WorldWideScience

Sample records for stabilized enzyme solution

  1. 21 CFR 864.9400 - Stabilized enzyme solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme... enzyme solutions include papain, bromelin, ficin, and trypsin. (b) Classification. Class II (performance...

  2. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    Science.gov (United States)

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  3. Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells

    Energy Technology Data Exchange (ETDEWEB)

    Klyachko, N. L.; Dmitrieva, N. F.; Eshchina, A. S.; Ignatenko, O. V.; Filatova, L. Y.; Rainina, Evguenia I.; Kazarov, A. K.; Levashov, A. V.

    2008-06-01

    Recombinant, phage associated lytic enzyme Ply C capable to lyse streptococci of groups A and C was stabilized in the variety of the micelles containing compositions to improve the stability of the enzyme for further application in medicine. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions ((pH 6.3, room temperature), it completely lost its activity in 2 days

  4. Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate

    NARCIS (Netherlands)

    Ramos, A.; Raven, N.; Sharp, R.J.; Bartolucci, S.; Rossi, M.; Cannio, R.; Lebbink, J.; Oost, van der J.; Vos, de W.M.; Santos, H.

    1997-01-01

    2-O-(beta)-Mannosylglycerate, a solute that accumulates in some (hyper)thermophilic organisms, was purified from Pyrococcus furiosus cells, and its effect on enzyme stabilization in vitro was assessed. Enzymes from hyperthermophilic, thermophilic, and mesophilic sources were examined. The

  5. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    Science.gov (United States)

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  6. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  7. Enzyme stabilization for pesticide degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, D.B.; Frazer, F.R. III; Mason, D.W.; Tice, T.R.

    1988-01-01

    Enzymes offer inherent advantages and limitations as active components of formulations used to decontaminate soil and equipment contaminated with toxic materials such as pesticides. Because of the catalytic nature of enzymes, each molecule of enzyme has the potential to destroy countless molecules of a contaminating toxic compound. This degradation takes place under mild environmental conditions of pH, temperature, pressure, and solvent. The basic limitation of enzymes is their degree of stability during storage and application conditions. Stabilizing methods such as the use of additives, covalent crosslinking, covalent attachment, gel entrapment, and microencapsulation have been directed developing an enzyme preparation that is stable under extremes of pH, temperature, and exposure to organic solvents. Initial studies were conducted using the model enzymes subtilisin and horseradish peroxidase.

  8. Correlation of high-temperature stability of alpha-chymotrypsin with 'salting-in' properties of solution.

    Science.gov (United States)

    Levitsky VYu; Panova, A A; Mozhaev, V V

    1994-01-15

    A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.

  9. Paper Microzone Plates as Analytical Tools for Studying Enzyme Stability: A Case Study on the Stabilization of Horseradish Peroxidase Using Trehalose and SU-8 Epoxy Novolac Resin.

    Science.gov (United States)

    Ganaja, Kirsten A; Chaplan, Cory A; Zhang, Jingyi; Martinez, Nathaniel W; Martinez, Andres W

    2017-05-16

    Paper microzone plates in combination with a noncontact liquid handling robot were demonstrated as tools for studying the stability of enzymes stored on paper. The effect of trehalose and SU-8 epoxy novolac resin (SU-8) on the stability of horseradish peroxidase (HRP) was studied in both a short-term experiment, where the activity of various concentrations of HRP dried on paper were measured after 1 h, and a long-term experiment, where the activity of a single concentration of HRP dried and stored on paper was monitored for 61 days. SU-8 was found to stabilize HRP up to 35 times more than trehalose in the short-term experiment for comparable concentrations of the two reagents, and a 1% SU-8 solution was found to stabilize HRP approximately 2 times more than a 34% trehalose solution in both short- and long-term experiments. The results suggest that SU-8 is a promising candidate for use as an enzyme-stabilizing reagent for paper-based diagnostic devices and that the short-term experiment could be used to quickly evaluate the capacity of various reagents for stabilizing enzymes to identify and characterize new enzyme-stabilizing reagents.

  10. Enzyme based soil stabilization for unpaved road construction

    Directory of Open Access Journals (Sweden)

    Renjith Rintu

    2017-01-01

    Full Text Available Enzymes as soil stabilizers have been successfully used in road construction in several countries for the past 30 years. However, research has shown that the successful application of these enzymes is case specific, emphasizing that enzyme performance is dependent on subgrade soil type, condition and the type of enzyme used as the stabilizer. A universal standard or a tool for road engineers to assess the performance of stabilized unbound pavements using well-established enzymes is not available to date. The research aims to produce a validated assessment tool which can be used to predict strength enhancement within a generalized statistical framework. The objective of the present study is to identify new materials for developing the assessment tool which supports enzyme based stabilization, as well as to identify the correct construction sequence for such new materials. A series of characterization tests were conducted on several soil types obtained from proposed construction sites. Having identified the suitable soil type to mix with the enzyme, a trial road construction has been performed to investigate the efficiency of the enzyme stabilization along with the correct construction sequence. The enzyme stabilization has showed significant improvement of the road performance as was evidenced from the test results which were based on site soil obtained before and after stabilization. The research will substantially benefit the road construction industry by not only replacing traditional construction methods with economical/reliable approaches, but also eliminating site specific tests required in current practice of enzyme based road construction.

  11. PFP solution stabilization

    International Nuclear Information System (INIS)

    Aftanas, B.L.

    1996-01-01

    This Functional Design Criteria (FDC) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage

  12. An appraisal of the enzyme stability-activity trade-off.

    Science.gov (United States)

    Miller, Scott R

    2017-07-01

    A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. Computationally designed libraries for rapid enzyme stabilization

    NARCIS (Netherlands)

    Wijma, Hein J.; Floor, Robert J.; Jekel, Peter A.; Baker, David; Marrink, Siewert J.; Janssen, Dick B.

    The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants

  14. Crosslinked Enzyme Aggregates in Hierarchically-Ordered Mesoporous Silica: A Simple and Effective Method for Enzyme Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Il; Kim, Jungbae; Lee, Jinwoo; Jia, Hongfei; Na, Hyon Bin; Youn, Jongkyu; Kwak, Ja Hun; Dohnalkova, Alice; Grate, Jay W.; Wang, Ping; Hyeon, Taeghwan; Park, Hyun-Gyu; Chang, Ho Nam

    2007-02-01

    alpha-chymotrypsin (CT) and lipase (LP) were immobilized in hierarchically-ordered mesocellular mesoporous silica (HMMS) in a simple but effective way for the enzyme stabilization, which was achieved by the enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of nanometer scale crosslinked enzyme aggregates (CLEAs) entrapped in the mesocellular pores of HMMS (37 nm), which did not leach out of HMMS through narrow mesoporous channels (13 nm). CLEA of alpha-chymotrypsin (CLEA-CT) in HMMS showed a high enzyme loading capacity and significantly increased enzyme stability. No activity decrease of CLEA-CT was observed for two weeks under even rigorously shaking condition, while adsorbed CT in HMMS and free CT showed a rapid inactivation due to the enzyme leaching and presumably autolysis, respectively. With the CLEA-CT in HMMS, however, there was no tryptic digestion observed suggesting that the CLEA-CT is not susceptible to autolysis. Moreover, CLEA of lipase (CLEA-LP) in HMMS retained 30% specific activity of free lipase with greatly enhanced stability. This work demonstrates that HMMS can be efficiently employed as host materials for enzyme immobilization leading to highly enhanced stability of the immobilized enzymes with high enzyme loading and activity.

  15. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...

  16. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  17. Multipoint attachment to a support protects enzyme from inactivation by organic solvents: alpha-Chymotrypsin in aqueous solutions of alcohols and diols.

    Science.gov (United States)

    Mozhaev, V V; Sergeeva, M V; Belova, A B; Khmelnitsky, Y L

    1990-03-25

    Inactivation of alpha-chymotrypsin in aqueous solutions of alcohols and diols proceeds both reversibly and irreversibly. Reversible loss of the specific enzyme activity results from conformational changes (unfolding) of the enzyme detected by fluorescence spectroscopy. Multipoint covalent attachment to the matrix of polyacryl-amide gel by copolymerization method stabilizes alpha-chymotrypsin from denaturation by alcohols, the stabilizing effect increasing with the number of bonds between the protein and the support. Immobilization protects the enzyme also from irreversible inactivation by organic solvents resulting from bimolecular aggregation and autolysis.

  18. Project Management Plan Solution Stabilization

    International Nuclear Information System (INIS)

    SATO, P.K.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process

  19. Project Management Plan Solution Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    SATO, P.K.

    1999-08-31

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process.

  20. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  1. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects

    Science.gov (United States)

    Zhao, Hua

    2015-01-01

    There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the ‘specific ion effect’ instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule. PMID:26949281

  2. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress.

    Science.gov (United States)

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A

    2016-01-01

    Stabilizing extracellular enzymes may maintain enzymatic activity while protecting enzymes from proteolysis and denaturation. A study determined whether a fast pyrolysis hardwood biochar (CQuest™) would reduce evaporative losses, subsequently stabilizing soil extracellular enzymes and prohibiting potential enzymatic activity loss following a denaturing stress (microwaving). Soil was incubated in the presence of biochar (0%, 1%, 2%, 5%, or 10% by wt.) for 36 days and then exposed to microwave energies (0, 400, 800, 1600, or 3200 J g(-1) soil). Soil enzymes (β-glucosidase, β-d-cellobiosidase, N-acetyl-β-glucosaminidase, phosphatase, leucine aminopeptidase, β-xylosidase) were analyzed by fluorescence-based assays. Biochar amendment reduced leucine aminopeptidase and β-xylosidase potential activity after the incubation period and prior to stress exposure. The 10% biochar rate reduced soil water loss at the lowest stress level (400 J microwave energy g(-1) soil). Enzyme stabilization was demonstrated for β-xylosidase; intermediate biochar application rates prevented a complete loss of this enzyme's potential activity after soil was exposed to 400 (1% biochar treatment) or 1600 (5% biochar treatment) J microwave energy g(-1) soil. Remaining enzyme potential activities were not affected by biochar, and activities decreased with increasing stress levels. We concluded that biochar has the potential to reduce evaporative soil water losses and stabilize certain extracellular enzymes where activity is maintained after a denaturing stress; this effect was biochar rate and enzyme dependent. While biochar may reduce the potential activity of certain soil extracellular enzymes, this phenomenon was not universal as the majority of enzymes assayed in this study were unaffected by exposure to biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    Science.gov (United States)

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  4. Non-complexed four cascade enzyme mixture: simple purification and synergetic co-stabilization.

    Directory of Open Access Journals (Sweden)

    Suwan Myung

    Full Text Available Cell-free biosystems comprised of synthetic enzymatic pathways would be a promising biomanufacturing platform due to several advantages, such as high product yield, fast reaction rate, easy control and access, and so on. However, it was essential to produce (purified enzymes at low costs and stabilize them for a long time so to decrease biocatalyst costs. We studied the stability of the four recombinant enzyme mixtures, all of which originated from thermophilic microorganisms: triosephosphate isomerase (TIM from Thermus thermophiles, fructose bisphosphate aldolase (ALD from Thermotoga maritima, fructose bisphosphatase (FBP from T. maritima, and phosphoglucose isomerase (PGI from Clostridium thermocellum. It was found that TIM and ALD were very stable at evaluated temperature so that they were purified by heat precipitation followed by gradient ammonia sulfate precipitation. In contrast, PGI was not stable enough for heat treatment. In addition, the stability of a low concentration PGI was enhanced by more than 25 times in the presence of 20 mg/L bovine serum albumin or the other three enzymes. At a practical enzyme loading of 1000 U/L for each enzyme, the half-life time of free PGI was prolong to 433 h in the presence of the other three enzymes, resulting in a great increase in the total turn-over number of PGI to 6.2×10(9 mole of product per mole of enzyme. This study clearly suggested that the presence of other proteins had a strong synergetic effect on the stabilization of the thermolabile enzyme PGI due to in vitro macromolecular crowding effect. Also, this result could be used to explain why not all enzymes isolated from thermophilic microorganisms are stable in vitro because of a lack of the macromolecular crowding environment.

  5. Evaluation of the organophosphorus hydrolase enzyme activity in creams and investigation of its stability

    Directory of Open Access Journals (Sweden)

    Mariye Rajaie

    2016-06-01

    Full Text Available The main purpose of this project is investigation of the organophosphorus hydrolase (OPH enzyme activity in water in oil (w/o and oil in water (o/w creams and investigation of the OPH enzyme stability in formulated creams. OPH enzyme was extracted and purified from strain flavobacterium. The w/o and o/w creams were prepared using different formulations. In order to achieve an emulsion with maximum stability, appropriate percentage of the cream components was selected by studying different formulations and the physical and chemical stability of the produced cream were considered. 5Uenzyme/90gcream enzyme was used for each formulation. To measure the enzyme activity in creams, extraction method was used and enzyme activity was determined based on parathion hydrolysis. The thermal stability of OPH in both types of w/o and o/w creams was studied at 4 and 30  °C for various time periods. The average enzyme activity was about 0.0065 U/gcream and 0.018 U/gcream for w/o and o/w creams respectivly. According to the results, the relative activity at 4 °C was reduced to 50% after 26 and 45 days in w/o and o/w creams, respectivly. The results showed that the OPH enzyme activity in o/w cream was 2.6 times more than that of w/o cream, because of the higher hydrophobicity of o/w cream compared to w/o. The OPH enzyme stability in o/w cream was greater in comparison to w/o cream. The OPH enzyme was active for nearly 2 months on o/w creams at 4 °C .

  6. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  7. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  8. Engineering report (conceptual design) PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  9. Engineering report (conceptual design) PFP solution stabilization

    International Nuclear Information System (INIS)

    Witt, J.B.

    1997-01-01

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage

  10. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... on their tailored surface modification in order to obtain improved enzyme-support systems. Firstly, an off-stoichiometric thiol-ene (OSTE) thermosetting material was used for the development of a screening platform allowing the investigation of micro-environmental effects and their impact on the activity...

  11. Chemical stability of oseltamivir in oral solutions.

    Science.gov (United States)

    Albert, K; Bockshorn, J

    2007-09-01

    The stability of oseltamivir in oral aqueous solutions containing the preservative sodium benzoate was studied by a stability indicating HPLC-method. The separation was achieved on a RP-18 ec column using a gradient of mobile phase A (aqueous solution of 50 mM ammonium acetate) and mobile phase B (60% (v/v) acetonitrile/40% (v/v) mobile phase A). The assay was subsequently validated according to the ICH guideline Q2(R1). The extemporaneously prepared "Oseltamivir Oral Solution 15 mg/ml for Adults or for Children" (NRF 31.2.) according to the German National Formulary ("Neues Rezeptur-Formularium") was stable for 84 days if stored under refrigeration. After storage at 25 degrees C the content of oseltamivir decreased to 98.4%. Considering the toxicological limit of 0.5% of the 5-acetylamino derivative (the so-called isomer I) the solution is stable for 46 days. Oseltamivir was less stable in a solution prepared with potable water instead of purified water. Due to an increasing pH the stability of this solution decreased to 14 days. Furthermore a white precipitate of mainly calcium phosphate was observed. The addition of 0.1% anhydrous citric acid avoided these problems and improved the stability of the solution prepared with potable water to 63 days. Sodium benzoate was stable in all oral solutions tested.

  12. Stability studies of oxytetracycline in methanol solution

    Science.gov (United States)

    Wang, Wei; Wu, Nan; Yang, Jinghui; Zeng, Ming; Xu, Chenshan; Li, Lun; Zhang, Meng; Li, Liting

    2018-02-01

    As one kind of typical tetracycline antibiotics, antibiotic residues of oxytetracycline have been frequently detected in many environmental media. In this study, the stability of oxytetracycline in methanol solution was investigated by high-performance liquid chromatography combined with UV-vis (HPLC-UV). The results show that the stability of oxytetracycline in methanol solution is highly related to its initial concentration and the preserved temperature. Under low temperature condition, the solution was more stable than under room temperature preservation. Under the same temperature preservation condition, high concentrations of stock solutions are more stable than low concentrations. The study provides a foundation for preserving the oxytetracycline-methanol solution.

  13. [Alanine solution as enzyme reaction buffer used in A to O blood group conversion].

    Science.gov (United States)

    Li, Su-Bo; Zhang, Xue; Zhang, Yin-Ze; Tan, Ying-Xia; Bao, Guo-Qiang; Wang, Ying-Li; Ji, Shou-Ping; Gong, Feng; Gao, Hong-Wei

    2014-06-01

    The aim of this study was to investigate the effect of alanine solution as α-N-acetylgalactosaminidase enzyme reaction buffer on the enzymatic activity of A antigen. The binding ability of α-N-acetylgalactosaminidase with RBC in different reaction buffer such as alanine solution, glycine solution, normal saline (0.9% NaCl), PBS, PCS was detected by Western blot. The results showed that the efficiency of A to O conversion in alanine solution was similar to that in glycine solution, and Western blot confirmed that most of enzymes blinded with RBC in glycine or alanine solution, but few enzymes blinded with RBC in PBS, PCS or normal saline. The evidences indicated that binding of enzyme with RBC was a key element for A to O blood group conversion, while the binding ability of α-N-acetylgalactosaminidase with RBC in alanine or glycine solution was similar. It is concluded that alanine solution can be used as enzyme reaction buffer in A to O blood group conversion. In this buffer, the α-N-acetylgalactosaminidase is closely blinded with RBC and α-N-acetylgalactosaminidase plays efficient enzymatic activity of A antigen.

  14. Enzyme stability, thermodynamics and secondary structures of α-amylase as probed by the CD spectroscopy.

    Science.gov (United States)

    Kikani, B A; Singh, S P

    2015-11-01

    An amylase of a thermophilic bacterium, Bacillus sp. TSSC-3 (GenBank Number, EU710557) isolated from the Tulsi Shyam hot spring reservoir (Gujarat, India) was purified to the homogeneity in a single step on phenyl sepharose 6FF. The molecular weight of the enzyme was 25kD, while the temperature and pH optima for the enzyme catalysis were 80°C and 7, respectively. The purified enzyme was highly thermostable with broad pH stability and displayed remarkable resistance against surfactants, chelators, urea, guanidine HCl and various solvents as well. The stability and changes in the secondary structure of the enzyme under various extreme conditions were determined by the circular dichroism (CD) spectroscopy. The stability trends and the changes in the α-helices and β-sheets were analyzed by Mean Residual Ellipticity (MRE) and K2D3. The CD data confirmed the structural stability of the enzyme under various harsh conditions, yet it indicated reduced α-helix content and increased β-sheets upon denaturation. The thermodynamic parameters; deactivation rate constant, half-life, changes in entropy, enthalpy, activation energy and Gibb's free energy indicated that the enzyme-substrate reactions were highly stable. The overall profile of the enzyme: high thermostability, alkalitolerance, calcium independent nature, dextrose equivalent values and resistance against chemical denaturants, solvents and surfactants suggest its commercial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Thermal Stabilization of Enzymes Immobilized within Carbon Paste Electrodes.

    Science.gov (United States)

    Wang, J; Liu, J; Cepra, G

    1997-08-01

    In this note we report on the remarkable thermal stabilization of enzymes immobilized in carbon paste electrodes. Amperometric biosensors are shown for the first time to withstand a prolonged high-temperature (>50 °C) stress. Nearly full activity of glucose oxidase is retained over periods of up to 4 months of thermal stress at 60-80 °C. Dramatic improvements in the thermostability are observed for polyphenol oxidase, lactate oxidase, alcohol oxidase, horseradish peroxidase, and amino acid oxidase. Such resistance to heat-induced denaturation is attributed to the conformational rigidity of these biocatalysts within the highly hydrophobic (mineral oil or silicone grease) pasting liquid. While no chemical stabilizer is needed for attaining such protective action, it appears that low humidity (i.e., low water content) is essential for minimizing the protein mobility. Besides their implications for electrochemical biosensors, such observations should lead to a new generation of thermoresistant enzyme reactors based on nonpolar semisolid supports.

  16. Detection of microwave radiation of cytochrome CYP102 A1 solution during the enzyme reaction

    Directory of Open Access Journals (Sweden)

    Yu.D. Ivanov

    2016-03-01

    Full Text Available Microwave radiation at 3.4–4.2 GHz frequency of the cytochrome P450 CYP102 A1 (BM3 solution was registered during the lauric acid hydroxylation reaction. The microwave radiation generation was shown to occur following the addition of electron donor NADPH to a system containing an enzyme and a substrate. The radiation occurs for the enzyme solutions with enzyme concentrations of 10−8 and 10−9 М. The microwave radiation effect elicited by the aqueous enzyme solution was observed for the first time. The results obtained can be used to elaborate a new approach to enzyme systems research, including studying of the mechanism of interaction of a functioning enzyme system with microenvironment.

  17. Evaluation of the effects of enzyme-based liquid chemical stabilizers on subgrade soils

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2009-07-01

    Full Text Available The purpose of this study was to asses the strength of enzyme treated soil material. Thus the aim of the paper is to present laboratory results on the effects of two enzyme-based liquid chemicals as soil stabilizers. Soil samples were prepared...

  18. On the stability of non-supersymmetric supergravity solutions

    Science.gov (United States)

    Imaanpur, Ali; Zameni, Razieh

    2017-09-01

    We examine the stability of some non-supersymmetric supergravity solutions that have been found recently. The first solution is AdS5 ×M6, for M6 an stretched CP3. We consider breathing and squashing mode deformations of the metric, and find that the solution is stable against small fluctuations of this kind. Next we consider type IIB solution of AdS2 ×M8, where the compact space is a U (1) bundle over N (1 , 1). We study its stability under the deformation of M8 and the 5-form flux. In this case we also find that the solution is stable under small fluctuation modes of the corresponding deformations.

  19. On the stability of non-supersymmetric supergravity solutions

    Directory of Open Access Journals (Sweden)

    Ali Imaanpur

    2017-09-01

    Full Text Available We examine the stability of some non-supersymmetric supergravity solutions that have been found recently. The first solution is AdS5×M6, for M6 an stretched CP3. We consider breathing and squashing mode deformations of the metric, and find that the solution is stable against small fluctuations of this kind. Next we consider type IIB solution of AdS2×M8, where the compact space is a U(1 bundle over N(1,1. We study its stability under the deformation of M8 and the 5-form flux. In this case we also find that the solution is stable under small fluctuation modes of the corresponding deformations.

  20. Stability of tacrolimus solutions in polyolefin containers.

    Science.gov (United States)

    Lee, Jun H; Goldspiel, Barry R; Ryu, Sujung; Potti, Gopal K

    2016-02-01

    Results of a study to determine the stability of tacrolimus solutions stored in polyolefin containers under various temperature conditions are reported. Triplicate solutions of tacrolimus (0.001, 0.01, and 0.1 mg/mL) in 0.9% sodium chloride injection or 5% dextrose injection were prepared in polyolefin containers. Some samples were stored at room temperature (20-25 °C); others were refrigerated (2-8 °C) for 20 hours and then stored at room temperature for up to 28 hours. The solutions were analyzed by stability-indicating high-performance liquid chromatography (HPLC) assay at specified time points over 48 hours. Solution pH was measured and containers were visually inspected at each time point. Stability was defined as retention of at least 90% of the initial tacrolimus concentration. All tested solutions retained over 90% of the initial tacrolimus concentration at all time points, with the exception of the 0.001-mg/mL solution prepared in 0.9% sodium chloride injection, which was deemed unstable beyond 24 hours. At all evaluated concentrations, mean solution pH values did not change significantly over 48 hours; no particle formation was detected. During storage in polyolefin bags at room temperature, a 0.001-mg/mL solution of tacrolimus was stable for 24 hours when prepared in 0.9% sodium chloride injection and for at least 48 hours when prepared in 5% dextrose injection. Solutions of 0.01 and 0.1 mg/mL prepared in either diluent were stable for at least 48 hours, and the 0.01-mg/mL tacrolimus solution was also found to be stable throughout a sequential temperature protocol. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  1. Neutral insulin solutions physically stabilized by addition of Zn2+.

    Science.gov (United States)

    Brange, J; Havelund, S; Hommel, E; Sørensen, E; Kühl, C

    1986-01-01

    Commercial neutral insulin solutions, all of which contain 2-3 zinc atoms per hexameric unit of insulin, have a relatively limited physical stability when exposed to heat and movement, as for example in insulin infusion pumps. Physical stabilization of neutral insulin solutions has been obtained by addition of two extra Zn2+ per hexamer of insulin. This addition stabilizes porcine and human neutral solutions equally well and does not affect the chemical stability of the insulin. The stabilization is probably obtained by a further strengthening of the hexameric structure of insulin, so that the formation of insoluble insulin fibrils (via the dissociation into the insulin monomer or dimer) is impeded or prevented. The addition of an extra 2 Zn2+ has been shown to be without influence on the insulin immunogenicity in rabbits or on the rate of absorption after subcutaneous injection in diabetic patients. It is concluded that neutral insulin solution can be physically stabilized by addition of extra Zn2+ without affecting other qualities of the insulin preparation including chemical stability, immunogenicity, and duration of action after injection.

  2. Stability and instability of stationary solutions for sublinear parabolic equations

    Science.gov (United States)

    Kajikiya, Ryuji

    2018-01-01

    In the present paper, we study the initial boundary value problem of the sublinear parabolic equation. We prove the existence of solutions and investigate the stability and instability of stationary solutions. We show that a unique positive and a unique negative stationary solutions are exponentially stable and give the exact exponent. We prove that small stationary solutions are unstable. For one space dimensional autonomous equations, we elucidate the structure of stationary solutions and study the stability of all stationary solutions.

  3. Relationship between sol-gel conditions and enzyme stability: a case study with β-galactosidase/silica biocatalyst for whey hydrolysis.

    Science.gov (United States)

    Escobar, Sindy; Bernal, Claudia; Mesa, Monica

    2015-01-01

    The sol-gel process has been very useful for preparing active and stable biocatalysts, with the possibility of being reused. Especially those based on silica are well known. However, the study of the enzyme behavior during this process is not well understood until now and more, if the surfactant is involved in the synthesis mixture. This work is devoted to the encapsulation of β-galactosidase from Bacillus circulans in silica by sol-gel process, assisted by non-ionic Triton X-100 surfactant. The correlation between enzyme activity results for the β-galactosidase in three different environments (soluble in buffered aqueous reference solution, in the silica sol, and entrapment on the silica matrix) explains the enzyme behavior under stress conditions offered by the silica sol composition and gelation conditions. A stable β-galactosidase/silica biocatalyst is obtained using sodium silicate, which is a cheap source of silica, in the presence of non-ionic Triton X-100, which avoids the enzyme deactivation, even at 40 °C. The obtained biocatalyst is used in the whey hydrolysis for obtaining high value products from this waste. The preservation of the enzyme stability, which is one of the most important challenges on the enzyme immobilization through the silica sol-gel, is achieved in this study.

  4. Multiple solutions and stability of the steady transonic small-disturbance equation

    Directory of Open Access Journals (Sweden)

    Ya Liu

    2017-09-01

    Full Text Available Numerical solutions of the steady transonic small-disturbance (TSD potential equation are computed using the conservative Murman−Cole scheme. Multiple solutions are discovered and mapped out for the Mach number range at zero angle of attack and the angle of attack range at Mach number 0.85 for the NACA 0012 airfoil. We present a linear stability analysis method by directly assembling and evaluating the Jacobian matrix of the nonlinear finite-difference equation of the TSD equation. The stability of all the discovered multiple solutions are then determined by the proposed eigen analysis. The relation of stability to convergence of the iterative method for solving the TSD equation is discussed. Computations and the stability analysis demonstrate the possibility of eliminating the multiple solutions and stabilizing the remaining unique solution by adding a sufficiently long splitter plate downstream the airfoil trailing edge. Finally, instability of the solution of the TSD equation is shown to be closely connected to the onset of transonic buffet by comparing with experimental data.

  5. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Marie Zarevúcka

    2010-01-01

    Full Text Available Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

  6. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    Science.gov (United States)

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.

  7. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...... larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme...... catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G0) with time, were higher...

  8. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    Science.gov (United States)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  9. One-electron reduction reactions with enzymes in solution

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Redpath, J.L.; Adams, G.E.

    1976-01-01

    At pH 8 and above, hydrated electrons react with ribonuclease lysozyme and α-chymotrypsin to form transient products whose spectra resemble, but are not identical to, those for the RSSR - radical anion already known for simple disulphides. Assuming a value for the extinction coefficient similar to that for RSSR - in simple disulphides, only a fraction of the hydrated electrons are shown to react with the disulphide bridges: the remainder react at other sites in the protein molecule, such as histidine, tyrosine and, in lysozyme, tryptophan residues, giving rise to comparatively weak optical absorptions between 300 and 400 nm. This has been substantiated by studying the reaction of e - sub(aq) with subtilisin Novo (an enzyme which does not contain disulphide bridges), with enzymes in which the sulphur bridges have been oxidised and with some amino acid derivatives. On lowering the pH of the solution the intensity of the RSSR - absorption diminishes as the protonated histidine residues become the favoured reaction sites. In acid solutions (pH 2 to 3) the transient optical absoptions observed are due to reactions of hydrogen atoms with the aromatic amino acids tyrosine, tryptophan and phenylalanine. The CO - 2 radical anion is only observed to transfer an electron to disulphide groups in ribonuclease, although the effect of repeated pulsing shows that some reaction must occur elsewhere in the protein molecule. In acid solutions, protonation of the electron adduct appears to produce the RSSRH. radical, whose spectrum has a maximum at 340 nm. (author)

  10. Stability of core–shell nanowires in selected model solutions

    International Nuclear Information System (INIS)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-01-01

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods

  11. Stability of core–shell nanowires in selected model solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-30

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  12. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    Science.gov (United States)

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  13. On the stability of soliton solution in NLS-type general field model

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Nayyar, A.H.

    1982-08-01

    A model incorporating the nonlinear Schroedinger equation and its generalizations is considered and the stability of its periodic-in-time solutions under the restriction of a fixed charge Q is analysed. It is shown that the necessary condition for the stability is given by the inequality deltaQ/deltaν<0, where ν is the parameter of periodicity of the solution in time. In particular, one specific class of Lagrangians is considered and, in addition, the sufficient conditions for the stability of the soliton solutions are also determined. This study thus examines both the necessary and the sufficient conditions for the stability of the solutions of nonlinear Schroedinger equation and some of its generalizations. (author)

  14. Stability of Adrenaline in Irrigating Solution for Intraocular Surgery.

    Science.gov (United States)

    Shibata, Yuuka; Kimura, Yasuhiro; Taogoshi, Takanori; Matsuo, Hiroaki; Kihira, Kenji

    2016-01-01

    Intraocular irrigating solution containing 1 µg/mL adrenaline is widely used during cataract surgery to maintain pupil dilation. Prepared intraocular irrigating solutions are recommended for use within 6 h. After the irrigating solution is admistered for dilution, the adrenaline may become oxidized, and this may result in a decrease in its biological activity. However, the stability of adrenaline in intraocular irrigating solution is not fully understood. The aim of this study was to evaluate the stability of adrenaline in clinically used irrigating solutions of varying pH. Six hours after mixing, the adrenaline percentages remaining were 90.6%±3.7 (pH 7.2), 91.1%±2.2 (pH 7.5), and 65.2%±2.8 (pH 8.0) of the initial concentration. One hour after mixing, the percentages remaining were 97.6%±2.0 (pH 7.2), 97.4%±2.7 (pH 7.5), and 95.6%±3.3 (pH 8.0). The degradation was especially remarkable and time dependent in the solution at pH 8.0. These results indicate that the concentration of adrenaline is decreased after preparation. Moreover, we investigated the influence of sodium bisulfite on adrenaline stability in irrigating solution. The percentage adrenaline remaining at 6 h after mixing in irrigating solution (pH 8.0) containing sodium bisulfite at 0.5 µg/mL (concentration in irrigating solution) or at 500 µg/mL (concentration in the undiluted adrenaline preparation) were 57.5 and 97.3%, respectively. Therefore, the low concentration of sodium bisulfite in the irrigating solution may be a cause of the adrenaline loss. In conclusion, intraocular irrigation solution with adrenaline should be prepared just prior to its use in surgery.

  15. Biocatalysis with thermostable enzymes: structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme.

    Science.gov (United States)

    Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S

    2010-01-25

    We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.

  16. The stability of vacuum solutions in generalised gravity

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, M.S. (Sussex Univ., Brighton (UK). Astronomy Centre); Low, R.J. (Coventry (Lanchester) Polytechnic (UK). Dept. of Mathematics)

    1990-05-10

    The stability of the Ricci-flat solutions of a large class of generalised gravity theories is examined. It is shown by use of complementary methods that all such solutions are stable in a given theory if that theory admits a truncation to a quadratic theory in which the solution is stable. In particular, this means that the exterior Schwarzschild solution is stable in any gravity theory constructed purely from the Ricci scalar, provided that it exists in that theory. (orig.).

  17. The stability of vacuum solutions in generalised gravity

    International Nuclear Information System (INIS)

    Madsen, M.S.; Low, R.J.

    1990-01-01

    The stability of the Ricci-flat solutions of a large class of generalised gravity theories is examined. It is shown by use of complementary methods that all such solutions are stable in a given theory if that theory admits a truncation to a quadratic theory in which the solution is stable. In particular, this means that the exterior Schwarzschild solution is stable in any gravity theory constructed purely from the Ricci scalar, provided that it exists in that theory. (orig.)

  18. Protein stability and enzyme activity at extreme biological temperatures

    International Nuclear Information System (INIS)

    Feller, Georges

    2010-01-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 0 C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  19. Stability of sodium bicarbonate solutions in polyolefin bags.

    Science.gov (United States)

    Wear, Jennifer; McPherson, Timothy B; Kolling, William M

    2010-06-15

    The stability of sodium bicarbonate solutions in sterile water for injection or 5% dextrose injection stored at 21-24 degrees C or 2-4 degrees C was evaluated. Sodium bicarbonate injection was obtained in 50-mL vials of 8.4% (1 meq/mL). A total of 50, 100, or 150 meq of sodium bicarbonate was added to each 1-L polyolefin bag of either sterile water for injection or 5% dextrose injection. All solutions were prepared in a laminar-airflow hood using aseptic technique. Bags were punctured once to remove headspace air and once for the addition of each 50 meq of sodium bicarbonate. Six replicates of each test solution were prepared. The solutions were stored at 21-24 degrees C and 2-4 degrees C. Control solutions (50 and 150 meq) were similarly prepared in triplicate. Control solutions were sparged with either nitrogen gas or oxygen gas before storage. Sodium bicarbonate stability was assessed by measuring solution pH. Bicarbonate content was measured utilizing titration. Both pH and bicarbonate concentrations were measured immediately upon preparation and on days 3, 5, and 7 for both test and control solutions. All 95% confidence interval values for sample solution pH remained within 7.0-8.5 for seven days at 2-4 degrees C. Sodium bicarbonate solutions of 50, 100, and 150 meq in sterile water for injection or 5% dextrose injection were stable for up to seven days when refrigerated. The 50-meq solution was stable for up to 48 hours when stored at room temperature, and the 100- and 150-meq solutions were stable for up to 30 hours when stored at room temperature.

  20. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  1. Removal of polymeric filter cake in petroleum wells. A study of commercial amylase stability

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, Etel; Coelho, Maria Alice Z. [Escola de Quimica, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco E, Lab. 113, Cidade Universitaria, 21949-900, Rio de Janeiro, RJ (Brazil); De Queiroz Neto, Joao C. [Cenpes/Petrobras, Cidade Universitaria, Rio de Janeiro, RJ (Brazil); Langone, Marta A.P. [Instituto de Quimica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, PHLC/IQ sala 310, Rio de Janeiro, RJ (Brazil)

    2007-11-15

    The drilling fluid contact with the productive zone of drilling wells, with horizontal or complex configurations, can reduce its productivity by fluid invasion in the borehole wall. Drilling fluids usually comprise natural polymers as starch and xanthan gum. These polymers are deposited as a filter cake on the wellbore wall. A common approach to remove this filter cake is the application of acids or strong oxidative solutions. However, these are non-specific species and a possible alternative lies in enzymatic preparations that are able to hydrolyze such polymers. The enzymes catalyze specific substrates, are environmentally friendly and the enzymatic degradation rate is slower than that achieved by the oxidative species, permitting to produce uniform degradation of the filter cake. Openhole operations require thermo and pressure stability of these enzymatic products. The results herein reported deals with the technical viability analysis of a commercial {alpha}-amylase as a new catalyst for filter cake removal. The effects of process parameters, like temperature (65, 80 and 95 C), enzyme concentration (1, 5.5 and 10% v/v), calcium concentration (5, 70 and 135 ppm), and pressure (100, 500, 100 and 6000 psi), on amylase stability under openhole operations were investigated. Temperature demonstrated to be the most important parameter for the enzyme stability. The enzyme thermostability behavior in high salt (NaCl) concentration (completion fluid) was not significantly different from the control solution in distillated water. The pressure effect on enzyme stability did not affect the enzyme stability as temperature. Hydrostatic pressure (6000 psi) did not impact the amylolytic activity in brine solution. Combined pressure-temperature assays showed that temperature is the key factor in enzyme stability for application in polymeric filter cake removal in petroleum wells. (author)

  2. Effect of ionic liquid on activity, stability, and structure of enzymes: a review.

    Science.gov (United States)

    Naushad, Mu; Alothman, Zied Abdullah; Khan, Abbul Bashar; Ali, Maroof

    2012-11-01

    Ionic liquids have shown their potential as a solvent media for many enzymatic reactions as well as protein preservation, because of their unusual characteristics. It is also observed that change in cation or anion alters the physiochemical properties of the ionic liquids, which in turn influence the enzymatic reactions by altering the structure, activity, enatioselectivity, and stability of the enzymes. Thus, it is utmost need of the researchers to have full understanding of these influences created by ionic liquids before choosing or developing an ionic liquid to serve as solvent media for enzymatic reaction or protein preservation. So, in the present review, we try to shed light on effects of ionic liquids chemistry on structure, stability, and activity of enzymes, which will be helpful for the researchers in various biocatalytic applications. Copyright © 2012. Published by Elsevier B.V.

  3. Effects of sorbitol and glycerol on the structure, dynamics, and stability of Mycobacterium tuberculosis pyrazinamidase

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Khajehzadeh

    2016-01-01

    Conclusion: It can be concluded that the native conformation of the enzyme was stabilized in the sorbitol and glycerol and tend to exclude from the PZase surface, forcing the enzyme to keep it in the compactly folded conformation. The glycerol molecules stabilized PZase by decreasing the loops flexibility and then compacting the enzyme structure. It appears that more stability of PZase in glycerol solution correlates with its amphiphilic orientation, which decreases the unfavorable interactions of hydrophobic regions.

  4. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability.

    Science.gov (United States)

    Hosseini, Seyed Hassan; Hosseini, Seyedeh Ameneh; Zohreh, Nasrin; Yaghoubi, Mahshid; Pourjavadi, Ali

    2018-01-31

    A magnetic nanocomposite was prepared by entrapment of Fe 3 O 4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.

  5. Wind energy systems solutions for power quality and stabilization

    CERN Document Server

    Ali, Mohd Hasan

    2012-01-01

    Unlike conventional power plants, wind plants emit no air pollutants or greenhouse gases--and wind energy is a free, renewable resource. However, the induction machines commonly used as wind generators have stability problems similar to the transient stability of synchronous machines. To minimize power, frequency, and voltage fluctuations caused by network faults or random wind speed variations, control mechanisms are necessary. Wind Energy Systems: Solutions for Power Quality and Stabilization clearly explains how to solve stability and power quality issues of wind generator systems. Covering

  6. Rational Design of Thermally Stable Novel Biocatalytic Nanomaterials: Enzyme Stability in Restricted Spatial Dimensions

    Science.gov (United States)

    Mudhivarthi, Vamsi K.

    Enzyme stability is of intense interest in bio-materials science as biocatalysts, and as sensing platforms. This is essentially because the unique properties of DNA, RNA, PAA can be coupled with the interesting and novel properties of proteins to produce systems with unprecedented control over their properties. In this article, the very first examples of enzyme/NA/inorganic hybrid nanomaterials and enzyme-Polyacrylic acid conjugates will be presented. The basic principles of design, synthesis and control of properties of these hybrid materials will be presented first, and this will be followed by a discussion of selected examples from our recent research findings. Data show that key properties of biological catalysts are improved by the inorganic framework especially when the catalyst is co-embedded with DNA. Several examples of such studies with various enzymes and proteins, including horseradish peroxidase (HRP), glucose oxidase (GO), cytochrome c (Cyt c), met-hemoglobin (Hb) and met-myoglobin (Mb) will be discussed. Additionally, key insights obtained by the standard methods of materials science including XRD, SEM and TEM as well as biochemical, calorimetric and spectroscopic methods will be discussed. Furthermore, improved structure and enhanced activities of the biocatalysts in specific cases will be demonstrated along with the potential stabilization mechanisms. Our hypothesis is that nucleic acids provide an excellent control over the enzyme-solid interactions as well as rational assembly of nanomaterials. These novel nanobiohybrid materials may aid in engineering more effective synthetic materials for gene-delivery, RNA-delivery and drug delivery applications.

  7. Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids

    Directory of Open Access Journals (Sweden)

    Czarniak P

    2016-03-01

    Full Text Available Petra Czarniak, Michael Boddy, Bruce Sunderland, Jeff D Hughes School of Pharmacy, Curtin University, Perth, WA, Australia Purpose: The purpose of this study was to evaluate the chemical stability of Lincocin® (lincomycin hydrochloride in commonly used intravenous fluids at room temperature (25°C, at accelerated-degradation temperatures and in selected buffer solutions.Materials and methods: The stability of Lincocin® injection (containing lincomycin 600 mg/2 mL as the hydrochloride stored at 25°C±0.1°C in sodium lactate (Hartmann’s, 0.9% sodium chloride, 5% glucose, and 10% glucose solutions was investigated over 31 days. Forced degradation of Lincocin® in hydrochloric acid, sodium hydroxide, and hydrogen peroxide was performed at 60°C. The effect of pH on the degradation rate of lincomycin hydrochloride stored at 80°C was determined.Results: Lincomycin hydrochloride was found to maintain its shelf life at 25°C in sodium lactate (Hartmann’s solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution, with less than 5% lincomycin degradation occurring in all intravenous solutions over a 31-day period. Lincomycin hydrochloride showed less rapid degradation at 60°C in acid than in basic solution, but degraded rapidly in hydrogen peroxide. At all pH values tested, lincomycin followed first-order kinetics. It had the greatest stability near pH 4 when stored at 80°C (calculated shelf life of 4.59 days, and was least stable at pH 2 (calculated shelf life of 0.38 days.Conclusion: Lincocin® injection was chemically found to have a shelf life of at least 31 days at 25°C when added to sodium lactate (Hartmann’s solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution. Solutions prepared at approximately pH 4 are likely to have optimum stability. Keywords: lincomycin, stability, pH, intravenous fluids, IV additives

  8. Stability analysis of the Peregrine solution via squared eigenfunctions

    Science.gov (United States)

    Schober, C. M.; Strawn, M.

    2017-10-01

    A preliminary numerical investigation involving ensembles of perturbed initial data for the Peregrine soliton (the lowest order rational solution of the nonlinear Schrödinger equation) indicates that it is unstable [16]. In this paper we analytically investigate the linear stability of the Peregrine soliton, appealing to the fact that the Peregrine solution can be viewed as the singular limit of a single mode spatially periodic breathers (SPB). The "squared eigenfunction" connection between the Zakharov-Shabat (Z-S) system and the linearized NLS equation is employed in the stability analysis. Specifically, we determine the eigenfunctions of the Z-S system associated with the Peregrine soliton and construct a family of solutions of the associated linearized NLS (about the Peregrine) in terms of quadratic products of components of the eigenfunctions (i.e., the squared eigenfunction). We find there exist solutions of the linearization that grow exponentially in time, thus showing the Peregrine soliton is linearly unstable.

  9. Stabilization of periodic solutions in a tethered satellite system by damping injection

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Blanke, Mogens

    2009-01-01

    presents a control design for stabilizing these periodic solutions. The design consists of a control law for stabilizing the open-loop equilibrium and a bias term which forces the system trajectory away from the equilibrium. The tether needs to be positioned away from open-loop equilibrium for the tether...... to affect the orbit parameters. An approximation of the periodic solutions of the closed loop system is found as a series expansion in the parameter plane spanned by the controller gain and the bias term. The stability of the solutions is investigated using linear Floquet analysis of the variational...

  10. Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids.

    Science.gov (United States)

    Czarniak, Petra; Boddy, Michael; Sunderland, Bruce; Hughes, Jeff D

    2016-01-01

    The purpose of this study was to evaluate the chemical stability of Lincocin(®) (lincomycin hydrochloride) in commonly used intravenous fluids at room temperature (25°C), at accelerated-degradation temperatures and in selected buffer solutions. The stability of Lincocin(®) injection (containing lincomycin 600 mg/2 mL as the hydrochloride) stored at 25°C±0.1°C in sodium lactate (Hartmann's), 0.9% sodium chloride, 5% glucose, and 10% glucose solutions was investigated over 31 days. Forced degradation of Lincocin(®) in hydrochloric acid, sodium hydroxide, and hydrogen peroxide was performed at 60°C. The effect of pH on the degradation rate of lincomycin hydrochloride stored at 80°C was determined. Lincomycin hydrochloride w as found to maintain its shelf life at 25°C in sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution, with less than 5% lincomycin degradation occurring in all intravenous solutions over a 31-day period. Lincomycin hydrochloride showed less rapid degradation at 60°C in acid than in basic solution, but degraded rapidly in hydrogen peroxide. At all pH values tested, lincomycin followed first-order kinetics. It had the greatest stability near pH 4 when stored at 80°C (calculated shelf life of 4.59 days), and was least stable at pH 2 (calculated shelf life of 0.38 days). Lincocin(®) injection was chemically found to have a shelf life of at least 31 days at 25°C when added to sodium lactate (Hartmann's) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution. Solutions prepared at approximately pH 4 are likely to have optimum stability.

  11. Stability estimates for solution of IBVP to fractional parabolic differential and difference equations

    Science.gov (United States)

    Ashyralyev, Allaberen; Cakir, Zafer

    2016-08-01

    In this work, we investigate initial-boundary value problems for fractional parabolic equations with the Neumann boundary condition. Stability estimates for the solution of this problem are established. Difference schemes for approximate solution of initial-boundary value problem are constructed. Furthermore, we give theorem on coercive stability estimates for the solution of the difference schemes.

  12. Co-Immobilization of Enzymes and Magnetic Nanoparticles by Metal-Nucleotide Hydrogelnanofibers for Improving Stability and Recycling

    Directory of Open Access Journals (Sweden)

    Chunfang Li

    2017-01-01

    Full Text Available In this paper we report a facile method for preparing co-immobilized enzyme and magnetic nanoparticles (MNPs using metal coordinated hydrogel nanofibers. Candida rugosa lipase (CRL was selected as guest protein. For good aqueous dispersity, low price and other unique properties, citric acid-modified magnetic iron oxide nanoparticles (CA-Fe3O4 NPs have been widely used for immobilizing enzymes. As a result, the relative activity of CA-Fe3O4@Zn/AMP nanofiber-immobilized CRL increased by 8-fold at pH 10.0 and nearly 1-fold in a 50 °C water bath after 30 min, compared to free CRL. Moreover, the immobilized CRL had excellent long-term storage stability (nearly 80% releative activity after storage for 13 days. This work indicated that metal-nucleotide nanofibers could efficiently co-immobilize enzymes and MNPs simultaneously, and improve the stability of biocatalysts.

  13. Stability of Bifurcating Stationary Solutions of the Artificial Compressible System

    Science.gov (United States)

    Teramoto, Yuka

    2018-02-01

    The artificial compressible system gives a compressible approximation of the incompressible Navier-Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number ɛ which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small ɛ . In general, the range of ɛ shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of ɛ can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.

  14. Formulation and stability of an extemporaneously compounded oral solution of chlorpromazine HCl.

    Science.gov (United States)

    Prohotsky, Daniel L; Juba, Katherine M; Zhao, Fang

    2014-12-01

    Chlorpromazine is a phenothiazine antipsychotic which is often used in hospice and palliative care to treat hiccups, delirium, and nausea. With the discontinuation of the commercial oral solution concentrate, there is a need to prepare this product by extemporaneous compounding. This study was initiated to identify an easy-to-prepare formulation for the compounding pharmacist. A stability study was also conducted to select the proper storage conditions and establish the beyond-use date. Chlorpromazine HCl powder and the Ora-Sweet® syrup vehicle were used to prepare the 100 mg/mL solution. Once the feasibility was established, a batch of the solution was prepared and packaged in amber plastic prescription bottles for a stability study. These samples were stored at refrigeration (2-8°C) or room temperature (20-25°C) for up to 3 months. At each monthly time point, the samples were evaluated by visual inspection, pH measurement, and high performance liquid chromatography (HPLC). A separate forced stability study was conducted to confirm that the HPLC method was stability indicating. A clear and colorless solution of 100 mg/mL chlorpromazine HCl was obtained by dissolving the drug powder in Ora-Sweet® with moderate agitation. The stability study results indicated that this solution product remained unchanged in visual appearance or pH at both refrigeration and room temperature for up to 3 months. The HPLC results also confirmed that all stability samples retained 93.6-101.4% of initial drug concentration. Chlorpromazine HCl solution 100 mg/mL can be compounded extemporaneously by dissolving chlorpromazine HCl drug powder in Ora-Sweet®. The resulting product is stable for at least three months in amber plastic prescription bottles stored at either refrigeration or room temperature.

  15. Engineering Enzyme Stability and Resistance to an Organic Cosolvent by Modification of Residues in the Access Tunnel

    Czech Academy of Sciences Publication Activity Database

    Koudeláková, T.; Chaloupková, R.; Březovský, J.; Prokop, Z.; Šebestová, E.; Hesseler, M.; Khabiri, Morteza; Plevaka, M.; Kulik, D.; Kutá-Smatanová, Ivana; Řezáčová, Pavlína; Ettrich, Rüdiger; Bornscheuer, U.T.; Damborský, J.

    2013-01-01

    Roč. 52, č. 7 (2013), s. 1959-1963 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LC06010 Institutional support: RVO:67179843 ; RVO:68378050 Keywords : directed evolution * enzyme catalysis * enzymes * protein engineering * protein stability Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 11.336, year: 2013

  16. Maceration enzymes and mannoproteins: a possible strategy to increase colloidal stability and color extraction in red wines.

    Science.gov (United States)

    Guadalupe, Zenaida; Palacios, Antonio; Ayestaran, Belén

    2007-06-13

    Different strategies were adopted to achieve increases in color stability in Tempranillo wines: (i) addition of maceration enzymes directly to the must, (ii) addition of commercial mannoproteins to the must, and (iii) inoculation of must with yeast overexpressed of mannoproteins. The addition of enzymes favored color extraction, and the wines obtained presented higher values of wine color, color intensity, bisulfite-stable color, and visually enhanced color intensity. The enzyme hydrolytic activity produced an increase in the acid polysaccharide content and polyphenol index and yielded to wines with more astringency, tannin, and length. Added mannoproteins had clearer effects on the analyzed parameters than yeast. Contrary to what may be thought, mannoproteins did not maintain the extracted polyphenols in colloidal dispersion and neither ensured color stability. These compounds clearly modified the gustative structure of the wines, enhancing the sweetness and roundness.

  17. Thermodynamic stability of radioactivity standard solutions

    International Nuclear Information System (INIS)

    Iroulard, M.G.

    2007-04-01

    The basic requirement when preparing radioactivity standard solutions is to guarantee the concentration of a radionuclide or a radioelement, expressed in the form of activity concentration (Ac = A/m (Bq/g), with A: activity and m: mass of solution). Knowledge of the law of radioactive decay and the half-life of a radionuclide or radioelement makes it possible to determine the activity concentration at any time, and this must be confirmed subsequently by measurement. Furthermore, when radioactivity standard solutions are prepared, it is necessary to establish optimal conditions of thermodynamic stability of the standard solutions. Radioactivity standard solutions are prepared by metrology laboratories from original solutions obtained from a range of suppliers. These radioactivity standard solutions must enable preparation of liquid and/or solid radioactivity standard sources of which measurement by different methods can determine, at a given instant, the activity concentration of the radionuclide or radioelement present in the solution. There are a number of constraints associated with the preparation of such sources. Here only those that relate to the physical and chemical properties of the standard solution are considered, and therefore need to be taken into account when preparing a radioactivity standard solution. These issues are considered in this document in accordance with the following plan: - A first part devoted to the chemical properties of the solutions: - the solubilization media: ultra-pure water and acid media, - the carriers: concentration, oxidation state of the radioactive element and the carrier element. - A second part describing the methodology of the preparation, packaging and storage of standard solutions: - glass ampoules: the structure of glasses, the mechanisms of their dissolution, the sorption phenomenon at the solid-solution interface, - quartz ampoules, - cleaning and packaging: cleaning solutions, internal surface coatings and

  18. Thermodynamic stability of radioactivity standard solutions

    Energy Technology Data Exchange (ETDEWEB)

    Iroulard, M.G

    2007-04-15

    The basic requirement when preparing radioactivity standard solutions is to guarantee the concentration of a radionuclide or a radioelement, expressed in the form of activity concentration (Ac = A/m (Bq/g), with A: activity and m: mass of solution). Knowledge of the law of radioactive decay and the half-life of a radionuclide or radioelement makes it possible to determine the activity concentration at any time, and this must be confirmed subsequently by measurement. Furthermore, when radioactivity standard solutions are prepared, it is necessary to establish optimal conditions of thermodynamic stability of the standard solutions. Radioactivity standard solutions are prepared by metrology laboratories from original solutions obtained from a range of suppliers. These radioactivity standard solutions must enable preparation of liquid and/or solid radioactivity standard sources of which measurement by different methods can determine, at a given instant, the activity concentration of the radionuclide or radioelement present in the solution. There are a number of constraints associated with the preparation of such sources. Here only those that relate to the physical and chemical properties of the standard solution are considered, and therefore need to be taken into account when preparing a radioactivity standard solution. These issues are considered in this document in accordance with the following plan: - A first part devoted to the chemical properties of the solutions: - the solubilization media: ultra-pure water and acid media, - the carriers: concentration, oxidation state of the radioactive element and the carrier element. - A second part describing the methodology of the preparation, packaging and storage of standard solutions: - glass ampoules: the structure of glasses, the mechanisms of their dissolution, the sorption phenomenon at the solid-solution interface, - quartz ampoules, - cleaning and packaging: cleaning solutions, internal surface coatings and

  19. Physical and chemical stability of pemetrexed in infusion solutions.

    Science.gov (United States)

    Zhang, Yanping; Trissel, Lawrence A

    2006-06-01

    Pemetrexed is a multitargeted, antifolate, antineoplastic agent that is indicated for single-agent use in locally advanced or metastatic non-small-cell lung cancer after prior chemotherapy and in combination with cisplatin for the treatment of malignant pleural mesothelioma not treatable by surgery. Currently, there is no information on the long-term stability of pemetrexed beyond 24 hours. To evaluate the longer-term physical and chemical stability of pemetrexed 2, 10, and 20 mg/mL in polyvinyl chloride (PVC) bags of dextrose 5% injection and NaCl 0.9% injection. Triplicate samples of pemetrexed were prepared in the concentrations and infusion solutions required. Evaluations for physical and chemical stability were performed initially and over 2 days at 23 degrees C protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C protected from light. Physical stability was assessed using turbidimetric and particulate measurement as well as visual observation. Chemical stability was evaluated by HPLC. All pemetrexed solutions remained chemically stable, with little or no loss of pemetrexed over 2 days at 23 degrees C, protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C, protected from light. The room temperature samples were physically stable throughout the 48 hour test period. However, pemetrexed admixtures developed large numbers of microparticulates during refrigerated storage exceeding 24 hours. Pemetrexed is chemically stable for 2 days at room temperature and 31 days refrigerated in dextrose 5% injection and NaCl 0.9% injection. However, substantial numbers of microparticulates may form in pemetrexed diluted in the infusion solutions in PVC bags, especially during longer periods of refrigerated storage. Limiting the refrigerated storage period to the manufacturer-recommended 24 hours will limit particulate formation.

  20. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  1. Stability and periodicity of solutions for delay dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Zhu

    2014-04-01

    Full Text Available This article concerns the stability and periodicity of solutions to the delay dynamic system $$ x^{\\triangle}(t=A(t x(t + F(t, x(t, x(g(t+C(t $$ on a time scale. By the inequality technique for vectors, we obtain some stability criteria for the above system. Then, by using the Horn fixed point theorem, we present some conditions under which our system is asymptotically periodic and its periodic solution is unique. In particular, the periodic solution is positive under proper assumptions.

  2. Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions

    Science.gov (United States)

    Grishina, E. P.; Kudryakova, N. O.

    2017-10-01

    The conductivity and electrochemical stability of choline chloride (ChCl) solutions with water contents ranging from 20 to 39 wt % are studied. Exposing ChCl to moist ambient air yields a highly concentrated aqueous solution that, as an electrolyte, exhibits the properties and variations in conductivity with temperature and concentration characteristic of other similar systems. Its electrochemical stability window, determined by cyclic voltammetry, is comparable to that of ChCl-based deep eutectic solvents (DESs). Products of the electrolysis of ChCl‒H2O mixtures seem to be less toxic than those of Reline, Ethaline, and Maline.

  3. Stability and special solutions to the conducting dusty gas model

    International Nuclear Information System (INIS)

    Calmelet, C.J.

    1987-01-01

    Models of the flow of a dusty, conducting and non-conducting gas are examined. Exact solutions for a conducting dusty gas model in the presence of a magnetic field are developed for two different flow domains. The exact solutions are calculated in the cases of negligible and non-negligible induced magnetic field. Stability theorems are developed which depend on the flow parameters of the dusty gas and the magnetic field. In particular, a universal stability theorem is obtained when the dusty gas flow is electrically conducting in the presence of an applied magnetic field, and the dust particles are non-uniformly distributed

  4. On exponential stability and periodic solutions of CNNs with delays

    Science.gov (United States)

    Cao, Jinde

    2000-03-01

    In this Letter, the author analyses further problems of global exponential stability and the existence of periodic solutions of cellular neural networks with delays (DCNNs). Some simple and new sufficient conditions are given ensuring global exponential stability and the existence of periodic solutions of DCNNs by applying some new analysis techniques and constructing suitable Lyapunov functionals. These conditions have important leading significance in the design and applications of globally stable DCNNs and periodic oscillatory DCNNs and are weaker than those in the earlier works [Phys. Rev. E 60 (1999) 3244], [J. Comput. Syst. Sci. 59 (1999)].

  5. Physico-chemical stability of eribulin mesylate containing concentrate and ready-to-administer solutions.

    Science.gov (United States)

    Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene

    2014-06-01

    The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.

  6. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  7. Stability of a1 mg/mL oral solution zidovudine

    International Nuclear Information System (INIS)

    Garcia Penna, Caridad Margarita; Morales Lacarrere, Ivan; Martinez Espinosa, Vivian

    2011-01-01

    The carrying out of a high-performance liquid chromatography analytical method was assessed; applicable to stability study of oral solution zidovudine (1 mg/mL) was made. The analytical method was linear, precise, specific and exact in the study concentrations. The stability study of oral solution zidovudine (1 mg/mL) was conducted determining expiring date. The shelf life study was conducted over 24 months at room temperature; whereas that of accelerated stability was conducted with the product under wet and temperature conditions; analysis was carried out over three months. Formula met quality specifications described in Pharmacopeia. Results from the shelf life study demonstrated that product keeps the parameters determining its quality during that time and in accelerated studies there was not significant product degradation. Under above mentioned conditions two years were established as expiring date

  8. Radiation sterilization of enzyme hybrids with biodegradable polymers

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Oka, Masahito; Hayashi, Toshio

    2002-01-01

    Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate 'hybrid' biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of 60 Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification

  9. Stability and Concentration Verification of Ammonium Perchlorate Dosing Solutions

    National Research Council Canada - National Science Library

    Tsui, David

    1998-01-01

    Stability and concentration verification was performed for the ammonium perchlorate dosing solutions used in the on-going 90-Day Oral Toxicity Study conducted by Springborn Laboratories, Inc. (SLI Study No. 3433.1...

  10. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  11. Stability of time-dependent particle-like solutions of some wave equations

    International Nuclear Information System (INIS)

    Voronov, N.A.

    1978-01-01

    The proof of the nonstability of the one-dimensional periodical localized solutions of the equation with a spontaneously broken symmetry is given. The stability of the one-dimensional oscillating solutions of the sine-Gordon equation was also considered with regard to such perturbations. As it was expected these solutions proved to be stable

  12. Stability-indicating HPLC method for the determination of the stability of oxytocin parenteral solutions prepared in polyolefin bags.

    Science.gov (United States)

    Kaushal, G; Sayre, B E; Prettyman, T

    2012-02-01

    Oxytocin is very commonly used in clinical settings and is a nonapeptide hormone that stimulates the contraction of uterine smooth muscles. In this study the stability of extemporaneously compounded oxytocin solutions was investigated in polyolefin bags. The sterile preparations of oxytocin were compounded to the strength of 0.02 U/mL in accordance with United States Pharmacopeia (USP) standards. In order to carry out the stability testing of these parenteral products, the solutions were stored under three different temperature conditions of -20°C (frozen), 2-6°C (refrigerated), and 22-25°C (room temperature). Three solutions from each temperature were withdrawn and were assessed for stability on days 0, 7, 15, 21, and 30 as per the USP guidelines. The assay of oxytocin was examined by an HPLC method at each time point. No precipitation, cloudiness or color change was observed during this study at all temperatures. The assay content by HPLC revealed that oxytocin retains greater than at least 90% of the initial concentrations for 21 days. There was no significant change in pH and absorbance values for 21 days under all the conditions of storage. Oxytocin parenteral solutions in the final concentration of 0.02 U/mL and diluted in normal saline are stable for at least 30 days under frozen and refrigerated conditions for 30 days. At the room temperature, the oxytocin solutions were stable for at least 21 days. The stability analysis results show that the shelf-life of 21 days observed in this study was far better than their recommended expiration dates.

  13. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    Science.gov (United States)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  14. Physical and chemical stability of reconstituted and diluted dexrazoxane infusion solutions.

    Science.gov (United States)

    Zhang, Yan-Ping; Myers, Alan L; Trinh, Van A; Kawedia, Jitesh D; Kramer, Mark A; Benjamin, Robert S; Tran, Hai T

    2014-02-01

    Dexrazoxane is used clinically to prevent anthracycline-associated cardiotoxicity. Hydrolysis of dexrazoxane prior to reaching the cardiac membranes severely hampers its mode of action; therefore, degradation during the preparation and administration of intravenous dexrazoxane admixtures demands special attention. Moreover, the ongoing national shortage of one dexrazoxane formulation in the United States has forced pharmacies to dispense other commercially available dexrazoxane products. However, the manufacturers' limited stability data restrict the flexibility of dexrazoxane usage in clinical practice. The aims of this study are to determine the physical and chemical stability of reconstituted and diluted solutions of two commercially available dexrazoxane formulations. The stability of two dexrazoxane products, brand and generic name, in reconstituted and intravenous solutions stored at room temperature without light protection in polyvinyl chloride bags was determined. The concentrations of dexrazoxane were measured at predetermined time points up to 24 h using a validated reversed phase high-performance liquid chromatography with ultraviolet detection assay. Brand (B-) and generic (G-) dexrazoxane products, reconstituted in either sterile water or 0.167 M sodium lactate (final concentration of 10 mg/mL), were found stable for at least to 8 h. Infusion solutions of B-dexrazoxane, prepared according to each manufacturer's directions, were stable for at least 24 h and 8 h at 1 mg/mL and 3 mg/mL, respectively. Infusion solutions of G-dexrazoxane, prepared in either 5% dextrose or 0.9% sodium chloride following the manufacturer's guidelines, were also stable for at least 24 h and 8 h at 1 mg/mL and 3 mg/mL, respectively. All tested solutions were found physically stable up to 24 h at room temperature. The stability of dexrazoxane infusion solutions reported herein permits advance preparation of dexrazoxane intravenous admixtures, facilitating

  15. Enzyme-polyelectrolyte complexes in water-ethanol mixtures: negatively charged groups artificially introduced into alpha-chymotrypsin provide additional activation and stabilization effects.

    Science.gov (United States)

    Kudryashova, E V; Gladilin, A K; Vakurov, A V; Heitz, F; Levashov, A V; Mozhaev, V V

    1997-07-20

    Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.

  16. Electronic origin of strain effects on solute stabilities in iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Li, Xiangyan; Xu, Yichun, E-mail: xuyichun@issp.ac.cn, E-mail: csliu@issp.ac.cn; Liu, C. S., E-mail: xuyichun@issp.ac.cn, E-mail: csliu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liang, Yunfeng [Environment and Resource System Engineering, Kyoto University, Kyoto 615-8540 (Japan); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)

    2016-08-21

    Nonuniform strain fields might induce the segregation of alloying solutes and ultimately lead to the mechanical performance degradation of body-centered-cubic (bcc) Fe based steels serving in extreme environments, which is worthy of investigation. In this paper, two typical volume-conserving strains, shear strain (SS) and normal strain (NS), are proposed to investigate the strain effects on solute stabilities in bcc iron by first-principles calculations. For solutes in each transition metal group, the calculated substitution energy change due to SS exhibits a linear dependence on the valence d radius of the solutes, and the slope decreases in an exponential manner as a function of the absolute difference between the Watson's electronegativity of iron and the averaged value of each transition metal group. This regularity is attributed to the Pauli repulsion between the solutes and the nearest neighboring Fe ions modulated by the hybridization of valence d bands and concluded to be originated from the characteristics of valence d bonding between the transition-metal solutes and Fe ions under SS. For main-group and post transition-metal solutes, the considerable drop of substitution energy change due to NS is concluded to be originated from the low-energy side shift of the widened valence s and p bands of the solutes. Our results indicate that the stabilities of substitutional solutes in iron under volume-conserving strain directly correlate with the intrinsic properties of the alloying elements, such as the valence d radius and occupancy, having or not having valence s and p bands.

  17. Robust Stability and H∞ Control of Uncertain Piecewise Linear Switched Systems with Filippov Solutions

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Wisniewski, Rafal

    2012-01-01

    This paper addresses the robust stability and control problem of uncertain piecewise linear switched systems where, instead of the conventional Carathe ́odory solutions, we allow for Filippov solutions. In other words, in contrast to the previous studies, solutions with infinite switching in fini...... algorithm is proposed to surmount the aforementioned matrix inequality conditions....... time along the facets and on faces of arbitrary dimensions are also taken into account. Firstly, based on earlier results, the stability problem of piecewise linear systems with Filippov solutions is translated into a number of linear matrix inequality feasibility tests. Subsequently, a set of matrix...... inequalities are brought forward, which determines the asymptotic stability of the Filippov solutions of a given uncertain piecewise linear system. Afterwards, bilinear matrix inequality conditions for synthesizing a robust controller with a guaranteed H∞ per- formance are formulated. Finally, a V-K iteration...

  18. Stability of Hyperthermophilic Proteins

    DEFF Research Database (Denmark)

    Stiefler-Jensen, Daniel

    stability by randomly generate mutants and lengthy screening processes to identify the best new mutants. However, with the increase in available genomic sequences of thermophilic or hyperthermophilic organisms a world of enzymes with intrinsic high stability are now available. As these organisms are adapted...... to life at high temperatures so are their enzymes, as a result the high stability is accompanied by low activity at moderate temperatures. Thus, much effort had been put into decoding the mechanisms behind the high stability of the thermophilic enzymes. The hope is to enable scientist to design enzymes...... in the high stability of hyperthermophilic enzymes. The thesis starts with an introduction to the field of protein and enzyme stability with special focus on the thermophilic and hyperthermophilic enzymes and proteins. After the introduction three original research manuscripts present the experimental data...

  19. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    Science.gov (United States)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  20. Analytical systems as a basis for immobilized enzymes. 3. Use of a glucose enzyme electrode to determine carbohydrates in biological solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kulys, J; Pesliakiene, M

    1981-01-01

    A method is described for determination of glucose, sucrose, and lactose in biological solutions using a glucose enzyme electrode characterized by high sensitivity and selectivity. The enzyme membrane (15 nm thick) is prepared from glucose oxidase isolated from Penicillium vitale. Glucose is determined in one minute (using static currents) or in 12 s (using registered current in a kinetic regime). Phosphate buffer (5-10 mM) is the only reagent required for analysis. Determination of sucrose and lactose require prior hydrolysis with 17.8% HCl at 70 degrees Celcius for O.5 and lO.7 minutes, respectively.

  1. THE STABILITY OF THE PERIODIC SOLUTIONS OF SECOND ORDER HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper studies the stability of the periodic solutions of the second order Hamiltonian systems with even superquadratic or subquadratic potentials. The author proves that in the subquadratic case, there exist infinite geometrically distinct elliptic periodic solutions, and in the superquadratic case, there exist infinite geometrically distinct periodic solutions with at most one instability direction if they are half period non-degenerate, otherwise they are elliptic.

  2. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans.

    Science.gov (United States)

    Jung, S; Maurer, D; Johnson, L A

    2009-11-01

    The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.

  3. Aquifex aeolicus membrane hydrogenase for hydrogen biooxidation: Role of lipids and physiological partners in enzyme stability and activity

    Energy Technology Data Exchange (ETDEWEB)

    Infossi, Pascale; Lojou, Elisabeth; Giudici-Orticoni, Marie-Therese [Unite de Bioenergetique et Ingenierie des Proteines, UPR 9036, Institut de Microbiologie de la Mediterranee - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 (France); Chauvin, Jean-Paul [Institut de Biologie du developpement de Marseille Luminy, UMR 6216, Parc Scientifique de Luminy, 163 Avenue de Luminy, BP 907, 13009 Marseille (France); Herbette, Gaetan [Spectropole FI 1739, Aix-Marseille Universite case 511, Faculte de St Jerome Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France); Brugna, Myriam [Unite de Bioenergetique et Ingenierie des Proteines, UPR 9036, Institut de Microbiologie de la Mediterranee - CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20 (France); Universite de Provence, 3 Place Victor Hugo, 13331 Marseille Cedex 03 (France)

    2010-10-15

    Hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus is a good candidate for biotechnological devices thanks to its ability to oxidize hydrogen at high temperature, even in the presence of oxygen and CO. In order to enhance the enzyme stability and the catalytic efficiency, we investigated the hydrogen oxidation process with hydrogenase I embedded in a physiological-like environment. Hydrogenase I partners in the metabolic chain, namely membrane quinone and cytochrome b, were purified and fully characterized. The complex hydrogenase I-cytochrome b was inserted into liposomes. Surface Plasmon Resonance revealed that quinone took part in the stabilization of the complex. By use of molecular modelization and electrochemistry analysis, enzyme stability has been demonstrated to be stronger and enzymatic efficiency to be five times higher when hydrogenase is embedded into the liposomes. This result raises the possibility of using hydrogenases as biocatalysts in fuel cells. (author)

  4. Physical and chemical stability of palonosetron HCl in 4 infusion solutions.

    Science.gov (United States)

    Trissel, Lawrence A; Xu, Quanyun A

    2004-10-01

    Palonosetron HCl is a selective 5-HT(3) receptor antagonist used for the prevention of chemotherapy-induced nausea and vomiting. Palonosetron HCl may be diluted in an infusion solution for administraton. Consequently, stability information is needed for palonosetron HCl admixed in common infusion solutions. To evaluate the physical and chemical stability of palonosetron HCl in concentrations of 5 and 30 microg/mL in dextrose 5% injection, NaCl 0.9% injection, dextrose 5% in NaCl 0.45% injection, and dextrose 5% in lactated Ringer's injection. Triplicate test samples of palonosetron HCl at each concentration in each diluent were tested. Samples were stored and evaluated at appropriate intervals for up to 48 hours at room temperature ( approximately 23 degrees C) and 14 days under refrigeration (4 degrees C). Physical stability was assessed using turbidimetric and particulate measurement, as well as visual inspection. Chemical stability was assessed by HPLC. All of the admixtures were initially clear and colorless when viewed in normal fluorescent room light and with a Tyndall beam. Measured turbidity and particulate content were low initially and remained low throughout the study. The drug concentration was unchanged in any of the samples at either temperature throughout the study. Palonosetron HCl is physically and chemically stable in all 4 common infusion solutions for at least 48 hours at room temperature and 14 days under refrigeration.

  5. [Regulation of thermal stability of enzymes by changing the composition of media. Native and modified alpha-chymotrypsin].

    Science.gov (United States)

    Levitskiĭ, V Iu; Melik-Nubarov, N S; Slepnev, V I; Shikshnis, V A; Mozhaev, V V

    1990-01-01

    Stabilizing effect of denaturing salts on irreversible thermoinactivation of native and modified alpha-chymotrypsin at elevated temperatures is observed. The effect is caused by a shift of conformational equilibrium, at the primary step of reversible unfolding in the course of thermoinactivation, to a more unfolded form which is not able to refold "incorrectly". The stability of alpha-chymotrypsin is regulated within a wide range by medium alteration: the stabilizing effects are similar to those achieved by multipoint attachment of the enzyme to a support or by hydrophilization of protein by covalent modification.

  6. Model format for a vaccine stability report and software solutions.

    Science.gov (United States)

    Shin, Jinho; Southern, James; Schofield, Timothy

    2009-11-01

    A session of the International Association for Biologicals Workshop on Stability Evaluation of Vaccine, a Life Cycle Approach was devoted to a model format for a vaccine stability report, and software solutions. Presentations highlighted the utility of a model format that will conform to regulatory requirements and the ICH common technical document. However, there need be flexibility to accommodate individual company practices. Adoption of a model format is premised upon agreement regarding content between industry and regulators, and ease of use. Software requirements will include ease of use and protections against inadvertent misspecification of stability design or misinterpretation of program output.

  7. Stability and square integrability of solutions of nonlinear fourth order differential equations

    Directory of Open Access Journals (Sweden)

    Moussadek Remili

    2016-05-01

    Full Text Available The aim of the present paper is to establish a new result, which guarantees the asymptotic stability of zero solution and square integrability of solutions and their derivatives to nonlinear differential equations of fourth order.

  8. Pressure stabilization is not a general property of thermophilic enzymes: the adenylate kinases of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii.

    OpenAIRE

    Konisky, J; Michels, P C; Clark, D S

    1995-01-01

    The application of 50-MPa pressure did not increase the thermostabilities of adenylate kinases purified from four related mesophilic and thermophilic marine methanogens. Thus, while it has been reported that some thermophilic enzymes are stabilized by pressure (D. J. Hei and D. S. Clark, Appl. Environ. Microbiol. 60:932-939, 1994), hyperbaric stabilization is not an intrinsic property of all enzymes from deep-sea thermophiles.

  9. Brassinosteroid-induced CO2 assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    International Nuclear Information System (INIS)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai; Chen, Zhi Xiang; Yu, Jing Quan

    2012-01-01

    Highlights: ► Activity of certain Calvin cycle enzymes and CO 2 assimilation are induced by BRs. ► BRs upregulate the activity of the ascorbate–glutathione cycle in the chloroplasts. ► BRs increase the chloroplast thiol reduction state. ► A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO 2 assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate–glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate–glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO 2 assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  10. Carbapenems and SHV-1 β-Lactamase Form Different Acyl-Enzyme Populations in Crystals and Solution

    Science.gov (United States)

    Kalp, Matthew; Carey, Paul R.

    2009-01-01

    The reactions between single crystals of the SHV-1 β-lactamase enzyme and the carbapenems, meropenem, imipenem and ertapenem, have been studied by Raman microscopy. Aided by quantum mechanical calculations, major populations of two acyl-enzyme species, a labile Δ2-pyrroline and a more tightly bound Δ1-pyrroline, have been identified for all three compounds. These isomers differ only in the position of the double bond about the carbapenem nucleus. This discovery is consonant with X-ray crystallographic findings that also identified two populations for meropenem bound in SHV-1: one with the acyl C=O group in the oxyanion hole and the second with the acyl group rotated 180 degrees compared to its expected position [Nukaga, M., Bethel, C. R., Thomson, J. M., Hujer, A. M., Distler, A. M., Anderson, V. E., Knox, J. R., and Bonomo, R. A. (2008) Journal of the American Chemical Society]. When crystals of the Δ1 and Δ2 containing acyl-enzymes were exposed to solutions with no carbapenem, rapid deacylation of the Δ2 species was observed by kinetic Raman experiments. However, no change in the Δ1 population was observed over 1 hour, the effective lifetime of the crystal. These observations lead to the hypothesis that the stable Δ1 species is due to the form seen by X-ray with the acyl carbonyl outside the oxyanion hole, while the Δ2 species corresponds to the form with the carbonyl inside the oxyanion hole. Soak-in and soak-out Raman experiments also demonstrated that tautomeric exchange between the Δ1 and Δ2 forms does not occur on the crystalline enzyme. When meropenem or ertapenem were reacted with SHV-1 in solution, the Raman difference spectra demonstrated that only a major population corresponding to the Δ1 acyl-enzyme could be detected. The 1003 cm-1 mode of the phenyl ring positioned on the C3 side chain of ertapenem acts as an effective internal Raman intensity standard and the ratio of its intensity to that of the 1600 cm-1 feature of Δ1 provides an

  11. Thermal stability of tagatose in solution.

    Science.gov (United States)

    Luecke, Katherine J; Bell, Leonard N

    2010-05-01

    Tagatose, a monosaccharide similar to fructose, has been shown to behave as a prebiotic. To deliver this prebiotic benefit, tagatose must not degrade during the processing of foods and beverages. The objective of this study was to evaluate the thermal stability of tagatose in solutions. Tagatose solutions were prepared in 0.02 and 0.1 M phosphate and citrate buffers at pHs 3 and 7, which were then held at 60, 70, and 80 degrees C. Pseudo-1st-order rate constants for tagatose degradation were determined. In citrate and phosphate buffers at pH 3, minimal tagatose was lost and slight browning was observed. At pH 7, tagatose degradation rates were enhanced. Degradation was faster in phosphate buffer than citrate buffer. Higher buffer concentrations also increased the degradation rate constants. Enhanced browning accompanied tagatose degradation in all buffer solutions at pH 7. Using the activation energies for tagatose degradation, less than 0.5% and 0.02% tagatose would be lost under basic vat and HTST pasteurization conditions, respectively. Although tagatose does breakdown at elevated temperatures, the amount of tagatose lost during typical thermal processing conditions would be virtually negligible. Practical Application: Tagatose degradation occurs minimally during pasteurization, which may allow for its incorporation into beverages as a prebiotic.

  12. Global stability and exact solution of an arbitrary-solute nonlinear cellular mass transport system.

    Science.gov (United States)

    Benson, James D

    2014-12-01

    The prediction of the cellular state as a function of extracellular concentrations and temperatures has been of interest to physiologists for nearly a century. One of the most widely used models in the field is one where mass flux is linearly proportional to the concentration difference across the membrane. These fluxes define a nonlinear differential equation system for the intracellular state, which when coupled with appropriate initial conditions, define the intracellular state as a function of the extracellular concentrations of both permeating and nonpermeating solutes. Here we take advantage of a reparametrization scheme to extend existing stability results to a more general setting and to a develop analytical solutions to this model for an arbitrary number of extracellular solutes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Development of bifurcated solutions and study of their stability in damage problems

    International Nuclear Information System (INIS)

    Beaurain, J.

    2011-01-01

    This work is concerned with the development and the implementation of a numerical optimization algorithm in an industrial software for studying the stability of non local gradient damage numerical solutions given by finite elements method. Stability is a fundamental concept, that takes into account the existence of multiple solutions which could emerge due to the softening constitutive laws generally used to represent the irreversible damage of materials like concrete. Among all those solutions, only stable ones, invariant by little perturbations, could be physically observed. The difficulty is to satisfy the irreversible constraint of damage which drives to define a stability criterion by the positivity of the second derivative of the total energy in the direction of increasing damage. It numerically leads to ensure the positivity of the minimum of a quadratic form, using the second derivative matrix and subjected to inequalities constraints. In conclusion, the aim of this work is to implement an efficient and robust numerical constraints minimization algorithm in Code-Aster, adapted to different damage modelling, and to improve it using test cases found in the literature. (author)

  14. Dynamic stability of self-similar solutions for a plasma pinch

    International Nuclear Information System (INIS)

    Ma, Sifeng.

    1988-01-01

    Linear Magnetohydrodynamic (MHD) stability theory is applied to a class of self-similar solutions which describe implosion, expansion and oscillation of an infinitely conducting plasma column. The equations of perturbation are derived in the Lagrangian coordinate system. Numerical procedures via the finite-element method are formulated, and general aspects of dynamic stability are discussed, The dynamic stability of the column when it is oscillatory is studied in detail using the Floquet theory, and the characteristic exponent is calculated numerically. A-pinch configuration is examined. It is found that self-similar oscillations in general destabilize the continua in the MHD spectrum, and parametric instability results

  15. Homogeneous solutions of hydrophilic enzymes in nonpolar organic solvents. New systems for fundamental studies and biocatalytic transformations.

    Science.gov (United States)

    Mozhaev, V V; Poltevsky, K G; Slepnev, V I; Badun, G A; Levashov, A V

    1991-11-04

    A typical hydrophilic enzyme, CT, can be dissolved in nonpolar organic solvents (n-octane, cyclohexane and toluene) up to microM concentrations. In the homogeneous solution obtained, the enzyme possesses catalytic activity and enormously high thermostability. It does not lose this activity even after several hours refluxing in octane (126 degrees C) or cyclohexane (81 degrees C).

  16. The Local Stability of Solutions for a Nonlinear Equation

    Directory of Open Access Journals (Sweden)

    Haibo Yan

    2014-01-01

    Full Text Available The approach of Kruzkov’s device of doubling the variables is applied to establish the local stability of strong solutions for a nonlinear partial differential equation in the space L1(R by assuming that the initial value only lies in the space L1(R∩L∞(R.

  17. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  18. Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2007-01-01

    Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.

  19. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala; Raisch, Alexander

    2014-01-01

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  20. Stability of twisted rods, helices and buckling solutions in three dimensions

    KAUST Repository

    Majumdar, Apala

    2014-11-03

    © 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.

  1. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability.

    Science.gov (United States)

    Hurtado, Adriana; Guàrdia, Maria Dolors; Picouet, Pierre; Jofré, Anna; Ros, José María; Bañón, Sancho

    2017-02-01

    Non-thermal pasteurization by high-pressure processing (HPP) is increasingly replacing thermal processing (TP) to maintain the properties of fresh fruit products. However, most of the research on HPP-fruit products only partially addresses fruit-pressure interaction, which limits its practical interest. The objective of this study was to assess the use of a mild HPP treatment to stabilize red fruit-based smoothies (microbial, enzymatic, oxidative and physical stability). HPP (350 MPa/10 °C/5 min) was slightly less effective than TP (85 °C/7 min) in inactivating microbes (mesophilic and psychrophilic bacteria, coliforms, yeasts and moulds) in smoothies kept at 4 °C for up to 28 days. The main limitation of using HPP was its low efficacy in inactivating oxidative (polyphenol oxidase and peroxidase) and hydrolytic (pectin methyl esterase) enzymes. Data on antioxidant status, colour parameters, browning index, transmittance, turbidity and viscosity confirmed that the HPP-smoothies have a greater tendency towards oxidation and clarification, which might lead to undesirable sensory and nutritional changes (see Part B). The microbial quality of smoothies was adequately controlled by mild HPP treatment without affecting their physical-chemical characteristics; however, oxidative and hydrolytic enzymes are highly pressure-resistant, which suggests that additional strategies should be used to stabilize smoothies. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Solutions Stability of Initial Boundary Problem, Modeling of Dynamics of Some Discrete Continuum Mechanical System

    Directory of Open Access Journals (Sweden)

    D. A. Eliseev

    2015-01-01

    Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.

  3. Formulation and stability of an extemporaneous 0.02% chlorhexidine digluconate ophthalmic solution.

    Science.gov (United States)

    Lin, Shu-Chiao; Huang, Chih-Fen; Shen, Li-Jiuan; Wang, Hsueh-Ju; Lin, Chia-Yu; Wu, Fe-Lin Lin

    2015-12-01

    Acanthamoeba keratitis is difficult to treat because Acanthamoeba cysts are resistant to the majority of antimicrobial agents. Despite the efficacy of 0.02% chlorhexidine in treating Acanthamoeba keratitis, a lack of data in the literature regarding the formulation's stability limits its clinical use. The objective of this study was to develop an optimal extemporaneous 0.02% chlorhexidine digluconate ophthalmic formulation for patients in need. With available active pharmaceutical ingredients, 0.02% chlorhexidine digluconate sample solutions were prepared by diluting with BSS Plus Solution or acetate buffer. Influences of the buffer, type of container, and temperature under daily-open condition were assessed based on the changes of pH values and chlorhexidine concentrations of the test samples weekly. To determine the beyond-use date, the optimal samples were stored at 2-8°C or room temperature, and analyzed at time 0 and at Week 1, Week 2, Week 3, Week 4, Week 5, Week 8, Week 12, and Week 24. Despite chlorhexidine exhibiting better stability in acetate buffer than in BSS solution, its shelf-life was stability at 2-25°C for 6 months after being sealed and for 1 month after opening. This finding will enable us to prepare 0.02% chlorhexidine digluconate ophthalmic solutions based on a doctor's prescription. Copyright © 2014. Published by Elsevier B.V.

  4. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  5. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  6. Existence and stability of periodic solutions for a delayed prey-predator model with diffusion effects

    Directory of Open Access Journals (Sweden)

    Hongwei Liang

    2016-01-01

    Full Text Available Existence and stability of spatially periodic solutions for a delay prey-predator diffusion system are concerned in this work. We obtain that the system can generate the spatially nonhomogeneous periodic solutions when the diffusive rates are suitably small. This result demonstrates that the diffusion plays an important role on deriving the complex spatiotemporal dynamics. Meanwhile, the stability of the spatially periodic solutions is also studied. Finally, in order to verify our theoretical results, some numerical simulations are also included.

  7. Valency stabilization of Polyvalent Iron Ions in Solution By some Organic additives during Gamma Irradiation

    International Nuclear Information System (INIS)

    Barakat, M.F.; Abdel Hamid, M.M.

    2012-01-01

    Valency stabilization of polyvalent ions in gamma irradiated aqueous solutions is sometimes necessary for the success of some chemical operations. In some previous publications valency stabilization of some polyvalent ions in solution upon gamma irradiation was achieved by using additives capable of interacting with the oxidizing or reducing species formed by water radiolysis in the medium. The results showed that the duration of valency stabilization depends on the concentration of the additives used.In the present work, a series of some organic additives has been used to investigate their capability in inducing valency stabilization of polyvalent iron ions when subjected to extended gamma irradiation periods. The results showed that the efficiency of valency stabilization depends on the amount and chemical structure of the organic additive used

  8. Stabilizing the border steady-state solution of two interacting ...

    African Journals Online (AJOL)

    In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...

  9. An investigation on the chemical stability and a novel strategy for long-term stabilization of diphenylalanine nanostructures in aqueous solution

    Directory of Open Access Journals (Sweden)

    H. Nezammahalleh

    2015-01-01

    Full Text Available The stability of diphenylalanine (FF microwires and microtubes in phosphate buffer solution was investigated and a novel strategy was developed for their chemical stabilization. This stability investigation was carried out by optical microscopy and by high performance liquid chromatography (HPLC. These microstructures dissolve in the solution depending upon their degree of FF saturation. The dissolution mechanisms of the structures in kinetically limited processes were found by accurately fitting the experimental dissolution data to a theoretical kinetic equation. The dissolution data were well fitted to the particular Avrami-Erofe’ev kinetic expression (R2 > 0.98. These findings suggest that the structures can be stabilized by a decrease in the hydration of the constituent molecules thorough a chemical conformational induced transition upon heat treatment. The stable microtubes were fabricated in a novel three step procedure consisting of the reduction of silver ions in unstable FF microtubes by a citrate reductant, the stabilization by chemical conformational induced transition upon heat treatment, and the consequent oxidation of the reduced silver by a persulfate oxidant. These materials were characterized by electron microscopy and powder X-ray diffraction techniques. The long-term stability of both structures was also confirmed by optical microscopy and HPLC.

  10. Method of Lyapunov functions in problems of stability of solutions of systems of differential equations with impulse action

    International Nuclear Information System (INIS)

    Ignat'yev, A O

    2003-01-01

    A system of ordinary differential equations with impulse action at fixed moments of time is considered. The system is assumed to have the zero solution. It is shown that the existence of a corresponding Lyapunov function is a necessary and sufficient condition for the uniform asymptotic stability of the zero solution. Restrictions on perturbations of the right-hand sides of differential equations and impulse actions are obtained under which the uniform asymptotic stability of the zero solution of the 'unperturbed' system implies the uniform asymptotic stability of the zero solution of the 'perturbed' system

  11. Brassinosteroid-induced CO{sub 2} assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu Ping; Cheng, Fei; Zhou, Yan Hong; Xia, Xiao Jian; Mao, Wei Hua; Shi, Kai [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Chen, Zhi Xiang [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054 (United States); Yu, Jing Quan, E-mail: jqyu@zju.edu.cn [Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China); Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture of China, Yuhangtang Road 866, Hangzhou 310058 (China)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Activity of certain Calvin cycle enzymes and CO{sub 2} assimilation are induced by BRs. Black-Right-Pointing-Pointer BRs upregulate the activity of the ascorbate-glutathione cycle in the chloroplasts. Black-Right-Pointing-Pointer BRs increase the chloroplast thiol reduction state. Black-Right-Pointing-Pointer A BR-induced reducing environment increases the stability of photosynthetic enzymes. -- Abstract: Brassinosteroids (BRs) play important roles in plant growth, development, photosynthesis and stress tolerance; however, the mechanism underlying BR-enhanced photosynthesis is currently unclear. Here, we provide evidence that an increase in the BR level increased the quantum yield of PSII, activities of Rubisco activase (RCA) and fructose-1,6-bisphosphatase (FBPase), and CO{sub 2} assimilation. BRs upregulated the transcript levels of genes and activity of enzymes involved in the ascorbate-glutathione cycle in the chloroplasts, leading to an increased ratio of reduced (GSH) to oxidized (GSSG) glutathione in the chloroplasts. An increased GSH/GSSG ratio protected RCA from proteolytic digestion and increased the stability of redox-sensitive enzymes in the chloroplasts. These results strongly suggest that BRs are capable of regulating the glutathione redox state in the chloroplasts through the activation of the ascorbate-glutathione cycle. The resulting increase in the chloroplast thiol reduction state promotes CO{sub 2} assimilation, at least in part, by enhancing the stability and activity of redox-sensitive photosynthetic enzymes through post-translational modifications.

  12. Effect of γ-rays irradiation and alkali solution pretreatment on hydrolyzing enzyme and microcosmic structure of core straw

    International Nuclear Information System (INIS)

    Tang Hongtao; Wang Feng; Li Weiming; Li An; Ha Yiming; Li Yanjie

    2012-01-01

    To increase yield of reducing sugar enzymatic hydrolyzed from corn straw yield of corn stalk on Enzymatic hydrolysis, γ-rays radiation and NaOH solution pretreatment were used. The changes of microstructure of the corn straw before and after pretreatments were characterized by IR, X-rays diffraction and SEM. The results shows that the γ-rays radiation can significantly decrease the essential concentration of NaOH solution and shorten the immersion time, but it could not affected the yield of reducing sugar remarkably. The scanning electron microscopy (SEM) results show that the sample which was treated at the 200 kGy irradiation dose and NaOH solution circumstance has the biggest surface area increase. The reducing sugar content of enzyme hydrolyzed corn straw treated at 200 kGy irradiation dose and 2% NaOH solution was achieved 48.34%, which provides the theoretical basis for industry ethanol production using enzyme hydrolyzed corn straw. (authors)

  13. VMCast: A VM-Assisted Stability Enhancing Solution for Tree-Based Overlay Multicast.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available Tree-based overlay multicast is an effective group communication method for media streaming applications. However, a group member's departure causes all of its descendants to be disconnected from the multicast tree for some time, which results in poor performance. The above problem is difficult to be addressed because overlay multicast tree is intrinsically instable. In this paper, we proposed a novel stability enhancing solution, VMCast, for tree-based overlay multicast. This solution uses two types of on-demand cloud virtual machines (VMs, i.e., multicast VMs (MVMs and compensation VMs (CVMs. MVMs are used to disseminate the multicast data, whereas CVMs are used to offer streaming compensation. The used VMs in the same cloud datacenter constitute a VM cluster. Each VM cluster is responsible for a service domain (VMSD, and each group member belongs to a specific VMSD. The data source delivers the multicast data to MVMs through a reliable path, and MVMs further disseminate the data to group members along domain overlay multicast trees. The above approach structurally improves the stability of the overlay multicast tree. We further utilized CVM-based streaming compensation to enhance the stability of the data distribution in the VMSDs. VMCast can be used as an extension to existing tree-based overlay multicast solutions, to provide better services for media streaming applications. We applied VMCast to two application instances (i.e., HMTP and HCcast. The results show that it can obviously enhance the stability of the data distribution.

  14. Evaluation of the stability of linezolid in aqueous solution and commonly used intravenous fluids

    Directory of Open Access Journals (Sweden)

    Taylor R

    2017-07-01

    Full Text Available Rachel Taylor, Bruce Sunderland, Giuseppe Luna, Petra Czarniak School of Pharmacy, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia Purpose: The aim was to evaluate the stability of linezolid in commonly used intravenous fluids and in aqueous solution to determine the kinetics of degradation and shelf-life values at alkaline pH values. Methods: Forced degradation studies were performed on linezolid in solution to develop a validated high-performance liquid chromatography analysis. Sodium chloride 0.9%, sodium lactate, and glucose 5% and glucose 10% solution containing 2.0 mg/mL linezolid were stored at 25.0°C (±0.1°C for 34 days. The effect of temperature on the stability of linezolid in 0.1 M sodium hydroxide solution was investigated to determine the activation energy. The degradation rates of linezolid at selected pH values at 70.0°C and the influence of ionic strength were also examined. Activation energy data were applied to determine the shelf-life values at selected pH values, and a pH rate profile was constructed over the pH range of 8.7–11.4. The stability of intravenous linezolid (Zyvox® solution was evaluated by storing at 70.0°C for 72 hours. Results: Linezolid was found to maintain >95.0% of its initial concentration after storage at 25.0°C for 34 days in sodium lactate, 0.9% in sodium chloride, and 5% and 10% in glucose solutions. Linezolid was degraded at alkaline pH values by first-order kinetics. Activation energy data showed that temperature, but not ionic strength, influenced the degradation rate significantly. An activation energy of 58.22 kJ/mol was determined for linezolid in 0.1 M sodium hydroxide solution. Linezolid was least stable at high pH values and at elevated temperatures. It was determined that linezolid has adequate stability for the preparation of intravenous fluids for clinical administration. Conclusion: Linezolid was found to have a shelf life of 34 days at 25°C when added to

  15. Globally exponential stability and periodic solutions of CNNS with variable coefficients and variable delays

    International Nuclear Information System (INIS)

    Liu Haifei; Wang Li

    2006-01-01

    In this Letter, by using the inequality method and the Lyapunov functional method, we analyze the globally exponential stability and the existence of periodic solutions of a class of cellular neutral networks with delays and variable coefficients. Some simple and new sufficient conditions ensuring the existence and uniqueness of globally exponential stability of periodic solutions for cellular neutral networks with variable coefficients and delays are obtained. In addition, one example is also worked out to illustrate our theory

  16. Globally exponential stability and periodic solutions of CNNS with variable coefficients and variable delays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Haifei [School of Management and Engineering, Nanjing University, Nanjing 210093 (China)]. E-mail: hfliu80@126.com; Wang Li [School of Management and Engineering, Nanjing University, Nanjing 210093 (China)

    2006-09-15

    In this Letter, by using the inequality method and the Lyapunov functional method, we analyze the globally exponential stability and the existence of periodic solutions of a class of cellular neutral networks with delays and variable coefficients. Some simple and new sufficient conditions ensuring the existence and uniqueness of globally exponential stability of periodic solutions for cellular neutral networks with variable coefficients and delays are obtained. In addition, one example is also worked out to illustrate our theory.

  17. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  18. Formation and stabilization of anionic metal complexes in concentrated aqueous quaternary ammonium salt solutions

    International Nuclear Information System (INIS)

    Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-01-01

    Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl 4 - , which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO 4 - by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures

  19. Formulation and stability of an extemporaneous 0.02% chlorhexidine digluconate ophthalmic solution

    Directory of Open Access Journals (Sweden)

    Shu-Chiao Lin

    2015-12-01

    Conclusion: The acetate-buffered 0.02% chlorhexidine digluconate ophthalmic solution stored in light-resistant high-density polyethylene eyedroppers demonstrated excellent stability at 2–25°C for 6 months after being sealed and for 1 month after opening. This finding will enable us to prepare 0.02% chlorhexidine digluconate ophthalmic solutions based on a doctor's prescription.

  20. The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme.

    Science.gov (United States)

    O'Neill, Hester G; Redelinghuys, Pierre; Schwager, Sylva L U; Sturrock, Edward D

    2008-09-01

    The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.

  1. EFFECT OF STABILIZERS ON THE CHEMICAL AND PHOTODEGRADATION OF ASCORBIC ACID IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Iqbal Ahmad

    2016-06-01

    Full Text Available Ascorbic acid (vitamin C is susceptible to light and air and forms various degradation products. A number of stabilizers have been used to study their effect on the degradation of ascorbic acid (AH2 in dark and light at pH 4.0 and 6.0 alone and in combination with citric and tartaric acids. The assay of AH2 in degraded solutions was performed by a specific UV spectrometric method. The degradation product of AH2 at pH 4.0 and 6.0 was identified as dehydroascorbic acid. The degradation of AH2 has been found to follow first-order kinetics. The apparent first-order rate constants, t90 and percent inhibition in rate in the presence of stabilizers and the second-order rate constants for the interaction of stabilizers with AH2 have been determined. The highest stabilizing effect on AH2 was found by sodium metabisulfite, followed by sodium sulfite, sodium bisulfate, sodium thiosulfate and thiourea. The pH of the solutions has also been found to influence the degradation of AH2 as the rates are higher at pH 6.0 compared to those of pH 4.0, probably due to the ionization of AH2. A synergistic effect has been observed when citric or tartaric acid was added to the solutions containing stabilizers where citric acid showed comparatively better effect.

  2. A Pilot Chemical and Physical Stability Study of Extemporaneously Compounded Levetiracetam Intravenous Solution.

    Science.gov (United States)

    Raphael, Chenzira D; Zhao, Fang; Hughes, Susan E; Juba, Katherine M

    2015-01-01

    Levetiracetam is a commonly used antiepileptic medication for tumor-related epilepsy. However, the 100 mL intravenous (IV) infusion volume can be burdensome to imminently dying hospice patients. A reduced infusion volume would improve patient tolerability. The purpose of this study was to evaluate the stability of 1000 mg/25 mL (40 mg/mL) levetiracetam IV solution in sodium chloride 0.9%. We prepared levetiracetam 40 mg/mL IV solution and added it to polyvinyl chloride (PVC) bags, polyolefin bags, and polypropylene syringes. Triplicate samples of each product were stored at refrigeration (2-8°C) and analyzed on days 0, 1, 4, 7, and 14. Samples were subjected to visual inspection, pH measurement, and stability-indicating high-performance liquid chromatography (HPLC) analysis. Over the 2-week storage period, there was no significant change in visual appearance or pH for any of the stability samples. The HPLC results confirmed that all stability samples retained 94.2-101.3% of initial drug concentration and no degradation products or leachable material from the packaging materials were observed. We conclude that levetiracetam 1000 mg/25 mL IV solution in sodium chloride 0.9% is physically and chemically stable for up to 14 days under refrigeration in polypropylene syringes, PVC bags, and polyolefin bags.

  3. Stability and enzyme inhibition activities of au nanoparticles using an aqueous extract of clove as a reducing and stabilizing agent

    International Nuclear Information System (INIS)

    Hameed, A.; Khan, I.; Naz, S.S.; Islam, N.U.

    2014-01-01

    Gold nanoparticles (AuNPs) were synthesized in one pot using aqueous extract of clove buds (CB) to reduce HAuCl/sub 4/ and stabilize gold in its atomic form at room temperature. To determine the potential of gold nanoparticles with clove buds (AuCB) for in vivo applications, the stability of the nanoparticles was explored as a function of temperature, pH and salt concentration. The suspensions were found to be stable for salt concentrations up to 1 mol/L, temperatures of up to 100 degree C and a pH range of 2-13. Our results indicate that CB exhibited comparable activities to standards of urease and carbonic anhydrase, but its conjugation to Au knocks out the enzyme inhibition activity by about two times. In case of xanthine oxidase activity, CB and its gold Au bio-conjugates (AuCB) are found to be absolutely inactive. (author)

  4. Stable preparations of tyrosine hydroxylase provide the solution structure of the full-length enzyme

    Science.gov (United States)

    Bezem, Maria T.; Baumann, Anne; Skjærven, Lars; Meyer, Romain; Kursula, Petri; Martinez, Aurora; Flydal, Marte I.

    2016-01-01

    Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of catecholamine neurotransmitters. TH is a highly complex enzyme at mechanistic, structural, and regulatory levels, and the preparation of kinetically and conformationally stable enzyme for structural characterization has been challenging. Here, we report on improved protocols for purification of recombinant human TH isoform 1 (TH1), which provide large amounts of pure, stable, active TH1 with an intact N-terminus. TH1 purified through fusion with a His-tagged maltose-binding protein on amylose resin was representative of the iron-bound functional enzyme, showing high activity and stabilization by the natural feedback inhibitor dopamine. TH1 purified through fusion with a His-tagged ZZ domain on TALON is remarkably stable, as it was partially inhibited by resin-derived cobalt. This more stable enzyme preparation provided high-quality small-angle X-ray scattering (SAXS) data and reliable structural models of full-length tetrameric TH1. The SAXS-derived model reveals an elongated conformation (Dmax = 20 nm) for TH1, different arrangement of the catalytic domains compared with the crystal structure of truncated forms, and an N-terminal region with an unstructured tail that hosts the phosphorylation sites and a separated Ala-rich helical motif that may have a role in regulation of TH by interacting with binding partners. PMID:27462005

  5. Existence and Stability of Solutions for Implicit Multivalued Vector Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    Li Qiuying

    2011-01-01

    Full Text Available A class of implicit multivalued vector equilibrium problems is studied. By using the generalized Fan-Browder fixed point theorem, some existence results of solutions for the implicit multivalued vector equilibrium problems are obtained under some suitable assumptions. Moreover, a stability result of solutions for the implicit multivalued vector equilibrium problems is derived. These results extend and unify some recent results for implicit vector equilibrium problems, multivalued vector variational inequality problems, and vector variational inequality problems.

  6. Radiation stability of colloidal metals in aqueous solutions: silver and other metals

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1998-01-01

    The effect of accelerated electrons and γ-rays of 60N i on the stability of aqueous solutions of colloidal silver was studied. The threshold of absorbed dose, at which the stability dramatically decreases and coagulation of the metal occurs, was found. This critical dose corresponds to the reduction of silver ions determining the electrical potential of the sols. Radiation neutralization was also found for cadmium was not observed in the case of thallium, copper and platinum. A mechanism of the effect of radiation, taking into account the electrostatic factor in the stability of metal sols, was considered. (author)

  7. Temperature stability of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] in the form of a solution or in the lyophilized form during storage at -80 °C, 4 °C, 25 °C and 37 °C or pasteurization at 70 °C.

    Science.gov (United States)

    Bian, Y Z; Guo, C; Chang, T M S

    2016-01-01

    Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase (Poly-[Hb-SOD-CAT-CA]) contains all three major functions of red blood cells (RBCs) at an enhanced level. It transports oxygen, removes oxygen radicals and transports carbon dioxide. Our previous studies in a 90-min 30 mm Hg Mean Arterial Pressure (MAP) sustained hemorrhagic shock rat model shows that it is more effective than blood in the lowering of elevated intracellular pCO2, recovery of ST-elevation and histology of the heart and intestine. This paper is to analyze the storage and temperature stability. Allowable storage time for RBC is about 1 d at room temperature and 42 d at 4 °C. Also, RBC cannot be pasteurized to remove infective agents like HIV and Ebola. PolyHb can be heat sterilized and can be stored for 1 year even at room temperature. However, Poly-[Hb-SOD-CAT-CA] contains both Hb and enzymes and enzymes are particularly sensitive to storage and heat. We thus carried out studies to analyze its storage stability at different temperatures and heat pasteurization stability. Results of storage stability show that lyophilization extends the storage time to 1 year at 4 °C and 40 d at room temperature (compared to respectively, 42 d and 1 d for RBC). After the freeze-dry process, the enzyme activities of Poly-[SFHb-SOD-CAT-CA] was 100 ± 2% for CA, 100 ± 2% for SOD and 93 ± 3.5% for CAT. After heat pasteurization at 70 °C for 2 h, lyophilized Poly-[Hb-SOD-CAT-CA] retained good enzyme activities of CA 97 ± 4%, SOD 100 ± 2.5% and CAT 63.8 ± 4%. More CAT can be added during the crosslinking process to maintain the same enzyme ratio after heat pasteurization. Heat pasteurization is possible only for the lyophilized form of Poly-[Hb-SOD-CAT-CA] and not for the solution. It can be easily reconstituted by dissolving in suitable solutions that continues to have good storage stability though less than that for the lyophilized form. According to the P50 value, Poly-[SFHb-SOD-CAT-CA] retains its

  8. Solutions stability of one-dimensional parametric superconducting magnetic levitation model analysis by the first approximation

    International Nuclear Information System (INIS)

    Shvets', D.V.

    2009-01-01

    By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.

  9. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita

    2014-01-01

    enzymatic reaction efficiency were evaluated in terms of enzyme loading, conversion rate and biocatalytic stability. Alcohol dehydrogenase (ADH) was selected as a model enzyme. Lower pressure, higher enzyme concentration and lower pH resulted in higher irreversible fouling resistance and lower permeate flux....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme...... loading but generated more permeability loss, while cake layer formation increased enzyme stability but resulted in low loading rate. Low pH (near isoelectric point) favored hydrophobic and electrostatic adsorption of enzymes on the membrane, which reduced the enzyme stability. Neutral pH, however...

  10. Existence, Multiplicity, and Stability of Positive Solutions of a Predator-Prey Model with Dinosaur Functional Response

    Directory of Open Access Journals (Sweden)

    Xiaozhou Feng

    2017-01-01

    Full Text Available We investigate the property of positive solutions of a predator-prey model with Dinosaur functional response under Dirichlet boundary conditions. Firstly, using the comparison principle and fixed point index theory, the sufficient conditions and necessary conditions on coexistence of positive solutions of a predator-prey model with Dinosaur functional response are established. Secondly, by virtue of bifurcation theory, perturbation theory of eigenvalues, and the fixed point index theory, we establish the bifurcation of positive solutions of the model and obtain the stability and multiplicity of the positive solution under certain conditions. Furthermore, the local uniqueness result is studied when b and d are small enough. Finally, we investigate the multiplicity, uniqueness, and stability of positive solutions when k>0 is sufficiently large.

  11. Sensitizing effect of Z,Z-bilirubin IXα and its photoproducts on enzymes in model solutions

    Science.gov (United States)

    Plavskii, V. Yu.; Mostovnikov, V. A.; Tret'yakova, A. I.; Mostovnikova, G. R.

    2008-05-01

    In model systems, we have studied side effects which may be induced by light during phototherapy of hyperbilirubinemia (jaundice) in newborn infants, with the aim of reducing the Z,Z-bilirubin IXα (Z,Z-BR IXα) level. We have shown that the sensitizing effect of Z,Z-BR IXα, localized at strong binding sites of the human serum albumin (HSA) macromolecule, is primarily directed at the amino acid residues of the carrier protein and does not involve the molecules of the enzyme (lactate dehydrogenase (LDH)) present in the buffer solution. The detected photodynamic damage to LDH is due to sensitization by bilirubin photoisomers, characterized by lower HSA association constants and located (in contrast to native Z,Z-BR IXα) on the surface of the HSA protein globule. Based on study of the spectral characteristics of the photoproducts of Z,Z-BR IXα and comparison of their accumulation kinetics in solution and the enzyme photo-inactivation kinetics, we concluded that the determining role in sensitized damage to LDH is played by lumirubin. The photosensitization effect depends on the wavelength of the radiation used for photoconversion of bilirubin. When (at the beginning of exposure) we make sure that identical numbers of photons are absorbed by the pigment in the different spectral ranges, the side effect is minimal for radiation corresponding to the long-wavelength edge of the bilirubin absorption band. We have shown that for a bilirubin/HSA concentration ratio >2 (when some of the pigment molecules are sorbed on the surface of the protein globule), the bilirubin can act as a photosensitizing agent for the enzyme present in solution. We discuss methods for reducing unfavorable side effects of light on the body of newborn infants during phototherapy of hyperbilirubinemia.

  12. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions.

    Science.gov (United States)

    Sutariya, Suresh; Patel, Hasmukh

    2017-05-15

    Whey protein isolate (WPI) solutions (12.8%w/w protein) were treated with varying concentrations of H 2 O 2 in the range of 0-0.144 H 2 O 2 to protein ratios (HTPR) by the addition of the required quantity of H 2 O 2 and deionized water. The samples were analyzed for heat stability, rheological properties, denaturation level of β-lactoglobulin (β-LG) and α-lactalbumin (α-LA). The samples treated with H 2 O 2 concentration >0.072 (HTPR) showed significant improvement in the heat stability, and decreased whey protein denaturation and aggregation. The WPI solution treated with H 2 O 2 (>0.072 HTPR) remained in the liquid state after heat treatment at 120°C, whereas the control samples formed gel upon heat treatment. Detailed analysis of these samples suggested that the improvement in the heat stability of H 2 O 2 treated WPI solution was attributed to the significant reduction in the sulfhydryl-disulfide interchange reaction during denaturation of β-LG and α-LA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Stability of plane wave solutions of the two-space-dimensional nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Martin, D.U.; Yuen, H.C.; Saffman, P.G.

    1980-01-01

    The stability of plane, periodic solutions of the two-dimensional nonlinear Schroedinger equation to infinitesimal, two-dimensional perturbation has been calculated and verified numerically. For standing wave disturbances, instability is found for both odd and even modes; as the period of the unperturbed solution increases, the instability associated with the odd modes remains but that associated with the even mode disappears, which is consistent with the results of Zakharov and Rubenchik, Saffman and Yuen and Ablowitz and Segur on the stability of solitons. In addition, we have identified travelling wave instabilities for the even mode perturbations which are absent in the long-wave limit. Extrapolation to the case of an unperturbed solution with infinite period suggests that these instabilities may also be present for the soliton. In other words, the soliton is unstable to odd, standing-wave perturbations, and very likely also to even, travelling-wave perturbations. (orig.)

  14. The Effects of Electroless Nickel Plating Bath Conditions on Stability of Solution and Properties of Deposit

    International Nuclear Information System (INIS)

    Huh, Jin; Lee, Jae Ho

    2000-01-01

    Electroless depositions of nickel were conducted in different bath conditions to find optimum conditions of electroless nickel plating at low operating temperature and pH. The effect of complexing reagent on stability of plating solution was investigated. Sodium citrate complexed plating solution is more stable than sodium pyrophosphate complexed solution. The effects of nickel salt concentration, reducing agent, complexing agent and inhibitor on deposition rate was investigated. The effects of pH on deposition rate and content of phosphorous in deposited nickel were also analyzed. Electroless deposited nickel become crystallized with increasing pH due to lower phosphorous content. In optimum operating bath condition, deposition rate was 7 μm/hr at 60 .deg. C and pH 10.0 without stabilizer. The rate was decreased with stabilizer concentration

  15. DUB3 Deubiquitylating Enzymes Regulate Hippo Pathway Activity by Regulating the Stability of ITCH, LATS and AMOT Proteins

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Cohen, Stephen Michael

    2017-01-01

    /TAZ, is regulated by ubiquitin mediated protein turnover and several ubiquitin ligase complexes have been implicated in human cancer. However, little is known about the deubiquitylating enzymes that counteract these ubiquitin ligases in regulation of the Hippo pathway. Here we identify the DUB3 family...... deubiquitylating enzymes as regulators of Hippo pathway activity. We provide evidence that DUB3 proteins regulate YAP/TAZ activity by controlling the stability of the E3 ligase ITCH, the LATS kinases and the AMOT family proteins. As a novel Hippo pathway regulator, DUB3 has the potential to act a tumor suppressor...

  16. Multi-stability and almost periodic solutions of a class of recurrent neural networks

    International Nuclear Information System (INIS)

    Liu Yiguang; You Zhisheng

    2007-01-01

    This paper studies multi-stability, existence of almost periodic solutions of a class of recurrent neural networks with bounded activation functions. After introducing a sufficient condition insuring multi-stability, many criteria guaranteeing existence of almost periodic solutions are derived using Mawhin's coincidence degree theory. All the criteria are constructed without assuming the activation functions are smooth, monotonic or Lipschitz continuous, and that the networks contains periodic variables (such as periodic coefficients, periodic inputs or periodic activation functions), so all criteria can be easily extended to fit many concrete forms of neural networks such as Hopfield neural networks, or cellular neural networks, etc. Finally, all kinds of simulations are employed to illustrate the criteria

  17. Stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride and polyolefin bags.

    Science.gov (United States)

    Karlage, Kelly; Earhart, Zachary; Green-Boesen, Kelly; Myrdal, Paul B

    2011-08-15

    The stability of midazolam hydrochloride injection 1-mg/mL solutions in polyvinyl chloride (PVC) and polyolefin bags under varying conditions was evaluated. Triplicate solutions of midazolam hydrochloride 1-mg/mL were prepared in polyolefin and PVC i.v. bags by diluting midazolam hydrochloride injection 5 mg/mL with 5% dextrose injection. Bags were then stored under refrigeration (3-4 °C), exposed to light at room temperature (20-25 °C), or protected from light in amber bags at room temperature. Samples were taken immediately after preparation (day 0) and on days 1, 2, 3, 6, 13, 20, and 27 for analysis with a stability-indicating high-performance liquid chromatography assay in order to determine solution concentration. Stability was defined as retention of at least 90% of the initial drug concentration. The pH of each solution was also measured weekly. Sterility of the i.v. bags was determined at the end of the study by microbiological testing with culture in growth media. Differences in concentrations under the various storage conditions and bags used were analyzed using analysis of variance. All solutions retained over 98% of the initial midazolam hydrochloride concentration, with no statistically significant (p ≥ 0.05) change in concentration over the four-week period. Stability was not affected by temperature, exposure to light, or bag type. The pH of all solutions remained between 3.2 and 3.4 throughout the study. Sterility after 28 days was retained. Midazolam hydrochloride 1-mg/mL solutions diluted in 5% dextrose injection remained stable over 27 days in both polyolefin and PVC i.v. bags, regardless of storage condition.

  18. Physical and chemical stability of proflavine contrast agent solutions for early detection of oral cancer.

    Science.gov (United States)

    Kawedia, Jitesh D; Zhang, Yan-Ping; Myers, Alan L; Richards-Kortum, Rebecca R; Kramer, Mark A; Gillenwater, Ann M; Culotta, Kirk S

    2016-02-01

    Proflavine hemisulfate solution is a fluorescence contrast agent to visualize cell nuclei using high-resolution optical imaging devices such as the high-resolution microendoscope. These devices provide real-time imaging to distinguish between normal versus neoplastic tissue. These images could be helpful for early screening of oral cancer and its precursors and to determine accurate margins of malignant tissue for ablative surgery. Extemporaneous preparation of proflavine solution for these diagnostic procedures requires preparation in batches and long-term storage to improve compounding efficiency in the pharmacy. However, there is a paucity of long-term stability data for proflavine contrast solutions. The physical and chemical stability of 0.01% (10 mg/100 ml) proflavine hemisulfate solutions prepared in sterile water was determined following storage at refrigeration (4-8℃) and room temperature (23℃). Concentrations of proflavine were measured at predetermined time points up to 12 months using a validated stability-indicating high-performance liquid chromatography method. Proflavine solutions stored under refrigeration were physically and chemically stable for at least 12 months with concentrations ranging from 95% to 105% compared to initial concentration. However, in solutions stored at room temperature increased turbidity and particulates were observed in some of the tested vials at 9 months and 12 months with peak particle count reaching 17-fold increase compared to baseline. Solutions stored at room temperature were chemically stable up to six months (94-105%). Proflavine solutions at concentration of 0.01% were chemically and physically stable for at least 12 months under refrigeration. The solution was chemically stable for six months when stored at room temperature. We recommend long-term storage of proflavine solutions under refrigeration prior to diagnostic procedure. © The Author(s) 2014.

  19. STABILITY OF A CYLINDRICAL SOLUTE-SOLVENT INTERFACE: EFFECT OF GEOMETRY, ELECTROSTATICS, AND HYDRODYNAMICS.

    Science.gov (United States)

    Li, B O; Sun, Hui; Zhou, Shenggao

    The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-solvent interface. We model the electrostatics by Poisson's equation in which the solute-solvent interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the charge density. For their linearized systems, we use the projection method to solve the fluid equation and find the dispersion relation. Our asymptotic analysis shows that, for large wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular interactions are discussed.

  20. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  1. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

  2. Stability of oscillatory solutions of differential equations with a general piecewise constant argument

    Directory of Open Access Journals (Sweden)

    Kuo-Shou Chiu

    2011-11-01

    Full Text Available We examine scalar differential equations with a general piecewise constant argument, in short DEPCAG, that is, the argument is a general step function. Criteria of existence of the oscillatory and nonoscillatory solutions of such equations are proposed. Necessary and sufficient conditions for stability of the zero solution are obtained. Appropriate examples are given to show our results.

  3. Chaperone-Like Activity of ß-Casein and Its Effect on Residual in Vitro Activity of Food Enzymes

    DEFF Research Database (Denmark)

    Sulewska, Anna Maria

    ABSTRACT Activity of endogenous enzymes may cause browning of fruits and vegetables. These enzymes can be inactivated, for example by heat treatment, but the response of enzymes to heat treatment depends on many factors. Foods are very complex systems and the stability of enzymes......-casein on the enzymatic activity of three targets was tested by monitoring enzyme activity after heat treatment and by measuring the intensity of scattered light during and after heat treatment. β-Casein was shown to interact at elevated temperatures with three selected targets:horseradish peroxidase, tyrosinase from......, residual activity of horseradish peroxidase was lower in samples containing BSA than in samples without any addition. Horseradish peroxidase heated with BSA did not regain activity within one hour after treatment. BSA is often added to enzyme solutions to prevent enzyme adhesion to vial surfaces...

  4. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  5. Valency stabilization of polyvalent ions during gamma irradiation of their aqueous solutions by sacrificial protection. I- Valency stabilization of Fe (II) ions by sulphate ions

    Energy Technology Data Exchange (ETDEWEB)

    Barakat, M F [Nuclear chemistry department, hot lab. center, Atomic Energy Authority, Cairo, (Egypt); Abdel-Hamid, M M [Arab Atomic Energy Agency, P.O. Box 402 El-Manzah-1004 Tunis, (Tunisia)

    1995-10-01

    Polyvalent ions are very sensitive to gamma irradiation in aqueous solutions. The present work is a part of a more comprehensive study dealing with the stabilization or protection of certain oxidation states of some polyvalent ions during their gamma irradiation in aqueous systems. The behaviour of aqueous acidic Fe (II) solutions during gamma irradiation, in presence the prevailing protection mechanism. The conditions and stabilization limits in the studied case has been found out. 9 figs.

  6. Valency stabilization of polyvalent ions during gamma irradiation of their aqueous solutions by sacrificial protection. I- Valency stabilization of Fe (II) ions by sulphate ions

    International Nuclear Information System (INIS)

    Barakat, M.F.; Abdel-Hamid, M.M.

    1995-01-01

    Polyvalent ions are very sensitive to gamma irradiation in aqueous solutions. The present work is a part of a more comprehensive study dealing with the stabilization or protection of certain oxidation states of some polyvalent ions during their gamma irradiation in aqueous systems. The behaviour of aqueous acidic Fe (II) solutions during gamma irradiation, in presence the prevailing protection mechanism. The conditions and stabilization limits in the studied case has been found out. 9 figs

  7. Global stability and existence of periodic solutions of discrete delayed cellular neural networks

    International Nuclear Information System (INIS)

    Li Yongkun

    2004-01-01

    We use the continuation theorem of coincidence degree theory and Lyapunov functions to study the existence and stability of periodic solutions for the discrete cellular neural networks (CNNs) with delays xi(n+1)=xi(n)e-bi(n)h+θi(h)-bar j=1maij(n)fj(xj(n))+θi(h)-bar j=1mbij(n)fj(xj(n- τij(n)))+θi(h)Ii(n),i=1,2,...,m. We obtain some sufficient conditions to ensure that for the networks there exists a unique periodic solution, and all its solutions converge to such a periodic solution

  8. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China

    Directory of Open Access Journals (Sweden)

    Jiguang Zhang

    2016-07-01

    Full Text Available To determine the effects of straw incorporation on soil nutrients, enzyme activity, and aggregates in tobacco fields, we conducted experiments with different amounts of wheat and maize straw in Zhucheng area of southeast Shandong province for three years (2010–2012. In the final year of experiment (2012, straw incorporation increased soil organic carbon (SOC and related parameters, and improved soil enzyme activity proportionally with the amount of straw added, except for catalase when maize straw was used. And maize straw incorporation was more effective than wheat straw in the tobacco field. The percentage of aggregates >2 mm increased with straw incorporation when measured by either dry or wet sieving. The mean weight diameter (MWD and geometric mean diameter (GMD in straw incorporation treatments were higher than those in the no-straw control (CK. Maize straw increased soil aggregate stability more than wheat straw with the same incorporation amount. Alkaline phosphatase was significantly and negatively correlated with soil pH. Sucrase and urease were both significantly and positively correlated with soil alkali-hydrolysable N. Catalase was significantly but negatively correlated with soil extractable K (EK. The MWD and GMD by dry sieving had significantly positive correlations with SOC, total N, total K, and EK, but only significantly correlated with EK by wet sieving. Therefore, soil nutrients, metabolic enzyme activity, and aggregate stability might be increased by increasing the SOC content through the maize or wheat straw incorporation. Moreover, incorporation of maize straw at 7500 kg·hm−2 was the best choice to enhance soil fertility in the tobacco area of Eastern China.

  9. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  10. Theoretical calculations of the thermodynamic stability of ionic substitutions in hydroxyapatite under an aqueous solution environment

    International Nuclear Information System (INIS)

    Matsunaga, Katsuyuki; Murata, Hidenobu; Shitara, Kazuki

    2010-01-01

    Defect formation energies in materials generally depend on chemical potentials determined by a chemical equilibrium condition. In particular, an aqueous solution environment is important for biomaterials such as hydroxyapatite studied here. Therefore, a methodology to obtain ionic chemical potentials under chemical equilibrium between solid and aqueous solution was introduced, and was applied to substitutional divalent cations formed via ion exchange with Ca 2+ in hydroxyapatite. The calculated ranking of the stability of substitutional cations in HAp was in good agreement with the experimentally observed trend. The present theoretical approach would be useful to explore the thermodynamic stability of defects in materials subjected to an aqueous solution environment.

  11. Immobilization of cross-linked tannase enzyme on multiwalled carbon nanotubes and its catalytic behavior.

    Science.gov (United States)

    Ong, Chong-Boon; Annuar, Mohamad S M

    2018-02-07

    Immobilization of cross-linked tannase on pristine multiwalled carbon nanotubes (MWCNT) was successfully performed. Cross-linking of tannase molecules was made through glutaraldehyde. The immobilized tannase exhibited significantly improved pH, thermal, and recycling stability. The optimal pH for both free and immobilized tannase was observed at pH 5.0 with optimal operating temperature at 30°C. Moreover, immobilized enzyme retained greater biocatalytic activities upon 10 repeated uses compared to free enzyme in solution. Immobilization of tannase was accomplished by strong hydrophobic interaction most likely between hydrophobic amino acid moieties of the glutaraldehyde-cross-linked tannase to the MWCNT.

  12. A Riccati solution for the ideal MHD plasma response with applications to real-time stability control

    Science.gov (United States)

    Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.

    2018-03-01

    Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.

  13. STABILITY OF SYNTHESIZED SILVER NANOPARTICLES IN CITRATE AND MIXED GELATIN/CITRATE SOLUTION

    Directory of Open Access Journals (Sweden)

    Jana Kavuličová

    2018-04-01

    Full Text Available The study focuses on an investigation of the influence of both citrate and mixed gelatin/citrate as a reductant and stabilizer on the colloidal stability of silver nanoparticles (AgNPssynthesized by a chemical reduction of Ag+ ions after a short - (7th day - and long - (118th day - term storage. Formed AgNPs were characterized by a UV–vis Spectroscopy, Transmission Electron Microscope (TEM, Dynamic light scattering (DLS and Zeta-potential (ZP. The obtained results revealed that a short-term stability of the synthesized AgNPs was greatly influenced by a citrate stabilizer with the absence of gelatin. Smaller-sized AgNPs (average particle diameter of 3 nm, roughly spherical in a shape, were obtained with a narrow size distribution. The very negative value of the Zeta-potential confirmed a strong stability of the citrate capped AgNPs. However, a surface coating of the AgNPs by a gelatin/citrate stabilizer was found to be a dominant contributor in improving a long-term stability of the AgNPs (average particle diameter of 26 nm. The use of gelatin in mixed stabilizer solution provided the AgNPs with higher monodispersity and a controllable size after both the short and long-term storage.

  14. Estimation of stability constants of metal monoacidocomplexes in aqueous solutions (1:2) of electrolytes

    International Nuclear Information System (INIS)

    Ryazanov, M.A.

    1992-01-01

    On the basis of the concept of the model of isoactive solutions it is shown that osmosis pressure of aqueous solutions (1:2) of electrolytes is well described by the Van-der-Vaals model for ideal associated gas. Stabilisty constants were calculated using osmosis mole parts of interacting particles as a concentrational scale. Stability constants in the scale of osmosis mole parts are equal to thermodynamic contstants, rated for an infinitely diluted solution

  15. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  16. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    Science.gov (United States)

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  17. Key factors influencing the stability of silane solution during long-term surface treatment on carbon steel

    International Nuclear Information System (INIS)

    Xian, Xiaochao; Chen, Minglu; Li, Lixin; Lin, Zhen; Xiang, Jun; Zhao, Shuo

    2013-01-01

    Highlights: •The corrosion-resistance time of silane films decreases with increasing cycle numbers. •The morphology of silane films prepared from aged solution is inhomogeneous. •Introduction of contamination ions is one reason for the poor property of aged solution. •Consumption of silane is the other reason for the poor property of aged solution. •Fe 3+ accumulated is the key factor influencing the property of silane solution. -- Abstract: The mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane were used for surface treatment of carbon steel, aiming to investigate the factors influencing the stability of silane solution during long-term experiment from two aspects. One is the concentrations of contamination ions, and the other is mass of silane consumed per cycle which is calculated according to concentration of Si measured by silicon molybdenum blue photometry. The results indicate that the accumulation of contamination ions, especially Fe 3+ , is the main factor leading to the condensation between the Si–OH groups in silane solution, which is responsible for the downward stability of silane solution

  18. Stability of biodegradable waterborne polyurethane films in buffered saline solutions.

    Science.gov (United States)

    Lin, Ying Yi; Hung, Kun-Che; Hsu, Shan-Hui

    2015-09-21

    The stability of polyurethane (PU) is of critical importance for applications such as in coating industry or as biomaterials. To eliminate the environmental concerns on the synthesis of PU which involves the use of organic solvents, the aqueous-based or waterborne PU (WBPU) has been developed. WBPU, however, may be unstable in an electrolyte-rich environment. In this study, the authors reported the stability of biodegradable WBPU in the buffered saline solutions evaluated by atomic force microscopy (AFM). Various biodegradable WBPU films were prepared by spin coating on coverslip glass, with a thickness of ∼300 nm. The surface AFM images of poly(ε-caprolactone) (PCL) diol-based WBPU revealed nanoglobular structure. The same feature was observed when 20% molar of the PCL diol soft segment was replaced by polyethylene butylenes adipate diol. After hydration in buffered saline solutions for 24 h, the surface domains generally increased in sizes and became irregular in shape. On the other hand, when the soft segment was replaced by 20% poly(l-lactide) diol, a meshlike surface structure was demonstrated by AFM. When the latter WBPU was hydrated, the surface domains appeared to be disconnected. Results from the attenuated total reflectance infrared spectroscopy and x-ray photoelectron spectroscopy indicated that the surface chemistry of WBPU films was altered after hydration. These changes were probably associated with the neutralization of carboxylate by ions in the saline solutions, resulting in the rearrangements of soft and hard segments and causing instability of the WBPU.

  19. Existence and global exponential stability of periodic solution of CNNs with impulses

    International Nuclear Information System (INIS)

    Li Yongkun; Xing Zhiwei

    2007-01-01

    Sufficient conditions are obtained for the existence and global exponential stability of a unique periodic solution of cellular neural networks with variable time delays and impulses by using Mawhin's continuation theorem of coincidence degree and by means of a method based on delay differential inequality

  20. Existence and global exponential stability of periodic solution of CNNs with impulses

    Energy Technology Data Exchange (ETDEWEB)

    Li Yongkun [Department of Mathematics, Yunnan University, Kunming, Yunnan 650091 (China); Xing Zhiwei [Department of Mathematics, Yunnan University, Kunming, Yunnan 650091 (China)

    2007-08-15

    Sufficient conditions are obtained for the existence and global exponential stability of a unique periodic solution of cellular neural networks with variable time delays and impulses by using Mawhin's continuation theorem of coincidence degree and by means of a method based on delay differential inequality.

  1. Cell culture media impact on drug product solution stability.

    Science.gov (United States)

    Purdie, Jennifer L; Kowle, Ronald L; Langland, Amie L; Patel, Chetan N; Ouyang, Anli; Olson, Donald J

    2016-07-08

    To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016. © 2016 American Institute of Chemical Engineers.

  2. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  3. Color stability of ceramic brackets immersed in potentially staining solutions.

    Science.gov (United States)

    Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas

    2015-01-01

    To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions.

  4. Cold-Adapted Enzymes

    Science.gov (United States)

    Georlette, D.; Bentahir, M.; Claverie, P.; Collins, T.; D'amico, S.; Delille, D.; Feller, G.; Gratia, E.; Hoyoux, A.; Lonhienne, T.; Meuwis, M.-a.; Zecchinon, L.; Gerday, Ch.

    In the last few years, increased attention has been focused on enzymes produced by cold-adapted micro-organisms. It has emerged that psychrophilic enzymes represent an extremely powerful tool in both protein folding investigations and for biotechnological purposes. Such enzymes are characterised by an increased thermosensitivity and, most of them, by a higher catalytic efficiency at low and moderate temperatures, when compared to their mesophilic counterparts. The high thermosensitivity probably originates from an increased flexibility of either a selected area of the molecular edifice or the overall protein structure, providing enhanced abilities to undergo conformational changes during catalysis at low temperatures. Structure modelling and recent crystallographic data have allowed to elucidate the structural parameters that could be involved in this higher resilience. It was demonstrated that each psychrophilic enzyme adopts its own adaptive strategy. It appears, moreover, that there is a continuum in the strategy of protein adaptation to temperature, as the previously mentioned structural parameters are implicated in the stability of thermophilic proteins. Additional 3D crystal structures, site-directed and random mutagenesis experiments should now be undertaken to further investigate the stability-flexibility-activity relationship.

  5. Stability of subsystem solutions in agent-based models

    Science.gov (United States)

    Perc, Matjaž

    2018-01-01

    The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.

  6. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    Science.gov (United States)

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  8. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    Science.gov (United States)

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Stability of Almost Periodic Solution for a General Class of Discontinuous Neural Networks with Mixed Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2013-01-01

    Full Text Available The global exponential stability issues are considered for almost periodic solution of the neural networks with mixed time-varying delays and discontinuous neuron activations. Some sufficient conditions for the existence, uniqueness, and global exponential stability of almost periodic solution are achieved in terms of certain linear matrix inequalities (LMIs, by applying differential inclusions theory, matrix inequality analysis technique, and generalized Lyapunov functional approach. In addition, the existence and asymptotically almost periodic behavior of the solution of the neural networks are also investigated under the framework of the solution in the sense of Filippov. Two simulation examples are given to illustrate the validity of the theoretical results.

  10. A Comprehensive Strategy to Evaluate Compatible Stability of Chinese Medicine Injection and Infusion Solutions Based on Chemical Analysis and Bioactivity Assay.

    Science.gov (United States)

    Li, Jian-Ping; Liu, Yang; Guo, Jian-Ming; Shang, Er-Xin; Zhu, Zhen-Hua; Zhu, Kevin Y; Tang, Yu-Ping; Zhao, Bu-Chang; Tang, Zhi-Shu; Duan, Jin-Ao

    2017-01-01

    Stability of traditional Chinese medicine injection (TCMI) is an important issue related with its clinical application. TCMI is composed of multi-components, therefore, when evaluating TCMI stability, several marker compounds cannot represent global components or biological activities of TCMI. Till now, when evaluating TCMI stability, method involving the global components or biological activities has not been reported. In this paper, we established a comprehensive strategy composed of three different methods to evaluate the chemical and biological stability of a typical TCMI, Danhong injection (DHI). UHPLC-TQ/MS was used to analyze the stability of marker compounds (SaA, SaB, RA, DSS, PA, CA, and SG) in DHI, UHPLC-QTOF/MS was used to analyze the stability of global components (MW 80-1000 Da) in DHI, and cell based antioxidant capability assay was used to evaluate the bioactivity of DHI. We applied this strategy to assess the compatible stability of DHI and six infusion solutions (GS, NS, GNS, FI, XI, and DGI), which were commonly used in combination with DHI in clinic. GS was the best infusion solution for DHI, and DGI was the worst one based on marker compounds analysis. Based on global components analysis, XI and DGI were the worst infusion solutions for DHI. And based on bioactivity assay, GS was the best infusion solution for DHI, and XI was the worst one. In conclusion, as evaluated by the established comprehensive strategy, GS was the best infusion solution, however, XI and DGI were the worst infusion solutions for DHI. In the compatibility of DHI and XI or DGI, salvianolic acids in DHI would be degraded, resulting in the reduction of original composition and generation of new components, and leading to the changes of biological activities. This is the essence of instability compatibility of DHI and some infusion solutions. Our study provided references for choosing the reasonable infusion solutions for DHI, which could contribute the improvement of safety

  11. Effect of different solutions on color stability of acrylic resin-based dentures

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho Goiato

    2014-01-01

    Full Text Available The aim of this study was to evaluate the effect of thermocycling and immersion in mouthwash or beverage solutions on the color stability of four different acrylic resin-based dentures (Onda Cryl, OC; QC20, QC; Classico, CL; and Lucitone, LU. The factors evaluated were type of acrylic resin, immersion time, and solution (mouthwash or beverage. A total of 224 denture samples were fabricated. For each type of resin, eight samples were immersed in mouthwashes (Plax-Colgate, PC; Listerine, LI; and Oral-B, OB, beverages (coffee, CP; cola, C; and wine, W, and artificial saliva (AS; control. The color change (DE was evaluated before (baseline and after thermocycling (T1, and after immersion in solution for 1 h (T2, 3 h (T3, 24 h (T4, 48 h (T5, and 96 h (T6. The CIE Lab system was used to determine the color changes. The thermocycling test was performed for 5000 cycles. Data were submitted to three-way repeated-measures analysis of variance and Tukey's test (p < 0.05. When the samples were immersed in each mouthwash, all assessed factors, associated or not, significantly influenced the color change values, except there was no association between the mouthwash and acrylic resin. Similarly, when the samples were immersed in each beverage, all studied factors influenced the color change values. In general, regardless of the solution, LU exhibited the greatest DE values in the period from T1 to T5; and QC presented the greatest DE values at T6. Thus, thermocycling and immersion in the various solutions influenced the color stability of acrylic resins and QC showed the greatest color alteration.

  12. Effect of different solutions on color stability of acrylic resin-based dentures.

    Science.gov (United States)

    Goiato, Marcelo Coelho; Nóbrega, Adhara Smith; dos Santos, Daniela Micheline; Andreotti, Agda Marobo; Moreno, Amália

    2014-01-01

    The aim of this study was to evaluate the effect of thermocycling and immersion in mouthwash or beverage solutions on the color stability of four different acrylic resin-based dentures (Onda Cryl, OC; QC20, QC; Classico, CL; and Lucitone, LU). The factors evaluated were type of acrylic resin, immersion time, and solution (mouthwash or beverage). A total of 224 denture samples were fabricated. For each type of resin, eight samples were immersed in mouthwashes (Plax-Colgate, PC; Listerine, LI; and Oral-B, OB), beverages (coffee, CP; cola, C; and wine, W), and artificial saliva (AS; control). The color change (DE) was evaluated before (baseline) and after thermocycling (T1), and after immersion in solution for 1 h (T2), 3 h (T3), 24 h (T4), 48 h (T5), and 96 h (T6). The CIE Lab system was used to determine the color changes. The thermocycling test was performed for 5000 cycles. Data were submitted to three-way repeated-measures analysis of variance and Tukey's test (p<0.05). When the samples were immersed in each mouthwash, all assessed factors, associated or not, significantly influenced the color change values, except there was no association between the mouthwash and acrylic resin. Similarly, when the samples were immersed in each beverage, all studied factors influenced the color change values. In general, regardless of the solution, LU exhibited the greatest DE values in the period from T1 to T5; and QC presented the greatest DE values at T6. Thus, thermocycling and immersion in the various solutions influenced the color stability of acrylic resins and QC showed the greatest color alteration.

  13. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  14. Glycerol, trehalose and glycerol–trehalose mixture effects on thermal stabilization of OCT

    Energy Technology Data Exchange (ETDEWEB)

    Barreca, D., E-mail: dbarreca@unime.it [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Laganà, G. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Magazù, S.; Migliardo, F. [Dipartimento di Fisica, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Bellocco, E. [Dipartimento di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy)

    2013-10-16

    Highlights: • Trehalose influences both enzymatic activity and conformational changes of enzyme. • The results obtained by INS and QENS show a switching-off of the fast dynamics at very low glycerol content. • The diffusive dynamics is slowing down at very low glycerol concentration. • The mixtures of trehalose/glycerol lose the thermal stabilizing effects of pure compounds. - Abstract: The stabilization effects of trehalose, glycerol and their mixtures on ornithine carbamoyltransferase catalytic activity has been studied as a function of temperature by complementary techniques. The obtained results show that the kinematic viscosities of trehalose (1.0 M) and protein mixture are higher than the one of glycerol plus protein. Changing the trehalose/glycerol ratio, we notice a decrease of the kinematic viscosity values at almost all the analyzed ratio. In particular, the solution composed of 95% trehalose-5% glycerol shows a peculiar behavior. Moreover the trehalose (1.0 M) solution shows the higher OCT thermal stabilization at 343 K, while all the other solutions show minor effects. The smallest stabilizing effect is revealed for the solution that shows the maximum kinematic viscosity. These results support Inelastic Neutron Scattering (INS) and Quasi Elastic Neutron Scattering (QENS) findings, which pointed out a slowing down of the relaxation and diffusive dynamics in some investigated samples.

  15. [Physical and chemical stability of fortified ophtalmic ready-to-use solutions: review of literature].

    Science.gov (United States)

    Sourdeau, P; Evrard, J-M; Remy, G; Hecq, J-D

    2012-03-01

    Ophtalmic infections and inflammations are often encountered during hospitalization. They require the preparation of "fortified" ophtalmic solutions, i.e. pharmaceutical ophtalmic solutions which are hyperconcentrated in active substance. The data of physicochemical stabilities are modified and it is therefore essential to gather the results of the various publications devoted to this subject. In 2006, an initial literature review was undertaken to identify the molecules mostly used in the preparation of fortified ophtalmic solutions in hospital. A second review of the literature in 2010 has enriched the knowledge about it. Two new drugs have entered the summary table: amikacin and ticarcillin disodium. Date on 12 molecules already known in 2006 were updated to improve clinical practices. A review of the literature was undertaken in order to collect the results of the molecules mostly used for the preparation of the fortified ophtalmic solutions in hospitals. A summary table, indicating the active substance, its concentration, the assay method, the storage temperature and physicochemical modifications, presents all the results. This review of literature makes it possible to match stability and validity period to these preparations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Almost Surely Asymptotic Stability of Numerical Solutions for Neutral Stochastic Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    convergence theorem. It is shown that the Euler method and the backward Euler method can reproduce the almost surely asymptotic stability of exact solutions to NSDDEs under additional conditions. Numerical examples are demonstrated to illustrate the effectiveness of our theoretical results.

  17. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    Science.gov (United States)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  18. Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses.

    Science.gov (United States)

    Hao, He; Tian, Yonglan; Zhang, Huayong; Chai, Yang

    2017-12-01

    The effect of copper (added as CuCl 2 ) on the anaerobic co-digestion of Phragmites straw and cow dung was studied in pilot experiments by investigating the biogas properties, process stability, substrate degradation and enzyme activities at different stages of mesophilic fermentation. The results showed that 30 and 100 mg/L Cu 2+ addition increased the cumulative biogas yields by up to 43.62 and 20.77% respectively, and brought forward the daily biogas yield peak, while 500 mg/L Cu 2+ addition inhibited biogas production. Meanwhile, the CH 4 content in the 30 and 100 mg/L Cu 2+ -added groups was higher than that in the control group. Higher pH values (close to pH 7) and lower oxidation-reduction potential (ORP) values in the Cu 2+ -added groups after the 8th day indicated better process stability compared to the control group. In the presence of Cu 2+ , the degradation of volatile fatty acids (VFAs) and other organic molecules (represented by chemical oxygen demand, COD) generated from hydrolysis was enhanced, and the ammonia nitrogen (NH 4 + -N) concentrations were more stable than in the control group. The contents of lignin and hemicellulose in the substrate declined in the Cu 2+ -added groups while the cellulose contents did not. Neither the cellulase nor the coenzyme F 420 activities could determine the biogas producing efficiency. Taking the whole fermentation process into account, the promoting effect of Cu 2+ addition on biogas yields was mainly attributable to better process stability, the enhanced degradation of lignin and hemicellulose, the transformation of intermediates into VFA, and the generation of CH 4 from VFA.

  19. Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system

    Science.gov (United States)

    Liu, Cunming; Peng, Yue-Jun

    2017-06-01

    We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.

  20. Color stability of ceramic brackets immersed in potentially staining solutions

    Directory of Open Access Journals (Sweden)

    Bruna Coser Guignone

    2015-08-01

    Full Text Available OBJECTIVE: To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions.METHODS: Ninety brackets were divided into 5 groups (n = 18 according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva. The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA, Radiance (American Orthodontics, Sheboygan, WI, USA, Mystique (GAC International Inc., Bohemia, NY, USA and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA. Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0, 24 hours (T1, 72 hours (T2, as well as 7 days (T3 and 14 days (T4 of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%.RESULTS: The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations.CONCLUSIONS: Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions.

  1. Evaluation of solution stability for two-component polydisperse systems by small-angle scattering

    Science.gov (United States)

    Kryukova, A. E.; Konarev, P. V.; Volkov, V. V.

    2017-12-01

    The article is devoted to the modelling of small-angle scattering data using the program MIXTURE designed for the study of polydisperse multicomponent mixtures. In this work we present the results of solution stability studies for theoretical small-angle scattering data sets from two-component models. It was demonstrated that the addition of the noise to the data influences the stability range of the restored structural parameters. The recommendations for the optimal minimization schemes that permit to restore the volume size distributions for polydisperse systems are suggested.

  2. Validation of an analytical method applicable to study of 1 mg/mL oral Risperidone solution stability

    International Nuclear Information System (INIS)

    Abreu Alvarez, Maikel; Garcia Penna, Caridad Margarita; Martinez Miranda, Lissette

    2010-01-01

    A validated analytical method by high-performance liquid chromatography (HPLC) was applicable to study of 1 mg/mL Risperidone oral solution stability. The above method was linear, accurate, specific and exact. A stability study of the 1 mg/mL Risperidone oral solution was developed determining its expiry date. The shelf life study was conducted for 24 months at room temperature; whereas the accelerated stability study was conducted with product under influence of humidity and temperature; analysis was made during 3 months. Formula fulfilled the quality specifications described in Pharmacopeia. The results of stability according to shelf life after 24 months showed that the product maintains the parameters determining its quality during this time and in accelerated studies there was not significant degradation (p> 0.05) in the product. Under mentioned conditions expiry date was of 2 years

  3. Large-signal stability analysis of two power converters solutions for DC shipboard microgrid

    NARCIS (Netherlands)

    Bosich, Daniele; Gibescu, Madeleine; Sulligoi, Giorgio

    2017-01-01

    Bus voltage stability is an essential requirement in DC shipboard microgrids. In presence of Constant Power Loads, voltage instability is strictly dependent on RLC filters. This paper evaluates two power converter solutions (Thyristor Converters, TCs, and diode rectifiers + DC-DC Converters, DCs)

  4. Existence and exponential stability of almost periodic solution for Hopfield-type neural networks with impulse

    International Nuclear Information System (INIS)

    Zhang Huiying; Xia Yonghui

    2008-01-01

    In this paper, some sufficient conditions are obtained for checking the existence and exponential stability of almost periodic solution for bidirectional associative memory Hopfield-type neural networks with impulse. The approaches are based on contraction principle and Gronwall-Bellman's inequality. This paper is considering the almost periodic solution for impulsive Hopfield-type neural networks

  5. Laccases stabilization with phosphatidylcholine liposomes

    OpenAIRE

    Martí, M.; Zille, Andrea; Paulo, Artur Cavaco; Parra, J. L.; Coderch, L.

    2012-01-01

    In recent years, there has been an upsurge of interest in enzyme treatment of textile fibres. Enzymes are globular proteins whose catalytic function is due to their three dimensional structure. For this reason, stability strategies make use of compounds that avoid dismantling or distorting protein 3D structures. This study is concerned with the use of microencapsulation techniques to optimize enzyme stabilization. Laccases were embedded in phophatidylcholine liposomes and their encaps...

  6. The effects of stabilizing and directional selection on phenotypic and genotypic variation in a population of RNA enzymes.

    Science.gov (United States)

    Hayden, Eric J; Bratulic, Sinisa; Koenig, Iwo; Ferrada, Evandro; Wagner, Andreas

    2014-02-01

    The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it determines a population's response to natural selection. Unfortunately, existing theory makes conflicting predictions about how selection shapes these distributions, and very little pertinent experimental evidence exists. Here we study a simple genetic system, an evolving RNA enzyme (ribozyme) in which a combination of high throughput genotyping and measurement of a biochemical phenotype allow us to address this question. We show that directional selection, compared to stabilizing selection, increases the genotypic diversity of an evolving ribozyme population. In contrast, it leaves the variance in the phenotypic trait unchanged.

  7. Legendre condition and the stabilization problem for classical soliton solutions in generalized Skyrme models

    International Nuclear Information System (INIS)

    Kiknadze, N.A.; Khelashvili, A.A.

    1990-01-01

    The problem on stability of classical soliton solutions is studied from the unique point of view: the Legendre condition - necessary condition of existence of weak local minimum for energy functional (term soliton is used here in the wide sense) is used. Limits to parameters of the model Lagrangians are obtained; it is shown that there is no soliton stabilization in some of them despite the phenomenological achievements. The Jacoby sufficient condition is discussed

  8. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    International Nuclear Information System (INIS)

    Slepička, P.; Elashnikov, R.; Ulbrich, P.; Staszek, M.; Kolská, Z.; Švorčík, V.

    2015-01-01

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H 2 O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H 2 O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H 2 O—1/1), 509–535 nm (PEG/H 2 O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles

  9. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz; Elashnikov, R. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology (Czech Republic); Staszek, M. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Kolská, Z. [University of J. E. Purkyně, Faculty of Science (Czech Republic); Švorčík, V. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic)

    2015-01-15

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H{sub 2}O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H{sub 2}O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H{sub 2}O—1/1), 509–535 nm (PEG/H{sub 2}O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles.

  10. Contractivity and Exponential Stability of Solutions to Nonlinear Neutral Functional Differential Equations in Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    Wan-sheng WANG; Shou-fu LI; Run-sheng YANG

    2012-01-01

    A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.

  11. Conditional Stability of Solitary-Wave Solutions for Generalized Compound KdV Equation and Generalized Compound KdV-Burgers Equation

    International Nuclear Information System (INIS)

    Zhang Weiguo; Dong Chunyan; Fan Engui

    2006-01-01

    In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.

  12. Stability of stationary solutions for inflow problem on the micropolar fluid model

    Science.gov (United States)

    Yin, Haiyan

    2017-04-01

    In this paper, we study the asymptotic behavior of solutions to the initial boundary value problem for the micropolar fluid model in a half-line R+:=(0,∞). We prove that the corresponding stationary solutions of the small amplitude to the inflow problem for the micropolar fluid model are time asymptotically stable under small H1 perturbations in both the subsonic and degenerate cases. The microrotation velocity brings us some additional troubles compared with Navier-Stokes equations in the absence of the microrotation velocity. The proof of asymptotic stability is based on the basic energy method.

  13. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    Science.gov (United States)

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge

    OpenAIRE

    Johnson, Thomas

    2018-01-01

    In a recent seminal paper \\cite{D--H--R} of Dafermos, Holzegel and Rodnianski the linear stability of the Schwarzschild family of black hole solutions to the Einstein vacuum equations was established by imposing a double null gauge. In this paper we shall prove that the Schwarzschild family is linearly stable as solutions to the Einstein vacuum equations by imposing instead a generalised wave gauge: all sufficiently regular solutions to the system of equations that result from linearising the...

  15. Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability.

    Directory of Open Access Journals (Sweden)

    Shrenik C Mehta

    2015-06-01

    Full Text Available The spread of β-lactamases that hydrolyze penicillins, cephalosporins and carbapenems among Gram-negative bacteria has limited options for treating bacterial infections. Initially, Klebsiella pneumoniae carbapenemase-2 (KPC-2 emerged as a widespread carbapenem hydrolyzing β-lactamase that also hydrolyzes penicillins and cephalosporins but not cephamycins and ceftazidime. In recent years, single and double amino acid substitution variants of KPC-2 have emerged among clinical isolates that show increased resistance to ceftazidime. Because it confers multi-drug resistance, KPC β-lactamase is a threat to public health. In this study, the evolution of KPC-2 function was determined in nine clinically isolated variants by examining the effects of the substitutions on enzyme kinetic parameters, protein stability and antibiotic resistance profile. The results indicate that the amino acid substitutions associated with KPC-2 natural variants lead to increased catalytic efficiency for ceftazidime hydrolysis and a consequent increase in ceftazidime resistance. Single substitutions lead to modest increases in catalytic activity while the double mutants exhibit significantly increased ceftazidime hydrolysis and resistance levels. The P104R, V240G and H274Y substitutions in single and double mutant combinations lead to the largest increases in ceftazidime hydrolysis and resistance. Molecular modeling suggests that the P104R and H274Y mutations could facilitate ceftazidime hydrolysis through increased hydrogen bonding interactions with the substrate while the V240G substitution may enhance backbone flexibility so that larger substrates might be accommodated in the active site. Additionally, we observed a strong correlation between gain of catalytic function for ceftazidime hydrolysis and loss of enzyme stability, which is in agreement with the 'stability-function tradeoff' phenomenon. The high Tm of KPC-2 (66.5°C provides an evolutionary advantage as

  16. Kinetics of the decomposition and the estimation of the stability of 10% aqueous and non-aqueous hydrogen peroxide solutions

    Directory of Open Access Journals (Sweden)

    Zun Maria

    2014-12-01

    Full Text Available In this study, the stability of 10% hydrogen peroxide aqueous and non-aqueous solutions with the addition of 6% (w/w of urea was evaluated. The solutions were stored at 20°C, 30°C and 40°C, and the decomposition of hydrogen peroxide proceeded according to first-order kinetics. With the addition of the urea in the solutions, the decomposition rate constant increased and the activation energy decreased. The temperature of storage also affected the decomposition of substance, however, 10% hydrogen peroxide solutions prepared in PEG-300, and stabilized with the addition of 6% (w/w of urea had the best constancy.

  17. Considerable improvement in the stability of solution processed small molecule OLED by annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mao Guilin [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Wu Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); He Qiang [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Department of UAV, Wuhan Ordnance Noncommissioned Officers Academy, Wuhan, 430075 (China); Jiao Bo; Xu Guojin; Hou Xun [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Chen Zhijian; Gong Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871 (China)

    2011-06-15

    We investigated the annealing effect on solution processed small organic molecule organic films, which were annealed with various conditions. It was found that the densities of the spin-coated (SC) films increased and the surface roughness decreased as the annealing temperature rose. We fabricated corresponding organic light emitting diodes (OLEDs) by spin coating on the same annealing conditions. The solution processed OLEDs show the considerable efficiency and stability, which were prior or equivalent to the vacuum-deposited (VD) counterparts. Our research shows that annealing process plays a key role in prolonging the lifetime of solution processed small molecule OLEDs, and the mechanism for the improvement of the device performance upon annealing was also discussed.

  18. Stability of the trivial solution for linear stochastic differential equations with Poisson white noise

    International Nuclear Information System (INIS)

    Grigoriu, Mircea; Samorodnitsky, Gennady

    2004-01-01

    Two methods are considered for assessing the asymptotic stability of the trivial solution of linear stochastic differential equations driven by Poisson white noise, interpreted as the formal derivative of a compound Poisson process. The first method attempts to extend a result for diffusion processes satisfying linear stochastic differential equations to the case of linear equations with Poisson white noise. The developments for the method are based on Ito's formula for semimartingales and Lyapunov exponents. The second method is based on a geometric ergodic theorem for Markov chains providing a criterion for the asymptotic stability of the solution of linear stochastic differential equations with Poisson white noise. Two examples are presented to illustrate the use and evaluate the potential of the two methods. The examples demonstrate limitations of the first method and the generality of the second method

  19. Uranium (VI) complexing by macrocyclic or chelating ligands in aqueous solutions stability, formation kinetics, polarographic properties

    International Nuclear Information System (INIS)

    Brighli, M.

    1984-07-01

    Stability of chelates (with EDTA,N,N ethylenediamine diacetic acid EDDA nitrilotriacetic acid NTA and iminodiacetic acid) of UO 2 2+ and UO 4 species of uranium VI is studied in aqueous solution (NaClO 4 3M at 25 deg celcius). Structure in solution are proposed and discussed for mononuclear species. Only complexing kinetics (formation and acid hydrolysis) of UO 4 with EDDA and NTA are studied by spectrophotometry (other reactions are too fast). Besides UO 2 2+ complexes are formed with crown ethers I5C5 and I8C6 in aqueous solution (TEA ClO 4 M/10 at 25 deg celcius. Complexes are probably stabilized by solvation. Results are confirmed by voltametry and reduction mechanisms of UO 2 2+ and its complexes on mercury drop are proposed. 143 refs [fr

  20. ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.

  1. Tet Enzymes Regulate Telomere Maintenance and Chromosomal Stability of Mouse ESCs

    Directory of Open Access Journals (Sweden)

    Jiao Yang

    2016-05-01

    Full Text Available Ten-eleven translocation (Tet family proteins convert 5-methylcytosine to 5-hydroxymethylcytosine. We show that mouse embryonic stem cells (ESCs depleted of Tet1 and/or Tet2 by RNAi exhibit short telomeres and chromosomal instability, concomitant with reduced telomere recombination. Tet1 and Tet2 double-knockout ESCs also display short telomeres but to a lesser extent. Notably, Tet1/2/3 triple-knockout ESCs show heterogeneous telomere lengths and increased frequency of telomere loss and chromosomal fusion. Mechanistically, Tets depletion or deficiency increases Dnmt3b and decreases 5hmC levels, resulting in elevated methylation levels at sub-telomeres. Consistently, knockdown of Dnmt3b or addition of 2i (MAPK and GSK3β inhibitors, which also inhibits Dnmt3b, reduces telomere shortening, partially rescuing Tet1/2 deficiency. Interestingly, Tet1/2 double or Tet1/2/3 triple knockout in ESCs consistently upregulates Zscan4, which may counteract telomere shortening. Together, Tet enzymes play important roles in telomere maintenance and chromosomal stability of ESCs by modulating sub-telomeric methylation levels.

  2. Stability analysis of a pressure-solution surface

    Science.gov (United States)

    Gal, Doron; Nur, Amos; Aharonov, Einat

    We present a linear stability analysis of a dissolution surface subjected to non-hydrostatic stress. A sinusoidal perturbation is imposed on an initially flat solid/fluid interface, and the consequent changes in elastic strain energy and surface energy are calculated. Our results demonstrate that if the far-field lateral stresses are either greater, or much smaller than the fluid pressure, the perturbed configuration has a lower strain energy than the initial one. For wavelengths greater than a critical wavelength this energy decrease may be large enough to offset the increased surface energy. Under these conditions, the perturbation grows unstably. If these conditions are not met, the surface becomes flat. The growth rate and wavelength of the maximally unstable mode depend on the mechanism of matter transport. We conclude that the instability discussed in this paper may account for the formation of stylolites and other pressure-solution phenomena, such as roughening of grain contacts.

  3. A Study on the Stability of Diluted Bee Venom Solution

    Directory of Open Access Journals (Sweden)

    Mi-Suk Kang

    2003-06-01

    Full Text Available Objective : The purpose of this study was to investigate the stability of bee venom according to the keeping method and period. Method : The author observed microbial contamination of bee venom in nutrient agar, broth, YPD agar and YPD media and antibacterial activity for S. aureus, E. coli manufactured 12, 6 and 3 months ago as the two type of room temperature and 4℃ cold storage. Result : 1. 1:3,000 and 1:4,000 diluted bee venom solution did not show microbial contamination both room temperature and cold storage within twelve months. 2. There was antibacterial activity of diluted bee venom for S. aureus in cold storage within twelve months and there was no antibacterial activity of diluted bee venom for S. aureus in twelve months, room temperature storage. 3. We could not observe the zone of inhibition around paper disc of all for E.coli. in 1:3,000, 1:30,000 and 1:3,000,000 diluted bee venom solution, respectively. According to results, we expect that diluted bee venom solution is stable both cold and room temperature storage within twelve months.

  4. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.

    Science.gov (United States)

    Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin

    2014-02-01

    Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. Noether symmetries and stability of ideal gas solutions in Galileon cosmology

    Science.gov (United States)

    Dimakis, N.; Giacomini, Alex; Jamal, Sameerah; Leon, Genly; Paliathanasis, Andronikos

    2017-03-01

    A class of generalized Galileon cosmological models, which can be described by a pointlike Lagrangian, is considered in order to utilize Noether's theorem to determine conservation laws for the field equations. In the Friedmann-Lemaître-Robertson-Walker universe, the existence of a nontrivial conservation law indicates the integrability of the field equations. Because of the complexity of the latter, we apply the differential invariants approach in order to construct special power-law solutions and study their stability.

  6. The development, characterization, and application of biomimetic nanoscale enzyme immobilization

    Science.gov (United States)

    Haase, Nicholas R.

    The utilization of enzymes is of interest for applications such as biosensors and biofuel cells. Immobilizing enzymes provides a means to develop these applications. Previous immobilization efforts have been accomplished by exposing surfaces on which silica-forming molecules are present to solutions containing an enzyme and a silica precursor. This approach leads to the enzyme being entrapped in a matrix three orders of magnitude larger than the enzyme itself, resulting in low retention of enzyme activity. The research herein introduces a method for the immobilization of enzymes during the layer-by-layer buildup of Si-O and Ti-O coatings which are nanoscale in thickness. This approach is an application of a peptide-induced mineral deposition method developed in the Sandhage and Kroger groups, and it involves the alternating exposure of a surface to solutions containing the peptide protamine and then an aqueous precursor solution of silicon- or titanium-oxide at near-neutral pH. A method has been developed that enables in situ immobilization of enzymes in the protamine/mineral oxide coatings. Depending on the layer and mineral (silica or titania) within which the enzyme is incorporated, the resulting multilayer biocatalytic hybrid materials retain 20 -- 100% of the enzyme activity. Analyses of kinetic properties of the immobilized enzyme, coupled with characterization of physical properties of the mineral-bearing layers (thickness, porosity, pore size distribution), indicates that the catalytic activities of the enzymes immobilized in the different layers are largely determined by substrate diffusion. The enzyme was also found to be substantially stabilized against heat-induced denaturation and largely protected from proteolytic attack. These functional coatings are then developed for use as antimicrobial materials. Glucose oxidase, which catalyzes production of the cytotoxic agent hydrogen peroxide, was immobilized with silver nanoparticles, can release

  7. Effects of enzymatic extraction on anthocyanins yield of saffron tepals (Crocos sativus along with its color properties and structural stability

    Directory of Open Access Journals (Sweden)

    Leila Lotfi

    2015-06-01

    Full Text Available An aqueous solution of Pectinex (containing cellulase, hemicellulase, and pectinase at 1%, 2.5%, 5%, 7%, and 10% concentrations and 40°C was used to extract anthocyanins (Acys of saffron tepals at 20, 40, 60, 120 and 180 min reaction times and compared with ethanol solvent under similar conditions. The Acys of the Pectinex solution reached 6.7 mg/g of tepal powder (∼40% more than the ethanol method when the enzyme concentrations and extraction times were, respectively, 5% and 60 min. The Acys of aqueous enzymes had three times slower degradation rates and 50% more attractive chroma color than the ones recovered by ethanol solution after 3 h of extraction time. Additionally, the Acys of the ethanol solution lost its content sharply (>45% and its chroma changed quickly (due to the browning and polymerization. High performance liquid chromatography (HPLC analysis showed that Acys extracted with mixed enzymes had about 80% more cyanidin 3-glucosides and 20% less pelargonidin 3,5-glucosides than with the ethanol method. Most probably, the high content of cyanidin 3-glycosides in enzyme-extracted Acys of saffron tepals was the key factor for its high stability.

  8. Formation and thermodynamic stability of (polymer + porphyrin) supramolecular structures in aqueous solutions

    International Nuclear Information System (INIS)

    Costa, Viviana C.P. da; Hwang, Barrington J.; Eggen, Spencer E.; Wallace, Megan J.; Annunziata, Onofrio

    2014-01-01

    Highlights: • Thermodynamic stability of a (polymer + porphyrin) supramolecular structure was characterized. • Isothermal titration calorimetry provided two ways to determine reaction enthalpies. • Exothermic (polymer + porphyrin) binding competes with porphyrin self-association. • (Polymer + porphyrin) binding is entropically favored with respect to porphyrin self-association. • Spectral shifts show importance of porphyrin central hydrogens in polymer binding. - Abstract: Optical properties of porphyrins can be tuned through (polymer + porphyrin) (host + guest) binding in solution. This gives rise to the formation of supramolecular structures. In this paper, the formation, thermodynamic stability and spectroscopic properties of (polymer + porphyrin) supramolecular structures and their competition with porphyrin self-association were investigated by both isothermal titration calorimetry (ITC) and absorption spectroscopy. Specifically, reaction enthalpies and equilibrium constants were measured for meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) self-association and TPPS binding to the polymer poly(vinylpyrrolidone) (PVP, 40 kg/mol) in aqueous solutions at pH 7 and three different temperatures (12, 25 and 37 °C). ITC, compared to spectroscopic techniques, provides two independent means to determine reaction enthalpies: direct measurements and Van’t Hoff plot. This was used as a criterion to assess that (1) self-association of TPPS is limited to the formation of dimers and (2) TPPS binds to PVP in its monomeric state only. The formation of TPPS dimers and (PVP + TPPS) supramolecular structures are both enthalpically driven. However, (polymer + porphyrin) binding was found to be entropically favored compared to dimerization. Furthermore, the reaction enthalpies of these two processes significantly depend on temperature. This behavior was attributed to hydrophobic interactions. Finally, the limiting absorption spectra of monomeric, dimeric and polymer

  9. Physicochemical stability of carfilzomib (Kyprolis®) containing solutions in glass vials, ready-to-administer plastic syringes and infusion bags over a 28-day storage period.

    Science.gov (United States)

    Kim, Sun Hee; Krämer, Irene

    2017-01-01

    Centralized aseptic preparation of ready-to-administer carfilzomib containing parenteral solutions in plastic syringes and polyolefine (PO) infusion bags needs profound knowledge about the physicochemical stability in order to determine the beyond-use-date of the preparations. Therefore, the purpose of this study was to determine the physicochemical stability of carfilzomib solution marketed as Kyprolis® powder for solution for infusion. Reconstituted solutions and ready-to-administer preparations of Kyprolis® stored under refrigeration (2-8℃) or at room temperature (25℃) were analyzed at predetermined intervals over a maximum storage period of 28 days. Chemical stability of carfilzomib was planned to be determined with a stability-indicating reversed-phase high-performance liquid chromatography assay. Physicochemical stability was planned to be determined by visual inspection of clarity and color as well as pH measurement. The study results show that reconstituted carfilzomib containing parenteral solutions are stable in glass vials as well as diluted solutions in plastic syringes and PO infusion bags over a period of at least 28 days when stored light protected under refrigeration. When stored at room temperature, reconstituted and diluted carfilzomib solutions are physicochemically stable over 14 days and 10 days, respectively. The physicochemical stability of carfilzomib infusion solutions allows cost-saving pharmacy-based centralized preparation of ready-to-administer preparations.

  10. Capillary electrophoresis with indirect UV detection for the determination of stabilizers and citrates present in human albumin solutions.

    Science.gov (United States)

    Jaworska, Małgorzata; Cygan, Paulina; Wilk, Małgorzata; Anuszewska, Elzbieta

    2009-08-15

    Sodium caprylate and N-acetyltryptophan are the most frequently used stabilizers that protect the albumin from aggregation or heat induced denaturation. In turn citrates - excipients remaining after fractionation process - can be treated as by-product favoring leaching aluminum out of glass containers whilst albumin solution is stored. With ionic nature these substances have all the markings of a subject for capillary electrophoresis analysis. Thus CE methods were proposed as new approach for quality control of human albumin solution in terms of determination of stabilizers and citrates residue. Human albumin solutions both 5% and 20% from various manufacturers were tested. Indirect detection mode was set to provide sufficient detectability of analytes lacking of chromophores. As being anions analytes were separated with reversed electroosmotic flow. As a result of method optimization two background electrolytes based on p-hydroxybenzoic acid and 2,6-pyridinedicarboxylic acid were selected for stabilizers and citrates separation, respectively. The optimized methods were successfully validated. For citrates that require quantification below 100microM the method demonstrated the precision less than 4% and the limit of detection at 4microM. In order to check the new methods accuracy and applicability the samples were additionally tested with selected reference methods. The proposed methods allow reliable quantification of stabilizers and citrates in human albumin solution that was confirmed by method validation as well as result comparison with reference methods. The CE methods are considered to be suitable for quality control yet simplifying and reducing cost of analysis.

  11. Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials

    DEFF Research Database (Denmark)

    Sigurdardóttir, Sigyn Björk; Lehmann, Jonas; Ovtar, Simona

    2018-01-01

    Enzyme immobilization is an established method for the enhancement of enzyme stability and reusability, two factors that are of great importance for industrial biocatalytic applications. Immobilization can be achieved by different methods and on a variety of carrier materials, both organic and in...

  12. A virus-based single-enzyme nanoreactor

    NARCIS (Netherlands)

    Comellas Aragones, M.; Engelkamp, H.; Claessen, V.I.; Sommerdijk, N.A.J.M.; Rowan, A.E.; Christianen, P.C.M.; Maan, J.C.; Verduin, B.J.M.; Cornelissen, J.J.L.M.; Nolte, R.J.M.

    2007-01-01

    Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or

  13. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  14. Stability of busulfan solutions in polypropylene syringes and infusion bags as determined with an original assay.

    Science.gov (United States)

    Guichard, Nicolas; Bonnabry, Pascal; Rudaz, Serge; Fleury-Souverain, Sandrine

    2017-11-15

    The stability of busulfan solution in 0.9% sodium chloride and stored in polypropylene syringes or infusion bags was evaluated. Busulfan solutions (0.54 mg/mL) were prepared and transferred to 50-mL polypropylene syringes and 100- and 500-mL polypropylene infusion bags and stored at 2-8 and 23-27 °C. Chemical stability was measured using a stability-indicating, ultrahigh performance liquid chromatography coupled to mass spectrometry method. The stability of busulfan was assessed by measuring the percentage of the initial concentration remaining at the end of each time point of analysis. The initial busulfan concentration was defined as 100%. Stability was defined as retention of at least 90% of the initial busulfan concentration. A visual inspection of the samples for particulate matter, clarity, and color without instrumentation of magnification was conducted at each time point of analysis. The visual inspection demonstrated no influence of the storage container when busulfan infusions diluted in 0.9% sodium chloride injection were stored at 23-27 °C. No color change or precipitate was observed at this temperature; however, a rapid decrease of the busulfan content in all containers stored at room temperature was observed. Busulfan in syringes was chemically stable for 12 hours, while busulfan in infusion bags (100 and 500 mL) was stable only for 3 hours at 23-27 °C. Busulfan 0.54-mg/mL solution in 0.9% sodium chloride injection was physically and chemically stable for 30 hours when stored in 50-mL polypropylene syringes at 2-8 °C and protected from light. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  15. Chemical and physical stability of smectites and illite in electrolyte solutions: experimental study at 150 C

    International Nuclear Information System (INIS)

    Boutiche, M.

    1995-01-01

    Chemical interactions between electrolytic solutions commonly used i drilling muds and clays have been studies under P-T conditions similar to those of drillings (150 deg C) in order to determine the eventual consequences on the stability of clay rich formations. The experimental work has been carried out using several solutions (water, NaOH (pH 8, 10, 12), KCI (0,1, 1 2 mol./l), sea water, and K 2 CO 3 ) and clay minerals with low to high amounts of swelling layers (smectite (Na, Na-Ca, Ca), mixed layered illite-smectite minerals). Run products are studied by X-ray diffraction and electronic microprobe. Smectite layers show series of mineralogical changes (cation exchange in the interlayer site, formation of non-swelling layers, hydrolysis), which, however, do not yield to the formation of new minerals, except in the case of the interaction with K 2 CO 3 at 150 deg C (zeolite crystallisation). Cation exchange in the interlayer depends on the nature of the cation, cation concentration in the solution, exchange constants, and liquid/solid ratio. In dilute solutions ( 1 mol./l), because they favour the collapse of swelling layers, and dispersion. Solutions of K 2 CO 3 at 150 deg C are at the origin of the transformation of smectite to zeolites, and high pH - highly saline solutions are rather aggressive, and would probably not stabilize the argilites. (author)

  16. Stability theory of critical cases and the bifurcation points of the stationary solutions of the Lorenz model

    International Nuclear Information System (INIS)

    Bakasov, A.A.; Govorkov, B.B. Jr.

    1990-08-01

    The critical case in stability theory is the case when it is impossible to study the stability of solutions over the linear part of ordinary differential equations. This situation is usual at the bifurcation points. There exists a powerful and constructive approach to investigate the stability - the theory of critical cases created by Lyapunov. The famous Lorenz model is used in this article as an illustration of the power of the method (new results). (author). 27 refs

  17. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, MoO2

    Directory of Open Access Journals (Sweden)

    Felipe Legorreta-García

    2015-05-01

    Full Text Available The synthesis of Fe3+, Mo4+ and Y3+ fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD, scanning electron microscopy (SEM and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe3+, Mo4+ and Y3+ ions in the zirconia tetragonal monophase, even after calcinations.

  18. The Colloidal Stabilization of Quantum Dots: Towards Manufacturable, Efficient Solution-Processed Solar Cells

    Science.gov (United States)

    Rollny, Lisa

    Understanding colloidal stabilization can influence the design of optoelectronic devices and enable improvements to their performance and stability. For photovoltaics, important characteristics of the active layer material are high conductivity along with a minimum of recombination centers. In order to capitalize on the benefits of solution-processed materials, it is important to minimize the number of processing steps: ideally, to achieve a low-cost solution, materials would be deposited using a single process step compatible with roll-to-roll manufacturing. Prior to this work, the highest-performing colloidal quantum dots (CQD) solar cells have relied on several deposition steps that are repeated in a layer-by-layer (LBL) fashion. The purpose of these process steps has been to remove the long insulating ligands used in synthesis and replace them with short ligands that allow electrical conduction. The large number of steps combined, typically implemented via spin coating, leads to inefficient materials utilization and fails to show a path to a manufacturable solution. In this work, the first CQD solar cells were designed, built, and characterized combining state-of-art performance with scalable manufacture. Firstly, I report the first automated CQD synthesis to result in CQDs that form high-performance CQD solar cells. I analyze the CQD synthesis and by separating it into two phases---nucleation and growth phase---my insights are used to create higher-quality CQDs exhibiting enhanced monodispersity. I then proceed to develop a CQD ink: a CQD solution ready for direct deposition to form a semiconducting film exhibiting low trap state density. In early trials the CQD ink showed only limited power conversion efficiencies of 2%. I designed a new ink strategy, which I term cleavable hemiketal ligands. This novel two-component ligand strategy enables the combination of colloidal stabilization (via this longer two-component ligand) and cleavability (enabling excellent

  19. Stability-indicating liquid Chromatographic assaymethod for Opthalmic solutions containing combination of Dexamethasone and Chloramphenicol

    International Nuclear Information System (INIS)

    Rao, R.M.; Al-Ashban, R.M.; Shah, A.H.

    2004-01-01

    A selective high-performance chromatographic procedure for the stability monitoring of ophthalmic solutions containing a combination of dexamethasone and chloramphenicolis demonstrated. The separation of the active components and the degradation product of chloramphenicol (1-amino-1-(4-nitrophenyl)-propane-1, 3diol) was achieved on a u-Bondapack C-18 column ( 5 um, 300 mm x 3.9 mm) maintained at ambient temperature (15-20C) by utilizing a mobile phase consisting acidified water (5% actified water with glacial acetic acid ) : acetonitrile : triethyl amine 700 : 300 : 2and pH was adjusted to 5.0 by using 10 M Na OH. The flow rate was 1.5 ml min-1; and elutes were followed with UV-detection at 254 nm. Complete resolution of dexamethasone, chloramphenicol and its hydrolytic product could be attained. The sensitivity, accuracy and specificity were tested. The method was successfully applied in post-marketing stability of the commercial batches of ophthalmic solutions. (author)

  20. A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells

    Science.gov (United States)

    Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.

    2018-03-01

    Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.

  1. Stability for Function Trade-Offs in the Enolase Superfamily 'Catalytic Module'

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, R.A.; Gonzalez, A.; Shoichet, B.K.; Brinen, L.S.; Babbitt, P.C.; /UC, San Francisco /SLAC, SSRL

    2007-07-12

    Enzyme catalysis reflects a dynamic interplay between charged and polar active site residues that facilitate function, stabilize transition states, and maintain overall protein stability. Previous studies show that substituting neutral for charged residues in the active site often significantly stabilizes a protein, suggesting a stability trade-off for functionality. In the enolase superfamily, a set of conserved active site residues (the ''catalytic module'') has repeatedly been used in nature in the evolution of many different enzymes for the performance of unique overall reactions involving a chemically diverse set of substrates. This catalytic module provides a robust solution for catalysis that delivers the common underlying partial reaction that supports all of the different overall chemical reactions of the superfamily. As this module has been so broadly conserved in the evolution of new functions, we sought to investigate the extent to which it follows the stability-function trade-off. Alanine substitutions were made for individual residues, groups of residues, and the entire catalytic module of o-succinylbenzoate synthase (OSBS), a member of the enolase superfamily from Escherichia coli. Of six individual residue substitutions, four (K131A, D161A, E190A, and D213A) substantially increased protein stability (by 0.46-4.23 kcal/mol), broadly consistent with prediction of a stability-activity trade-off. The residue most conserved across the superfamily, E190, is by far the most destabilizing. When the individual substitutions were combined into groups (as they are structurally and functionally organized), nonadditive stability effects emerged, supporting previous observations that residues within the module interact as two functional groups within a larger catalytic system. Thus, whereas the multiple-mutant enzymes D161A/E190A/D213A and K131A/K133A/D161A/E190A/D213A/K235A (termed 3KDED) are stabilized relative to the wild-type enzyme (by 1

  2. The existence and the stability of solutions for equilibrium problems with lower and upper bounds

    Directory of Open Access Journals (Sweden)

    Congjun Zhang

    2012-12-01

    Full Text Available In this paper, we study a class of equilibrium problems with lower and upper bounds. We obtain some existence results of solutions for equilibrium problems with lower and upper bounds by employing some classical fixed-point theorems. We investigate the stability of the solution sets for the problems, and establish sufficient conditions for the upper semicontinuity, lower semicontinuity and continuity of the solution set mapping $S:Lambda_1imesLambda_2o2^{X}$ in a Hausdorff topological vector space, in the case where a set $K$ and a mapping $f$ are perturbed respectively by parameters $lambda$ and $mu.$

  3. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  4. Structural aspects of magnetic fluid stabilization in aqueous agarose solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nagornyi, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Taras Shevchenko National University of Kyiv, Kyiv (Ukraine); Petrenko, V.I., E-mail: vip@nf.jinr.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation); Taras Shevchenko National University of Kyiv, Kyiv (Ukraine); Avdeev, M.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Yelenich, O.V.; Solopan, S.O.; Belous, A.G. [V.I.Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian NAS, Kyiv (Ukraine); Gruzinov, A.Yu. [National Research Centre “Kurchatov Institute”, Moscow (Russian Federation); Ivankov, O.I. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Safety Problems of Nuclear Power Plants of the Ukrainian NAS, Kyiv (Ukraine); Bulavin, L.A. [Taras Shevchenko National University of Kyiv, Kyiv (Ukraine); Institute for Safety Problems of Nuclear Power Plants of the Ukrainian NAS, Kyiv (Ukraine)

    2017-06-01

    Structure characterization of magnetic fluids (MFs) synthesized by three different methods in aqueous solutions of agarose was done by means of small-angle neutron (SANS) and synchrotron X-ray scattering (SAXS). The differences in the complex aggregation observed in the studied magnetic fluids were related to different stabilizing procedures of the three kinds of MFs. The results of the analysis of the scattering (mean size of single polydisperse magnetic particles, fractal dimensions of the aggregates) are consistent with the data of transmission electron microscopy (TEM). - Highlights: • MFs synthesized by three different methods in agarose solution were studied. • all MFs are agglomerated colloidal systems whose structures are nevertheless stable in time. • differences in the complex aggregation were observed in the studied magnetic fluids. • results of the SAXS and SANS analysis are consistent with TEM data.

  5. In-use stability of enrofloxacin solution for injection in multi-dose containers

    Directory of Open Access Journals (Sweden)

    Šandor Ksenija

    2012-01-01

    Full Text Available The in-use stability study in this paper was designed as far as possible to simulate the practical usage of multi-dose containers products in veterinary practice and to establish the influence of storage conditions on drug's quality. According to literature data, shelf-live of enrofloxacin solutions for injection tested in this study is 28 days after opening. In-use (open container stability testing of enrofloxacin injection solutions was studied during a period of 112 days, and the physical-chemical parameters and microbiological contamination were assessed. A spectrophotometric method was validated for the quantification of enrofloxacin. The validation method yielded good results and included the selectivity, linearity, intra-assay precision (1.26% RSD, inter-assay precision (1.52% RSD, limit of detection (0.18 μg/mL, limit of quantification (0.54 μg/mL and accuracy. The results of spectrophotometric analyses were presented as the mean drug concentration of enrofloxacin vs. time of sampling. The findings of physical, chemical and microbiological parameters were in accordance with the producers' specifications and no extreme changes during prescribed storage occurred. The study was extended from the drug's proposed shelf-life after opening for the next 84 days and in that period no significant changes were recorded.

  6. Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose.

    Science.gov (United States)

    Li, WanYun; Lu, ShiYu; Bao, ShuJuan; Shi, ZhuanZhuan; Lu, Zhisong; Li, ChangMing; Yu, Ling

    2018-01-15

    A visual colorimetric microfluidic paper-based analytical device (μPAD) was constructed following the direct synthesis of enzyme-inorganic hybrid nanomaterials on the paper matrix. An inorganic solution of MnSO 4 and KH 2 PO 4 containing a diluted enzyme (glucose oxidase, GOx) was subsequently pipetted onto cellulose paper for the in situ growth of GOx@Mn 3 (PO 4 ) 2 hybrid functional materials. The characterization of the morphology and chemical composition validated the presence of hybrid materials roots in the paper fiber, while the Mn 3 (PO 4 ) 2 of the hybrid provided both a surface for enzyme anchoring and a higher peroxidase-like catalytic activity as compared to the Mn 3 (PO 4 ) 2 crystal that was synthesized without enzyme modulation. This new approach for the in situ growth of an enzyme-inorganic hybrid on a paper matrix eliminates centrifugation and the dry process by casting the solution on paper. The sensing material loading was highly reproducible because of the accuracy and stability of pipetting, which eventually contributed to the reliability of the μPAD. The self-assembled natural and artificial enzyme hybrid on the μPADs specifically detected glucose from a group of interferences, which shows great specificity using this method. Moreover, the colorimetric signal exhibited detection limitation for glucose is 0.01mM, which lies in the physiological range of glucose in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    Directory of Open Access Journals (Sweden)

    Robert F. Standaert

    2018-06-01

    Full Text Available Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB, a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA, the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity. Keywords: Lignin, Protocatechuate, Experimental evolution

  8. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes.

    Science.gov (United States)

    Standaert, Robert F; Giannone, Richard J; Michener, Joshua K

    2018-06-01

    Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI , from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA , duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI , growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.

  9. Long-Term Stability of Tramadol and Ketamine Solutions for Patient-Controlled Analgesia Delivery.

    Science.gov (United States)

    Gu, Junfeng; Qin, Wengang; Chen, Fuchao; Xia, Zhongyuan

    2015-08-26

    Subanesthetic doses of ketamine as an adjuvant to tramadol in patient-controlled analgesia (PCA) for postoperative pain have been shown to improve the quality of analgesia. However, there are no such commercially available drug mixtures, and the stability of the combination has rarely been assessed. Admixtures were assessed for periods of up to 14 days at 4°C and 25°C. Three different mixtures of tramadol and ketamine (tramadol 5.0 mg/mL + ketamine 0.5 mg/mL, tramadol 5.0 mg/mL + ketamine 1.0 mg/mL, and tramadol 5.0 mg/mL + ketamine 2.0 mg/mL) were prepared in polyolefin bags by combining these 2 drugs with 0.9% sodium chloride (normal saline [NS]). The chemical stability of the admixtures was evaluated by a validated high-performance liquid chromatography (HPLC) method and by measurement of pH values. Solution appearance and color were assessed by observing the samples against black and white backgrounds. Solutions were considered stable if they maintained 90% of the initial concentration of each drug. The percentages of initial concentration of tramadol and ketamine in the various solutions remained above 98% when stored at 4°C or 25°C over the testing period. No changes in color or turbidity were observed in any of the prepared solutions. Throughout this period, pH values remained stable. The results indicate that the drug mixtures of tramadol with ketamine in NS for PCA delivery systems were stable for 14 days when stored in polyolefin bags at 4°C or 25°C.

  10. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection.

    Science.gov (United States)

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-21

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.

  11. On the stability of solutions, compacted to eleven dimensions, with the Euler invariants

    International Nuclear Information System (INIS)

    Fabris, J.C.

    1991-01-01

    The Supergravity Lagrangian at eleven dimensions has been modified by the inclusion of Euler invariants. Compact solutions have been obtained where the space-time is the Minkowski one, preserving, the internal space as a seven-sphere. The stability study of this configuration allows the restriction of the acceptable values for the coupling constants present in this model. (A.C.A.S.)

  12. Foam capacity and stability of Sodium Dodecyl Sulfate (SDS) on the presence of contaminant coffee and Cd ions in solution

    Science.gov (United States)

    Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.

    2018-02-01

    In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.

  13. Enzyme catalysis by entropy without Circe effect.

    Science.gov (United States)

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  14. Comparison of the effects of ophthalmic solutions on human corneal epithelial cells using fluorescent dyes.

    Science.gov (United States)

    Xu, Manlong; Sivak, Jacob G; McCanna, David J

    2013-11-01

    To investigate the effect of differently preserved ophthalmic solutions on the viability and barrier function of human corneal epithelial cells (HCEC) using fluorescent dyes. HCEC monolayers were exposed to the ophthalmic solutions containing benzalkonium chloride (BAK), edetate disodium, polyquad, stabilized oxychloro complex (Purite), sodium perborate, or sorbic acid for 5 min, 15 min, and 1 h. At 24 h after exposure, the cultures were assessed for metabolic activity using alamarBlue. The enzyme activity, membrane integrity, and apoptosis were evaluated using confocal microscopy. Barrier function was assessed using sodium fluorescein. The metabolic assay showed that the BAK-preserved ophthalmic solutions significantly reduced cell viability after a 5-min exposure compared to the phosphate buffered saline treated control (POphthalmic solutions with new preservatives had varying time-dependent adverse effects on cell viability, and the preservative-free solution had the least effect on HCEC. Sodium fluorescein permeability showed that HCEC monolayers treated with BAK-preserved solutions were more permeable to sodium fluorescein than those treated by the other ophthalmic solutions (Psolutions had greater adverse effects on metabolic activity, enzyme activity, membrane integrity, cell viability, and barrier function than the solutions that were not preserved with BAK. Our study suggests that BAK-free especially, preservative-free ophthalmic solutions are safer alternatives to BAK-preserved ones.

  15. (Hyper)thermophilic enzymes: production and purification.

    Science.gov (United States)

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  16. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    International Nuclear Information System (INIS)

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems.

  17. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    Science.gov (United States)

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems. PMID:27877486

  18. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  19. Optical spectroscopic methods for probing the conformational stability of immobilised enzymes.

    Science.gov (United States)

    Ganesan, Ashok; Moore, Barry D; Kelly, Sharon M; Price, Nicholas C; Rolinski, Olaf J; Birch, David J S; Dunkin, Ian R; Halling, Peter J

    2009-07-13

    We report the development of biophysical techniques based on circular dichroism (CD), diffuse reflectance infrared Fourier transform (DRIFT) and tryptophan (Trp) fluorescence to investigate in situ the structure of enzymes immobilised on solid particles. Their applicability is demonstrated using subtilisin Carlsberg (SC) immobilised on silica gel and Candida antartica lipase B immobilised on Lewatit VP.OC 1600 (Novozyme 435). SC shows nearly identical secondary structure in solution and in the immobilised state as evident from far UV CD spectra and amide I vibration bands. Increased near UV CD intensity and reduced Trp fluorescence suggest a more rigid tertiary structure on the silica surface. After immobilised SC is inactivated, these techniques reveal: a) almost complete loss of near UV CD signal, suggesting loss of tertiary structure; b) a shift in the amide I vibrational band from 1658 cm(-1) to 1632 cm(-1), indicating a shift from alpha-helical structure to beta-sheet; c) a substantial blue shift and reduced dichroism in the far UV CD, supporting a shift to beta-sheet structure; d) strong increase in Trp fluorescence intensity, which reflects reduced intramolecular quenching with loss of tertiary structure; and e) major change in fluorescence lifetime distribution, confirming a substantial change in Trp environment. DRIFT measurements suggest that pressing KBr discs may perturb protein structure. With the enzyme on organic polymer it was possible to obtain near UV CD spectra free of interference by the carrier material. However, far UV CD, DRIFT and fluorescence measurements showed strong signals from the organic support. In conclusion, the spectroscopic methods described here provide structural information hitherto inaccessible, with their applicability limited by interference from, rather than the particulate nature of, the support material.

  20. Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models: Stability analysis and convergence behaviour of a point and a plane solver

    International Nuclear Information System (INIS)

    Wilde, Juray de; Vierendeels, Jan; Heynderickx, Geraldine J.; Marin, Guy B.

    2005-01-01

    Simultaneous solution algorithms for Eulerian-Eulerian gas-solid flow models are presented and their stability analyzed. The integration algorithms are based on dual-time stepping with fourth-order Runge-Kutta in pseudo-time. The domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the multi-phase preconditioned advection upstream splitting method (MP-AUSMP). The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability results are compared with the convergence behaviour of 3D riser simulations. The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment of the source terms which are of crucial importance for the Eulerian-Eulerian gas-solid flow models and their solution. The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume fractions and gas-solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the simulation results is investigated. Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated

  1. Investigations of foam formation and its stabilization in the extraction systems: TBP in kerosene-nitric acid solutions

    International Nuclear Information System (INIS)

    Zielinski, A.

    1980-01-01

    The paper is devoted to studies of foam formation and its stabilization in TBP - kerosene - nitric acid solutions extracting systems. It was experimentally found, that TBP acts as a stabilizator of thin, liquid foam films as well as an emulgator in forming dispersions. The stabilizing effect of fine emulsions w/o on formed foams column was observed. Relevant references on the subject are also reviewed. (author)

  2. Physico-chemical stability of busulfan in injectable solutions in various administration packages.

    Science.gov (United States)

    Houot, Mélanie; Poinsignon, Vianney; Mercier, Lionel; Valade, Cyril; Desmaris, Romain; Lemare, François; Paci, Angelo

    2013-03-01

    Busulfan is used as part of a conditioning regimen prior to hematopoietic stem cell transplantation for the treatment of certain cancers and immune deficiency syndromes. Due to its instability in aqueous preparations, busulfan for infusion is prepared from a concentrate and has a relatively short shelf life once prepared. The purpose of this study was to identify the most suitable storage container and temperature to maximize the shelf life of busulfan therapeutic infusions prepared from Busilvex(®). Busilvex(®) 6 mg/mL was diluted to 0.55 mg/mL with 0.9 % NaCl and aliquots dispensed into polypropylene syringes, polyvinyl chloride bags, and glass bottles. Three storage temperatures were evaluated: 2-8 °C, 13-15 °C (thermostatically controlled chamber), and room temperature (20 ± 5 °C). At set time points, samples were analysed for busulfan content, using a high-performance liquid chromatography (HPLC) system with ultraviolet detection. The change in pH and osmolarity on storage was also determined, and solutions were inspected visually for formation of a precipitate or colour change. To determine the contribution of precipitation to loss of busulfan content on storage, samples from one time series were treated with the solvent dimethylacetamide prior to HPLC separation and quantitation of busulfan. The results of the active substance content monitoring study over a 48-h period demonstrate that busulfan solution is stable at a 5 % threshold, at 2-8 °C for 16 h in syringes, 14 h in glass bottles, and 6 h in bags. In addition, the period of stability decreases as the temperature increases (4 h at 20 ± 5 °C). The solution is considered to be stable, subject to precipitation liable to be observed regardless of the temperature. The best stability was observed for busulfan solutions placed at 2-8 °C in syringes. This study demonstrated that precipitation, in addition to hydrolysis, has a significant influence on the busulfan content.

  3. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  4. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Science.gov (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-01

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes. PMID:23306150

  6. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-10

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.

  7. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, Mo)O {sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta-Garcia, F.; Esperanza Hernandez-Cruz, L.; Villanueva-Ibanez, M.; Flores-Gonzalez, M. A.

    2015-10-01

    The synthesis of Fe{sup 3}+, Mo{sup 4+} and Y{sup 3+} fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM) results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe{sup 3+}, Mo{sup 4+} and Y{sup 3+} ions in the zirconia tetragonal monophase, even after calcinations. (Author)

  8. Immobilization/Stabilization of Ficin Extract on Glutaraldehyde-Activated Agarose Beads. Variables That Control the Final Stability and Activity in Protein Hydrolyses

    Directory of Open Access Journals (Sweden)

    El-Hocine Siar

    2018-04-01

    Full Text Available Ficin extract has been immobilized on different 4% aminated-agarose beads. Using just ion exchange, immobilization yield was poor and expressed activity did not surpass 10% of the offered enzyme, with no significant effects on enzyme stability. The treatment with glutaraldehyde of this ionically exchanged enzyme produced an almost full enzyme inactivation. Using aminated supports activated with glutaraldehyde, immobilization was optimal at pH 7 (at pH 5 immobilization yield was 80%, while at pH 9, the immobilized enzyme became inactivated. At pH 7, full immobilization was accomplished maintaining 40% activity versus a small synthetic substrate and 30% versus casein. Ficin stabilization upon immobilization could be observed but it depended on the inactivation pH and the substrate employed, suggesting the complexity of the mechanism of inactivation of the immobilized enzyme. The maximum enzyme loading on the support was determined to be around 70 mg/g. The loading has no significant effect on the enzyme stability or enzyme activity using the synthetic substrate but it had a significant effect on the activity using casein; the biocatalysts activity greatly decreased using more than 30 mg/g, suggesting that the near presence of other immobilized enzyme molecules may generate some steric hindrances for the casein hydrolysis.

  9. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    Directory of Open Access Journals (Sweden)

    Shu-ichi Nakano

    2014-01-01

    Full Text Available Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol, small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.

  10. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    Science.gov (United States)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  11. Stability analysis of the soliton solutions for the generalized quintic derivative nonlinear Schrödinger equation

    Directory of Open Access Journals (Sweden)

    Chen Yue

    Full Text Available The propagation of hydrodynamic wave packets and media with negative refractive index is studied in a quintic derivative nonlinear Schrödinger (DNLS equation. The quintic DNLS equation describe the wave propagation on a discrete electrical transmission line. We obtain a Lagrangian and the invariant variational principle for quintic DNLS equation. By using a class of ordinary differential equation, we found four types of exact solutions of the quintic DNLS equation, which are kink-type solitary wave solution, antikink-type solitary wave solution, sinusoidal solitary wave solution, bell-type solitary wave solution. By applying the modulation instability to discuss stability analysis of the obtained solutions. Modulation instabilities of continuous waves and localized solutions on a zero background have been investigated. Keywords: Quintic derivative NLS equation, Solitary wave solutions, Mathematical physics methods, 2000 MR Subject Classification: 35G20, 35Q53, 37K10, 49S05, 76A60

  12. A Semilinear Wave Equation with a Boundary Condition of Many-Point Type: Global Existence and Stability of Weak Solutions

    Directory of Open Access Journals (Sweden)

    Giai Giang Vo

    2015-01-01

    Full Text Available This paper is devoted to the study of a wave equation with a boundary condition of many-point type. The existence of weak solutions is proved by using the Galerkin method. Also, the uniqueness and the stability of solutions are established.

  13. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    Science.gov (United States)

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  14. Silica Sol-Gel Entrapment of the Enzyme Chloro peroxidase

    International Nuclear Information System (INIS)

    Le, T.; Chan, S.; Ebaid, B.; Sommerhalter, M.

    2015-01-01

    The enzyme chloro peroxidase (CPO) was immobilized in silica sol-gel beads prepared from tetramethoxysilane. The average pore diameter of the silica host structure (∼3 nm) was smaller than the globular CPO diameter (∼6 nm) and the enzyme remained entrapped after sol-gel maturation. The catalytic performance of the entrapped enzyme was assessed via the pyrogallol peroxidation reaction. Sol-gel beads loaded with 4 μg CPO per mL sol solution reached 9-12% relative activity compared to free CPO in solution. Enzyme kinetic analysis revealed a decrease in K_cat but no changes in K_M or K_I . Product release or enzyme damage might thus limit catalytic performance. Yet circular dichroism and visible absorption spectra of transparent CPO sol-gel sheets did not indicate enzyme damage. Activity decline due to methanol exposure was shown to be reversible in solution. To improve catalytic performance the sol-gel protocol was modified. The incorporation of 5, 20, or 40% methyltrimethoxysilane resulted in more brittle sol-gel beads but the catalytic performance increased to 14% relative to free CPO in solution. The use of more acidic casting buffers (ph 4.5 or 5.5 instead of 6.5) resulted in a more porous silica host reaching up to 18% relative activity

  15. Research progress of nanoparticles as enzyme mimetics

    Science.gov (United States)

    Hu, XiaoNa; Liu, JianBo; Hou, Shuai; Wen, Tao; Liu, WenQi; Zhang, Ke; He, WeiWei; Ji, YingLu; Ren, HongXuan; Wang, Qi; Wu, XiaoChun

    2011-10-01

    Natural enzymes as biological catalysts possess remarkable advantages, especially their highly efficient and selective catalysis under mild conditions. However, most natural enzymes are proteins, thus exhibiting an inherent low durability to harsh reaction conditions. Artificial enzyme mimetics have been pursued extensively to avoid this drawback. Quite recently, some inorganic nanoparticles (NPs) have been found to exhibit unique enzyme mimetics. In addition, their much higher stability overcomes the inherent disadvantage of natural enzymes. Furthermore, easy mass-production and low cost endow them more benefits. As a new member of artificial enzyme mimetics, they have received intense attention. In this review article, major progress in this field is summarized and future perspectives are highlighted.

  16. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  17. A DFT study of the stability of SIAs and small SIA clusters in the vicinity of solute atoms in Fe

    Science.gov (United States)

    Becquart, C. S.; Ngayam Happy, R.; Olsson, P.; Domain, C.

    2018-03-01

    The energetics, defect volume and magnetic properties of single SIAs and small SIA clusters up to size 6 have been calculated by DFT for different configurations like the parallel 〈110〉 dumbbell, the non parallel 〈110〉 dumbbell and the C15 structure. The most stable configurations of each type have been further analyzed to determine the influence on their stability of various solute atoms (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, W, Pd, Al, Si, P), relevant for steels used under irradiation. The results show that the presence of solute atoms does not change the relative stability order among SIA clusters. The small SIA clusters investigated can bind to both undersized and oversized solutes. Several descriptors have been considered to derive interesting trends from results. It appears that the local atomic volume available for the solute is the main physical quantity governing the binding energy evolution, whatever the solute type (undersized or oversized) and the cluster configuration (size and type).

  18. Influence of electric field on the properties of the polymer stabilized luminescent quantum dots in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zharkova, Irina S.; Markina, Natalia E. [Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Markin, Alexey V., E-mail: av_markin@mail.ru [Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Drozd, Daniil D.; Speranskaya, Elena S. [Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Goryacheva, Irina Yu. [Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Saint-Petersburg State University, Universitetskii pr. 26, 198504 Petrodvorets, Saint-Petersburg (Russian Federation)

    2016-08-15

    The application of external electric field for verification of quantum dots (QDs) stability in aqueous medium was proposed. Hydrophilic CdSe core-shell nanocrystals were synthesized and used with three polymer-based organic stabilizers, two of which contain PEG chains. An increasing of the stability under applied electric field (EF) was shown for stabilizer containing higher amount of PEG chains and terminal amino-groups: introduction of additional PEG chains allowed reducing degradation of luminescence intensity for about 60%. The changes of QDs solutions after EF treatment were examined by dynamic light scattering measurements, luminescence and absorbance spectroscopy, and conductivity measurements and explained by decreasing of quantum yield of the samples due to degradation of stabilizer coating. - Highlights: • Hydrophilic QDs with three types of stabilizer coatings were prepared and treated by electric field in water environment. • Permanent QDs luminescence quenching in aqueous medium under low electric field strength was observed. • Luminescence stability to EF treatment increases by stabilizer with higher PEG content. • Redox mechanism of luminescence quenching was proved via conductivity, DLS, and UV-visible absorbance measurements.

  19. OLED-based biosensing platform with ZnO nanoparticles for enzyme immobilization

    Science.gov (United States)

    Cai, Yuankun; Shinar, Ruth; Shinar, Joseph

    2009-08-01

    Organic light-emitting diode (OLED)-based sensing platforms are attractive for photoluminescence (PL)-based monitoring of a variety of analytes. Among the promising OLED attributes for sensing applications is the thin and flexible size and design of the OLED pixel array that is used for PL excitation. To generate a compact, fielddeployable sensor, other major sensor components, such as the sensing probe and the photodetector, in addition to the thin excitation source, should be compact. To this end, the OLED-based sensing platform was tested with composite thin biosensing films, where oxidase enzymes were immobilized on ZnO nanoparticles, rather than dissolved in solution, to generate a more compact device. The analytes tested, glucose, cholesterol, and lactate, were monitored by following their oxidation reactions in the presence of oxygen and their respective oxidase enzymes. During such reactions, oxygen is consumed and its residual concentration, which is determined by the initial concentration of the above-mentioned analytes, is monitored. The sensors utilized the oxygen-sensitive dye Pt octaethylporphyrin, embedded in polystyrene. The enzymes were sandwiched between two thin ZnO layers, an approach that was found to improve the stability of the sensing probes.

  20. Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.

    Science.gov (United States)

    Wang, Meng; Abad, Danny; Kickhoefer, Valerie A; Rome, Leonard H; Mahendra, Shaily

    2015-11-24

    Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater.

  1. The stability of high-Tc BSCCO/Ag superconducting microcomposites in water, some inorganic solutions and organic solvents

    International Nuclear Information System (INIS)

    Gao, W.; Chen, J.; Yang, C.O.; McNabb, D.; Sande, J. vander

    1992-01-01

    Bi(Pb)-Sr-Ca-Cu-O/Ag (BSCCO/Ag) superconducting microcomposites with zero-resistance temperatures from 102 to 108 K and critical current densities of ∝600 A/cm 2 at 77 K were produced by oxidation and annealling of metallic precursor alloys. The stabilities and degradation behavior of BSCCO/Ag specimens in various environments were studied by a combination of mass loss measurement, electrical transport measurement and microstructural observation. The environmental conditions used in the present work were moist air, distilled water, aqueous solutions of NaCl, NaOH and acetic acid, and organic solvents methanol and acetone. Although there is a general tendency toward a decrease in critical current density after a long exposure to most of the testing conditions, the specimens containing a high percent of Ag (≥70 wt.%) showed very little decrease in Tc and J c up to 200 days of exposure in moist air and distilled water, and up to 20 days in NaCl solution, methanol and acetone. It was found that the superconducting ''2223'' phase is stable in water, neutral solutions and the organic solvents, reacts very slowly with basic solutions, and dissolves rapidly in acidic solutions. Some non-superconducting Ca-rich oxides dissolve in water and neutral and basic solutions and therefore damage the connection of the superconducting grains in low-Ag containing specimens. The excellent stability of the BSCCO/Ag superconducting microcomposites containing high Ag provides an important advantage for their potential industrial application. (orig.)

  2. Novel photoluminescence enzyme immunoassay based on supramolecular host-guest recognition using L-arginine/6-aza-2-thiothymine-stabilized gold nanocluster.

    Science.gov (United States)

    Wang, Youmei; Lu, Minghua; Tang, Dianping

    2018-06-30

    A new photoluminescence (PL) enzyme immunoassay was designed for sensitive detection of aflatoxin B 1 (AFB 1 ) via an innovative enzyme substrate, 6-aza-2-thiothymine-stabilized gold nanocluster (AAT-AuNC) with L-arginine. The enzyme substrate with strong PL intensity was formed through supramolecular host-guest assembly between guanidine group of L-arginine and AAT capped on the surface of AuNC. Upon arginase introduction, the captured L-arginine was hydrolyzed into ornithine and urea, thus resulting in the decreasing PL intensity. Based on this principle, a novel competitive-type immunoreaction was first carried out on AFB 1 -bovine serum albumin (AFB 1 -BSA) conjugate-coated microplate, using arginase-labeled anti-AFB 1 antibody as the competitor. Under the optimum conditions, the PL intensity increased with the increment of target AFB 1 , and allowed the detection of the analyte at concentrations as low as 3.2 pg mL -1 (ppt). Moreover, L-arginine-AAT-AuNC-based PL enzyme immunoassay afforded good reproducibility and acceptable specificity. In addition, the accuracy of this methodology, referring to commercial AFB 1 ELISA kit, was evaluated to analyze naturally contaminated or spiked peanut samples, giving well-matched results between two methods, thus representing a useful scheme for practical application in quantitative monitoring of mycotoxins in foodstuff. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  4. Electron paramagnetic resonance spin label titration: a novel method to investigate random and site-specific immobilization of enzymes onto polymeric membranes with different properties

    International Nuclear Information System (INIS)

    Butterfield, D. Allan; Colvin, Joshua; Liu Jiangling; Wang Jianquan; Bachas, Leonidas; Bhattacharrya, Dibakar

    2002-01-01

    The immobilization of biological molecules onto polymeric membranes to produce biofunctional membranes is used for selective catalysis, separation, analysis, and artificial organs. Normally, random immobilization of enzymes onto polymeric membranes leads to dramatic reduction in activity due to chemical reactions involved in enzyme immobilization, multiple-point binding, etc., and the extent of activity reduction is a function of membrane hydrophilicity (e.g. activity in cellulosic membrane >> polysulfone membrane). We have used molecular biology to effect site-specific immobilization of enzymes in a manner that orients the active site away from the polymeric membrane surface, thus resulting in higher enzyme activity that approaches that in solution and in increased stability of the enzyme relative to the enzyme in solution. A prediction of this site-specific method of enzyme immobilization, which in this study with subtilisin and organophosphorus hydrolase consists of a fusion tag genetically added to these enzymes and subsequent immobilization via the anti-tag antibody and membrane-bound protein A, is that the active site conformation will more closely resemble that of the enzyme in solution than is the case for random immobilization. This hypothesis was confirmed using a new electron paramagnetic resonance (EPR) spin label active site titration method that determines the amount of spin label bound to the active site of the immobilized enzyme. This value nearly perfectly matched the enzyme activity, and the results suggested: (a) a spectroscopic method for measuring activity and thus the extent of active enzyme immobilization in membrane, which may have advantages in cases where optical methods can not be used due to light scattering interference; (b) higher spin label incorporation (and hence activity) in enzymes that had been site-specifically immobilized versus random immobilization; (c) higher spin label incorporation in enzymes immobilized onto hydrophilic

  5. An Investigation into the Gastrointestinal Stability of Exenatide in the Presence of Pure Enzymes, Everted Intestinal Rings and Intestinal Homogenates.

    Science.gov (United States)

    Sun, Yanan; Wang, Mengshu; Sun, Bingxue; Li, Feng; Liu, Shubo; Zhang, Yong; Zhou, Yan; Chen, Yan; Kong, Wei

    2016-01-01

    The purpose of this study was to investigate the gastrointestinal stability of exenatide to determine the key factor(s) contributing to peptide degradation during the oral delivery process. The effects of pH and various digestive enzymes on the degradation kinetics of exenatide were determined. Moreover, the degradation clearances of peptide were also examined using rat everted intestinal rings and intestinal homogenates from various intestinal locations. Exenatide was comparatively stable within a pH range of 1.2-8. However, obvious degradation was observed in the presence of digestive enzymes. The order of enzymes, in terms of ability to degradate exenatide, was chymotrypsin>aminopeptidase N>carboxypeptidase A>trypsin>pepsin. Chymotrypsin showed the greatest ability to degrade exenatide (half-life t1/2, 5.784×10(-2) h), whereas aminopeptidase N and carboxylpeptidase A gave t1/2 values of 3.53 and 10.16 h, respectively. The degradation of exenatide was found to be peptide concentration- and intestinal site-dependent, with a lower clearance in the upper part of the duodenum and the lower part of the ileum. When using intestinal homogenates as enzyme sources, the order, in terms of peptide degradation ability, was ileum>jejunum>duodenum. However, no significant difference was observed in the remaining peptide concentrations throughout 2 h of incubation, which may be due to the involvement of cytosolic enzymes. These results revealed key factors contributing to peptide degradation, and suggest that the inhibition of chymotrypsin and site-specific delivery of exenatide might be advantageous in overcoming metabolic obstacles during its oral delivery.

  6. Global exponential stability of periodic solution for shunting inhibitory CNNs with delays

    International Nuclear Information System (INIS)

    Li Yongkun; Liu Chunchao; Zhu Lifei

    2005-01-01

    By using the continuation theorem of coincidence degree theory and constructing suitable Lyapunov functions, we study the existence and stability of periodic solution for shunting inhibitory cellular neural networks (SICNNs) with delays x-bar ij (t)=-a ij (t)x ij (t)--bar B kl -bar Nr(i,j)B ij kl (t)f ij (x kl (t))x ij (t)--bar C kl -bar Nr(i,j)C ij kl (t)g ij (x kl (t-τ kl ))x ij (t)+L ij (t)

  7. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions.

    Science.gov (United States)

    Vazquez-Ortega, Perla Guadalupe; Alcaraz-Fructuoso, Maria Teresa; Rojas-Contreras, Juan A; López-Miranda, Javier; Fernandez-Lafuente, Roberto

    2018-03-01

    The dimeric enzyme β-glucosidase from Aspergillus niger has been immobilized on different amino-agarose beads at pH 5 and 7, exploiting the versatility of glutaraldehyde. The stability of the free enzyme depended on enzyme concentration. Immobilization via ion exchange improved enzyme stability/activity, depending on the immobilization pH. However, the enzyme was desorbed in 75 mM NaCl at pH 7 and some stability/enzyme concentration dependence still existed. of these biocatalysts with glutaraldehyde increased enzyme stability (e.g. at pH 5, after incubation under conditions where the enzyme just ionically exchanged was fully inactivated, the activity of the glutaraldehyde treated enzyme remained unaltered). Immobilization on glutaraldehyde pre-activated supports yielded a higher increase in enzyme activity, but the stabilization was lower. While when measuring the enzyme activity at pH 4 there were no changes after immobilization, all immobilized enzymes were more active than the free enzyme at pH 6 and 7 (2-3 times). The Ki/Km ratio did not significantly decrease in any immobilized biocatalysts, and in some cases it worsened in a significant way (by a 9 fold factor using preactivated supports). The new biocatalysts are significantly more stable and avoid enzyme subunit desorption, being the immobilization pH a key point in their design. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Engineering solutions to the long-term stabilization and isolation of uranium mill tailings in the United States

    International Nuclear Information System (INIS)

    Sanders, D.R.; Lommler, J.C.

    1995-01-01

    Engineering solutions to the safe and environmentally protective disposal and isolation of uranium mill tailings in the US include many factors. Cover design, materials selection, civil engineering, erosive forces, and cost effectiveness are only a few of those factors described in this paper. The systems approach to the engineering solutions employed in the US is described, with emphasis on the standards prescribed for the Uranium Mill Tailings Remedial Action Project. Stabilization and isolation of the tailings from humans and the environment are the primary goals of the US uranium mill tailings control standards. The performance of cover designs with respect to water infiltration, radon exhalation, geotechnical stability, erosion protection, human and animal intrusion prevention, and longevity are addressed. The need for and frequency of surveillance efforts to ensure continued disposal system performance are also assessed

  9. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions.

    Science.gov (United States)

    Wang, Dan; Li, Haiyan; Gu, Jingkai; Guo, Tao; Yang, Shuo; Guo, Zhen; Zhang, Xueju; Zhu, Weifeng; Zhang, Jiwen

    2013-09-01

    The purpose of this study was to simultaneously improve the solubility and stability of dihydroartemisinin (DHA) in aqueous solutions by a ternary cyclodextrin system comprised of DHA, hydroxypropyl-β-cyclodextrin (HP-β-CD) and a third auxiliary substance. Solubility and phase solubility studies were carried out to evaluate the solubilizing efficiency of HP-β-CD in association with various auxiliary substances. Then, the solid binary (DHA-HP-β-CD or DHA-lecithin) and ternary systems were prepared and characterized by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and power X-ray diffraction (PXRD). The effect of the ternary system on the solubility, dissolution and stability of DHA in aqueous solutions was also investigated. As a result, the soybean lecithin was found to be the most promising third component in terms of solubility enhancement. For the solid characterization, the disappearance of the drug crystallinity indicated the formation of new solid phases, implicating the formation of the ternary system. The dissolution rate of the solid ternary system was much faster than that of the drug alone and binary systems. Importantly, compared with binary systems, the ternary system showed a significant improvement in the stability of DHA in Hank's balanced salt solutions (pH 7.4). The solubility and stability of DHA in aqueous solutions were simultaneously enhanced by the ternary system, which might be attributed to the possible formation of a ternary complex. For the ternary interactions, results of molecular docking studies further indicated that the lecithin covered the top of the wide rim of HP-β-CD and surrounded around the peroxide bridging of DHA, providing the possibility for the ternary complex formation. In summary, the ternary system prepared in our study, with simultaneous enhancement of DHA solubility and stability in aqueous solutions, might have an important pharmaceutical potential in the development of a better

  10. Stability of small-amplitude periodic solutions near Hopf bifurcations in time-delayed fully-connected PLL networks

    Science.gov (United States)

    Ferruzzo Correa, Diego P.; Bueno, Átila M.; Castilho Piqueira, José R.

    2017-04-01

    In this paper we investigate stability conditions for small-amplitude periodic solutions emerging near symmetry-preserving Hopf bifurcations in a time-delayed fully-connected N-node PLL network. The study of this type of systems which includes the time delay between connections has attracted much attention among researchers mainly because the delayed coupling between nodes emerges almost naturally in mathematical modeling in many areas of science such as neurobiology, population dynamics, physiology and engineering. In a previous work it has been shown that symmetry breaking and symmetry preserving Hopf bifurcations can emerge in the parameter space. We analyze the stability along branches of periodic solutions near fully-synchronized Hopf bifurcations in the fixed-point space, based on the reduction of the infinite-dimensional space onto a two-dimensional center manifold in normal form. Numerical results are also presented in order to confirm our analytical results.

  11. Flexible ITO-free organic solar cells applying aqueous solution-processed V2O5 hole transport layer: An outdoor stability study

    Directory of Open Access Journals (Sweden)

    F. Anderson S. Lima

    2016-02-01

    Full Text Available Solution processable semiconductor oxides have opened a new paradigm for the enhancement of the lifetime of thin film solar cells. Their fabrication by low-cost and environmentally friendly solution-processable methods makes them ideal barrier (hole and electron transport layers. In this work, we fabricate flexible ITO-free organic solar cells (OPV by printing methods applying an aqueous solution-processed V2O5 as the hole transport layer (HTL and compared them to devices applying PEDOT:PSS. The transparent conducting electrode was PET/Ag/PEDOT/ZnO, and the OPV configuration was PET/Ag/PEDOT/ZnO/P3HT:PC60BM/HTL/Ag. Outdoor stability analyses carried out for more than 900 h revealed higher stability for devices fabricated with the aqueous solution-processed V2O5.

  12. Stability of a family of travelling wave solutions in a feedforward chain of phase oscillators

    International Nuclear Information System (INIS)

    Lanford, O E III; Mintchev, S M

    2015-01-01

    Travelling waves are an important class of signal propagation phenomena in extended systems with a preferred direction of information flow. We study the generation of travelling waves in unidirectional chains of coupled oscillators communicating via a phase-dependent pulse-response interaction borrowed from mathematical neuroscience. Within the context of such systems, we develop a widely applicable, jointly numerical and analytical methodology for deducing existence and stability of periodic travelling waves. We provide careful numerical studies that support the existence of a periodic travelling wave solution as well as the asymptotic relaxation of a single oscillator to the wave when it is forced with the wave profile. Using this evidence as an assumption, we analytically prove global stability of waves in the infinite chain, with respect to initial perturbations of downstream sites. This rigorous stability result suggests that asymptotic relaxation to the travelling wave occurs even when the forcing is perturbed from the wave profile, a property of the motivating system that is supported by previous work as well as the convergence of the more sophisticated numerical algorithm that we propose in order to compute a high-precision approximation to the solution. We provide additional numerical studies that show that the wave is part of a one-parameter family, and we illustrate the structural robustness of this family with respect to changes in the coupling strength. (paper)

  13. Coproduction of detergent compatible bacterial enzymes and stain removal evaluation.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2015-10-01

    Most of the detergents that are presently produced contain the detergent compatible enzymes to improve and accelerate the washing performance by removing tough stains. The process is environment friendly as the use of enzymes in the detergent formulation reduces the utilization of toxic detergent constituents. The current trend is to use the detergent compatible enzymes that are active at low and ambient temperature in order to save energy and maintain fabric quality. As the detergent compatible bacterial enzymes are used together in the detergent formulation, it is important to co-produce the detergent enzymes in a single fermentation medium as the enzyme stability is assured, and production cost gets reduced enormously. The review reports on the production, purification, characterization and application of detergent compatible amylases, lipases, and proteases are available. However, there is no specific review or minireview on the concomitant production of detergent compatible amylases, lipases, and proteases. In this minireview, the coproduction of detergent compatible enzymes by bacterial species, enzyme stability towards detergents and detergent components, and stain release analysis were discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Activity enhancement of ligninolytic enzymes of Trametes versicolor ...

    African Journals Online (AJOL)

    Suspended cultures of white-rot fungus, Trametes versicolor, supplemented with bagasse powder showed a concentration dependent enhancement in the ligninolytic enzymes activity in liquid shake cultures. 2% (w/v) bagasse powder improved greater stability to the enzymes. The optimum pH is 3.5 and the optimum ...

  15. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass.

    Science.gov (United States)

    Manisha; Yadav, Sudesh Kumar

    2017-12-01

    Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High Sensitivity Electrochemical Cholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode with Electropolymerized Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Ditsayut Phokharatkul

    2009-10-01

    Full Text Available In this report, a new cholesterol sensor is developed based on a vertically aligned CNT electrode with two-step electrochemical polymerized enzyme immobilization. Vertically aligned CNTs are selectively grown on a 1 mm2 window of gold coated SiO2/Si substrate by thermal chemical vapor deposition (CVD with gravity effect and water-assisted etching. CNTs are then simultaneously functionalized and enzyme immobilized by electrochemical polymerization of polyaniline and cholesterol enzymes. Subsequently, ineffective enzymes are removed and new enzymes are electrochemically recharged. Scanning electron microscopic characterization indicates polymer-enzyme nanoparticle coating on CNT surface. Cyclic voltammogram (CV measurements in cholesterol solution show the oxidation and reduction peaks centered around 450 and −220 mV, respectively. An approximately linear relationship between the cholesterol concentration and the response current could be observed in the concentration range of 50–300 mg/dl with a sensitivity of approximately 0.22 μA/mg·dl−1, which is considerably higher compared to previously reported CNT bioprobe. In addition, good specificity toward glucose, uric acid acetaminophen and ascorbic acid have been obtained. Moreover, sensors have satisfactory stability, repeatability and life time. Therefore, the electropolymerized CNT bioprobe is promising for cholesterol detection in normal cholesterol concentration in human blood.

  17. Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients

    International Nuclear Information System (INIS)

    Chen Ling; Zhao Hongyong

    2008-01-01

    The paper investigates the almost periodicity of shunting inhibitory cellular neural networks with delays and variable coefficients. Several sufficient conditions are established for the existence and globally exponential stability of almost periodic solutions by employing fixed point theorem and differential inequality technique. The results of this paper are new and they complement previously known results

  18. Analysis of stability and bifurcations of fixed points and periodic solutions of a lumped model of neocortex with two delays

    NARCIS (Netherlands)

    Visser, Sid; Meijer, Hil G.E.; van Putten, Michel J.A.M.; van Gils, Stephan A.

    2012-01-01

    A lumped model of neural activity in neocortex is studied to identify regions of multi-stability of both steady states and periodic solutions. Presence of both steady states and periodic solutions is considered to correspond with epileptogenesis. The model, which consists of two delay differential

  19. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    Energy Technology Data Exchange (ETDEWEB)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A. [Instituto Leloir, Buenos Aires (Argentina); Braden, B.C. [Bowie State Univ., Maryland (United States)

    2004-07-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  20. High order quaternary arrangement confers increased structural stability to Brucella Spp. lumazine synthase

    International Nuclear Information System (INIS)

    Zylberman, V.; Craig, P.O.; Klinke, S.; Cauerhff, A.; Goldbaum, F.A.; Braden, B.C.

    2004-01-01

    The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18 kDa monomers, each extensively contacting neighboring monomers. The icosahedral structure consists of 60 LS monomers arranged as twelve pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella spp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedral enzymes. This unusual divergence prompted to further investigate on its quaternary arrangement. In the present work, we demonstrate by means of solution Light Scattering and X-ray structural analyses that BLS assembles as a very stable dimer of pentamers representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein, and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 deg C compared to pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins. (author)

  1. Method of denitrification and stabilization of radioactive aqueous solutions of radioisotope nitrates

    International Nuclear Information System (INIS)

    Pecak, V.; Matous, V.

    1983-01-01

    The method is solved of denitrification and of the stabilization of aqueous solutions of radioactive isotopes produced during the reprocessing of nuclear fuel. The aqueous solution is first mixed with the vitreous component, most frequently phosphoric acid, ammonium phosphate or boric acid and if needed with the addition of alkalis, possibly with clarifying or anti-foam components, e.g., arsenic trioxide, antimony or cerium oxide. The mixture is further adjusted with ammonia to pH 5 - 9. The liquid mixture is then thermally and pyrolytically processed, e.g., by calcinator or fluid-bed reactor or by pot melting at temperatures of 3O0 to 900 degC while of a powder product or glass melt is formed in the presence of gaseous emissions composed of nitrous oxide - nitrogen. The resulting product is further processed by containerization or is sealed in a metal matrix. (B.S.)

  2. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    Science.gov (United States)

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  3. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  4. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities

    International Nuclear Information System (INIS)

    Wang Quanying; Zhou Dongmei; Cang Long; Li Lianzhen; Wang Peng

    2009-01-01

    The aim of this study was to investigate the detailed metal speciation/fractionations of a Cu contaminated soil before and after electrokinetic remediation as well as their relationships with the soil microbial and enzyme activities. Significant changes in the exchangeable and adsorbed-Cu fractionations occurred after electrokinetic treatment, while labile soil Cu in the solution had a tendency to decrease from the anode to the cathode, and the soil free Cu 2+ ions were mainly accumulated in the sections close to the cathode. The results of regression analyses revealed that both the soil Cu speciation in solution phase and the Cu fractionations in solid phase could play important roles in the changes of the soil microbial and enzyme activities. Our findings suggest that the bioavailability of soil heavy metals and their ecotoxicological effects on the soil biota before and after electroremediation can be better understood in terms of their chemical speciation and fractionations. - The assessment of the roles of soil solution speciation and solid-phase fractionations in metal bioavailability after electrokinetic remediation deserves close attention.

  5. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  6. Co-immobilized Coupled Enzyme Systems in Biotechnology

    Science.gov (United States)

    2010-01-01

    coimmobilized by ~n­ capsulation in silica spheres that were formed by a polymer -templated silicificatiOn reaction (Betancor et al., 2006). Nitrobenzene...F. , FERNANDEZ-LAFUENTE, R. , GUISAN J. M. (2005). Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol... polymer monoliths in microftuidic devices for steady- state kinetic analysis and spatially separated multi-enzyme reactions. Analytical Chemistry, 79

  7. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.

    Science.gov (United States)

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2018-01-15

    This study confirmed the possibility of biopolymer-type stabilizers to increase the saturation concentration of branched-chain amino acids by preventing their crystallization/precipitation. Although microfluidization increased the initial solubility, it failed to increase the saturation concentration of the branched-chain amino acids. The saturation concentration of the branched-chain amino acids increased from 3.81% to 4.42% and 4.85% after the incorporation of food hydrocolloids and proteins, respectively. However, the branched-chain amino acids:stabilizer ratio did not affect the solubility. In the case of food hydrocolloid-based solutions, crystal formation and growth of branched-chain amino acids occurred during storage, resulting in the precipitation of branched-chain amino acid crystals. However, food proteins effectively increased the stability of the solubilized branched-chain amino acids. The improved solubility and stability of the solubilized branched-chain amino acids could be attributed to interactions between the functional groups (carboxyl, amine, sulfate, aliphatic, aromatic, etc.) of the stabilizer and the branched-chain amino acid molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary

    International Nuclear Information System (INIS)

    Gorshkov, Aleksei V

    2012-01-01

    The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of 1/t k . On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds. Bibliography: 21 titles.

  9. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Ladakis, Dimitrios; Kookos, Ioannis K. [Department of Chemical Engineering, University of Patras, 26504 Patras, Rio (Greece); Koutinas, Apostolis A. [Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855 (Greece); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: safarik@nh.cas.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388 mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. - Highlights: • Bacterial cellulose was magnetically modified with magnetic fluid. • Magnetic cellulose is an efficient carrier for affinity ligands. • Enzymes and cells can be efficiently immobilized to magnetic cellulose.

  10. Porous silicon nanoparticle as a stabilizing support for chondroitinase.

    Science.gov (United States)

    Daneshjou, Sara; Dabirmanesh, Bahareh; Rahimi, Fereshteh; Khajeh, Khosro

    2017-01-01

    Chondroitinase ABCI (cABCI) from Proteus vulgaris is a drug enzyme that can be used to treat spinal cord injuries. One of the main problems of chondroitinase ABC1 is its low thermal stability. The objective of the current study was to stabilize the enzyme through entrapment within porous silicon (pSi) nanoparticles. pSi was prepared by an electrochemical etch of p-type silicon using hydrofluoric acid/ethanol. The size of nanoparticles were determined 180nm by dynamic light scattering and the mean pore diameter was in the range of 40-60nm obtained by scanning electron microscopy. Enzymes were immobilized on porouse silicon nanoparticles by entrapment. The capacity of matrix was 35μg enzyme per 1mg of silicon. The immobilized enzyme displayed lower V max values compared to the free enzyme, but Km values were the same for both enzymes. Immobilization significantly increased the enzyme stability at various temperatures (-20, 4, 25 and 37°C). For example, at 4°C, the free enzyme (in 10mM imidazole) retained 20% of its activity after 100min, while the immobilized one retained 50% of its initial activity. Nanoparticles loading capacity and the enzyme release rate showed that the selected particles could be a pharmaceutically acceptable carrier for chondroitinase. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Stability of exact solutions describing two-layer flows with evaporation at the interface

    Energy Technology Data Exchange (ETDEWEB)

    Bekezhanova, V B [Institute of Computational Modelling SB RAS, Akademgorodok, 50/44, Krasnoyarsk, 660036 (Russian Federation); Goncharova, O N, E-mail: bekezhanova@mail.ru, E-mail: gon@math.asu.ru [Altai State University, Lenina 61, Barnaul, 656049 (Russian Federation)

    2016-12-15

    A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck–Boussinesq approximation of the Navier–Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown. (paper)

  12. THE EXISTENCE OF THE STABILIZING SOLUTION OF THE RICCATI EQUATION ARISING IN DISCRETE-TIME STOCHASTIC ZERO SUM LQ DYNAMIC GAMES WITH PERIODIC COEFFICIENTS

    Directory of Open Access Journals (Sweden)

    Vasile Dr ̆agan

    2017-06-01

    Full Text Available We investigate the problem for solving a discrete-time periodic gen- eralized Riccati equation with an indefinite sign of the quadratic term. A necessary condition for the existence of bounded and stabilizing solution of the discrete-time Riccati equation with an indefinite quadratic term is derived. The stabilizing solution is positive semidefinite and satisfies the introduced sign conditions. The proposed condition is illustrated via a numerical example.

  13. Stability and square integrability of derivatives of solutions of nonlinear fourth order differential equations with delay.

    Science.gov (United States)

    Korkmaz, Erdal

    2017-01-01

    In this paper, we give sufficient conditions for the boundedness, uniform asymptotic stability and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov's second method. The results obtained essentially improve, include and complement the results in the literature.

  14. Stability of furosemide and aminophylline in parenteral solutions

    Directory of Open Access Journals (Sweden)

    Carolina Alves dos Santos

    2011-03-01

    Full Text Available Parenteral solutions (PS are one of the most commonly used drug delivery vehicles. Interactions among the drug, components in the drug's formulation, and the PS can result in the formation of inactive complexes that limit efficacy or increase side effects. The aim of this work was to evaluate possible interactions between the drugs and PS, assess drug stability and to identify degradation products after 20 h at room temperature. Furosemide (FSM and Aminophylline (APN were added to PS containing either 20% mannitol or 0.9% NaCl at pH 6.5-7.5 and 10-11. Their behavior was studied individually and as an admixture, after 1 h oxidation with H2O2, using a spectrophotometer and HPLC. Individually, FSM and APN added to 20% mannitol and 0.9% NaCl solutions had the highest stability at pH 10-11. When FSM and APN were combined, the behavior of FSM was similar to the behavior observed for the drug individually in the same solutions. With the drugs combined in 20% mannitol pH 10-11, HPLC showed that both drugs were stable after a 20 h period yielding two distinct peaks; in oxidized samples, the elution profile showed four peaks with retention times unrelated to the untreated samples.Soluções parenterais de grande volume são frequentemente utilizadas no ambiente hospitalar para a veiculação de fármacos. No entanto, possíveis incompatibilidades entre as estruturas dos fármacos, em diferentes veículos de administração, podem gerar possíveis associações antagônicas ou sinérgicas, resultando em alterações das propriedades físico-químicas, consequentemente, dos efeitos farmacológicos e das respostas clínicas esperadas. Este artigo avaliou a estabilidade e a possível formação de produtos de degradação entre os fármacos furosemida e aminofilina quando estes foram veiculados em soluções parenterais, após o preparo e após o período de 20 h. Furosemida e aminofilina foram adicionadas às soluções de 20% manitol e 0,9% NaCl nos valores

  15. Selection and production of insoluble xylan hydrolyzing enzyme by ...

    African Journals Online (AJOL)

    Jane

    2011-03-07

    Mar 7, 2011 ... The effect of pH and temperature on the enzyme activity and stability of crude enzyme produced by T. lanuginosus THKU 56 were investigated. To study the effect of pH on activity, the reaction mixture of 0.5 ml of enzyme and 0.5 ml of 1% insoluble oat spelt xylan in 50 mM buffers with various pH values ...

  16. Global exponential stability of periodic solution for shunting inhibitory CNNs with delays [rapid communication

    Science.gov (United States)

    Li, Yongkun; Liu, Chunchao; Zhu, Lifei

    2005-03-01

    By using the continuation theorem of coincidence degree theory and constructing suitable Lyapunov functions, we study the existence and stability of periodic solution for shunting inhibitory cellular neural networks (SICNNs) with delays x˙ij(t)=-aij(t)xij(t)-∑Bkl∈Nr(i,j)Bijkl(t)fij(xkl(t))xij(t)-∑Ckl∈Nr(i,j)Cijkl(t)gij(xkl(t-τkl))xij(t)+Lij(t).

  17. The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tao; Chen, Zheng; Zhang, Jinyong; Zhang, Ping [China Univ. of Mining and Technology, Xuzhou (China). School of Mateial Science and Engineering; Yang, Xiaoqin [China Univ. of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2017-06-15

    The grain growth and thermodynamic stability induced by solute co-segregation in ternary alloys are presented. Grain growth behavior of the single-phase supersaturated grains prepared in Ni-Fe-Pb alloy melt at different undercoolings was investigated by performing isothermal annealings at T = 400 C-800 C. Combining the multicomponent Gibbs adsorption equation and Guttmann's grain boundary segregation model, an empirical relation for isothermal grain growth was derived. By application of the model to grain growth in Ni-Fe-Pb, Fe-Cr-Zr and Fe-Ni-Zr alloys, it was predicted that driving grain boundary energy to zero is possible in alloys due to the co-segregation induced by the interactive effect between the solutes Fe/Pb, Zr/Ni and Zr/Cr. A non-linear relationship rather than a simple linear relation between 1/D* (D* the metastable equilibrium grain size) and ln(T) was predicted due to the interactive effect.

  18. On stability of exponential cosmological solutions with non-static volume factor in the Einstein-Gauss-Bonnet model

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2016-08-15

    A (n + 1)-dimensional gravitational model with Gauss-Bonnet term and a cosmological constant term is considered. When ansatz with diagonal cosmological metrics is adopted, the solutions with an exponential dependence of the scale factors, a{sub i} ∝ exp(v{sup i}t), i = 1,.., n, are analyzed for n > 3. We study the stability of the solutions with non-static volume factor, i.e. K(v) = sum {sub k=1}{sup n} v{sup k} ≠ 0. We prove that under a certain restriction R imposed solutions with K(v) > 0 are stable, while solutions with K(v) < 0 are unstable. Certain examples of stable solutions are presented. We show that the solutions with v{sup 1} = v{sup 2} = v{sup 3} = H > 0 and zero variation of the effective gravitational constant are stable if the restriction R is obeyed. (orig.)

  19. Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents.

    Science.gov (United States)

    Pazhang, Mohammad; Mehrnejad, Faramarz; Pazhang, Yaghub; Falahati, Hanieh; Chaparzadeh, Nader

    2016-01-01

    The effect of glycerol and sorbitol on the stability of porcine pancreas trypsin was investigated in this work. Molecular dynamics simulation and thermostability results showed that trypsin has two flexible regions, and polyols (sorbitol and glycerol) stabilize the enzyme by decreasing the flexibility of these regions. Radial distribution function results exhibited that sorbitol and glycerol were excluded from the first water layer of the enzyme, therefore decrease the flexibility of the regions by preferential exclusion. Also, results showed that the stabilization effect of sorbitol is more than glycerol. This observation could be because of the larger decrease in the fluctuations of trypsin in the presence of sorbitol. We also examined the role of solvent's hydrophobicity in enzyme stabilization by sorbitol and glycerol. To do so, the thermostability of trypsin was evaluated in the presence of solvents with different hydrophobicity (methanol, ethanol, isopropanol and n-propanol) in addition to the polyols. Our results depicted that glycerol is a better stabilizer than sorbitol in the presence of hydrophobic solvents (n-propanol), whereas sorbitol is a better stabilizer than glycerol in the presence of hydrophilic solvents (methanol). © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  20. Stability of 2 mg/mL Adenosine Solution in Polyvinyl Chloride and Polyolefin Infusion Bags.

    Science.gov (United States)

    DeAngelis, Michael; Ferrara, Alexander; Gregory, Kaleigh; Zammit, Kimberly; Zhao, Fang

    2018-04-01

    Adenosine is a potent endogenous mediator of vasodilation. Compounded sterile solutions of adenosine are used in cardiac catheterization lab to perform stress tests on the heart. These tests are used to determine the fractional flow reserve (FFR) and are commonly used in the management and diagnosis of cardiovascular conditions. The purpose of this study was to assess the physical and chemical stability of 2 mg/mL adenosine in 0.9% Sodium Chloride Injection, USP in polyvinyl chloride [PVC]) and polyolefin infusion bags stored at room temperature (20°C-25°C) and under refrigeration (2°C-8°C). The compounding and analytical methods used in this study were very similar to those described in the prior publications from the authors' laboratory. To ensure a uniform starting concentration of all stability samples, a batch of 2 mg/mL adenosine solution was prepared and then packaged into empty PVC and polyolefin infusion bags. These stability samples were prepared in triplicate for each bag type and storage temperature (a total of 12 samples). The infusion bag samples were assessed for stability immediately after preparation and after 1 day, 3 days, 7 days, and 14 days. At each time point, the infusion bags were first visually inspected against a light background for color change, clarity, and particulates. Aliquots were drawn from each sample at each time point for pH analysis and high-performance liquid chromatography (HPLC) analysis. Over 14 days of storage at room temperature or refrigeration, no considerable change in visual appearance or pH was observed in any bags. All samples retained 90% to 110% of the initial drug concentration. No significant degradation peaks were observed in the HPLC chromatograms.

  1. Global exponential stability of periodic solution for shunting inhibitory CNNs with delays

    Energy Technology Data Exchange (ETDEWEB)

    Li Yongkun [Department of Mathematics, Yunnan University, Kunming, Yunnan 650091 (China)]. E-mail: yklie@ynu.edu.cn; Liu Chunchao [Department of Mathematics, Yunnan University, Kunming, Yunnan 650091 (China); Zhu Lifei [Department of Mathematics, Yunnan University, Kunming, Yunnan 650091 (China)

    2005-03-28

    By using the continuation theorem of coincidence degree theory and constructing suitable Lyapunov functions, we study the existence and stability of periodic solution for shunting inhibitory cellular neural networks (SICNNs) with delays x-bar {sub ij}(t)=-a{sub ij}(t)x{sub ij}(t)--bar B{sup kl}-bar Nr(i,j)B{sub ij}{sup kl}(t)f{sub ij}(x{sub kl}(t))x{sub ij}(t)--bar C{sup kl}-bar Nr(i,j)C{sub ij}{sup kl}(t)g{sub ij}(x{sub kl}(t-{tau}{sub kl}))x{sub ij}(t)+L{sub ij}(t)

  2. Global exponential stability and existence of periodic solutions of CNNs with delays

    Science.gov (United States)

    Dong, Meifang

    2002-07-01

    In this Letter, we establish general sufficient conditions for global exponential stability and existence of periodic solutions of a class of cellular neural networks (CNNs) with delays. The key to proving the sufficient conditions is the construction of a new Lyapunov functional. An elementary inequality, which may be of independent interest, has been employed in the proof. Checking the sufficient conditions is often reduced to checking some algebraic relations among certain set of parameter. Our sufficient conditions recover the known results in literature as special cases. Finally, we give two examples to illustrate the usage of our main results.

  3. Enzyme immobilization and biocatalysis of polysiloxanes

    Science.gov (United States)

    Poojari, Yadagiri

    H, temperature, cross-link density, organic solvents and storage time using a hemoglobin assay. A notable finding was that free pepsin had zero activity in neutral buffer solution (pH 7) after incubation for 5 hours, while pepsin immobilized in the silicone elastomers was found to retain more than 70% of its maximum normalized activity. These results demonstrate that cross-linked poly(dimethylsiloxane) (PDMS) is a promising support material for the physical entrapment of hydrolytic enzymes such as pepsin. The Novozym-435 has been widely employed as a biocatalyst for esterification and transesterification of a variety of organic compounds including synthesis of polyesters and polylactones due to its high catalytic-efficiency and high thermal stability in organic media. However, the Novozym-435 was found to have poor mechanical stability and the enzyme was found to leach out from the resin into the organic media. In the present research work, efforts were made to solve the above two problems by chemical immobilization of CALB on surface modified porous silica gel particles. The surface of the porous silica gel particles was silanized using (gamma-Aminopropyl)triethoxysilane and then the CALB was chemically crosslinked onto the surface of the silica gel particles using glutaraldehyde. Although the thermal stability of the CALB immobilized silica gel particles was found to be lower compared to that of Novozym-435. The CALB immobilized silica gel particles showed higher enzymatic activity and higher mechanical stability compared to that of Novozym-435.

  4. WEOD-S: Westinghouse expanded operating domain stability solution

    International Nuclear Information System (INIS)

    Rotander, C.; Blaisdell, J.; Anderson, D.; Kumar, V.; Stier, D.; Chu, E.

    2014-01-01

    As Extended Power up-rates (EPUs) are implemented in BWR plants, the flow window at full power decreases due to the extension of the rod line. It is thus desirable to raise load line limits to realize increased power generation at a wider flow range offering operational flexibility and fuel cycle efficiency. However, when load lines are raised, the power/flow operating map is changed in a direction that can cause core power instability at its lower left corner (high power/low flow) if a flow reduction transient (i.e. pump trip) occurs. Unstable operation of the reactor core can result in diverging neutron flux (and power) oscillations, and through the thermal hydraulic/neutronic feedback challenge the Safety Limit Minimum Critical Power Ratio (SLMCPR). In many BWRs the SLMCPR in a power oscillation event is already protected by a detect and suppress system. The methodology to determine the set point of this system, the DIVOM methodology (Delta CPR over Initial MCPR versus Oscillation Magnitude), is defined and applicable up to, but not beyond, the thermal hydraulic stability limit. The DIVOM methodology is used to determine the channel power oscillation magnitude that will challenge the SLMCPR. It is defined as the relationship between ΔCPR/ICPR and the Hot Channel Oscillation Magnitude (HCOM). The DIVOM calculations are typically performed at the end state following a design basis two pump trip from rated power and minimum flow. When approaching the thermal hydraulic (T/H) instability limit, the DIVOM curve can become chaotic and the DIVOM approach breaks down. At T/H-instability, small power fluctuations give rise to large flow oscillations and the non-linear dynamic properties emerge. The newly developed Westinghouse Expanded Operating Domain Stability (WEOD-S) solution proactively prevents entry into the regions of the power/flow map that are vulnerable to thermal hydraulic instability. This is achieved automatically, without any dependence on operator action

  5. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  6. Influence of the extracted solute on the aggregation of malonamide extractant in organic phases: Consequences for phase stability

    International Nuclear Information System (INIS)

    Berthon, L.; Martinet, L.; Testard, F.; Madic, Ch.; Zem, Th.

    2010-01-01

    Due to their amphiphilic properties, malonamide molecules in alkane are organized in reverse micelle type aggregates, composed of a polar core formed by the malonamide polar heads and the extracted solutes, and surrounded by a hydrophobic shell made up of the extractant alkyl chains. The aggregates interact with one another through an attractive potential, leading to the formation of a third phase. This occurs with the splitting of the organic phase into a light phase composed mostly of diluent, and a heavy third phase containing highly concentrated extractant and solutes. In this article, we show that the aggregation (monomer concentration, domain of stability, and attractive potential between micelles) greatly depends on the nature of the extracted solute, whereas the size of aggregate (aggregation number) is only slightly influenced by this. We describe the extraction of water, nitric acid, neodymium nitrate and uranyl nitrate. Strongly polarizable species induce consistently large attraction potentials and a small stability domain for the dispersion of nano-droplets in the solvent. Highly polarizable ions such as lanthanides or uranyl induce more long-range attractive interactions than do protons. (authors)

  7. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    Science.gov (United States)

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  8. Solution of non-steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics

    Science.gov (United States)

    Senthamarai, R.; Jana Ranjani, R.

    2018-04-01

    In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.

  9. Stability and square integrability of derivatives of solutions of nonlinear fourth order differential equations with delay

    Directory of Open Access Journals (Sweden)

    Erdal Korkmaz

    2017-06-01

    Full Text Available Abstract In this paper, we give sufficient conditions for the boundedness, uniform asymptotic stability and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov’s second method. The results obtained essentially improve, include and complement the results in the literature.

  10. Stability of antibiotics and amino acids in two synthetic L-amino acid solutions commonly used for total parenteral nutrition in children

    DEFF Research Database (Denmark)

    Colding, H; Andersen, G E

    1978-01-01

    The stability and interaction at 29 degrees C of ampicillin, carbenicillin, gentamicin, and polymyxin B were examined in a common electrolyte solution, invertose darrow, and in two synthetic l-amino acid solutions, one commercial (vamin with fructose; Vitrum) and the other a neonatal preparation ...

  11. Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates.

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Medřický, Jan; Tesař, Tomáš; Kotlan, Jiří; Pala, Zdeněk; Lukáč, František; Illková, Ksenia; Hlína, Michal; Chráska, Tomáš; Sokołowski, P.; Curry, N.

    2017-01-01

    Roč. 26, č. 8 (2017), s. 1787-1803 ISSN 1059-9630 R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : hybrid plasma torch * microstructure * solution * precursor spraying * suspension spraying * thermal barrier * coatings (TBCs) * water-stabilized plasma * yttria-stabilized zirconia (YSZ) Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.488, year: 2016 https://link.springer.com/ article /10.1007/s11666-017-0622-x

  12. Stability of interbed for salt cavern gas storage in solution mining considering cusp displacement catastrophe theory

    Directory of Open Access Journals (Sweden)

    Le Yu

    2015-03-01

    Full Text Available Cusp displacement catastrophe theory can be introduced to propose a new method about instability failure of the interbed for gas storage cavern in bedded salt in solution mining. We can calculate initial fracture drawing pace of this interbed to obtain 2D and 3D gas storage shapes at this time. Moreover, Stability evaluation of strength reduction finite element method (FEM based on this catastrophe theory can used to evaluate this interbed stability after initial fracture. A specific example is simulated to obtain the influence of the interbed depth, cavern internal pressure, and cavern building time on stability safety factor (SSF. The results indicate: the value of SSF will be lower with the increase of cavern building time in solution mining and the increase of interbed depth and also this value remains a rise with the increase of cavern internal pressure Especially, we can conclude that the second-fracture of the interbed may take place when this pressure is lower than 6 MPa or after 6 days later of the interbed after initial fracture. According to above analysis, some effective measures, namely elevating the tube up to the top of the interbed, or changing the circulation of in-and-out lines, can be introduced to avoid the negative effects when the second-fracture of the interbed may occur.

  13. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    International Nuclear Information System (INIS)

    Korecka, Lucie; Jezova, Jana; Bilkova, Zuzana; Benes, Milan; Horak, Daniel; Hradcova, Olga; Slovakova, Marcela; Viovy, Jean-Louis

    2005-01-01

    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized

  14. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  15. The on-line synthesis of enzyme functionalized silica nanoparticles in a microfluidic reactor using polyethylenimine polymer and R5 peptide

    International Nuclear Information System (INIS)

    He Ping; Greenway, Gillian; Haswell, Stephen J

    2008-01-01

    A simple microfluidic reactor system is described for the effective synthesis of enzyme functionalized nanoparticles which offers many advantages over batch reactions, including excellent enzyme efficiencies. Better control of the process parameters in the microfluidic reactor system over batch based methodology enables the production of silica nanoparticles with the optimum size for efficient enzyme immobilization with long-term stability. The synthetic approach is demonstrated with glucose oxidase (GOD) and two different nucleation catalysts of similar molecular mass: the natural R5 peptide, and polyethylenimine (PEI) polymer. Near-quantitative immobilization of GOD in the nanoparticles is obtained using PEI; the immobilization is attributed to electrostatic interaction between PEI and GOD. This interaction, however, limits the mobility of the immobilized enzyme, producing orientation hindrance of the enzyme's active sites as compared to free GOD in solution. In contrast, when the GOD is immobilized inside the silica nanoparticles using R5, lower enzyme immobilization efficiencies are obtained compared to using PEI polymers; however, similar Michaelis-Menten kinetic parameters (i.e. Michaelis constant and turnover number) to those of free GOD are observed. Reactions were monitored in situ using simple, rapid, separation-free amperometric detection

  16. Stability Testing of Herbal Drugs: Challenges, Regulatory Compliance and Perspectives.

    Science.gov (United States)

    Bansal, Gulshan; Suthar, Nancy; Kaur, Jasmeen; Jain, Astha

    2016-07-01

    Stability testing is an important component of herbal drugs and products (HDPs) development process. Drugs regulatory agencies across the globe have recommended guidelines for the conduct of stability studies on HDPs, which require that stability data should be included in the product registration dossier. From the scientific viewpoint, numerous chemical constituents in an herbal drug are liable to varied chemical reactions under the influence of different conditions during its shelf life. These reactions can lead to altered chemical composition of HDP and consequently altered therapeutic profile. Many reports on stability testing of HDPs have appeared in literature since the last 10 years. A review of these reports reveals that there is wide variability in temperature (-80 to 100 °C), humidity (0-100%) and duration (a few hours-36 months) for stability assessment of HDPs. Of these, only 1% studies are conducted in compliance with the regulatory guidelines for stability testing. The present review is aimed at compiling all stability testing reports, understanding key challenges in stability testing of HDPs and suggesting possible solutions for these. The key challenges are classified as chemical complexity and biochemical composition variability in raw material, selection of marker(s) and influences of enzymes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Stability of silver nanoparticles (nAg) in aqueous solution: the role of particle size and water ionic strength

    CSIR Research Space (South Africa)

    Radebe, N

    2014-01-01

    Full Text Available biota which can arise from the particulates, dissolved species or both forms. However, there is limited and contradicting information on how the nanoparticle and aqueous solution characteristics influence nanoparticle stability and toxicity. This study...

  18. Improvement of fish freshness determination method by the application of amorphous freeze-dried enzymes.

    Science.gov (United States)

    Srirangsan, Paveena; Hamada-Sato, Naoko; Kawai, Kiyoshi; Watanabe, Manabu; Suzuki, Toru

    2010-12-08

    Alkaline phosphatase (ALP), nucleoside phosphorylase (NP), and xanthine oxidase (XOD) were used in a colorimetric method for evaluation of fish freshness based on the Ki value. Two enzyme mixtures, NP-XOD and ALP-NP-XOD, were prepared with a color developing agent, and stabilities of the enzymes were improved by freeze-drying with glass-forming additives, i.e., sucrose and sucrose-gelatin. As a result, a linear relationship was obtained between the Ki values determined by the developed colorimetric method and a conventional high-performance liquid chromatography with a high correlation coefficient of 0.997. All enzyme samples containing the additive(s) were amorphous, and higher enzymes activities were maintained compared to those freeze-dried without an additive. Sucrose-gelatin/enzyme mixtures showed higher glass transition temperature; consequently, the enzymes were better stabilized than the sucrose/enzyme formulations. Using the sucrose-gelatin/enzyme mixture, Ki values of fish meat could be accurately determined even after 6-month storage of the dried enzymes at 40 °C.

  19. THE EFFECTS OF 1‰ STABILIZED LIQUID SOLUTION OF CHLORINE DIOXIDE (ClO2 ON SOME FOOD-BORN BACTERIA

    Directory of Open Access Journals (Sweden)

    Sead Hadziabdić

    2014-03-01

    Full Text Available The conducted research gives an overview of the results obtained after the application of 1‰ solution of stabilized liquid chlorine dioxide on some food-born related bacteria - E. coli, Staphylococcus aureus, S. Enteritidis and C. jejuni.  For this purpose,  reference strains of the aforementioned pathogens in decimal dilutions were exposed to 1 ml of 1‰ solution of stabilized liquid chlorine dioxide for one hour. Reduction of bacteria counts per mililitre (CFU/ml has been noticed for all bacteria, with total reduction of C. jejuni and Staphylococcus aureus in the fourth (1:104, and for S. Enteritidis and E. coli in the sixth (1:106 decimal dilution. Key words: chlorine dioxide, E. coli, S. aureus, S. Enteritidis, C. jejuni

  20. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  1. Stability constant determinations for technetium (IV) complexation with selected amino carboxylate ligands in high nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omoto, Trevor; Wall, Nathalie A. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    2017-10-01

    The stability constants for Tc(IV) complexation with the ligands IDA, NTA, HEDTA, and DTPA were determined in varied nitrate concentrations using liquid-liquid extraction methods. The determined log β{sub 101} stability constants at 0.5 M NaNO{sub 3} were found to be 9.2±0.3, 10.3±0.3, and 15.3±0.3 for IDA, NTA, and HEDTA, respectively. The log β{sub 111} stability constant for DTPA was determined to be 22.0±0.6. These determined stability constants show a slight decrease in magnitude as a function of increasing NaNO{sub 3} concentration. These stability constants were used to model the total dissolution of Tc(IV) in acidic aqueous solutions in the presence of each ligand. The results of these predictive models indicate that amino carboxylic ligands have a high potential for increasing the aqueous dissolution of Tc(IV); at pH 2.3, 0.01 M ligand yield dissolved Tc(IV) concentrations of 1.42.10{sup -5} M, 1.33.10{sup -5} M, 6.07.10{sup -6} M, 9.65.10{sup -7} M, for DTPA, HEDTA, NTA, and IDA, respectively.

  2. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  3. Simultaneous and continuous stabilization of As and Pb in contaminated solution and soil by a ferrihydrite-gypsum sorbent.

    Science.gov (United States)

    Kameda, Kentaro; Hashimoto, Yohey; Wang, Shan-Li; Hirai, Yasumasa; Miyahara, Hidetaka

    2017-04-05

    For the increasing need of stabilization both cationic and anionic metal(loid)s simultaneously, we newly developed a metal sorbent (FIXALL), consisting mainly of ferrihydrite and gypsum. The objectives of this study were to determine the molecular mechanisms of Pb and As stabilization in an aqueous system and to examine a simultaneous and long-term (up to 754days) effect on Pb and As stabilization in an anthropogenically contaminated soil using the FIXALL sorbent. When the solution contained a low concentration of Pb (5mgL -1 ), the mechanisms of Pb removal by FIXALL were based chiefly on the formation of inner-sphere surface complex with ferrihydrite. In the highly concentrated Pb solution (1200mgL -1 ), contrarily, the removal of Pb by FIXALL was the direct consequence of the dissolution of gypsum and subsequent precipitation of PbSO 4 , which strengthens the drawback of low capability of ferrihydrite for Pb removal. Regardless of initial concentrations, the primary mechanism of FIXALL for As stabilization is attributed to the formation of inner-sphere surface complex with ferrihydrite. A contaminated soil study demonstrated that FIXALL could decrease the concentration of water soluble As and Pb simultaneously and continuously for 754days without notable changes in their chemical species and soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Purification and Characterization of Alkaline-Thermostable Protease Enzyme from Pitaya (Hylocereus polyrhizus Waste: A Potential Low Cost of the Enzyme

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-01-01

    Full Text Available The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent Km and Vmax of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0. The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe2+ and Zn2+, while protease activity was increased in the presence of Ca2+ and Mg2+ and Cu2+ by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA. The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.

  5. Effects of mannose, fructose, and fucose on the structure, stability, and hydration of lysozyme in aqueous solution

    DEFF Research Database (Denmark)

    Rahim, Abdoul; Peters, Günther H.J.; Jalkanen, Karl J.

    2013-01-01

    The bio-protective properties of monosaccharaides, namely mannose, fructose and fucose, on the stability and dynamical properties of the NMR determined hen egg-white lysozyme structure have been investigated by means of molecular dynamics simulations at room temperature in aqueous solution and in...... of the solvent and sugar distributions around lysozyme was used to investigate the interfacial solvent and sugar structure near the protein surface.......The bio-protective properties of monosaccharaides, namely mannose, fructose and fucose, on the stability and dynamical properties of the NMR determined hen egg-white lysozyme structure have been investigated by means of molecular dynamics simulations at room temperature in aqueous solution and in 7...... and 13 wt % concentrations of the three sugars. Results are discussed in the framework of the bio-protective phenomena. The three sugars show similar bio-protective behaviours at room temperature (300 K) in the concentration range studied as shown by the small RMSDs of the resulting MD structures from...

  6. Global stability, periodic solutions, and optimal control in a nonlinear differential delay model

    Directory of Open Access Journals (Sweden)

    Anatoli F. Ivanov

    2010-09-01

    Full Text Available A nonlinear differential equation with delay serving as a mathematical model of several applied problems is considered. Sufficient conditions for the global asymptotic stability and for the existence of periodic solutions are given. Two particular applications are treated in detail. The first one is a blood cell production model by Mackey, for which new periodicity criteria are derived. The second application is a modified economic model with delay due to Ramsey. An optimization problem for a maximal consumption is stated and solved for the latter.

  7. Optimization of Extraction of Novel Pectinase Enzyme Discovered in Red Pitaya (Hylocereus polyrhizus Peel

    Directory of Open Access Journals (Sweden)

    Nor Khanani Zohdi

    2013-11-01

    Full Text Available Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X1, extraction temperature (−15 to +25 °C, X2 and buffer pH (4.0 to 12.0, X3 on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg, temperature stability (78%, storage stability (88% and surfactant agent stability (83%. The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.

  8. Suzuki coupling reactions catalyzed by poly(N-ethyl-4-vinylpyridinium bromide stabilized palladium nanoparticles in aqueous solution

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available InIn this work, it was investigated to use of poly(N-ethyl-4-vinylpyridinium bromide stabilized palladium nanoparticles in the Suzuki reaction between phenylboronic acid and aryl halides in aqueous solution. The nanoparticles were isolated and re-used several times with low loss of activity.

  9. Design and stability study of an oral solution of amlodipine besylate for pediatric patients.

    Science.gov (United States)

    van der Vossen, A C; van der Velde, I; Smeets, O S N M; Postma, D J; Vermes, A; Koch, B C P; Vulto, A G; Hanff, L M

    2016-09-20

    Amlodipine is an antihypertensive agent recommended for the management of hypertension in children and adolescents. The commercially available tablets of 5 and 10mg do not provide the necessary flexibility in dosing needed for treating children. Our goal was to develop a pediatric oral solution of amlodipine, using a robust manufacturing process suitable for ex-tempora and larger scale production. The parameters API and preservative content, related substances, appearance and pH were studied under four different storage conditions. Samples were analyzed up to 12months. Microbiological quality was studied in an 18-week in-use test based on a two-times daily dosing schedule. The stability of the formulation was influenced by storage conditions and composition. A formulation containing amlodipine besylate, sucrose syrup and methyl paraben remained physically stable for 12months at 4°C with no loss of amlodipine content. Related substances increased during the study but remained below 0.5%. In-use stability was proven up to 18weeks. Storage under refrigerated conditions was necessary to prevent precipitation and to obtain an acceptable shelf-life. In conclusion, we have developed and validated an amlodipine oral solution, suitable for the pediatric population. This liquid formulation is preferred over manipulated commercial dosage forms or non-standardized extemporaneously compounded formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chemical Stability of Cd(II and Cu(II Ionic Imprinted Amino-Silica Hybrid Material in Solution Media

    Directory of Open Access Journals (Sweden)

    Buhani, Narsito, Nuryono, Eko Sri Kunarti

    2015-12-01

    Full Text Available Chemical stability of Cd(II and Cu(II ionic imprinted hybrid material of (i-Cd-HAS and i-Cu-HAS derived from silica modification with active compound (3-aminopropyl-trimethoxysilane (3-APTMS has been studied in solution media. Stability test was performed with HNO3 0.1 M (pH 1.35 to investigate material stability at low pH condition, CH3COONa 0.1 M (pH 5.22 for adsorption process optimum pH condition, and in the water (pH 9.34 for base condition. Material characteristics were carried out with infrared spectrophotometer (IR and atomic absorption spectrophotometer (AAS. At interaction time of 4 days in acid and neutral condition, i-Cd-HAS is more stable than i-Cu-HAS with % Si left in material 95.89 % (acid media, 43.82 % (close to neutral, and 9.39 % (base media.Keywords: chemical stability, amino-silica hybrid, ionic imprinting technique

  11. Chemical Stability of Cd(II and Cu(II Ionic Imprinted Amino-Silica Hybrid Material in Solution Media

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2012-02-01

    Full Text Available Chemical stability of Cd(II and Cu(II ionic imprinted amino-silica (HAS material of (i-Cd-HAS and i-Cu-HAS derived from silica modification with active compound (3-aminopropyl-trimethoxysilane (3-APTMS has been studied in solution media.  Stability test was performed with HNO3 0.1 M (pH 1.35 to investigate material stability at low pH condition, acetat buffer at pH 5.22 for adsorption process optimum pH condition, and in the water (pH 9.34 for base condition.  Material characteristics were carried out with infrared spectrophotometer (IR and atomic absorption spectrophotometer (AAS.  At interaction time of 4 days in acid and neutral condition, i-Cd-HAS is more stable than i-Cu-HAS with % Si left in material 95.89 % (acid media, 43.82 % (close to neutral, and 9.39 % (base media.Keywords: chemical stability, amino-silica hybrid, ionic imprinting technique.

  12. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane......) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode...

  13. Experimental measurements of U60 nanocluster stability in aqueous solution

    Science.gov (United States)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the

  14. Artifactual degradation of secondary amine-containing drugs during accelerated stability testing when saturated sodium nitrite solutions are used for humidity control.

    Science.gov (United States)

    Sluggett, Gregory W; Zelesky, Todd; Hetrick, Evan M; Babayan, Yelizaveta; Baertschi, Steven W

    2018-02-05

    Accelerated stability studies of pharmaceutical products are commonly conducted at various combinations of temperature and relative humidity (RH). The RH of the sample environment can be controlled to set points using humidity-controlled stability chambers or via storage of the sample in a closed container in the presence of a saturated aqueous salt solution. Herein we report an unexpected N-nitrosation reaction that occurs upon storage of carvedilol- or propranolol-excipient blends in a stability chamber in the presence of saturated sodium nitrite (NaNO 2 ) solution to control relative humidity (∼60% RH). In both cases, the major products were identified as the corresponding N-nitroso derivatives of the secondary amine drugs based on mass spectrometry, UV-vis and retention time. These degradation products were not observed upon storage of the samples at the same temperature and humidity but in the presence of saturated potassium iodide (KI) solution (∼60% RH) for humidity control. The levels of the N-nitrosamine derivatives varied with the pH of various NaNO 2 batches. The presence of volatile NOx species in the headspace of a container containing saturated NaNO 2 solution was confirmed via the Griess assay. The process for formation of the N-nitrosamine derivatives is proposed to involve volatilization of nitric oxide (NO) from aqueous nitrite solution into the headspace of the container followed by diffusion into the solid drug-excipient blend and subsequent reaction of NOx with the secondary amine. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Application of magnetic nanoparticles in smart enzyme immobilization.

    Science.gov (United States)

    Vaghari, Hamideh; Jafarizadeh-Malmiri, Hoda; Mohammadlou, Mojgan; Berenjian, Aydin; Anarjan, Navideh; Jafari, Nahideh; Nasiri, Shahin

    2016-02-01

    Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.

  16. Existence and Globally Asymptotic Stability of Equilibrium Solution for Fractional-Order Hybrid BAM Neural Networks with Distributed Delays and Impulses

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2017-01-01

    Full Text Available This paper investigates the existence and globally asymptotic stability of equilibrium solution for Riemann-Liouville fractional-order hybrid BAM neural networks with distributed delays and impulses. The factors of such network systems including the distributed delays, impulsive effects, and two different fractional-order derivatives between the U-layer and V-layer are taken into account synchronously. Based on the contraction mapping principle, the sufficient conditions are derived to ensure the existence and uniqueness of the equilibrium solution for such network systems. By constructing a novel Lyapunov functional composed of fractional integral and definite integral terms, the globally asymptotic stability criteria of the equilibrium solution are obtained, which are dependent on the order of fractional derivative and network parameters. The advantage of our constructed method is that one may directly calculate integer-order derivative of the Lyapunov functional. A numerical example is also presented to show the validity and feasibility of the theoretical results.

  17. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  18. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  19. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    Science.gov (United States)

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Stability of Hydromorphone-Ketamine Solutions in Glass Bottles, Plastic Syringes, and IV Bags for Pediatric Use.

    Science.gov (United States)

    Ensom, Mary H H; Decarie, Diane; Leung, Karen; Montgomery, Carolyne

    2009-03-01

    To evaluate the stability of mixtures of hydromorphone and ketamine in 0.9% sodium chloride (normal saline [NS]) after storage for up to 7 days at room temperature (25°C). The stability of 3 standard mixtures of hydromorphone and ketamine (hydromorphone 0.2 mg/mL + ketamine 0.2 mg/mL, hydromorphone 0.2 mg/mL + ketamine 0.6 mg/mL, and hydromorphone 0.2 mg/mL + ketamine 1.0 mg/mL) in NS was studied. Portions of each mixture were transferred to 3 brown glass bottles (100 mL), 3 plastic syringes (50 mL), and 3 IV bags (50 mL), which were then stored at room temperature (25°C). Physical characteristics, including pH, colour, and precipitation, were evaluated daily. Three 1.5-mL samples were collected from each bottle, syringe, and IV bag at baseline, at 24, 48, and 72 hours, and on day 7. Samples were analyzed in triplicate by a stability-indicating high-performance liquid chromatography method. Solutions were considered stable if they maintained 90% of the initial concentration of each drug. Samples from syringes and IV bags were subjected to standard sterility testing by incubation for 5 days in an enriched culture media. No notable changes in pH or colour were observed, and no precipitation occurred in any of the solutions. All formulations maintained more than 90% of the initial concentration of each drug on day 7. No bacterial growth was observed in any of the samples tested. Mixtures of hydromorphone and ketamine were stable for up 7 days at 25°C, and the sterility of the preparations was maintained. Because stability alone does not guarantee efficacy, it is recommended that clinical studies be conducted to evaluate the pharmacokinetics and pharmacodynamics of these formulations.

  1. A numerical technique for enhanced efficiency and stability for the solution of the nuclear reactor equation

    International Nuclear Information System (INIS)

    Khotylev, V.A.; Hoogenboom, J.E.

    1996-01-01

    The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)

  2. A numerical technique for enhanced efficiency and stability for the solution of the nuclear reactor equation

    Energy Technology Data Exchange (ETDEWEB)

    Khotylev, V.A.; Hoogenboom, J.E. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands)

    1996-07-01

    The paper presents new techniques for the solution of the nuclear reactor equation in diffusion approximation, that has enhanced efficiency and stability. The code system based on the new technique solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three dimensional geometry with reduced CPU time as compared to similar code systems of previous generations if well-posed neutronics problems are considered. Automated detection of ill-posed problem and selection of the appropriate numerical method makes the new code system capable of yielding a correct solution for wider range of problems without user intervention. (author)

  3. Remarks on boiling water reactor stability analysis. Pt. 2. Stability monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Carsten; Hennig, Dieter; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Energy; Schuster, Roland [Kernkraftwerk Brunsbuettel GmbH und Co. oHG, Brunsbuettel (Germany); Lukas, Bernard [EnBW Kernkraft GmbH, Philippsburg (Germany). Kernkraftwerk Philippsburg; Aguirre, Carlos [Kernkraftwerk Leibstadt AG, Aargau (Switzerland)

    2012-12-15

    In part 1 of this article we explained the partly relative complex solution manifold of the differential equations describing the stability behaviour of a BWR, in particular the coexistence of different types of solutions, such as the coexistence of unstable limit cycles and stable fixed points are of interest from the operational safety point of view. The part 2 is devoted to the surveillance of the stability behaviour. We summarize some stability monitoring methods and suggest to support stability tests by RAM-ROM analyses in order to reveal in advance the stability 'landscape' of the BWR in a parameter region high sensitive for appearing of linear unstable states. The analysis of an especial stability test, performed at NPP Leibstadt (KKL), makes it clear that the measurement results can only be interpreted by application of bifurcation analysis. (orig.)

  4. Existence and Asymptotic Stability of Periodic Solutions of the Reaction-Diffusion Equations in the Case of a Rapid Reaction

    Science.gov (United States)

    Nefedov, N. N.; Nikulin, E. I.

    2018-01-01

    A singularly perturbed periodic in time problem for a parabolic reaction-diffusion equation in a two-dimensional domain is studied. The case of existence of an internal transition layer under the conditions of balanced and unbalanced rapid reaction is considered. An asymptotic expansion of a solution is constructed. To justify the asymptotic expansion thus constructed, the asymptotic method of differential inequalities is used. The Lyapunov asymptotic stability of a periodic solution is investigated.

  5. Existence and stability of periodic solution in impulsive Hopfield neural networks with finite distributed delays

    International Nuclear Information System (INIS)

    Yang Xiaofan; Liao Xiaofeng; Evans, David J.; Tang Yuanyan

    2005-01-01

    In this Letter, we introduce a class of Hopfield neural networks with periodic impulses and finite distributed delays. We then derive a sufficient condition for the existence and global exponential stability of a unique periodic solution of the networks, which assumes neither the differentiability nor the monotonicity of the activation functions. Our condition extends and generalizes a known condition for the global exponential periodicity of continuous Hopfield neural networks with finite distributed delays

  6. Enzyme-Powered Pumps: From Fundamentals to Applications

    Science.gov (United States)

    Ortiz-Rivera, Isamar

    , covering also the effect of the thermodynamics of the enzymatic reaction in the pumping behavior, and (3) the applicability of enzyme pumps as fluid flow-based inhibitor assays and as drug delivery devices. Our findings in each of these areas, gets us closer to our ultimate goal, where we aim to identify the optimal conditions needed for enzyme micropump operation, and construct a general model that could accurately predict enzyme micropump behavior for any enzyme-substrate combination. The information aforementioned has been divided in four chapters. Chapter 1 gives a quick glance into the development of enzyme-powered micropumps: from the systems and observed behaviors inspiring this work, to the first systems that were developed. The stability, duration, and extent of fluid pumping of enzyme pumps in general, are also discussed, along with the optimization of the enzyme-pump design. This chapter aims to provide a general idea of the motivation behind the concept of "enzyme-powered pumps", what are "enzyme-powered pumps", and which are the key features that characterize these systems. Chapter 2 is an extensive analysis of the mechanisms of actuation proposed for enzyme-powered micropumps. This chapter not only covers the first attempts to understand how enzyme pumps work, but also explores further the behavior of urease-powered pumps, which fluid flow patterns cannot be completely predicted only by considering thermal or solutal gradients. The findings of these studies could allow us to rationally control fluid flow for the directed delivery of payloads at designated locations. In Chapters 3 and 4, our focus was to highlight the potential application of enzyme-powered pumps for sensing and delivery. Chapter 3 explores the use of enzyme pumps as fluid flow-based inhibitor assays. At fixed concentrations of an enzyme and its substrate, the presence of an inhibitor can be detected by monitoring the decrease in fluid flow speed. Using this principle, sensors for toxic

  7. Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives.

    Science.gov (United States)

    Xin, Xiaodong; He, Junguo; Li, Lin; Qiu, Wei

    2018-02-01

    This study investigated acidogenic and microbiological perspectives in the anaerobic fermentation (AF) of waste activated sludge (WAS) pre-hydrolyzed by enzymes catalysis. The enzymes catalysis boosted WAS biodegradability dramatically with nearly 8500 mg/L soluble chemical oxygen demand (SCOD) increase just within 4 h. The volatile fatty acids (VFAs) in the acidogenesis were accumulated effectively with over 3200 mg COD/L in 12 d, which reached 0.687 kWh/kg VSS electricity conversion efficiency (2.5 times higher than the control test). The fermentation process favored the compression of fermentative sludge with the distribution spread index (DSI) rising. The core populations of bacteria and archaea shifting enlarged the dissimilarity of communities at different fermentation stages. Increase of community diversity contributed to VFAs accumulation stability. Moreover, the intermediate bacterial community evenness favored VFAs accumulation potentially. The enzymes catalysis might be a promising solution for strengthening VFAs accumulation in the WAS fermentation with boosting the electricity conversion potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    Directory of Open Access Journals (Sweden)

    Jens Kvist Madsen

    2015-04-01

    Full Text Available Biosurfactants (BS are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ, the phospholipase Lecitase Ultra® (LT and the α-amylase Stainzyme® (SZ. Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction towards the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the protein well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries to SZ. Furthermore all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant proteins. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications.

  9. The stability of the strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1978-01-01

    The perturbation of the classical solution to a strong gravity model given by Salam and Strathdee is investigated. Using the Hamiltonian formalism it is shown that this static and spherically symmetric solution is stable under the odd parity perturbations provided some parameters in the solution are suitably restricted

  10. GLOBAL STABILITY AND PERIODIC SOLUTION OF A VIRAL DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Erhan COŞKUN

    2009-02-01

    Full Text Available Abstract:In this paper, we consider the classical viral dynamic mathematical model. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number, the HIV infection is cleared from the T-cell population; if , the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium can be unstable and periodic solutions may exist. We establish parameter regions for which is globally stable. Keywords: Global stability, HIV infection; CD4+ T cells; Periodic solution Mathematics Subject Classifications (2000: 65L10, 34B05 BİR VİRAL DİNAMİK MODELİN GLOBAL KARARLILIĞI VE PERİYODİK ÇÖZÜMÜ Özet: Bu makalede klasik viral dinamik modeli ele aldık. Modelin global dinamikleri oluşturuldu. Eğer temel üretim sayısı olur ise HIV enfeksiyonu T hücre nüfusundan çıkartılır, eğer olursa HIV enfeksiyonu çıkartılamaz. Parametre değerlerinin açık bir kümesi için kronik enfeksiyon dengesi kararsızdır ve periyodik çözüm oluşabilir. ın global kararlı olduğu parametre bölgeleri oluşturuldu. Anahtar Kelimeler: Global Kararlılık, HIV enfeksiyon, CD4+ T hücreler, Periyodik çözüm

  11. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    Science.gov (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  12. Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process

    Directory of Open Access Journals (Sweden)

    Solange Alves da Silva COSTA

    2015-01-01

    Full Text Available The instruments and materials used in health establishments are frequently exposed to microorganism contamination, and chemical products are used before sterilization to reduce occupational infection. We evaluated the antimicrobial effectiveness, physical stability, and corrosiveness of two commercial formulations of peracetic acid on experimentally contaminated specimens. Stainless steel specimens were contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, blood, and saliva and then immersed in a ready peracetic acid solution: 2% Sekusept Aktiv (SA or 0.25% Proxitane Alpha (PA, for different times. Then, washes of these instruments were plated in culture medium and colony-forming units counted. This procedure was repeated six times per day over 24 non-consecutive days. The corrosion capacity was assessed with the mass loss test, and the concentration of peracetic acid and pH of the solutions were measured with indicator tapes. Both SA and PA significantly eliminated microorganisms; however, the SA solution was stable for only 4 days, whereas PA remained stable throughout the experiment. The concentration of peracetic acid in the SA solutions decreased over time until the chemical was undetectable, although the pH remained at 5. The PA solution had a concentration of 500-400 mg/L and a pH of 2-3. Neither formulation induced corrosion and both reduced the number of microorganisms (p = 0.0001. However, the differences observed in the performance of each product highlight the necessity of establishing a protocol for optimizing the use of each one.

  13. Stability of antimicrobial activity of peracetic acid solutions used in the final disinfection process.

    Science.gov (United States)

    Costa, Solange Alves da Silva; Paula, Olívia Ferreira Pereira de; Silva, Célia Regina Gonçalves E; Leão, Mariella Vieira Pereira; Santos, Silvana Soléo Ferreira dos

    2015-01-01

    The instruments and materials used in health establishments are frequently exposed to microorganism contamination, and chemical products are used before sterilization to reduce occupational infection. We evaluated the antimicrobial effectiveness, physical stability, and corrosiveness of two commercial formulations of peracetic acid on experimentally contaminated specimens. Stainless steel specimens were contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, blood, and saliva and then immersed in a ready peracetic acid solution: 2% Sekusept Aktiv (SA) or 0.25% Proxitane Alpha (PA), for different times. Then, washes of these instruments were plated in culture medium and colony-forming units counted. This procedure was repeated six times per day over 24 non-consecutive days. The corrosion capacity was assessed with the mass loss test, and the concentration of peracetic acid and pH of the solutions were measured with indicator tapes. Both SA and PA significantly eliminated microorganisms; however, the SA solution was stable for only 4 days, whereas PA remained stable throughout the experiment. The concentration of peracetic acid in the SA solutions decreased over time until the chemical was undetectable, although the pH remained at 5. The PA solution had a concentration of 500-400 mg/L and a pH of 2-3. Neither formulation induced corrosion and both reduced the number of microorganisms (p = 0.0001). However, the differences observed in the performance of each product highlight the necessity of establishing a protocol for optimizing the use of each one.

  14. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes.

    Science.gov (United States)

    Menon, Binuraj R K; Latham, Jonathan; Dunstan, Mark S; Brandenburger, Eileen; Klemstein, Ulrike; Leys, David; Karthikeyan, Chinnan; Greaney, Michael F; Shepherd, Sarah A; Micklefield, Jason

    2016-10-04

    Flavin-dependent halogenase (Fl-Hal) enzymes have been shown to halogenate a range of synthetic as well as natural aromatic compounds. The exquisite regioselectively of Fl-Hal enzymes can provide halogenated building blocks which are inaccessible using standard halogenation chemistries. Consequently, Fl-Hal are potentially useful biocatalysts for the chemoenzymatic synthesis of pharmaceuticals and other valuable products, which are derived from haloaromatic precursors. However, the application of Fl-Hal enzymes, in vitro, has been hampered by their poor catalytic activity and lack of stability. To overcome these issues, we identified a thermophilic tryptophan halogenase (Th-Hal), which has significantly improved catalytic activity and stability, compared with other Fl-Hal characterised to date. When used in combination with a thermostable flavin reductase, Th-Hal can efficiently halogenate a number of aromatic substrates. X-ray crystal structures of Th-Hal, and the reductase partner (Th-Fre), provide insights into the factors that contribute to enzyme stability, which could guide the discovery and engineering of more robust and productive halogenase biocatalysts.

  15. First Integrals of Evolution Systems and Nonlinear Stability of Stationary Solutions for the Ideal Atmospheric, Oceanic Hydrodynamical and Plasma Models

    International Nuclear Information System (INIS)

    Gordin, V.A.

    1998-01-01

    First integral of the systems of nonlinear equations governing the behaviour of atmospheric, oceanic and MHD plasma models are determined. The Lyapunov stability conditions for the solutions under small initial disturbances are analyzed. (author)

  16. Stability of fortified cefazolin ophthalmic solutions prepared in artificial tears containing surfactant-based versus oxidant-based preservatives.

    Science.gov (United States)

    Rojanarata, Theerasak; Tankul, Junlathip; Woranaipinich, Chayanee; Potawanich, Paweena; Plianwong, Samarwadee; Sakulma, Sirinart; Saehuan, Choedchai

    2010-10-01

    The aim of this study was to investigate the stability of fortified cefazolin sodium ophthalmic solutions (50 mg mL⁻¹) extemporaneously prepared in commercial artificial tears containing 2 different types of preservatives, namely the surfactants and oxidants. Fortified cefazolin sodium solutions were prepared by reconstituting cefazolin for injection with sterile water and further diluted with Tears Naturale II or Natear, 2 commercial artificial tears containing polyquaternium-1 and sodium perborate, respectively, as preservatives. The solutions were then kept at room temperature (28°C) or in the refrigerator (4°C). During the 28-day period, the formulations were periodically examined for the physical appearance, pH, and the remaining drug concentrations. The antibacterial potency was evaluated as the minimal inhibitory concentration against Staphylococcus aureus strain ATCC 29923 by broth dilution technique. The activity of the preservatives was demonstrated by antimicrobial effectiveness tests. On day 28, the microbial contamination in the preparations was tested. The stability profiles of cefazolin solutions prepared in Tears Naturale II, Natear, and water were not different, but they were significantly influenced by the storage temperature. The refrigerated formulations showed no loss of drug and antibacterial potency as well as alteration of physical appearance and pH throughout the 28 days. In contrast, those kept at room temperature showed gradual change in color and odor. The degradation of drug exceeded 10% from day 3 and the decrease of antibacterial potency could be observed at week 3. All cefazolin solutions prepared in artificial tears retained the antimicrobial activity of preservatives and were free from bacterial and fungal contamination throughout the 28-day period of study. Cefazolin sodium ophthalmic solutions can be extemporaneously prepared in Tears Naturale II or Natear without the influence from different types of preservatives used in

  17. Substrate Specificity and Enzyme Recycling Using Chitosan Immobilized Laccase

    Directory of Open Access Journals (Sweden)

    Everton Skoronski

    2014-10-01

    Full Text Available The immobilization of laccase (Aspergillus sp. on chitosan by cross-linking and its application in bioconversion of phenolic compounds in batch reactors were studied. Investigation was performed using laccase immobilized via chemical cross-linking due to the higher enzymatic operational stability of this method as compared to immobilization via physical adsorption. To assess the influence of different substrate functional groups on the enzyme’s catalytic efficiency, substrate specificity was investigated using chitosan-immobilized laccase and eighteen different phenol derivatives. It was observed that 4-nitrophenol was not oxidized, while 2,5-xylenol, 2,6-xylenol, 2,3,5-trimethylphenol, syringaldazine, 2,6-dimetoxyphenol and ethylphenol showed reaction yields up 90% at 40 °C. The kinetic of process, enzyme recyclability and operational stability were studied. In batch reactors, it was not possible to reuse the enzyme when it was applied to syringaldazne bioconversion. However, when the enzyme was applied to bioconversion of 2,6-DMP, the activity was stable for eight reaction batches.

  18. Investigation into the temporal stability of aqueous standard solutions of psilocin and psilocybin using high performance liquid chromatography.

    Science.gov (United States)

    Anastos, N; Barnett, N W; Pfeffer, F M; Lewis, S W

    2006-01-01

    This paper reports an investigation into the temporal stability of aqueous solutions of psilocin and psilocybin reference drug standards over a period of fourteen days. This study was performed using high performance liquid chromatography utilising a (95:5% v/v) methanol: 10 mM ammonium formate, pH 3.5 mobile phase and absorption detection at 269 nm. It was found that the exclusion of light significantly prolonged the useful life of standards, with aqueous solutions of both psilocin and psilocybin being stable over a period of seven days.

  19. [Native, modified, and immobilized chymotrypsin in chaotropic media. Stabilization limits].

    Science.gov (United States)

    Panova, A A; Levitskiĭ, V Iu; Mozhaev, V V

    1994-07-01

    To stabilize alpha-chymotrypsin against irreversible thermal inactivation at high temperatures, methods of covalent modification and multi-point immobilization in combination with the addition of salting-in compounds were used. The upper limit of the protein stability proved to be the same for a combination of the modification and salting-in media and for each of these methods separately. The limit of stabilization reached by means of covalent immobilization is higher than the limit of stabilization reached by two other methods. The greatest stabilization of immobilized alpha-chymotrypsin by the salting-in media (a 10000 fold increase in the native enzyme's stability level) takes place only in the case of the protein with the minimum number of bonds with the support. Stabilization of the enzyme by these methods is explained in terms of the suppression of the conformational inactivation processes.

  20. PENGARUH DEGRADASI ENZIM PROTEOLITIK TERHADAP AKTIVITAS ANGIOTENSIN CONVERTING ENZYME INHIBITOR BEKASAM DENGAN Lactobacillus plantarum B1765 (The Effect of Degradation of Proteolitic Enzyme on Angiotensin Converting Enzyme Inhibitor Activity of Bekasam with Lactobacillus plantarum B1765

    Directory of Open Access Journals (Sweden)

    Prima Retno Wikandari

    2016-10-01

    Full Text Available This research studied the effect of digestive enzyme degradation on the Angiotensin Converting Enzyme Inhibitor (ACEI activity and the stability of bekasam peptide and ACEI activity. Water extract of bekasam was subjected to pepsin and trypsin. The stability of peptide was measured from the changes of peptide concentration before and after treatment by those enzymes. The stability of ACEI activity was measured by hypuric acid liberated from Hip-His-Leu as ACE substrate and determined by spectrophotometer. The results showed that proteolytic enzyme degradation did not affect the concentration of peptide (p>0,05 and the mean concentration 36.72. It was closely related with the ACEI activity that did not change significantly before and after digestion by pepsin and trypsin (p>0,05 and the mean ACEI activity was 70.73. It showed that ACEI activity of bekasam did not change by the degradation of digestive enzyme. Keywords: bekasam, fermented fish, peptides, ACEI activity ABSTRAK Penelitian ini bertujuan untuk mengkaji pengaruh degradasi enzim pencernaan proteolitik terhadap stabilitas peptida dan aktivitas Angiotensin Converting Enzyme Inhibitor (ACEI bekasam yang difermentasi dengan kultur starter Lactobacillus plantarum B1765. Terhadap ekstrak bekasam diberi perlakuan enzim proteolitik pepsin dan tripsin. Pengujian stabilitas peptida diukur dengan ada tidaknya perubahan jumlah peptida setelah perlakuan enzim menggunakan metode formol, sedangkan aktivitas ACEI dilakukan dengan mengetahui jumlah asam hipurat dari substrat Hip-His-Leu yang dibebaskan oleh ACE diukur dengan spektrofotometer. Hasil pengujian menunjukkan perlakuan enzim proteolitik tidak berpengaruh pada konsentrasi peptida dengan p>0,05 dengan nilai rata-rata konsentrasi peptida sebesar 36,72. Hal ini berkorelasi dengan aktivitas ACEI yang juga menunjukkan tidak ada pengaruh antara perlakuan sebelum dan setelah degradasi enzim (p>0,05 dengan rata-rata aktivitas ACEI sebesar 70,73. Hasil

  1. On parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations

    International Nuclear Information System (INIS)

    Phan Thanh An; Phan Le Na; Ngo Quoc Chung

    2004-05-01

    We describe a practical implementation for finding parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations based on Korenevskij and Mitropolskij's sufficient condition and our sufficient conditions. Numerical results show that all of these sufficient conditions are crucial in the implementation. (author)

  2. Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production.

    Science.gov (United States)

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Oh, You-Kwan; Shin, Hang-Sik; Jung, Kyung-Won

    2014-05-01

    In this study, a novel enzymatic pretreatment of Chlorella vulgaris for dark fermentative hydrogen production (DFHP) was performed using crude hydrolytic extracellular enzyme solution (CHEES) extracted from the H2 fermented effluent of food waste. It was found that the enzyme extracted at 52 h had the highest hydrolysis efficiency of microalgal biomass, resulting in the highest H2 yield of 43.1 mL H2/g dry cell weight along with shorter lag periods. Even though a high amount of VFAs was accumulated in CHEES, especially butyrate, the fermentative bacteria on the DFHP was not affected from product inhibition. It also appears that the presence of organic acids, especially lactate and acetate, contained in the CHEES facilitated enhancement of H2 production acted as a co-substrate. Therefore, all of the experimental results suggest that the enhancement of DFHP performance caused by CHEES has a dual role as the hydrolysis enhancer and the co-substrate supplier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays.

    Science.gov (United States)

    Li, Hongfei; Jiang, Haijun; Hu, Cheng

    2016-03-01

    In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    Science.gov (United States)

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase

    Science.gov (United States)

    Bassingthwaighte, James B.; Chinn, Tamara M.

    2013-01-01

    Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…

  6. Contemporary enzyme based technologies for bioremediation: A review.

    Science.gov (United States)

    Sharma, Babita; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-15

    The persistent disposal of xenobiotic compounds like insecticides, pesticides, fertilizers, plastics and other hydrocarbon containing substances is the major source of environmental pollution which needs to be eliminated. Many contemporary remediation methods such as physical, chemical and biological are currently being used, but they are not sufficient to clean the environment. The enzyme based bioremediation is an easy, quick, eco-friendly and socially acceptable approach used for the bioremediation of these recalcitrant xenobiotic compounds from the natural environment. Several microbial enzymes with bioremediation capability have been isolated and characterized from different natural sources, but less production of such enzymes is a limiting their further exploitation. The genetic engineering approach has the potential to get large amount of recombinant enzymes. Along with this, enzyme immobilization techniques can boost the half-life, stability and activity of enzymes at a significant level. Recently, nanozymes may offer the potential bioremediation ability towards a broad range of pollutants. In the present review, we have described a brief overview of the microbial enzymes, different enzymes techniques (genetic engineering and immobilization of enzymes) and nanozymes involved in bioremediation of toxic, carcinogenic and hazardous environmental pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin.

    Science.gov (United States)

    Araiza-Olivera, Daniela; Chiquete-Felix, Natalia; Rosas-Lemus, Mónica; Sampedro, José G; Peña, Antonio; Mujica, Adela; Uribe-Carvajal, Salvador

    2013-08-01

    In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO₂ molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi-enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F-actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F-actin, but not the monomeric globular G-actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F-actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies. © 2013 FEBS.

  8. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection

    Directory of Open Access Journals (Sweden)

    Luane Ferreira Garcia

    2016-08-01

    Full Text Available The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0. Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0 was linear in a broad concentration range, 1 to 120 µM (r = 0.99, showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  9. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection.

    Science.gov (United States)

    Ferreira Garcia, Luane; Ribeiro Souza, Aparecido; Sanz Lobón, Germán; Dos Santos, Wallans Torres Pio; Alecrim, Morgana Fernandes; Fontes Santiago, Mariângela; de Sotomayor, Rafael Luque Álvarez; de Souza Gil, Eric

    2016-08-13

    The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0). Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0) was linear in a broad concentration range, 1 to 120 µM (r = 0.99), showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  10. Ultrasound in Enzyme Activation and Inactivation

    Science.gov (United States)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  11. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    Science.gov (United States)

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  12. Diluting ferric carboxymaltose in sodium chloride infusion solution (0.9% w/v) in polypropylene bottles and bags: effects on chemical stability.

    Science.gov (United States)

    Philipp, Erik; Braitsch, Michaela; Bichsel, Tobias; Mühlebach, Stefan

    2016-01-01

    This study was designed to assess the physicochemical stability of colloidal ferric carboxymaltose solution (Ferinject) when diluted and stored in polypropylene (PP) bottles and bags for infusion. Two batches of ferric carboxymaltose solution (Ferinject) were diluted (500 mg, 200 mg and 100 mg iron in 100 mL saline) in PP bottles or bags under aseptic conditions. The diluted solutions were stored at 30°C and 75%±5% relative humidity (rH) for 72 h, and samples were withdrawn aseptically at preparation and after 24 h, 48 h and 72 h. Multiple parameters were used to test stability-related measures (pH, total iron and iron (II) content, molecular weight range determination, microbial contamination and particles count ≥10 μm). Overall, Ferinject diluted in 0.9% (w/v) NaCl solution and stored in PP bottles and bags was stable within the specifications for the complex and the acceptability limits set for all assays. In both containers, total iron content remained stable, within 10% of the theoretical iron content, and levels of iron (II) remained far below the threshold of acceptability. All preparations were free from sediments, particle numbers were acceptable and there was no microbial contamination. The molecular weight distribution and polydispersity index were also acceptable. Under the tested experimental conditions, colloidal ferric carboxymaltose solution (Ferinject) diluted in saline in PP infusion bottles or bags demonstrated physical and chemical stability for up to 72 h at 30°C and 75% rH. Because of the lack of additional clinical data, when using ferric carboxymaltose, physicians/pharmacists should refer to the dilution and storing recommendations given in the product's summary of product characteristics.

  13. Global Exponential Stability of Positive Almost Periodic Solutions for a Fishing Model with a Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2014-01-01

    Full Text Available This paper is concerned with a nonautonomous fishing model with a time-varying delay. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive almost periodic solutions of the model with almost periodic coefficients and delays. Moreover, an example and its numerical simulation are given to illustrate the main results.

  14. Estimation of free acid content in lanthanide salt solution used for pH-potentiometric determination of their stability constants with organic ligands

    International Nuclear Information System (INIS)

    Zheltvaj, I.I.; Tishchenko, M.A.

    1985-01-01

    To improve the pH-potentiometric method for determining complex stability constants the possibility of alkalimetric titration of a free acid in the lanthanide perchlorate solution after binding metal ions by disodium salt of ethylene-diamine-tetraacetic acid is studied. The stability constants were determined from the difference between the total acid content after complexon addition and doubled metal cation content in the solution which has been preliminarily determined by the complexonometric method. It is shown that the alkaline (NaOH) equivalent quantities spent for free acid titration either in the absence or presence of the complexon is different. With increase of free acid content in the solution the difference in determinations with complexon and without it is somewhat reduced. Thus, the use of complexon contributes to a higher accuracy in determining the free acid, and in the first place in case of minor contents

  15. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  16. Stability of therapeutic albumin solutions used for molecular adsorbent recirculating system-based liver dialysis.

    Science.gov (United States)

    De Bruyn, Tom; Meijers, Björn; Evenepoel, Pieter; Laub, Ruth; Willems, Ludo; Augustijns, Patrick; Annaert, Pieter

    2012-01-01

    Mounting evidence suggests beneficial effects of albumin dialysis-based liver support in patients suffering from acute-on-chronic liver failure. Molecular adsorbent recirculating system (MARS) is a nonbiological liver support device, based on the exchange of albumin-bound toxins between the patient's blood and a 20% human serum albumin solution in a secondary circuit. Bound toxins are continuously removed from the circulating albumin by exposure to activated charcoal and an ion-exchange resin. The aim of the present in vitro study was to determine the impact of exposure to charcoal and resin on the ligand binding properties of albumins, containing various levels of stabilizers and obtained from different suppliers (Baxter, CAF-DCF [Red Cross], and Sigma-Aldrich). Albumin binding properties were assessed by measuring equilibrium binding properties of warfarin, diazepam, and salicylate before and after incubation (for up to 7 h) with adsorbing materials; albumin-associated esterase-like activities were also determined. Notable changes in albumin binding upon incubation with adsorbing materials were only observed when using warfarin as a ligand. Affinity of warfarin for the Baxter and Sigma albumins showed a pronounced decrease (higher K(d) ) after the 1-7-h exposure to charcoal or resin. In the absence of adsorbing materials, similar effects were found, indicating that incubation time per se affects albumin binding properties. Following exposure to resin, Baxter albumin binding capacity (B(max)) increased about twofold. For albumin obtained from CAF-DCF, binding affinity and capacity for warfarin were constant under all conditions tested. Esterase-like activities associated with these albumins were either maintained or enhanced (up to 2.5-fold in case of Sigma albumin) following 7-h incubations with adsorbing materials. Our data suggest limited direct influence of the presence of stabilizers in therapeutic albumin solutions on baseline binding properties of human

  17. Protoplast preparation from monokaryotic mycelium of Pleurotus sajor-caju using lysing enzyme

    International Nuclear Information System (INIS)

    Hassan Hamdani Mutaat; Mat Rasol Awang

    2004-01-01

    The objective of this study was to determine the optimum parameters of the factors influencing protoplast isolation from monokaryotic mycelium of Pleurotus sajor-caju using lysing enzyme from Trichoderma harzianurm. The study was conducted by manipulating the variables of the factors affecting protoplast isolation, such as age of mycelium culture, period for lysing of mycelium, concentration of lysing enzyme and concentration of osmotic stabilizer. The highest protoplast yield of 8.3 x 104 protoplast/ml was achieved when a 3-day P. sajor-caju mycelium, cultured statically, was incubated for 3 hours in a lytic mixture containing 7.5 mg/ml lysing enzyme and 1.2 M ammonium sulfate as osmotic stabilizer. This protoplast yield, however, is insufficient for regeneration and protoplast fusion works. (Author)

  18. Effect of finishing and polishing on the color stability of a composite resin immersed in staining solutions

    Directory of Open Access Journals (Sweden)

    Maiara Justo Polli

    2015-01-01

    Full Text Available Objective: To evaluate the influence of finishing/polishing methods and staining solutions using different immersion periods on the color stability of a microhybrid composite resin. Materials and Methods: Ninety specimens were fabricated using a stainless steel mold and polyester strips. The samples were randomly divided into five groups according to the finishing and polishing performed: Control group (no surface treatment was performed, Diamond Pro group, Diamond burs group, Enhance group, and SiC paper group. After finishing and polishing, six samples from each group were immersed in coffee, red wine, or water for 30 days. The color measurements were obtained using digital photography before immersion and after 7, 15, and 30 days of immersion. The red, green, and blue values provided by the Adobe Photoshop software were converted into CIELab values. A three-way analysis of variance and Tukey's test were used for statistical analysis (P ≤ 0.05. Results: The finishing and polishing methods, staining solutions, immersion times, and their interaction had statistically significant effects on the color change (P = 0.00. Coffee and red wine caused intense staining. Among the polishing methods, the highest color change value was observed in the control group (P < 0.05 and the Diamond Pro disks provided the most stain-resistant surfaces (P ≤ 0.05. Conclusion: The finishing and polishing method, staining solution, and immersion time influences the color stability. Finishing and polishing should be applied to obtain a more stain-resistant surface.

  19. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    the influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...... ethanol, the faster the inactivation. The reason could be the hydrophobic interaction of ethanol on the tertiary structure of the enzyme protein. The thermostable mixture was more tolerant to temperature and ethanol and could therefore be a potential candidate for recycling after distillation....

  20. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0solutions and the gaseous oxygen by thermal gravimetric analysis at 600 degrees Celsius has shown that these solutions have not a ideal behaviour. A thermodynamic model where the point defects of solutions are included describe them the best. It becomes then possible to know the variations of the concentrations of the point defects in terms of temperature, oxygen pressure and zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  1. Effect of morin on pharmacokinetics of piracetam in rats, in vitro enzyme kinetics and metabolic stability assay using rapid UPLC method.

    Science.gov (United States)

    Sahu, Kapendra; Shaharyar, Mohammad; Siddiqui, Anees A

    2013-07-01

    The aim of this study was to investigate the effect of Morin on the pharmacokinetics of Piracetam in rats, in vitro enzyme kinetics and metabolic stability (high throughput) studies using human liver microsomes in UPLC. For pharmacokinetics studies, male Wistar rats were pretreated with Morin (10 mg/kg) for one week and on the last day, a single dose of Piracetam (50 mg/kg) was given orally. In another group, both Morin and Piracetam were co-administered to evaluate the acute effect of Morin on Piracetam. The control group received oral distilled water for one week and administered with Piracetam on the last day. As Morin is an inhibitor of P- Glycoprotein (P-gp) and CYP 3A, it was anticipated to improve the bioavailability of Piracetam. Amazingly, relative to control, the areas under the concentration time curve and peak plasma concentration of Piracetam were 1.50- and 1.45-fold, respectively, greater in the Morin-pretreated group. However, co-administration of Morin had no significant effect on these parameters. Apart from the aforementioned merits, the results of this study are further confirmed by clinical trials; Piracetam dosages should be adjusted to avoid potential drug interaction when Piracetam is used clinically in combination with Morin and Morin-containing dietary supplements. The in vitro enzyme kinetics were performed to determined km, Vmax & CLins . The in vitro metabolic stability executed for the estimation of metabolic rate constant and half-life of Piracetam. These studies also extrapolate to in vivo intrinsic hepatic clearance (Clint, in vivo ) from in vitro intrinsic hepatic clearance (CLint, in vitro ). Copyright © 2012 John Wiley & Sons, Ltd.

  2. Enzyme-lipid complex. Koso-shishitsu fukugotai

    Energy Technology Data Exchange (ETDEWEB)

    Okahata, Y; Ijiro, K [Tokyo Inst. of Technology., Tokyo (Japan)

    1990-08-01

    Enzyme, as unstable against organic solvent, being to be designed not to be quenched, organic solvent was tried to be made soluble by making enzyme-lipid complex. By mixing aqueous solution of enzyme with aqueous dispersion liquid of lipid, white powder was obtaind. Enzyme has monomolecular film through which reaction substance passes. Lipase-lipid complex, of which monomolecular film is qualified by hydrogen and other soft linkages, homogeneously dissolves in organic solvent and has a high activity, not given by the conventional qualification method. That activity being applied, asymmetrical esterificating reaction of alcohol could be done in organic solvent, containing high concentration reactive substance. While substance selectivity, not known in water, was obtained. Through reaction of amine with amino acid dielectrics in isooctane solvent by {alpha}-chymotrypsin-lipid complex, was indicated an exact substance selectivity. Enzyme-lipid complex dissolving in organic solvent, monomolecular film can be formed without being quenched on aqueous surface, which film can be utilized as sensor film. 10 refs., 5 figs. 1 tab.

  3. Stability of 10 mg/mL cefuroxime solution for intracameral injection in commonly used polypropylene syringes and new ready-to-use cyclic olefin copolymer sterile vials using the LC-UV stability-indicating method.

    Science.gov (United States)

    Feutry, Frédéric; Simon, Nicolas; Genay, Stéphanie; Lannoy, Damien; Barthélémy, Christine; Décaudin, Bertrand; Labalette, Pierre; Odou, Pascal

    2016-01-01

    Injecting intracameral cefuroxime has been found beneficial in reducing the risk of postoperative endophthalmitis but its use has been limited through a lack of approved marketing and of ready-to-use single-units as well as the problem of aseptic compounding. Our aim was to assess a new automated primary packaging system which should ensure a higher level of sterility, thanks to its closed, sterile, ready-to-use polymer vial called "Crystal® vial". The chemical stability of a 10 mg/mL cefuroxime solution was compared in 1 mL Crystal® vials and 1 mL Luer-lock polypropylene syringes (actual reference) to eliminate any potential and specific interactions with its cyclic olefin copolymer (COC) body and elastomer stopper. Cefuroxime solution was introduced into vials and syringes and stored at -20 °C, +5 °C and +25°C/60% Relative Humidity. Cefuroxime concentration and the relative amount of the main degradation product (descarbamoyl-cefuroxime) were both determined by an HPLC/UV method indicating stability. Solutions were considered steady if the concentration remained at over 90% of the initial value. In the adapted storage conditions, the evolution of osmolality, pH and sterility was assessed. Stability profiles were identical between vials and syringes in all storage and temperature conditions. The solution was stable (cefuroxime concentration, pH and osmolality) and still sterile for 365 days at -20°C. The concentration fell below 90% after 21 days at +5 °C and after 16 h at +25°C/60%s relative humidity. The COC and thermoplastic elastomer of the vials had no impact on the degradation process confirming its possible use for a ready-to-use cefuroxime solution single-unit dose.

  4. Effect of staining solutions and repolishing on color stability of direct composites

    Directory of Open Access Journals (Sweden)

    Fabrício Mariano Mundim

    2010-06-01

    Full Text Available OBJECTIVES: The purpose of this study was to assess the color change of three types of composite resins exposed to coffee and cola drink, and the effect of repolishing on the color stability of these composites after staining. MATERIALS AND METHODS: Fifteen specimens (15 mm diameter and 2 mm thick were fabricated from microhybrid (Esthet-X; Dentsply and Filtek Z-250; 3M ESPE and high-density hybrid (Surefil; Dentsply composites, and were finished and polished with aluminum oxide discs (Sof-Lex; 3M ESPE. Color of the specimens was measured according to the CIE L*a*b* system in a refection spectrophotometer (PCB 6807; BYK Gardner. After baseline color measurements, 5 specimens of each resin were immersed in different staining solutions for 15 days: G1 - distilled water (control, G2 - coffee, G3 - cola soft drink. Afterwards, new color measurement was performed and the specimens were repolished and submitted to new color reading. Color stability was determined by the difference (ΔE between the coordinates L*, a*, and b* obtained from the specimens before and after immersion into the solutions and after repolishing. RESULTS: There was no statistically signifcant difference (ANOVA, Tukey's test; p>0.05 among the ΔE values for the different types of composites after staining or repolishing. For all composite resins, coffee promoted more color change (ΔE>3.3 than distilled water and the cola soft drink. After repolishing, the ΔE values of the specimens immersed in coffee decreased to clinically acceptable values (ΔE<3.3, but remained signifcantly higher than those of the other groups. CONCLUSIONS: No signifcant difference was found among composite resins or between color values before and after repolishing of specimens immersed in distilled water and cola. Immersing specimens in coffee caused greater color change in all types of composite resins tested in this study and repolishing contributed to decrease staining to clinically acceptable

  5. Hyperthermophilic enzymes - stability, activity and implementation strategies for high temperature applications

    NARCIS (Netherlands)

    Unsworth, L.D.; Oost, van der J.; Koutsopoulos, S.

    2007-01-01

    Current theories agree that there appears to be no unique feature responsible for the remarkable heat stability properties of hyperthermostable proteins. A concerted action of structural, dynamic and other physicochemical attributes are utilized to ensure the delicate balance between stability and

  6. Engineering of metabolic pathways by artificial enzyme channels

    Directory of Open Access Journals (Sweden)

    Marlene ePröschel

    2015-10-01

    Full Text Available Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article we will first discuss the supramolecular organization of enzymes in living systems and secondly summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products.

  7. Improving catalase-based propelled motor endurance by enzyme encapsulation

    Science.gov (United States)

    Simmchen, Juliane; Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, Maria

    2014-07-01

    Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed.Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02459a

  8. Probing the 3-D Structure, Dynamics, and Stability of Bacterial Collagenase Collagen Binding Domain (apo- versus holo-) by Limited Proteolysis MALDI-TOF MS

    Science.gov (United States)

    Sides, Cynthia R.; Liyanage, Rohana; Lay, Jackson O.; Philominathan, Sagaya Theresa Leena; Matsushita, Osamu; Sakon, Joshua

    2012-03-01

    Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound.

  9. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties.

    Science.gov (United States)

    Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L

    2015-10-01

    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.

  10. activity of enzyme trypsin immobilized onto macroporous poly(epoxy

    African Journals Online (AJOL)

    dell

    consequential effects of covalent immobilization. EXPERIMENTAL. Materials .... immersed into water bath. ... storage stability of the enzyme was studied ... pore size range of about 10 to 150 µm. ... figures, the differences in activities (slopes.

  11. Stability of Benzotriazole Derivatives with Free Cu, Zn, Co and Metal-Containing Enzymes: Binding and Interaction of Methylbenzotriazoles with Superoxide Dismutase and Vitamin B12

    Science.gov (United States)

    Abudalo, R. A.; AbuDalo, M. A.; Hernandez, M. T.

    2018-02-01

    Benzotriazole derivatives form very strong bonds with transition metals, and are the most widely used type of industrial corrosion inhibitor. Some benzotriazole derivatives have been implicated as hormone regulators which also carry the ability to induce uncoupling responses or otherwise inhibit respiration processes in some microorganisms. However, the mechanisms associated with benzotriazole toxicity and inhibition are unknown. Using Differential Pulse Polarography, the stability constants of commercially significant corrosion inhibitors, 4-and 5-methylbenzotriazole, coordinated with free Cu (II) and Co (III), were determined to be 1015 and 108, respectively. Polarographic analyses were extended to confirm that methylbenzotriazole also binds the copper center(s) in the ubiquitous enzyme superoxide dismutase, and the Corrin site in the coenzyme cobalamin (vitamin B12). These results suggest that the metal-chelating ability of this unique class of compounds may confer inhibition to certain enzyme systems.

  12. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties.

    Science.gov (United States)

    Del Caño, Rafael; Mateus, Lucia; Sánchez-Obrero, Guadalupe; Sevilla, José Manuel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2017-11-01

    The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Armored Urease: Enzyme-Bioconjugated Poly(acrylamide) Hydrogel as a Storage and Sensing Platform.

    Science.gov (United States)

    Kunduru, Konda R; Kutcherlapati, S N Raju; Arunbabu, Dhamodaran; Jana, Tushar

    2017-01-01

    Jack bean urease is an important enzyme not only because of its numerous uses in medical and other fields but also because of its historical significance-the first enzyme to be crystallized and also the first nickel metalloenzyme. This enzyme hydrolyzes urea into ammonia and carbon dioxide; however, the stability of this enzyme at ambient temperature is a bottleneck for its applicability. To improve urease stability, it was immobilized on different substrates, particularly on polymeric hydrogels. In this study, the enzyme was coupled covalently with poly(acrylamide) hydrogel with an yield of 18μmol/cm 3 . The hydrogel served as the nanoarmor and protected the enzyme against denaturation. The enzyme immobilized on the polymer hydrogel showed no loss in activity for more than 30 days at ambient temperature, whereas free enzyme lost its activity within a couple of hours. The Michaelis-Menten constant (K m ) for free and immobilized urease were 0.0256 and 0.2589mM, respectively, on the first day of the study. The K m of the immobilized enzyme was approximately 10 times higher than that of the free enzyme. The hydrogel technique was also used to prepare light diffracting polymerized colloidal crystal array in which urease enzyme was covalently immobilized. This system was applied for the detection of mercury (Hg 2+ ) with the lower limit as 1ppb, which is below the maximum contaminant limit (2ppb) for mercury ions in water. The experimental details of these studies are presented in this chapter. © 2017 Elsevier Inc. All rights reserved.

  14. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Sui, Xiaoyu, E-mail: suixiaoyu@outlook.com; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  15. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    International Nuclear Information System (INIS)

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-01

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  16. Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model

    International Nuclear Information System (INIS)

    Arai, T.; Cohen, M.H.

    1980-01-01

    By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state

  17. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K. (Michigan)

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  18. Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors

    International Nuclear Information System (INIS)

    Su, Bo-Yuan; Chu, Sheng-Yuan; Juang, Yung-Der; Liu, Ssu-Yin

    2013-01-01

    Graphical abstract: Mg-doped IGZO TFTs showed improved TFT performance and thermal stability due to fewer oxygen deficiencies and less interface electron trapping. Highlights: •We fabricated Mg-doped IGZO TFTs with improved performance using solution-process. •Mg doping reduced the oxygen deficiencies and less interface electron trapping of a-IGZO films. •Mg dope-TFT showed high mobility of 2.35 cm 2 /V s and an on–off current ratio over 10 6 . •For better device stability (gate-bias and thermal stability) was proved. -- Abstract: The effects of magnesium (Mg) doping (molar ratio Mg/Zn = (0–10 at.%)) on solution-processed amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) grown using the sol–gel method are investigated. TFT devices fabricated with Mg-doped films showed an improved field-effect mobility of 2.35 cm 2 /V s and a subthreshold slope (S) of 0.42 V/dec compared to those of an undoped a-IGZO TFT (0.73 cm 2 /V s and 0.74 V/dec, respectively), and an on–off current ratio of over 10 6 . Moreover, the 5 at.% Mg-doped TFT device showed improved gate bias and thermal stability due to fewer oxygen deficiencies, smaller carrier concentration, and less interface electron trapping in the a-IGZO films

  19. Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Bo-Yuan [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Juang, Yung-Der [Department of Materials Science, National University of Tainan, Tainan 700, Taiwan (China); Liu, Ssu-Yin [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2013-12-15

    Graphical abstract: Mg-doped IGZO TFTs showed improved TFT performance and thermal stability due to fewer oxygen deficiencies and less interface electron trapping. Highlights: •We fabricated Mg-doped IGZO TFTs with improved performance using solution-process. •Mg doping reduced the oxygen deficiencies and less interface electron trapping of a-IGZO films. •Mg dope-TFT showed high mobility of 2.35 cm{sup 2}/V s and an on–off current ratio over 10{sup 6}. •For better device stability (gate-bias and thermal stability) was proved. -- Abstract: The effects of magnesium (Mg) doping (molar ratio Mg/Zn = (0–10 at.%)) on solution-processed amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) grown using the sol–gel method are investigated. TFT devices fabricated with Mg-doped films showed an improved field-effect mobility of 2.35 cm{sup 2}/V s and a subthreshold slope (S) of 0.42 V/dec compared to those of an undoped a-IGZO TFT (0.73 cm{sup 2}/V s and 0.74 V/dec, respectively), and an on–off current ratio of over 10{sup 6}. Moreover, the 5 at.% Mg-doped TFT device showed improved gate bias and thermal stability due to fewer oxygen deficiencies, smaller carrier concentration, and less interface electron trapping in the a-IGZO films.

  20. Thermal Stabilization of Biologics with Photoresponsive Hydrogels.

    Science.gov (United States)

    Sridhar, Balaji V; Janczy, John R; Hatlevik, Øyvind; Wolfson, Gabriel; Anseth, Kristi S; Tibbitt, Mark W

    2018-03-12

    Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (β-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. β-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex

  1. Chaperone-like activities of α-synuclein: α-Synuclein assists enzyme activities of esterases

    International Nuclear Information System (INIS)

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo; Doohun Kim, T.

    2006-01-01

    α-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of α-synuclein has not yet been known. Here we have shown that α-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of α-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with α-synuclein. Our results indicate that α-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo

  2. Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency.

    Science.gov (United States)

    Sindhu, Raveendran; Binod, Parameswaran; Madhavan, Aravind; Beevi, Ummalyma Sabeela; Mathew, Anil Kuruvilla; Abraham, Amith; Pandey, Ashok; Kumar, Vinod

    2017-12-01

    α-Amylases is one of the most important industrial enzyme which contributes to 25% of the industrial enzyme market. Though it is produced by plant, animals and microbial source, those from microbial source seems to have potential applications due to their stability and economic viability. However a large number of α-amylases from different sources have been detailed in the literature, only few numbers of them could withstand the harsh industrial conditions. Thermo-stability, pH tolerance, calcium independency and oxidant stability and starch hydrolyzing efficiency are the crucial qualities for α-amylase in starch based industries. Microbes can be genetically modified and fine tuning can be done for the production of enzymes with desired characteristics for specific applications. This review focuses on the native and recombinant α-amylases from microorganisms, their heterologous production and the recent molecular strategies which help to improve the properties of this industrial enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Asymptotic stability of shear-flow solutions to incompressible viscous free boundary problems with and without surface tension

    Science.gov (United States)

    Tice, Ian

    2018-04-01

    This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.

  4. Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

    Science.gov (United States)

    Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub

    2012-02-14

    Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

  5. Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications.

    Science.gov (United States)

    Sivapragasam, Magaret; Moniruzzaman, Muhammad; Goto, Masahiro

    2016-08-01

    The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Single-enzyme analysis in a droplet-based micro- and nanofluidic system

    NARCIS (Netherlands)

    Arayanarakool, Rerngchai; Shui, Lingling; Kengen, Servé W.M.; van den Berg, Albert; Eijkel, Jan C.T.

    2013-01-01

    The kinetic activity of individual enzyme molecules was determined in aqueous droplets generated in a nano- and microfluidic device. To avoid high background noise, the enzyme and substrate solution was confined into femtoliter carriers, achieving high product concentrations from single-molecule

  7. Effects of pH on the stability of cyanidin and cyanidin 3-O-β-glucopyranoside in aqueous solution

    Directory of Open Access Journals (Sweden)

    Rakić Violeta P.

    2015-01-01

    Full Text Available The colour variation, colour intensity and stability at various pH values (2.0, 4.0, 7.0 and 9.0 of cyanidin 3-O-β-glucopyranoside (Cy3Glc and its aglycone cyanidin was investigated during a period of 8 hours storage at 25ºC. Our data showed that pH of aqueous solution had impact on spectroscopic profile of cyanidin and Cy3Glc. Beginning with the most acidic solutions, increasing the pH induce bathochromic shifts of absorbance maximum in the visible range for all examined pH values (with the exception pH 4.0 for cyanidin, while the presence of the 3-glucosidic substitution induce hypsochromic shift. Compared to cyanidin, Cy3Glc has higher colour intensity and higher stability in the whole pH range, except at pH 7.0. The 3-glucosidic substitution influences on the colour intensity of Cy3Glc in the alkaline region. After 8-hour incubation of Cy3Glc and cyanidin at pH 2.0 and 25 ºC, 99% of Cy3Glc and only 27% of cyanidin remained unchanged.

  8. Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates

    Science.gov (United States)

    Crivori, Patrizia; Zamora, Ismael; Speed, Bill; Orrenius, Christian; Poggesi, Italo

    2004-03-01

    A number of computational approaches are being proposed for an early optimization of ADME (absorption, distribution, metabolism and excretion) properties to increase the success rate in drug discovery. The present study describes the development of an in silico model able to estimate, from the three-dimensional structure of a molecule, the stability of a compound with respect to the human cytochrome P450 (CYP) 3A4 enzyme activity. Stability data were obtained by measuring the amount of unchanged compound remaining after a standardized incubation with human cDNA-expressed CYP3A4. The computational method transforms the three-dimensional molecular interaction fields (MIFs) generated from the molecular structure into descriptors (VolSurf and Almond procedures). The descriptors were correlated to the experimental metabolic stability classes by a partial least squares discriminant procedure. The model was trained using a set of 1800 compounds from the Pharmacia collection and was validated using two test sets: the first one including 825 compounds from the Pharmacia collection and the second one consisting of 20 known drugs. This model correctly predicted 75% of the first and 85% of the second test set and showed a precision above 86% to correctly select metabolically stable compounds. The model appears a valuable tool in the design of virtual libraries to bias the selection toward more stable compounds. Abbreviations: ADME - absorption, distribution, metabolism and excretion; CYP - cytochrome P450; MIFs - molecular interaction fields; HTS - high throughput screening; DDI - drug-drug interactions; 3D - three-dimensional; PCA - principal components analysis; CPCA - consensus principal components analysis; PLS - partial least squares; PLSD - partial least squares discriminant; GRIND - grid independent descriptors; GRID - software originally created and developed by Professor Peter Goodford.

  9. Modification of enzymes by use of high-pressure homogenization.

    Science.gov (United States)

    Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi

    2018-07-01

    High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Heat stability of strawberry anthocyanins in model solutions containing natural copigments extracted from rose (Rosa damascena Mill.) petals.

    Science.gov (United States)

    Shikov, Vasil; Kammerer, Dietmar R; Mihalev, Kiril; Mollov, Plamen; Carle, Reinhold

    2008-09-24

    Thermal degradation and color changes of purified strawberry anthocyanins in model solutions were studied upon heating at 85 degrees C by HPLC-DAD analyses and CIELCh measurements, respectively. The anthocyanin half-life values increased significantly due to the addition of rose (Rosa damascena Mill.) petal extracts enriched in natural copigments. Correspondingly, the color stability increased as the total color difference values were smaller for anthocyanins upon copigment addition, especially after extended heating. Furthermore, the stabilizing effect of rose petal polyphenols was compared with that of well-known copigments such as isolated kaempferol, quercetin, and sinapic acid. The purified rose petal extract was found to be a most effective anthocyanin-stabilizing agent at a molar pigment/copigment ratio of 1:2. The results obtained demonstrate that the addition of rose petal polyphenols slows the thermal degradation of strawberry anthocyanins, thus resulting in improved color retention without affecting the gustatory quality of the product.

  11. Stability-Indicating HPLC Method for Simultaneous Determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in Ophthalmic Solution.

    Science.gov (United States)

    AlAani, Hashem; Alnukkary, Yasmin

    2016-03-01

    A simple stability-indicating RP-HPLC assay method was developed and validated for quantitative determination of Chloramphenicol, Dexamethasone Sodium Phosphate and Tetrahydrozoline Hydrochloride in ophthalmic solution in the presence of 2-amino-1-(4-nitrophenyl)propane-1,3-diol, a degradation product of Chloramphenicol, and Dexamethasone, a degradation product of Dexamethasone Sodium Phosphate. Effective chromatographic separation was achieved using C18 column (250 mm, 4.6 mm i.d., 5 μm) with isocratic mobile phase consisting of acetonitrile - phosphate buffer (pH 4.0; 0.05 M) (30:70, v/v) at a flow rate of 1 mL/minute. The column temperature was maintained at 40°C and the detection wavelength was 230 nm. The proposed HPLC procedure was statistically validated according to the ICH guideline, and was proved to be stability-indicating by resolution of the APIs from their forced degradation products. The developed method is suitable for the routine analysis as well as stability studies.

  12. Computing the stability of steady-state solutions of mathematical models of the electrical activity in the heart.

    Science.gov (United States)

    Tveito, Aslak; Skavhaug, Ola; Lines, Glenn T; Artebrant, Robert

    2011-08-01

    Instabilities in the electro-chemical resting state of the heart can generate ectopic waves that in turn can initiate arrhythmias. We derive methods for computing the resting state for mathematical models of the electro-chemical process underpinning a heartbeat, and we estimate the stability of the resting state by invoking the largest real part of the eigenvalues of a linearized model. The implementation of the methods is described and a number of numerical experiments illustrate the feasibility of the methods. In particular, we test the methods for problems where we can compare the solutions with analytical results, and problems where we have solutions computed by independent software. The software is also tested for a fairly realistic 3D model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Radiation inactivation of angiotensin-converting enzyme in solutions. Communication 3. The effect of NaCl

    International Nuclear Information System (INIS)

    Orlova, M.A.; Kost, O.A.; Nikol'skaya, I.I.; Troshina, N.N.; Binevskij, P.V.

    1999-01-01

    The effect of 0-0.15 M NaCl on the dose response of angiotensin-converting enzyme is described. The data represented at three-dimensional surfaces demonstrate the existence of special areas where definite mechanisms of dose response are predominant. In acidic and alkaline media, the regions of high values of enzyme activation can be emphasized; moreover, the oscillations of enzyme activity can also be detected. At pH 7.5, when angiotensin-converting enzyme conformation is less rigid, activation peaks on the three-dimensional surface are less pronounced indicating the decreasing effect of NaCl on dose response at this pH value [ru

  14. Understanding structure-stability relationships of Candida antartica lipase B in ionic liquids.

    Science.gov (United States)

    De Diego, Teresa; Lozano, Pedro; Gmouh, Said; Vaultier, Michel; Iborra, José L

    2005-01-01

    Two different water-immiscible ionic liquids (ILs), 1-ethyl-3-methylimidizolium bis(trifluoromethylsulfonyl)imide and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, were used for butyl butyrate synthesis from vinyl butyrate catalyzed by Candida antarctica lipase B (CALB) at 2% (v/v) water content and 50 degrees C. Both the synthetic activity and stability of the enzyme in these ILs were enhanced as compared to those in hexane. Circular dichroism and intrinsic fluorescence spectroscopic techniques have been used over a period of 4 days to determine structural changes in the enzyme associated with differences in its stability for each assayed medium. CALB showed a loss in residual activity higher than 75% after 4 days of incubation in both water and hexane media at 50 degrees C, being related to great changes in both alpha-helix and beta-strand secondary structures. The stabilization of CALB, which was observed in the two ILs studied, was associated with both the maintenance of the 50% of initial alpha-helix content and the enhancement of beta-strands. Furthermore, intrinsic fluorescence studies clearly showed how a classical enzyme unfolding was occurring with time in both water and hexane media. However, the structural changes associated with the incubation of the enzyme in both ILs might be attributed to a compact and active enzyme conformation, resulting in an enhancement of the stability in these nonaqueous environments.

  15. Effect of high power low frequency ultrasound processing on the stability of lycopene.

    Science.gov (United States)

    Oliveira, Valéria S; Rodrigues, Sueli; Fernandes, Fabiano A N

    2015-11-01

    The stability of lycopene was evaluated after application of high power low frequency ultrasound. The study was carried out on a solution containing pure lycopene to evaluate the direct effect of ultrasound on lycopene and on tomato purée to evaluate the direct and indirect effects of ultrasound application within a food matrix. Power densities ranging from 55 to 5000 W/L and temperatures ranging from 23°C (ambient) to 60°C were evaluated. The experiments on pure lycopene showed that the application of ultrasound did not have any direct effect over lycopene. However, the retention of lycopene in tomato puree has decreased indicating an indirect effect on lycopene stability caused by high concentration of hydrogen peroxide and the activation of peroxidase enzymes leading to the reduction of ascorbic acid and its regenerative action towards lycopene. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Extended stability of intravenous 0.9% sodium chloride solution after prolonged heating or cooling.

    Science.gov (United States)

    Puertos, Enrique

    2014-03-01

    The primary objective of this study was to evaluate the stability and sterility of an intravenous 0.9% sodium chloride solution that had been cooled or heated for an extended period of time. Fifteen sterile 1 L bags of 0.9% sodium chloride solution were randomly selected for this experiment. Five bags were refrigerated at an average temperature of 5.2°C, 5 bags were heated at an average temperature of 39.2°C, and 5 bags were stored at an average room temperature of 21.8°C to serve as controls. All samples were protected from light and stored for a period of 199 days prior to being assayed and analyzed for microbial and fungal growth. There was no clinically significant difference in the mean sodium values between the refrigerated samples, the heated samples, and the control group. There were no signs of microbial or fungal growth for the duration of the study. A sterile intravenous solution of 0.9% sodium chloride that was heated or cooled remained stable and showed no signs of microbial or fungal growth for a period of 199 days. This finding will allow hospitals and emergency medical technicians to significantly extend the expiration date assigned to these fluids and therefore obviate the need to change out these fluids every 28 days as recommended by the manufacturer.

  17. Thermostable enzymes as biocatalysts in the biofuel industry.

    Science.gov (United States)

    Yeoman, Carl J; Han, Yejun; Dodd, Dylan; Schroeder, Charles M; Mackie, Roderick I; Cann, Isaac K O

    2010-01-01

    Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel

    International Nuclear Information System (INIS)

    Mitala, J.J.; Michael, A.C.

    2006-01-01

    Microsensors based on carbon fiber microelectrodes coated with enzyme-entrapping redox hydrogels facilitate the in vivo detection of substances of interest within the central nervous system, including hydrogen peroxide, glucose, choline and glutamate. The hydrogel, formed by cross-linking a redox polymer, entraps the enzymes and mediates electron transfer between the enzymes and the electrode. It is important that the enzymes are entrapped in their enzymatically active state. Should entrapment cause enzyme denaturation, the sensitivity and the selectivity of the sensor may be compromised. Synthesis of the redox polymer according to published procedures may yield a product that precipitates when added to aqueous enzyme solutions. Casting hydrogels from solutions that contain the precipitate produces microsensors with low sensitivity and selectivity, suggesting that the precipitation disrupts the structure of the enzymes. Herein, we show that a surfactant, sodium dodecyl sulfate (SDS), can prevent the precipitation and improve the sensitivity and selectivity of the sensors

  19. Design and Properties of an Immobilization Enzyme System for Inulin Conversion.

    Science.gov (United States)

    Hang, Hua; Wang, Changbao; Cheng, Yiqun; Li, Ning; Song, Liuli

    2018-02-01

    A commercial inulinase could convert inulin into fructose, which was optimized to be entrapped in the calcium alginate-gelatin beads with the immobilization yield of 86% for free inulinase activities. The optimum pH values and temperatures were 4.5 and 40 °C for the free enzyme and 5.0-5.5 and 45-50 °C for the immobilized enzyme. The kinetic parameters of V max and K m were 5.24 μmol/min and 57.6 mg/mL for the free inulinase and 4.32 μmol/min and 65.8 mg/mL for the immobilized inulinase, respectively. The immobilized enzyme retained 80% of its initial activities at 45 °C for 4 days, which could exhibit better thermal stability. The reuse of immobilized inulinase throughout the continuous batch operations was explored, which had better reusability of the immobilized biocatalyst. At the same time, the stability of immobilized enzyme in the continuous packed-bed bioreactor was estimated, which showed the better results and had its potential scale-up fructose production for inulin conversion.

  20. Orbital stability of Gausson solutions to logarithmic Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Alex H. Ardila

    2016-12-01

    Full Text Available In this article we prove of the orbital stability of the ground state for logarithmic Schrodinger equation in any dimension and under nonradial perturbations. This general stability result was announced by Cazenave and Lions [9, Remark II.3], but no details were given there.

  1. Studies on the preparation of immobilized enzymes by radio-polymerization, 10

    International Nuclear Information System (INIS)

    Amarakone, S.P.; Hayashi, Toru; Kawashima, Koji.

    1983-01-01

    β-Galactosidase of E. coli origin was immobilized in the form of beads by the radiopolymerization of different combinations of monomers using a gamma irradiation technique. With the dialysed enzyme, recoveries of over 300 % could be obtained on suitable monomer combinations containing magnesium and sodium acrylates. The recovery of the enzyme also depended on the irradiation time. The immobilized enzyme had better pH and temperature stability and was less affected by the presence of metal ions in the medium, compared to the native enzyme. The optimum pH and temperatures of the immobilized enzyme were different from those of the native enzyme and were 7.0 to 7.5 and 50 deg C respectively. The immobilized enzyme was used in a column for the continuous determination of lactose with a standard type autoanalyser. Good linearity could be observed even up to 3 % lactose in the sample. (author)

  2. Catalytic properties of immobilized tannase produced from Aspergillus aculeatus compared with the free enzyme

    Directory of Open Access Journals (Sweden)

    A. B El-Tanash

    2011-09-01

    Full Text Available Aspergillus aculeatus tannase was immobilized on several carriers by entrapment and covalent binding with cross - linking. Tannase immobilized on gelatin with cross - linking agent showed the highest activity and immobilization yield. The optimum pH of the immobilized enzyme was shifted to a more acidic range compared with the free enzyme (from pH 5.5 to pH 5.0. The optimum temperature of the reaction was determined to be 50ºC for the free enzyme and 60ºC for the immobilized form. The thermal stability, as well as stability over a wide range of pH, was significantly improved by the immobilization process. The calculated Km of the immobilized tannase (11.8 mg ml-1 is higher than that of the free tannase (6.5 mg ml-1, while Vmax of the immobilized enzyme (0.32 U (µg protein-1 is lower than that of the free tannase (2.7 U (µg protein-1. The immobilized enzyme was able to retain 84 % of the initial catalytic activity after 5.0 cycles.

  3. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  4. Effects of Pretreatments and Storage Conditions on the Stability of Orange Peel Carotenoids (Turkish with English Abstract

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Carotenoids, being colorful pigments with colors ranging from yellow to red, are important in food industry providing both lipophilic and hydrophilic groups, provitamin A activity and anticarciogenic properties. The commercial value of carotenoids is closely related to the color stability. Therefore, this work aims to study the stability of enzyme extracted carotenoid pigments under different processing and storage conditions. Orange peels from the wastes of fruit juice production were used as a potential rich source of pigments. Orange peel samples were either directly extracted or pretreatments of blanching, 0.2% sodium-bisulfıte solution or combinations of these two were applied. Extracted pigments were stored at 4 oC, 25 oC (under light and dark and 40 oC. Stability of enzyme extracted pigments were higher than that of solvent extracted whereas pretreatments were resulted in pigment loss. Half-life, defined as the time corresponding 50% loss of pigments, of the samples stored at 4 oC was 78 days in directly extracted, 27 days in blanched, 31 days in Na-bisulfite treated and 30 days in the combination of the last two. This work can be considered as a preliminary study on the industrial scale production and potential usage of the carotenoid pigments as fully natural food coloring agent in food systems.

  5. Improving the oxidative stability of a high redox potential fungal peroxidase by rational design.

    Science.gov (United States)

    Sáez-Jiménez, Verónica; Acebes, Sandra; Guallar, Victor; Martínez, Angel T; Ruiz-Dueñas, Francisco J

    2015-01-01

    Ligninolytic peroxidases are enzymes of biotechnological interest due to their ability to oxidize high redox potential aromatic compounds, including the recalcitrant lignin polymer. However, different obstacles prevent their use in industrial and environmental applications, including low stability towards their natural oxidizing-substrate H2O2. In this work, versatile peroxidase was taken as a model ligninolytic peroxidase, its oxidative inactivation by H2O2 was studied and different strategies were evaluated with the aim of improving H2O2 stability. Oxidation of the methionine residues was produced during enzyme inactivation by H2O2 excess. Substitution of these residues, located near the heme cofactor and the catalytic tryptophan, rendered a variant with a 7.8-fold decreased oxidative inactivation rate. A second strategy consisted in mutating two residues (Thr45 and Ile103) near the catalytic distal histidine with the aim of modifying the reactivity of the enzyme with H2O2. The T45A/I103T variant showed a 2.9-fold slower reaction rate with H2O2 and 2.8-fold enhanced oxidative stability. Finally, both strategies were combined in the T45A/I103T/M152F/M262F/M265L variant, whose stability in the presence of H2O2 was improved 11.7-fold. This variant showed an increased half-life, over 30 min compared with 3.4 min of the native enzyme, under an excess of 2000 equivalents of H2O2. Interestingly, the stability improvement achieved was related with slower formation, subsequent stabilization and slower bleaching of the enzyme Compound III, a peroxidase intermediate that is not part of the catalytic cycle and leads to the inactivation of the enzyme.

  6. Improving the oxidative stability of a high redox potential fungal peroxidase by rational design.

    Directory of Open Access Journals (Sweden)

    Verónica Sáez-Jiménez

    Full Text Available Ligninolytic peroxidases are enzymes of biotechnological interest due to their ability to oxidize high redox potential aromatic compounds, including the recalcitrant lignin polymer. However, different obstacles prevent their use in industrial and environmental applications, including low stability towards their natural oxidizing-substrate H2O2. In this work, versatile peroxidase was taken as a model ligninolytic peroxidase, its oxidative inactivation by H2O2 was studied and different strategies were evaluated with the aim of improving H2O2 stability. Oxidation of the methionine residues was produced during enzyme inactivation by H2O2 excess. Substitution of these residues, located near the heme cofactor and the catalytic tryptophan, rendered a variant with a 7.8-fold decreased oxidative inactivation rate. A second strategy consisted in mutating two residues (Thr45 and Ile103 near the catalytic distal histidine with the aim of modifying the reactivity of the enzyme with H2O2. The T45A/I103T variant showed a 2.9-fold slower reaction rate with H2O2 and 2.8-fold enhanced oxidative stability. Finally, both strategies were combined in the T45A/I103T/M152F/M262F/M265L variant, whose stability in the presence of H2O2 was improved 11.7-fold. This variant showed an increased half-life, over 30 min compared with 3.4 min of the native enzyme, under an excess of 2000 equivalents of H2O2. Interestingly, the stability improvement achieved was related with slower formation, subsequent stabilization and slower bleaching of the enzyme Compound III, a peroxidase intermediate that is not part of the catalytic cycle and leads to the inactivation of the enzyme.

  7. Microencapsulation of Purified Amylase Enzyme from Pitaya (Hylocereus polyrhizus Peel in Arabic Gum-Chitosan using Freeze Drying

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-03-01

    Full Text Available Amylase is one of the most important enzymes in the world due to its wide application in various industries and biotechnological processes. In this study, amylase enzyme from Hylocereus polyrhizus was encapsulated for the first time in an Arabic gum-chitosan matrix using freeze drying. The encapsulated amylase retained complete biocatalytic activity and exhibited a shift in the optimum temperature and considerable increase in the pH and temperature stabilities compared to the free enzyme. Encapsulation of the enzyme protected the activity in the presence of ionic and non-ionic surfactants and oxidizing agents (H2O2 and enhanced the shelf life. The storage stability of amylase is found to markedly increase after immobilization and the freeze dried amylase exhibited maximum encapsulation efficiency value (96.2% after the encapsulation process. Therefore, the present study demonstrated that the encapsulation of the enzyme in a coating agent using freeze drying is an efficient method to keep the enzyme active and stable until required in industry.

  8. Numerical Computation of Detonation Stability

    KAUST Repository

    Kabanov, Dmitry

    2018-06-03

    Detonation is a supersonic mode of combustion that is modeled by a system of conservation laws of compressible fluid mechanics coupled with the equations describing thermodynamic and chemical properties of the fluid. Mathematically, these governing equations admit steady-state travelling-wave solutions consisting of a leading shock wave followed by a reaction zone. However, such solutions are often unstable to perturbations and rarely observed in laboratory experiments. The goal of this work is to study the stability of travelling-wave solutions of detonation models by the following novel approach. We linearize the governing equations about a base travelling-wave solution and solve the resultant linearized problem using high-order numerical methods. The results of these computations are postprocessed using dynamic mode decomposition to extract growth rates and frequencies of the perturbations and predict stability of travelling-wave solutions to infinitesimal perturbations. We apply this approach to two models based on the reactive Euler equations for perfect gases. For the first model with a one-step reaction mechanism, we find agreement of our results with the results of normal-mode analysis. For the second model with a two-step mechanism, we find that both types of admissible travelling-wave solutions exhibit the same stability spectra. Then we investigate the Fickett’s detonation analogue coupled with a particular reaction-rate expression. In addition to the linear stability analysis of this model, we demonstrate that it exhibits rich nonlinear dynamics with multiple bifurcations and chaotic behavior.

  9. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  10. On the stability of the cosmological solutions in f(R, G) gravity

    International Nuclear Information System (INIS)

    De la Cruz-Dombriz, Álvaro; Sáez-Gómez, Diego

    2012-01-01

    Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable of explaining the phenomena of dark energy imposes that current research focuses on a more precise study of the possible effects of modified gravity on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R, G) gravity, and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future. (paper)

  11. Optimization of Processing Parameters for Extraction of Amylase Enzyme from Dragon (Hylocereus polyrhizus Peel Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-01-01

    Full Text Available The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S ratio (1 : 2 to 1 : 6, w/w, temperature (−18°C to 25°, mixing time (60 to 180 seconds, and the pH of the buffer (2.0 to 8.0. The results indicate that the enzyme extraction conditions exhibited the least significant (P<0.05 effect on temperature stability. Conversely, the extraction conditions had the most significant (P<0.05 effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P<0.05 among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U, specific activity (14.2 U/mg, temperature stability (88.4%, pH stability (85.2%, surfactant agent stability (87.2%, and storage stability (90.3%.

  12. Doping control container for urine stabilization: a pilot study.

    Science.gov (United States)

    Tsivou, Maria; Giannadaki, Evangelia; Hooghe, Fiona; Roels, Kris; Van Gansbeke, Wim; Garribba, Flaminia; Lyris, Emmanouil; Deventer, Koen; Mazzarino, Monica; Donati, Francesco; Georgakopoulos, Dimitrios G; Van Eenoo, Peter; Georgakopoulos, Costas G; de la Torre, Xavier; Botrè, Francesco

    2017-05-01

    Urine collection containers used in the doping control collection procedure do not provide a protective environment for urine, against degradation by microorganisms and proteolytic enzymes. An in-house chemical stabilization mixture was developed to tackle urine degradation problems encountered in human sport samples, in cases of microbial contamination or proteolytic activity. The mixture consists of antimicrobial substances and protease inhibitors for the simultaneous inactivation of a wide range of proteolytic enzymes. It has already been tested in lab-scale, as part of World Anti-Doping Agency's (WADA) funded research project, in terms of efficiency against microbial and proteolytic activity. The present work, funded also by WADA, is a follow-up study on the improvement of chemical stabilization mixture composition, application mode and limitation of interferences, using pilot urine collection containers, spray-coated in their internal surface with the chemical stabilization mixture. Urine in plastic stabilized collection containers have been gone through various incubation cycles to test for stabilization efficiency and analytical matrix interferences by three WADA accredited Laboratories (Athens, Ghent, and Rome). The spray-coated chemical stabilization mixture was tested against microorganism elimination and steroid glucuronide degradation, as well as enzymatic breakdown of proteins, such as intact hCG, recombinant erythropoietin and small peptides (GHRPs, ipamorelin), induced by proteolytic enzymes. Potential analytical interferences, observed in the presence of spray-coated chemical stabilization mixture, were recorded using routine screening procedures. The results of the current study support the application of the spray-coated plastic urine container, in the doping control collection procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart.

    Science.gov (United States)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-02-02

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4-9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. © 2016 Authors.

  14. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks

    Directory of Open Access Journals (Sweden)

    Jordan Chapman

    2018-06-01

    Full Text Available Enzymes as industrial biocatalysts offer numerous advantages over traditional chemical processes with respect to sustainability and process efficiency. Enzyme catalysis has been scaled up for commercial processes in the pharmaceutical, food and beverage industries, although further enhancements in stability and biocatalyst functionality are required for optimal biocatalytic processes in the energy sector for biofuel production and in natural gas conversion. The technical barriers associated with the implementation of immobilized enzymes suggest that a multidisciplinary approach is necessary for the development of immobilized biocatalysts applicable in such industrial-scale processes. Specifically, the overlap of technical expertise in enzyme immobilization, protein and process engineering will define the next generation of immobilized biocatalysts and the successful scale-up of their induced processes. This review discusses how biocatalysis has been successfully deployed, how enzyme immobilization can improve industrial processes, as well as focuses on the analysis tools critical for the multi-scale implementation of enzyme immobilization for increased product yield at maximum market profitability and minimum logistical burden on the environment and user.

  15. Preparation by irradiation of a solid support for enzyme immunoassay

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    Reagents (immobilized anti-α-fetoprotein discs) having a porous structure were prepared for enzyme immunoassay of α-fetoprotein by radiation polymerization at low temperatures. Discs were attached to sticks for easy handling. The activity (determined by absorbance at 492 nm) of the discs varied with the hydrophilic properties and size of the discs. The discs are sufficiently sensitive and precise for enzyme immunoassay of α-fetoprotein. Anti-AFP dissolved in PBS solution was mixed with a monomer solution of hydroxyethyl methacrylate and hydroxypropyl methacrylate. The mixture was frozen to -78 0 C and gamma irradiated. (Auth.)

  16. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19.

    Science.gov (United States)

    Kumar, D J Mukesh; Rakshitha, R; Vidhya, M Annu; Jennifer, P Sharon; Prasad, Sandip; Kumar, M Ravi; Kalaichelvan, P T

    2014-04-01

    The present study aimed at the production, purification and characterization of fibrinolytic nattokinase enzyme from the bacteria isolated from natto food. For the purpose, a fibrinolytic bacterium was isolated and identified as Bacillus subtilis based on 16S rDNA sequence analysis. The strain was employed for the production and optimization of fibrinolytic enzyme. The strain showed better enzyme production during 72nd h of incubation time with 50 degrees C at the pH 9. The lactose and peptone were found to be increasing the enzyme production rate. The enzyme produced was purified and also characterized with the help of SDS-PAGE analysis. The activity and stability profile of the purified enzyme was tested against different temperature and pH. The observations suggesting that the potential of fibrinolytic enzyme produced by Bacillus subtilis RJAS 19 for its applications in preventive medicines.

  17. Purification and characterization of a fibrinolytic enzyme from tempeh bongkrek as an alternative of thrombolytic agents

    Science.gov (United States)

    Sasmita, I. R. A.; Sutrisno, A.; Zubaidah, E.; Wardani, A. K.

    2018-03-01

    Tempeh is one of Indonesia’s traditional foods that contain fibrinolytic enzymes. Tempeh bongkrek shows very strong activity among various tempeh. The fibrinolytic enzymes of bongkrek tempeh are obtained by steps of purification i.e, ammonium sulphate precipitation, ion exchange chromatography and gel filtration chromatography. The fibrinolytic enzymes has been successfully purified with a yield of 4.37%, specific activity of 3,361 U / mg and purification fold of 44.02. SDS PAGE analysis showed that the enzyme was purified in to single band with estimated molecular mass of 75.82 kDa. The purified enzyme has optimum pH of 7 and optimum temperature of 50°C and pH stability between pH 4 - 7 with temperature stability from 30°-50°C. The fibrinolytic activity is increased with addition of CaCl2 but inhibited with CuSO4, phenylmethylsulfonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), and ethylenediaminetetraacetic acid (EDTA).

  18. The effect of aluminium on enzyme activities in two wheat cultivars ...

    African Journals Online (AJOL)

    The effect of aluminium on enzyme activities in two wheat cultivars. ... African Journal of Biotechnology ... and Maroon (Al-tolerant) were grown on hydroponic solution (non modified Hoagland solution) containing AlCl3 (0-100-200-300 M).

  19. Improvement of the polymer stability by radiation grafting

    International Nuclear Information System (INIS)

    Ranogajec, F.; Mlinac-Misak, M.

    2004-01-01

    Losses of the stabilizer due to extractability or volatility immediately affect the ultimate performance of polymer products. A new approach to increase the persistence of the stabilizer in the final product is to chemically bind it to the polymer backbone. Radiation grafting or crosslinking could be an efficient method for this, when the stabilizer is polymerizable. By a mutual gamma irradiation method photoprotector 2-hydroxy-4-(3-methacryloxy-2-hydroxy-propoxy) benzophenone has been readily grafted to low-density polyethylene in benzene, tetrahydrofuran and methanol solution, respectively. Surface grafting occurs in a methanol solution of stabilizer, while in benzene and tetrahydrofuran solutions of the stabilizer, grafting proceeds more or less in the inner parts of the polymeric film as well. UV stability tests and changes in the mechanical properties of artificially and naturally aged films indicate pronounced protective effect achieved by the grafted stabilizer. Surface grafting is an efficient photostabilization method since the grafted stabilizer is chemically bound to a polymeric surface and in this way the problem of evaporation of blended stabilizers during the prolonged use of polymeric materials is eliminated

  20. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...... concentrations, and stability. Finally, future research directions are discussed, including the integration of biocatalysis with neighboring chemical steps....

  1. Thermal inactivation of enzymes and pathogens in biosamples for MS analysis.

    Science.gov (United States)

    Ahnoff, Martin; Cazares, Lisa H; Sköld, Karl

    2015-01-01

    Protein denaturation is the common basis for enzyme inactivation and inactivation of pathogens, necessary for preservation and safe handling of biosamples for downstream analysis. While heat-stabilization technology has been used in proteomic and peptidomic research since its introduction in 2009, the advantages of using the technique for simultaneous pathogen inactivation have only recently been addressed. The time required for enzyme inactivation by heat (≈1 min) is short compared with chemical treatments, and inactivation is irreversible in contrast to freezing. Heat stabilization thus facilitates mass spectrometric studies of biomolecules with a fast conversion rate, and expands the chemical space of potential biomarkers to include more short-lived entities, such as phosphorylated proteins, in tissue samples as well as whole-blood (dried blood sample) samples.

  2. Convergent systems vs. incremental stability

    NARCIS (Netherlands)

    Rüffer, B.S.; Wouw, van de N.; Mueller, M.

    2013-01-01

    Two similar stability notions are considered; one is the long established notion of convergent systems, the other is the younger notion of incremental stability. Both notions require that any two solutions of a system converge to each other. Yet these stability concepts are different, in the sense

  3. Evaluation of Enzymatically Modified Soy Protein Isolate Film Forming Solution and Film at Different Manufacturing Conditions.

    Science.gov (United States)

    Mohammad Zadeh, Elham; O'Keefe, Sean F; Kim, Young-Teck; Cho, Jin-Hun

    2018-04-01

    The effects of transglutaminase on soy protein isolate (SPI) film forming solution and films were investigated by rheological behavior and physicochemical properties based on different manufacturing conditions (enzyme treatments, enzyme incubation times, and protein denaturation temperatures). Enzymatic crosslinking reaction and changes in molecular weight distribution were confirmed by viscosity measurement and SDS-PAGE, respectively, compared to 2 controls: the nonenzyme treated and the deactivated enzyme treated. Films treated with both the enzyme and the deactivated enzyme showed significant increase in tensile strength (TS), percent elongation (%E), and initial contact angle of films compared to the nonenzyme control film due to the bulk stabilizers in the commercial enzyme. Water absorption property, protein solubility, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy revealed that enzyme treated SPI film matrix in the molecular structure level, resulted in the changes in physicochemical properties. Based on our observation, the enzymatic treatment at appropriate conditions is a practical and feasible way to control the physical properties of protein based biopolymeric film for many different scientific and industrial areas. Enzymes can make bridges selectively among different amino acids in the structure of protein matrix. Therefore, protein network is changed after enzyme treatment. The behavior of biopolymeric materials is dependent on the network structure to be suitable in different applications such as bioplastics applied in food and pharmaceutical products. In the current research, transglutaminase, as an enzyme, applied in soy protein matrix in different types of forms, activated and deactivated, and different preparation conditions to investigate its effects on different properties of the new bioplastic film. © 2018 Institute of Food Technologists®.

  4. Stability and activity of lysozyme in stoichiometric and non-stoichiometric protic ionic liquid (PIL)-water systems

    Science.gov (United States)

    Wijaya, Emmy C.; Separovic, Frances; Drummond, Calum J.; Greaves, Tamar L.

    2018-05-01

    There has been a substantial increase in enzyme applications within the biochemical and pharmaceutical industries, for example, as industrial biocatalysts. However, enzymes have narrow marginal stability which makes them prone to become inactive and/or denature with a slight change in the solvent environment. Typically industrial applications require harsher solvent environments than enzyme native environments, and hence there is a need to understand solvent-protein interactions in order to develop strategies to maintain, or enhance, the enzymatic activity under industrially relevant solvent conditions. Previously we have shown that protic ionic liquids (PILs) with water can have a stabilising effect on lysozyme, with a large variation dependent on which PIL ions are present, and the water concentration [E. C. Wijaya et al., Phys. Chem. Chem. Phys. 18(37), 25926-25936 (2016)]. Here we extend on this work using non-stoichiometric aqueous PIL solvents to investigate, and isolate, the role of pH and ionicity on enzymes. We have used the PILs ethylammonium nitrate (EAN) and ethanolammonium formate (EOAF) since our previous work has identified these as good solvents for lysozyme. Solvent libraries were made from these two PILs with an additional precursor acid or base to modify the acidity/basicity of the neutral stoichiometric PIL, and with water added, to have solutions with 4-17 mol. % of the PIL ions in water. Molar ratios of base:acid were varied between 1:1.05 and 2:1 for EAN and 1:1.25 and 2:1 for EOAF, which enabled from highly basic to highly acidic solutions to be obtained. This was to modify the acidity/basicity of the neutral stoichiometric PILs, without the addition of buffers. The structure and stability of hen egg white lysozyme (HEWL) were explored under these solvent conditions using synchrotron small angle X-ray scattering (SAXS), Fourier transform infrared (FTIR), and activity assays. The radius of gyration and Kratky plots obtained from the SAXS data

  5. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  6. Fabrication and optimisation of optical biosensor using alcohol oxidase enzyme to evaluate detection of formaldehyde

    Science.gov (United States)

    Rachim, A.; Sari, A. P.; Nurlely, Fauzia, V.

    2017-07-01

    In this study, a new and simple biosensor base on alcohol oxidase (AOX)-enzyme for detecting formaldehyde in aqueous solutions has been successfully fabricated. The alcohol oxidase (AOX) enzyme was immobilized on poly-n-butyl acrylic-co-N-acryloxysuccinimide (nBA-NAS) membrane containing chromoionophore. The chemical reaction between AOX and formaldehyde generates a colour change of chromoionophore detected by optical absorbance measured in UV Vis. This paper focuses on the concentration optimization of buffer phosphate solution, response time, the quantity of enzyme and the measurement of the detection range of biosensors. The result shows that the optimum concentration and pH of buffer phosphate solution is 0.05 M and pH 7, respectively. The optimum response time is 3 min, the optimum unit of enzyme for biosensor is 1 unit/sample and the detection range of biosensor is 0.264 mM with R2 = 0.9421.

  7. Stability constant of the trisglycinto metal complexes | Na'aliya ...

    African Journals Online (AJOL)

    The stability constants of iron, manganese, cobalt, and nickel complexes of glycine have been determined in aqueous solution by potentiometric titration with standard sodium hydroxide solution. The values of the stepwise stability constants were obtained by ORIGIN '50' program. The overall stability constants of the ...

  8. Integrating the stabilization of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H.F. [Department of Energy, Washington, DC (United States)

    1996-05-01

    In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprises 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.

  9. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli.

    Science.gov (United States)

    Weng, MeiZhi; Zheng, ZhongLiang; Bao, Wei; Cai, YongJun; Yin, Yan; Zou, GuoLin; Zou, GouLin

    2009-11-01

    Nattokinase (subtilisin NAT, NK) is a bacterial serine protease with strong fibrinolytic activity and it is a potent cardiovascular drug. In medical and commercial applications, however, it is susceptible to chemical oxidation, and subsequent inactivation or denaturation. Here we show that the oxidative stability of NK was substantially increased by optimizing the amino acid residues Thr(220) and Met(222), which were in the vicinity of the catalytic residue Ser(221) of the enzyme. Two nonoxidative amino acids (Ser and Ala) were introduced at these sites using site-directed mutagenesis. Active enzymes were successfully expressed in Escherichia coli with periplasmic secretion and enzymes were purified to homogeneity. The purified enzymes were analyzed with respect to oxidative stability, kinetic parameters, fibrinolytic activity and thermal stability. M222A mutant was found to have a greatly increased oxidative stability compared with wild-type enzyme and it was resistant to inactivation by more than 1 M H(2)O(2), whereas the wild-type enzyme was inactivated by 0.1 M H(2)O(2) (t(1/2) approximately 11.6 min). The other mutant (T220S) also showed an obvious increase in antioxidative ability. Molecular dynamic simulations on wild-type and T220S mutant proteins suggested that a hydrogen bond was formed between Ser(220) and Asn(155), and the spatial structure of Met(222) was changed compared with the wild-type. The present study demonstrates the feasibility of improving oxidative stability of NK by site-directed mutagenesis and shows successful protein engineering cases to improve stability of NK as a potent therapeutic agent.

  10. Improvement of operational stability of Ogataea minuta carbonyl reductase for chiral alcohol production.

    Science.gov (United States)

    Honda, Kohsuke; Inoue, Mizuha; Ono, Tomohiro; Okano, Kenji; Dekishima, Yasumasa; Kawabata, Hiroshi

    2017-06-01

    Directed evolution of enantio-selective carbonyl reductase from Ogataea minuta was conducted to improve the operational stability of the enzyme. A mutant library was constructed by an error-prone PCR and screened using a newly developed colorimetric assay. The stability of a mutant with two amino acid substitutions was significantly higher than that of the wild type at 50°C in the presence of dimethyl sulfoxide. Site-directed mutagenesis analysis showed that the improved stability of the enzyme can be attributed to the amino acid substitution of V166A. The half-lives of the V166A mutant were 11- and 6.1-times longer than those of the wild type at 50°C in the presence and absence, respectively, of 20% (v/v) dimethyl sulfoxide. No significant differences in the substrate specificity and enantio-selectivity of the enzyme were observed. The mutant enzyme converted 60 mM 2,2,2-trifluoroacetophenone to (R)-(-)-α-(trifluoromethyl)benzyl alcohol in a molar yield of 71% whereas the conversion yield with an equivalent concentration of the wild-type enzyme was 27%. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Chemical stability of diphenhydramine hydrochloride from an elixir and lidocaine hydrochloride from a viscous solution when mixed together.

    Science.gov (United States)

    Gupta, Vishnu D

    2006-01-01

    The stability of diphenhydramine hydrochloride (from an elixir) and lidocaine hydrochloride (from a viscous solution) in a mixture (1:1) was studied using a stability-indicating high-peformance liquid chromatographic assay method. The concentrations of the drugs were related directly to peak heights and the percent relative standard deviations based on five injections were 1.4 for diphenhydramine and 1.3 for lidocaine. The products of hydrolysis from the both the drugs and a number of excipients present in the dosage forms did not interfere with the developed assay procedure. The mixture was stable for at least 21 days when stored in amber-colored bottles at room temperature. The pH value of the mixture remained constant, and the physical appearance did not change during the study period.

  12. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    Science.gov (United States)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  13. The Influence of pH and Temperature on the Stability of N-[(Piperidinemethylene]daunorubicin Hydrochloride and a Comparison of the Stability of Daunorubicin and Its Four New Amidine Derivatives in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mikołaj Piekarski

    2014-01-01

    Full Text Available The influence of pH and temperature on the stability of N-[(piperidinemethylene]daunorubicin hydrochloride (PPD was investigated. Degradation was studied using an HPLC method. Specific acid-base catalysis of PPD involves hydrolysis of protonated molecules of PPD catalyzed by hydrogen ions and spontaneous hydrolysis under the influence of water zwitterions, unprotonated molecules, and monoanions of PPD. The thermodynamic parameters of these reactions, energy, enthalpy, and entropy, were calculated. Also, the stability of daunorubicin and its new amidine derivatives (piperidine, morpholine, pyrrolidine, and hexahydroazepin-1-yl in aqueous solutions was compared and discussed.

  14. The role of zinc in genomic stability

    International Nuclear Information System (INIS)

    Sharif, Razinah; Thomas, Philip; Zalewski, Peter; Fenech, Michael

    2012-01-01

    Zinc (Zn) is an essential trace element required for maintaining both optimal human health and genomic stability. Zn plays a critical role in the regulation of DNA repair mechanisms, cell proliferation, differentiation and apoptosis involving the action of various transcriptional factors and DNA or RNA polymerases. Zn is an essential cofactor or structural component for important antioxidant defence proteins and DNA repair enzymes such as Cu/Zn SOD, OGG1, APE and PARP and may also affect activities of enzymes such as BHMT and MTR involved in methylation reactions in the folate-methionine cycle. This review focuses on the role of Zn in the maintenance of genome integrity and the effects of deficiency or excess on genomic stability events and cell death.

  15. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martien A.

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417)

  16. Preparation of polyurethane/montmorillonite nanocomposites by solution: characterization using low-field NMR and study of thermal stability

    International Nuclear Information System (INIS)

    Silva, Marcos Anacleto da; Tavares, Maria Ines B.

    2009-01-01

    Polyurethanes (PU) are important and versatile class of polymer materials, especially because of their desirable properties, such as high abrasion resistance, tear strength, excellent shock absorption, flexibility and elasticity. However, there also exist some disadvantages, for example, low thermal stability and barrier properties. To overcome the disadvantages, research on novel polyurethane/clay nanocomposites has been carried out. The investigation of the structure of polyurethane/clay nanocomposites has been mostly done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In this work, PU/clay films were prepared by solution, and the obtained nanocomposites were characterized by XRD and low-field nuclear magnetic resonance (NMR). Low field NMR measurements were able to provide important information on molecular dynamics of the polymeric nanocomposites PU/OMMT. In addition, they also confirmed the results obtained by XRD. The thermal stability was determined by thermogravimetric analysis (TGA). (author)

  17. Existence of Periodic Solutions and Stability of Zero Solution of a Mathematical Model of Schistosomiasis

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available A mathematical model on schistosomiasis governed by periodic differential equations with a time delay was studied. By discussing boundedness of the solutions of this model and construction of a monotonic sequence, the existence of positive periodic solution was shown. The conditions under which the model admits a periodic solution and the conditions under which the zero solution is globally stable are given, respectively. Some numerical analyses show the conditional coexistence of locally stable zero solution and periodic solutions and that it is an effective treatment by simply reducing the population of snails and enlarging the death ratio of snails for the control of schistosomiasis.

  18. Stabilization of the norm of the solution of a mixed problem in an unbounded domain for parabolic equations of orders 4 and 6

    International Nuclear Information System (INIS)

    Mukminov, F Kh; Bikkulov, I M

    2004-01-01

    The behaviour as t→∞ of the solution of a mixed problem for parabolic equations in an unbounded domain with two exits to infinity is studied. A certain class of domains is distinguished, in which an estimate characterizing the stabilization of solutions and determined by the geometry of the domain is established. This estimate is proved to be sharp in a certain sense for a broad class of domains with two exits to infinity.

  19. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution

    International Nuclear Information System (INIS)

    Yang, Xiaoming; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao

    2014-01-01

    Graphical abstract: An innovative and simple strategy for synthesizing high-fluorescent Cu nanoclusters stabilized with L-cysteine has been successfully established in aqueous solution. Significantly, the Cu nanoclusters were employed for sensitive and selective detections of Hg 2+ , coding and fluorescent staining, suggesting their potential toward various applications. - Highlights: • A novel, one-step strategy for synthesizing water-soluble CuNCs was established. • A simple, selective, and cost-effective assay for Hg 2+ was developed. • CuNCs may broaden ways for fluorescent staining and coding. - Abstract: Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV–vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg 2+ on the basis of the interactions between Hg 2+ and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg 2+ in a linear range of 1.0 × 10 −7 mol L −1 × 10 −3 mol L −1 , with a detection limit of 2.4 × 10 −8 mol L −1 at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications

  20. Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: the effect of pH and temperature.

    Science.gov (United States)

    Chaloupkova, Radka; Prokop, Zbynek; Sato, Yukari; Nagata, Yuji; Damborsky, Jiri

    2011-08-01

    The effect of pH and temperature on structure, stability, activity and enantioselectivity of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110 was investigated in this study. Conformational changes have been assessed by circular dichroism spectroscopy, functional changes by kinetic analysis, while quaternary structure was studied by gel filtration chromatography. Our study shows that the DbjA enzyme is highly tolerant to pH changes. Its secondary and tertiary structure was not affected by pH in the ranges 5.3-10.3 and 6.2-10.1, respectively. Oligomerization of DbjA was strongly pH-dependent: monomer, dimer, tetramer and a high molecular weight cluster of the enzyme were distinguished in solution at different pH conditions. Moreover, different oligomeric states of DbjA possessed different thermal stabilities. The highest melting temperature (T(m) = 49.1 ± 0.2 °C) was observed at pH 6.5, at which the enzyme occurs in dimeric form. Maximal activity was detected at 50 °C and in the pH interval 7.7-10.4. While pH did not have any effect on enantiodiscriminination of DbjA, temperature significantly altered DbjA enantioselectivity. A decrease in temperature results in significantly enhanced enantioselectivity. The temperature dependence of DbjA enantioselectivity was analysed with 2-bromobutane, 2-bromopentane, methyl 2-bromopropionate and ethyl 2-bromobutyrate, and differential activation parameters Δ(R-S)ΔH and Δ(R-S)ΔS were determined. The thermodynamic analysis revealed that the resolution of β-bromoalkanes was driven by both enthalpic and entropic terms, while the resolution of α-bromoesters was driven mainly by an enthalpic term. Unique catalytic activity and structural stability of DbjA in a broad pH range, combined with high enantioselectivity with particular substrates, make this enzyme a very versatile biocatalyst. Enzyme EC3.8.1.5 haloalkane dehalogenase. © 2011 The Authors Journal compilation © 2011 FEBS.

  1. Ceramic membrane microfilter as an immobilized enzyme reactor.

    Science.gov (United States)

    Harrington, T J; Gainer, J L; Kirwan, D J

    1992-10-01

    This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.

  2. Enhanced electrical stability of nitrate ligand-based hexaaqua complexes solution-processed ultrathin a-IGZO transistors

    Science.gov (United States)

    Choi, C.; Baek, Y.; Lee, B. M.; Kim, K. H.; Rim, Y. S.

    2017-12-01

    We report solution-processed, amorphous indium-gallium-zinc-oxide-based (a-IGZO-based) thin-film transistors (TFTs). Our proposed solution-processed a-IGZO films, using a simple spin-coating method, were formed through nitrate ligand-based metal complexes, and they were annealed at low temperature (250 °C) to achieve high-quality oxide films and devices. We investigated solution-processed a-IGZO TFTs with various thicknesses, ranging from 4 to 16 nm. The 4 nm-thick TFT films had smooth morphology and high-density, and they exhibited excellent performance, i.e. a high saturation mobility of 7.73  ±  0.44 cm2 V-1 s-1, a sub-threshold swing of 0.27 V dec-1, an on/off ratio of ~108, and a low threshold voltage of 3.10  ±  0.30 V. However, the performance of the TFTs degraded as the film thickness was increased. We further performed positive and negative bias stress tests to examine their electrical stability, and it was noted that the operating behavior of the devices was highly stable. Despite a small number of free charges, the high performance of the ultrathin a-IGZO TFTs was attributed to the small effect of the thickness of the channel, low bulk resistance, the quality of the a-IGZO/SiO2 interface, and high film density.

  3. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Structure and Stability of Complex Coacervate Core Micelles with Lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martinus Abraham

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and

  5. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  6. An investigation into the stability and sterility of citric acid solutions used for cough reflex testing.

    Science.gov (United States)

    Falconer, James R; Wu, Zimei; Lau, Hugo; Suen, Joanna; Wang, Lucy; Pottinger, Sarah; Lee, Elaine; Alazawi, Nawar; Kallesen, Molly; Gargiulo, Derryn A; Swift, Simon; Svirskis, Darren

    2014-10-01

    Citric acid is used in cough reflex testing in clinical and research settings to assess reflexive cough in patients at risk of swallowing disorders. To address a lack of knowledge in this area, this study investigated the stability and sterility of citric acid solutions. Triplicate solutions of citric acid (0.8 M) in isotonic saline were stored at 4 ± 2 °C for up to 28 days and analysed by high-performance liquid chromatography. Microbiological sterility of freshly prepared samples and bulk samples previously used for 2 weeks within the hospital was determined using a pour plate technique. Microbial survival in citric acid was determined by inoculating Staphylococcus aureus, Escherichia coli, or Candida albicans into citric acid solution and monitoring the number of colony-forming units/mL over 40 min. Citric acid solutions remained stable at 4 °C for 28 days (98.4 ± 1.8 % remained). The freshly prepared and clinical samples tested were sterile. However, viability studies revealed that citric acid solution allows for the survival of C. albicans but not for S. aureus or E. coli. The microbial survival study showed that citric acid kills S. aureus and E. coli but has no marked effect on C. albicans after 40 min. Citric acid samples at 0.8 M remained stable over the 4-week testing period, with viable microbial cells absent from samples tested. However, C. albicans has the ability to survive in citric acid solution if inadvertently introduced in practice. For this reason, in clinical and research practice it is suggested to use single-use aliquots prepared aseptically which can be stored for up to 28 days at 4 °C.

  7. Application of membrane LaF3 electrode in the determination of stability constants of Uranyl Fluoride complex in solution

    International Nuclear Information System (INIS)

    Muzakky; Iswani GS; Mintolo

    1996-01-01

    A membrane electrode LaF 3 has been applied in the determination of uranyl fluoride complex stability constant in solution. The determination is based on the detection of free F ion in solution as a result of hydrolysis reaction (process) of uranyl ions into the uranyl hydroxide form at low pH. The experiment results showed that there was no effect of ammonium carbonate 2 M titran, flow rate on the electrode response. The F release is optimum at pH 1. The free F ion in solution is calculated from the standard curve at pH 1, after the fluoride concentration at the same pH has been corrected. Using the plot of average number of ligand binding (n) versus minus log of free ligand (-log F) the value of β1 = 4.4, β2 = 7.48, β3=9.73, and β4 = 11.67

  8. Improvement of polymer stability by radiation grafting

    International Nuclear Information System (INIS)

    Ranogajec, F.; Mlinac-Misak, M.

    1999-01-01

    Losses of the stabilizer due to extractability or volatility immediately affect ultimate performance of polymer product. A new approach to increase the persistence of the stabilizer in the final product is to chemically bind it to the polymer backbone. Radiation grafting or crosslinking could be an efficient method for this, when the stabilizer is polymerizable. By a mutual gamma irradiation method, photoprotector 2-hydroxy-4-(3-methacryloxy-2- hydroxy-propoxy) benzophenone (HMB) has been readily grafted to low density polyethylene (LDPE) in benzene, tetrahydrofuran and methanol solution, respectively. Surface grafting occurs in a methanol solution of stabilizer, while in benzene and tetrahydrofuran solutions of stabilizer, grafting proceeds more or less in the inner parts of the polymeric film as well. The grafted LDPE film in methanol and tetrahydrofuran (containing 1 w/w % of grafted HMB), 1 w/w % blended HMB with LDPE and nongrafted LDPE film, were all exposed to accelerated aging and natural weathering and their spectral changes, expressed by the carbonyl index, were then compared. The change of elongation at break and tensile strength were measured in the course of aging. UV stability tests on aged films and change in mechanical properties indicate a pronounced protective effect achieved by grafted stabilizer. Grafting in methanol solution appears to be an efficient photostabilization treatment and the most economical with respect to the consumption of monomer, the grafting yield being less than 0.5%. Surface grafting is an efficient photostabilization method since grafted stabilizer is chemically bound to a polymeric surface and in this way the problem of evaporation of blended stabilizers during the prolonged use of polymeric materials is eliminated. (author)

  9. Stability of the Stevia-Derived Sweetener Rebaudioside A in Solution as Affected by Ultraviolet Light Exposure.

    Science.gov (United States)

    Zhang, Jiewen; Bell, Leonard N

    2017-04-01

    Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm 2 for dark conditions, 27 μW/cm 2 for low intensity, and 190 μW/cm 2 for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability. © 2017 Institute of Food Technologists®.

  10. Proteolysis of Sardine (Sardina pilchardus and Anchovy (Stolephorus commersonii by Commercial Enzymes in Saline Solutions

    Directory of Open Access Journals (Sweden)

    Chau Minh Le

    2015-01-01

    Full Text Available Fish sauce production is a very long process and there is a great interest in shortening it. Among the different strategies to speed up this process, the addition of external proteases could be a solution. This study focuses on the eff ect of two commercial enzymes (Protamex and Protex 51FP on the proteolysis of two fish species traditionally converted into fish sauce: sardine and anchovy, by comparison with classical autolysis. Hydrolysis reactions were conducted with fresh fish at a temperature of 30 °C and under different saline conditions (from 0 to 30 % NaCl. Hydrolysis degree and liquefaction of the raw material were used to follow the process. As expected, the proteolysis decreased with increasing amount of salt. Regarding the fi sh species, higher rate of liquefaction and higher hydrolysis degree were obtained with anchovy. Between the two proteases, Protex 51FP gave better results with both fi sh types. This study demonstrates that the addition of commercial proteases could be helpful for the liquefaction of fi sh and cleavage of peptide bonds that occur during fi sh sauce production and thus speed up the production process.

  11. Existence and Stability of the Periodic Solution with an Interior Transitional Layer in the Problem with a Weak Linear Advection

    Directory of Open Access Journals (Sweden)

    Nikolay N. Nefedov

    2018-01-01

    Full Text Available In the paper, we study a singularly perturbed periodic in time problem for the parabolic reaction-advection-diffusion equation with a weak linear advection. The case of the reactive term in the form of a cubic nonlinearity is considered. On the basis of already known results, a more general formulation of the problem is investigated, with weaker sufficient conditions for the existence of a solution with an internal transition layer to be provided than in previous studies. For convenience, the known results are given, which ensure the fulfillment of the existence theorem of the contrast structure. The justification for the existence of a solution with an internal transition layer is based on the use of an asymptotic method of differential inequalities based on the modification of the terms of the constructed asymptotic expansion. Further, sufficient conditions are established to fulfill these requirements, and they have simple and concise formulations in the form of the algebraic equation w(x0,t = 0 and the condition wx(x0,t < 0, which is essentially a condition of simplicity of the root x0(t and ensuring the stability of the solution found. The function w is a function of the known functions appearing in the reactive and advective terms of the original problem. The equation w(x0,t = 0 is a problem for finding the zero approximation x0(t to determine the localization region of the inner transition layer. In addition, the asymptotic Lyapunov stability of the found periodic solution is investigated, based on the application of the so-called compressible barrier method. The main result of the paper is formulated as a theorem. 

  12. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.

    Science.gov (United States)

    Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike

    2015-12-01

    Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.

  13. Stability of ampicillin, piperacillin, cefotaxime, netilmicin and amikacin in an L-amino acid solution prepared for total parenteral nutrition of newborn infants

    DEFF Research Database (Denmark)

    Goldstein, K; Colding, H; Andersen, G E

    1988-01-01

    The stability of ampicillin, piperacillin and cefotaxime, alone or in combination with either netilmicin or amikacin, was tested by microbiological methods at 29 degrees C (ampicillin, also at 22 degrees C) in an L-amino acid solution specially prepared for newborn infants. In the case of ampicil...

  14. Formulation studies on stability of solid-state proteases for detergent applications

    DEFF Research Database (Denmark)

    Ay, Suzan Biran; Jensen, Anker Degn; Kiil, Søren

    2012-01-01

    Enzymes are one of the most important components in the laundry detergents. They effectively contribute to the washing process by decreasing energy and water consumption, reducing environmental load of detergent products, leaving non-toxic water effluents and providing fabric care. Ensuring prope...... the antioxidant homogeneously with the enzyme was found to provide a better protection than coating the salt as a separate layer due to crack formation and/or deliquescence of Na2S2O3 at high humidity.......-dried detergent protease, Savinase, were determined in a newly developed experimental setup, providing rapid assessment of solid-state enzyme stability under oxidizing conditions. The method was based on exposure of an enzyme column to known concentrations of H2O2 (g) and humidity in a thermally stabilized...... that, the inactivation was caused by single-oxidation of the enzyme at Met222 residue. Formulation studies revealed that, having an anti-oxidative property,Na2S2O3 had a better activity-preservation effect compared to Na2CO3, retaining 80% and 60% residual activity, respectively. In addition, mixing...

  15. The improved stability of enzyme encapsulated in biomimetic titania particles

    International Nuclear Information System (INIS)

    Jiang Yanjun; Sun Qianyun; Jiang Zhongyi; Zhang Lei; Li Jian; Li Lin; Sun Xiaohui

    2009-01-01

    This study demonstrates a novel biomimetic approach for the entrapment of yeast alcohol dehydrogenase (YADH) within titania nanoparticles to improve its stability. Protamine was as the template and catalyst for the condensation of titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles in which YADH was trapped. The as-prepared titania/protamine/YADH composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of YADH encapsulation was tentatively proposed from a series of experimental results. The preliminary investigation showed that encapsulated YADH could retain most of its initial activity. Compared to free YADH, encapsulated YADH exhibited significantly improved thermal, pH and recycling stability. After 5 weeks storage, no substantial loss of catalytic activity for encapsulated YADH was observed

  16. Numerical solutions of magnetohydrodynamic stability of axisymmetric toroidal plasmas using cubic B-spline finite element method

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1988-12-01

    A nonvariational ideal MHD stability code (NOVA) has been developed. In a general flux coordinate (/psi/, θ, /zeta/) system with an arbitrary Jacobian, the NOVA code employs Fourier expansions in the generalized poloidal angle θ and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /psi/ direction. Extensive comparisons with these variational ideal MHD codes show that the NOVA code converges faster and gives more accurate results. An extended version of NOVA is developed to integrate non-Hermitian eigenmode equations due to energetic particles. The set of non-Hermitian integro-differential eigenmode equations is numerically solved by the NOVA-K code. We have studied the problems of the stabilization of ideal MHD internal kink modes by hot particle pressure and the excitation of ''fishbone'' internal kink modes by resonating with the energetic particle magnetic drift frequency. Comparisons with analytical solutions show that the values of the critical β/sub h/ from the analytical theory can be an order of magnitude different from those computed by the NOVA-K code. 24 refs., 11 figs., 1 tab

  17. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Kerber, T M; Pereira-Meirelles, F V; Dellamora-Ortiz, G M

    2010-01-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  18. The existence and global exponential stability of a periodic solution of a class of delay differential equations

    International Nuclear Information System (INIS)

    Tang, X H; Zou, Xingfu

    2009-01-01

    By employing Schauder's fixed point theorem and a non-Liapunov method (matrix theory, inequality analysis), we obtain some new criteria that ensure existence and global exponential stability of a periodic solution to a class of functional differential equations. Applying these criteria to a cellular neural network with time delays (delayed cellular neural network, DCNN) under a periodic environment leads to some new results that improve and generalize many existing ones we know on this topic. These results are of great significance in designs and applications of globally stable periodic DCNNs

  19. Application of magnetic iron oxide nanoparticles in stabilization process of biological molecules

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-07-01

    Conclusion: Co-precipitation method is an easy way to prepare magnetic nanoparticles of iron with a large surface and small particle size, which increases the ability of these particles to act as a suitable carrier for enzyme stabilization. Adequate modification of the surface of these nanoparticles enhances their ability to bind to biological molecules. The immobilized protein or enzyme on magnetic nanoparticles are more stable against structural changes, temperature and pH in comparison with un-stabilized structures, and it is widely used in various sciences, including protein isolation and purification, pharmaceutical science, and food analysis. Stabilization based on the covalent bonds and physical absorption is nonspecific, which greatly limits their functionality. The process of stabilization through bio-mediums provide a new method to overcome the selectivity problem.

  20. Almost Periodic Solution for Memristive Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Huaiqin Wu

    2013-01-01

    Full Text Available This paper is concerned with the dynamical stability analysis for almost periodic solution of memristive neural networks with time-varying delays. Under the framework of Filippov solutions, by applying the inequality analysis techniques, the existence and asymptotically almost periodic behavior of solutions are discussed. Based on the differential inclusions theory and Lyapunov functional approach, the stability issues of almost periodic solution are investigated, and a sufficient condition for the existence, uniqueness, and global exponential stability of the almost periodic solution is established. Moreover, as a special case, the condition which ensures the global exponential stability of a unique periodic solution is also presented for the considered memristive neural networks. Two examples are given to illustrate the validity of the theoretical results.