of the three runs at the high loading. The third high-loading run had a Toxicity Characteristic Leaching Procedure (TCLP) of 0.0314 mg/L. (2) Full-drum stabilization using the low loading formula was demonstrated. (3) Organic compound levels were discovered to be higher than originally reported, including the presence of some pesticides. Levels of some radionuclides were much higher than initially reported. (4

  4. Combined treatment of chemical, pharmaceutical and cosmetic industrial effluents by waste stabilization ponds.

    Science.gov (United States)

    Veeresh, Mangala; Veeresh, A V; Hosetti, B B

    2002-10-01

    Influent and final effluent was collected from the CMM Ltd., Bethora, Ponda, Goa and were analysed for pH, DO, BOD, enzyme activity and chlorophyll content of the waste stabilization pond for over a period of two years of which the data for one year (pre monsoon, monsoon and post monsoon periods) is given. The study revealed that the DO was maximum during the pre-monsoon months and least during the monsoon. Maximum removal of BOD and phosphate was observed during the pre-monsoon periods. Enzymatic activity was at its peak during the monsoons than during the other months. Chlorophyll content was maximum during the pre-monsoon months due to increased growth of phytoplankton as the conditions were favourable for their growth. Also depending on the concentration of different chlorophyll pigments, one can come to know the different groups of algae inhabiting the stabilization ponds.

  5. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    International Nuclear Information System (INIS)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-01

    Over 1,140 yd 3 of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations (approximately 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system

  6. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-29

    Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

  7. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers

    Energy Technology Data Exchange (ETDEWEB)

    C. Fernandez Pereira; Y. Luna; X. Querol; D. Antenucci; J. Vale [University of Seville, Seville (Spain). School of Industrial Engineering

    2009-07-15

    The stabilization/solidification (S/S) of a carbon steel electric arc furnace (EAF) dust containing hazardous metals such as Pb, Cd, Cr or Zn using geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolinite, metakaolinite and blast furnace slag have been used. Mixtures of EAF waste with these geopolymeric materials and class F fly ash have been processed for studying the potential of geopolymers as waste immobilizing agents. Compressive strength tests and leaching tests for determining the efficiency of heavy metal immobilisation have been carried out. Comparison of fly ash-based geopolymer systems with classic Portland cement stabilization methods has also been accomplished. Compressive strength values far better than those achieved by hydraulic S/S methods were easily obtained by geopolymer solids at 28 days. Regarding leachability, the geopolymer S/S solids also manifested in general a better behaviour, showing very promising results. 40 refs., 1 fig., 9 tabs.

  8. The effect of cure conditions on the stability of cement waste forms after immersion in water

    International Nuclear Information System (INIS)

    Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L.; McDaniel, K.

    1988-01-01

    We investigated the effects of curing conditions on the stability of cement-solidified ion-exchange resins after immersion in water. The test specimens consisted of partially depleted mixed-bed bead resins solidified in one of three vendor-supplied Portland I cement formulations, in a reference cement formulation, or in a gypsum-based binder formulation. We cured samples prepared using each formulation in sealed containers for periods of 7, 14, or 28 days as well as in air or with an accelerated heat cure prior to 90-day immersion in water. Two cement formulations exhibited apparent Portland-cement-like behavior, i.e., compressive strength increased or stabilized with increasing cure time. Two cement formulations exhibited behavior apparently unlike that of Portland cement, i.e., compressive strength decreased with increasing cure time. Such non-Portland-cement-like behavior is correlated with higher waste loadings. The gypsum-based formulation exhibited approximately constant compressive strength with cure time. Accelerated heat cures may not give compressive strengths representative of real-time cures. Some physical deterioration (cracking, spalling) of the waste form occurs during immersion

  9. The effect of cure conditions on the stability of cement waste forms after immersion in water

    International Nuclear Information System (INIS)

    Siskind, B.; Adams, J.W.; Clinton, J.H.; Piciulo, P.L.

    1988-01-01

    The authors investigated the effects of curing conditions on the stability of cement-solidified ion-exchange resins after immersion in water. The test specimens consisted of partially depleted mixed-bed bead resins solidified in one of three vendor-supplied Portland I cement formulations, in a reference cement formulation, or in a gypsum-based binder formulation. They cured samples prepared using each formulation in sealed containers for periods of 7, 14, or 28 days as well as in air or with an accelerated heat cure prior to 90-day immersion in water. Two cement formulations exhibited apparent Portland-cement-like behavior, i.e., compressive strength increased or stabilized with increasing cure time. Two cement formulations exhibited behavior apparently unlike that of Portland cement, i.e. compressive strength decreased with increasing cure time. Such non-Portland-cement-like behavior is correlated with higher waste loadings. The gypsum-based formulation exhibited approximately constant compressive strength with cure time. Accelerated heat cures may not give compressive strengths representative of real-time cures. Some physical deterioration (cracking, spalling) of the waste form occurs during immersion

  10. Arsenic stability and mobilization in soil at an amenity grassland overlying chemical waste (St. Helens, UK)

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)], E-mail: w.hartley@ljmu.ac.uk; Dickinson, Nicholas M. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Clemente, Rafael [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Apartado 4195, 30080 Murcia (Spain); French, Christopher [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Piearce, Trevor G. [Biological Sciences Division, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Sparke, Shaun; Lepp, Nicholas W. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2009-03-15

    A 6.6 ha grassland, established on a former chemical waste site adjacent to a residential area, contains arsenic (As) in surface soil at concentrations 200 times higher than UK Soil Guideline Values. The site is not recognized as statutory contaminated land, partly on the assumption that mobility of the metalloid presents a negligible threat to human health, groundwater and ecological receptors. Evidence for this is evaluated, based on studies of the effect of organic (green waste compost) and inorganic (iron oxides, lime and phosphate) amendments on As fractionation, mobility, plant uptake and earthworm communities. Arsenic mobility in soil was low but significantly related to dissolved organic matter and phosphate, with immobilization associated with iron oxides. Plant uptake was low and there was little apparent impact on earthworms. The existing vegetation cover reduces re-entrainment of dust-blown particulates and pathways of As exposure via this route. Minimizing risks to receptors requires avoidance of soil exposure, and no compost or phosphate application. - Stabilization of alkali industry waste requires careful management to minimise soil arsenic mobilization and dispersal to the wider environment.

  11. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Evaluating the freeze-thaw durability of portland cement-stabilized-solidified heavy metal waste using acoustic measurements

    International Nuclear Information System (INIS)

    El-Korchi, T.; Gress, D.; Baldwin, K.; Bishop, P.

    1989-01-01

    The use of stress wave propagation to assess freeze-thaw resistance of portland cement solidified/stabilized waste is presented. The stress wave technique is sensitive to the internal structure of the specimens and would detect structural deterioration independent of weight loss or visual observations. The freeze-thaw resistance of a cement-solidified cadmium waste and a control was evaluated. The control and cadmium wastes both showed poor freeze-thaw resistance. However, the addition of cadmium and seawater curing increased the resistance to more cycles of freezing and thawing. This is attributed to microstructural changes

  13. Phosphate stabilization of flue gas ashes from waste incineration; Fosfatstabilisering av roekgasaska fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Kullberg, S. [Geodesign AB, Linkoeping (Sweden)

    1995-05-01

    This study deals with the immobilization of heavy metals and other elements in flue gas ashes from household waste incineration by the addition of phosphates to the ash. It also describes the FUDD-technique (FUnction-adapted Design and Deposition) for deposition of the stabilized ash. In this work, phosphates obtained from phosphoric acid have been added to ash in proportions of 2.8% and 3.7% by weight of ash. Phosphates have also been injected into the flue gases, in this case with proportions of 4.7% and 16.3%. The samples have been studied both in the field and in the laboratory in regard to compaction properties, permeability, chemical solid phase content, HCl in the flue gases, leaching of metals via batch tests, availability tests and column tests. In batch tests, the stabilized samples show an immobilization of most metals except cadmium. Lead has been reduced by 97.0-99.9%. Cadmium has been mobilized by a factor of 2-30 in this experiment. The best results are obtained with addition of phosphates to the flue gases. In the availability tests, with addition of phosphates to flue gases, all environmentally destructive metals except arsenic and nickel have been immobilized to varying degree. The reduction is greatest for lead, aluminium, copper, mercury and zinc. With the addition of phosphates to ash, aluminium, copper and lead have been immobilized. In opposite, arsenic, cobalt and nickel were mobilized. The addition of 4-5% phosphates in the flue gas reactor produced only a marginal effect on the HCl concentration in the flue gases. The use of phosphates increases the HF concentration by about 3 mg/Nm{sup 3}. The cost for phosphate stabilization have been estimated at SEK 110-220 per ton of ash including costs for stabilization equipment. 18 refs, 15 figs, 13 tabs

  14. Stability of carotenoids recovered from shrimp waste and their use as colorant in fish sausage.

    Science.gov (United States)

    Sachindra, N M; Mahendrakar, N S

    2010-01-01

    The stability of carotenoids recovered from shrimp waste using organic solvents and vegetable oils as affected by antioxidants and pigment carriers was evaluated during storage under different conditions. Solvent extracted carotenoid incorporated into alginate and starch as carriers was stored in metallised polyester and polypropylene pouches. Oil extracted carotenoids were stored in transparent and amber bottles. Also the use of recovered pigments as colorants in fish sausage was evaluated. Antioxidants, packaging material and storage period had a significant effect (p≤0.001) on the reduction of carotenoid content, while type of carrier had marginal effect (p≥0.05) on solvent extracted carotenoids during storage. Carotenoid content in pigmented oil was significantly affected by antioxidants (p≤0.001), packaging material (p≤0.05) and storage period (p≤0.001). Addition of carotenoid to the sausage enhanced the sensory colour, flavour and overall quality score of sausage and the added carotenoid was stable during processing.

  15. Geo-environmental application of municipal solid waste incinerator ash stabilized with cement

    Directory of Open Access Journals (Sweden)

    Davinder Singh

    2017-04-01

    Full Text Available The behavior of soluble salts contained in the municipal solid waste incinerator (MSWI ash significantly affects the strength development and hardening reaction when stabilized with cement. The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash. A series of indices such as unconfined compressive strength, split tensile strength, California bearing ratio (CBR and pH value was examined. Prior to this, the specimens were cured for 7 d, 14 d, and 28 d. The test results depict that the maximum dry density (MDD decreases and the optimum moisture content (OMC increases with the addition of cement. The test results also reveal that the cement increases the strength of the mixed specimens. Thus, the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.

  16. Mechanical stability of bentonite buffer system for high level nuclear waste

    International Nuclear Information System (INIS)

    Lempinen, A.

    1998-05-01

    According to present plans, high level nuclear waste in Finland is going to be disposed of in bedrock at a depth of several hundred metres. The spent fuel containers will be placed in boreholes drilled in the floors of deposition tunnels with engineered clay buffer, which is made of bentonite blocks. The tunnels will be filled with a mixture of bentonite and crushed rock. For stability calculations a thermomechanical model for compressed bentonite is needed. In the study a thermomechanically consistent model for reversible processes for swelling clays is presented. Preliminary calculations were performed and they show that uncertainty in material parameter values causes significantly different results. Therefore, measurements that are consistent with the model are needed

  17. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes.

    Science.gov (United States)

    Aizpurua-Olaizola, Oier; Navarro, Patricia; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-01-01

    Wine production wastes are an interesting source of natural polyphenols. In this work, wine wastes extracts were encapsulated through vibration nozzle microencapsulation using sodium alginate as polymer and calcium chloride as hardening reagent. An experimental design approach was used to obtain calcium-alginate microbeads with high polyphenol content and good morphological features. In this way, the effect of pressure, frequency, voltage and the distance to the gelling bath were optimized for two nozzles of 150 and 300 μm. Long-term stability of the microbeads was studied for 6 months taking into account different storage conditions: temperatures (4 °C and room temperature), in darkness and in presence of light, and the addition of chitosan to the gelling bath. Encapsulated polyphenols were found to be much more stable compared to free polyphenols regardless the encapsulation procedure and storage conditions. Moreover, slightly lower degradation rates were obtained when chitosan was added to the gelling bath. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Two-step upflow anaerobic sludge bed system for sewage treatment under subtropical conditions with posttreatment in waste stabilization ponds

    NARCIS (Netherlands)

    Seghezzo, L.; Trupiano, A.P.; Liberal, V.; Todd, P.G.; Figueroa, M.E.; Gutierrez, M.A.; Silva Wilches, Da A.C.; Iribarnegaray, M.; Guerra, R.G.; Arena, A.; Cuevas, C.M.; Zeeman, G.; Lettinga, G.

    2003-01-01

    A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand

  19. Long-term performance of aged waste forms treated by stabilization/solidification

    International Nuclear Information System (INIS)

    Antemir, Aurora; Hills, Colin D.; Carey, Paula J.; Gardner, Kevin H.; Bates, Edward R.; Crumbie, Alison K.

    2010-01-01

    Current regulatory testing of stabilized/solidified (S/S) soils is based on short-term performance tests and is insufficient to determine their long-term stability or expected service life. In view of this, and the significant lack of data on long-term field performance in the literature, S/S material has been extracted from full-scale remedial operations and examined using a variety of analytical techniques to evaluate field performance. The results, including those from X-ray analytical techniques, optical and electron microscopy and leaching tests are presented and discussed. The microstructure of retrieved samples was found to be analogous to other cement-based materials, but varied according to the soil type, the contaminants present, the treatment applied and the field exposure conditions. Summary of the key microstructural features in the USA and UK is presented in this work. The work has shown that during 16 years of service the S/S wastes investigated performed satisfactorily.

  20. Solidification/stabilization of fly and bottom ash from medical waste incineration facility.

    Science.gov (United States)

    Anastasiadou, Kalliopi; Christopoulos, Konstantinos; Mousios, Epameinontas; Gidarakos, Evangelos

    2012-03-15

    In the present work, the stabilization/solidification of fly and bottom ash generated from incinerated hospital waste was studied. The objectives of the solidification/stabilization treatment were therefore to reduce the leachability of the heavy metals present in these materials so as to permit their disposal in a sanitary landfill requiring only a lower degree of environmental protection. Another objective of the applied treatment was to increase the mechanical characteristics of the bottom ash using different amounts of Ordinary Portland Cement (OPC) as a binder. The solidified matrix showed that the cement is able to immobilize the heavy metals found in fly and bottom ash. The TCLP leachates of the untreated fly ash contain high concentrations of Zn (13.2 mg/l) and Pb (5.21 mg/l), and lesser amounts of Cr, Fe, Ni, Cu, Cd and Ba. Cement-based solidification exhibited a compressive strength of 0.55-16.12 MPa. The strength decreased as the percentage of cement loading was reduced; the compressive strength was 2.52-12.7 MPa for 60% cement mixed with 40% fly ash and 6.62-16.12 MPa for a mixture of 60% cement and 40% bottom ash. The compressive strength reduced to 0.55-1.30 MPa when 30% cement was mixed with 70% fly ash, and to 0.90-7.95 MPa when 30% cement was mixed with 70% bottom ash, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    Science.gov (United States)

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Influence of Plastic Waste Fibers on the Strength of Lime-Rice Husk Ash Stabilized Clay Soil

    Directory of Open Access Journals (Sweden)

    A. S. Muntohar

    2009-01-01

    Full Text Available A study has been undertaken to investigate the strength of stabilized clay-soil reinforced with randomly distributed discrete plastic waste fibers by carrying out unconfined compressive strength and tensile-split strength test. In this study, the clay soil was stabilized with lime and rice husk ash mixtures. The effect of the fiber length and content on the compressive and split tensile strength was investigated. The laboratory investigation results show that inclusion of the plastic waste fiber increased significantly both the unconfined compressive strength and tensile-split strength of the stabilized clay soil. The fiber length plays a significant contribution in increasing the soil strength. To contribute for any significant improvement on compression as well as tensile strength, the fiber length should be in range of 20 mm to 40 mm. Fiber reinforcements also reduced soil brittleness by providing smaller loss of post-peak strength.

  3. Investigation of possibility for stabilization and valorization of electric ARC furnace dust and glass from electronic waste

    Directory of Open Access Journals (Sweden)

    Ranitović M.

    2014-01-01

    Full Text Available This paper presents investigation of possibility for electric arc furnace dust (EAFD and electronic waste (e-waste valorization trough stabilization process, in order to achieve concurrent management of these two serious ecological problems. EAFD is an ineviTab. waste material coming from the electric arc furnace steel production process, classified as a hazardous waste. Furthermore, it is well known that residual materials generated in the ewaste recycling process, like LCD (Liquid crystal displays waste glass, are not suiTab. for landfill or incineration. In this study, these two materials were used for investigation of possibility for their valorization in ceramic industry. Thus, an innovative synergy of waste streams from metallurgical and e-waste recycling industry is presented. Investigation included a complex characterization of raw materials and their mixtures, using chemical methods, optical microscopy, scanning electron microscopy, as well as methods for determining the physical and mechanical properties. Based on these results, it was found that material suiTab. for use in ceramics industry as a partial substituent of quartzite and fluxing components can be produced. Besides solving the environmental problem related to EAFD and LCD disposal, by replacement of raw materials certain economic effects can be achieved. [Projekat Ministarstva nauke Republike Srbije, br. 34033

  4. A mesophilic anaerobic digester for treating food waste: process stability and microbial community analysis using pyrosequencing.

    Science.gov (United States)

    Li, Lei; He, Qin; Ma, Yao; Wang, Xiaoming; Peng, Xuya

    2016-04-25

    Anaerobic digesters become unstable when operated at a high organi c loading rate (OLR). Investigating the microbial community response to OLR disturbance is helpful for achieving efficient and stable process operation. However, previous studies have only focused on community succession during different process stages. How does community succession influence process stability? Is this kind of succession resilient? Are any key microbial indicator closely related to process stability? Such relationships between microbial communities and process stability are poorly understood. In this study, a mesophilic anaerobic digester for treating food waste (FW) was operated to study the microbial diversity and dynamicity due to OLR disturbance. Overloading resulted in proliferation of acidogenic bacteria, and the resulting high volatile fatty acid (VFA) yield triggered an abundance of acetogenic bacteria. However, the abundance and metabolic efficiency of hydrogenotrophic methanogens decreased after disturbance, and as a consequence, methanogens and acetogenic bacteria could not efficiently complete the syntrophy. This stress induced the proliferation of homoacetogens as alternative hydrogenotrophs for converting excessive H2 to acetate. However, the susceptible Methanothrix species also failed to degrade the excessive acetate. This metabolic imbalance finally led to process deterioration. After process recovery, the digester gradually returned to its original operational conditions, reached close to its original performance, and the microbial community profile achieved a new steady-state. Interestingly, the abundance of Syntrophomonas and Treponema increased during the deteriorative stage and rebounded after disturbance, suggesting they were resilient groups. Acidogenic bacteria showed high functional redundancy, rapidly adapted to the increased OLR, and shaped new microbial community profiles. The genera Syntrophomonas and Treponema were resilient groups. This observation

  5. Conceptual design for the demonstration and evaluation of stabilization and closure techniques of a low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Cox, L.C.

    1987-01-01

    Long term stabilization and closure of radioactive or hazardous waste disposal sites is a critical element in waste management which is presently undemonstrated. This report represents an integration of stabilization and closure methodology researched at ORNL and other locations into a design, and ultimately a demonstration of long term passive stabilization and closure techniques. The chosen demonstration site is a 19 trench low level waste disposal site within Solid Waste Storage Area (SWSA) No. 6 at ORNL. Design criteria included prevention of biological intrusion (animals and plant roots), waste stabilization, hydrological isolation, failure detection, run-off and infiltration monitoring, and passive performance evaluation capability. These criteria are satisfied through incorporation of these basic components: dynamic compaction; in situ chemical grouting; high density polyethylene (HDPE); high swelling bentonite; rock/gravel animal and root barrier; native soil cap; and under-cap and surface drainage

  6. Intelligent Routines

    CERN Document Server

    Anastassiou, George A

    “Intelligent Routines II: Solving Linear Algebra and Differential Geometry with Sage” contains numerous of examples and problems as well as many unsolved problems. This book extensively applies the successful software Sage, which can be found free online http://www.sagemath.org/. Sage is a recent and popular software for mathematical computation, available freely and simple to use. This book is useful to all applied scientists in mathematics, statistics and engineering, as well for late undergraduate and graduate students of above subjects. It is the first such book in solving symbolically with Sage problems in Linear Algebra and Differential Geometry. Plenty of SAGE applications are given at each step of the exposition.

  7. Production, characterization, and evaluation of the stability of biodiesel obtained from greasy agroindustrial waste during storage.

    Science.gov (United States)

    Petenucci, Maria Eugênia; Fonseca, Gustavo Graciano

    2017-05-01

    Greasy agroindustrial waste from the process of cooking hog meat was used to produce biodiesel (fatty acid methyl esters and fatty acid ethyl esters) under a specific storage condition. The operating conditions necessary to achieve the optimal relationship between quality and productivity were assessed. Next, batches of methyl and ethyl biodiesels were produced, generating 2 L of each product to evaluate their stability during 150 days of storage. The following study indicates that, for methyl route, the molar ratio (1:5) and catalyst (0.5%) yielded the best result of 90.77% (w/v) and quality parameters within the international standards. The ethyl route also showed the highest yield (77.09% w/v) and better quality parameters with a molar ratio (1:5) and catalyst (0.5%). No significant differences were observed in the methyl biodiesel obtained from the batch process for up to 45 days, while the ethyl biodiesel degraded in 30 days of storage.

  8. Implementation plan for underground waste storage tank surveillance and stabilization improvements

    Energy Technology Data Exchange (ETDEWEB)

    Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.; Washenfelder, D.J.

    1989-04-01

    Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate the interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.

  9. Chemical and microbiological stability of waste sludge from paper industry intended for brick production.

    Science.gov (United States)

    Cernec, Franc; Zule, Janja; Moze, Adolf; Ivanus, Alenka

    2005-04-01

    Due to its chemical composition, waste sludge generated in the paper industry may be used as a raw material for brick production. Brick manufacture is limited to the warmer months of the year whereas sludge is produced continuously by different effluent treatment devices. Therefore, it has to be stored until further processing. For this reason, it is essential that it is not subject to significant chemical and microbiological decomposition during storage. In the experiment, sludge from a tissue paper mill was tested for its stability. It was stored for several weeks during winter and summer periods in a pile, 2 m in height, in an open but covered store. Different leachable organic and inorganic compounds indicating possible ongoing deterioration processes, as well as pH value, redox potential, temperature, humidity and dry matter content were evaluated weekly in water extracts of homogenized sludge samples. According to the test results, the material may be considered to be chemically and microbiologically stable as there was practically no emission of odorous and toxic compounds such as H2S, NH3 and butyric acid despite prolonged storage times and elevated environmental temperatures. All the microbial species identified in the sludge during storage belong to the typical microflora of the environment.

  10. Anaerobic digestion of food waste stabilized by lime mud from papermaking process.

    Science.gov (United States)

    Zhang, Jishi; Wang, Qinqing; Zheng, Pengwei; Wang, Yusong

    2014-10-01

    The effects of lime mud from papermaking process (LMP) addition as buffer agent and inorganic nutrient on the anaerobic digestion stability of food waste (FW) were investigated under mesophilic conditions with the aim of avoiding volatile fatty acids accumulation, and inorganic elements deficiency. When LMP concentration ranged from 6.0 to 10g/L, the FW anaerobic digestion could maintain efficient and stable state. These advantages are attributed to the existence of Ca, Na, Mg, K, Fe, and alkaline substances that favor the methanogenic process. The highest CH4 yield of 272.8mL/g-VS was obtained at LMP and VS concentrations of 10.0 and 19.8g/L, respectively, with the corresponding lag-phase time of 3.84d and final pH of 8.4. The methanogens from residue digestates mainly consisted of Methanobrevibacter, coccus-type and sarcina-type methanogens with LMP addition compared to Methanobacteria in control. However, higher concentration of LMP inhibited methanogenic activities and methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Application of waste stabilization pond's effluent on cultivation of roses (rosa damascena mill)

    International Nuclear Information System (INIS)

    Khan, M.A.; Shaukat, S.; Shahzad, A.; Ahmed, W.

    2011-01-01

    The study focuses on the use of Waste Stabilization Ponds (WSP) effluent for irrigation and also aims to compare the efficiency of effluent with the Hoagland solution. Results revealed that the number of flowers, size of flower and the petals per flower increased by the use of both Hoagland solution and treated effluent while the height of plant and the fresh weight of flowers were increased significantly by the Hoagland solution only. Moreover, the leaves showed high concentration of reducing and non-reducing sugars as compared to flowers whereas, only the leaves of plants which were treated by the ponds effluent had low content of reducing sugars as compared to leaves of untreated plants serving as controls. The variation in chlorophyll content was similar to that of reducing and non-reducing sugars. In addition, leaves of plants that were treated by pond's effluent showed highest concentration of total phenol content. It is concluded that treated effluent is as effective as Hoagland for the irrigation of rose. Additionally, the use of treated effluent for irrigation reduces the demand of fresh water and the use of inorganic fertilizers for the commercial production of roses. (author)

  12. Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso).

    Science.gov (United States)

    Maïga, Ynoussa; Denyigba, Kokou; Wethe, Joseph; Ouattara, Aboubakar Sidiki

    2009-02-09

    Experiments on sunlight inactivation of Escherichia coli were conducted from November 2006 to June 2007 in eight outdoors microcosms with different depths filled with maturation pond wastewater in order to determine pond depth influence on sunlight inactivation of E. coli. The long-term aim was to maximize sunlight inactivation of waterborne pathogens in waste stabilization ponds (WSPs) in sahelian regions where number of sunny days enable longer exposure of wastewater to sunlight. The inactivation was followed during daylight from 8.00 h to 17.00 h and during the night. Sunlight inactivation rates (K(S)), as a function of cumulative global solar radiation (insolation), were 16 and 24 times higher than the corresponding dark inactivation (K(D)) rates, respectively in cold and warm season. In warm season, E. coli was inactivated far more rapidly. Inactivation of E. coli follows the evolution of radiation during the day. In shallow depth microcosms, E. coli was inactivated far more rapidly than in high depth microcosms. The physical chemical parameters [pH, dissolved oxygen (DO)] of microcosms water were higher in shallow depth microcosms than in high depth microcosms suggesting a synergistic effect of sunlight and these parameters to damage E. coli. To increase the efficiency of the elimination of waterborne bacteria, the use of maturation ponds with intermediate depths (0.4m) would be advisable in view of the high temperatures and thus evaporation recorded in sahelian regions.

  13. EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS

    Directory of Open Access Journals (Sweden)

    Ahmed. M. Abdel-Rahman

    2013-01-01

    Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.

  14. EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS

    Directory of Open Access Journals (Sweden)

    Ahmed. M. Abdel-Rahman

    2013-06-01

    Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.

  15. Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)

    2007-01-31

    Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.

  16. Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes.

    Science.gov (United States)

    Gattullo, Concetta Eliana; D'Alessandro, Caterina; Allegretta, Ignazio; Porfido, Carlo; Spagnuolo, Matteo; Terzano, Roberto

    2018-02-15

    Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10w/w mixture/soil ratio). Longer treatments increased Cr stabilization. X-ray microanalyses revealed that Cr was stabilized in geopolymeric structures within large aluminosilicate mineral aggregates (containing both amorphous and crystalline phases). 3D microstructural analyses showed a limited compaction of the soil with still a 20% internal porosity in the neoformed aggregates. Increased pH and salinity after the treatment can be restored by simple soil amendments and washing. Copyright © 2017. Published by Elsevier B.V.

  17. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    Science.gov (United States)

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  18. Use of cement-fly ash-based stabilization techniques for the treatment of waste containing aromatic contaminants

    Science.gov (United States)

    Banaszkiewicz, Kamil; Marcinkowski, Tadeusz

    2017-11-01

    Research on evaluation of evaporation rate of volatile organic compounds from soil beds during processing is presented. For the experiment, soil samples were prepared with the same amounts of benzene and stabilized using a mixture of CEMI 42.5R cement and fly ash from pit-coal combustion. Solidification of soils contaminated with BTEX hydrocarbons using hydraulic binders involves a risk of releasing vapours of these compounds during homogenization of waste with stabilizing mixture introduced and its dilution with water. The primary purposes of the research were: analysis of benzene volume emitted from soil during stabilization/solidification process and characterization of factors that may negatively affect the quality of measurements/the course of stabilization process. Analysis of benzene emission intensity during the process was based on concentration (C6H6) values, recorded with flame-ionization detector above the surface of reacting mixture. At the same time, gaseous contaminants emitted during waste stabilization were passed through pipes filled with activated carbon (SCK, Anasorb CSC). Benzene vapours adsorbed on activated carbon were subjected to analysis using gas chromatograph Varian 450-GC. Evaporation characteristics of benzene during processing contaminated soils revealed the stages creating the highest danger to workers' health, as well as a need for actions connected with modification of technological line.

  19. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  20. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  1. Modern methods for evaluating the workability of cement used as a binder for the stabilization and solidification of toxic wastes

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Giorgio [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1997-10-01

    The workability of cement pastes has a great influence on the final properties of the solidified products, like mechanical strength, stability density and durability. This is quite relevant in the field of stabilization / solidification of toxic and hazardous wastes. Hence considerable importance attaches to having reliable control over the fresh concrete properties, especially its early stiffening behaviour. This paper discussers measuring methods of the stiffening of two different types of cement pastes, prepared with different water / cement ratios, and examines the possible consequences of the early stiffening of cement pastes on their set times and bleeding.

  2. Chemical interaction of radioactive waste with clay engineered barriers: stability of the resulting immobilizer phase

    International Nuclear Information System (INIS)

    Galunin, Evgeny; Vidal, Miquel; Alba, Maria D.

    2010-01-01

    Document available in extended abstract form only. High-level radioactive waste containing long-lived actinides (Pu, Np, Am) originates from the spent fuel from nuclear power plants. The deep geological disposal is the main permanent solution that is considered by the scientific community as the most promising method for the long-term management of the radioactive waste. In a deep geological repository (DGR), which is based on an engineered and natural Multi-barrier system, the construction of engineered barriers composed of clays and concrete materials around the canister seems to be the most effective approach for the radionuclide immobilization. It has been recently observed that a chemical reaction takes place over a wide pH range when putting into contact a smectite sample with the salt of a rare-earth element (REE, actinide simulator) in an aqueous solution under pressure and temperature conditions compatible with the DGR scenario. The chemical reaction leads to the formation of an insoluble, persistent rare-earth di-silicate phase, REE 2 Si 2 O 7 . Taking into account that the di-silicate phase formation could be responsible of the success of the clay barrier once the smectite has lost its swelling and cation exchange capacity, its stability (e.g., the di-silicate dissolution at different pH values) should be considered as an influencing factor for the long-term performance of the DGR. Although to know the di-silicate phase stability in the DGR is a key aspect to evaluate its role in the overall performance of the DGR, it has not yet been found detailed explanation on the effect of the REE ionic radius and the pH on the di-silicate stability. Thus, the main goal of the present study is to investigate the effect of the REE ionic radius on the leaching of different REE (Sc, Lu, Y) and thus on the dissolution of REE 2 Si 2 O 7 (REE = Sc, Lu, Y) over a wide pH range. Scandium, lutetium and yttrium di-silicates were synthesized following the sol-gel method and

  3. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    Science.gov (United States)

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  4. Stabilization of high and low solids Consolidated Incinerator Facility (CIF) waste with super cement

    International Nuclear Information System (INIS)

    Walker, B.W.

    2000-01-01

    This report details solidification activities using selected Mixed Waste Focus Area technologies with the High and Low Solid waste streams. Ceramicrete and Super Cement technologies were chosen as the best possible replacement solidification candidates for the waste streams generated by the SRS incinerator from a list of several suggested Mixed Waste Focus Area technologies. These technologies were tested, evaluated, and compared to the current Portland cement technology being employed. Recommendation of a technology for replacement depends on waste form performance, process flexibility, process complexity, and cost of equipment and/or raw materials

  5. Technical justifications for the tests and criteria in the waste form technical position appendix on cement stabilization

    International Nuclear Information System (INIS)

    Siskind, B.; Cowgill, M.G.

    1992-01-01

    As part of its technical assistance to the Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a background document for the cement stabilization appendix, Appendix A, to Rev. 1 of the Technical Position on Waste Form (TP). Here we present an overview of this background document, which provides technical justification for the stability tests to be performed on cement-stabilized waste forms and for the criteria posed in each test, especially for those tests which have been changed from their counterparts in the May 1983 Rev. 0 TP. We address guidelines for procedures from Appendix A which are considered in less detail or not at all in the Rev. 0 of the TP, namely, qualification specimen preparation (mixing, curing, storage), statistical sampling and analysis, process control program specimen preparation and examination, and surveillance specimens. For each waste form qualification test, criterion or procedural guidelines, we consider the reason for its inclusion in Appendix A, the changes from Rev. 0 of the TP (if applicable), and a discussion of the justification or rationale for these changes

  6. Mercury contamination - Amalgamate (contract with NFS and ADA). Stabilize Elemental Mercury Wastes. Mixed Waste Focus Area. OST Reference Number 1675

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U. S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U. S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scaleable equipment is needed that can: produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-hour worker exposure limit (50 mg/m3) for mercury, and perform the above economically.

  7. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    Science.gov (United States)

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  8. Stabilization of ZnCl2-Containing Waste Using Calcium Sulfoaluminate Cement

    International Nuclear Information System (INIS)

    Cau Dit Coumes, C.; Berger, S.; Le Bescop, P.; Damidot, D.

    2013-01-01

    The potential of calcium sulfoaluminate (CSA) cement was investigated to solidify and stabilize radwastes containing large amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration). Hydration of pastes and mortars prepared with a 0.5 mol/L ZnCl 2 mixing solution was characterized over one year as a function of the gypsum content of the binder and the thermal history of the material. Blending the CSA clinker with 20% gypsum enabled rapid hydration, with only very small delay compared with a reference prepared with pure water. It also improved the compressive strength of the hardened material and significantly reduced its expansion under wet curing. Moreover, the hydrate assemblage was less affected by a thermal treatment at early age simulating the temperature rise and fall occurring in a large-volume drum of cemented waste. Fully hydrated materials contained ettringite, amorphous aluminum hydroxide, straetlingite, together with AFm phases (Kuzel's salt associated with monosulfoaluminate or Friedel's salt depending on the gypsum content of the binder), and possibly C-(A)-S-H. Zinc was readily insolubilized and could not be detected in the pore solution extracted from cement pastes, or in their leachates after 3 months of leaching by pure water at pH 7. The good retention of zinc by the cement matrix was mainly attributed to the precipitation of a hydrated and well crystallized phase with platelet morphology (which may belong to the layered double hydroxides family) at early age ≤ 1 day), and to chemisorption onto aluminum hydroxide at later age. (author)

  9. A Closer Look on Spatiotemporal Variations of Dissolved Oxygen in Waste Stabilization Ponds Using Mixed Models

    Directory of Open Access Journals (Sweden)

    Long Ho

    2018-02-01

    Full Text Available Dissolved oxygen is an essential controlling factor in the performance of facultative and maturation ponds since both take many advantages of algal photosynthetic oxygenation. The rate of this photosynthesis strongly depends on the time during the day and the location in a pond system, whose roles have been overlooked in previous guidelines of pond operation and maintenance (O&M. To elucidate these influences, a linear mixed effect model (LMM was built on the data collected from three intensive sampling campaigns in a waste stabilization pond in Cuenca, Ecuador. Within two parallel lines of facultative and maturation ponds, nine locations were sampled at two depths in each pond. In general, the output of the mixed model indicated high spatial autocorrelations of data and wide spatiotemporal variations of the oxygen level among and within the ponds. Particularly, different ponds showed different patterns of oxygen dynamics, which were associated with many factors including flow behavior, sludge accumulation, algal distribution, influent fluctuation, and pond function. Moreover, a substantial temporal change in the oxygen level between day and night, from zero to above 20 mg O2·L−1, was observed. Algal photosynthetic activity appeared to be the main reason for these variations in the model, as it was facilitated by intensive solar radiation at high altitude. Since these diurnal and spatial patterns can supply a large amount of useful information on pond performance, insightful recommendations on dissolved oxygen (DO monitoring and regulations were delivered. More importantly, as a mixed model showed high predictive performance, i.e., high goodness-of-fit (R2 of 0.94, low values of mean absolute error, we recommended this advanced statistical technique as an effective tool for dealing with high autocorrelation of data in pond systems.

  10. Thermal stability of the French nuclear waste glass - long term behavior modeling

    International Nuclear Information System (INIS)

    Orlhac, X.

    2000-01-01

    The thermal stability of the French nuclear waste glass was investigated experimentally and by modeling to predict its long-term evolution at low temperature. The crystallization mechanisms were analyzed by studying devitrification in the supercooled liquid. Three main crystalline phases were characterized (CaMoO 4 , CeCO 2 , ZnCr 2 O 4 ). Their crystallisation was TO 4.24 wt%, due to the low concentration of the constituent elements. The nucleation and growth curves showed that platinoid elements catalysed nucleation but did not affect growth, which was governed by volume diffusion. The criteria of classic nucleation theory were applied to determine the thermodynamic and diffusional activation energies. Viscosity measurements illustrate the analogy between the activation energy of viscous flow and diffusion, indicating control of crystallization by viscous flow phenomena. The combined action of nucleation and growth was assessed by TTT plots, revealing a crystallization equilibrium line that enables the crystallized fractions to be predicted over the long term. The authors show that hetero-genetics catalyze the transformation without modifying the maximum crystallized fraction. A kinetic model was developed to describe devitrification in the glass based on the nucleation and growth curves alone. The authors show that the low-temperature growth exhibits scale behavior (between time and temperature) similar to thermo-rheological simplicity. The analogy between the resulting activation energy and that of the viscosity was used to model growth on the basis of viscosity. After validation with a simplified (BaO 2 SiO 2 ) glass, the model was applied to the containment glass. The result indicated that the glass remained completely vitreous after a cooling scenario with the one measured at the glass core. Under isothermal conditions, several million years would be required to reach the maximum theoretical crystallization fraction. (author)

  11. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash.

    Science.gov (United States)

    Yakubu, Yahaya; Zhou, Jun; Ping, Duan; Shu, Zhu; Chen, Yun

    2018-02-01

    Fly ash (FA), a product of municipal solid waste incineration (MSWI), has been classified as a kind of hazardous waste due to its high content of heavy metals. FA may be reused in the construction industry or disposed of at landfill sites, and thus poses threats to both the environment and human health. This study sought to establish a scientific basis for accurate selection of suitable pH storage conditions for the FA. We evaluated the potential of MSWI FA sample from the Xinghuo waste incineration power plant, Wuhan, to solidify/stabilize the heavy metal (Cu, Pb, Zn, Cr, Cd, As and Mn) contents, when leached under different pH conditions. The concentration of a heavy metal in the leachate was assumed to inversely reflect the extent of its solidification/stabilization (S/S). The study findings showed that the raw FA contained higher levels of the heavy metals, which were above the acceptable limits. Extremely acidic conditions favoured heavy metal leaching compared to extremely alkaline conditions. The extent of S/S of heavy metals was generally very low under highly acidic conditions (pH ≤ 4), but increased with increasing pH. All the metals solidified/stabilized in pH media of 5-11, except Zn which was detected in the entire pH range. We conclude that changing landfill conditions which can affect the pH environment, will increase heavy metal leaching when the pH ≤ 4. As a result, waste which was initially classified as non-hazardous may later pose harmful risks to both humans and the environment alike. We propose pH of 5-11 as the optimum pH range for the treatment, reuse, and disposal of the ash sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    Science.gov (United States)

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  13. Avoidable waste management costs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  14. Avoidable waste management costs

    International Nuclear Information System (INIS)

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP

  15. Routine Responses to Disruption of Routines

    Science.gov (United States)

    Guha, Mahua

    2015-01-01

    "Organisational routines" is a widely studied research area. However, there is a dearth of research on disruption of routines. The few studies on disruption of routines discussed problem-solving activities that are carried out in response to disruption. In contrast, this study develops a theory of "solution routines" that are a…

  16. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes

    NARCIS (Netherlands)

    Aizpurua-Olaizola, Oier; Navarro, Patricia; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-01-01

    Wine production wastes are an interesting source of natural polyphenols. In this work, wine wastes extracts were encapsulated through vibration nozzle microencapsulation using sodium alginate as polymer and calcium chloride as hardening reagent. An experimental design approach was used to obtain

  17. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m/sup 3/) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time.

  18. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m 3 ) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time

  19. Tank Waste Transport Stability: Summary of Slurry and Salt-Solution Studies for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Welch, T.D.

    2002-06-07

    Despite over 50 years of experience in transporting radioactive tank wastes to and from equipment and tanks at the Department of Energy's Hanford, Savannah River, and Oak Ridge sites, waste slurry transfer pipelines and process piping become plugged on occasion. At Hanford, several tank farm pipelines are no longer in service because of plugs. At Savannah River, solid deposits in the outlet line of the 2H evaporator have resulted in an unplanned extended downtime. Although waste transfer criteria and guidelines intended to prevent pipeline plugging are in place, they are not always adequate. To avoid pipeline plugging in the future, other factors that are not currently embodied in the transfer criteria may need to be considered. The work summarized here is being conducted to develop a better understanding of the chemical and waste flow dynamics during waste transfer. The goal is to eliminate pipeline plugs by improving analysis and engineering tools in the field that incorporate this understanding.

  20. Control of radioactive waste-glass melters: Part 3, Glass electrical stability

    Energy Technology Data Exchange (ETDEWEB)

    Bickford, D F; Propst, R C; Plodinec, M J

    1988-01-01

    Pilot waste-glass melter operations have indicated a tendency for noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Changes in melter geometry are being considered in Japan, Germany, and the United States to permit draining of the noble metals to reduce their effects. Physical modeling of melter electrical patterns, electrode/waste-glass electrochemistry, and non-linear electrical behavior have been evaluated for typical waste-glass. Major melter design changes should not be necessary for the US Department of Energy's Defense Waste Processing Facility (DWPF). Top electrodes will not be significantly affected. Minor alterations in melter design, monitoring of electrical characteristics, and adjustment of bottom electrode currents can provide protection from shorting if noble metals accumulate. 31 refs., 4 figs., 4 tabs.

  1. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This report provides a summary of progress for the project ''Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)'' for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion

  2. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1995-01-01

    This report provides a summary of progress for the project open-quotes Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).close quotes A similar report was previously provided for the period of 1 October 1993 to 30 September 1994. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks which are listed below. Task 1: Quaternary Tectonics Task 3: Mineral Deposits, Volcanic Geology Task 4: Seismology Task 5: Tectonics Task 8: Basinal Studies

  3. Sensitivity analysis on mechanical stability of the underground excavations for an high-level radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Hwa; Kwon, Sang Ki; Choi, Jong Won; Kang, Chul Hyung

    2001-01-01

    For the safe design of an underground nuclear waste repository, it is necessary to investigate the influence of the major parameters on the tunnel stability. In this study, sensitivity analysis was carried out to find the major parameters on the mechanical stability point of view. Fourteen parameters consisted of 10 site parameters and 4 design parameters were included in the FLAC3D. From the numerical analyses employing single parameter variation, it was possible to determine important parameters. In order to investigate the interaction between the parameters, fractional factorial design for the parameters, such as in situ stress ratio, depth, tunnel dimensions, joint spacing, joint stiffness, friction angle, and rock strength, was carried out. And in order to investigate the interaction between design parameters, fractional factorial design for parameters, such as in situ stress, depth, tunnel size, tunnel spacing and borehole spacing, was carried out.

  4. Sensitivity analysis on mechanical stability of the underground excavations for an high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Park, Jeong Hwa; Kwon, Sang Ki; Choi, Jong Won; Kang, Chul Hyung

    2001-01-01

    For the safe design of an underground nuclear waste repository, it is necessary to investigate the influence of the major parameters on the tunnel stability. In this study, sensitivity analysis was carried out to find the major parameters on the mechanical stability point of view. Fourteen parameters consisted of 10 site parameters and 4 design parameters were included in the FLAC3D. From the numerical analyses employing single parameter variation, it was possible to determine important parameters. In order to investigate the interaction between the parameters, fractional factorial design for the parameters, such as in situ stress ratio, depth, tunnel dimensions, joint spacing, joint stiffness, friction angle, and rock strength, was carried out. And in order to investigate the interaction between design parameters, fractional factorial design for parameters, such as in situ stress, depth, tunnel size, tunnel spacing and borehole spacing, was carried out

  5. Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal years 2012

    International Nuclear Information System (INIS)

    Yasue, Ken-ichi; Asamori, Koichi; Niwa, Masakazu; Hanamuro, Takahiro; Saito-Kokubu, Yoko; Sueoka, Shigeru; Makuuchi, Ayumu; Ikuta, Masafumi; Matsubara, Akihiro; Tamura, Hajimu; Kobori, Kazuo; Ishimaru, Tsuneari; Umeda, Koji

    2014-03-01

    This annual report documents the progress of R and D in the 3rd fiscal year during the JAEA 2nd Midterm Plan (FY 2010 - 2014) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: 1) development and systematization of investigation techniques for selecting suitable sites in geosphere stability, 2) development, application and verification of prediction models for evaluating the changes of geological environment in thermal, hydraulic, mechanical and geochemical conditions for a long period of time, and 3) development of new dating techniques for providing information about geologic history and the timing of geologic events. In this report, the current status of R and D activities with previous scientific and technological progress is summarized. (author)

  6. Stability of 35 biochemical and immunological routine tests after 10 hours storage and transport of human whole blood at 21°C

    DEFF Research Database (Denmark)

    Henriksen, Linda O; Faber, Nina R; Moller, Mette F

    2014-01-01

    BACKGROUND: Suitable procedures for transport of blood samples from general practitioners to hospital laboratories are requested. Here we explore routine testing on samples stored and transported as whole blood in lithium-heparin or serum tubes. METHODS: Blood samples were collected from 106...... hospitalized patients, and analyzed on Architect c8000 or Advia Centaur XP for 35 analytes at base line, and after storage and transport of whole blood in lithium-heparin or serum tubes at 21 ± 1°C for 10 h. Bias and imprecision (representing variation from analysis and storage) were calculated from values...... at baseline and after storage, and differences tested by paired t-tests. Results were compared to goals set by the laboratory. RESULTS: We observed no statistically significant bias and results within the goal for imprecision between baseline samples and 10-h samples for albumin, alkaline phosphatase...

  7. Evaluation of two lead-based paint removal and waste stabilization technology combinations on typical exterior surfaces.

    Science.gov (United States)

    Daniels, A E; Kominsky, J R; Clark, P J

    2001-10-12

    A study was conducted to demonstrate the effectiveness of a wet abrasive blasting technology to remove lead-based paint from exterior wood siding and brick substrates as well as to evaluate the effectiveness of two waste stabilization technologies to stabilize the resulting blast media (coal slag and mineral sand) paint debris thereby reducing the leachable lead content. The lead-based paint removal technology effectiveness was determined by the use of an X-ray fluorescence (XRF) spectrum analyzer (L- and K-shell). The effectiveness of the technologies to stabilize the debris was evaluated through the toxicity characteristic leaching procedure (TCLP). Wet abrasive blasting effectively removed the lead-based paint coating from both the wood and brick substrates to below the US Department of Housing and Urban Development Guideline (1mg/cm(2)) with no minimal or no damage to the underlying substrates (Pstabilization technologies consistently stabilized the resultant paint debris to achieve a leachable lead content below the RCRA regulatory threshold of <5 mg/l.

  8. Survey of concrete waste forms

    International Nuclear Information System (INIS)

    Moore, J.G.

    1981-01-01

    The incorporation of radioactive waste in cement has been widely studied for many years. It has been routinely used at nuclear research and production sites for some types of nuclear waste for almost three decades and at power reactor plants for nearly two decades. Cement has many favorable characteristics that have contributed to its popularity. It is a readily available material and has not required complex and/or expensive equipment to solidify radioactive waste. The resulting solid products are noncombustible, strong, radiation resistant, and have reasonable chemical and thermal stability. As knowledge increased on the possible dangers from radioactive waste, requirements for waste fixation became more stringent. A brief survey of some of the research efforts used to extend and improve cementitious waste hosts to meet these requirements is given in this paper. Selected data are presented from the rather extensive study of the applicability of concrete as a waste form for Savannah River defense waste and the use of polymer impregnation to reduce the leachability and improve the durability of such waste forms. Hot-pressed concretes that were developed as prospective host solids for high-level wastes are described. Highlights are given from two decades of research on cementitious waste forms at Oak Ridge National Laboratory. The development of the hydrofracture process for the disposal of all locally generated radioactive waste led to a process for the disposal of I-129 and to the current research on the German in-situ solidification process for medium-level waste and the Oak Ridge FUETAP process for all classes of waste including commercial and defense high-level wastes. Finally, some of the more recent ORNL concepts are presented for the use of cement in the disposal of inorganic and biological sludges, waste inorganic salts, trash, and krypton

  9. Sunlight mediated inactivation mechanisms of Enterococcus faecalis and Escherichia coli in clear water versus waste stabilization pond water.

    Science.gov (United States)

    Kadir, Khalid; Nelson, Kara L

    2014-03-01

    Escherichia coli and enterococci have been previously reported to differ in the mechanisms and conditions that affect their sunlight-mediated inactivation in waste stabilization ponds. This study was undertaken to further characterize these mechanisms, using simulated sunlight and single strains of laboratory-grown E. coli and Enterococcus faecalis, with a focus on characterizing the contribution of exogenous reactive oxygen species to the inactivation process. We found that direct damage by UVB light (280-320 nm) was not a significant inactivation mechanism for either organism. E. coli inactivation was strongly dependent on dissolved oxygen concentrations and the presence of UVB wavelengths but E. coli were not susceptible to inactivation by exogenous sensitizers present in waste stabilization pond water. In contrast, E. faecalis inactivation in pond water occurred primarily through exogenous mechanisms, with strong evidence that singlet oxygen is an important transient reactive species. The exogenous mechanism could utilize wavelengths into the visible spectrum and sensitizers were mainly colloidal, distributed between 0.2 and ∼1 μm in size. Singlet oxygen is likely an important endogenous species in both E. faecalis and E. coli inactivation due to sunlight. Although the two organisms had similar inactivation rates in buffered, clear water, the inactivation rate of E. faecalis was 7 times greater than that of E. coli in air-saturated pond water at circumneutral pH due to its susceptibility to exogenous sensitizers and longer wavelengths. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. EVALUATING THE ECOLOGICAL RESILIENT DRIVEN PERFORMANCE OF A TROPICAL WASTE STABILIZATION POND SYSTEM USING ECOLOGICAL SIGNATURE OF BIOLOGICAL INTEGRITY

    Directory of Open Access Journals (Sweden)

    Susmita Lahiri Ganguly

    2015-06-01

    Full Text Available Using ecological signature of biological integrity as a measure of performance, the reclamation efficiency of waste stabilization ponds was evaluated over a period of four years in a tropical sewage treatment plant – cum fish culture consisting of two anaerobic, two facultative and four maturation ponds located serially across the sewage effluent gradient. The four maturation ponds were used for batch culture of fish. Samples of surface and bottom water as well as surface sediment were collected twice a month from different ponds of the system and examined for some nutrient cycling bacteria, primary production, chlorophyll content of micro-algae, phytoplankton, zooplankton abundance, fish growth and water quality parameters. Computation of ecological signature using aerobic mineralization index for heterotrophic and ammonifying bacteria revealed steady increase across the sewage effluent gradient. The heterotrophic and ammonifying bacterial populations appeared to have a direct function with the concentrations of chemical oxygen demand of water. The sum of total scores for different optimal conditions for fish growth increased as a function of the distance from the source of effluent implying that ecological resilience of the waste stabilization ponds has been accomplished by the sedimentation, chelation, and biological functional attributes mediated through redundancy of different subsystems, self- purification capacity of the system as a whole.

  11. The Impact of Leachate From Clean Coal Technology Waste on the Stability of Clay and Synthetic Liners

    International Nuclear Information System (INIS)

    Brown, T.H.; Ghate, M.

    1996-01-01

    This project was developed to provide design criteria for landfill disposal sites used for sludges such as those generated using the Clean Coal Technologies (CCT) tested at the Public Service Company of Colorado's Arapahoe Power Plant. The CCT wastes used were produced at the Arapahoe Plant Unit No. 4 that was equipped with the integrated dry NO x /S 2 emissions control system installed under the Clean Coal Technology (CCT) Program. The investigation emphasized the potential impact of clean coal technology materials (sodium and calcium injection systems, and urea injection) on the permeability and stability characteristics of clay liner materials and the stability of synthetic liner materials. Flexible-wall permeameters were used to determine the hydraulic conductivities (HC) of the clay liner materials impacted by various compactive conditions. Tests were conducted using the waste materials overlying the clay liner materials under wet/dry cycles, freeze/thaw cycles, and over 120-day periods. The impact of CCT materials on the characteristics of the clay liner materials studied in this project was minimal The HC measurements of the waste/clay liner systems were similar to the water/clay liner systems. HC decreased for clay liners compacted at moisture levels slightly higher than optimum (standard Procter) and increased for liners compacted at moisture levels lower than optimum (standard Procter). Although some swelling was evident in the sodium materials, the sludge materials did not have a negative impact on the integrity of the liners over 120-day tests. Wet/dry cycles tended to result in lower HC, while freeze/thaw cycles substantially increased HC for the liners tested

  12. Effect of curing time on selected properties of soil stabilized with fly ash, marble dust and waste sand for road sub-base materials.

    Science.gov (United States)

    Firat, Seyhan; Khatib, Jamal M; Yilmaz, Gulgun; Comert, A T

    2017-07-01

    The properties of sub-base filling materials in highway construction are essential, as they can determine the performance of the road in service. Normally, the existing materials are removed and replaced with new materials that have adequate load-bearing capacity. Rising environmental concern and new environmental legislations have made construction professionals consider other methods. These methods include stabilizing the existing materials with other additives to improve their performance. Additives can be waste materials generated by different industries. In this work, the existing excavated soil is stabilized with waste materials. The wastes consisted of fly ash, marble dust and waste sand. The percentage addition of waste materials was 5%, 10%, 15% and 20% (by mass) of the existing soil. The soil/waste specimens were cured for 1, 7, 28, 56, 90 and 112 days before testing. Testing included the dry unit weight and unconfined compressive strength ( q u ) as well as X-ray diffraction analysis and scanning electron microscopy observation. Also, the California Bearing Ratio values were obtained and are reported in this investigation. The results showed that the q u values increased with the increase in waste materials content. Also, there is tendency for the dry unit weight to increase with the increase in waste materials.

  13. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    Science.gov (United States)

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  14. MANAGING ARSENIC CONTAMINATED SOIL, SEDIMENT, AND INDUSTRIAL WASTE WITH SOLIDIFICATION/STABILIZATION TREATMENT

    Science.gov (United States)

    Arsenic contamination of soil, sediment and groundwater is a widespread problem in certain areas and has caused great public concern due to increased awareness of the health risks. Often the contamination is naturally occurring, but it can also be a result of waste generated from...

  15. Application of electrochemical peroxidation (ECP) process for waste-activated sludge stabilization and system optimization using response surface methodology (RSM).

    Science.gov (United States)

    Gholikandi, Gagik Badalians; Kazemirad, Khashayar

    2018-03-01

    In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe 2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H 2 O 2 concentration and the retention time were 3, 3.2 mA/cm 2 , 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe 2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8-2.5 kWh (kg VSS removed) -1 ) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2-3 kWh (kg VSS removed) -1 ). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe 2+ concentrations into the system and the VSS removal efficiency of the process precisely.

  16. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste.

    Science.gov (United States)

    Giudicianni, Paola; Bozza, Pio; Sorrentino, Giancarlo; Ragucci, Raffaele

    2015-10-01

    In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment or condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of the common domestic appliances. Finally, the evaluation of the energy recovered in the final product per unit weight of raw material shows that in most cases it is comparable to the energy required from the treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An Assessment of the Stability and the Potential for In-Situ Synthesis of Regulated Organic Compounds in High Level Radioactive Waste Stored at Hanford, Richland, Washington

    International Nuclear Information System (INIS)

    Wiemers, K.D.; Babad, H.; Hallen, R.T.; Jackson, L.P.; Lerchen, M.E.

    1999-01-01

    The stability assessment examined 269 non-detected regulated compounds, first seeking literature references of the stability of the compounds, then evaluating each compound based upon the presence of functional groups using professional judgment. Compounds that could potentially survive for significant periods in the tanks (>1 year) were designated as stable. Most of the functional groups associated with the regulated organic compounds were considered unstable under tank waste conditions. The general exceptions with respect to functional group stability are some simple substituted aromatic and polycyclic aromatic compounds that resist oxidation and the multiple substituted aliphatic and aromatic halides that hydrolyze or dehydrohalogenate slowly under tank waste conditions. One-hundred and eighty-one (181) regulated, organic compounds were determined as likely unstable in the tank waste environment

  18. An Assessment of the Stability and the Potential for In-Situ Synthesis of Regulated Organic Compounds in High Level Radioactive Waste Stored at Hanford, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wiemers, K.D.; Babad, H.; Hallen, R.T.; Jackson, L.P.; Lerchen, M.E.

    1999-01-04

    The stability assessment examined 269 non-detected regulated compounds, first seeking literature references of the stability of the compounds, then evaluating each compound based upon the presence of functional groups using professional judgment. Compounds that could potentially survive for significant periods in the tanks (>1 year) were designated as stable. Most of the functional groups associated with the regulated organic compounds were considered unstable under tank waste conditions. The general exceptions with respect to functional group stability are some simple substituted aromatic and polycyclic aromatic compounds that resist oxidation and the multiple substituted aliphatic and aromatic halides that hydrolyze or dehydrohalogenate slowly under tank waste conditions. One-hundred and eighty-one (181) regulated, organic compounds were determined as likely unstable in the tank waste environment.

  19. Development and demonstration of a stabilization system for buried mixed waste tanks: Initital results of the tank V-9 hot demonstration

    International Nuclear Information System (INIS)

    Matthern, G.E.; Kuhns, D.J.; Meservey, R.H.; Farnsworth, R.K.

    1996-01-01

    This paper describes a systematic approach for the stabilization of buried mixed waste tanks and presents the status of an application of this approach to a specific hot waste tank demonstration to be performed in FY-96. The approach uses the cradle-to-grave concept and includes technical, health and safety, and regulatory considerations and requirements. It starts with the identification of the tank and continues to the final disposition and monitoring of the tank

  20. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.

    Science.gov (United States)

    Li, Weimin; Wang, Xiaobo

    2015-01-01

    Waste cooking oil (WCO) was chemically modified via epoxidation using H2O2 followed by transesterification with methanol and branched alcohols (isooctanol, isotridecanol and isooctadecanol) to produce bio-lubricants with improved oxidative stability and low temperature properties. Physicochemical properties of synthesized bio-lubricants such as pour point (PP), cloud point (CP), viscosity, viscosity index (VI), oxidative stability, and corrosion resistant property were determined according to standard methods. The synthesized bio-lubricants showed improved low temperature flow performances compared with WCO, which can be attributing to the introduction of branched chains in their molecular structures. What's more, the oxidation stability of the WCO showed more than 10 folds improvement due to the elimination of -C=C-bonds in the WCO molecule. Tribological performances of these bio-lubricants were also investigated using four-ball friction and wear tester. Experimental results showed that derivatives of WCO exhibited favorable physicochemical properties and tribological performances which making them good candidates in formulating eco-friendly lubricants.

  1. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag.

    Science.gov (United States)

    Zhou, Xian; Zhou, Min; Wu, Xian; Han, Yi; Geng, Junjun; Wang, Teng; Wan, Sha; Hou, Haobo

    2017-09-01

    Fly ash is a hazardous byproduct of municipal solid waste incineration (MSWI). Cementitious material that is based on ground-granulated blast furnace slag (GGBFS) has been tested and proposed as a binder to stabilize Pb, Cd, and Zn in MSWI fly ash (FA). Cr, however, still easily leaches from MSWI FA. Different reagents, such as ascorbic acid (VC), NaAlO 2 , and trisodium salt nonahydrate, were investigated as potential Cr stabilizers. The results of the toxicity characteristic leaching procedure (TCLP) showed that VC significantly improved the stabilization of Cr via the reduction of Cr(VI) to Cr(III). VC, however, could interfere with the hydration process. Most available Cr was transformed into stable Cr forms at the optimum VC content of 2 wt%. Cr leaching was strongly pH dependent and could be represented by a quintic polynomial model. The results of X-ray diffraction and scanning electron microscopy-energy dispersive analysis revealed that hollow spheres in raw FA were partially filled with hydration products, resulting in the dense and homogeneous microstructure of the solidified samples. The crystal structures of C-S-H and ettringite retained Zn and Cr ions. In summary, GGBFS-based cementitious material with the low addition of 2 wt% VC effectively immobilizes Cr-bearing MSWI FA. Copyright © 2017. Published by Elsevier Ltd.

  2. Stabilization of lead in an alkali-activated municipal solid waste incineration fly ash-Pyrophyllite-based system.

    Science.gov (United States)

    Shiota, Kenji; Nakamura, Takafumi; Takaoka, Masaki; Aminuddin, Siti Fatimah; Oshita, Kazuyuki; Fujimori, Takashi

    2017-10-01

    This work focuses on the stabilization and speciation of lead (Pb) in a composite solid produced from an alkali-activated municipal solid waste incineration fly ash (MSWIFA)-pyophyllite-based system. The solid product was synthesized after mixtures of raw materials (dehydrated pyrophyllite, MSWIFA, 14 mol/L aqueous sodium hydroxide, and sodium silicate solution) were cured at 105 °C for 24 h. The product could reduce the leaching of Pb and the Pb concentration in the leachate was 7.0 × 10 -3 using the Japanese leaching test and 9.7 × 10 -4  mg/L using toxicity characteristics leaching procedure method, which satisfied the respective test criteria and successfully stabilized Pb in this system. The solid product had a compressive strength of 2 MPa and consisted mainly of crystalline phases. Scanning electron microscopy with X-ray analysis and X-ray absorption fine structure suggested that Pb was present along with Al, Si, and O, and that the atomic environment around the Pb was similar to that of PbSiO 3 . These results suggest that the alkali-activated MSWIFA-pyrophyllite-based system could be used to stabilize Pb in MSWIFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste

    International Nuclear Information System (INIS)

    Giudicianni, Paola; Bozza, Pio; Sorrentino, Giancarlo; Ragucci, Raffaele

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • A domestic scale prototype for the pre-treatment of OFMSW has been tested. • Two grinding techniques are compared and thermopress is used for the drying stage. • Increasing temperature up to 170 °C reduces energy consumption of the drying stage. • In the range 5–10 bar a reduction of 97% of the initial volume is obtained. • In most cases energy recovery from the dried waste matches energy consumption. - Abstract: In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment or condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of

  4. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  5. The structures and stability of media intended for the immobilization of high level radioactive waste

    International Nuclear Information System (INIS)

    Tempest, P.A.

    1979-05-01

    High level radioactive waste contains about 40 different elements and, in time, many of these elements are transformed by radioactive decay into different-sized atoms with new chemical properties. The suitability of ordered crystal structures and unordered glass structures as media for immobilising the waste elements is compared. The structural properties of a mixture of synthetic minerals (SYNROC) are described and the various minerals' ability to accommodate ions of different radii and charge assessed. Similary the unordered structure of glass is examined and the probability of the glass remaining non-crystalline during manufacture and storage taken into account. Alternative glassification technologies in the form of the French AVM continuous process and the UK HARVEST batch processes are described and compared, and their likely effect on the structural properties of the final solid glass block considered. (author)

  6. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    International Nuclear Information System (INIS)

    Gretchen Matthern; Duane Hanson; Neal Yancey; Darrell Knudson

    2005-01-01

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the ''hottest'' (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates for WAXFIX/paraffin do not indicate any immediate problems with the use of WAXFIX for grouting beryllium or other wastes in the SDA

  7. Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation.

    Science.gov (United States)

    López, Félix A; Alguacil, Francisco J; Rodríguez, Olga; Sierra, María José; Millán, Rocío

    2015-01-01

    European Directive 2013/39/EU records mercury as a priority hazardous substance. Regulation n° 2008/1102/EC banned the exportation of mercury and required the safe storage of any remaining mercury compounds. The present work describes the encapsulation of three wastes containing combinations of HgS, HgSe, HgCl2, HgO2, Hg3Se2Cl2, HgO and Hg(0), according to patent of Spanish National Research Council WO2011/029970A2. The materials obtained were subjected to leaching tests according to standards UNE-EN-12457 and CEN/TS 14405:2004. The results are compared with the criteria established in the Council Decision 2003/33/EC for the acceptance of waste at landfills. The Hg concentrations of all leachates were <0.01mgHg/kg for a liquid/solid ratio of 10l/kg. All three encapsulated materials therefore meet the requirements for storage in inert waste landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P. [and others

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  9. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    International Nuclear Information System (INIS)

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these open-quotes geomorphic hazardsclose quotes include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC

  10. Stabilization of APC residues from waste incineration with ferrous sulfate on a semi-industrial scale

    DEFF Research Database (Denmark)

    Lundtorp, Kasper; Jensen, Dorthe Lærke; Christensen, Thomas Højlund

    2002-01-01

    tests: the batch leacing test, the pH-static leaching test, the availability test, and the column test. These tests showed that the stabilized residues have remarkably improved leaching properties, especially with respect to Pb but also with respect to Cd, Cu, and Zn. The release of Pb was reduced...

  11. Stability of model recycled mixed plastic waste compatibilised with a cooperative compatibilisation system

    Czech Academy of Sciences Publication Activity Database

    Luzuriaga, S. E.; Kovářová, Jana; Fortelný, Ivan

    2011-01-01

    Roč. 96, č. 5 (2011), s. 751-755 ISSN 0141-3910 R&D Projects: GA MŠk 2B06097 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer recycling * reactive compatibilisation system * stabilization Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.769, year: 2011

  12. Revegetation in abandoned quarries with landfill stabilized waste and gravels: water dynamics and plant growth - a case study

    Science.gov (United States)

    Zhang, Cheng-liang; Feng, Jing-jing; Rong, Li-ming; Zhao, Ting-ning

    2017-11-01

    Large amounts of quarry wastes are produced during quarrying. Though quarry wastes are commonly used in pavement construction and concrete production, in situ utilization during ecological restoration of abandoned quarries has the advantage of simplicity. In this paper, rock fragments 2-3 cm in size were mixed with landfill stabilized waste (LSW) in different proportions (LSW : gravel, RL), which was called LGM. The water content, runoff and plant growth under natural precipitation were monitored for 2 years using a runoff plot experiment. LGM with a low fraction of LSW was compacted to different degrees to achieve an appropriate porosity; water dynamics and plant growth of compacted LGM were studied in a field experiment. The results showed the following: (1) LGM can be used during restoration in abandoned quarries as growing material for plants. (2) RL had a significant effect on the infiltration and water-holding capacity of LGM and thus influenced the retention of precipitation, water condition and plant growth. LGM with RL ranging from 8:1 to 3:7 was suitable for plant growth, and the target species grew best when RL was 5:5. (3) Compaction significantly enhanced water content of LGM with a low RL of 2:8, but leaf water content of plants was lower or unchanged in the more compacted plots. Moderate compaction was beneficial to the survival and growth of Robinia pseudoacacia L. Platycladus orientalis (L.) Franco and Medicago sativa L. were not significantly affected by compaction, and they grew better under a high degree of compaction, which was disadvantageous for the uppermost layer of vegetation.

  13. Analysis of the stability of high-solids anaerobic digestion of agro-industrial waste and sewage sludge.

    Science.gov (United States)

    Aymerich, E; Esteban-Gutiérrez, M; Sancho, L

    2013-09-01

    The pilot-scale high-solids anaerobic digestion (HS-AD) of agro-industrial wastes and sewage sludge was analysed in terms of stability by monitoring the most common parameters used to check the performance of anaerobic digesters, i.e. Volatile Fatty Acids (VFA), ammonia nitrogen, pH, alkalinity and methane production. The results reflected similar evolution for the parameters analysed, except for an experiment that presented an unsuccessful start-up. The rest of the experiments ran successfully, although the threshold values proposed in the literature for the detection of an imbalance in wet processes were exceeded, proving the versatility of HS-AD to treat different wastes. The results evidence the need for understanding the dynamics of a high-solids system so as to detect periods of imbalance and to determine inhibitory levels for different compounds formed during anaerobic decomposition. Moreover, the findings presented here could be useful in developing an experimental basis to construct new control strategies for HS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases.

    Science.gov (United States)

    Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne

    2009-11-15

    Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).

  15. Diffusion of sodium cations and water stability of glasses for immobilization of middle-active wastes

    International Nuclear Information System (INIS)

    Ivanov, I.A.; Gulin, A.N.; Stefanovskij, S.V.

    1991-01-01

    Sodium cations diffusion coefficients in three model alumoborosilicate silicate and five alumophosfate glasses, including sulfate containing ones, are determined by method of integral residual activity. It is astablished that sodium cation mobilities within the investigated temperature range in glasses of the first group are by 1-3 orders lower than in the second one. Data on rates of sodium leaching from glasses by distilled water are obtained. It is shown that there exist some deviations from symbate character of changing diffusion coefficients and sodium leaching rates. It is found that it is possible to include much more sulfate containing wastes in alumophosphate glasses than in alumoborosilicate ones

  16. Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching

    Science.gov (United States)

    Yudintsev, S. V.; Pervukhina, A. M.; Mokhov, A. V.; Malkovsky, V. I.; Stefanovsky, S. V.

    2017-04-01

    In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na-Al-P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.

  17. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Erik R. Coats; William A. Smith; Frank J. Loge; Michael P. Wolcott

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activated sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.

  18. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Gretchen Matthern; Duane Hanson; Neal Yancey; Darrell Knudson

    2005-12-01

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the "hottest" (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates

  19. Comparative study of different techniques of composting and their stability evaluation in municipal solid waste

    International Nuclear Information System (INIS)

    Iqbal, M.K.; Khan, R.A.; Nadeem, A.; Hussnain, A.

    2012-01-01

    Spatial differences in the physical and chemical characteristics related to maturity of composted organic matter are strongly influenced by composting methods. For evaluation of compost maturity three locally fabricated composters (aerobic, mixed type, anaerobic) processes were examined at seven days interval up to 91 days by loading MSW along with bulking agent. Gradual changes in physico chemical characteristics (temperature, pH, moisture, CEC, humification) related to stability and maturity of compost were studied and compared. Increase in ammonia nitrogen level due to rise in temperature was maximum in aerobic process. Substantial increase in CEC in aerobic process was earlier which leads to establish the optimal degree of maturity as compared to other processes. FA and HI decrease rapidly as composting progressed. Optimal level in stability and maturity parameters like C:N, HA, DH and HR were attained earlier in aerobic process as compared to mixed type and anaerobic processes due to continuous aeration. The parameters (HR, DH, FA, HA), which indicate the compost stability were correlated among themselves. The parameters defining maturity such as CEC, ammonia nitrate and C:N ratio were also related to above mention parameters. The compost from the aerobic process provided good humus and micro nutrients. Result from this study will assist in method optimization and quality of the compost product. (author)

  20. Study of the solubility and stability of polystyrene wastes in a dissolution recycling process.

    Science.gov (United States)

    García, María Teresa; Gracia, Ignacio; Duque, Gema; Lucas, Antonio de; Rodríguez, Juan Francisco

    2009-06-01

    Dissolution with suitable solvents is one of the cheapest and more efficient processes for polystyrene waste management. In this work the solubility of polystyrene foams in several solvents benzene, toluene, xylene, tetrahydrofuran, chloroform, 1,3-butanediol, 2-butanol, linalool, geraniol, d-limonene, p-cymene, terpinene, phellandrene, terpineol, menthol, eucalyptol, cinnamaldheyde, nitrobenzene, N,N-dimethylformamide and water has been determined. Experimental results have shown that to develop a "green process" the constituents of essential oils, d-limonene, p-cymene, terpinene, phellandrene, are the most appropriate solvents. The action of these solvent does not produce any degradation of polymer chains. The solubility of the polymer in the mentioned solvents at different temperatures has been investigated. The solvent can be easily recycled by distillation.

  1. Study of the solubility and stability of polystyrene wastes in a dissolution recycling process

    International Nuclear Information System (INIS)

    Garcia, Maria Teresa; Gracia, Ignacio; Duque, Gema; Lucas, Antonio de; Rodriguez, Juan Francisco

    2009-01-01

    Dissolution with suitable solvents is one of the cheapest and more efficient processes for polystyrene waste management. In this work the solubility of polystyrene foams in several solvents benzene, toluene, xylene, tetrahydrofuran, chloroform, 1,3-butanediol, 2-butanol, linalool, geraniol, d-limonene, p-cymene, terpinene, phellandrene, terpineol, menthol, eucalyptol, cinnamaldheyde, nitrobenzene, N,N-dimethylformamide and water has been determined. Experimental results have shown that to develop a 'green process' the constituents of essential oils, d-limonene, p-cymene, terpinene, phellandrene, are the most appropriate solvents. The action of these solvent does not produce any degradation of polymer chains. The solubility of the polymer in the mentioned solvents at different temperatures has been investigated. The solvent can be easily recycled by distillation.

  2. Demonstration of In-Situ Stabilization of Buried Waste at Pit G-11 at the Brookhaven National laboratory Glass Pits Disposal Site

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Gilbert, J.; Heiser, J.

    1999-01-01

    In 1989 BNL was added to the EPAs National Priorities List. The site is divided into seven operable units (OU). OU-I includes the former landfill area. The field task site is noted as the AOC 2C Glass Holes location. Beginning in the 1960s and continuing into the 1980s, BNL disposed of laboratory waste (glassware, chemicals and animal carcasses) in numerous shallow pits. The drivers for remediating the pits are; historical records that indicate hazardous materials may have been disposed of in the pits; ground water contamination down gradient of the pits; a test excavation of one of the glass holes that unearthed laboratory glass bottles with unidentified liquids still contained; and the fact that BNL rests atop an EPA designated sole-source aquifer. The specific site chosen for this demonstration was pit G-11. The requirements that lead to choosing this pit were; a well characterized pit and a relatively isolated pit where our construction operations would not impact on adjacent pits. The glass holes area, including pit G-11, was comprehensively surveyed using a suite of geophysical techniques (e.g., EM-31, EM-61, GPR). Prior to stabilizing the waste form a subsurface barrier was constructed to contain the entire waste pit. The pit contents were then stabilized using a cement grout applied via jet grouting. The stabilization was performed to make removal of the waste from the pit easier and safer in terms of worker exposure. The grouting process would mix and masticate the waste and grout and form a single monolithic waste form. This large monolith would then be subdivided into smaller 4 foot by 4 foot by 10-12 foot block using a demolition grout. The smaller blocks would then be easily removed from the site and disposed of in a CERCLA waste site

  3. Modelling antibiotics transport in a waste stabilization pond system in Tanzania

    DEFF Research Database (Denmark)

    Moller, Cathrine Christmas; Weisser, Johan J.; Msigala, Sijaona

    2016-01-01

    Antibiotics in wastewater have become a growing problem in urban and peri-urban areas in developing countries as a result of increased use and misuse of antibiotics. A simple dynamic model, that describes the most important removal processes of antibiotic from the wastewater stabilization pond....... Metronidazole was mainly removed through the outlet, but settling and hydrolysis/photolysis also played a role. A sensitivity analysis (±10%) showed that the soil adsorption coefficient, the amount of suspended matter and the ratio of flow rate and volume were the most sensitive parameters. To strengthen...

  4. Functional Stability of a Mixed Microbial Consortium Producing PHA From Waste Carbon Sources

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Erik R. Coats; William A. Smith; Frank J. Loge; Michael P. Wolcott

    2006-04-01

    Polyhydroxyalkanoates (PHAs) represent an environmentally-effective alternative to synthetic thermoplastics; however, current production practices are not sustainable. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing real wastewaters and mixed microbial consortia from municipal activated sludge as inoculum. Polymer production reached 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. Employing denaturing gradient gel electrophoresis of 16S-rDNA from PCR-amplified DNA extracts, distinctly different communities were observed between and within wastewaters following enrichment. Most importantly, functional stability was maintained despite differing and contrasting microbial populations.

  5. Methodology of environmental evaluation of wastes stabilized/solidified by hydraulic binders; Methodologie d'evaluation environnementale des dechets stabilises / solidifies par liants hydrauliques

    Energy Technology Data Exchange (ETDEWEB)

    Imyim, A.

    2000-12-15

    The aim of this work is the formalization of a methodology of evaluation of the leaching behaviour of massive porous materials obtained by stabilization/solidification of wastes. In a first part, a set of simple leaching tests is proposed which allow the physico-chemical characterization of materials. In order to better understand the phenomena involved in the release process, the methodology has been applied to hydraulic binder-based and lead-bearing synthesized materials. In a second step, a mathematical model has been proposed for the description of the leaching behaviour. The development of the model is based on the observations and experimental results obtained with the synthesized materials. Finally, the methodology of evaluation of the leaching behaviour has been applied to two cases of real wastes: the fly ashes of a Danish municipal waste incineration facility, and the galvanic sludges from an industrial waste water processing facility from Netherlands. (J.S.)

  6. Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology

    Directory of Open Access Journals (Sweden)

    Laura Benassi

    2015-10-01

    Full Text Available A new technology was recently developed for municipal solid waste incineration (MSWI fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA, an agricultural byproduct material (COSMOS-RICE project. The obtained final inert can be applied in several applications to produce “green composites”. In this work, for the first time, a process for pre-treatment of rice husk, before its use in the stabilization of heavy metals, based on the employment of Instant Pressure Drop technology (DIC was tested. The aim of this work is to verify the influence of the pre-treatment on the efficiency on heavy metals stabilization in the COSMOS-RICE technology. DIC technique is based on a thermomechanical effect induced by an abrupt transition from high steam pressure to a vacuum, to produce changes in the material. Two different DIC pre-treatments were selected and thermal annealing at different temperatures were performed on rice husk. The resulting RHAs were employed to obtain COSMOS-RICE samples, and the stabilization procedure was tested on the MSWI fly ash. In the frame of this work, some thermal treatments were also realized in O2-limiting conditions, to test the effect of charcoal obtained from RHA on the stabilization procedure. The results of this work show that the application of DIC technology into existing treatment cycles of some waste materials should be investigated in more details to offer the possibility to stabilize and reuse waste.

  7. Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology

    Science.gov (United States)

    Benassi, Laura; Franchi, Federica; Catina, Daniele; Cioffi, Flavio; Rodella, Nicola; Borgese, Laura; Pasquali, Michela; Depero, Laura E.; Bontempi, Elza

    2015-01-01

    A new technology was recently developed for municipal solid waste incineration (MSWI) fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA), an agricultural byproduct material (COSMOS-RICE project). The obtained final inert can be applied in several applications to produce “green composites”. In this work, for the first time, a process for pre-treatment of rice husk, before its use in the stabilization of heavy metals, based on the employment of Instant Pressure Drop technology (DIC) was tested. The aim of this work is to verify the influence of the pre-treatment on the efficiency on heavy metals stabilization in the COSMOS-RICE technology. DIC technique is based on a thermomechanical effect induced by an abrupt transition from high steam pressure to a vacuum, to produce changes in the material. Two different DIC pre-treatments were selected and thermal annealing at different temperatures were performed on rice husk. The resulting RHAs were employed to obtain COSMOS-RICE samples, and the stabilization procedure was tested on the MSWI fly ash. In the frame of this work, some thermal treatments were also realized in O2-limiting conditions, to test the effect of charcoal obtained from RHA on the stabilization procedure. The results of this work show that the application of DIC technology into existing treatment cycles of some waste materials should be investigated in more details to offer the possibility to stabilize and reuse waste. PMID:28793605

  8. Reflexivity of Routines

    DEFF Research Database (Denmark)

    Yamauchi, Yutaka; Hiramoto, Takeshi

    2016-01-01

    This study reconsiders the meaning and implications of reflexivity for the theory of routines. Due to their mundane nature, routines tend to be considered unambiguous phenomena that everyone can readily understand. The performative theory of routines has challenged this view by suggesting there i...

  9. Routines and Organizational Change

    DEFF Research Database (Denmark)

    Yi, Sangyoon; Becker, Markus; Knudsen, Thorbjørn

    2014-01-01

    Routines have been perceived as a source of inertia in the process of organizational change. In this study, we suggest an overlooked, but prevalent, mechanism by which the inertial nature of routines helps, rather than hinders, organizational adaptation. Routine-level inertia plays a hidden role...

  10. In situ formation of magnetite reactive barriers in soil for waste stabilization

    Science.gov (United States)

    Moore, Robert C.

    2003-01-01

    Reactive barriers containing magnetite and methods for making magnetite reactive barriers in situ in soil for sequestering soil contaminants including actinides and heavy metals, organic materials, iodine and technetium are disclosed. According to one embodiment, a two-step reagent introduction into soil takes place. In the first step, free oxygen is removed from the soil by separately injecting into the soil aqueous solutions of iron (II) salt, for example FeCl.sub.2, and base, for example NaOH or NH.sub.3 in about a 1:1 volume ratio. Then, in the second step, similar reagents are injected a second time (however, according to about a 1:2 volume ratio, iron to salt) to form magnetite. The magnetite formation is facilitated, in part, due to slow intrusion of oxygen into the soil from the surface. The invention techniques are suited to injection of reagents into soil in proximity to a contamination plume or source allowing in situ formation of the reactive barrier at the location of waste or hazardous material. Mixing of reagents to form. precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

  11. Under-performance evaluation and rehabilitation strategy for waste stabilization ponds in Mexico.

    Science.gov (United States)

    Lloyd, B J; Leitner, A R; Vorkas, C A; Guganesharajah, R K

    2003-01-01

    Fourteen high altitude (> 2,500 m amsl) small Waste Stabilisation Pond systems (WSPs) commissioned during the last 12 years in the State of Mexico in Mexico, were built to a common 3-stage design. Each system is comprised of 2 parallel series of bio-digesters, anaerobic and facultative ponds. All fourteen WSP systems produce poor quality effluents, and eight studied in more detail did not meet any of the national standards for discharge to rivers or the standards required for reuse. The under-performance of these WSPs is underlined by the anaerobic condition of the upper reaches of the Lerma river which receives the sewage from the towns served by these treatment plants. Preliminary surveillance diagnostics identified fundamental operational problems in all eight WSP systems located in the upper Lerma catchment. The results of an intensive secondary diagnostic performance evaluation on one system were used to identify the reasons for under-performance. Under-performance was caused by under-design, hydraulic short-circuiting, adverse environmental conditions and poor operation and maintenance. A strategy for improvement of design and operation to meet national standards is presented.

  12. Contribution to the study of wastes stabilization by sulfo-aluminate cement

    International Nuclear Information System (INIS)

    Peysson, S.

    2005-02-01

    Calcium sulfo-aluminate cement is mainly composed of yeelimite known to be a precursor of ettringite formation. Ettringite is able to incorporate several heavy metals by isomorphous substitutions without altering its crystalline structure. The design of a binder required for immobilizing heavy metals was undertaken. The hydration study of clinker, and cement containing 4 amounts of gypsum has been carried out by means of XRD, DTA and IR spectrometry. It was pointed out that the addition of gypsum enhances hydration. Two binders were selected: 80/20 and 70/30. The immobilisation of 7 pollutants was very successful. Nevertheless, damages appeared with the binder 70/30 containing sodium chromate and dichromate: sodium caused activation of yeelimite reactivity and important dissolution of gypsum leading to important ettringite production. With a great amount of gypsum (30 %), dissolution led to secondary ettringite formation which damaged the hardened paste. Adding polyol enhances the retention of sodium chromate. On the other hand, the immobilisation of two types of weakly radioactive wastes supplied by CEA has been made. Results obtained in terms of setting time, compressive strength and leaching were excellent. (author)

  13. Long-term climate stability and the integrity of a South African nuclear waste site

    International Nuclear Information System (INIS)

    Posnik, S.J.; Muller, M.J.; Levin, M.

    1990-01-01

    The length of time that radioisotopes buried in a radioactive waste repository could remain potentially hazardous necessitates performance assessments which take long-term environmental change into consideration. The variability of climate is a key factor in the determination of possible environments and so future scenario predictions must revolve around probabilities of climatic change. A conceptual model of present wet- and dry-spell analogues over southern Africa is extrapolated into the future, based on the knowledge of climatic fluctuations in the past. Three likely future climatic scenarios are formulated and their possible consequences on the shallow-land trench repository in Bushmanland in the north western part of South Africa are discussed. The possible removal of the trench cap by erosive processes is addressed in detail. The arid and semi-arid environment that has characterized the past, is expected to continue for the next 100,000 years. Under these conditions, the removal of the trench cap by erosive processes within the next 300 years is unlikely. 31 refs., 4 figs

  14. First-year evaluation of low-level waste-management stabilization techniques

    International Nuclear Information System (INIS)

    Cox, G.R.

    1981-12-01

    The first year of observation for effectiveness of biobarriers and herbicides in revegetation efforts demonstrated that certain practices will result in successful site stabilization: proper orientation of burial trench to reduce erosion; utilization of mulches to conserve moisture; seeding mixed perennial or annual grass species at the proper time for optimization of establishment and growth; and applying 2,4-D amine/Dicamba selective herbicide at the optimum time for enhancement of disirable grasses and reduction of competition from other species. The ultimate success or failure of a revegetation operation depends in part on the availability of equipment and manpower, weather conditions, and engineering feasibility. The data indicated that perennial grasses offered advantages over annual grasses and that the 2,4-D amine/Dicamba herbicide spray program was successful and should be expanded for next year. However, programmatic decisions should not be based on the data for 1 year, but should be based on data gathered over the full 3 years of the project

  15. Microencapsulate Aspergillus niger peptidases from agroindustrial waste wheat bran: spray process evaluation and stability.

    Science.gov (United States)

    Cabral, T P F; Bellini, N C; Assis, K R; Teixeira, C C C; Lanchote, A D; Cabral, H; Freitas, L A P

    2017-09-01

    The aim of this work was to obtain microencapsulated stable Aspergillus niger peptidases by post fermentation spray drying. The enzymatic extract was evaluated before and after spray drying microencapsulation to verify the effects of five different process parameters on the extract enzymatic activity, i.e. air flow, extract feed rate, drying temperature, homogenising time and weight ratio of extract to encapsulation material. The optimal conditions were determined by desirability functions and experimentally confirmed. Additionally, the stability of the microparticles was assessed during 60 days at 4 °C, 25 °C and 40 °C. The results revealed that the microparticles stored at 4 °C retained approximately 100% of their proteolytic activity at nine days of storage. Considering the industrial adaptation of the bioprocess and the prospect of commercial application of the proteases, the evaluation of different parameters for drying enzymes is required as a valuable alternative to obtain biotechnological products with high added value.

  16. USING THE SULFUR POLYMER STABILIZATION SOLIDIFICATION PROCESS TO TREAT RESIDUAL MERCURY WASTES FROM GOLD MINING OPERATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN,B.ADAMS,J.KALB,P.WAN,R.Y.LEVIER,M.

    2003-02-24

    Large quantities of mercury are generated as a by-product during the processing of gold ore following mining operations. Newmont Mining Corporation (NMC), which operates some of the world's largest gold mines, sought a method to permanently ''retire'' its mercury by-products, thereby avoiding potential environmental liability. Sulfur Polymer Stabilization-Solidification (SPSS) is an innovative technology developed at Brookhaven National Laboratory (BNL) for treatment of mercury and mercury contaminated materials, such as soil, sludge and debris. BNL conducted a treatability study to determine the potential applicability of SPSS for treatment of Newmont mercury, and the treated product passed the U.S. Environmental Protection Agency (EPA) test for toxicity. The SPSS process has been shown to be effective on radioactive and nonradioactive mercury and mercury-contaminated materials with a pilot-scale batch system capable of producing 0.03 m{sup 3} (1 ft{sup 3}) per batch. Engineering scale-up issues are discussed and material property tests addressing these issues are described.

  17. Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.; Nuclear Engineering Division

    2010-08-04

    It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable

  18. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application.

    Science.gov (United States)

    Fernández, José M; Plaza, César; Polo, Alfredo; Plante, Alain F

    2012-01-01

    The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO(2) respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic

  19. Removal of Fecal Indicators, Pathogenic Bacteria, Adenovirus, Cryptosporidium and Giardia (oocysts in Waste Stabilization Ponds in Northern and Eastern Australia

    Directory of Open Access Journals (Sweden)

    Maxim Sheludchenko

    2016-01-01

    Full Text Available Maturation ponds are used in rural and regional areas in Australia to remove the microbial loads of sewage wastewater, however, they have not been studied intensively until present. Using a combination of culture-based methods and quantitative real-time PCR, we assessed microbial removal rates in maturation ponds at four waste stabilization ponds (WSP with (n = 1 and without (n = 3 baffles in rural and remote communities in Australia. Concentrations of total coliforms, E. coli, enterococci, Campylobacter spp., Salmonella spp., F+ RNA coliphage, adenovirus, Cryptosporidium spp. and Giardia (oo cysts in maturation ponds were measured at the inlet and outlet. Only the baffled pond demonstrated a significant removal of most of the pathogens tested and therefore was subjected to further study by analyzing E. coli and enterococci concentrations at six points along the baffles over five sampling rounds. Using culture-based methods, we found a decrease in the number of E. coli and enterococci from the initial values of 100,000 CFU per 100 mL in the inlet samples to approximately 1000 CFU per 100 mL in the outlet samples for both bacterial groups. Giardia cysts removal was relatively higher than fecal indicators reduction possibly due to sedimentation.

  20. Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge.

    Science.gov (United States)

    Algapani, Dalal E; Wang, Jing; Qiao, Wei; Su, Min; Goglio, Andrea; Wandera, Simon M; Jiang, Mengmeng; Pan, Xiang; Adani, Fabrizio; Dong, Renjie

    2017-11-01

    Anaerobic digestion (AD) of FW shows instability due to both the presence of high lipids and accumulation of volatile fatty acids. In this study, AD of food waste (FW) was optimized by removing lipids (LRFW) and by co-digestion with sewage sludge (1:1w/w on dry matter). The results obtained showed that lipids extraction increased FW methane yield from 400 to 418mL-gVS added -1 under mesophilic conditions (35°C) and from 426 to 531mL-gVS added -1 in thermophilic conditions (55°C). Two degradation phases (k 1 and k 2 ) described FW and LRFW degradation. In the thermophilic, LRFW-k 1 (0.1591d -1 ) was slightly higher than that of FW (k 1 of 0.1543d -1 ) and in the second stage FW-k 2 of 0.0552d -1 was higher than that of LRFW (k 2 of 0.0117d -1 ). The majority of LRFW was degraded in the first stage. FW and sewage sludge co-digestion reduced VFA accumulation, preventing media acidification and improving process stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This report provides a summary of progress for the project ''Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)'' for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987). The general Task continued to coordinate project activities to meet general deadlines and responsibilities. The central office provided general secretarial support. The activities that were started during the first project period included expansion of the central copying facilities, growth of the central reprint, map, aerial and photograph collections, and some expansion of personal computer capabilities. The research and review accomplishments are mainly under the following tasks: quaternary tectonics, geochemical, mineral deposits, volcanic geology, seismology, tectonics, neotectonics, remote sensing, geotechnical assessments, geotechnical rock mass assessment, basinal studies, and strong ground motion

  2. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  3. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water

    OpenAIRE

    Curtis, Thomas P.; Mara, D. Duncan; Silva, Salomao A.

    1992-01-01

    Simple beaker experiments established that light damages fecal coliforms in waste stabilization ponds by an oxygen-mediated exogenous photosensitization. Wavelengths of up to 700 nm were able to damage bacteria. The ability of wavelengths of >425 nm to damage fecal coliforms was dependent on the presence of dissolved sensitizers. The sensitizers were ubiquitous in raw sewage, unaffected by sewage treatment, not derivatives of bacteriochlorophyll or chlorophyll, absorbed well in UV light, and ...

  4. Validation of an in situ solidification/stabilization technique for hazardous barium and cyanide waste for safe disposal into a secured landfill.

    Science.gov (United States)

    Vaidya, Rucha; Kodam, Kisan; Ghole, Vikram; Surya Mohan Rao, K

    2010-09-01

    The aim of the present study was to devise and validate an appropriate treatment process for disposal of hazardous barium and cyanide waste into a landfill at a Common Hazardous Waste Treatment Storage Disposal Facility (CHWTSDF). The waste was generated during the process of hardening of steel components and contains cyanide (reactive) and barium (toxic) as major contaminants. In the present study chemical fixation of the contaminants was carried out. The cyanide was treated by alkali chlorination with calcium hypochlorite and barium by precipitation with sodium sulfate as barium sulfate. The pretreated mixture was then solidified and stabilized by binding with a combination of slag cement, ordinary Portland cement and fly ash, molded into blocks (5 x 5 x 5 cm) and cured for a period of 3, 7 and 28 days. The final experiments were conducted with 18 recipe mixtures of waste + additive:binder (W:B) ratios. The W:B ratios were taken as 80:20, 70:30 and 50:50. The optimum proportions of additives and binders were finalized on the basis of the criteria of unconfined compressive strength and leachability. The leachability studies were conducted using the Toxicity Characteristic Leaching Procedure. The blocks were analyzed for various physical and leachable chemical parameters at the end of each curing period. Based on the results of the analysis, two recipe mixtures, with compositions - 50% of [waste + (120 g Ca(OCl)(2) + 290 g Na(2)SO(4)) kg(-1) of waste] + 50% of binders, were validated for in situ stabilization into a secured landfill of CHWTSDF. 2010 Elsevier Ltd. All rights reserved.

  5. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    International Nuclear Information System (INIS)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option

  6. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 1: Fate of elements and dioxins.

    Science.gov (United States)

    Bergfeldt, Brita; Jay, Klaus; Seifert, Helmuth; Vehlow, Jürgen; Christensen, Thomas H; Baun, Dorthe L; Mogensen, Erhardt P B

    2004-02-01

    Air pollution control (APC) residues from municipal solid waste incinerator plants that are treated by means of the Ferrox process can be more safely disposed of due to reduction of soluble salts and stabilization of heavy metals in an iron oxide matrix. Further stabilization can be obtained by thermal treatment inside a combustion chamber of a municipal solid waste incinerator. The influence of the Ferrox products on the combustion process, the quality of the residues, and the partitioning of heavy metals between the various solids and the gas have been investigated in the Karlsruhe TAM-ARA pilot plant for waste incineration. During the experiments only few parameters were influenced. An increase in the SO2 concentration in the raw gas and slightly lower temperatures in the fuel bed could be observed compared with reference tests. Higher contents of Fe and volatile heavy metals such as Zn, Cd, Pb and partly Hg in the Ferrox products lead to increased concentration of these elements in the solid residues of the co-feeding tests. Neither the burnout nor the PCDD/F formation was altered by the addition of the Ferrox products. Co-feeding of treated APC residues seems to be a feasible approach for obtaining a single solid residue from waste incineration.

  7. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States); McKeen, R.G. [Alliance for Transportation Research, Albuquerque, NM (United States)

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  8. A novel kinetic modeling method for the stabilization phase of the composting process for biodegradation of solid wastes.

    Science.gov (United States)

    Ebrahimzadeh, Reza; Ghazanfari Moghaddam, Ahmad; Sarcheshmehpour, Mehdi; Mortezapour, Hamid

    2017-12-01

    Biomass degradation kinetics of the composting process for kitchen waste, pruned elm tree branches and sheep manure were studied to model changes in volatile solids (VS) over time. Three experimental reactors containing raw mixtures with a carbon to nitrogen (C/N) ratio of 27:1 and a moisture content of 65% were prepared. During the composting process two of the reactors used forced air and the third used natural aeration. The composting stabilization phases in all reactors were completed in 30 days. During this period, composting indexes such as temperature, moisture content and VS changes were recorded. Elementary reactions were used for kinetics modeling of the degradation process. Results showed that the numerical values of rate constant ( k) for zero-order ranged from 0.86 to 1.03 VS×day -1 , for first-order models it ranged from 0.01 to 0.02 day -1 , for second-order the range was from 1.36×10 -5 to 1.78×10 -5 VS -1 ×day -1 and for n-order the rate constant ranged from 0.031 to 0.095 VS (1-n) ×day -1 . The resulting models were validated by comparing statistical parameters. Evaluation of the models showed that, in the aerated reactors, the n-order models (less than 1) successfully estimated the VS changes. In the non-aeration reactor, for the second-order model good agreement was achieved between the simulated and actual quantities of VS. Also, half-life time provided a useful criterion for the estimation of expected time for completion of different phases of composting.

  9. A modeling approach to estimate the solar disinfection of viral indicator organisms in waste stabilization ponds and surface waters.

    Science.gov (United States)

    Kohn, Tamar; Mattle, Michael J; Minella, Marco; Vione, Davide

    2016-01-01

    Sunlight is known to be a pertinent factor governing the infectivity of waterborne viruses in the environment. Sunlight inactivates viruses via endogenous inactivation (promoted by absorption of solar light in the UVB range by the virus) and exogenous processes (promoted by adsorption of sunlight by external chromophores, which subsequently generate inactivating reactive species). The extent of inactivation is still difficult to predict, as it depends on multiple parameters including virus characteristics, solution composition, season and geographical location. In this work, we adapted a model typically used to estimate the photodegradation of organic pollutants, APEX, to explore the fate of two commonly used surrogates of human viruses (coliphages MS2 and ϕX174) in waste stabilization pond and natural surface water. Based on experimental data obtained in previous work, we modeled virus inactivation as a function of water depth and composition, as well as season and latitude, and we apportioned the contributions of the different inactivation processes to total inactivation. Model results showed that ϕX174 is inactivated more readily than MS2, except at latitudes >60°. ϕX174 inactivation varies greatly with both season (20-fold) and latitude (10-fold between 0 and 60°), and is dominated by endogenous inactivation under all solution conditions considered. In contrast, exogenous processes contribute significantly to MS2 inactivation. Because exogenous inactivation can be promoted by longer wavelengths, which are less affected by changes in season and latitude, MS2 exhibits smaller fluctuations in inactivation throughout the year (10-fold) and across the globe (3-fold between 0 and 60°) compared to ϕX174. While a full model validation is currently not possible due to the lack of sufficient field data, our estimated inactivation rates corresponded well to those reported in field studies. Overall, this study constitutes a step toward estimating microbial water

  10. Results from five years of treatability studies using hydraulic binders to stabilize low-level mixed waste at the INEL

    International Nuclear Information System (INIS)

    Gering, K.L.; Schwendiman, G.L.

    1997-01-01

    This paper summarizes work involving bench-scale solidification of nonincinerable, land disposal restricted low-level mixed waste. Waste forms included liquids, sludges, and solids; treatment techniques included hydraulic systems (Portland cement with and without additives), proprietary commercial formulations, and sulphur polymer cement. Solidification was performed to immobilize hazardous heavy metals (including mercury, lead, chromium, and cadmium), and volatile and semivolatile organic compounds. Pretreatment options for mixed wastes are discussed, using a decision tree based on the form of mixed waste and the type of hazardous constituents. Hundreds of small concrete monoliths were formed for a variety of waste types. The experimental parameters used for the hydraulic concrete systems include the ratio of waste to dry binder (Portland cement, proprietary materials, etc.), the total percentage of water in concrete, and the amount of concrete additives. The only parameter that was used for the sulfur polymer-based monoliths is ratio of waste to binder. Optimum concrete formulations or open-quotes recipesclose quotes for a given type of waste were derived through this study, as based on results from the Toxicity Characteristic Leaching Procedure analyses and a free liquids test. Overall results indicate that high waste loadings in the concrete can be achieved while the monolithic mass maintains excellent resistance to leaching of heavy metals. In our study the waste loadings in the concrete generally fell within the range of 0.5 to 2.0 kg mixed waste per kg dry binder. Likewise, the most favorable amount of water in concrete, which is highly dependent upon the concrete constituents, was determined to be generally within the range of 300 to 330 g/kg (30-33% by weight). The results of this bench-scale study will find applicability at facilities where mixed or hazardous waste solidification is a planned or ongoing activity. 19 refs., 1 fig., 5 tabs

  11. Data format translation routines

    International Nuclear Information System (INIS)

    Burris, R.D.

    1981-02-01

    To enable the effective connection of several dissimilar computers into a network, modification of the data being passed from one computer to another may become necessary. This document describes a package of routines which permit the translation of data in PDP-8 formats to PDP-11 or DECsystem-10 formats or from PDP-11 format to DECsystem-10 format. Additional routines are described which permit the effective use of the translation routines in the environment of the Fusion Energy Division (FED) network and the Elmo Bumpy Torus (EBT) data base

  12. Routine environmental monitoring schedule, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Markes, B.M., Westinghouse Hanford

    1996-12-10

    This document provides the Environmental Restorations Contractor (ERC) and the Project Hanford Management Contractor.(PHMC) a schedule in accordance with the WHC-CM-7-5, Environmental Compliance` and BHI- EE-02, Environmental Requirements, of monitoring and sampling routines for the Near-Field Monitoring (NFM) program during calendar year (CY) 1997. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Near-Field Monitoring. The survey frequencies for particular sites are determined by the technical judgment of Near- Field Monitoring and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1998. The outside perimeter road surveys of 200 East and West Area and the rail survey from the 300 Area to Columbia Center will be performed in the year 2000 per agreement with Department of Energy. Richland Field Office. This schedule does not discuss staffing needs, nor does it list the monitoring equipment to be used in completing specific routines. Personnel performing routines to meet this schedule shall communicate any need for assistance in completing these routines to Radiological Control management and Near-Field Monitoring. After each routine survey is completed, a copy of the survey record, maps, and data sheets will be forwarded to Near-Field Monitoring. These routine surveys will not be considered complete until this documentation is received. At the end of each month, the ERC and PHMC radiological control organizations shall forward a copy of the Routine

  13. Routine sputum culture

    Science.gov (United States)

    Sputum culture ... There, it is placed in a special dish (culture). It is then watched to see if bacteria ... Chernecky CC, Berger BJ. Culture, routine. In: Chernecky CC, Berger BJ, ... . 6th ed. Philadelphia, PA: Elsevier Saunders; 2013:409- ...

  14. Outdoor fitness routine

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000891.htm Outdoor fitness routine To use the sharing features on this ... you and is right for your level of fitness. Here are some ideas: Warm up first. Get ...

  15. Consuming technologies - developing routines

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2008-01-01

    technologies and in this article these processes will be investigated from three different perspectives: an historical perspective of how new technologies have entered homes, a consumer perspective of how both houses and new technologies are purchased and finally, as the primary part of the article, a user...... perspective of how routines develop while these technologies are being used. In the conclusion these insights are discussed in relation to possible ways of influencing routines....

  16. Study on the conditions of bituminization of radioactive wastes and their influence on the stability of stored products

    International Nuclear Information System (INIS)

    Golinski, M.; Ksiazak, Z.

    1975-05-01

    Investigations carried out on a laboratory and semi-industrial scale showed that the Polish oxidised industrial bitumen P-60 was suitable for the solidification of liquid radioactive waste and particularly for non-concentrated post-precipitation sludges. The bitumen products were highly stable and were resistant to leaching by acids, salt solutions and water. Laboratory leach tests gave values similar to those obtained by others using different bitumen. By evaluating the sorption characteristics of the soil and the hydrogeological conditions existing at a proposed storage site, it was shown that the solidified wastes could be stored directly in the soil without further isolation from the soil water. Based on the liquid wastes arising from a nuclear power plant it has been shown that solidification of the wastes in bitumen will be cheaper than solidification of the same wastes using cement

  17. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  18. Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity.

    Science.gov (United States)

    Di Maria, Francesco; Sordi, Alessio; Cirulli, Giuseppe; Gigliotti, Giovanni; Massaccesi, Luisa; Cucina, Mirko

    2014-09-01

    The co-digestion of a variable amount of fruit and vegetable waste in a waste mixed sludge digester was investigated using a pilot scale apparatus. The organic loading rate (OLR) was increased from 1.46 kg VS/m(3) day to 2.8 kg VS/m(3) day. The hydraulic retention time was reduced from 14 days to about 10 days. Specific bio-methane production increased from about 90 NL/kg VS to the maximum value of about 430 NL/kg VS when OLR was increased from 1.46 kg VS/m(3) day to 2.1 kg VS/m(3) day. A higher OLR caused an excessive reduction in the hydraulic retention time, enhancing microorganism wash out. Process stability evaluated by the total volatile fatty acids concentration (mg/l) to the alkalinity buffer capacity (eq. mg/l CaCO3) ratio (i.e. FOS/TAC) criterion was stability for OLR 2.46 kg VS/m(3) day, GI decreased rapidly. This corresponding trend between FOS/TAC and GI was further investigated by the definition of the GI ratio (GIR) parameter. Comparison between GIR and FOS/TAC suggests that GI could be a suitable criterion for evaluating process stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.

    Science.gov (United States)

    Trulli, Ettore; Torretta, Vincenzo

    2015-01-01

    Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge.

  20. Special Analysis: Update of Disposal of Cement-Stabilized Encapsulated Waste at the E-Area Low-Level Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L.B.

    2003-10-15

    This Special Analysis for Components-in-Grout (CIG) expands the list of isotopes to the full suite of normal isotopes. This revision also addresses selected isotopes in special waste forms from the K and L basin resin that have waste-specific Kds and high-concentration I-129 wastes with waste-specific Kds, including Effluent Treatment Facility (ETF) activated carbon vessels. The full suite of normal isotopes was first screened using the Slit Trench screening results as a conservative approach. The isotopes that survived the screening were analyzed to determine the appropriate CIG inventory limits. The groundwater modeling was revised to incorporate improvements and changes in other recent Special Analyses and Unreviewed Disposal Question (UDQ) evaluations. The air pathway analysis was modified to consider a distributed source rather than a point source. These changes are discussed below in intruder and groundwater sections. Tables and figures are provided in appendices that are directly related to the most recent analyses. Changes to inventory limits are shown in Table 7. Inventory limits for solubility- limited radionuclides require special treatment as discussed in Section 3.1.1.3. U-238 and Pu-239 were analyzed as being solubility-limited, because otherwise they would consume excessive amounts of their inventory limits. Other U and Pu isotopes were not analyzed as being solubility- limited because they would not consume excessive amounts of inventory limits. Current and projected inventories for the K and L basin resins are compared against inventory limits for a single set of 5 CIG trenches. Projections for the K and L basin waste are through 2035, thus actual inventory consumption is dependent on the total number of CIG trenches excavated and filled through 2035. Current inventory for three ETF activated carbon vessels awaiting disposal are compared against inventory limits for a single set of 5 CIG trenches.

  1. Study of stabilization/solidification processes (of solid porous wastes) based on hydraulic or bituminous binders; Etude des procedes de stabilisation/solidification (des dechets solides poreux) a base de liants hydrauliques ou de liants bitumineux

    Energy Technology Data Exchange (ETDEWEB)

    Sing-Teniere, Ch.

    1998-02-01

    The first part of this thesis presents the regulatory framework and the technical context linked with the study of stabilized/solidified wastes and with the evaluation of stabilization/solidification processes. A presentation of the two type of ultimate wastes under study (a used catalyst and an activated charcoal) and an analysis of the processes is given. The second part is devoted to the experimental characterization of both types of porous wastes. The third part deals with the processing of such wastes using an hydraulic binder. The study stresses on both on the stabilization/solidification efficiency of the process and on the conditions of its implementation. The same work is made for a process that uses a bituminous binder. Some choice criteria for the selection of the better process are deduced from the examination of the overall data collected. The waste characterization methodology is applied six times: two times for the raw wastes, two times for the same wastes processed with an hydraulic binder, and two times for the same wastes processed with a bituminous binder. (J.S.)

  2. Routine testing and prophylaxis.

    Science.gov (United States)

    Terry, P B

    1990-03-01

    Routine testing and prophylaxis is considered in terms of haematological disorders, biochemical testing, hormonal testing, screening for gestational diabetes and nutritional deficiencies. Within these headings the place of routine supplementation of pregnant women with iron, vitamins, trace elements and an increased protein/calorie intake is discussed. Screening for haemoglobinopathies, irregular blood group antibodies and gestational diabetes is dealt with in detail. The place for routine prophylaxis with anti-D is considered. Biochemical and hormonal testing is covered with particular reference to the use of biochemical and hormonal assays as placental function tests and their use in assessing fetal well-being. In this respect the use of biochemical and hormonal tests to screen a pregnant population for intrauterine growth retardation is also discussed.

  3. Multibarrier effectiveness as the expedient measure for selecting the appropriate stabilization and immobilization procedure for the various waste categories

    International Nuclear Information System (INIS)

    Merz, E.P.

    1998-01-01

    The management of radioactive wastes has become a major concern particularly with regard to the release of radioactive material to the environment and possible risks of contamination. The development of rational and acceptable options for radioactive waste disposal requires a clear understanding of radiators protection objectives and their application in planning, regulation and licensing. Considerable progress has been made over the past three decades within many countries utilising nuclear power to develop strategies for the management of nuclear wastes. All wastes should be managed in such a way that high standards of conditioning are maintained and that potential hazards originating from their disposal are reduced to levels that are as low as reasonable and well below admissible levels. However, deficiencies are evident in some areas of nuclear weapon fabrication. The nuclear fuel cycle is associated in the military weapon fabrication sector as well as in the civilian energy production field with two rather similar types of risk: 1. the risk due to the operation of the nuclear reactors and the appertaining fuel facilities, and 2. the risk contribution originating from the generation of radioactive wastes. The difference between these two categories of risk is that the first one has only a short time factor associated with it, since the lifetime of the plants is relatively short and drops to zero after plant shutdown. The second category is, more or less, a permanent kind of risk which will be inherited by future generations. Actual health effects of waste on people and populations, particularly over long periods of time, are not necessarily related to the level of radioactivity. If intensely radioactive waste is effectively isolated, then the radiation dose it causes can be much less than that accumulating from widely-dispersed but low-activity waste, particularly if this includes long-lived radioisotopes. By far the most important producers of nuclear wastes

  4. Thermal Treatment of Iron Oxide Stabilized APC Residues from Waste Incineration and the Effect on Heavy Metal Binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Stackpoole, M.; Bender-Koch, C.

    2000-01-01

    Iron oxide stabilized APC residues from MSWI were heat treated at 600°C and 900°C. The thermal treatments resulted in a change in product stability by forcing a transformation in the mineralogical structures of the products. The treatments, moreover, simulated somewhat the natural aging processes...... that would take place in a stabilized residue. Consequent changes in crystalline structure and heavy metal binding were examined....

  5. Short-term effects of sugarcane waste products from ethanol production plant as soil amendments on sugarcane growth and metal stabilization.

    Science.gov (United States)

    Akkajit, Pensiri; DeSutter, Thomas; Tongcumpou, Chantra

    2013-05-01

    Numerous waste products have been widely studied and used as soil amendments and metal immobilizing agents. Waste utilization from ethanol production processes as soil amendments is one of the most promising and sustainable options to help utilize materials effectively, reduce waste disposal, and add value to byproducts. As a consequence, this present work carried out a four-month pot experiment of sugarcane (Saccharum officinarum L.) cultivation in Cd and Zn contaminated soil to determine the effect of three sugarcane waste products (boiler ash, filter cake and vinasse) as soil amendment on sugarcane growth, metal translocation and accumulation in sugarcane, and fractionation of Cd and Zn in soil by the BCR sequential extraction. Four treatments were tested: (1) non-amended soil; (2) 3% w/w boiler ash; (3) 3% w/w filter cake; and (4) a combination of 1.5% boiler ash and 1.5% vinasse (w/w). Our findings showed the improved biomass production of sugarcanes; 6 and 3-fold higher for the above ground parts (from 8.5 to 57.6 g per plant) and root (from 2.1 to 6.59 g per plant), respectively, as compared to non-amended soil. Although there was no significant difference in Cd and Zn uptake in sugarcane (mg kg(-1)) between the non-amended soil and the treated soils (0.44 to 0.52 mg Cd kg(-1) and 39.9 to 48.1 mg Zn kg(-1), respectively), the reduction of the most bioavailable Cd concentration (BCR1 + 2) in the treated soils (35.4-54.5%) and the transformation of metal into an insoluble fraction (BCR3) highlighted the beneficial effects of sugarcane waste-products in promoting the sugarcane growth and Cd stabilization in soil.

  6. Importance of Family Routines

    Science.gov (United States)

    ... is essential, it is equally important for parents to set aside some time just for themselves, too. Additional Information from HealthyChildren.org: Turning Family Time into Active Time Bedtime Routines for School-Aged Children The Benefits & Tricks to Having a Family Dinner ​ Article Body Last Updated ...

  7. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  8. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance.

    Science.gov (United States)

    Dai, Xiaohu; Duan, Nina; Dong, Bin; Dai, Lingling

    2013-02-01

    System stability and performance of high-solids anaerobic co-digestion of dewatered sludge (DS) and food waste (FW) in comparison with mono digestions were investigated. System stability was improved in co-digestion systems with co-substrate acting as a diluting agent to toxic chemicals like ammonia or Na(+). For high-solids digestion of DS, the addition of FW not only improved system stability but also greatly enhanced volumetric biogas production. For high-solids digestion of FW, the addition of DS could reduce Na(+) concentration and help maintain satisfactory stability during the conversion of FW into biogas. System performances of co-digestion systems were mainly determined by the mixing ratios of DS and FW. Biogas production and volatile solids (VSs) reduction in digestion of the co-mixture of DS and FW increased linearly with higher ratios of FW. A kinetic model, which aimed to forecast the performance of co-digestion and to assist reactor design, was developed from long-term semi-continuous experiments. Maximum VS reduction for DS and FW was estimated to be 44.3% and 90.3%, respectively, and first order constant k was found to be 0.17d(-1) and 0.50 d(-1), respectively. Experimental data of co-digestion were in good conformity to the predictions of the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.

    Science.gov (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Ok, Yong Sik; Zhang, Weihua; Yang, Xin; Baek, Kitae; Li, Xiang-Dong

    2016-09-01

    While chelant-enhanced soil washing has been widely studied for metal extraction from contaminated soils, there are concerns about destabilization and leaching of residual metals after remediation. This study integrated 2-h soil washing enhanced by biodegradable ethylenediaminedisuccinic acid (EDDS) and 2-month stabilization using agricultural waste product (soybean stover biochar pyrolyzed at 300 and 700 °C), industrial by-product (coal fly ash (CFA)), and their mixture. After integration with 2-month stabilization, the leachability and mobility of residual metals (Cu, Zn, and Pb) in the field-contaminated soil were significantly reduced, especially for Cu, in comparison with 2-h EDDS washing alone. This suggested that the metals destabilized by EDDS-washing could be immobilized by subsequent stabilization with biochar and CFA. Moreover, when the remediation performance was evaluated for phytoavailability and bioaccessibility, prior EDDS washing helped to achieve a greater reduction in the bioavailable fraction of metals than sole stabilization treatment. This was probably because the weakly-bound metals were first removed by EDDS washing before stabilization. Both individual and combined applications of biochar and CFA showed comparable effectiveness regardless of the difference in material properties, possibly due to the high level of amendments (150 ton ha(-1)). Based on the mobility and bioaccessibility results, the estimated human health risk (primarily resulting from Pb) could be mitigated to an acceptable level in water consumption pathway or reduced by half in soil ingestion pathway. These results suggest that an integration of EDDS washing with soil stabilization can alleviate post-remediation impacts of residual metals in the treated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Chemical stabilization of metals in mine wastes by transformed red mud and other iron compounds: laboratory tests.

    Science.gov (United States)

    Ardau, C; Lattanzi, P; Peretti, R; Zucca, A

    2014-01-01

    A series of static and kinetic laboratory-scale tests were designed in order to evaluate the efficacy of transformed red mud (TRM) from bauxite refining residues, commercial zero-valent iron, and synthetic iron (III) hydroxides as sorbents/reagents to minimize the generation of acid drainage and the release of toxic elements from multi-contaminant-laden mine wastes. In particular, in some column experiments the percolation of meteoric water through a waste pile, alternated with periods of dryness, was simulated. Wastes were placed in columns together with sorbents/reagents in three different set-ups: as blended amendment (mixing method), as a bed at the bottom of the column (filtration method), or as a combination of the two previous methods. The filtration methods, which simulate the creation of a permeable reactive barrier downstream of a waste pile, are the most effective, while the use of sorbents/reagents as amendments leads to unsatisfactory results, because of the selective removal of only some contaminants. The efficacy of the filtration method is not significantly affected by the periods of dryness, except for a temporary rise of metal contents in the leachates due to dissolution of soluble salts formed upon evaporation in the dry periods. These results offer original information on advantages/limits in the use of TRM for the treatment of multi-contaminant-laden mine wastes, and represent the starting point for experimentation at larger scale.

  11. Comparison of long-term stability of containment systems for residues and wastes contaminated with naturally occurring radionuclides at an arid site and two humid sites

    International Nuclear Information System (INIS)

    Winters, M.; Merry-Libby, P.; Hinchman, R.

    1985-01-01

    The long-term stability of near-surface containment systems designed for the management of radioactive wastes and residues contaminated with naturally occurring radionuclides are compared at the three different sites. The containment designs are: (1) a diked 8.9-m high mound, including a 3.2-m layered cap at a site (humid) near Lewiston, New York, (2) a 6.8-m-high mound, including a similar 3.2-m cap at a site (humid) near Oak Ridge, Tennessee, and (3) 4.8-m deep trenches with 3.0-m backfilled caps at a site (arid) near Hanford, Washington. Geological, hydrological, and biological factors affecting the long-term (1000-year) integrity of the containment systems at each site are examined, including: erosion, flooding, drought, wildfire, slope and cover failure, plant root penetration, burrowing animals, other soil-forming processes, and land-use changes. For the containment designs evaluated, releases of radon-222 at the arid site are predicted to be several orders of magnitude higher than at the two humid sites - upon initial burial and at 1000 years (after severe erosion). Transfer of wastes containing naturally occurring radionuclides from a humid to an arid environment offers little or no advantage relative to long-term stability of the containment system and has a definite disadvantage in terms of gaseous radioactive releases. 26 references, 3 figures, 4 tables

  12. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    Science.gov (United States)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  13. Survival time and stability properties of disease-associated prion protein in chronic wasting disease of elk

    Science.gov (United States)

    Background: The Rocky Mountain elk (Cervus elaphus nelsoni) prion protein gene exhibits amino acid polymorphism at codon 132, with 132L (leucine) and 132M (methionine) allelic variants present in the population. We have previously shown that following experimental oral challenge with chronic wasting...

  14. Bi- and polydentate organophosphorous compounds as extractants for actinides from liquid waste (use of effect of anomalous aryl stability increase)

    International Nuclear Information System (INIS)

    Rozen, A.M.; Nikolotova, Z.I.; Kartasheva, N.A.

    1988-01-01

    Extraction of actinides (Am) and lanthanides (Eu) from nitric acid liquid wastes by bi-, tri- and polydentate organophosphoric extractants, characteristic of purex-process, and effect of more electronegative aryl groups substitution for alkyl groups in the latter have been studied. The observed increase in distribution factors are explained from the viewpoint of molecular and electronic structure extractants. 10 refs.; 6 figs

  15. The embeddedness of selfish Routines

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2001-01-01

    Routines have traditionally been seen as an organisational feature. However, like genes, routines may be carriers and initiators of organisations as well......Routines have traditionally been seen as an organisational feature. However, like genes, routines may be carriers and initiators of organisations as well...

  16. Avoiding food waste by Romanian consumers

    DEFF Research Database (Denmark)

    Stefan, Violeta; van Herpen, Erica; Tudoran, Ana Alina

    2013-01-01

    to investigate the role of food choices and other food-related activities in producing food waste. A survey of 244 Romanian consumers examined the influence of intentions not to waste food, planning and shopping routines, as well as moral attitudes and lack of concern towards wasting food, a subjective norm...... of disapproval towards food waste, and perceived behavioural control on consumers’ self-reported food waste. Results show that consumers’ planning and shopping routines are important predictors of food waste. Planning and shopping routines are determined by moral attitudes towards food waste and perceived...

  17. The emergence and change of management accounting routines

    NARCIS (Netherlands)

    van der Steen, M.P.

    2011-01-01

    Purpose - The purpose of this paper is to explore the dynamics involved in the emergence and change of management accounting routines. It seeks to provide an understanding of the ways in which these complex routines foster stability and change in management accounting practices.

  18. Conversion of fuel hulls to zirconate ion exchangers for stabilization of wastes from the thorium fuel cycle

    International Nuclear Information System (INIS)

    Levine, H.S.

    1978-01-01

    A conceptual reprocessing and waste management scheme for Zircaloy clad ThO 2 fuel was formulated to eliminate problems associated with concurrent dissolution of fuel and cladding in the conventional chop-leach headend step. These problems are avoided by use of a modified headend step to form oxide fuel and cladding process streams. A chlorinating agent then converts the cladding hulls and adhering fuel into volatile and nonvolatile chloride fractions. The former product is processed, by use of the Zircaloy conversion process, to form an inorganic ion exchange material and combined with HLLW from subsequent fuel reprocessing to form a stable and refractory waste form. The nonvolatile chloride fraction would be recovered, processed to remove chloride ions, and recombined with the main oxide fuel process stream for further treatment by use of the Thorex process

  19. Evolution of the stability parameters composting two-phase olive mill waste with grape marc and vine branches

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gallego, A.; Lopez-Pineiro, A.; Albarran, A.; Rato, J. M.; Barreto, C.; Cabrera, D.; Prieto, M. H.; Munoz, A.; Almendro, J. P.

    2009-07-01

    Modern olive-oil extraction technology generates a large amount of two-phase olive mill waste (TPOMW) in Mediterranean countries, with composting being a viable alternative to the traditional disposal of these residues. Vine branches and grape marc also constitute abundant organic residues in these countries. TPOMW was composted with vine branches and grape mar as bulking agents for use as organic amendment. (Author)

  20. Evolution of the stability parameters composting two-phase olive mill waste with grape marc and vine branches

    International Nuclear Information System (INIS)

    Garcia-Gallego, A.; Lopez-Pineiro, A.; Albarran, A.; Rato, J. M.; Barreto, C.; Cabrera, D.; Prieto, M. H.; Munoz, A.; Almendro, J. P.

    2009-01-01

    Modern olive-oil extraction technology generates a large amount of two-phase olive mill waste (TPOMW) in Mediterranean countries, with composting being a viable alternative to the traditional disposal of these residues. Vine branches and grape marc also constitute abundant organic residues in these countries. TPOMW was composted with vine branches and grape mar as bulking agents for use as organic amendment. (Author)

  1. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  2. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  3. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area Nevada Nuclear Waste site investigation (NNWSI). Progress report, October 1, 1992--September 30, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report provides a summary of progress for the project open-quotes Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).close quotes A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  4. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigations (NNWSI). Progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-30

    This report dated 30 September 1992 provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI){close_quotes}. This progress report was preceded by the progress report for the year from 1 October 1990 to 30 September 1991. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area Nevada Nuclear Waste site investigation (NNWSI). Progress report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-30

    This report provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).{close_quotes} A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D.L.

    1997-11-03

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

  7. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigation (NNWSI). Progress report, 30 September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report dated 30 September 1994 provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI){close_quotes}. This progress report was preceded by the progress report for the year from 1 October 1992 to 30 September 1993. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    Science.gov (United States)

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture.

    Science.gov (United States)

    Liu, Wu-Jun; Jiang, Hong; Tian, Ke; Ding, Yan-Wei; Yu, Han-Qing

    2013-08-20

    Anthropogenic CO2 emission makes significant contribution to global climate change and CO2 capture and storage is a currently a preferred technology to change the trajectory toward irreversible global warming. In this work, we reported a new strategy that the inexhaustible MgCl2 in seawater and the abundantly available biomass waste can be utilized to prepare mesoporous carbon stabilized MgO nanoparticles (mPC-MgO) for CO2 capture. The mPC-MgO showed excellent performance in the CO2 capture process with the maximum capacity of 5.45 mol kg(-1), much higher than many other MgO based CO2 trappers. The CO2 capture capacity of the mPC-MgO material kept almost unchanged in 19-run cyclic reuse, and can be regenerated at low temperature. The mechanism for the CO2 capture by the mPC-MgO was investigated by FTIR and XPS, and the results indicated that the high CO2 capture capacity and the favorable selectivity of the as-prepared materials were mainly attributed to their special structure (i.e., surface area, functional groups, and the MgO NPs). This work would open up a new pathway to slow down global warming as well as resolve the pollution of waste biomass.

  10. Hydrothermal alkaline stability of bentonite barrier by concrete interstitial wastes; Alteracion alcalina hidrotermal de la barrera de bentonita por aguas intersticiales de cementos

    Energy Technology Data Exchange (ETDEWEB)

    Leguey Jimenez, S.; Cuevas Rodriguez, J.; Ramirez Martin, S.; Vigil de la villa Mencia, R.; Martin Barca, M. [Universidad Autonoma de Madrid, Madrid (Spain)

    2002-07-01

    At present, the main source of High Level radioactive Waste (HLW) is the electrical energy production during all the steps of developing. In almost all the countries with nuclear programs, the option for the final management of HLW is the Deep Geological Repository (DGR) based on the concept of multi barrier. According to this concept, the waste is isolated from biosphere by the interposition of confinement barriers. Two of the engineering barriers in the Spanish design of DGR in granitic rock are compacted bentonite and concrete. The bentonite barrier is the backfilling and sealing material for the repository gallery, because of its mechanical and physico-chemical properties. The main qualities of concrete as a component of a multi barrier system are its low permeability, mechanical resistance and chemical properties. With regard to chemical composition of concrete, the alkaline nature of cement pore water lowers the solubility of many radioactive elements. However, structural transformation in smectite, dissolution or precipitation of minerals and, consequently, changes in the bentonite properties could occurs in the alkaline conditions generated by the cement degradation. The main objective of the present work is to evaluate the effect of concrete in the stability of Spanish reference bentonite (La Serrata of Nijar, Almeria, Spain) in conditions similar to those estimated in a DGR in granitic rock. Because of the main role of bentonite barrier in the global performance of the repository, the present study is essential to guarantee its security. (Author)

  11. Development and testing of techniques for in-ground stabilization, size reduction, and safe removal of radioactive wastes stored in containments buried in ground

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Christodoulou, Apostolos

    2013-01-01

    Since the 1950's radioactive wastes from a number of laboratories have been stored below ground at the Hanford site, Washington State, USA, in vertical pipe units (VPUs) made of five 200 litre drums without tops or bottoms, and in caissons, made out of corrugated pipe, or concrete and typically 2,500 mm in diameter. The VPU's are buried of the order of 2,100 mm below grade, and the caissons are buried of the order of 6,000 mm below grade. The waste contains fuel pieces, fission products, and a range of chemicals used in the laboratory processes. This can include various energetic reactants such as un-reacted sodium potassium (NaK), potassium superoxide (KO 2 ), and picric acid, as well as quantities of other liquids. The integrity of the containments is considered to present unacceptable risks from leakage of radioactivity to the environment. This paper describes the successful development and full scale testing of in-ground augering equipment, grouting systems and removal equipment for remediation and removal of the VPUs, and the initial development work to test the utilization of the same basic augering and grouting techniques for the stabilization, size reduction and removal of caissons. (authors)

  12. Radionuclide-Chelating Agent Complexes in Low-Level Radioactive Decontamination Waste; Stability, Adsorption and Transport Potential

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Cantrell, Cantrell J.; Lindenmeier, Clark W.; Owen, Antionette T.; Kutnyakov, Igor V.; Orr, Robert D.; Felmy, Andrew R.

    2002-02-01

    Speciation calculations were done to determine whether organic complexants facilitate transport of radionuclides leached from waste buried in soils. EDTA readily mobilizes divalent transition metals and moderately impacts trivalent actinides. Picolinate readily mobilizes only Ni2+ and Co2+. These speciation predictions ignore the influence of soil adsorption and biodegradation that break apart the complexes. In adsorption studies, picolinate concentrations have to be >10-4 M to lower the adsorption of Ni and Co. For Sm(III), Th(IV), Np(V), U(VI), and Pu, the picolinate concentration must be >10-3 M before adsorption decreases. EDTA forms strong complexes with divalent transition metals and can stop adsorption of Ni and Co when EDTA solution concentrations are 10-5 M. EDTA complexes with Np(V), U(VI), and Pu are much weaker; EDTA concentrations would have to be >10-3 M to adversely effects non-transition metal/radionuclide adsorption. Most picolinate and ETDA-metal complexes appear to readily dissociate during interactions with soils. The enhanced migration of radionuclide-organic complexes may be limited to a few unique conditions. We recommend that mixtures of metal/radionuclides and EDTA should not be solidified or co-disposed with high pH materials such as cement. For weaker binding organic complexants, such as picolinate, citrate and oxalate, co-disposal of decontamination wastes and concrete should be acceptable.

  13. Application of a routine moment tensor inversion capability in the development of a new design consideration for the stability of foundations of stabilising pillars in deep level gold mines and pillars in intermediate depth hard rock mines

    CSIR Research Space (South Africa)

    Linzer, LM

    2002-03-01

    Full Text Available could lie in the yield point of the pillar foundation. The aim of this project therefore was to use a moment tensor inversion technique to establish design criteria for the prediction of the yield point of stabilizing pillar/foundation system in deep...

  14. Integrated Waste Management Strategy and Radioactive Waste Forms for the 21st Century

    International Nuclear Information System (INIS)

    Dirk Gombert; Jay Roach

    2007-01-01

    The U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilization and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R and D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R and D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle

  15. Integrated Waste Management Strategy and Radioactive Waste Forms for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; Jay Roach

    2007-03-01

    The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilization and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.

  16. Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test.

    Science.gov (United States)

    Xue, Qiang; Wang, Ping; Li, Jiang-Shan; Zhang, Ting-Ting; Wang, Shan-Yong

    2017-01-01

    Long-term leaching behavior of contaminant from stabilization/solidification (S/S) treated waste stays unclear. For the purpose of studying long-term leaching behavior and leaching mechanism of lead from cement stabilized soil under different pH environment, semi-dynamic leaching test was extended to two years to investigate leaching behaviors of S/S treated lead contaminated soil. Effectiveness of S/S treatment in different scenarios was evaluated by leachability index (LX) and effective diffusion coefficient (D e ). In addition, the long-term leaching mechanism was investigated at different leaching periods. Results showed that no significant difference was observed among the values of the cumulative release of Pb, D e and LX in weakly alkaline and weakly acidic environment (pH value varied from 5.00 to 10.00), and all the controlling leaching mechanisms of the samples immersed in weakly alkaline and weakly acidic environments turned out to be diffusion. Strong acid environment would significantly affect the leaching behavior and leaching mechanism of lead from S/S monolith. The two-year variation of D e appeared to be time dependent, and D e values increased after the 210 th day in weakly alkaline and weakly acidic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  18. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 2

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  19. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 3

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  20. Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: Relationship between community structure and process stability.

    Science.gov (United States)

    Li, Lei; He, Qin; Ma, Yao; Wang, Xiaoming; Peng, Xuya

    2015-01-01

    Organic loading rate (OLR) disturbances were introduced into a mesophilic anaerobic digester treating food waste (FW) to induce stable and deteriorative phases. The microbial community of each phase was investigated using 454-pyrosequencing. Results show that the relative abundance of acid-producing bacteria and syntrophic volatile fatty acid (VFA) oxidizers increased dramatically at deteriorative phase, while the dominant methanogens did not shift from acetoclastic to hydrogenotrophic groups. The mismatching between bacteria and methanogens may partially be responsible for the process deterioration. Moreover, the succession of predominant hydrogenotrophic methanogens reduced the consumption efficiency of hydrogen; meanwhile, the dominant Methanosaeta with low acetate degradation rate, and the increase of inhibitors concentrations further decreased its activity, which may be the other causes for the process failure. These results improve the understanding of the microbial mechanisms of process instability, and provide theoretical basis for the efficient and stable operation of anaerobic digester treating FW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability.

    Science.gov (United States)

    Bustamante, M A; Paredes, C; Marhuenda-Egea, F C; Pérez-Espinosa, A; Bernal, M P; Moral, R

    2008-06-01

    The aim of this work was to study the viability of recycling the solid wastes generated by the winery and distillery industry by means of co-composting with animal manures, as well as to evaluate the quality of the composts obtained. Two piles, using exhausted grape marc and cattle manure or poultry manure, respectively (at ratios, on a fresh weight basis, of 70:30), were composted by the Rutgers static pile composting system. Throughout the composting process, a number of parameters were monitored, such as pH, electrical conductivity, organic matter, water-soluble carbon, water-soluble polyphenols, different forms of nitrogen (organic nitrogen, ammonium and nitrate) and humification indices (humification ratio, humification index, percentage of humic acid-like C, polymerisation ratio and cation exchange capacity), as well as the germination index. Organic matter losses followed first-order kinetics equation in both piles, the highest organic matter mineralisation rate being observed with exhausted grape marc and cow manure. On the other hand, the mixture with the lowest C/N ratio, using exhausted grape marc and poultry manure, showed the highest initial ammonium contents, probably due to the higher and more labile N content of poultry manure. The increase in the cation exchange capacity revealed the organic matter humification during composting. In contrast, other humification parameters, such as the humification ratio and the humification index, did not show the expected evolution and, thus, could not be used to assess compost maturity. Composting produced a degradation of the phytotoxic compounds, such as polyphenols, to give composts without a phytotoxic character. Therefore, composting can be considered as an efficient treatment to recycle this type of wastes, due to composts presented a stable and humified organic matter and without phytotoxic effects, which makes them suitable for their agronomic use.

  2. Determination of acceleration and stabilization indicators for buried municipal wastes. Study of leachates recirculation impact on waste columns; Determination d'indicateurs d'acceleration et de stabilisation de dechets menagers enfouis. Etude de l'impact de la recirculation de lixiviats sur colonnes de dechets

    Energy Technology Data Exchange (ETDEWEB)

    Francois, V.

    2004-05-15

    The main goal of this research work was to study the stabilisation processes of municipal solid waste (MSW). Representative parameters, which are required to evaluate the stabilization state of wastes, were applied to study the acceleration of the degradation processes in lab-scale landfill anaerobic bioreactors operated with leachate recirculation. The characterisation of the wastes solid phase (i.e., volatile solids, organic carbon, fines, paper-cardboard and degraded component contents) is necessary to assess its degradation state. However, additional parameters are required such as the characterisation of water extracted from the waste (i.e., Chemical Oxygen Content (COD), Dissolved Oxygen Content (DOC) and ions content) and biogas composition (methane potential). Those parameters are nevertheless complementary to conclude on its polluting feature. The analysis of more specific indicators such as the organic macromolecules content in leachates and the evaluation of the metal contamination level in solid waste and its potential remobilization was showed to be consistent for the evaluation of waste stabilisation state. The composition of leachates used during recirculation influences greatly the waste leaching behaviour. For instance, the recirculation of a stabilised leachate containing organic macromolecules can increase the release of pollutants (organics and minerals) if contacted with young waste or on the other hand the release of pollutant is reduced when the leachate composition is similar to the organic species, which are expected to be released by the wastes. Due to the experimental limits of the leaching tests, several lab-scale landfill anaerobic bioreactors containing different wastes types (height of 1 m and mass of waste varying from 28 kg to 65 kg) were operated to study the effects of recirculation on the waste degradation at flow rate of 540 mL per day. The speed-up of waste degradation was clearly established from global parameters measured on

  3. The importance of localized culling in stabilizing chronic wasting disease prevalence in white-tailed deer populations.

    Science.gov (United States)

    Manjerovic, Mary Beth; Green, Michelle L; Mateus-Pinilla, Nohra; Novakofski, Jan

    2014-01-01

    Strategies to contain the spread of disease often are developed with incomplete knowledge of the possible outcomes but are intended to minimize the risks associated with delaying control. Culling of game species by government agencies is one approach to control disease in wild populations but is unpopular with hunters and wildlife enthusiasts, politically unpalatable, and erodes public support for agencies responsible for wildlife management. We addressed the functional differences between hunting and government culling programs for managing chronic wasting disease (CWD) in white-tailed deer by comparing prevalence over a 10-year period in Illinois and Wisconsin. When both Illinois and Wisconsin were actively culling from 2003 - 2007, there were no statistical differences between state CWD prevalence estimates. Wisconsin government culling concluded in 2007 and average prevalence over the next five years was 3.09 ± 1.13% with an average annual increase of 0.63%. During that same time period, Illinois continued government culling and there was no change in prevalence throughout Illinois. Despite its unpopularity among hunters, localized culling is a disease management strategy that can maintain low disease prevalence while minimizing impacts on recreational deer harvest. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Effects of metal salt addition on odor and process stability during the anaerobic digestion of municipal waste sludge.

    Science.gov (United States)

    Abbott, Timothy; Eskicioglu, Cigdem

    2015-12-01

    Anaerobic digestion (AD) is an effective way to recover energy and nutrients from organic waste; however, several issues including the solubilization of bound nutrients and the production of corrosive, highly odorous and toxic volatile sulfur compounds (VSCs) in AD biogas can limit its wider adoption. This study explored the effects of adding two different doses of ferric chloride, aluminum sulfate and magnesium hydroxide directly to the feed of complete mix semi-continuously fed mesophilic ADs on eight of the most odorous VSCs in AD biogas at three different organic loading rates (OLR). Ferric chloride was shown to be extremely effective in reducing VSCs by up to 87%, aluminum sulfate had the opposite effect and increased VSC levels by up to 920%, while magnesium hydroxide was not shown to have any significant impact. Ferric chloride, aluminum sulfate and magnesium hydroxide were effective in reducing the concentration of orthophosphate in AD effluent although both levels of alum addition caused digester failure at elevated OLRs. Extensive foaming was observed within the magnesium hydroxide dosed digesters, particularly at higher doses and high OLRs. Certain metal salt additions may be a valuable tool in overcoming barriers to AD and to meet regulatory targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil.

    Science.gov (United States)

    Abdelhafez, Ahmed A; Li, Jianhua; Abbas, Mohamed H H

    2014-12-01

    The main objectives of the current study were to evaluate the potential effects of biochar derived from sugar cane bagasse (SC-BC) and orange peel (OP-BC) on improving the physicochemical properties of a metal smelter contaminated soil, and determining its potentiality for stabilizing Pb and As in soil. To achieve these goals, biochar was produced in a small-scale biochar producing plant, and an incubation experiment was conducted using a silt loam metal-contaminated soil treated with different application rates of biochar (0-10% w/w). The obtained results showed that, the addition of SC-BC and OP-BC increased significantly the soil aggregate stability, water-holding capacity, cation exchange capacity, organic matter and N-status in soil. SC-BC considerably decreased the solubility of Pb to values lower than the toxic regulatory level of the toxicity characteristics leaching procedure extraction (5 mg L(-1)). The rise in soil pH caused by biochar application, and the increase of soil organic matter transformed the labile Pb into less available fractions i.e. "Fe-Mn oxides" and "organic" bound fractions. On the other hand, As was desorbed from Fe-Mn oxides, which resulted in greater mobility of As in the treated soil. We concluded that SC-BC and OP-BC could be used successfully for remediating soils highly contaminated with Pb. However, considerable attention should be paid when using it in soil contaminated with As. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Optimizing stabilization of waste-activated sludge using Fered-Fenton process and artificial neural network modeling (KSOFM, MLP).

    Science.gov (United States)

    Badalians Gholikandi, Gagik; Masihi, Hamidreza; Azimipour, Mohammad; Abrishami, Ali; Mirabi, Maryam

    2014-01-01

    Sludge management is a fundamental activity in accordance with wastewater treatment aims. Sludge stabilization is always considered as a significant step of wastewater sludge handling. There has been a progressive development observed in the approach to the novel solutions in this regard. In this research, based on own initially experimental results in lab-scale regarding Fered-Fenton processes in view of organic loading (volatile-suspended solids, VSS) removal efficiency, a combination of both methods towards proper improving of excess biological sludge stabilization was investigated. Firstly, VSS removal efficiency has been experimentally studied in lab-scale under different operational conditions taking into consideration pH [Fe(2+)]/[H2O2], detention time [H2O2], and current density parameters. Therefore, the correlations of the same parameters have been determined by utilizing Kohonen self-organizing feature maps (KSOFM). In addition, multi-layer perceptron (MLP) has been employed afterwards for a comprehensive evaluation of investigating parameters correlation and prediction aims. The findings indicated that the best proportion of iron to hydrogen peroxide and the optimum pH were 0.58 and 3.1, respectively. Furthermore, maximum retention time about 6 h with a hydrogen peroxide concentration of 1,568 mg/l and a current density of 650-750 mA results to the optimum VSS removal (efficiency equals to 81 %). The performance of KSOFM and MLP models is found to be magnificent, with correlation ranging (R) from 0.873 to 0.998 for the process simulation and prediction. Finally, it can be concluded that the Fered-Fenton reactor is a suitable efficient process to reduce considerably sludge organic load and mathematical modeling tools as artificial neural networks are impressive methods of process simulation and prediction accordingly.

  7. Metal complexation in near field conditions of nuclear waste repository - stability constant of copper complexation with cellulose degradation products, in alkaline conditions

    International Nuclear Information System (INIS)

    Guede, Kipre Bertin

    2005-11-01

    Copper is a stable element and spent fuel component which constitutes the radioactive waste. The reaction of Copper with cellulose degradation products in alkaline conditions was performed to mimic what occurs in near field conditions of nuclear waste repository. From the characteristics of Cu (II), this thesis aims at inferring the behaviour of radionuclides vis a vis the degradation products of cellulose. The contribution of the present work is therefore the assessment of the stability of the major cellulose degradation product, its affinity for Copper and the extent of the complexation function 13 between Cu (II) and the organic moieties. The formation of cellulose degradation products was followed by measurement of p11, Conductivity, Angle of rotation, relative abundance of aliphatics and aromatics (E4/E6 ) aid by UV-visible spectroscopy. The TOC was determined using the Walkley and Black titration after respectively 31 weeks and 13 weeks of degradation for the reaction mixtures T and A, N. The stability of the major degradation products gave the following figures: ISA(A): - 13 43.39 <ΔG -10639.88 ISA(N): - Ii 436.45<ΔG< -9103.6. The study of the characteristics of Gluconic Acid, as a model compound, was carried out in an attempt to give a general picture of the roper ties of cellulose degradation products. The Complexation between Cu (II) and the organic ligand (Cellulose degradation products) was performed using UV-visible spectroscopy and Ion Distribution technique. The Log B value obtained from the complexation studies at 336 nm for 1 = 0. I Ni NaClO4 and I = 0.01 M NaClO4, falls within a range of 3.48 to 3.74 for the standard reference material (Gluconic Acid), and within I .87 to 2.3 I, and I .6 to 2.01, respectively for the degradation Products ISA (A) and ISA(N). The ion distribution studies showed that: • In (he absence of the degradation product ISA and at pH = 3.68. 56. 17 % of Cu (II) was bound to the resin. • In the presence of ISA and at 2

  8. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    International Nuclear Information System (INIS)

    Halliwell, Stephen

    2013-01-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  9. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    Science.gov (United States)

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  10. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Stephen [VJ Technologies Inc, 89 Carlough Road, Bohemia, NY (United States)

    2013-07-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  11. Secondary waste form testing: ceramicrete phosphate bonded ceramics

    International Nuclear Information System (INIS)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y.

    2011-01-01

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO 3 , and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO 3 , and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO 3 filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was ∼5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted binder components from

  12. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y. (Nuclear Engineering Division); ( ES)

    2011-06-21

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted

  13. Is routine histopathology of tonsil specimen necessary? | Adoga ...

    African Journals Online (AJOL)

    Background: Tonsillar diseases are common in paediatric and adult otolaryngological practice. These diseases require tonsillectomy. Specimens are subjected to histopathology routinely in my institution for fear of infections and tumour without consideration for risk factors. The financial burden is on the patients and waste ...

  14. Iron oxide nanoparticles stabilized by lignocellulosic waste as green adsorbent for Cr(VI) removal from wastewater

    Science.gov (United States)

    Ouma, Immaculate L. A.; Naidoo, Eliazer B.; Ofomaja, Augustine E.

    2017-08-01

    Magnetite nanoparticles and magnetite-pine cone nanocomposite were prepared and applied in the adsorption of hexavalent chromium from water. Pine cone powder stabilized the nanoparticles and acted as a support while simultaneously introducing functional groups which improved metal adsorption. The nanocomposite retained the nanoparticles magnetic properties while improving chromium adsorption efficiency. Adsorption of hexavalent chromium on both materials was pH and concentration dependent with the most efficient adsorption occurring at pH 2 and 75 mg/L. On both materials, chromium adsorption was spontaneous with Gibbs free energy values of -19.2 kJ mol-1 to -23.7 kJ mol-1 and -18.0 kJ mol-1 to -24.2 kJ mol-1 for nanoparticles and nanocomposite respectively between 298 K and 319 K. The changes in enthalpy and entropy were determined to be 44.4 kJ mol-1, 212.7 J K-1 mol-1 and 78.3 kJ mol-1, 323.3 J K-1 mol-1 for the prepared nanoparticles and nanocomposite respectively.

  15. Changing of the Guard: How Different School Leaders Change Organizational Routines

    Science.gov (United States)

    Enomoto, Ernestine K.; Conley, Sharon

    2008-01-01

    While providing stability and uniformity, organizational routines can foster continuous change. Using Feldman's (2000) performative model of routinized action theory, coupled with leadership succession research, we examined how three successive administrations in a California high school revised a student attendance (tardy-monitoring) routine over…

  16. Bedtime routines child wellbeing & development.

    Science.gov (United States)

    Kitsaras, George; Goodwin, Michaela; Allan, Julia; Kelly, Michael P; Pretty, Iain A

    2018-03-21

    Bedtime routines has shown important associations with areas associated with child wellbeing and development. Research into bedtime routines is limited with studies mainly focusing on quality of sleep. The objectives of the present study were to examine the relationship between bedtime routines and a variety of factors associated with child wellbeing and to examine possible determinants of bedtime routines. A total of 50 families with children between 3 and 5 years old took part in the study. Data on bedtime routines, parenting styles, school readiness, children's dental health, and executive function were collected. Children in families with optimal bedtime routines showed better performance in terms of executive function, specifically working memory (t (44)= - 8.51, p ≤ .001), inhibition and attention (t (48)= - 9.70, p ≤ .001) and cognitive flexibility (t (48)= - 13.1, p ≤ .001). Also, children in households with optimal bedtime routines scored higher in their readiness for school (t (48)= 6.92, p ≤ .001) and had better dental health (U = 85.5, p = .011). Parents in households with suboptimal bedtime routines showed worse performance on all measures of executive function including working memory (t (48)= - 10.47, p ≤ .001), inhibition-attention (t (48)= - 10.50, p ≤ .001) and cognitive flexibility (t (48)= - 13.6, p ≤ .001). Finally, parents with optimal bedtime routines for their children deployed a more positive parenting style in general (i.e. authoritative parenting) compared to those with suboptimal bedtime routines (t (48)= - 6.45, p ≤ .001). The results of the present study highlight the potentially important role of bedtime routines in a variety of areas associated with child wellbeing and the need for further research.

  17. Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Trzcinski, Antoine P.; Stuckey, David C.

    2011-01-01

    This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 o C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO 2 g VS -1 day -1 . Sanitization of the digestate at 65 o C for 7 days allowed a mature digestate to be obtained. At 4 g VS L -1 d -1 and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO 2 at a rate lower than 25 mg CO 2 g VS -1 d -1 after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO 2 g VS -1 d -1 . The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

  18. Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works.

    Science.gov (United States)

    Mburu, Njenga; Tebitendwa, Sylvie M; van Bruggen, Johan J A; Rousseau, Diederik P L; Lens, Piet N L

    2013-10-15

    The performance, effluent quality, land area requirement, investment and operation costs of a full-scale waste stabilization pond (WSP) and a pilot scale horizontal subsurface flow constructed wetland (HSSF-CW) at Jomo Kenyatta University of Agriculture and Technology (JKUAT) were investigated between November 2010 to January 2011. Both systems gave comparable medium to high levels of organic matter and suspended solids removal. However, the WSP showed a better removal for Total Phosphorus (TP) and Ammonium (NH4(+)-N). Based on the population equivalent calculations, the land area requirement per person equivalent of the WSP system was 3 times the area that would be required for the HSSF-CW to treat the same amount of wastewater. The total annual cost estimates consisting of capital, operation and maintenance (O&M) costs were comparable for both systems. However, the evaluation of the capital cost of either system showed that it is largely influenced by the size of the population served, local cost of land and the construction materials involved. Hence, one can select either system in terms of treatment efficiency. When land is available other factor including the volume of wastewater or the investment, and O&M costs determine the technology selection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Microfoundations of Routines and Capabilities

    DEFF Research Database (Denmark)

    Felin, Teppo; Foss, Nicolai Juul; Heimriks, Koen H.

    We discuss the microfoundations of routines and capabilities, including why a microfoundations view is needed and how it may inform work on organizational and competitive heterogeneity. Building on extant research, we identify three primary categories of micro-level components underlying routines...

  20. The solidification/stabilization technology applied to the industrial waste treatment; A tecnologia da solidificacao/estabilizacao aplicada ao tratmento de residuos industriais

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Lisete Celina; Schwabe, Wilfrid Keller [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Sanitaria; Hills, Colin Douglas

    1998-06-01

    Chemical fixation systems are commonly used to manage hazardous industrial wastes. they are based on binders that can encapsulate the waste, improve physical properties and reduce the rate of release of waste components into the environment. Solidification/Stabilisation (S/S) technology presents a choice of binder systems, where the most popular employ ordinary Portland cement (OPC), often with pozzolanic or other mineral additives. The morphology and chemistry of the solidified waste forms are complex. In this work cement-based solidification of hazardous wastes in reviewed and our current understanding of the mechanisms involved are discussed. (author)

  1. Stabilization/solidification of radioactive salt waste by using xSiO2-yAl2O3-zP2O5 (SAP) material at molten salt state.

    Science.gov (United States)

    Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Lee, Han-Soo

    2008-12-15

    The molten salt waste from the pyroprocess is one of the problematic wastes to directly apply a conventional process such as vitrification or ceramization. This study suggested a novel method using a reactive material for metal chlorides at a molten temperature of salt waste, and then converting them into manageable product at a high temperature. The inorganic composite, SAP (SiO2-Al2O3-P2O5), synthesized by a conventional sol-gel process has three or four distinctive domains that are bonded sequentially, Si-O-Si-O-A-O-P-O-P. The P-rich phase in the SAP composite is unstable for producing a series of reactive sites when in contact with a molten LiCl salt. After the reaction, metal aluminosilicate, metal aluminophosphate, metal phosphates and gaseous chlorines are generated. From this process, the volatile salt waste is stabilized and it is possible to apply a high temperature process. The reaction products were fabricated successfully by using a borosilicate glass with an arbitrary composition as a chemical binder. There was a low possibility for the valorization of radionuclides up to 1200 degrees C, based on the result of the thermo gravimetric analysis. The Cs and Sr leach rates by the PCT-A method were about 1 x 10(-3) g/(m2 day). For the final disposal of the problematic salt waste, this approach suggested the design concept of an effective stabilizer for metal chlorides and revealed the chemical route to the fabrication of monolithic wasteform by using a composite as an example. Using this method, we could obtain a higher disposal efficiency and lower waste volume, compared with the present immobilization methods.

  2. The institutionalization of a routine

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian

    2008-01-01

    The theoretical ambition in this paper is to contribute to institutionalism, and the literature on organizational routines, by allotting a precise role to the context and the material. Through a theoretical discussion of several perspectives on organizational routines, I argue that materiality......-which has before largely been treated in overview by institutionalism-plays an important role in the making of a routine. In my empirical study, I demonstrate that the concept and practice of the valve changes, and that it is identified in a number of ways, as it passes through the testing phase...

  3. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    International Nuclear Information System (INIS)

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-01-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m 3 d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m 3 d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m 3 d and then achieved stable performance at 7.0 kg VS/m 3 d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m 3 CH 4 /kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the

  4. ORIGINAL ARTICLES Routinely available cotrimoxazole ...

    African Journals Online (AJOL)

    2004-12-07

    . However, because of ... routine provision of CTM prophylaxis to all infants born to. HIV-infected women. We have data ... were tested using a quantitative assay of HIV viral RNA using polymerase chain reaction (PCR, Roche ...

  5. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  6. Comprehensive low-level radioactive waste management plan for the Commonwealth of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.M.; Mills, D.; Perkins, C.; Riddle, R.

    1984-03-01

    Part I of the Comprehensive Low-Level Radioactive Waste Management Plan for the Commonwealth of Kentucky discusses the alternatives that have been examined to manage the low-level radioactive waste currently generated in the state. Part II includes a history of the commercial operation of the Maxey Flats Nuclear Waste Disposal Site in Fleming County, Kentucky. The reasons for closure of the facility by the Human Resources Cabinet, the licensing agency, are identified. The site stabilization program managed by the Natural Resources and Environmental Protection Cabinet is described in Chapter VI. Future activities to be conducted at the Maxey Flats Disposal Site will include site stabilization activities, routine operations and maintenance, and environmental monitoring programs as described in Chapter VII.

  7. Thermal stability of the French nuclear waste glass - long term behavior modeling; Etude de la stabilite thermique du verre nucleaire. Modelisation de son evolution a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Orlhac, X

    2000-07-01

    The thermal stability of the French nuclear waste glass was investigated experimentally and by modeling to predict its long-term evolution at low temperature. The crystallization mechanisms were analyzed by studying devitrification in the supercooled liquid. Three main crystalline phases were characterized (CaMoO{sub 4}, CeCO{sub 2}, ZnCr{sub 2}O{sub 4}). Their crystallisation was TO 4.24 wt%, due to the low concentration of the constituent elements. The nucleation and growth curves showed that platinoid elements catalysed nucleation but did not affect growth, which was governed by volume diffusion. The criteria of classic nucleation theory were applied to determine the thermodynamic and diffusional activation energies. Viscosity measurements illustrate the analogy between the activation energy of viscous flow and diffusion, indicating control of crystallization by viscous flow phenomena. The combined action of nucleation and growth was assessed by TTT plots, revealing a crystallization equilibrium line that enables the crystallized fractions to be predicted over the long term. The authors show that hetero-genetics catalyze the transformation without modifying the maximum crystallized fraction. A kinetic model was developed to describe devitrification in the glass based on the nucleation and growth curves alone. The authors show that the low-temperature growth exhibits scale behavior (between time and temperature) similar to thermo-rheological simplicity. The analogy between the resulting activation energy and that of the viscosity was used to model growth on the basis of viscosity. After validation with a simplified (BaO{sub 2}SiO{sub 2}) glass, the model was applied to the containment glass. The result indicated that the glass remained completely vitreous after a cooling scenario with the one measured at the glass core. Under isothermal conditions, several million years would be required to reach the maximum theoretical crystallization fraction. (author)

  8. Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations.

    Science.gov (United States)

    Spir, Lívia Genovez; Ataide, Janaína Artem; De Lencastre Novaes, Letícia Celia; Moriel, Patrícia; Mazzola, Priscila Gava; De Borba Gurpilhares, Daniela; Silveira, Edgar; Pessoa, Adalberto; Tambourgi, Elias Basile

    2015-01-01

    Bromelain is a set of proteolytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves. Because of its proteolytic activity, bromelain has potential applications in the cosmetic, pharmaceutical, and food industries. The present study focused on the recovery of bromelain from pineapple peel by liquid-liquid extraction in aqueous two-phase micellar systems (ATPMS), using Triton X-114 (TX-114) and McIlvaine buffer, in the absence and presence of electrolytes CaCl2 and KI; the cloud points of the generated extraction systems were studied by plotting binodal curves. Based on the cloud points, three temperatures were selected for extraction: 30, 33, and 36°C for systems in the absence of salts; 40, 43, and 46°C in the presence of KI; 24, 27, and 30°C in the presence of CaCl2 . Total protein and enzymatic activities were analyzed to monitor bromelain. Employing the ATPMS chosen for extraction (0.5 M KI with 3% TX-114, at pH 6.0, at 40°C), the bromelain extract stability was assessed after incorporation into three cosmetic bases: an anhydrous gel, a cream, and a cream-gel formulation. The cream-gel formulation presented as the most appropriate base to convey bromelain, and its optimal storage conditions were found to be 4.0 ± 0.5°C. The selected ATPMS enabled the extraction of a biomolecule with high added value from waste lined-up in a cosmetic formulation, allowing for exploration of further cosmetic potential. © 2015 American Institute of Chemical Engineers.

  9. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops.

    Science.gov (United States)

    Verbyla, M E; Iriarte, M M; Mercado Guzmán, A; Coronado, O; Almanza, M; Mihelcic, J R

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1mLg(-1) for coliphage, between 1 and 100mLg(-1) for Giardia and Cryptosporidium, and between 100 and 1000mLg(-1) for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Annual report of waste generation and pollution prevention progress, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  11. Annual report of waste generation and pollution prevention progress, 1994

    International Nuclear Information System (INIS)

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report

  12. Perspex in the verification routines for accelerator beam

    International Nuclear Information System (INIS)

    Paredes G, L.; Genis S, R.

    1998-01-01

    It is analyzed the use of a perspex solid phantom, adequately referred to a water phantom, as an auxiliary alternative for the daily stability verification routines or constance of radiation beam, as an option in the case of radiotherapy installations with high charge of accelerator working and with basic dosimetry equipment. (Author)

  13. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  14. Immobilization of radioactive waste in glass matrices

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1978-01-01

    A promising process for long-term management of high-level radioactive waste is to immobilize the waste in a borosilicate glass matrix. Among the most important criteria characterizing the integrity of the large-scale glass-waste forms are that they possess good chemical stability (including low leachability), thermal stability, mechanical integrity, and high radiation stability. Fulfillment of these criteria ensures the maximum margin of safety of glass-waste products, following solidification, handling, transportation, and long-term storage

  15. Routine Radiological Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    Bechtel Nevada

    1998-01-01

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs

  16. RE-UTILIZATION OF INORGANIC SOLID WASTE (LIME MUD AS FOREST ROAD STABILIZER FROM THE CHEMICAL RECOVERY PROCESS IN KRAFT PULP MILL

    Directory of Open Access Journals (Sweden)

    Habip Eroğlu

    2005-04-01

    Full Text Available Waste handling is a concern in all pulp and paper mills. Best available techniques for reducing waste is to minimize the generation of solid waste and/or reuse these materials, wherever practicable. One of the most important solid wastes is lime mud which is generated from the kraft pulping in its chemical recovery process. This paper explores the composition of lime mud resulting from the chemical recovery unite of kraft pulp mill and investigation of this waste for re-using beneficially on sub grade and pavement of forest road as a alternative disposal method. Lime mud obtained from the re-causticising process in SEKA pulp mill that utilizes wheat straw and reed as the principal raw material was supplied with % 47 water content and its chemical and physical characterisations was performed according to standard methods. Dried waste to environmental condition was mixed with certain amount to composite cement for using on pavement and sandy clay, loamy clay and clay soils for enriching forest road sub grade properties. In order to investigate the lime mud addition on pavement and sub grade properties necessary physical tests were performed. As a consequence this study reveals that while waste of lime mud causes environmental and economical problem with conventional disposal techniques and/or abandoning to environment, this waste can be used as good stabilisation materials on forest road sub-grade and pavement without any environmental problem.

  17. The institutionalization of a routine

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian

    2008-01-01

    -which has before largely been treated in overview by institutionalism-plays an important role in the making of a routine. In my empirical study, I demonstrate that the concept and practice of the valve changes, and that it is identified in a number of ways, as it passes through the testing phase...... of production. I argue that the negotiation of these changes during test production is the fulcrum in the routinization of the production procedure. It is through these identity shifts that the valve is both reified, and rendered producible and applicable in the customer world....

  18. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Rangaraj [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Sousbie, Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lugardon, Aurelien [Naskeo Environnment, 52 rue Paul Vaillant Couturier, F-92240 Malakoff (France); Steyer, Jean Philippe; Delgenes, Jean Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2014-05-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of

  19. Master schedule for CY-1977 Hanford Environmental Surveillance Routine Program

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, P.J.; Myers, D.A.; Fix, J.J.

    1976-12-01

    Data are presented from the routine environmental surveillance program at the Hanford Site as conducted by the Environmental Evaluation Section of Battelle, Pacific Northwest Laboratory for ERDA. Tables are presented to show levels of radioactive and nonradioactive pollution in the Columbia River, sanitary water, surface water, ground water, foods, wildlife, soil, and vegetation. Data are also presented for external radiation measurements using thermoluminescent dosimeters, results of portable instrument surveys, and monitoring of waste disposal sites. (HLW)

  20. Can absorbable stabilizers be used routinely in the Nuss procedure?

    DEFF Research Database (Denmark)

    Pilegaard, Hans K; Licht, Peter B

    2009-01-01

    OBJECTIVE: During minimal invasive surgical correction of pectus excavatum the metal bar is rotated 180 degrees and fixed by one or two stabilisers. Previously, all stabilisers were made from metal, but they often caused chronic pain and had to be removed. Recently, a slowly absorbable stabiliser...

  1. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    International Nuclear Information System (INIS)

    Verbyla, M.E.; Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M.; Mihelcic, J.R.

    2016-01-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g −1 for coliphage, between 1 and 100 mL g −1 for Giardia and Cryptosporidium, and between 100 and 1000 mL g −1 for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in ponds may

  2. Prediction of the waste stabilization pond performance using linear multiple regression and multi-layer perceptron neural network: a case study of Birjand, Iran

    Directory of Open Access Journals (Sweden)

    Maryam Khodadadi

    2016-06-01

    Full Text Available Background: Data mining (DM is an approach used in extracting valuable information from environmental processes. This research depicts a DM approach used in extracting some information from influent and effluent wastewater characteristic data of a waste stabilization pond (WSP in Birjand, a city in Eastern Iran. Methods: Multiple regression (MR and neural network (NN models were examined using influent characteristics (pH, Biochemical oxygen demand [BOD5], temperature, chemical oxygen demand [COD], total suspended solids [TSS], total dissolved solid [TDS], electrical conductivity [EC] and turbidity as the regression input vectors. Models were adjusted to input attributes, effluent BOD5 (BODout and COD (CODout. The models performances were estimated by 10-fold external cross-validation. An internal 5-fold cross-validation was also used for the training data set in NN model. The models were compared using regression error characteristic (REC plot and other statistical measures such as relative absolute error (RAE. Sensitivity analysis was also applied to extract useful knowledge from NN model. Results: NN models (with RAE = 78.71 ± 1.16 for BODout and 83.67 ± 1.35 for CODout and MR models (with RAE = 84.40% ± 1.07 for BODout and 88.07 ± 0.80 for CODout indicate different performances and the former was better (P < 0.05 for the prediction of both effluent BOD5 and COD parameters. For the prediction of CODout the NN model with hidden layer size (H = 4 and decay factor = 0.75 ± 0.03 presented the best predictive results. For BODout the H and decay factor were found to be 4 and 0.73 ± 0.03, respectively. TDS was found as the most descriptive influent wastewater characteristics for the prediction of the WSP performance. The REC plots confirmed the NN model performance superiority for both BOD and COD effluent prediction. Conclusion: Modeling the performance of WSP systems using NN models along with sensitivity analysis can offer better

  3. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    Energy Technology Data Exchange (ETDEWEB)

    Verbyla, M.E., E-mail: verbylam@mail.usf.edu [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States); Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M. [Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba (Bolivia, Plurinational State of); Mihelcic, J.R. [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States)

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g{sup −1} for coliphage, between 1 and 100 mL g{sup −1} for Giardia and Cryptosporidium, and between 100 and 1000 mL g{sup −1} for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in

  4. Microfoundations of Routines and Capabilities

    DEFF Research Database (Denmark)

    Felin, Tippo; Foss, Nicolai Juul; Heimericks, Koen H.

    2012-01-01

    This article introduces the Special Issue and discusses the microfoundations of routines and capabilities, including why a microfoundations view is needed and how it may inform work on organizational and competitive heterogeneity. Building on extant research, we identify three primary categories ...

  5. Routine outcome measures in Germany.

    Science.gov (United States)

    Puschner, Bernd; Becker, Thomas; Bauer, Stephanie

    2015-01-01

    The German healthcare system offers comprehensive coverage for people with mental illness including inpatient, day hospital and outpatient services. These services are primarily financed through the statutory health and pension insurances. According to legal regulations, providers are required to base their services on current scientific evidence and to continuously assure the quality of their services. This paper gives an overview of recent initiatives to develop, evaluate and disseminate routine outcome measurement (ROM) in service settings in Germany. A large number of projects have shown outcome monitoring to be feasible, and that feedback of outcome may enhance routine care through an improved allocation of treatment resources. However, none of these initiatives have been integrated into routine care on a nationwide or trans-sectoral level, and their sustainability has been limited. This is due to various barriers in a fragmented mental health service system and to the lack of coordinated national or state-level service planning. The time is ripe for a concerted effort including policy-makers to pick up on these initiatives and move them towards wide-spread implementation in routine care accompanied by practice-oriented research including service user involvement.

  6. Master schedule for CY-1982 Hanford environmental surveillance routine program

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1981-12-01

    This report provides the current schedule of data collection for the routine environmental surveillance program at the Hanford Site. The environmental surveillance program objectives are to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5484.1. The routine sampling schedule provided does not include samples which are planned to be collected during FY-1982 in support of special studies or for quality control purposes. In addition, the routine program outlined in this schedule is subject to modification during the year in response to changes in Site operations, program requirements, or unusual sample results. Sampling schedules are presented for the following: air; Columbia River; sanitary water; surface water; ground water; foodstuffs; wildlife; soil and vegetation; external radiation measurements; portable instrument surveys; and surveillance of waste disposal sites. (ATT)

  7. Master schedule for CY-1982 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1981-12-01

    This report provides the current schedule of data collection for the routine environmental surveillance program at the Hanford Site. The environmental surveillance program objectives are to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5484.1. The routine sampling schedule provided does not include samples which are planned to be collected during FY-1982 in support of special studies or for quality control purposes. In addition, the routine program outlined in this schedule is subject to modification during the year in response to changes in Site operations, program requirements, or unusual sample results. Sampling schedules are presented for the following: air; Columbia River; sanitary water; surface water; ground water; foodstuffs; wildlife; soil and vegetation; external radiation measurements; portable instrument surveys; and surveillance of waste disposal sites

  8. Radioligand purification prior to routine receptor assays

    International Nuclear Information System (INIS)

    Le Goff, J.-M.; Berthois, Y.; Martin, P.-M.

    1988-01-01

    The need to repurify the commercially available radioligands [ 3 H]estradiol and [ 3 H]testosterone before use in routine assays was investigated. Storage of these products for 2 months after delivery led to appreciable degradation of [ 3 H]estradiol compared to [ 3 H]testosterone. Unexpectedly, TLC and even HPLC procedures were ineffective in completely restoring the purity of [ 3 H]-estradiol and the unremoved polar products induced important variations in our estrogen receptor assays. An increase in non-specific binding and a concomitant decrease in total binding were observed resulting in an underestimation of specific binding sites and of the affinity constant. In some cases Scatchard analysis was not possible. The authors therefore strongly recommend the repurification of low-stability radioligands and propose an economic time-saving procedure for the purification of [ 3 H]estradiol by solvent differential partition which requires no high-cost investment in apparatus. (author)

  9. ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS

    Science.gov (United States)

    Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...

  10. Mixed waste: Proceedings

    International Nuclear Information System (INIS)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-01-01

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base

  11. Mixed waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  12. Waste Minimization Measurement and Progress Reporting

    International Nuclear Information System (INIS)

    Stone, K.A.

    1995-01-01

    Westinghouse Savannah River Company is implementing productivity improvement concepts into the Waste Minimization Program by focusing on the positive initiatives taken to reduce waste generation at the Savannah River Site. Previous performance measures, based only on waste generation rates, proved to be an ineffective metric for measuring performance and promoting continuous improvements within the Program. Impacts of mission changes and non-routine operations impeded development of baseline waste generation rates and often negated waste generation trending reports. A system was developed to quantify, document and track innovative activities that impact waste volume and radioactivity/toxicity reductions. This system coupled with Management-driven waste disposal avoidance goals is proving to be a powerful tool to promote waste minimization awareness and the implementation of waste reduction initiatives. Measurement of waste not generated, in addition to waste generated, increases the credibility of the Waste Minimization Program, improves sharing of success stories, and supports development of regulatory and management reports

  13. 1987 Oak Ridge model conference: Proceedings: Volume I, Part 2, Waste Management

    International Nuclear Information System (INIS)

    1987-01-01

    A conference sponsored by the United States Department of Energy (DOE) was held on Waste Mangement. Topics discussed were waste stabilization technologies regulations and standards, innovative treatment technology, waste stabilization projects. Individual projects are processed separately for the data bases

  14. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI); Final report, January 1, 1987--June 30, 1988: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-10-01

    This report provides a summary of progress for the project ``Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)`` for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion.

  15. Finding of no significant impact shipment of stabilized mixed waste from the K-25 Site to an off-site commercial disposal facility, Oak Ridge K-25 Site, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the shipment of stabilized mixed waste, removed from K-1407-B and -C ponds, to an off-site commercial disposal facility (Envirocare) for permanent land disposal. Based on the analysis in the EA, DOE has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI)

  16. Vitrification of hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    Bickford, D.F.; Schumacher, R.

    1995-01-01

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification

  17. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  18. Hanford Site Secondary Waste Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.

    2009-01-29

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and

  19. Routines, rigidity and real estate

    OpenAIRE

    Dooley, Kenneth

    2017-01-01

    Finding ways to reduce the environmental impact of the existing building stock is an important element in climate change mitigation. This article examines environmentally focused organisational innovations in the corporate real estate industry. Organisational innovations are often overlooked as they cause considerable disruption to the daily routines of employees. In this article, the focal organisational innovation is the adoption of activity-based working. The study aims to uncover the barr...

  20. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  1. Aqueous radioactive waste bituminization

    International Nuclear Information System (INIS)

    Williamson, A.S.

    1980-08-01

    The bituminzation of decontamination and ion exchange resin stripping wastes with four grades of asphalt was investigated to determine the effects of asphalt type on the properties of the final products. All waste forms deformed readily under light loads indicating they would flow if not restrained. It was observed in all cases that product leaching rates increased as the hardness of the asphalt used to treat the waste increased. If bituminization is adopted for any Ontario Hydro aqueous radioactive wastes they should be treated with soft asphalt to obtain optimum leaching resistance and mechanical stability during interim storage should be provided by a corrosion resistant container

  2. [Routine oral examinations and specific after-care for removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Keltjens, H.M.A.M.; Creugers, N.H.J.

    2011-01-01

    Following treatment with a removable partial denture, routine oral examinations are required to stabilize the existing condition in a sustainable way and to make possible the timely treatment of anomalies which have appeared. In cases of problems assessed during a routine oral examination in

  3. Application of coal combustion residues to the stabilization/solidification of industrial wastes (IRIS); Desarrollo de un Proceso, a Escala Piloto de Inertizacion de Residuos Industriales con Cenizas Volantes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Stabilization/solidification (S/S) processes, also called inertization processes, are a group of techniques which employ additives to reduce the mobility of the hazardous components from the waste and make possible for the residue to be accepted for its disposal in a safe way. These processes, mainly applied to wastes that contain heavy metals (such as lead, zinc, cadminum, mercury, copper, nickel, titanium, chromium-III, chromium-VI, arsenic,....) change the waste into a solid-like material in which the metals are trapped (nets and matrix) by physical or chemical links. The IRIS Project, carried out by AICIA through the ECSC Coal Programme with the participation of two industrial partners (Sevillana de Electricidad and EGMASA, a public-owned company for waste treatment), has developed, at pilot scale, a new S/S process for inorganic industrial wastes that uses great quantities of fly ash in the place of other more commonly used and expansive reagents. A pilot plant for 200 kg/h has been designed, built and operated. This facility has allowed to add improvements and scientific foundations to existing S/S technology. It has also allowed to obtain industrial scale parameters for fixed and portable plants. Experiencie have been mainly carried out using fly ash from high quality coals, but types of ash have been tested coming from coals with a greater calcium content, from fluidised bed combustion boilers and from desulphurisation processes, giving very suitable characteristics for their application to S/S processes. The addition of fly ash (up to 30%) in the IRIS process improves the results in comparison with the S/S processes that use only cement, because the final pH obtained (8-11) does not allow amphoteric metallic ions to escape in the leachate. The same as other S/S processes, IRIS can be applied also to wastes that contain certain metals (chromium-VI, arsenic, for example) with specific pre-treatments (redox, for example). The efficiency of the IRIS treatment

  4. Determinants of consumer food waste behaviour: Two routes to food waste.

    Science.gov (United States)

    Stancu, Violeta; Haugaard, Pernille; Lähteenmäki, Liisa

    2016-01-01

    Approximately one quarter of the food supplied for human consumption is wasted across the food supply chain. In the high income countries, the food waste generated at the household level represents about half of the total food waste, making this level one of the biggest contributors to food waste. Yet, there is still little evidence regarding the determinants of consumers' food waste behaviour. The present study examines the effect of psycho-social factors, food-related routines, household perceived capabilities and socio-demographic characteristics on self-reported food waste. Survey data gathered among 1062 Danish respondents measured consumers' intentions not to waste food, planning, shopping and reuse of leftovers routines, perceived capability to deal with household food-related activities, injunctive and moral norms, attitudes towards food waste, and perceived behavioural control. Results show that perceived behavioural control and routines related to shopping and reuse of leftovers are the main drivers of food waste, while planning routines contribute indirectly. In turn, the routines are related to consumers' perceived capabilities to deal with household related activities. With regard to intentional processes, injunctive norms and attitudes towards food waste have an impact while moral norms and perceived behavioural control make no significant contribution. Implications of the study for initiatives aimed at changing consumers' food waste behaviour are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Annual report of waste generation and pollution prevention progress 1995

    International Nuclear Information System (INIS)

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995

  6. Annual report of waste generation and pollution prevention progress 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995.

  7. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 1: Cesium Exchange Capacity of a 15-cm3 Column and Dynamic Stability of the Exchange Media

    International Nuclear Information System (INIS)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-01-01

    Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization of the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used

  8. Development, testing, and demonstration of geotechnical and cement-based encapsulant materials for the stabilization of radioactive and hazardous waste disposal structures

    International Nuclear Information System (INIS)

    Phillips, S.J.; Cammann, J.W.; Benny, H.L.; Serne, R.J.; Martin, P.F.; Ames, L.L.

    1991-09-01

    A zeolite fluidized-bed treatment system is being developed and tested for the treatment of radioactive and hazardous waste-contaminated subsurface disposal structures. Formulations of cement, fly ash, and slag slurries and sequestering agents also are being tested and evaluated. Leach resistance of radionuclides, heavy metals, and hazardous inorganic compounds in the solidified cement-based encapsulant has been determined. These results simulate the resistance to water leaching of the solidified product after it has been injected an open and interstitial void volume in and proximal to liquid waste disposal structures. Micro- and macro-encapsulation of contaminants within and geologic media surrounding subsurface disposal structures is being demonstrated as an alternative technology for waste site remediation. 5 refs., 1 fig., 1 tab

  9. The influence of decreased hydraulic retention time on the performance and stability of co-digestion of sewage sludge with grease trap sludge and organic fraction of municipal waste.

    Science.gov (United States)

    Grosser, Anna

    2017-12-01

    The effect of hydraulic retention time ranging from 12 to 20 d on process performance and stability was investigated in two anaerobic completely stirred tank reactors with a working liquid volume equal to 6 litres. The reactors were fed with mixtures containing (on volatile solids basis): 40% of sewage sludge, 30% of organic fraction of municipal waste and 30% of grease trap sludge. The change of hydraulic retention time did not significantly affect process stability. However, methane yields as well as volatile solids removal decreased from 0.54 to 0.47 l per kg of added volatile solids and 65% to 60% respectively, with the decrease of hydraulic retention time. Despite the fact that the best process performance was achieved for hydraulic retention time of 20 days, the obtained results showed that it is also possible to carry out the co-digestion process at shorter hydraulic retention times with good results. Furthermore, gas production rate as well as biogas production at the shortest hydraulic retention time were approximately 46% higher in comparison to results obtained at the longest hydraulic retention time. In this context, the proposed solution seems to be an interesting option, because it provides an unique opportunity for wastewater treatment plants to improve their profitability by enhancing energy recovery from sludge as well as full utilisation of the existing infrastructure and hence creates a new potential place for alternative treatment of organic industrial waste such as: fat-rich materials or food waste. However, implementation of the solution at wastewater treatment plants is still a big challenge and needs studies including identification of optimal digesting conditions, information about substrate pumping, inhibition thresholds and processing properties. Additionally, due to the characteristics of both co-substrates their introduction to the full-scale digester should be carefully planned due to a potential risk of overloading of the digester

  10. Determinants of consumer food waste behaviour

    DEFF Research Database (Denmark)

    Stancu, Violeta; Haugaard, Pernille; Lähteenmäki, Liisa

    2016-01-01

    gathered among 1062 Danish respondents measured consumers' intentions not to waste food, planning, shopping and reuse of leftovers routines, perceived capability to deal with household food-related activities, injunctive and moral norms, attitudes towards food waste, and perceived behavioural control....... With regard to intentional processes, injunctive norms and attitudes towards food waste have an impact while moral norms and perceived behavioural control make no significant contribution. Implications of the study for initiatives aimed at changing consumers' food waste behaviour are discussed....

  11. Study of stationary phase stability from a column with chromatographic material for steady state treatment of an effluent and/or waste containing Th-232

    International Nuclear Information System (INIS)

    Felinto, Maria Claudia Franca da Cunha; Martinz, Daniel Ortiz

    1999-01-01

    This work relates the behavior of a new chromatographic material, AMBERCMPO I, that has been studied to remove actinide elements from the High Level Liquid Waste. It gives emphasis to the behavior of chromatographic materials to the extraction of Th 4+ and its performance after some operation cycle. (author)

  12. Use of coal fly ash and other waste products in soil stabilization and road construction including non-destructive testing of roadways.

    Science.gov (United States)

    2012-06-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and : lime kiln dust. The laboratory program included measurements of: compaction curves, small strain elastic moduli, : resilient modulus (Mr), Briaud C...

  13. Use of coal fly ash and other waste products in soil stabilization and road construction-including non-destructive testing of roadways.

    Science.gov (United States)

    2012-02-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and lime kiln dust. The laboratory : program included measurements of: compaction curves, small strain elastic moduli, resilient modulus (Mr), Briaud Com...

  14. Treatment of mercury containing waste

    Science.gov (United States)

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  15. Processes for production of alternative waste forms

    International Nuclear Information System (INIS)

    Ross, W.A.; Rusin, J.M.; McElroy, J.L.

    1979-01-01

    During the past 20 years, numerous waste forms and processes have been proposed for solidification of high-level radioactive wastes (HLW). The number has increased significantly during the past 3 to 4 years. At least five factors must be considered in selecting the waste form and process method: 1) processing flexibility, 2) waste loading, 3) canister size and stability, 4) waste form inertness and stability, and 5) processing complexity. This paper describes various waste form processes and operations, and a simple system is proposed for making comparisons. This system suggests that one goal for processes would be to reduce the number of process steps, thereby providing less complex processing systems

  16. Routine Early Angioplasty after Fibrinolysis

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Liang, Bo; Mei, Qibing

    2009-01-01

    patients in the group that underwent routine early PCI than in the group that received standard treatment received clopidogrel (Ppatients who undergo PCI, as well as in those who do not, is well established,1...... with early beta-blocker therapy is taken into consideration.3 The overall benefit of clopidogrel and beta-blocker therapy could have influenced the outcome in patients who underwent early PCI. These facts leave the conclusion of the TRANSFER-AMI trial still highly uncertain.......To the Editor: Cantor et al. report that there is a significantly reduced rate of ischemic complications among patients with myocardial infarction with ST-segment elevation who are transferred for PCI within 6 hours after fibrinolysis. However, Table 2 of the article shows that significantly more...

  17. Master schedule for CY-1981 Hanford environmental surveillance routine program

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1980-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site is provided. Questions about specific entries should be referred to the authors since modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in Manual Chapter 0513, and to monitor Hanford operations for compliance with applicable environmental criteria given in Manual Chapter 0524 and Washington State Water Quality Standards. Air quality data obtained in a separate program are also reported. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Schedules are presented for the following subjects: air, Columbia River, sanitary water, surface water, ground water, foodstuffs, wildlife, soil and vegetation, external radiation measurement, portable instrument surveys, and surveillance of waste disposal sites. (JGB)

  18. Master schedule for CY-1981 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.

    1980-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site is provided. Questions about specific entries should be referred to the authors since modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in Manual Chapter 0513, and to monitor Hanford operations for compliance with applicable environmental criteria given in Manual Chapter 0524 and Washington State Water Quality Standards. Air quality data obtained in a separate program are also reported. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Schedules are presented for the following subjects: air, Columbia River, sanitary water, surface water, ground water, foodstuffs, wildlife, soil and vegetation, external radiation measurement, portable instrument surveys, and surveillance of waste disposal sites

  19. Taking a new biomarker into routine use – A perspective from the routine clinical biochemistry laboratory

    Science.gov (United States)

    Sturgeon, Catharine; Hill, Robert; Hortin, Glen L; Thompson, Douglas

    2010-01-01

    There is increasing pressure to provide cost-effective healthcare based on “best practice.” Consequently, new biomarkers are only likely to be introduced into routine clinical biochemistry departments if they are supported by a strong evidence base and if the results will improve patient management and outcome. This requires convincing evidence of the benefits of introducing the new test, ideally reflected in fewer hospital admissions, fewer additional investigations and/or fewer clinic visits. Carefully designed audit and cost-benefit studies in relevant patient groups must demonstrate that introducing the biomarker delivers an improved and more effective clinical pathway. From the laboratory perspective, pre-analytical requirements must be thoroughly investigated at an early stage. Good stability of the biomarker in relevant physiological matrices is essential to avoid the need for special processing. Absence of specific timing requirements for sampling and knowledge of the effect of medications that might be used to treat the patients in whom the biomarker will be measured is also highly desirable. Analytically, automation is essential in modern high-throughput clinical laboratories. Assays must therefore be robust, fulfilling standard requirements for linearity on dilution, precision and reproducibility, both within- and between-run. Provision of measurements by a limited number of specialized reference laboratories may be most appropriate, especially when a new biomarker is first introduced into routine practice. PMID:21137030

  20. Routines Are the Foundation of Classroom Management

    Science.gov (United States)

    Lester, Robin Rawlings; Allanson, Patricia Bolton; Notar, Charles E.

    2017-01-01

    Classroom management is the key to learning. Routines are the foundation of classroom management. Students require structure in their lives. Routines provide that in all of their life from the time they awake until the time they go to bed. Routines in a school and in the classroom provide the environment for learning to take place. The paper is…

  1. 42 CFR 493.931 - Routine chemistry.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  2. Radioactive wastes

    International Nuclear Information System (INIS)

    Boegly, W.J.; Alexander, H.J.

    1983-01-01

    A literature review on studies concerning radioactive wastes is presented. Literature on radioactive wastes available from the National Technical Information Service, Washington, DC, was not included in the review. Studies were reviewed that dealt with general programs for radioactive wastes; isolation of radioactive wastes; waste management; waste storage; environmental transport; transportation; risk assessment; and remedial action are reviewed

  3. Twelfth annual US DOE low-level waste management conference

    International Nuclear Information System (INIS)

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990

  4. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  5. Master schedule for CY-1980 Hanford Environmental Surveillance Routine Program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Houston, J.R.; Eddy, P.A.

    1979-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site is presented. The enviromental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in Manual Chapter 0513, and to monitor Hanford operations for compliance with applicable environmental criteria given in Manual Chapter 0524 and Washington State Water Quality Standards. Data are reported on the following topics: air; Columbia River; sanitary water; surface water; ground water; foodstuffs; wildlife; soil and vegetation; external radiation measurement; portable instrument surveys; and surveillance of waste disposal sites;

  6. Decontaminating products for routine decontamination in nuclear power plants

    International Nuclear Information System (INIS)

    Henning, K.

    2001-01-01

    Routine decontamination work that has to be carried out in practical operation includes the cleaning of all kinds of surfaces such as floors, walls and apparatus, the decontamination of professional clothes and of the personnel. In order to ensure a trouble-free functioning of plants for the treatment of waste water and concentrate in nuclear power plants, radioactive liquid wastes appearing in the controlled area should be compatible with the treatment methods in practice. Radioactive concentrates and resides obtained from the treatment methods are mixed with matrix materials like cement or bitumen or treated by roller frame drying and thus are conditioned for intermediate or final storage. Several requirements should be made on decontaminating agents used in the controlled area. Some of these physical-chemical criteria will be described in detail. (R.P.)

  7. Tank waste concentration mechanism study

    International Nuclear Information System (INIS)

    Pan, L.C.; Johnson, L.J.

    1994-09-01

    This study determines whether the existing 242-A Evaporator should continue to be used to concentrate the Hanford Site radioactive liquid tank wastes or be replaced by an alternative waste concentration process. Using the same philosophy, the study also determines what the waste concentration mechanism should be for the future TWRS program. Excess water from liquid DST waste should be removed to reduce the volume of waste feed for pretreatment, immobilization, and to free up storage capacity in existing tanks to support interim stabilization of SSTS, terminal cleanout of excess facilities, and other site remediation activities

  8. Challenges of Non-Destructive Assay Waste Measurement

    International Nuclear Information System (INIS)

    Shull, A.H.

    2003-01-01

    Historically, the Savannah River Site (SRS) routinely produced special nuclear material (SNM), which provided stable measurement conditions for the non-destructive assay (NDA) methods. However, the main mission of SRS has changed from the production of SNM to the processing of waste and material stabilization. Currently, the purpose of processing is to recover the SNM from the waste and stabilization materials, much of which is from other DOE facilities. These missions are usually of a short duration, but require non-destructive assay (NDA) accountability measurements on materials of varying composition and geometric configuration. These missions usually have cost and time constraints, which sometimes require re-application of existing NDA methods to waste measurements. Usually, each new material or re-application of the NDA method to a different SNM campaign requires new standards and timely re-calibration of the method. These constraints provide numerous challenges for the NDA methods, particularly in the area of measurement uncertainty. This paper will discuss the challenges of these situations, mainly from a measurement and statistical point of view and provide some possible solutions to the problems encountered. Specific examples will be discussed for the segmented gamma scanner (SGS), neutron multiplicity counter (NMC) and passive neutron coincidence counter (PNCC), which are some of the most common NDA instruments at SRS

  9. ROCTECtm STABILIZATION TREATMENT OF WERF ASH

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Lessing; William J. Quapp; Gary Renlund; Bob Clark; Colin Hundley; James Cornwell; Dave Schlier; John Bulko; Gene Pollack

    1998-10-01

    The objective of this project is to demonstrate a process to stabilize mixed waste flyash generated by the combustion of mixed waste at the Idaho National Engineering & Environmental Laboratory's (INEEL's) Waste Experimental Reduction Facility (WERF) incinerator such that it will meet Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs) Universal Treatment Standards.

  10. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  11. Effects of loading rate and temperature on anaerobic co-digestion of food waste and waste activated sludge in a high frequency feeding system, looking in particular at stability and efficiency.

    Science.gov (United States)

    Li, Qian; Li, Hao; Wang, Gaojun; Wang, Xiaochang

    2017-08-01

    A continuously stirred tank reactor (CSTR) with a high feeding frequency (HFF) of once every 15min was employed in order to ease the loading shock frequently occurred in digester with a low feeding frequency. The effects of the organic loading rate (OLR) and temperature on the co-digestion of food waste and waste activated sludge was evaluated in a 302-day long-term experiment. Due to the high hydrolysis rate, the maximum CH 4 yield in a thermophilic reactor was 407mL CH 4 /gVS added , a value that was significantly higher than the 350mL CH 4 /gVS added that occurred in a mesophilic reactor. Although the alkalinity declined when HRT was shorted than 10d, caused by the decrease of conversion ratio from protein to ammonium, the increase of specific methanogenic activity helped HFF system to achieve stable performance at an OLR of 11.2 (HRT 7.5d) and 30.2gVS/L/d (HRT 3d) under mesophilic and thermophilic conditions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  13. Field evaluation of two shallow land burial trench cap designs for long-term stabilization and closure of waste repositories at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.; Drennon, B.; Hakonson, T.

    1989-02-01

    The results from several field experiments on methods to control soil erosion, biointrusion, and water infiltration were used to design and test a burial site cover which improves the ability of the disposal site to isolate the wastes. The performance of the improved cover design in managing water and biota at the disposal site was compared with a more conventional design widely used in the industry. The conventional trench cover design consists of 15 cm of sandy loam topsoil over 75 cm of sandy silt backfill, whereas the improved trench cover design consists of 75 cm of topsoil over a minimum of 25 cm of gravel and 90 cm of river cobble. Each plot was lined with an impermeable liner to allow for mass balance calculation of water dynamics and contains hydrologic tracer ions (iodide and bromide) to demonstrate movement of water through the various zones of the trench cap. Cesium was emplaced beneath the trench cap to indicate root penetration through the trench cap, observed by sampling plant samples collected on the plots and assaying them for cesium. The field data are summarized and discussed in terms of its usefulness for waste management decisions. 67 refs., 44 figs., 4 tabs

  14. Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime; applications to radioactive waste isolation in silicic tuff

    International Nuclear Information System (INIS)

    Smyth, J.R.; Caporuscio, F.A.

    1981-06-01

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Nonwelded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling that limits the permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a formidable natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water-vapor pressures and may break down either by reversible dehydration or by irreversible mineralogical reactions. All the breakdown reactions occurring at increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85 0 C. This may restrict allowable gross thermal loadings in waste repositories in volcanic rocks

  15. Annual report of waste generation and pollution prevention progress 1997

    International Nuclear Information System (INIS)

    1998-09-01

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE's Complex-Wide Waste Reduction Goals are achieved by December 31, 1999

  16. Natural fission reactors from Gabon. Contribution to the study of the conditions of stability of a natural radioactive wastes storage site (2 Ga)

    International Nuclear Information System (INIS)

    Pourcelot, L.

    1997-01-01

    The natural fission reactors of Oklo consists of a core of uraninite (60%) with fission products, embedded in a pure clay matrix. Thus, the aim of geological, mineral, and geochemical studies of the Oklo Reactors is to assess the behaviour of fission products in an artificial waste depository. Previous studies have shown that Reactor Zone 10, located in the Oklo mine, represents an example for an exceptional confinement of fission products since 2 Ga. In reactor Zone 9, located in Oklo open pit, migrations are more important. Reactor ZOne 13 was influenced by a thermal event due to a doleritic intrusion, located some twenty meters far away, one Ga years after fission reaction operations. In this study,we characterized temperature and redox conditions of fluids by using stable isotopes of uraninites and clays. Moreover mineralogical and chemical characteristics were defined. (author)

  17. Health physics routine at the Instituto de Energia Atomica, Sao Paulo (Brazil)

    International Nuclear Information System (INIS)

    Sordi, G.M.A.A.

    1976-01-01

    The routine health physics work at the IEAR-1 reactor and the modifications that are being made, are described. The Personal Dosimetry Laboratory, Waste Disposal and Decontamination Laboratory, Shielding Calculation Section, Dosimetry Laboratory, Radioactive Source and Instrumentation Calibration, are presented. Methods of calibration of radioactive sources and instrumentation are also presented [pt

  18. Combustion stability and thermal efficiency in a porous media burner for LPG cooking in the food industry using Al2O3 particles coming from grinding wastes

    International Nuclear Information System (INIS)

    Herrera, Bernardo; Cacua, Karen; Olmos-Villalba, Luis

    2015-01-01

    Cooking is one of the most thermal-energy consuming processes in the food industry and development of devices that contribute to decrease the consumption of fossil fuel is a matter of great importance. This decreasing in consumption can both enlarge competitiveness in the enterprises of this sector and reduce emissions of greenhouse gases and other toxic combustion by products such as, carbon monoxide and nitrogen oxides. A porous burner made of a bed of Al 2 O 3 particles coming from grinding residues and combined with ceramic foam of SiSiC has been evaluated respect to Liquefied Petroleum Gas combustion stability and thermal efficiency for cooking in food industry. The results showed that for specific heat input rate lower than 154 kW/m 2 , the upper and lower equivalence ratio on the stability limit follow approximately a linear trend, as well as the wide of the range of stability remains constant. But this trend is broken when higher heat input rate is applied. Also, every equivalence ratio for stable combustion was in the lean ratio and stoichiometric combustion values were not feasible because flashback occurred. Emissions of CO were in acceptable values lower than 25 ppm for specific heat input rate lower than 154 kW/m 2 but an important rising in the CO emissions could be seen when the burner worked at higher heat input rate due to a moderate lift-off and quenching on the surface of the burner. Thermal efficiency was calculated in two different working ways: the “radiation–convection” and “conduction”. Thermal efficiency in the “radiation–convection” was between 15.7% and 23.6%, which are lower than the average thermal efficiency of the conventional free-flame burner. But the “conduction” mode showed a significant advantage respect to free flame conventional burners, since it could improve the thermal efficiency between 7% and 14%. The improvement in efficiency and the possibility of interrupting the flow of fuel in a cyclical

  19. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  20. Geotechnical practice for waste disposal '87

    International Nuclear Information System (INIS)

    Woods, R.D.

    1987-01-01

    This book contains the proceedings of a Specialty Conference sponsored by the Geotechnical Engineering Division of the American Society of Civil Engineers. Some of the titles of the papers include: Design of Waste Containment Structures, Site Characteristics for Waste Disposal, Containment of Low-Level Radioactive Material, Stabilized Fly Ash for Use in as Low-Permeability Barriers, and Hydrocarbon Refining Waste Stabilization for Landfills

  1. Participation of people in waste source separation program ...

    African Journals Online (AJOL)

    One of the basic problems of current cities is solid waste and its correct management. Solid waste material is the unavoidable product of routine life of human being. These wastes affect the quality and quantity of life in the present era. Increased population, development, human activities and shortage of resources have ...

  2. β-Irradiation Effects on the Formation and Stability of CaMoO4 in a Soda Lime Borosilicate Glass Ceramic for Nuclear Waste Storage.

    Science.gov (United States)

    Patel, Karishma B; Boizot, Bruno; Facq, Sébastien P; Lampronti, Giulio I; Peuget, Sylvain; Schuller, Sophie; Farnan, Ian

    2017-02-06

    Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO 4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO 3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO 4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal β-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO 4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to β-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO 4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO 4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo 6+ to Mo 5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion

  3. Routine versus selective postoperative nasogastric suction in ...

    African Journals Online (AJOL)

    Background: Nasogastric suction is a common routine postoperative procedure in abdominal surgery. Yet there is little scientific justification for it. This paper reports a comparision of routine with selective postoperative nasogastric tube suction in evaluating patients undergoing laparotomy. Methods: This was a prospective ...

  4. External Agents' Effect on Routine Dynamics

    DEFF Research Database (Denmark)

    Busse Hansen, Nicolai

    Prior investigations on organizational routines have called for re- search to enlighten our understanding of how social actors establish and main- tain of routines as well as the causes of their disruption. The present paper con- tributes to this call by conducting systematic microethnographic an...

  5. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity

  6. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  7. Global Nuclear Energy Partnership Waste Treatment Baseline

    International Nuclear Information System (INIS)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John

    2008-01-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  8. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  9. Vitrification of reactor wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, A. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. des Procedes de Retraitement; Sussmilch, J. [Nuclear Research Institut, Rez (Czech Republic)

    1993-12-31

    The vitrification of low and intermediate level wastes from the NPP operation has been studied in the frame of a Franco-Czech agreement. The laboratory experiments concentrated on a search for a suitable borosilicate glass matrix which could incorporate relatively high quantities of boron and sodium, main components of liquid wastes from the WWER reactor type NPPs. A relatively wide area of waste compositions has been studied and properties of glasses suitable for the technology and waste disposal were measured. Great attention has been paid to the chemical stability (leachability), other properties like thermal dependence of viscosity and electrical conductivity of melts, and the microstructure of the final solidification product have also been evaluated. The feasibility of the vitrification process has been proved during pilot plant tests which were accomplished at the French establishment in Marcoule. The results of tests were promising. (authors). 4 tabs., 7 figs.

  10. Vitrification of reactor wastes

    International Nuclear Information System (INIS)

    Jouan, A.

    1993-01-01

    The vitrification of low and intermediate level wastes from the NPP operation has been studied in the frame of a Franco-Czech agreement. The laboratory experiments concentrated on a search for a suitable borosilicate glass matrix which could incorporate relatively high quantities of boron and sodium, main components of liquid wastes from the WWER reactor type NPPs. A relatively wide area of waste compositions has been studied and properties of glasses suitable for the technology and waste disposal were measured. Great attention has been paid to the chemical stability (leachability), other properties like thermal dependence of viscosity and electrical conductivity of melts, and the microstructure of the final solidification product have also been evaluated. The feasibility of the vitrification process has been proved during pilot plant tests which were accomplished at the French establishment in Marcoule. The results of tests were promising. (authors). 4 tabs., 7 figs

  11. The embeddedness of selfish routines: How routines are replicated in business networks

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2003-01-01

    Organisational routines may be viewed as replicators of business organisation and lead to the formation of new ventures. This paper discuss this idea, and ilustrates it using two case studies of routine replication in a Danish context...

  12. Space disposal of nuclear wastes

    Science.gov (United States)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  13. Co-Digestion of the Organic Fraction of Municipal Waste With Other Waste Types

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2002-01-01

    Several characteristics make anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) difficult. By co-digestion of OFMSW with several other waste types it will be possible to optimize the anaerobic process by waste management. The co-digestion concept involves the treatment...... of several waste types in a single treatment facility. By combining many types of waste it will be possible to treat a wider range of organic waste types by the anaerobic digestion process (figure 1). Furthermore, co-digestion enables the treatment of organic waste with a high biogas potential that makes...... the operation of biogas plants more economically feasible (Ahring et al., 1992a). Thus, co-digestion gives a new attitude to the evaluation of waste: since anaerobic digestion of organic waste is both a waste stabilization method and an energy gaining process with production of a fertilizer, organic waste...

  14. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  15. Storage and disposal of radioactive waste as glass in canisters

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal

  16. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    International Nuclear Information System (INIS)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies

  17. High-level waste-form-product performance evaluation

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.; Allender, J.S.; Stone, J.A.; Gordon, D.E.; Gould, T.H. Jr.; Westberry, C.F. III.

    1982-01-01

    Seven candidate waste forms were evaluated for immobilization and geologic disposal of high-level radioactive wastes. The waste forms were compared on the basis of leach resistance, mechanical stability, and waste loading. All forms performed well at leaching temperatures of 40, 90, and 150 0 C. Ceramic forms ranked highest, followed by glasses, a metal matrix form, and concrete. 11 tables

  18. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  19. Evaluation of the atmospheric stability and it influence in the radiological environmental impact of the treatment plant and radioactive waste storage (PTDR)

    International Nuclear Information System (INIS)

    Ramos V, E.O.; Cornejo D, N.

    2006-01-01

    It is well-known that the meteorological variables as the atmospheric stability, influence in the atmospheric dispersion of radioactive pollutants, for that as regards radiological safety, it constitutes a demand the evaluation of their impact in the process before mentioned. The present work exposes the results of the study of the radiological impact of our PTDR that it allowed to know the influence of this meteorological parameter in the atmospheric dispersion of radioactive pollutants in its location. To such effects they were processed by means of the methodology of Pasquill - Gifford, data of time zone observations of this meteorological variable obtained in the proximities of the installation, being modeled the worst conditions in atmospheric liberation of their radionuclides inventory, valuing stops the 2 critical considered population groups the doses received by inhalation of polluted air and ingestion of water and polluted products, as well as, for external irradiation from the radioactive cloud and the floor. The obtained annual effective doses due to the modeling situation reach until a mSv, except for the Ra-226 that are lightly superior, implying a risk radiological acceptable chord to the international standard. To the above-mentioned a reduced probability of occurrence of events initiators of the evaluated accidental sequence is added. (Author)

  20. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by the scouts...... twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the source...

  1. EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999

    Energy Technology Data Exchange (ETDEWEB)

    Channell, J.K.; Walker, B.A.

    2000-05-01

    Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations.

  2. Microwave Enhanced Freeze Drying of Solid Waste, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of technology for Microwave Enhanced Freeze Drying of Solid Waste (MEFDSW) is proposed. The present state of the art for solid waste stabilization using...

  3. Instrumental neutron activation analysis - a routine method

    International Nuclear Information System (INIS)

    Bruin, M. de.

    1983-01-01

    This thesis describes the way in which at IRI instrumental neutron activation analysis (INAA) has been developed into an automated system for routine analysis. The basis of this work are 20 publications describing the development of INAA since 1968. (Auth.)

  4. Improving care coordination using organisational routines

    DEFF Research Database (Denmark)

    Prætorius, Thim

    2016-01-01

    Purpose – The purpose of this paper is to systematically apply theory of organisational routines to standardised care pathways. The explanatory power of routines is used to address open questions in the care pathway literature about their coordinating and organising role, the way they change and ....../value – Theory on organisational routines offers fundamental, yet unexplored, insights into hospital processes, including in particular care coordination. © 2016, © Emerald Group Publishing Limited....... routines by being recurrent, collective and embedded and specific to an organisation. In particular, care pathways resemble standard operating procedures that can give rise to recurrent collective action patterns. In all, 11 propositions related to five categories are proposed by building on these insights...

  5. Taking medicine at home - create a routine

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000613.htm Taking medicine at home - create a routine To use the ... teeth. Find Ways to Help You Remember Your Medicines You can: Set the alarm on your clock, ...

  6. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  7. Simulation Branch Plotting and Utility Routines 1

    Science.gov (United States)

    1975-03-01

    rights or permission to manufacture , use, or sell any patented invention that may in any way be related thereto. IS This technical report has been...NOTES ■ „ FTN (Fortran IV Extended) Plotting package 2-D magnetohydrodynamics Microfilm BRAHMA SCOPE 3.2 -rr ,, net.0,sarv and identity by...maqnetohydrodynamics code BRAHMA . Section I is concerned with microfilm plotting routines. Section II is primarily concerned with utility routines

  8. Routines in management accounting research: Further exploration

    OpenAIRE

    Quinn, Martin

    2011-01-01

    Purpose This paper seeks to enhance the eminent work of Burns and Scapens (2000) by introducing broader conceptualisations on organisational routines and rules in to management accounting. Design/methodology/approach The paper sets out with the Burns and Scapens (2000) framework. The paper is primarily conceptual in nature and with the addition of some more recent literature on organisational routines serves to bolster the underpinnings of the Burns and Scapens (2000) framework. Dra...

  9. Regionalization as a strategy for management of low-level and mixed wastes in the DOE system

    International Nuclear Information System (INIS)

    Bradford, J.D.; Garcia, E.C.; Gillins, R.L.

    1988-01-01

    The Department of Energy has been routinely performing low-level waste volume reduction and/or stabilization treatment at various sites for some time. In general, treatment is performed on waste generated onsite. Disposal is also usually performed onsite since most DOE sites have their own LLW disposal facilities. The DOE initiated studies to evaluate strategies for treatment, storage, and disposal of hazardous and mixed wastes covered in the Resource Conservation and Recovery Act (RCRA) and to ensure that DOE sites are in compliance with RCRA. These studies recommend regionalization as the most cost-effective solution to the treatment and disposal of hazardous and mixed wastes. The DOE's Defense Low-Level Waste Management Program conducted an additional survey of DOE sites to evaluate the status of one specific treatment method, incineration, at these sites. This study included facilities currently in use or intended for treatment of low-level and mixed wastes. A summary of the findings is presented in this paper

  10. Possibilities of composting disposable diapers with municipal solid wastes.

    Science.gov (United States)

    Colón, Joan; Ruggieri, Luz; Sánchez, Antoni; González, Aina; Puig, Ignasi

    2011-03-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process performance and the characteristics of the compost obtained when compared with that of composting OFMSW without diapers. The experiments demonstrated that the composting process presented similar trends in terms of evolution of routine parameters (temperature, oxygen content, moisture and organic matter content) and biological activity (measured as respiration index). In relation to the quality of both composts, it can be concluded that both materials were identical in terms of stability, maturity and phytotoxicity and showed no presence of pathogenic micro-organisms. However, compost coming from OFMSW with a 3% of disposable diapers presented a slightly higher level of zinc, which can prevent the use of large amounts of diapers mixed with OFMSW.

  11. Experience in waste drying

    International Nuclear Information System (INIS)

    Burnham, R.E.; Temus, C.J.; Hillstrom, D.S.

    1987-01-01

    Ion exchange resins, filter media and sludges are currently either dewatered or solidified for stabilization, prior to disposal at a low level waste facility. Nuclear Packaging developed the Resin Drying System and placed it into commercial service to provide a system which meets the regulatory requirements for free standing water with a relatively short process duration, requiring no chemical or material addition and utilizing more volume efficient containers than were previously available. The Resin Drying System has proven to be a very cost effective, efficient and secure means of processing low level radioactive waste for many utilities in the United States

  12. Stabilization of chromium salt in ordinary portland cement

    Indian Academy of Sciences (India)

    Keywords. Stabilization/solidification; ordinary portland cement; ammonium dichromate; differential microcalorimetry; conductometry;. Fourier transform infrared spectroscopy. 1. Introduction. The stabilization/solidification process of the chromium wastes generated from steel production, chrome plating, pigments and leather ...

  13. Cable Stability

    CERN Document Server

    Bottura, L

    2014-01-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.

  14. Conditioning of alpha bearing wastes

    International Nuclear Information System (INIS)

    1991-01-01

    Alpha bearing wastes are generated during the reprocessing of spent fuel, mixed oxide fuel fabrication, decommissioning and other activities. The safe and effective management of these wastes is of particular importance owing to the radiotoxicity and long lived characteristics of certain transuranic (TRU) elements. The management of alpha bearing wastes involves a number of stages which include collection, characterization, segregation, treatment, conditioning, transport, storage and disposal. This report describes the currently available matrices and technologies for the conditioning of alpha wastes and relates them to their compatibility with the other stages of the waste management process. The selection of a specific immobilization process is dependent on the waste treatment state and the subsequent handling, transport, storage and disposal requirements. The overall objectives of immobilization are similar for all waste producers and processors, which are to produce: (a) Waste forms with sufficient mechanical, physical and chemical stability to satisfy all stages of handling, transport and storage (referred to as the short term requirements), and (b) Waste forms which will satisfy disposal requirements and inhibit the release of radionuclides to the biosphere (referred to as the long term requirements). Cement and bitumen processes have already been successfully applied to alpha waste conditioning on the industrial scale in many of the IAEA Member States. Cement systems based on BFS and pozzolanic cements have emerged as the principal encapsulation matrices for the full range of alpha bearing wastes. Alternative technologies, such as polymers and ceramics, are being developed for specific waste streams but are unlikely to meet widespread application owing to cost and process complexity. The merits of alpha waste conditioning are improved performance in transport, storage and disposal combined with enhanced public perception of waste management operations. These

  15. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  16. Leaching behavior of phosphate-bonded ceramic waste forms

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Jeong, S.Y.; Dorf, M.

    1996-04-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. We have developed a magnesium phosphate ceramic to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests

  17. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  18. Food waste

    OpenAIRE

    Marešová, Adéla

    2014-01-01

    This thesis looks into issues related to food waste and consists of a theoretical and a practical part. Theoretical part aims to provide clear and complex definition of wood waste related problems, summarize current findings in Czech and foreign sources. Introduction chapter explains important terms and legal measures related to this topic. It is followed by description of causes, implications and possibilities in food waste reduction. Main goal of practical part is analyzing food waste in Cz...

  19. Routine Radiological Environmental Monitoring Plan. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  20. Modeling material failure with a vectorized routine

    Science.gov (United States)

    Cramer, S. M.; Goodman, J. R.

    1984-01-01

    The computational aspects of modelling material failure in structural wood members are presented with particular reference to vector processing aspects. Wood members are considered to be highly orthotropic, inhomogeneous, and discontinuous due to the complex microstructure of wood material and the presence of natural growth characteristics such as knots, cracks and cross grain in wood members. The simulation of strength behavior of wood members is accomplished through the use of a special purpose finite element/fracture mechanics routine, program STARW (Strength Analysis Routine for Wood). Program STARW employs quadratic finite elements combined with singular crack tip elements in a finite element mesh. Vector processing techniques are employed in mesh generation, stiffness matrix formation, simultaneous equation solution, and material failure calculations. The paper addresses these techniques along with the time and effort requirements needed to convert existing finite element code to a vectorized version. Comparisons in execution time between vectorized and nonvectorized routines are provided.

  1. Organisational sensemaking, strategy, structuring and routines

    DEFF Research Database (Denmark)

    Nielsen, Renate

    2001-01-01

    Research objective: The purpose of my research is to generate new understanding of what organisational interpretation, sensemaking and structuring processes in organisations mean in a way that can be used not only retrospectively but actively in strategic planning. In the study of these processes...... structures and routines. Furthermore, I will look at these processes on various organisational levels in order to study organisational sensemaking from a top-down as well as a bottom-up perspective....... my focus will, more specifically, be on how sensemaking processes are transformed into strategy and policies to be applied in daily routines, especially sales/marketing strategy routines. By acquiring a broader comprehension of the structuring and strategising processes the intent is to improve...

  2. Nuclear wastes

    International Nuclear Information System (INIS)

    2004-01-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  3. Streamlined approach to waste management at CRL

    International Nuclear Information System (INIS)

    Adams, L.; Campbell, B.

    2011-01-01

    Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at Chalk River Laboratories (CRL) as a result of research and development activities and operations since the 1940s. Over the years, the wastes produced as a byproduct of activities delivering the core missions of the CRL site have been of many types, and today, over thirty distinct waste streams have been identified, all requiring efficient management. With the commencement of decommissioning of the legacy created as part of the development of the Canadian nuclear industry, the volumes and range of wastes to be managed have been increasing in the near term, and this trend will continue into the future. The development of a streamlined approach to waste management is a key to successful waste management at CRL. Waste management guidelines that address all of the requirements have become complex, and so have the various waste management groups receiving waste, with their many different processes and capabilities. This has led to difficulties for waste generators in understanding all of the requirements to be satisfied for the various CRL waste receivers, whose primary concerns are to be safe and in compliance with their acceptance criteria and license conditions. As a result, waste movement on site can often be very slow, especially for non-routine waste types. Recognizing an opportunity for improvement, the Waste Management organization at CRL has implemented a more streamlined approach with emphasis on early identification of waste type and possible disposition path. This paper presents a streamlined approach to waste identification and waste management at CRL, the implementation methodology applied and the early results achieved from this process improvement. (author)

  4. Decommissioning and decontamination (burial ground stabilization) studies

    International Nuclear Information System (INIS)

    Cline, J.F.

    1980-01-01

    The decommissioning and decontamination of retired Hanford facilities and the future use of surrounding landscapes require isolation of contaminated wastes from the biosphere. Burial ground stabilization studies were conducted to determine the effectiveness of physical barriers for isolating contaminated wastes in shallow-land burial sites from plants and animals. This study was undertaken to determine the effectiveness of using a layer of loose rock between the waste and the surface soil covering to prevent both plant root and animal penetrations

  5. Glass to contain wastes

    International Nuclear Information System (INIS)

    Moncouyoux, M.; Jacquet-Francillon, M.

    1994-01-01

    Here are the tables and figures presented during the conference on the glass to confine high level radioactive wastes: definition, fabrication, storage and disposal. The composition of glasses are detailed, their properties and the vitrification proceeding. The behaviour of these glasses in front of water, irradiation and heat are shown. The characteristics of parcels are given according to the radiation protection rule, ALARA principle, the concept of multi-barriers and the geological stability

  6. Conversational routines in English convention and creativity

    CERN Document Server

    Aijmer, Karin

    2014-01-01

    It is surprising how much of everyday conversation consists of repetitive expressions such as 'thank you', 'sorry', would you mind?' and their many variants. However commonplace they may be, they do have important functions in communication.This thorough study draws upon original data from the London-Lund Corpus of Spoken English to provide a discoursal and pragmatic account of the more common expressions found in conversational routines, such as apologising, thanking, requesting and offering.The routines studied in this book range from conventionalized or idiomatized phrases t

  7. ANSYS duplicate finite-element checker routine

    Science.gov (United States)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  8. Absorptive routines and international patent performance

    Directory of Open Access Journals (Sweden)

    Fernando E. García-Muiña

    2017-04-01

    We enrich the treatment of the absorptive capacity phases including the moderating effects between routines associated to the traditional potential-realized absorptive capacities. Taking into account external knowledge search strategies, the deeper external relationships, the better transference and appropriation of specific external knowledge. Nevertheless, when the moderating role of assimilation is included, cooperation agreements appear as the most efficient source of external knowledge. Finally, we show that technological tools let firms store and structure the information making easier its use for international patenting. This positive effect is reinforced in the presence of exploitation routines, since technological knowledge will better fit to the industry's key factors of success.

  9. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Cunnane, J.; Sutaria, M.; Kurokawa, S.; Mayberry, J.

    1994-04-01

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  10. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  11. Waste to energy--key element for sustainable waste management.

    Science.gov (United States)

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Generating Novelty Through Interdependent Routines: A Process Model of Routine Work

    NARCIS (Netherlands)

    Deken, F.; Carlile, P.R.; Berends, H.; Lauche, K.

    2016-01-01

    We investigate how multiple actors accomplish interdependent routine performances directed at novel intended outcomes and how this affects routine dynamics over time. We report findings from a longitudinal ethnographic study in an automotive company where actors developed a new business model around

  13. Waste minimization at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Kranz, P.; Wong, P.C.F.

    2011-01-01

    Waste minimization supports Atomic Energy of Canada Limited (AECL) Environment Policy with regard to pollution prevention and has positive impacts on the environment, human health and safety, and economy. In accordance with the principle of pollution prevention, the quantities and degree of hazard of wastes requiring storage or disposition at facilities within or external to AECL sites shall be minimized, following the principles of Prevent, Reduce, Reuse, and Recycle, to the extent practical. Waste minimization is an important element in the Waste Management Program. The Waste Management Program has implemented various initiatives for waste minimization since 2007. The key initiatives have focused on waste reduction, segregation and recycling, and included: 1) developed waste minimization requirements and recycling procedure to establish the framework for applying the Waste Minimization Hierarchy; 2) performed waste minimization assessments for the facilities, which generate significant amounts of waste, to identify the opportunities for waste reduction and assist the waste generators to develop waste reduction targets and action plans to achieve the targets; 3) implemented the colour-coded, standardized waste and recycling containers to enhance waste segregation; 4) established partnership with external agents for recycling; 5) extended the likely clean waste and recyclables collection to selected active areas; 6) provided on-going communications to promote waste reduction and increase awareness for recycling; and 7) continually monitored performance, with respect to waste minimization, to identify opportunities for improvement and to communicate these improvements. After implementation of waste minimization initiatives at CRL, the solid waste volume generated from routine operations at CRL has significantly decreased, while the amount of recyclables diverted from the onsite landfill has significantly increased since 2007. The overall refuse volume generated at

  14. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  15. Hanford site waste tank characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order.

  16. An Examination of Latino Students' Homework Routines

    Science.gov (United States)

    Martinez, Sylvia

    2011-01-01

    Homework appears to be positively associated with better student outcomes. Although some researchers have explored the connection between time spent on homework and minority student achievement, few have examined the homework routines of Latino youth. Interviews with Latino high school students show that they have some difficulty completing daily…

  17. ROUTINE ANTENATAL SYPHILIS SCREENING IN SOUTH WEST ...

    African Journals Online (AJOL)

    serological screening in pregnancy and treatment with injectable penicillin, including the partner, as a routine part of antenatal care6. Ideally, this screening should be done during the first trimester or at the first ante- natal visit of the woman and again early in the third trimester, even in low- prevalence populations. There.

  18. Age at BCG administration during routine immunization.

    African Journals Online (AJOL)

    Age at BCG administration during routine immunization. R.D. Wammanda , M.J. Gambo and I. Abdulkadir. Department of Paediatrics,. Ahmadu Bello University Teaching Hospital,. Zaria. Correspondence to: Dr.R.D. Wammanda. Email: wammanda@yahoo.com. Summary. In Nigeria, as part of the National Programme on ...

  19. Community Pharmacies As Possible Centres For Routine ...

    African Journals Online (AJOL)

    Method: Sixty (60) pre-tested questionnaires were randomly administered to community pharmacists. Forty-three (43) questionnaires were retrieved for analysis. Results: The study revealed that the use of community pharmacies as places where routine immunization services can be provided is feasible as shown by 95.3% ...

  20. Individual values, learning routines and academic procrastination.

    Science.gov (United States)

    Dietz, Franziska; Hofer, Manfred; Fries, Stefan

    2007-12-01

    Academic procrastination, the tendency to postpone learning activities, is regarded as a consequence of postmodern values that are prominent in post-industrialized societies. When students strive for leisure goals and have no structured routines for academic tasks, delaying strenuous learning activities becomes probable. The model tested in this study posits that postmodern value orientations are positively related to procrastination and to a lack of daily routines concerning the performance of academic activities. In contrast, modern values are negatively related to procrastination and positively to learning routines. Academic procrastination, in-turn, should be associated with the tendency to prefer leisure activities to schoolwork in case of conflicts between these two life domains. Seven hundred and four students from 6th and 8th grade with a mean age of 13.5 years participated in the study. The sample included students from all tracks of the German educational system. Students completed a questionnaire containing two value prototypes as well as scales on learning routines and procrastination. Decisions in motivational conflicts were measured using two vignettes. Results from structural equation modelling supported the proposed model for the whole sample as well as for each school track. A planned course of the day can prevent procrastination and foster decisions for academic tasks in case of conflicts. Students' learning takes place within a societal context and reflects the values held in the respective culture.