WorldWideScience

Sample records for stabilization ponds chemical

  1. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    Science.gov (United States)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  2. Performance of municipal waste stabilization ponds in the Canadian Arctic

    DEFF Research Database (Denmark)

    Ragush, Colin M.; Schmidt, Jordan J.; Krkosek, Wendy H.

    2015-01-01

    The majority of small remote communities in the Canadian arctic territory of Nunavut utilize waste stabilization ponds (WSPs) for municipal wastewater treatment because of their relatively low capital and operational costs, and minimal complexity. New national effluent quality regulations have be...

  3. Performance Of The Akosombo Waste Stabilization Ponds In Ghana ...

    African Journals Online (AJOL)

    A study was conducted to determine the treatment performance of the Akosombo waste stabilization ponds and the effect of seasonal changes on the final effluent quality. The waste water quality parameters ... Une étude était entreprise pour déterminer le résultat de traitement de bassins de stabilisation du déchet d' ...

  4. Removal Efficiency of Linear Alkyl Benzene Sulfonate (LAS in Yazd Stabilization Pond

    Directory of Open Access Journals (Sweden)

    Asghar Ebrahimi

    2011-01-01

    Full Text Available Surfactants are organic chemicals with wide applications as detergents. Linear alkyl benzene sulfonate (LAS is an anionic surfactant most commonly used. Discharge of raw or treated wastewater containing this chemical into the environment causes major public health problems. In this study, 64 samples were taken from the effluent of Yazd Wastewater  Treatment Plant over a period of one year. The samples were analyzed according to standard methods. The results obtained from the samples taken in different seasons showed that the highest efficiency of anionic surfactant removal was achieved in the summer in the secondary facultative stabilization pond. The least efficiency was observed in the autumn in samples from the anaerobic stabilization pond. It was also found that treated wastewater discharged into surface waters, reused for agricultural irrigation, or discharged into absorbent wells had significant differences with Pvalue

  5. Facultative Stabilization Pond: Measuring Biological Oxygen Demand using Mathematical Approaches

    Science.gov (United States)

    Wira S, Ihsan; Sunarsih, Sunarsih

    2018-02-01

    Pollution is a man-made phenomenon. Some pollutants which discharged directly to the environment could create serious pollution problems. Untreated wastewater will cause contamination and even pollution on the water body. Biological Oxygen Demand (BOD) is the amount of oxygen required for the oxidation by bacteria. The higher the BOD concentration, the greater the organic matter would be. The purpose of this study was to predict the value of BOD contained in wastewater. Mathematical modeling methods were chosen in this study to depict and predict the BOD values contained in facultative wastewater stabilization ponds. Measurements of sampling data were carried out to validate the model. The results of this study indicated that a mathematical approach can be applied to predict the BOD contained in the facultative wastewater stabilization ponds. The model was validated using Absolute Means Error with 10% tolerance limit, and AME for model was 7.38% (< 10%), so the model is valid. Furthermore, a mathematical approach can also be applied to illustrate and predict the contents of wastewater.

  6. Two-step upflow anaerobic sludge bed system for sewage treatment under subtropical conditions with posttreatment in waste stabilization ponds

    NARCIS (Netherlands)

    Seghezzo, L.; Trupiano, A.P.; Liberal, V.; Todd, P.G.; Figueroa, M.E.; Gutierrez, M.A.; Silva Wilches, Da A.C.; Iribarnegaray, M.; Guerra, R.G.; Arena, A.; Cuevas, C.M.; Zeeman, G.; Lettinga, G.

    2003-01-01

    A pilot-scale sewage treatment system consisting of two upflow anaerobic sludge bed (UASB) reactors followed by five waste stabilization ponds (WSPs) in series was studied under subtropical conditions. The first UASB reactor started up in only 1 mo (stable operation, high chemical oxygen demand

  7. The survey of biological absorption of hexavalent chromium from aqueous solutions by Wastewater stabilization pond algae

    Directory of Open Access Journals (Sweden)

    Mohammad Nourisepehr

    2016-06-01

    Full Text Available Background: Contamination of aquatic habitats due to toxicity and accumulation of heavy metals leading to serious damage to organisms and their advance to the food chain. Chrome is one of these heavy metals for the three and six-valence oxides used in industry. Health risks such as carcinogenic hexavalent chromium have been For this reason, removal and reduction of environment is essential. Target of this study hexavalent chromium biosorption by waste stabilization pond algae is of the aquatic environment. Methods: This study was a fundamental applied; In this batch reactor, variables Was investigated pH(3,5,7,9,11, Contact time(30,60,120,180,240,300min, The concentration of hexavalent chromium(0.5,1,5mg And the concentration of algae(0.25, 0.5, 1, 3g. Liquid mixed municipal wastewater treatment stabilization pond was used for insemination. For the investigate the effects of variables pH, contact time, the concentration of hexavalent chromium values in a 250 ml Erlenmeyer flask prepared and various amounts of dried algae (0.25-0.5-1- 3 g were added to it. Then became the shakers. After mixing, the filter paper was passed. The lab temperature was centrifuged for min10-5 rpm 2700 rpm. Then it was read at a wavelength absorbed by 540 nm. . Then collected was data to Excel and SPSS software. Finally was used for hexavalent chromium adsorption isotherm model equation of Langmuir and Freundlich. Results: This study shows that PH, contact time, the concentration of hexavalent chromium and chromium concentrations of algae optimal absorption by algae concentrations, respectively, in5 mg / l, min 120, 0.5 mg / l and is 1gr. Average maximum absorption of chromium Wastewater stabilization ponds by algae 97/2%, respectively. Correlation coefficients absorption curves of these models showed that Cr (VI adsorption isotherm on wastewater stabilization pond algae follows (= R.  Conclusion: The results showed that wastewater stabilization pond algae as a

  8. Stabilization of mixed waste - Rocky Flats solar ponds

    International Nuclear Information System (INIS)

    Bittner, T.A.; Mathew, S.A.; Henderson, W.C.

    1993-01-01

    Among the wastes that require disposal as part of the Department of Energy's (DOE's) Environmental Restoration Program are large amounts of contaminated sludge and inorganic wastes. Halliburton NUS Corporation was awarded a contract by EG ampersand G Rocky Flats in March 1991 to stabilize mixed waste sludge contained in five solar evaporator ponds and to reprocess billets of solidified waste called Pondcrete and Saltcrete at DOE's Rocky Flats Plant. The scope of the project consists of waste characterization and treatability studies for process development, followed by design, construction and operation of various process trains to remediate different waste forms ranging from solid Pondcrete/Saltcrete blocks to aqueous brine solutions. One of the significant advances made was the development of a durable and certifiable stabilization formulation capable of treating concentrated nitrate solution wastes. The project uses high-volume grout mixing and pumping technologies with process control techniques that accommodate the heterogeneity of the wastes. To comply with all relevant environmental regulations and to provide a safe working atmosphere for plant personnel, Halliburton NUS designed process trains such that all emissions were eliminated during the remediation process. Personnel protection equipment requirements have been downgraded due to safeguards incorporated in the design. The technical and regulatory issues that were encountered would be typical of stabilization efforts underway at other DOE sites. Thus the lessons learned and concepts developed can be expected to have widespread application

  9. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  10. EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS

    Directory of Open Access Journals (Sweden)

    Ahmed. M. Abdel-Rahman

    2013-06-01

    Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.

  11. EFFECTIVENESS OF WASTE STABILIZATION PONDS IN REMOVAL OF LINEAR ALKYL BENZENE SALFONATE (LAS

    Directory of Open Access Journals (Sweden)

    Ahmed. M. Abdel-Rahman

    2013-01-01

    Full Text Available Detergents contain synthetic or organic surface active agents called surfactants, which are derived from petroleum product precursors. They have the common property of lowering the surface tensions of water thus allowing dirt or grease adhered to various articles to be washed off. Linear alkyl benzene sulfonate (LAS is a most commonly used anionic surfactant. Discharge of raw or treated wastewater containing this chemical substance into the environment causes major public health and enviromental problems. In this study, samples were taken from raw wastewater and effluents of treatment ponds of Elzaraby waste stabilization ponds over a period of one year. The treated effluent is either discharged into surface waters or re-used in agricultural irrigation. The samples were analyzed according to the standard methods. The results obtained from the samples taken in different seasons showed that the highest overall removal efficiency of LAS was achieved in summer season (77%, and the least efficiency was observed in Winter season (55%, while the maximum overall efficiency of BOD5 was in summer (88% and minimum efficiency was (73% in winter season. The Dissolved oxygen concentrations along the pond series (DO ranged from 0.18 to 4.8 mg/l.

  12. Sulfur bacteria in wastewater stabilization ponds periodically affected by the ‘red-water’ phenomenon

    NARCIS (Netherlands)

    Belila, A.; Abbas, B.; Fazaa, I.; Saidi, N.; Snoussi, M.; Hassen, A.; Muyzer, G.

    2012-01-01

    Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the ‘red-water’ phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El

  13. Sulfur bacteria in wastewater stabilization ponds periodically affected by the 'red-water' phenomenon

    NARCIS (Netherlands)

    Belila, A.; Abbas, B.; Fazaa, I.; Saidi, N.; Snoussi, M.; Hassen, A.; Muyzer, G.

    2013-01-01

    Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the ‘red-water’ phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El

  14. EVALUATING THE ECOLOGICAL RESILIENT DRIVEN PERFORMANCE OF A TROPICAL WASTE STABILIZATION POND SYSTEM USING ECOLOGICAL SIGNATURE OF BIOLOGICAL INTEGRITY

    Directory of Open Access Journals (Sweden)

    Susmita Lahiri Ganguly

    2015-06-01

    Full Text Available Using ecological signature of biological integrity as a measure of performance, the reclamation efficiency of waste stabilization ponds was evaluated over a period of four years in a tropical sewage treatment plant – cum fish culture consisting of two anaerobic, two facultative and four maturation ponds located serially across the sewage effluent gradient. The four maturation ponds were used for batch culture of fish. Samples of surface and bottom water as well as surface sediment were collected twice a month from different ponds of the system and examined for some nutrient cycling bacteria, primary production, chlorophyll content of micro-algae, phytoplankton, zooplankton abundance, fish growth and water quality parameters. Computation of ecological signature using aerobic mineralization index for heterotrophic and ammonifying bacteria revealed steady increase across the sewage effluent gradient. The heterotrophic and ammonifying bacterial populations appeared to have a direct function with the concentrations of chemical oxygen demand of water. The sum of total scores for different optimal conditions for fish growth increased as a function of the distance from the source of effluent implying that ecological resilience of the waste stabilization ponds has been accomplished by the sedimentation, chelation, and biological functional attributes mediated through redundancy of different subsystems, self- purification capacity of the system as a whole.

  15. Assessment of waste stabilization ponds (WSP) efficiency on ...

    African Journals Online (AJOL)

    This stage is essential for polishing water and nutrient as well as pathogen removal. There is need of frequent awareness campaign to a community for the reuse of wastewater for agriculture and its possible impacts. Ponds should be modified and addition of maturation ponds constructed. Further studies are required for ...

  16. Disinfection of stabilization pond effluent by peracetic acid and sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Negar Rezania

    2013-01-01

    Conclusions: The study demonstrated that application of combined PAA and NaOCl in disinfecting the effluent of the stabilization pond will promote the efficiency of disinfection process in inactivating the coliform group bacteria and fecal streptococci.

  17. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    Science.gov (United States)

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  18. Stability considerations and a double-diffusive convection model for solar ponds

    Energy Technology Data Exchange (ETDEWEB)

    Lin, E.I.H.; Sha, W.T.; Soo, S.L.

    1979-04-01

    A brief survey is made on the basic principles, current designs and economic advantages of salinity-gradient solar ponds as solar collectors and reservoirs. Solar ponds are well-suited for various AIPH (agricultural and industrial process heat) applications, and as annual storage devices for space heating and cooling. The benefit of an efficient pond is demonstrated via a preliminary economic analysis which suggests the idea of energy farming as a profitable alternative for land usage in the face of rising fuel cost. The economy and reliability of solar-pond operation depend crucially on the stability of the nonconvective gradient zone against disturbances such as generated by a severe weather condition. Attention is focused on the subject of stability, and pertinent existing results are summarized and discussed. Details of the derivation of three-dimensional stability criteria for thermohaline convection with linear gradients are presented. Ten key questions pertaining to stability are posed, whose answers must be sought through extensive analytical and numerical studies. Possible methods of approach toward enhancing solar-pond stability are also discussed. For the numerical studies of pond behavior and stability characteristics, a double-diffusive convection model is proposed. The model can be constructed by extending the three-dimensional thermohydrodynamic computer code COMMIX-SA, following the necessary steps outlined; computational plans are described. Similarities exist between the halothermocline and the thermocline storage systems, and an extended COMMIX-SA will be a valuable tool for the investigation of both.

  19. Importance of waste stabilization ponds and wastewater irrigation in the generation of vector mosquitoes in Pakistan

    DEFF Research Database (Denmark)

    Mukhtar, Muhammad; Ensink, Jeroen; Van der Hoek, Wim

    2006-01-01

    The objective of the current study was to investigate the role of waste stabilization ponds (WSP) and wastewater-irrigated sites for the production of mosquitoes of medical importance. Mosquito larvae were collected fortnightly from July 2001 to June 2002 in Faisalabad, Pakistan. In total, 3......,132 water samples from WSP and irrigated areas yielded 606,053 Culex larvae of five species. In addition, 107,113 anophelines, representing eight species were collected. Anopheles subpictus (Grassi) and Culex mosquitoes, especially Culex quinquefasciatus (Say) and Culex tritaeniorhynchus (Giles), showed...... an overwhelming preference for anaerobic ponds, which receive untreated wastewater. Facultative ponds generated lower numbers of both Anopheles and Culex mosquitoes, whereas the last ponds in the series, the maturation ponds, were the least productive for both mosquito genera. An. subpictus and Anopheles...

  20. A Closer Look on Spatiotemporal Variations of Dissolved Oxygen in Waste Stabilization Ponds Using Mixed Models

    Directory of Open Access Journals (Sweden)

    Long Ho

    2018-02-01

    Full Text Available Dissolved oxygen is an essential controlling factor in the performance of facultative and maturation ponds since both take many advantages of algal photosynthetic oxygenation. The rate of this photosynthesis strongly depends on the time during the day and the location in a pond system, whose roles have been overlooked in previous guidelines of pond operation and maintenance (O&M. To elucidate these influences, a linear mixed effect model (LMM was built on the data collected from three intensive sampling campaigns in a waste stabilization pond in Cuenca, Ecuador. Within two parallel lines of facultative and maturation ponds, nine locations were sampled at two depths in each pond. In general, the output of the mixed model indicated high spatial autocorrelations of data and wide spatiotemporal variations of the oxygen level among and within the ponds. Particularly, different ponds showed different patterns of oxygen dynamics, which were associated with many factors including flow behavior, sludge accumulation, algal distribution, influent fluctuation, and pond function. Moreover, a substantial temporal change in the oxygen level between day and night, from zero to above 20 mg O2·L−1, was observed. Algal photosynthetic activity appeared to be the main reason for these variations in the model, as it was facilitated by intensive solar radiation at high altitude. Since these diurnal and spatial patterns can supply a large amount of useful information on pond performance, insightful recommendations on dissolved oxygen (DO monitoring and regulations were delivered. More importantly, as a mixed model showed high predictive performance, i.e., high goodness-of-fit (R2 of 0.94, low values of mean absolute error, we recommended this advanced statistical technique as an effective tool for dealing with high autocorrelation of data in pond systems.

  1. CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond.

    Science.gov (United States)

    Alvarado, Andres; Sanchez, Esteban; Durazno, Galo; Vesvikar, Mehul; Nopens, Ingmar

    2012-01-01

    Sludge management in waste stabilization ponds (WSPs) is essential for safeguarding the system performance. Sludge accumulation patterns in WSPs are strongly influenced by the pond hydrodynamics. CFD modeling was applied to study the relation between velocity profiles and sludge deposition during 10 years of operation of the Ucubamba WSP in Cuenca (Ecuador). One tracer experiment was performed and three sludge accumulation scenarios based on bathymetric surveys were simulated. A residence time distribution (RTD) analysis illustrated the decrease of residence times due to sludge deposition. Sludge accumulation rates were calculated. The influence of flow pattern on the sludge deposition was studied, enabling better planning of future pond operation and desludging.

  2. The removal of ammonia from sanitary landfill leachate using a series of shallow waste stabilization ponds.

    Science.gov (United States)

    Leite, V D; Pearson, H W; de Sousa, J T; Lopes, W S; de Luna, M L D

    2011-01-01

    This study evaluated the efficiency of a shallow (0.5 m deep) waste stabilization pond series to remove high concentrations of ammonia from sanitary landfill leachate. The pond system was located at EXTRABES, Campina Grande, Paraiba, Northeast Brazil. The pond series was fed with sanitary landfill leachate transported by road tanker to the experimental site from the sanitary landfill of the City of Joao Pessoa, Paraiba. The ammoniacal-N surface loading on the first pond of the series was equivalent to 364 kg ha(-1) d(-1) and the COD surface loading equivalent to 3,690 kg ha(-1) d(-1). The maximum mean ammonia removal efficiency was 99.5% achieved by the third pond in the series which had an effluent concentration of 5.3 mg L(-1) ammoniacal-N for an accumulative HRT of 39.5 days. The removal process was mainly attributed to ammonia volatilization (stripping) from the pond surfaces as a result of high surface pH values and water temperatures of 22-26°C. Shallow pond systems would appear to be a promising technology for stripping ammonia from landfill leachate under tropical conditions.

  3. Cadmium tolerance and antibiotic resistance in Escherichia coli isolated from waste stabilization ponds.

    Science.gov (United States)

    Patra, Sova; Das, T K; Avila, C; Cabello, V; Castillo, F; Sarkar, D; Lahiri, Susmita; Jana, B B

    2012-04-01

    The incidence pattern of cadmium tolerance and antibiotics resistance by Escherichia coli was examined periodically from the samples of water, sludge and intestine of fish raised in waste stabilization ponds in a sewage treatment plant. Samples of water and sludge were collected from all the selected ponds and were monitored for total counts of fecal coliform (FC), total coliform (TC) and the population of Escherichia coli, which was also obtained from the intestine of fishes. Total counts of both FC and TC as well as counts of E. coli were markedly reduced from the facultative pond to the last maturation pond. Tolerance limit to cadmium by E. coli tended to decline as the distance of the sewage effluent from the source increased; the effective lethal concentration of cadmium ranged from 0.1 mM in split chamber to 0.05 mM in first maturation pond. E. coli isolated from water, sludge and fish gut were sensitive to seven out of ten antibiotics tested. It appears that holistic functions mediated through the mutualistic growth of micro algae and heterotrophic bacteria in the waste stabilization ponds were responsible for the promotion of water quality and significant reduction of coliform along the sewage effluent gradient.

  4. Wastewater stabilization ponds - an appropriate technology for sewage treatment and refuse

    International Nuclear Information System (INIS)

    Aziz, J.A.

    1999-01-01

    Treatment of wastewater is imperative to protect human health and environmental quality. To this effect, the chosen technology should be cost effective, simple and easy to operate and maintain. Wastewater stabilization ponds offer one such technology and their use should be promoted in countries with scarcity of water so as to reuse the treated effluents in irrigation. Long term, pilot scale investigations on the performance of wastewater stabilization ponds have been undertaken at the Institute of Environmental Engineering and Research, Lahore to develop design criteria for their local use. This paper discuss the types and operation of waste stabilization ponds and the extent of their application in Pakistan. The need for users' education for effective operation of this simple facility is also emphasized. (author)

  5. Waste Stabilization Ponds and Aerated Lagoons Performance in Removal of Wastewater Indicator Microorganisms

    Directory of Open Access Journals (Sweden)

    Seyed ali Ghasemi

    2013-08-01

    Full Text Available In this work, the performance of two treatment plants in the City of Mashhad, one with an aerated lagoons system and the other one with waste stabilization ponds system were evaluated in regard to their efficiency in reduction of pathogenic microorganisms. For this purpose, over a period of one year (with 15-days intervals, samples were taken from the influent and effluent (prior to disinfection unit of the above mentioned treatment plants. The samples then were analyzed for parameters such as temperature, pH, density of total coliforms (TC and fecal coliforms (FC, dissolved oxygen and total suspended solids concentration. The results indicated that the aerated lagoons system was much more efficient in removal of indicator bacteria than the waste stabilization ponds during autumn and winter periods. However during the summer months, the waste stabilization ponds showed a higher efficiency in this regard. In general, the waste stabilization ponds system reduced the density of TC and FC by 0.21-2.15 log10 and 0.20-2.33 log10, respectively. In contrast, the levels of reduction in aerated lagoons system were in the range of 0.29-2.03 log10 for TC and 0.42-2.40 log10 for FC. Results indicated that solar intensity, pH and dissolved oxygen concentration were found to be the most significant parameters that reduced the microorganisms population in waste stabilization ponds, While, in the aerated lagoons system, the dissolved oxygen concentration in aerated basin and solar intensity play the most important role. In general, without receiving an adequate disinfection, the effluent from waste stabilization ponds and aerated lagoons cannot provide the microbiological standards required for irrigation of agricultural crops.

  6. Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil.

    Science.gov (United States)

    Jarboui, Raja; Sellami, Fatma; Kharroubi, Adel; Gharsallah, Néji; Ammar, Emna

    2008-11-01

    The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water.

  7. Some chemical parameters of a fertilized productive pond | Nwamba ...

    African Journals Online (AJOL)

    There was no significant variation (P>0.05) in the conductivity (ionic content) of the pond water whether fertilized or unfertilized. The increased in the mean values of free carbon dioxide during the fertilized period was attributed to increased rate of decomposition of organic matter and a concomitant release of carbon dioxide.

  8. Operational Limitations of Arctic Waste Stabilization Ponds: Insights from Modeling Oxygen Dynamics and Carbon Removal

    DEFF Research Database (Denmark)

    Ragush, Colin M.; Gentleman, Wendy C.; Hansen, Lisbeth Truelstrup

    2018-01-01

    Presented here is a mechanistic model of the biological dynamics of the photic zone of a single-cell arctic waste stabilization pond (WSP) for the prediction of oxygen concentration and the removal of oxygen-demanding substances. The model is an exploratory model to assess the limiting environmen...

  9. Rapid Sand Filtration for Best Practical Treatment of Domestic Wastewater Stabilization Pond Effluent

    Science.gov (United States)

    Boatright, D. T.; Lawrence, C. H.

    1977-01-01

    The technical and economic feasibility of constructing and operating a rapid sand filtration sewage treatment system as an adjunct to a waste water stabilization pond is investigated. The study concludes that such units are within the technical and economic constraints of a small community and comply with the EPA criteria. (BT)

  10. Determining the Chemical and Biological Availability of Zinc in Urban Stormwater Retention Ponds

    Science.gov (United States)

    Camponelli, K.; Casey, R.; Lev, S. M.; Landa, E. R.; Snodgrass, J.

    2005-12-01

    Highway runoff has the potential to negatively impact receiving systems due to transport of contaminants that accumulate on road surfaces. Metals such as copper and zinc are major components of automobile brake pads and tires, respectively. As these automobile parts are degraded, these metal containing particulates are deposited on the roadway and are washed into storm water retention ponds and surface water bodies during precipitation events. It has been estimated that 15 to 60% of the Zn in urban stormwater runoff comes from tire wear and that tire wear is a significant source of Zn to the environment with release inventories comparable to waste incineration sources. In urban and sub-urban systems, this large source of Zn can accumulate in stormwater retention ponds which serve as habitat for a variety of species. Understanding the chemical and biological availability of Zn to biota is integral to assessing the habitat quality of retention ponds. This study is a first effort to relate the amount and speciation of Zn in a retention pond to Zn inputs through highway-derived runoff events. In addition, results suggest that the chemical speciation and availability of particulate Zn can be related to the bioavailability and toxicity of Zn to pond organisms (i.e. larval amphibians). The study site in Owings Mills, MD is located next to a four-lane highway from which it receives runoff through a single culvert. Five species of anurans are known to utilize the pond as a breeding site and Zn in amphibian tissues and retention pond sediments were highly elevated at this site in 2001 and 2002. A recent analysis of pond sediments, soils, roadway dust and storm water collected at this site suggests that roadway particulate matter transported during runoff events is the dominant source of Zn in this system. Overall, Zn and other trace metals were found to be most abundant in the clay sized faction of pond sediments and soils. The pond cores were found to have higher Zn and Cu

  11. EVALUATING THE ECOLOGICAL RESILIENT DRIVEN PERFORMANCE OF A TROPICAL WASTE STABILIZATION POND SYSTEM USING ECOLOGICAL SIGNATURE OF BIOLOGICAL INTEGRITY

    OpenAIRE

    Susmita Lahiri Ganguly; Dipanwita Sarkar Paria; B. B. Jana

    2015-01-01

    Using ecological signature of biological integrity as a measure of performance, the reclamation efficiency of waste stabilization ponds was evaluated over a period of four years in a tropical sewage treatment plant – cum fish culture consisting of two anaerobic, two facultative and four maturation ponds located serially across the sewage effluent gradient. The four maturation ponds were used for batch culture of fish. Samples of surface and bottom water as well as surface sediment were collec...

  12. Chemically stabilized soils.

    Science.gov (United States)

    2009-12-01

    The objective of this study was to conduct laboratory evaluations to quantify the effects of compaction and moisture conditions on the strength of chemically treated soils typical utilized in pavement construction in Mississippi.

  13. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.

    Science.gov (United States)

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem

  14. Removal of 226Ra from tailings pond effluents and stabilization of uranium mine tailings. Bench and pilot scale studies

    International Nuclear Information System (INIS)

    Schmidtke, N.W.; Averill, D.; Bryant, D.N.; Wilkinson, P.; Schmidt, J.W.

    1978-01-01

    Increased world demand for uranium has resulted in recent expansion of Canadian uranium mining operations. Problems have been identified with the discharge of radionuclides such as 226 Ra from tailings pond effluents and with the stabilization of mine tailings. At Environment Canada's Wastewater Technology Centre (WTC) two projects were undertaken in cooperation with the Canadian Uranium Mining Industry and other federal government agencies to address these problems. The first project reports on the progress of bench and pilot scale process simulations for the development of a data base for the design of a full scale mechanical physical/chemical 226 Ra removal waste treatment system with an effluent target level of 10 pCi 226 Ra total per litre. The second project addresses problems of the leachability of radionuclides and the stabilization of both uranium mine tailings and BaRaSO 4 sediments from the treatment of acid seepages

  15. Studies on physico – chemical properties of pond water in relation to ...

    African Journals Online (AJOL)

    The results showed that the mean of physico-chemical properties obtained were for the littoral zone of the twelve ponds (P1 – P12) studied and that these properties exhibited spatial and temporal variations. The mean abundance of zooplankton ranged from 3 to 78 orgs/Litre. There were more than seven genera of ...

  16. Effects of pond fertilization on the physico-chemical water quality of ...

    African Journals Online (AJOL)

    The effect of fertilization on the physico-chemical water quality of six selected earthen fishponds in Ife North Local Government Area of Osun State was investigated for a period of two years sampling the ponds every other month. The fishponds were grouped with regard to fertilization practice and water flowage regime into ...

  17. Nile tilapia culture on domestic effluent treated in stabilization ponds.

    Directory of Open Access Journals (Sweden)

    Clovis Matheus Pereira

    2009-03-01

    Full Text Available The performance and filet quality of tilapias (Oreochromis niloticus culture in effluent stabilization lagoons was tested at the densities of 3 fish/m2 (T3, 7 fish/m2 (T2 and 7 fish/m2 in clean water + diet (T1 with 3 repetitions in tanks of 2.57m2 and 0.60m of water column with supplemental aeration. Fish culture in clean water plus diet (T1 presented the highest growth. The higher density T3 (7/m2 compared to T2 (3/m2 did not result in any difference of total production (p > 0.05 but this was compensated by the increased individual fish growth rate at lower density. The conditions that sustain fish survival culture with ETE effluent were attested by the high survival (> 90% under both treatments, but only 10% of the water samples from T2 and T3 N-total ammonium was favorable for fish growth (< 2.0mg/L. The rearing system improved the effluent quality, reducing the total organic nitrogen and the solids in suspension. The faecal coliforms, Salmonella sp. and Staphylococcus aureus from the effluent and fish were verified to be within the standards laid down by the World Health Organization (WHO.

  18. The stability of the water column in french ponds (limousin region by the calculation of the wedderburn number

    Directory of Open Access Journals (Sweden)

    TOUCHART L.

    2014-03-01

    Full Text Available Oxygenation and biological life in lakes, reservoirs and ponds depend on the stability of the water column and on the rhythms of stratification and mixing periods. Slight thermal stratification in ponds often is regarded as the same as instability in shallow lakes. Nevertheless fetch in ponds is very short, what reduces the mixing. Wedderburn number (quotient of the buoyancy by the mixing is used to quantify the stability in shallow water bodies. We calculate it for some ponds in French region Limousin, due to original hourly water temperature measurements in all depths and wind data of Météofrance stations. First results show that very high values (above 10 are frequent in summer and spring period (during 41% of the total time of 2 336 hours from May to July in three ponds. That is why we may consider Limousin ponds as stable stratified bodies of water despite their shallowness. Continuous measurements allow to calculate the diurnal cycle and other time scales of the Wedderburn number, with periods of weakening, when air temperatures and surface water temperatures decrease, wind speed increases and when the wind blows in the same direction with the length of the pond. The most complex variable is the depth of the thermocline; a light increase of the breeze thickens the upper warm layer and strengthens the stability, but an important increase of the wind tends to destroy the stratification.

  19. Application of waste stabilization pond's effluent on cultivation of roses (rosa damascena mill)

    International Nuclear Information System (INIS)

    Khan, M.A.; Shaukat, S.; Shahzad, A.; Ahmed, W.

    2011-01-01

    The study focuses on the use of Waste Stabilization Ponds (WSP) effluent for irrigation and also aims to compare the efficiency of effluent with the Hoagland solution. Results revealed that the number of flowers, size of flower and the petals per flower increased by the use of both Hoagland solution and treated effluent while the height of plant and the fresh weight of flowers were increased significantly by the Hoagland solution only. Moreover, the leaves showed high concentration of reducing and non-reducing sugars as compared to flowers whereas, only the leaves of plants which were treated by the ponds effluent had low content of reducing sugars as compared to leaves of untreated plants serving as controls. The variation in chlorophyll content was similar to that of reducing and non-reducing sugars. In addition, leaves of plants that were treated by pond's effluent showed highest concentration of total phenol content. It is concluded that treated effluent is as effective as Hoagland for the irrigation of rose. Additionally, the use of treated effluent for irrigation reduces the demand of fresh water and the use of inorganic fertilizers for the commercial production of roses. (author)

  20. A THEORETICAL AND NUMERICAL STUDY OF THERMOSOLUTAL CONVECTION: STABILITY OF A SALINITY GRADIENT SOLAR POND

    Directory of Open Access Journals (Sweden)

    Djamel Kalache

    2011-01-01

    Full Text Available A theoretical and numerical study of the effect of thermodiffusion on the stability of a gradient layer is presented. It intends to clarify the mechanisms of fluid dynamics and the processes which occur in a salinity gradient solar pond. A mathematical modelling is developed to describe the thermodiffusion contribution on the solar pond where thermal, radiative, and massive fluxes are coupled in the double diffusion. More realistic boundary conditions for temperature and concentration profiles are used. Our results are compared with those obtained experimentally by authors without extracting the heat flux from the storage zone. We have considered the stability analysis of the equilibrium solution. We assumed that the perturbation of quantities such as velocity, temperature, and concentration are infinitesimal. Linearized equations satisfying appropriate prescribed boundary conditions are then obtained and expanded into polynomials form. The Galerkin method along with a symbolic algebra code (Maple are used to solve these equations. The effect of the separation coefficient y is analyzed in the positive and negative case. We have also numerically compared the critical Rayleigh numbers for the onset of convection with those obtained by the linear stability analysis for Le = 100, µa = 0.8, and f = 0.5.

  1. Chemical and thermal stability of insulin

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands.......To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands....

  2. Algal Growth and Waste Stabilization Ponds Performance Efficiency in a Sub-Tropical Climate

    International Nuclear Information System (INIS)

    Alamgir, A.; Khan, M. A.; Shaukat, S. S.

    2016-01-01

    Both irrigation and potable water are in diminutive supply in most of the developing countries particularly those situated in tropical and subtropical regions where, often untreated wastewater is utilized for the purpose of irrigation. Treated wastewater has proved to be a potential asset serving as an alternate source for the expansion of irrigated agriculture. Waste stabilization ponds (WSP) are considered as less costly and effective substitute for the wastewater water treatment in tropics. The principle of wastewater treatment in waste stabilization pond is based on the symbiotic relationship between bacteria and various algal species. In this study, an attempt was made to relate algal growth and different extrinsic factors using multiple regression models. The predominant algal species found in WSP systems were Chlorella, Euglena, Oscillatoria and Scenedesmus. The growth of individual algal species and overall algal growth was principally governed by temperature, total sunshine hours and Total Kjeldhal Nitrogen (TKN). The study suggested that algal bacterial symbiotic relationship works well and the dissolved oxygen production through algal photosynthesis was optimum to decompose heavy organic load resulting in oxygen-rich effluent (liquid fertilizer) which could be successfully exploited for unrestricted irrigation. (author)

  3. Disinfection and removal of human pathogenic bacteria in arctic waste stabilization ponds

    DEFF Research Database (Denmark)

    Huang, Yannan; Hansen, Lisbeth Truelstrup; Ragush, Colin M.

    2017-01-01

    Wastewater stabilization ponds (WSPs) are commonly used to treat municipal wastewater in Arctic Canada. The biological treatment in the WSPs is strongly influenced by climatic conditions. Currently, there is limited information about the removal of fecal and pathogenic bacteria during the short...... cool summer treatment season. With relevance to public health, the objectives of this paper were to determine if treatment in arctic WSPs resulted in the disinfection (i.e., removal of fecal indicator bacteria, Escherichia coli) and removal of selected human bacterial pathogens from the treated...... treatment of the wastewater with a 2–3 Log removal of generic indicator E. coli. The bacterial pathogens Salmonella spp., pathogenic E. coli, and Listeria monocytogenes, but not Campylobacter spp. and Helicobacter pylori, were detected in the untreated and treated wastewater, indicating that human...

  4. A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond

    Directory of Open Access Journals (Sweden)

    Ali Ben Moussa

    2012-10-01

    Full Text Available In this work, the problem of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond has been numerically studied by means of computational fluid dynamics in transient regime. The body of the simulated pond is an enclosure of height H and length L wherein an artificial salinity gradient is created in order to suppress convective motions induced by solar radiation absorption and to stabilize the solar pond during the period of operation. Here we show the distribution of velocity, temperature and salt concentration fields during energy collection and storage in a solar pond filled with water and constituted by three different salinity zones. The bottom of the pond is blackened and the free-surface is subjected to heat losses by convection, evaporation and radiation while the vertical walls are adiabatic and impermeable. The governing equations of continuity, momentum, thermal energy and mass transfer are discretized by finite–volume method in transient regime. Velocity vector fields show the presence of thin convective cells in the upper convective zone (UCZ and large convective cells in the lower convective zone (LCZ. This study shows the importance of buoyancy ratio in the decrease of temperature in the UCZ and in the preservation of high temperature in the LCZ. It shows also the importance of the thickness of Non-Convective Zone (NCZ in the reduction of the upwards heat losses.

  5. Comparing the Efficiency of Stabilization Ponds and Subsurface Constructed Wetland in Domestic Sewage Treatment in City of Yazd

    Directory of Open Access Journals (Sweden)

    hadi Eslami

    2016-01-01

    Full Text Available Wastewater is one of the most important contributors to water pollution on the one hand, while it has the potential to serve as an alternative source of water if subjected to proper treatment, on the other. The present study was designed to compare the removal efficiencies of stabilization ponds and subsurface constructed wetlands in the treatment of urban wastewater in Yazd. For this purpose, 72 samples were collected at the inlet and outlet of a constructed wetland as well as 72 from the inlet and outlet of stabilization ponds over a period of one year. The samples were subjected to identical tests and the results were compared. The removal efficiencies for BOD5, COD, TSS, NH4-N, NO3-N, and PO4 in the stabilization ponds were 79.7, 79.6, 44.4, 57, 0, and 42.5 percent, respectively. The same parameters for the constructed wetland system were 80.7, 81.5, 77.7, 9.9, 34, and 59.4, respectively. Moreover, BOD5, COD, TSS, and PO4 removal efficiencies were higher in autumn and summer. From these results, it may be concluded that constructed wetlands are more commercially viable than stabilization ponds both in terms of performance and cost-effectiveness.

  6. The Distribution of Microalgae in a Stabilization Pond System of a Domestic Wastewater Treatment Plant in a Tropical Environment (Case Study: Bojongsoang Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Herto Dwi Ariesyady

    2016-02-01

    Full Text Available The Bojongsoang Wastewater Treatment Plant (WWTP serves to treat domestic wastewater originating from Bandung City, West Java, Indonesia. An abundant amount of nutrients as a result of waste decomposition increases the number of microalgae populations present in the pond of the wastewater treatment plant, thereby causing a population explosion of microalgae, also called algal blooming. In a stabilization pond system, the presence of algal blooming is not desirable because it can decrease wastewater treatment performance. More knowledge about the relationship between the nutrients concentration and algae blooming conditions, such as microalgae diversity, is needed to control and maintain the performance of the wastewater treatment plant. Therefore this study was conducted, in order to reveal the diversity of microalgae in the stabilization pond system and its relationship with the water characteristics of the comprising ponds. The results showed that the water quality in the stabilization pond system of Bojongsoang WWTP supported rapid growth of microalgae, where most rapid microbial growth occurred in the anaerobic pond. The microalgae diversity in the stabilization ponds was very high, with various morphologies, probably affiliated with blue-green algae, green algae, cryptophytes, dinoflagellates and diatoms. This study has successfully produced information on microalgae diversity and abundance profiles in a stabilization pond system.

  7. Stability Analysis of a Run-of-River Diversion Hydropower Plant with Surge Tank and Spillway in the Head Pond

    Directory of Open Access Journals (Sweden)

    José Ignacio Sarasúa

    2014-01-01

    Full Text Available Run-of-river hydropower plants usually lack significant storage capacity; therefore, the more adequate control strategy would consist of keeping a constant water level at the intake pond in order to harness the maximum amount of energy from the river flow or to reduce the surface flooded in the head pond. In this paper, a standard PI control system of a run-of-river diversion hydropower plant with surge tank and a spillway in the head pond that evacuates part of the river flow plant is studied. A stability analysis based on the Routh-Hurwitz criterion is carried out and a practical criterion for tuning the gains of the PI controller is proposed. Conclusions about the head pond and surge tank areas are drawn from the stability analysis. Finally, this criterion is applied to a real hydropower plant in design state; the importance of considering the spillway dimensions and turbine characteristic curves for adequate tuning of the controller gains is highlighted.

  8. The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds.

    Science.gov (United States)

    Lahav, R; Fareleira, P; Nejidat, A; Abeliovich, A

    2002-04-01

    Ramat Hovav is a major chemical industrial park manufacturing pharmaceuticals, pesticides, and various aliphatic and aromatic halogens. All wastewater streams are collected in large evaporation ponds. Salinity in the evaporation ponds fluctuates between 3% (w/v) and saturation and pH values range between 2.0 and 10.0. We looked for microorganisms surviving in these extreme environmental conditions and found that 2 yeast strains dominate this biotope. 18S rDNA sequence analysis identified the isolates as Pichia guilliermondii and Rhodotorula mucilaginosa. Both isolates grew in NaCl concentrations ranging up to 3.5 M and 2.5 M, respectively, and at a pH range of 2-10. There was a distinct difference between the Rhodotorula and Pichia strains and S. cerevisiae RS16 that served as a control strain with respect to accumulation of osmoregulators and internal ion concentrations when exposed to osmotic stress. The Pichia and Rhodotorula strains maintained high glycerol concentration also in media low in NaCl. Utilization of various carbon sources was examined. Using a tetrazolium-based assay we show that the Rhodotorula and Pichia strains are capable of utilizing a wide range of different carbon sources including anthracene, phenanthrene, and other cyclic aromatic hydrocarbons.

  9. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    Science.gov (United States)

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  10. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC.

    Science.gov (United States)

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R

    2017-07-12

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.

  11. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  12. Removal of Chromium and Cadmium from Wastewater in Waste Stabilization Ponds, Yazd-Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Samaei

    2016-04-01

    Full Text Available Background: Heavy metals have destructive and irreversible effects on the human, plants and animals. Some industries in Yazd enter industrial wastewater to municipal wastewater collection system. This can lead to high levels of heavy metals in wastewater and in turn in the wastewater treatment plant effluent. Methods: This study was carried out during four months from December 22, 2009 to May 20, 2010. The experiment was performed on the inflow, outlet of anaerobic pond and first and second facultative ponds of wastewater treatment plant and then transferred to the laboratory and measured by atomic absorption spectroscopy. Results: The results of the experiments showed that the average cadmium concentrations in the inflow, anaerobic pond outlet, and first and second facultative pond outlet were 0.0066, 0.0087, 0.0076, and 0.0083μg/l, respectively. The average amounts of chromium in the inflow, anaerobic pond outlet, and first and second facultative pond outlet were 0.0076, 0.0065, 0.0043, and 0.0056 μg/l, respectively. Cadmium concentration in the effluent was higher than standard. Conclusion: The comparison of the obtained data with Iranian standards for wastewater treatment for reuse in irrigation shows that the cadmium concentration exceeded the standard and the chromium concentration was lower than the standard. Therefore, it is not suitable for reuse in the crop farms and aquatic life

  13. Improvement of Expansive Soils Using Chemical Stabilizers

    Science.gov (United States)

    Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.

    2014-12-01

    The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime

  14. Optimizing the dosage of stabilizing chemical

    OpenAIRE

    Harjula, Tomi

    2013-01-01

    A chemical company provides chemical treatment at customer mill in paper industry. This thesis work was done to determine the optimum dosage of stabilizing chemical. The theoretical framework explains the basics of paper brightness and bleaching and how these topics are connected to each other. The knowledge gained is very valuable and can possibly be used in the future in other similar applications as well. This thesis work contains confidential back ground information. Key ...

  15. Olive mill wastewater evaporation management using PCA method Case study of natural degradation in stabilization ponds (Sfax, Tunisia).

    Science.gov (United States)

    Jarboui, Raja; Sellami, Fatma; Azri, Chafai; Gharsallah, Néji; Ammar, Emna

    2010-04-15

    Olive mill wastewater (OMW) evaporation ponds management was investigated in five serial evaporation open-air multiponds of 50 ha located in Sfax (Tunisia). Physico-chemical parameters and microbial flora evolution were considered. Empirical models describing the OMW characteristic changes with the operation time were established and Principal Component Analysis (PCA) described the correlation between physico-chemical and biological parameters. COD, BOD, total solids, polyphenols and electrical conductivity exhibited first-order models. Four groups exhibited high correlations. The first included temperature, density, COD, TSS, TS, BOD, VS, TOC, TKN, polyphenols and minerals. The second group was made up of yeasts and moulds. The third group was established with phenolic compounds, total sugars, fats, total phosphorous, NH(4)(+) and pH. The fourth group was constituted by exclusively aerobic bacteria. Bacterial-growth toxic effect was exhibited by high organic load, ash content and polyphenols, whereas moulds and yeasts were more adapted to OMW. During the storage, all the third group parameter values decreased and were inversely related to the others. In the last pond, COD, BOD, TS and TSS rates were reduced by 40%, 50%, 50% and 75% respectively. The evaporation and the biological activity were the main processes acting, predicting the OMW behavior during evaporation in air-open ponds. 2009 Elsevier B.V. All rights reserved.

  16. Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland

    Science.gov (United States)

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...

  17. Effect of operational variables on nitrogen transformations in duckweed stabilization ponds

    NARCIS (Netherlands)

    Caicedo Berjarano, J.R.

    2005-01-01

    There is an urgent need to develop and improve low cost technologies for wastewater treatment that are within the economic and technological capabilities of developing countries. Simultaneously treating wastewater and producing duckweed in a pond system is therefore an attractive option to

  18. Performance evaluation of cement-stabilized pond ash-rice husk ash-clay mixture as a highway construction material

    Directory of Open Access Journals (Sweden)

    Deepak Gupta

    2017-02-01

    Full Text Available This paper reports the results of an investigation carried out on clay soil stabilized with pond ash (PA, rice husk ash (RHA and cement. Modified Proctor compaction tests were performed in order to investigate the compaction behavior of clay, and California bearing ratio (CBR tests were performed to determine the strength characteristics of clay. For evaluation purpose, the specimens containing different amounts of admixtures were prepared. Clay was replaced with PA and RHA at a dosage of 30%–45% and 5%–20%, respectively. The influence of stabilizer types and dosages on mechanical properties of clay was evaluated. In order to study the surface morphology and crystallization characteristics of the soil samples, scanning electron microscopy (SEM and X-ray diffraction (XRD analyses were carried out, respectively. The results obtained indicated a decrease in the maximum dry density (MDD and a simultaneous increase in the optimum moisture content (OMC with the addition of PA and RHA. Multiple linear regression analysis (MLRA showed that the predicted values of CBR tests are in good agreement with the experimental values. Developed stabilized soil mixtures showed satisfactory strength and can be used for construction of embankments and stabilization of sub-grade soil. The use of locally available soils, PA, RHA, and cement in the production of stabilized soils for such applications can provide sustainability for the local construction industry.

  19. Comparative study on composition and abundance of major planktons and physico-chemical characteristics among two ponds and Lake Tana, Ethiopia

    Directory of Open Access Journals (Sweden)

    Wondie Zelalem Amanu

    2015-11-01

    Full Text Available Objective: To evaluate the difference in physico-chemical characteristics, composition and abundance of plankton communities owing to the supplementary feed added in fish ponds as compared to Lake Tana. Methods: Physico-chemical and biological data of plankton were collected from 3 studied sites from November 2008 to October 2009. Data were compared using One-way ANOVA to see the difference among sites. Diversity indices such as Margalef's index, Shannon-Wiener index, and evenness index were employed to describe the distribution of plankton community among the studied sites. Results: The pH value was remarkably higher in ponds water. However, conductivity and total dissolved solids were the highest in lake water. Nitrate concentration was relatively high in ponds. Zooplankton species richness was higher in lake water than ponds. The lake also had the highest mean value of both Shannon-Wiener index and evenness index in phytoplankton. Conclusions: The results revealed that the supplementary feed added to each pond had influence on nutrient content which enhanced algal biomass and productivity of the ponds. However, the pond water has to be regularly refreshed to control eutrophication.

  20. Physico-chemical analysis of fish pond water in Okada and its ...

    African Journals Online (AJOL)

    Water samples were collected from concrete and earthen fish ponds in different locations in Okada and its environs, Edo State, Nigeria. Twenty-one different physiochemical parameters were analyzed using standard laboratory methods and procedures. In the present study, the values of the parameters ranged from pH 6.75 ...

  1. Effects of Environmental Factors on the Disinfection Performance of a Wastewater Stabilization Pond Operated in a Temperate Climate

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-12-01

    Full Text Available Treatment in a wastewater stabilization pond (WSP relies on natural purification processes, which can be sensitive to both location and climate. This study investigated the effects of three environmental factors, pH, dissolved oxygen (DO and temperature, on disinfection efficiency in a WSP system consisting of three facultative cells, and operated in a temperate climate region, in Eastern Ontario, Canada. Indicator organism (Escherichia coli (E. coli removal in WSP systems is driven by a combination of different factors. Elevated pH and DO concentrations, which are attributed to the presence of algae, are important factors for effective disinfection. Therefore, the presence of algae in natural wastewater treatment systems can contribute appreciably to disinfection. Consequently, based on algal concentrations, removal efficiencies of pathogenic microorganisms during wastewater treatment over the course of a year can be highly variable, where higher removal efficiencies would be expected in summer and fall seasons.

  2. Mercury stabilization in chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A. S.; Singh, D.; Jeong, S. Y.

    2000-01-01

    Mercury stabilization and solidification is a significant challenge for conventional stabilization technologies. This is because of the stringent regulatory limits on leaching of its stabilized products. In a conventional cement stabilization process, Hg is converted at high pH to its hydroxide, which is not a very insoluble compound; hence the preferred route for Hg sulfidation to convert it into insoluble cinnabar (HgS). Unfortunately, efficient formation of this compound is pH-dependent. At a high pH, one obtains a more soluble Hg sulfate, in a very low pH range, insufficient immobilization occurs because of the escape of hydrogen sulfide, while efficient formation of HgS occurs only in a moderately acidic region. Thus, the pH range of 4 to 8 is where stabilization with Chemically Bonded Phosphate Ceramics (CBPC) is carried out. This paper discusses the authors experience on bench-scale stabilization of various US Department of Energy (DOE) waste streams containing Hg in the CBPC process. This process was developed to treat DOE's mixed waste streams. It is a room-temperature-setting process based on an acid-base reaction between magnesium oxide and monopotassium phosphate solution that forms a dense ceramic within hours. For Hg stabilization, addition of a small amount ( 2 S or K 2 S is sufficient in the binder composition. Here the Toxicity Characteristic Leaching Procedure (TCLP) results on CBPC waste forms of surrogate waste streams representing secondary Hg containing wastes such as combustion residues and Delphi DETOXtrademark residues are presented. The results show that although the current limit on leaching of Hg is 0.2 mg/L, the results from the CBPC waste forms are at least one order lower than this stringent limit. Encouraged by these results on surrogate wastes, they treated actual low-level Hg-containing mixed waste from their facility at Idaho. TCLP results on this waste are presented here. The efficient stabilization in all these cases is

  3. Nitrate pollution of groundwater around a sewage stabilization pond, Kerala India

    International Nuclear Information System (INIS)

    Vasu, K.; Shahul Hameed, A.; Velayudhan, K.T.; Jacob, S.; Mathew, M.

    1998-01-01

    An investigation was carried out to determine the influence of the sewage stabilisation pont of the Calicut Medical College on the quality of water in the open dug wells which are situated in and around the stabilisation pond. The study revealed that domestic wells are becoming increasingly polluted with nitrate in spite of heavy rainfall in the region. The level of nitrate in the observation wells was found to be vary widely during different seasons: from 1.1 to 49.8, 0.7 to 19.5 and from 2.1 to 38.3 mg/l during pre-monsoon, monsoon and post-monsoon periods, respectively. One well had nitrate exceeding the maximum permissible limit specified for drinking water by Bureau of Indian Standards. The problem is more pronounced in summer when the level of nitrate is observed to be on the higher side. (author)

  4. Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus growth in earthen ponds in Teso North Sub-County, Busia County

    Directory of Open Access Journals (Sweden)

    Agano J. Makori

    2017-11-01

    Full Text Available Abstract Small-scale fish farmers in developing countries are faced with challenges owing to their limited information on aquaculture management. Nile tilapia farmers in Teso North Sub-County recorded lower yields than expected in 2009 despite having been provided with required inputs. Water quality was suspected to be the key factor responsible for the low yields. This study sought to assess the effects of earthen pond water physico-chemical parameters on the growth of Nile tilapia in six earthen fish ponds under semi-intensive culture system in Teso North Sub-County. The study was longitudinal in nature with pond water and fish being the units of analysis. Systematic sampling was used to select five ponds while a control pond was purposively selected based on its previously high harvest. Four ponds were fed by surface flow and two by underground water. Each pond was fertilized and stocked with 900 fry of averagely 1.4 g and 4.4 cm. Physico-chemical parameters were measured in-situ using a multi-parameter probe. Sixty fish samples were randomly obtained from each pond fortnightly for four months using a 10 mm mesh size and measured, weighed and returned into the pond. Mean range of physico-chemical parameters were: dissolved oxygen (DO 4.86–10.53 mg/l, temperature 24-26 °C, pH 6.1–8.3, conductivity 35–87 μS/cm and ammonia 0.01–0.3 mg/l. Temperature (p = 0.012 and conductivity (p = 0.0001 levels varied significantly between ponds. Overall Specific Growth Rate ranged between 1.8% (0.1692 g/day and 3.8% (1.9 g/day. Ammonia, DO and pH in the ponds were within the optimal levels for growth of tilapia, while temperature and conductivity were below optimal levels. As temperature and DO increased, growth rate of tilapia increased. However, increase in conductivity, pH and ammonia decreased fish growth rate. Temperature and DO ranging between 27 and 30 °C and 5–23 mg/l, respectively, and SGR of 3.8%/day and above are

  5. Effect of low quality effluent from wastewater stabilization ponds to receiving bodies, case of Kilombero sugar ponds and Ruaha river, Tanzania.

    Science.gov (United States)

    Machibya, Magayane; Mwanuzi, Fredrick

    2006-06-01

    A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body). The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river) was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant) were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River) was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO) requires that the effluent quality ranges between 10 - 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds) is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds) could be reviewed regarding the change on quantity of influent caused by population increase.

  6. Effect of Low Quality Effluent from Wastewater Stabilization Ponds to Receiving Bodies, Case of Kilombero Sugar Ponds and Ruaha River, Tanzania

    Directory of Open Access Journals (Sweden)

    Fredrick Mwanuzi

    2006-06-01

    Full Text Available A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body. The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO requires that the effluent quality ranges between 10 – 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds could be reviewed regarding the change on quantity of influent caused by population increase.

  7. Olive mill wastewater disposal in evaporation ponds in Sfax (Tunisia): moisture content effect on microbiological and physical chemical parameters.

    Science.gov (United States)

    Jarboui, Raja; Hadrich, Bilel; Gharsallah, Néji; Ammar, Emna

    2009-11-01

    The study of the isotherms desorption of olive mill wastewater (OMW) was investigated to describe its water activity under different saturated environments. The microbial biodegradation of OMW during its storage in 5 evaporation ponds located in Agareb (Sfax-Tunisia) was carried out during the oil-harvesting year held 105 days in 2004. Gravimetric static method using saturated salt solutions was used and OMW as placed at 30 degrees C and under different water activities ranging from 0.11 to 0.90. Eight models were taken from the literature to describe experimental desorption isotherms. During storage, the evolution of physico-chemical parameters including pH, temperature, evaporation, humidity, total phosphorus, chemical oxygen demand (COD), biological oxygen demand (BOD) and phenols and three microbiological flora (aerobic mesophilic bacteria, yeasts and moulds) were considered. At 30 degrees C, when relative humidity increased in the experimented ponds of 69, 84 and 90%, the evaporation speed decreased from 1.24 x 10(-5) to 5 x 10(-6) cm(3) s(-1), from 6 x 10(-5) to 7 x 10(-6) cm(3) s(-1) and from 5 x 10(-6) to 1.1 x 10(-7) cm(3) s(-1) respectively. The desorption isotherm exhibited a sigmoidal curve corresponding to type II, typical of many organic material. The GAB and Peleg models gave the best fit for describing the relationship between the equilibrium moisture content and water activity in OMW (R (2) = 0.998). During the storage period, the analysis showed an increase of all the physico-chemical parameters studied, except phenols and total phosphorus concentrations. The microbiological study showed the predominance of yeasts and moulds and the decrease of bacteria population after 75 days reflecting both effect of recalcitrant compounds and the water activity on microbial growth.

  8. Chemical stability of levoglucosan: An isotopic perspective

    Science.gov (United States)

    Sang, X. F.; Gensch, I.; Kammer, B.; Khan, A.; Kleist, E.; Laumer, W.; Schlag, P.; Schmitt, S. H.; Wildt, J.; Zhao, R.; Mungall, E. L.; Abbatt, J. P. D.; Kiendler-Scharr, A.

    2016-05-01

    The chemical stability of levoglucosan was studied by exploring its isotopic fractionation during the oxidation by hydroxyl radicals. Aqueous solutions as well as mixed (NH4)2SO4-levoglucosan particles were exposed to OH. In both cases, samples experiencing different extents of processing were isotopically analyzed by Thermal Desorption-Gas Chromatography-Isotope Ratio Mass Spectrometry (TD-GC-IRMS). From the dependence of levoglucosan δ13C and concentration on the reaction extent, the kinetic isotope effect (KIE) of the OH oxidation reactions was determined to be 1.00187±0.00027 and 1.00229±0.00018, respectively. Both show good agreement within the uncertainty range. For the heterogeneous oxidation of particulate levoglucosan by gas-phase OH, a reaction rate constant of (2.67±0.03)·10-12 cm3 molecule-1S-1 was derived. The laboratory kinetic data, together with isotopic source and ambient observations, give information on the extent of aerosol chemical processing in the atmosphere.

  9. Wastewater management in Khartoum Region Soba wastewater treatment plant (stabilization ponds)

    International Nuclear Information System (INIS)

    Maki, A. M. E.

    2010-03-01

    Soba wastewater treatment plant will be replaced shortly by new plant based on activate sludge. This study was carried in order to evaluate: the design, physical, chemical and biological characteristics and the capacity of the plant. Outlet Effluents quality was compared with Sudan wastewater treatment standards. Samples analyses were carried by UNESCO CHAIR 2006 (Khartoum State). It was found that the result is not as: The designed and standard level especially for BOD, COD, TBC and TC. It was also found that BOD and COD of the effluents were not complying with adopted standards for treated wastewater to be discharged to the environment. The study reached the conclusions that plant is overloaded and the characteristics of the wastewater received is not as the design which affects the efficiency of the treatment process. (Author)

  10. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  11. Stability of a chemically active floating disk

    Science.gov (United States)

    Vandadi, Vahid; Jafari Kang, Saeed; Rothstein, Jonathan; Masoud, Hassan

    2017-11-01

    We theoretically study the translational stability of a chemically active disk located at a flat liquid-gas interface. The initially immobile circular disk uniformly releases an interface-active agent that locally changes the surface tension and is insoluble in the bulk. If left unperturbed, the stationary disk remains motionless as the agent is discharged. Neglecting the inertial effects, we numerically test whether a perturbation in the translational velocity of the disk can lead to its spontaneous and self-sustained motion. Such a perturbation gives rise to an asymmetric distribution of the released factor that could trigger and sustain the Marangoni propulsion of the disk. An implicit Fourier-Chebyshev spectral method is employed to solve the advection-diffusion equation for the concentration of the active agent. The solution, given a linear equation of state for the surface tension, provides the shear stress distribution at the interface. This and the no-slip condition on the wetted surface of the disk are then used at each time step to semi-analytically determine the Stokes flow in the semi-infinite liquid layer. Overall, the findings of our investigation pave the way for pinpointing the conditions under which interface-bound active particles become dynamically unstable.

  12. Evaluation of waste stabilization ponds effluent efficiency on the growth and nutritive characteristics of cluster beans (cyamopsis tetragonoloba l.) taub

    International Nuclear Information System (INIS)

    Khan, M.; Shaukat, S.S.; Alamgir, A.; Hasan, S.A.

    2014-01-01

    South Asian countries including Pakistan are facing chronic shortage of water supply which is anticipated to be aggravated in future. These countries are agribased where the continued water supply is crucial for sustainable economy. One of the possible alternatives to overcome the problems of water scarcity is the used of treated wastewater which is gaining much importance even in the western world. The treated wastewater can be used as a liquid fertilizer which could provide dual benefits both in terms of saving of fresh water as well as inorganic fertilizers. The potential of treated effluent from waste stabilization ponds (WSP) and equivalent basal fertilizer on growth and nutritive quality of cluster beans (Cyamopsis tetragonoloba L.) Taub. was investigated under field conditions. Treated effluent significantly increased fresh weight of leaves and stems. Dry weight of stem was also significantly higher with the treatment of WSP effluent as compared to the use of basal fertilizer and fresh water. Fresh and dry fruit weights, number of seeds per fruit and fruit length were also significantly increased in WSP effluent treatment as compared to other two treatments. Treatment with WSP effluent also improved the nutritive characteristics such as crude proteins and total carbohydrates. However, total fat and ash content percentage of Cyamopsis tetragonoloba remained unaltered. The application of WSP effluent also increased NPK and organic matter content of the soil after harvesting the crop which would be helpful for succeeding crop. The study demonstrated that treated effluent can be successfully used for unrestricted irrigation in the water deficient areas of Pakistan thereby saving huge quantities of fresh water. (author)

  13. EFFECT OF TROUT PRODUCTION IN CONCRETE PONDS WITH A CASCADING FLOW OF WATER ON PHYSICAL AND CHEMICAL PROPERTY OF WATER

    Directory of Open Access Journals (Sweden)

    Marcin Sidoruk

    2014-10-01

    Full Text Available Fish rearing causes changes in water quality due to the use of feed, mineral and organic fertilizers, pharmaceuticals and disinfectants. Rational fishery management aims to maintain or restore the quality of water in natural ecosystems. Cultures produce a certain amount of waste and pollutants released into the environment with waters departing from ponds, but their harmfulness depends on the conditions and type of farming. Studies on the assessment of the effects of rearing trout on physical and chemical properties of surface water were carried out in 2010-2012. Were chosen trout farm located in the Pomeranian province about 36 miles southeast of Słupsk. Water samples for physical and chemical analysis were collected every two months (a total of 12 sets samples collected and labeled them: temperature [°C], dissolved oxygen [mg · dm-3], oxygen saturation [%] electrolytic conductivity [S · cm-1], pH, redox potential [mV] and BOD5 and CODCr. The study showed that the water used to supply breeding facilities meet the requirements to be met which are inland water salmonid habitat. Only periodically for BOD5 standards have been slightly exceeded. After passing through the joints deterioration of water quality did not cause a change in the quality of the class, if only temporarily BOD5 ratio were lower in its quality from the first to the third class.

  14. Effects of Organic Load, pH, and EC Variations of Raw Wastewater and Weather Condition on the Efficiency of Yazd Stabilization Ponds

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Mozaheb

    2009-06-01

    Full Text Available This study investigates the effects of organic load, pH, and EC variations of raw wastewater as well as the effect of weather condition on organic removal in Yazd wastewater Stabilization Ponds (2007. During the course of this study, composite samples were collected from the inlet and outlet of the anaerobic pond and the final effluent to measure such quality parameters as BOD5, COD, TSS, EC, and pH.  BOD5, COD, TSS, and Fecal coliform removal efficiencies in the final effluent were found to be 64.9%, 44.9 %, 62.6 %, and 99.96%, respectively. No intestinal nematode egg was observed. Comparison of BOD5 and COD concentrations in the filtered and non-filtered samples showed that 52% of the BOD5 and 57% of the COD in the final effluent, respectively, were due to the presence of algal mass and organic suspended solids in the non-filtered samples. The results showed that variations in organic load, pH, EC as well as seasonal weather variations had no effects on organic removal and that the removal of BOD5 was almost constant. Effluent EC was higher than influent EC. This phenomenon can be related to the evaporation rate in wastewater stabilization ponds. The survey of algae in the final effluent showed that the major species of algae were Phytoconis, Chlorella, and Anabaena.

  15. Description of work for 216-U-Pond cone penetrometer demonstration

    International Nuclear Information System (INIS)

    Kelty, G.G.

    1993-01-01

    This description of work details the Proposed field activities associated with Cone Penetrometer (CPT) work at the 216-U-10 Pond (U-10 Pond) in the 200 West Area and will serve as a field guide for those performing the work. The U-10 Pond was constructed in 1944 to receive low-level liquid effluent from the various chemical reprocessing facilities within the 200 West Area. The U-10 Pond covered 30 acres and received approximately 4.3 x 10 10 gal of contaminated liquid. Sampling conducted in 1980 indicated that the most significant radionuclides were 90 Sr, 137 Cs, plutonium, and uranium (DOE-RL 1993). The pond was deactivated and stabilized in 1985 with clean fill dirt. The thickness of the stabilization cover is variable across the former pond and ranges between 2 ft near the pond margins and delta area to 8 feet in the deepest section of the pond. The purpose of this work is to establish the extent of contamination beneath the U-10 pond

  16. Chemical Stability of Telavancin in Elastomeric Pumps☆

    Science.gov (United States)

    Sand, Patrick; Aladeen, Traci; Kirkegaard, Paul; LaChance, Dennis; Slover, Christine

    2015-01-01

    Background VIBATIV is a once-daily, injectable lipoglycopeptide antibiotic approved in the U.S. for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) caused by susceptible isolates of Staphylococcus aureus when alternative treatments are not suitable. In addition, VIBATIV is approved in the U.S. for the treatment of adult patients with complicated skin & skin structure infections (cSSSI) caused by susceptible isolates of Gram-positive bacteria, including Staphylococcus aureus, both methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) strains. Objective To evaluate the chemical stability of telavancin (Vibativ; Theravance Biopharma US, Inc, Northbrook, Illinois), a lipoglycopeptide antibiotic with activity against methicillin-resistant Staphylococcus aureus, in 2 types of elastomeric pumps, the Intermate Infusion System (Baxter International Inc) and the Homepump Eclipse (I-Flow Corporation). Methods Different sizes of the Baxter (Ontario, Canada) (105 mL and 275 mL) and I-Flow (Stoughton, Massachusetts) (100 mL and 250 mL) pumps were compared with glass controls. The telavancin drug product was reconstituted and diluted to concentrations of 0.6 mg/mL and 8.0 mg/mL using either 0.9% saline, 5% dextrose in water, or sterilized water for injection (0.6 mg/mL telavancin) or saline (8.0 mg/mL telavancin) followed by Ringer’s Lactate solution. Pumps were filled and stored at 2°C to 8°C, protected from light. Aliquots from both pump types and for all telavancin reconstitution/dilution schemes and concentrations were taken over a period of 8 days and analyzed for appearance, pH, telavancin concentration and purity, and degradation products. Results The pH of all pump solutions remained consistent throughout the 8-day analysis period, within a range of 4.6 to 5.7 for the 0.6 mg/mL and 4.4 to 4.9 for the 8.0 mg/mL telavancin solutions. There was no significant change in the chromatographic purity for any of the pump

  17. Chemical Stability of Telavancin in Elastomeric Pumps.

    Science.gov (United States)

    Sand, Patrick; Aladeen, Traci; Kirkegaard, Paul; LaChance, Dennis; Slover, Christine

    2015-12-01

    VIBATIV is a once-daily, injectable lipoglycopeptide antibiotic approved in the U.S. for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) caused by susceptible isolates of Staphylococcus aureus when alternative treatments are not suitable. In addition, VIBATIV is approved in the U.S. for the treatment of adult patients with complicated skin & skin structure infections (cSSSI) caused by susceptible isolates of Gram-positive bacteria, including Staphylococcus aureus, both methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) strains. To evaluate the chemical stability of telavancin (Vibativ; Theravance Biopharma US, Inc, Northbrook, Illinois), a lipoglycopeptide antibiotic with activity against methicillin-resistant Staphylococcus aureus, in 2 types of elastomeric pumps, the Intermate Infusion System (Baxter International Inc) and the Homepump Eclipse (I-Flow Corporation). Different sizes of the Baxter (Ontario, Canada) (105 mL and 275 mL) and I-Flow (Stoughton, Massachusetts) (100 mL and 250 mL) pumps were compared with glass controls. The telavancin drug product was reconstituted and diluted to concentrations of 0.6 mg/mL and 8.0 mg/mL using either 0.9% saline, 5% dextrose in water, or sterilized water for injection (0.6 mg/mL telavancin) or saline (8.0 mg/mL telavancin) followed by Ringer's Lactate solution. Pumps were filled and stored at 2°C to 8°C, protected from light. Aliquots from both pump types and for all telavancin reconstitution/dilution schemes and concentrations were taken over a period of 8 days and analyzed for appearance, pH, telavancin concentration and purity, and degradation products. The pH of all pump solutions remained consistent throughout the 8-day analysis period, within a range of 4.6 to 5.7 for the 0.6 mg/mL and 4.4 to 4.9 for the 8.0 mg/mL telavancin solutions. There was no significant change in the chromatographic purity for any of the pump solutions examined. All decreases in

  18. Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

    International Nuclear Information System (INIS)

    Bae, Eun Joo; Park, Hee Jin; Park, Jun Su; Yoon, Je Yong; Yi, Jong Heop; Kim, Young Hun; Choi, Kyung Hee

    2011-01-01

    Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers

  19. Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Eun Joo; Park, Hee Jin; Park, Jun Su; Yoon, Je Yong; Yi, Jong Heop [Seoul National University, Seoul (Korea, Republic of); Kim, Young Hun [Kwangwoon University, Seoul (Korea, Republic of); Choi, Kyung Hee [National Institute of Environmental Research, Incheon (Korea, Republic of)

    2011-02-15

    Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers.

  20. Chemical stability of oseltamivir in oral solutions.

    Science.gov (United States)

    Albert, K; Bockshorn, J

    2007-09-01

    The stability of oseltamivir in oral aqueous solutions containing the preservative sodium benzoate was studied by a stability indicating HPLC-method. The separation was achieved on a RP-18 ec column using a gradient of mobile phase A (aqueous solution of 50 mM ammonium acetate) and mobile phase B (60% (v/v) acetonitrile/40% (v/v) mobile phase A). The assay was subsequently validated according to the ICH guideline Q2(R1). The extemporaneously prepared "Oseltamivir Oral Solution 15 mg/ml for Adults or for Children" (NRF 31.2.) according to the German National Formulary ("Neues Rezeptur-Formularium") was stable for 84 days if stored under refrigeration. After storage at 25 degrees C the content of oseltamivir decreased to 98.4%. Considering the toxicological limit of 0.5% of the 5-acetylamino derivative (the so-called isomer I) the solution is stable for 46 days. Oseltamivir was less stable in a solution prepared with potable water instead of purified water. Due to an increasing pH the stability of this solution decreased to 14 days. Furthermore a white precipitate of mainly calcium phosphate was observed. The addition of 0.1% anhydrous citric acid avoided these problems and improved the stability of the solution prepared with potable water to 63 days. Sodium benzoate was stable in all oral solutions tested.

  1. Chemical Stability of Telavancin in Elastomeric Pumps

    Directory of Open Access Journals (Sweden)

    Patrick Sand, MSc

    2015-12-01

    Conclusions: The results of this study indicate that telavancin remains chemically stable when diluted in the Intermate Infusion System and the Homepump Eclipse elastomeric pumps and stored at 2°C to 8°C for up to 8 days protected from light at the concentration range and dilution schemes evaluated.

  2. On the Chemical Stabilities of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yen-Ho Chu

    2009-09-01

    Full Text Available Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitous and in others, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention must be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  3. On the chemical stabilities of ionic liquids.

    Science.gov (United States)

    Sowmiah, Subbiah; Srinivasadesikan, Venkatesan; Tseng, Ming-Chung; Chu, Yen-Ho

    2009-09-25

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitously advantageous in others is has been a problem, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  4. Effect of thiram and of a hydrocarbon mixture on freshwater macroinvertebrate communities in outdoor stream and pond mesocosms: I. Study design, chemicals fate and structural responses.

    Science.gov (United States)

    Bayona, Yannick; Roucaute, Marc; Cailleaud, Kevin; Lagadic, Laurent; Bassères, Anne; Caquet, Thierry

    2015-11-01

    Higher-tier ecological risk assessment (ERA) in mesocosms is commonly performed in lotic or lentic experimental systems. These systems differ in their physico-chemical and hydrological properties, leading to differences in chemical fate, community characteristics and potential recovery. This raises the issue of the relevance and sensitivity of community-level endpoints in different types of mesocosms. In this study, macroinvertebrate abundance and biomass estimates were used to assess the effects of a dithiocarbamate fungicide, thiram (35 and 170 µg l(-1)), and a petroleum middle distillate (PMD; 0.01, 0.4, 2 and 20 mg l(-1)) in outdoor stream and pond mesocosms. Streams were continuously treated during 3 weeks followed by a 2-month long post-treatment period. Ponds were treated weekly for 4 weeks, followed by a 10-month long post-treatment period. Taxonomic structure of macroinvertebrate communities was characterized using the α, β and γ components of taxa richness, Shannon and Gini-Simpson indices. Computations were based either on abundance or biomass data. Results clearly highlighted that the effects of chemicals depended on the exposure regime (for thiram) and type of system (for the PMD). Causes of the differences between streams and ponds in the magnitude and nature of effects include differential sensitivity of taxa dwelling in lentic and lotic systems and the influence of hydrology (e.g., drift from upstream) and mesocosm connectivity on recovery dynamics. This study also showed complementarities in the use of both types of mesocosms to improve the characterization of chemical effects on communities in ERA.

  5. Frozen ponds

    DEFF Research Database (Denmark)

    Langer, M; Westermann, S.; Anthony, K. Walter

    2015-01-01

    to a warming climate are complex and only poorly understood. Small waterbodies have been attracting an increasing amount of attention since recent studies demonstrated that ponds can make a significant contribution to the CO2 and CH4emissions of tundra ecosystems. Waterbodies also have a marked effect...... on the thermal state of the surrounding permafrost; during the freezing period they prolong the period of time during which thawed soil material is available for microbial decomposition.  This study presents net CH4 production rates during the freezing period from ponds within a typical lowland tundra landscape...

  6. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    Energy Technology Data Exchange (ETDEWEB)

    Verbyla, M.E., E-mail: verbylam@mail.usf.edu [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States); Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M. [Centro de Aguas y Saneamiento Ambiental, Universidad Mayor de San Simón, Cochabamba (Bolivia, Plurinational State of); Mihelcic, J.R. [Department of Civil and Environmental Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL (United States)

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g{sup −1} for coliphage, between 1 and 100 mL g{sup −1} for Giardia and Cryptosporidium, and between 100 and 1000 mL g{sup −1} for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in

  7. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops

    International Nuclear Information System (INIS)

    Verbyla, M.E.; Iriarte, M.M.; Mercado Guzmán, A.; Coronado, O.; Almanza, M.; Mihelcic, J.R.

    2016-01-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10 years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1 mL g"−"1 for coliphage, between 1 and 100 mL g"−"1 for Giardia and Cryptosporidium, and between 100 and 1000 mL g"−"1 for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. - Highlights: • Study of health risks from reclaimed wastewater irrigation from aging pond systems • Coliphages, protozoan parasites, and helminths were measured in water/soil/crops. • Sludge accumulation in ponds may limit

  8. Remoción de formas parasitarias intestinales en una laguna facultativa de estabilización en Lima, Perú Removal of intestinal parasitic forms in a facultative stabilization pond in Lima, Peru

    Directory of Open Access Journals (Sweden)

    José O. Iannacone

    2002-12-01

    Full Text Available The effectiveness of a waste stabilization pond, to remove intestinal helminth eggs and protozoan cysts was studied in San Martin de Porres, Lima, Peru. From September to October 2000 four collections of samples were performed from raw domestic wastewater and from contends of primary, secondary and tertiary ponds. A comparative study of performance of the concentrations methods of Ritchie and Faust was also done. The overall average removal of parasitic forms was as follow: 69.37% from raw water and primary pond; 48.34% from primary to secondary pond; 85.45% from secondary to tertiary pond and 97.69% from raw water to tertiary pond. There was no significant difference in the quantitative performance of Ritchic and Faust methods. Giardia duodenalis (Lambl, 1859 Alexeieff, 1914, Entamoeba coli (Gras, 1879 Casagrandi & Barbagallo, 1895 and Ascaris lumbricoides (Linnaeus, 1758 were detected with both methods. Three other parasites were detected only by Ritchie method: Taenia sp., Rodentolepis nana (von Siebold, 1852 Spasskii, 1954 and Trichuris trichiura (Linnaeus, 1771 Stiles, 1901 and only Faust detected Isospora belli Wenyon, 1923. Overall number of protozoa cysts was higher than the number of helminth eggs. At the end, wastewater had a concentration of 1.5 parasitic forms L¹ what is considered inappropríate for ultimate use in agriculture by current standards.

  9. Stability of tailings ponds in the mining district of Mazarron (SE Spain): potential risks for the Moreras Rambla; Estudio de estabilidad en depositos de lodos del Distrito Minero de Mazarron (SE Espana): Riesgos potenciales sobre la Rambla de Las Moreras

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. A.; Martinez-Martinez, S.; Martinez-Pagan, P.; Zornoza, R.; Carmona, D. M.; Faz, A.

    2011-07-01

    We have used geochemical, geophysical and geotechnical techniques to identify and quantify the environmental risks of the San Cristobal and Las Moreras tailing ponds, which have been left since the closing down of Pb-Zn mining activities in a semi-arid Mediterranean area. The results show that the tailings ponds present a potential risk to nearby ecosystems because of their high acidity, high salinity and high concentrations of metals, especially Pb and Zn contain. If the pond dams were to fail or if erosion carried dry sludge to the surrounding areas, the result would be pollution, acidification, salinization, compaction and nutrient depletion of the soil, thus reducing the biodiversity of the area. Geoelectrical tomography has shown the depth of the deposits, their volume and the geomorphology of the basement. The profiles reveal that in none of the pseudo-sections are there any regions betraying cracks that might affect the stability of the structures. In fact, geotechnical studies indicate that on a large scale both ponds are stable. Nevertheless, if we contemplate circular rupture and seismic action in the San Cristobal pond, the safety factor values become critical. It is recommended, therefore, that periodic inspections should be carried out to assess moisture, upsurges and settlements in the dam. To reduce erosion of the surface sludge in the tailing ponds we suggest the application of alkaline and organic remediation so as to improve their geochemical characteristics and encourage the establishment of natural vegetation. (Author) 48 refs.

  10. Chemical stabilization of porous silicon for enhanced biofunctionalization with immunoglobulin

    Directory of Open Access Journals (Sweden)

    Nelson Naveas, Vicente Torres Costa, Dario Gallach, Jacobo Hernandez-Montelongo, Raul Jose Martín Palma, Josefa Predenstinacion Garcia-Ruiz and Miguel Manso-Silván

    2012-01-01

    Full Text Available Porous silicon (PSi is widely used in biological experiments, owing to its biocompatibility and well-established fabrication methods that allow tailoring its surface. Nevertheless, there are some unresolved issues such as deciding whether the stabilization of PSi is necessary for its biological applications and evaluating the effects of PSi stabilization on the surface biofunctionalization with proteins. In this work we demonstrate that non-stabilized PSi is prone to detachment owing to the stress induced upon biomolecular adsorption. Biofunctionalized non-stabilized PSi loses the interference properties characteristic of a thin film, and groove-like structures resulting from a final layer collapse were observed by scanning electron microscopy. Likewise, direct PSi derivatization with 3-aminopropyl-triethoxysilane (APTS does not stabilize PSi against immunoglobulin biofunctionalization. To overcome this problem, we developed a simple chemical process of stabilizing PSi (CoxPSi for biological applications, which has several advantages over thermal stabilization (ToxPSi. The process consists of chemical oxidation in H2O2, surface derivatization with APTS and a curing step at 120 °C. This process offers integral homogeneous PSi morphology, hydrophilic surface termination (contact angle θ = 26° and highly efficient derivatized and biofunctionalized PSi surfaces (six times more efficient than ToxPSi. All these features are highly desirable for biological applications, such as biosensing, where our results can be used for the design and optimization of the biomolecular immobilization cascade on PSi surfaces.

  11. Toxigenic Vibrio cholerae O1 in vegetables and fish raised in wastewater irrigated fields and stabilization ponds during a non-cholera outbreak period in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Hounmanou, Yaovi M G; Mdegela, Robinson H; Dougnon, Tamègnon V

    2016-01-01

    gene (tcpA) and the haemolysin gene (hlyA). RESULTS: The prevalence of V. cholerae in wastewater, vegetables and fish was 36.7, 21.7 and 23.3 %, respectively. Two isolates from fish gills were V. cholerae O1 and tested positive for ctx and tcpA. One of these contained in addition the hlyA gene while......BACKGROUND: Cholera, one of the world's deadliest infectious diseases, remains rampant and frequent in Tanzania and thus hinders existing control measures. The present study was undertaken to evaluate the occurrence of toxigenic Vibrio cholerae O1 in wastewater, fish and vegetables during a non......-outbreak period in Morogoro, Tanzania. METHODS: From October 2014 to February 2015, 60 wastewater samples, 60 fish samples from sewage stabilization ponds and 60 wastewater irrigated vegetable samples were collected. Samples were cultured for identification of V. cholerae using conventional bacteriological...

  12. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures.

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J

    2018-02-25

    In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be

  13. Physical and chemical stability of pemetrexed in infusion solutions.

    Science.gov (United States)

    Zhang, Yanping; Trissel, Lawrence A

    2006-06-01

    Pemetrexed is a multitargeted, antifolate, antineoplastic agent that is indicated for single-agent use in locally advanced or metastatic non-small-cell lung cancer after prior chemotherapy and in combination with cisplatin for the treatment of malignant pleural mesothelioma not treatable by surgery. Currently, there is no information on the long-term stability of pemetrexed beyond 24 hours. To evaluate the longer-term physical and chemical stability of pemetrexed 2, 10, and 20 mg/mL in polyvinyl chloride (PVC) bags of dextrose 5% injection and NaCl 0.9% injection. Triplicate samples of pemetrexed were prepared in the concentrations and infusion solutions required. Evaluations for physical and chemical stability were performed initially and over 2 days at 23 degrees C protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C protected from light. Physical stability was assessed using turbidimetric and particulate measurement as well as visual observation. Chemical stability was evaluated by HPLC. All pemetrexed solutions remained chemically stable, with little or no loss of pemetrexed over 2 days at 23 degrees C, protected from light and exposed to fluorescent light, and over 31 days of storage at 4 degrees C, protected from light. The room temperature samples were physically stable throughout the 48 hour test period. However, pemetrexed admixtures developed large numbers of microparticulates during refrigerated storage exceeding 24 hours. Pemetrexed is chemically stable for 2 days at room temperature and 31 days refrigerated in dextrose 5% injection and NaCl 0.9% injection. However, substantial numbers of microparticulates may form in pemetrexed diluted in the infusion solutions in PVC bags, especially during longer periods of refrigerated storage. Limiting the refrigerated storage period to the manufacturer-recommended 24 hours will limit particulate formation.

  14. Removal of fecal indicators and pathogens in a waste stabilization pond system treating municipal wastewater in India.

    Science.gov (United States)

    Tyagi, Vinay Kumar; Kazmi, A A; Chopra, A K

    2008-11-01

    This study assess the removal of fecal indicators (i.e., total coliforms, fecal coliforms, E. coli, fecal streptococci, and pathogens [Salmonella sp. and helminth eggs]) in a full-scale facultative and maturation pond system with primary screening and manual grit removal facility. The capacity of the plant is 6 ML/d. The results showed that the system was able to remove approximately 2.0 to 3.5 log units of fecal indicators and almost 100% of helminth eggs. Meanwhile, Salmonella was not eliminated significantly, as only 1.26 log units removal was found. Removal efficiency of fecal indicator bacteria was reported maximum during summers (3.4 to 4.0 log units) and minimum (1.9 to 2.0 log units) in winters. Further efforts were made to seek the correlation between key physicochemical wastewater quality parameters (biochemical oxygen demand, turbidity, and suspended solids) and indicator microorganisms (total coliforms, fecal coliforms, and fecal streptococci). Among all these parameters, suspended solids showed the highest correlation coefficient (r2) with total coliforms (0.79), fecal coliforms (0.78), and fecal streptococci (0.75). These correlations manifest that the improvement of microbiological quality of wastewater is strongly linked to the removal of suspended solids.

  15. Quality assurance project plan for the Chestnut Ridge Fly Ash Pond Stabilization Project at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    The Chestnut Ridge Fly Ash Pond Stabilization (CRFAPS) Project will stabilize a 19-m-high (62-ft-high) earthen embankment across Upper McCoy Branch situated along the southern slope of Chestnut Ridge. This task will be accomplished by raising the crest of the embankment, reinforcing the face of the embankment, removing trees from the face and top of the embankment, and repairing the emergency spillway. The primary responsibilities of the team members are: Lockheed Martin Energy Systems, Inc., (Energy Systems) will be responsible for project integration, technical support, Title 3 field support, environmental oversight, and quality assurance (QA) oversight of the project; Foster Wheeler Environmental Corporation (FWENC) will be responsible for design and home office Title 3 support; MK-Ferguson of Oak Ridge Company (MK-F) will be responsible for health and safety, construction, and procurement of construction materials. Each of the team members has a QA program approved by the US Department of Energy (DOE) Oak Ridge Operations. This project-specific QA project plan (QAPP), which is applicable to all project activities, identifies and integrates the specific QA requirements from the participant's QA programs that are necessary for this project

  16. [Pharmaceutical research progress of rhynchophylla based on chemical stability].

    Science.gov (United States)

    Hao, Bo; Yang, Xiu-Juan; Feng, Yi; Hong, Yan-Long

    2014-12-01

    Rhynchophylla is a Chinese herb commonly used in clinical practice. It's also the primary herb of some famous Chinese herbal compound such as Tianma Gouteng decoction, and Lingyang Gouteng decoction. According the record from many previous materia medica literatures, rhynchophylla should be added later during decoction. Pharmaceutical research showed that rhynchophylla alkaloids were not stable. Which has resulted in many problems in the research and its application. For example, there was not a quantitative determination method in "Chinese Pharmacopoeia" of past and present versions, which seriously impacted its quality control and product application. Firstly, records from previous materia medica literatures and "Chinese Pharmacopoeia" were systematically sorted based on the chemical stability of rhynchophylla. Secondly, pharmaceutical research including chemical compositions and their stability, pharmacological effects, extraction process and quality analysis, was reviewed after reference of literatures published at home and abroad in recent decades. Positive reference and evidence for further research and development of rhynchophylla will be provided in the article.

  17. Waste Stabilisation Ponds

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Waste Stabilisation Ponds is the third volume in the series Biological Wastewater Treatment. The major variants of pond systems are fully covered, namely: facultative ponds anaerobic ponds aerated lagoons maturation ponds The book presents in a clear and informative way the main concepts, working principles, expected removal efficiencies, design criteria, design examples, construction aspects, operational guidelines and sludge managment for pond systems. About the series: The series is...

  18. Olive mill wastewater sludge from evaporation ponds: evolution of physico-chemical parameters during storage and composting process.

    Science.gov (United States)

    Abid, N; Aloui, F; Dhouib, A; Sayadi, S

    2006-02-01

    The evolution of analytical parameters of olive mill waste water sludge stored in evaporation ponds was investigated after one year and two years of storage. It was observed that some of the phenolic monomer compounds resisted removal and the fraction of water soluble phenols was only slightly polymerised. Co-composting of the sludge was carried out with yard trimming as bulking agent ratio and poultry manure to balance the C/N. Three turned piles with three proportions of 35%, 65% and 80% of olive mill waste water sludge were prepared. Co-composting of the sludge was possible in all the cases. Best results were obtained, however, at a proportion of 35% which permitted a shorter composting time, a higher degree of nitrification and a higher rate of total phenols decreasing. A high polymerisation of the fraction of water soluble phenols was observed at the end of composting in all the piles.

  19. Influences of seasons, N/P ratios and chemical compounds on phosphorus removal performance in algal pond combined with constructed wetlands.

    Science.gov (United States)

    Zhimiao, Zhao; Xinshan, Song; Yanping, Xiao; Yufeng, Zhao; Zhijie, Gong; Fanda, Lin; Yi, Ding; Wei, Wang; Tianling, Qin

    2016-12-15

    Nitrogen (N) and phosphorous (P) are main contaminants and P removal was restrained by several factors: season, N/P, and chemical compounds (CCs) in water ecosystems. In this paper, two algal ponds combined with constructed wetlands were built to increase the removal performance. Different hydraulic retention time (HRT), different N/P and chemical compounds were chosen to investigate the influences of the above factors on the contaminant removal performance. The optimum phosphorus removal rate was 69.74% under the nitrogen removal of 92.85% in influent containing PO 4 3- after 3-day HRT in algal pond combined with constructed wetlands. The investigation results indicated that these factors improved the nutrient removal efficiencies. Seasonal influence on the removal performance can be avoided by choosing the optimal HRT length of 3days. The higher N/P at 60 can improve the phosphorus removal and the lower N/P at 15 showed the stronger synergistic effect between phosphorus and nitrogen removals. Compared with PO 3 - and P 2 O 7 4- in influent, PO 4 3- affected phosphorus removal more significantly. The better linear fitting between organic phosphorus removal and nitrogen removal in influent contained P 2 O 7 4- was found. Algae can absorb nutrients for growth, and oxygen release, microbial activity intensification and microbial carbon replenishment induced by algae will improve the performance. The study suggested that the control of HRTs, N/Ps, CCs, and algae might be an effective way to improve wastewater treatment performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Physical and chemical stability of different formulations with superoxide dismutase.

    Science.gov (United States)

    Di Mambro, V M; Campos, P M B G Maia; Fonseca, M J V

    2004-10-01

    Topical formulations with superoxide dismutase (SOD), a scavenger of superoxide radicals, have proved to be effective against some skin diseases. Nevertheless, formulations with proteins are susceptible to both chemical and physical instability. Three different formulations (anionic and non-ionic gel and emulsion) were developed and supplemented with SOD in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by assessing the rheological behavior of the formulations stored at room temperature, 37 and 45 degrees C. Chemical stability was evaluated by the measurement of enzymatic activity in the formulations stored at room temperature and at 45 degrees C. Formulations showed a flow index less than one, characterizing pseudoplastic behavior. There was no significant difference in initial values of flow index, tixotropy or minimum apparent viscosity. Neither gel showed significant changes in minimum apparent viscosity concerning storage time or temperature, as well, SOD presence and its activity. The emulsion showed decreased viscosity by the 28th day, but no significant changes concerning storage temperature or SOD presence, although it showed a decreased activity. The addition of SOD to the formulations studied did not affect their physical stability but gel formulations seem to be better bases for enzyme addition.

  1. Chemical synthesis and stabilization of magnesium substituted brushite

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun [Department of Biomedical Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Mechanical Engineering and Materials Sceince, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2010-08-30

    Hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is the most ubiquitous calcium phosphate phase used in implant coatings and more recently in gene/drug delivery applications due to its chemical stability under normal physiological conditions (37 deg. C, pH {approx} 7.5, 1 atm.). However, different calcium phosphate phases, such as brushite (CaH(PO{sub 4}){center_dot}2(H{sub 2}O)) and tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) which are thermodynamically unstable under physiological conditions are also being explored for biomedical applications. One way of stabilizing these phases under physiological conditions is to introduce magnesium to substitute for calcium in the brushite lattice. The role of magnesium as a stabilizing agent for synthesizing brushite under physiological conditions at room temperature has been studied. Chemical analysis, Fourier transform infrared spectroscopy and X-ray diffraction have also been conducted to validate the formation of magnesium substituted brushite under physiological conditions.

  2. Chemically stabilized epitaxial wurtzite-BN thin film

    Science.gov (United States)

    Vishal, Badri; Singh, Rajendra; Chaturvedi, Abhishek; Sharma, Ankit; Sreedhara, M. B.; Sahu, Rajib; Bhat, Usha; Ramamurty, Upadrasta; Datta, Ranjan

    2018-03-01

    We report on the chemically stabilized epitaxial w-BN thin film grown on c-plane sapphire by pulsed laser deposition under slow kinetic condition. Traces of no other allotropes such as cubic (c) or hexagonal (h) BN phases are present. Sapphire substrate plays a significant role in stabilizing the metastable w-BN from h-BN target under unusual PLD growth condition involving low temperature and pressure and is explained based on density functional theory calculation. The hardness and the elastic modulus of the w-BN film are 37 & 339 GPa, respectively measured by indentation along direction. The results are extremely promising in advancing the microelectronic and mechanical tooling industry.

  3. Color stabilization of red wines. A chemical and colloidal approach.

    Science.gov (United States)

    Alcalde-Eon, Cristina; García-Estévez, Ignacio; Puente, Victor; Rivas-Gonzalo, Julián C; Escribano-Bailón, M Teresa

    2014-07-23

    The effects of cold treatment and time on CIELAB color parameters and on anthocyanin and anthocyanin-derived pigments composition have been evaluated as has been the effectiveness of either an enological tannin or a mannoprotein (M) on their stabilization. With respect to color, hue (hab) was increased in the wines treated with both enological products. Furthermore, the color changes induced by cold treatment were lessened by the addition of these two enological products, although the protective effect was higher for the wines treated with M. The pigment analysis revealed higher percentages of anthocyanin-derived pigments in tannin and M-treated samples (in both cold treated and not) in relation to control ones. The addition of the enological tannin may favor the synthesis of anthocyanin-derived pigments, which are chemically more stable than native anthocyanins, whereas M seems to stabilize anthocyanin-derived pigments from a colloidal point of view, avoiding their aggregation and further precipitation.

  4. Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660 m2 raceway ponds under purified carbon dioxide from a coal chemical flue gas.

    Science.gov (United States)

    Cheng, Jun; Guo, Wangbiao; Ameer Ali, Kubar; Ye, Qing; Jin, Guiyong; Qiao, Zhanshan

    2018-08-01

    The helix pitch and trichome length of Spirulina sp. were promoted to improve the biomass harvesting efficiency and CO 2 fixation rate in 660 m 2 raceway ponds aerated with food-grade CO 2 purified from a coal chemical flue gas. The CO 2 fixation rate was improved with increased trichome length of the Spirulina sp. in a raceway pond with double paddlewheels, baffles, and CO 2 aerators (DBA raceway pond). The trichome length has increased by 33.3 μm, and CO 2 fixation rate has increased by 42.3% and peaked to 51.3 g/m 2 /d in a DBA raceway pond. Biomass harvesting efficiency was increased with increased helix pitch. When the day-average greenhouse temperature was 33 °C and day-average sunlight intensity was 72,100 lu×, the helix pitch of Spirulina sp. was increased to 56.2 μm. Hence the biomass harvesting efficiency was maximized to 75.6% and biomass actual yield was increased to 35.9 kg in a DBA raceway pond. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Performance, compliance and reliability of Waste stabilization pond: Effluent discharge quality and environmental protection agency standards in Ghana

    DEFF Research Database (Denmark)

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K.

    2015-01-01

    function to establish the relationship between the statistical coefficient of variation and the coefficient of reliability based on rth moment about the origin in the moment of generation function to generate the functions of the mean and standard deviation, properties of the standard Z normal distribution...... were used to establish the coefficient of reliability relationship depending on the coefficient of variation influenced by the standard of deviation. Discharge values of Physico-chemical Parameters measured from the WSP were found be performing acceptably based on the EPA standards, whereas only four......Measuring performance has been arguerably, one of the metric with many facets with different school of thoughts, as there exist different approaches of measuring it. Several of the existing approaches measure such metric by comparison with standards esherined in policy documents and as a result...

  6. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    Science.gov (United States)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  7. Chemical stability of reactive skin decontamination lotion (RSDL®).

    Science.gov (United States)

    Bogan, R; Maas, H J; Zimmermann, T

    2018-09-01

    Reactive Skin Decontamination Lotion (RSDL ® ) is used for the decontamination of Chemical Warfare Agents and Toxic Industrial Compounds after dermal exposure. It has to be stockpiled over a long period and is handled in all climatic zones. Therefore stability is an essential matter of concern. In this work we describe a study to the chemical stability of RSDL ® as basis for an estimation of shelf life. We analysed RSDL ® for the active ingredient 2,3-butandione monoxime (diacetylmonooxime, DAM), the putative degradation product dimethylglyoxime (DMG) and unknown degradation products by means of a reversed phase high pressure liquid chromatography (HPLC). Calculations were done according to the Arrhenius equation. Based on the temperature dependent rate constants, the time span was calculated, until defined threshold values for DAM and DMG subject to specification and valid regulations were exceeded. The calculated data were compared to the ones gathered from stockpiled samples and samples exposed during foreign mission. The decline of DAM followed first order kinetics, while formation of DMG could be described by zero order kinetics. The rate constants were distinctively temperature dependent. Calculated data were in good accordance to the measured ones from stockpile and mission. Based on a specified acceptable DAM-content of 90% and a valid threshold value of 0.1% (w/w) for the degradation product DMG, RSDL ® proved to be stable for at least four years if stored at the recommended conditions of 15°C-30°C. If continuously stored at higher temperatures shelf life will decrease markedly. Therefore RSDL ® is an object for risk orientated quality monitoring during storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Geomembrane selection criteria for uranium tailings ponds

    International Nuclear Information System (INIS)

    Mitchell, D.H.; Cuello, R.

    1986-09-01

    The selection criteria, particularly those involving chemical compatibility, of geomembranes to be used in ponds at uranium mill operations are discussed. The principal functional criteria which a geomembrane must meet for this application are: (1) a specified service life and (2) low permeability. Chemical compatibility with the waste is essential in meeting these functional criteria. In two different types of aging tests using simulated acidic uranium mill waste, degradation of chemical and physical properties were examined in geomembranes of high-density polyethylene, polyvinyl chloride, and chlorosulfonated polyethylene. Compatibility tests according to the National Sanitation Foundation procedures are recommended to ascertain the stability of certain physical properties of the proposed geomembrane. Actual experience with a specific geomembrane in an identical application is probably the best method to assure compatibility; however, this experience is frequently not available. Experience with a geomembrane in similar applications is valuable in the selection process, however, small differences in either the geomembrane formulation or the waste composition may result in large differences in performance of the geomembrane. It is likely that many geomembranes have acceptable chemical stability for typical uranium mill applications, therefore, additional factors in the selection processes will include seaming characteristics, mechanical properties, site characteristics, and costs

  9. Reflow process stabilization by chemical characteristics and process conditions

    Science.gov (United States)

    Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho

    2002-07-01

    With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.

  10. Color stability and staining of silorane after prolonged chemical challenges

    DEFF Research Database (Denmark)

    de Jesus, Vivian CBR; Martinelli, Nata Luiz; Poli-Frederico, Regina Célia

    Objectives: The purpose of this study was to investigate the effect of prolonged chemical challenges on color stability and staining susceptibility of a silorane-based composite material when compared to methacrylate-based composites. Methods: Cylindrical specimens (n=24) were fabricated from...... methacrylate (Filtek Z250, 3M ESPE; Filtek Z350XT, 3M ESPE; Master Fill, Biodinâmica) or silorane-based (Filtek P90, 3M ESPE) composite materials. Initial color was registered in a spectrophotometer. Specimens were divided in four groups and individually stored at 37°C in 0.02N citric acid, 0.02N phosphoric...... acid, 75% ethanol or distilled water (control) for 7, 14, 21, and 180 days, when new measurements were performed. A staining test was performed (n=12) after 21 days of chemical challenge by immersion in coffee during 3 weeks at 37°C. Color changes (¿E) were characterized using the CIEL*a*b* color...

  11. Lake or Pond WBID

    Data.gov (United States)

    Vermont Center for Geographic Information — The VT DEC (Vermont Department of Environmental Conservation) manages an inventory of lake and pond information. The "Lakes and Ponds Inventory" stores the Water...

  12. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Finkeldei, Sarah Charlotte

    2015-07-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO{sub 2} based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO{sub 2} based pyrochlores. ZrO{sub 2} - Nd{sub 2}O{sub 3} pellets

  13. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    International Nuclear Information System (INIS)

    Finkeldei, Sarah Charlotte

    2015-01-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO 2 based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO 2 based pyrochlores. ZrO 2 - Nd 2 O 3 pellets with pyrochlore and defect

  14. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type

    DEFF Research Database (Denmark)

    Egemose, Sara; Sønderup, Melanie J.; Grudinina, Anna

    2015-01-01

    Heavy metals have toxic effects on flora and fauna in the aquatic environments and are of great concern in stormwater. Heavy metal runoff was studied in 37 stormwater ponds in Denmark with varying heavy metal load, catchment type and pond design. The studied metals were Cu, Cr, Cd, Pb, Ni and Zn...... difficult to retain. The removal efficiency in the ponds varied considerably, with the highest retention of Pb, Ni and Zn due to higher particulate fraction. The retention increased with increased pond volume-to-reduced catchment area ratio. In addition, the pond age affected the efficiency; whereas ponds...... less than 1-2 years efficiently removed all metals, 30-40-year-old ponds only removed Pb, Ni and Zn, but steeply decreasing over the years. Physical parameters such as pond size, age and sedimentation patterns were found to play a more significant role in the removal compared with chemical parameters...

  15. Chemical derivatization to enhance chemical/oxidative stability of resorcinol-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Hubler, T.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The goal of this task is to develop modified resorcinol-formaldehyde (R-F) resin to improve the chemical/oxidative stability of the resin. R-F resin is a regenerable organic ion-exchange resin that is selective for cesium ion in highly alkaline, high ionic-strength solutions. R-F resin tends to undergo chemical degradation, reducing its ability to remove cesium ion from waste solutions; the mechanistic details of these decomposition reactions are currently unknown. The approach used for this task is chemical modification of the resin structure, particularly the resorcinol ring unit of the polymer resin. This approach is based on prior characterization studies conducted at Pacific Northwest National Laboratory (PNNL) that indicated the facile chemical degradation of the resin is oxidation of the resorcinol ring to the para-quinone structure, with subsequent loss of ion-exchange sites for cesium ion. R-F resin represents an important alternative to current radiocesium remediation technology for tank wastes at both the Hanford and Savannah River sites, particularly if regenerable resins are needed.

  16. Chemical stability and physical properties of Caesium uranates

    International Nuclear Information System (INIS)

    Berton, J.P.; Baron, D.; Coquerelle, M.

    1998-01-01

    Caesium is one of the most abundant fission products in PWR nuclear fuel or in fast reactor fuel as well. A work program has been started at the TUI Karlsruhe, in collaboration with EDF Etudes et Recherches, to determine the thermal stability and conductivity, the mechanical properties and the thermal expansion coefficient of Cs 2 UO 4 . The Caesium mono-uranate was obtained by a chemical reaction between Cs 2 O 3 and U 3 O 8 powders mixed together, pressed and heated at 670 deg. C for 24 hours. The compound was found stable up to 830 deg. C. Mechanical compressive hardening tests allowed to evaluate the elastic modulus versus temperature in the range 200 to 800 deg. C. Furthermore the viscous behaviour of the compound above 400 deg. C was confirmed. The thermal expansion coefficient of Cs 2 UO 4 was found somewhat 40% higher than the thermal expansion coefficient of UO 2 . The thermal conductivity is about 1.5 to 1.8 W/m/K for temperatures ranging from 100 to 700 deg. C, a value very similar to the UO 2 fuel thermal conductivity at high burnup in the same temperature range. (author)

  17. Chemical vapor deposition of yttria stabilized zirconia in porous substrates

    International Nuclear Information System (INIS)

    Carolan, M.F.; Michaels, J.N.

    1987-01-01

    Electrochemical vapor deposition (EVD) of yttria stabilized zirconia (YSZ) is the preferred route to the production of thin films of YSZ on porous substrates. This process has been used in the construction of both fuel cells and steam electrolyzers. A critical aspect of the EVD process is an initial chemical vapor deposition phase in which the pores of a porous substrate are plugged by YSZ. In this process, water vapor and a mixture of gaseous zirconium chloride and yttrium chloride diffuse into the porous substrate from opposite sides and react to form YSZ and HCl ga. During the second stage of the process a continuous dense film of electrolyte is formed by a tarnishing-type process. Experimentally it is observed that the pores plug within a few pore diameters of the metal chloride face of the substrate. A kinetic rate expression that is first order in metal chloride but zero order in water is best able to explain this phenomenon. With this rate expression, the pores always plug near the metal chloride face. The model predicts less pore narrowing to occur as the ratio of the reaction rate to the diffusion rate of the metal chloride is increased. A kinetic rate expression that is first order in both water and metal chloride predicts that the pores plug much deeper in the substrate

  18. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  19. Chemical, computational and functional insights into the chemical stability of the Hedgehog pathway inhibitor GANT61.

    Science.gov (United States)

    Calcaterra, Andrea; Iovine, Valentina; Botta, Bruno; Quaglio, Deborah; D'Acquarica, Ilaria; Ciogli, Alessia; Iazzetti, Antonia; Alfonsi, Romina; Lospinoso Severini, Ludovica; Infante, Paola; Di Marcotullio, Lucia; Mori, Mattia; Ghirga, Francesca

    2018-12-01

    This work aims at elucidating the mechanism and kinetics of hydrolysis of GANT61, the first and most-widely used inhibitor of the Hedgehog (Hh) signalling pathway that targets Glioma-associated oncogene homologue (Gli) proteins, and at confirming the chemical nature of its bioactive form. GANT61 is poorly stable under physiological conditions and rapidly hydrolyses into an aldehyde species (GANT61-A), which is devoid of the biological activity against Hh signalling, and a diamine derivative (GANT61-D), which has shown inhibition of Gli-mediated transcription. Here, we combined chemical synthesis, NMR spectroscopy, analytical studies, molecular modelling and functional cell assays to characterise the GANT61 hydrolysis pathway. Our results show that GANT61-D is the bioactive form of GANT61 in NIH3T3 Shh-Light II cells and SuFu -/- mouse embryonic fibroblasts, and clarify the structural requirements for GANT61-D binding to Gli1. This study paves the way to the design of GANT61 derivatives with improved potency and chemical stability.

  20. Radioactive pollution of the Chernobyl cooling pond bottom sediments. I. Water-physical properties, chemical compound and radioactive pollution of pore water

    Directory of Open Access Journals (Sweden)

    L. S. Pirnach

    2011-03-01

    Full Text Available First results of complex research of the Chernobyl cooling pond bottom sediments are presented. The general problematic is considered. Information about vertical distribution of bottom sediments water-physical properties, and also ionic compound and radioactive pollution 137Cs and 90Sr of pore water is received. The inventory of bottom sediments pore water activity is calculated. Strong correlations between concentration in pore water 137Cs, K +, NH4 + within the selected sediments columns are found out. Results of researches are intended for the forecast of radioecological situation change in the cooling pond water-soil complex during drying-up.

  1. Triphenylamine - a 'new' stabilizer for nitrocellulose based propellants. Pt. 1: chemical stability studies

    Energy Technology Data Exchange (ETDEWEB)

    Wilker, Stephan; Heeb, Gerhard [WIWEB ASt Heimerzheim, Grosses Cent, 53913 Swisttal (Germany); Vogelsanger, Beat [Nitrochemie Wimmis AG, Niesenstr. 44, 3752 Wimmis (Switzerland); Petrzilek, Jan; Skladal, Jan [Explosia a.s. - Research Institute of Industrial Chemistry (VUPCH), 532 17 Pardubice (Czech Republic)

    2007-04-15

    Triphenylamine (TPA) was used for the first time in France in 1937 as a stabilizer for propellants. The stability of those samples was described as 'good'. Around 1950 an American group produced TPA stabilized propellants and investigated the decomposition mechanism. Apart from one single experiment in the 1970s no further attempts were made to take TPA as a stabilizer for propellants. With the background of an increasingly critical discussion about nitrosamines in propellants and their declaration of being carcinogenic, TPA revealed a renaissance since the year 2000. To achieve the goal of nitrosamine free propellants several TPA stabilized propellants were produced. Their processability, stability and ballistic properties were investigated. This publication summarizes the most important results of stability tests on more than 30 different TPA stabilized propellants including the decomposition mechanism, the synthesis of the consecutive products and their stabilizing properties. In addition, the internal compatibility of TPA with the most important propellant ingredients is discussed and its relative decomposition rate is compared with that of other stabilizers. In summary TPA is a suitable stabilizer for propellants. It has nevertheless two disadvantages. It is relatively rapidly consumed in double base formulations (which makes it difficult to pass the criteria of AOP-48, Ed. 2) and the stabilizing activity of the two major consecutive products 4-NO{sub 2}-TPA and especially 4,4{sup '}-di-NO{sub 2}-TPA is low. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  2. Physical and chemical stability of the bentonite buffer

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu; Neretnieks, Ivars [Chemical Engineering and Technology, Royal I nstitute of Technology, Stockholm (Sweden)

    2007-12-15

    A literature study was made on previous work on clay erosion and on the fundamental processes that govern the stability of clay gels. Mechanical erosion has been studied earlier and models devised to estimate the tendency to erode. We have used a different approach that we deem is fundamentally more correct. Chemical erosion processes have not been found to be studied previously and we have approached the problem by applying simple but fundamental mass balances and transport processes to the problem. The physical and chemical processes that govern the repulsive and cohesive forces in clay are well understood in principle but cannot yet be applied quantitatively to predict the gel/sol behaviour of the bentonite clay. It was necessary to rely directly on laboratory measurements for information on swelling and gel/sol properties. The backfill bentonite clay acts as a Bingham fluid over a wide range of clay density. To mobilise the clay a shear stress larger than the Bingham yield stress must be applied to the gel. The Bingham yield stress has been measured to be larger than 1 Pa (N/m{sup 2}) although it cannot be ruled out that lower values can be found under different experimental conditions than those reported. Shear stresses exerted by the water flowing in the fractures that intersect the deposition holes with the clay backfill have been estimated for a wide range of fracture transmissivities, apertures and hydraulic gradients that could exist under repository conditions. This includes the extremely high gradients that could exist during some periods during an ice age. For fracture transmissivities ranging from 10{sup -9} to 10{sup -6} m{sup 2}/s, fracture apertures from 0.1 to 2 mm and the hydraulic gradients from 0.01 to 1 mH{sub 2}O/m, the largest local shear stress found in this range was about 0.1 Pa. To investigate a 'what if' situation where the shear stress exceeds the yield stress simple models were devised. They were used to assess the rate of

  3. Physical and chemical stability of the bentonite buffer

    International Nuclear Information System (INIS)

    Jinsong Liu; Neretnieks, Ivars

    2007-12-01

    A literature study was made on previous work on clay erosion and on the fundamental processes that govern the stability of clay gels. Mechanical erosion has been studied earlier and models devised to estimate the tendency to erode. We have used a different approach that we deem is fundamentally more correct. Chemical erosion processes have not been found to be studied previously and we have approached the problem by applying simple but fundamental mass balances and transport processes to the problem. The physical and chemical processes that govern the repulsive and cohesive forces in clay are well understood in principle but cannot yet be applied quantitatively to predict the gel/sol behaviour of the bentonite clay. It was necessary to rely directly on laboratory measurements for information on swelling and gel/sol properties. The backfill bentonite clay acts as a Bingham fluid over a wide range of clay density. To mobilise the clay a shear stress larger than the Bingham yield stress must be applied to the gel. The Bingham yield stress has been measured to be larger than 1 Pa (N/m 2 ) although it cannot be ruled out that lower values can be found under different experimental conditions than those reported. Shear stresses exerted by the water flowing in the fractures that intersect the deposition holes with the clay backfill have been estimated for a wide range of fracture transmissivities, apertures and hydraulic gradients that could exist under repository conditions. This includes the extremely high gradients that could exist during some periods during an ice age. For fracture transmissivities ranging from 10 -9 to 10 -6 m 2 /s, fracture apertures from 0.1 to 2 mm and the hydraulic gradients from 0.01 to 1 mH 2 O/m, the largest local shear stress found in this range was about 0.1 Pa. To investigate a 'what if' situation where the shear stress exceeds the yield stress simple models were devised. They were used to assess the rate of erosion by the groundwater. In

  4. Stabilization of low-level mixed waste in chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.; Sarkar, A.V.

    1994-06-01

    Mixed waste streams, which contain both chemical and radioactive wastes, are one of the important categories of DOE waste streams needing stabilization for final disposal. Recent studies have shown that chemically bonded phosphate ceramics may have the potential for stabilizing these waste streams, particularly those containing volatiles and pyrophorics. Such waste streams cannot be stabilized by conventional thermal treatment methods such as vitrification. Phosphate ceramics may be fabricated at room temperature into durable, hard and dense materials. For this reason room-temperature-setting phosphate ceramic waste forms are being developed to stabilize these to ''problem waste streams.''

  5. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices.

    Science.gov (United States)

    Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2013-10-15

    Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Long term physical and chemical stability of polyelectrolyte multilayer membranes

    NARCIS (Netherlands)

    de Grooth, Joris; Haakmeester, Brian; Wever, Carlos; Potreck, Jens; de Vos, Wiebe Matthijs; Nijmeijer, Dorothea C.

    2015-01-01

    This work presents a detailed investigation into the long term stability of polyelectrolyte multilayer (PEM) modified membranes, a key factor for the application of these membranes in water purification processes. Although PEM modified membranes have been frequently investigated, their long term

  7. Par Pond water balance

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Dixon, K.L.

    1996-06-01

    A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs

  8. Arthropod fauna of the University of Nigeria, Nsukka, Sewage pond ...

    African Journals Online (AJOL)

    A survey of arthropod fauna of the University of Nigeria Nsukka sewage pond was carried out within May and June 2011. The aim was to determine the various arthropod species and its abundance in the sewage pond. The analysis was carried out by two methods, physico-chemical analysis and arthropod faunal studies.

  9. Mathematical modeling of dissolved oxygen in fish ponds ...

    African Journals Online (AJOL)

    Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...

  10. Study on stability of a-SiCOF films deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Ding Shijin; Zhang Qingquan; Wang Pengfei; Zhang Wei; Wang Jitao

    2001-01-01

    Low-dielectric-constant a-SiCOF films have been prepared from TEOS, C 4 F 8 and Ar by using plasma enhanced chemical vapor deposition method. With the aid of X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR), the chemical bonding configuration, thermal stability and resistance to water of the films are explored

  11. Validation Hydrodynamic Models of Three Topological Models of Secondary Facultative Ponds

    OpenAIRE

    Aponte-Reyes Alxander

    2014-01-01

    A methodology was developed to analyze boundary conditions, the size of the mesh and the turbulence of a mathematical model of CFD, which could explain hydrodynamic behavior on facultative stabilization ponds, FSP, built to pilot scale: conventional pond, CP, baffled pond, BP, and baffled-mesh pond, BMP. Models dispersion studies were performed in field for validation, taking samples into and out of the FSP, the information was used to carry out CFD model simulations of the three topologies. ...

  12. Effect of a bentonite/soil mixture as a barrier for uranium ponds

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.

    2002-01-01

    Uranium mill tailings need safe management as they contain long-lived uranium and its daughters. Chemical treatment applied on these tailings to neutralize the acid solution and to stabilize the remaining radioactive elements. Then they are stored in ponds. These ponds are used for the accumulation of the solids and evaporation of the liquids. Sometimes the liquid returned to the plant for reuse. These applications are used to isolate the tailings from the environment. The purpose of this laboratory test is; initially to determine the effectiveness of bentonite/soil mixture as a barrier for uranium ponds. In this study, two experimental ponds equipped; with different two barriers in laboratory. Dimension of this container is; 120 cm in length, 100 cm in width and 100cm in depth. Sampling pipes were placed at different places of the container. First pond includes ordinary soil; second pond includes soil/bentonite mixture. Uranium mill tailing ponds were placed at the surfaces of these two systems. Uranium solution was prepared by using natural uranium ore. The solution was put into these ponds. These test carried out more than for 10 months. Passed solution was collected by sampling pipes and recorded. Amounts of passed solution were determined according to the location of discharge pipes. At the last stage of these tests, sampling from the different parts o the system has been carried out by small holes, which were opened from the surface by special sampling device. By this way, migration information about the upper parts of the sampling pipes has been received. Behaviour of uranium radionuclides and the effectiveness of the bentonite/soil mixture were experimentally determined. Bentonite/soil mixture layer has better ability to restrain the migration of uranium radionuclides. The performance of the ponds at the natural soil can be improved simply by mixing with bentonite during construction. Bentonite/soil mixture includes 5% bentonite, 95% ordinary soil in weight

  13. Chemical stability of copper-canisters in deep repository

    International Nuclear Information System (INIS)

    Ahonen, L.

    1995-12-01

    The spent fuel from Finnish nuclear reactors is planned to be encapsulated in thick-walled copper-iron canisters and placed deep into the bedrock. The copper wall of the canister provides a long-time shield against corrosion, preventing the high-level nuclear fuel from contact with ground water. In the report, stability of metallic copper and its possible corrosion reactions in the conditions of deep bedrock are evaluated by means of thermo-dynamic calculations. (90 refs., 28 figs., 11 tabs.)

  14. Vibration and Stability of 3000-hp, Titanium Chemical Process Blower

    Directory of Open Access Journals (Sweden)

    Les Gutzwiller

    2003-01-01

    Full Text Available This 74-in-diameter blower had an overhung rotor design of titanium construction, operating at 50 pounds per square inch gauge in a critical chemical plant process. The shaft was supported by oil-film bearings and was directdriven by a 3000-hp electric motor through a metal disk type of coupling. The operating speed was 1780 rpm. The blower shaft and motor shaft motion was monitored by Bently Nevada proximity probes and a Model 3100 monitoring system.

  15. Partially stabilized zirconia (PSZ) - what's in it for chemical engineers?

    International Nuclear Information System (INIS)

    Michelmore, A.G.

    1988-01-01

    Partial Stabilized Zirconia (PSZ) is a non-brittle ceramic material with virtually the same modulus of elasticity, Poisson's ratio, tensile strength, and co-efficient of thermal expansion as steel, coupled with low thermal conductivity, low electrical conductivity, high hardness, non-magnetic properties and high corrosion resistance. Uses are in a wide variety of applications such as automotive, computer, hot copper extrusion dies, delicate laboratory equipment, mining spigots and injection moulding gates for plastic. Applications previously thought to be impossible for ceramics such as in high thermal and/or mechanical shock situations are now possible with benefits such as longer life, reduced maintenance costs, less downtime, lower stock inventory and improved productivity. Examples given here include downhole pump check valves in the oil and gas industry, dry bearings in the mining industry and plungers for pumping tomato paste in the food processing industry. A brief comparison is made of other PSZs and Nilcra PSZ. 1 fig

  16. Further observations on sensitization of chemically stabilized stainless steels

    International Nuclear Information System (INIS)

    Samans, C.H.; Kinoshita, K.; Matsushima, I.

    1977-01-01

    Niobium additions to an 18Cr:8Ni type matrix reduce carbon solubility to such an extent that any ''solution treatment'' below 1150 0 C causes stabilization. Consequently, no Cr 23 C 6 precipitates at lower temperatures to sensitize the structure. Further observations on Type 321 suggest that two types of TiC precipitate from solid solution in an 18 : 8 type matrix. The size of the TiC nucleus decreases with the precipitating temperature. Above 1050 to 1100 0 C the initial TiC is probably incoherent, large enough to be stable, and resistant to ferric sulfate-sulfuric acid solution. Below 1050 to 1100 0 C the initial TiC, known as ''dot TiC'' or ''TiC on dislocations,'' is probably coherent, not large enough to be stable without further growth, and not resistant to ferric sulfate-sulfuric acid solution. During holding at temperatures below 1050 to 1100 0 C, stabilization occurs as the TiC on dislocations agglomerates to larger, incoherent particles. The time required increases as the temperature decreases down to the minimum TiC nucleation temperature near 610 0 C. Cold work makes it easier for the coherent particles to become incoherent, in effect facilitating approach to equilibrium carbon solubility at any temperature. Once chromium carbide forms, dissolved titanium eventually reacts with it, forming TiC and releasing chromium to desensitize the structure. This reaction can occur, given sufficient time for titanium diffusion, at any temperature at which chromium carbide nucleates. It is much more rapid than back diffusion of chromium from the matrix

  17. A New Pseudoinverse Matrix Method For Balancing Chemical Equations And Their Stability

    International Nuclear Information System (INIS)

    Risteski, Ice B.

    2008-01-01

    In this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matrix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices

  18. Chemical stability of insulin. 3. Influence of excipients, formulation, and pH.

    Science.gov (United States)

    Brange, J; Langkjaer, L

    1992-01-01

    The influence of auxiliary substances and pH on the chemical transformations of insulin in pharmaceutical formulation, including various hydrolytic and intermolecular cross-linking reactions, was studied. Bacteriostatic agents had a profound stabilizing effect--phenol > m-cresol > methylparaben--on deamidation as well as on insulin intermolecular cross-linking reactions. Of the isotonicity substances, NaCl generally had a stabilizing effect whereas glycerol and glucose led to increased chemical deterioration. Phenol and sodium chloride exerted their stabilizing effect through independent mechanisms. Zinc ions, in concentrations that promote association of insulin into hexamers, increase the stability, whereas higher zinc content had no further influence. Protamine gave rise to additional formation of covalent protamine-insulin products which increased with increasing protamine concentration. The impact of excipients on the chemical processes seems to be dictated mainly via an influence on the three-dimensional insulin structure. The effect of the physical state of the insulin on the chemical stability was also complex, suggesting an intricate dependence of intermolecular proximity of involved functional groups. At pH values below five and above eight, insulin degrades relatively fast. At acid pH, deamidation at residue A21 and covalent insulin dimerization dominates, whereas disulfide reactions leading to covalent polymerization and formation of A- and B-chains prevailed in alkaline medium. Structure-reactivity relationship is proposed to be a main determinant for the chemical transformation of insulin.

  19. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: csorico@comunidad.unam.mx [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz-Boca del Río, Universidad Veracruzana, C.P. 91700 Veracruz (Mexico); Campos-Fernández, Linda; Alvarado-Salazar, Andres [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), C.P. 09340 México, D.F. (Mexico)

    2015-08-18

    Highlights: • Asparagine plays an important role to anti-inflammatory effect of peptides. • The electron-donor substituent groups favor the formation of the hydrogen bonds, which contribute in the structural stability of peptides. • Chemical reactivity and the physicochemical features are crucial in the biological functions of peptides. - Abstract: Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys–Asn–Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  20. Blogging from North Pond

    Science.gov (United States)

    Marziali, C. G.; Edwards, K. J.

    2009-12-01

    Sea going research expeditions provide an ideal opportunity for outreach through blogs: the finite duration limits the author's commitment; scientists are usually in a remote location with fewer distractions; and fieldwork is visual and interesting to describe. Over four weeks this winter, Katrina Edwards of USC authored a blog about her deep-sea drilling expedition to North Pond, a depression in the ocean crust in the mid-Atlantic. She emailed daily dispatches and photos to USC Media Relations, which maintained a (still accessible) blog. Written for the general public, the blog quickly attracted interest from lay readers as well as from media organizations. Scientific American carried the blog on its web site, and the National Science Foundation linked to it in its "Science 360" electronic news digest. The blog also led to a Q&A with Edwards in the widely-read "Behind the Scenes" feature of LiveScience. Interest from science bloggers and National Geographic towards the end suggests that the blog could have expanded its reach given more time: expeditions lasting between six weeks and three months, such as occur during ocean drilling expeditions, would appear to be ideal candidates for a blog. Most importantly, the blog educated readers about the importance to planetary life of what Edwards calls the "intraterrestrials": the countless microbes that inhabit the oceanic crust and influence major chemical and biological cycles. Considering that the subjects of the expedition were invisible critters in a pitch-dark place, the blog shows what can be accomplished by scientists and institutions committed to public outreach.

  1. Hypothesis for prediction of environmental stability of chemicals by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tremolada, P; Di Guardo, A; Calamari, D; Davoli, E; Fanelli, R [Milan Univ. (Italy). Ist. di Entomologia Agraria Istituto di Ricerche Farmacologiche Mario Negri, Milan (Italy)

    1992-01-01

    The environmental persistence of organic chemicals is generally very hard to predict. In this work, the hypothesis of the use of fragmentation data in Mass Spectrometry (MS) as a possible 'stability index' of the molecules is presented. Since the fragmentation is determined by the thermodynamic properties of the molecules, it is possible to deduct information about the 'intrinsic stability' of a chemical. Such information can be used and correlated to predict the environmental degradability of a substance, especially referring to abiotic degradation. To study this relation, three different methods of measuring the fragmentation patterns are compared. All the methods show similar behaviour and one of them, in particular, shows a very good qualitative correlation between fragmentation data and persistence values found in literature. A possible 'stability index' for the quantitative prediction of the environmental degradation of a chemical is discussed.

  2. Stability of racemic and chiral steady states in open and closed chemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Ribo, Josep M. [Departament de Quimica Organica, Universitat de Barcelona, c. Marti i Franques 1, Barcelona (Spain); Hochberg, David [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir Km. 4, 28850 Torrejon de Ardoz, Madrid (Spain)], E-mail: hochbergd@inta.es

    2008-12-22

    The stability properties of models of spontaneous mirror symmetry breaking in chemistry are characterized algebraically. The models considered here all derive either from the Frank model or from autocatalysis with limited enantioselectivity. Emphasis is given to identifying the critical parameter controlling the chiral symmetry breaking transition from racemic to chiral steady-state solutions. This parameter is identified in each case, and the constraints on the chemical rate constants determined from dynamic stability are derived.

  3. Stability of racemic and chiral steady states in open and closed chemical systems

    International Nuclear Information System (INIS)

    Ribo, Josep M.; Hochberg, David

    2008-01-01

    The stability properties of models of spontaneous mirror symmetry breaking in chemistry are characterized algebraically. The models considered here all derive either from the Frank model or from autocatalysis with limited enantioselectivity. Emphasis is given to identifying the critical parameter controlling the chiral symmetry breaking transition from racemic to chiral steady-state solutions. This parameter is identified in each case, and the constraints on the chemical rate constants determined from dynamic stability are derived

  4. Using proven, cost-effective chemical stabilization to remediate radioactive and heavy metal contaminated sites

    International Nuclear Information System (INIS)

    Jensen, R.; Sogue, A.

    1999-01-01

    Rocky Mountain Remediation Services, L.L.C. (RMRS) has deployed a cost-effective metals stabilization method which can be used to reduce the cost of remediation projects where radioactivity and heavy metals are the contaminants of concern. The Envirobond TM process employs the use of a proprietary chemical process to stabilize metals in many waste forms, and provides an excellent binding system that can easily be compacted to reduce the waste into a shippable brick called Envirobric TM . The advantages of using chemical stabilization are: (1) Low cost, due to the simplicity of the process design and inexpensive reagents. (2) Chemical stabilization is easily deployed in field applications, which limit the amount of shielding and other protective measures. (3) The process does not add volume and bulk to the treated waste; after treatment the materials may be able to remain on-site, or if transportation and disposal is required the cost will be reduced due to lower volumes. (4) No secondary waste. The simplicity of this process creates a safe environment while treating the residues, and the long-term effectiveness of this type of chemical stabilization lowers the risk of future release of hazardous elements associated with the residues. (author)

  5. Geochemistry of the Upper Parana River floodplain. Study of the Garcas Pond and Patos Pond

    International Nuclear Information System (INIS)

    Marcelo Bevilacqua Remor; Silvio Cesar Sampaio; Marcio Antonio Vilas Boas; Ralpho Rinaldo dos Reis

    2015-01-01

    The aim of this study was to investigate the temporal evolution of the supply of chemical elements to the Upper Parana River floodplain and identify trends in the geochemistry of its drainage basin. The primary factor that regulates the supply of chemical elements of the Upper Parana River floodplain is the flood pulse, which can be magnified by the El Nino-Southern Oscillation. Garcas Pond is affected by agriculture, urbanization, discharge of industrial effluents and hydroelectric power production activities. Patos Pond is affected by sugarcane burning, gold mining, agriculture and urbanization. (author)

  6. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  7. Decontamination and decommissioning of the BORAX-V leach pond. Final report

    International Nuclear Information System (INIS)

    Smith, D.L.

    1985-01-01

    This report describes the decontamination and decommissioning (D and D) of the BORAX-V leach pond located at the Idaho National Engineering Laboratory (INEL). The leach pond became radioactively contaminated from the periodic discharge of low-level liquid waste during operation of the Boiling Water Reactor Experiments (BORAX) from 1954 to 1964. This report describes work performed to accomplish the D and D objectives of stabilizing the leach pond and preventing the spread of contamination. D and D of the BORAX-V leach pond consisted to backfilling the pond with clean soil, grading and seeding the area, and erecting a permanent marker to identify very low-level subsurface contamination

  8. Thermodynamic stability of elementary chemical reactions proceeding at finite rates revisited using Lyapunov function analysis

    International Nuclear Information System (INIS)

    Burande, Chandrakant S.; Bhalekar, Anil A.

    2005-01-01

    The thermodynamic stability of a few representative elementary chemical reactions proceeding at finite rates has been investigated using the recently proposed thermodynamic Lyapunov function and following the steps of Lyapunov's second method (also termed as the direct method) of stability of motion. The thermodynamic Lyapunov function; L s , used herein is the excess rate of entropy production in the thermodynamic perturbation space, which thereby inherits the dictates of the second law of thermodynamics. This Lyapunov function is not the same as the excess entropy rate that one encounters in thermodynamic (irreversible) literature. The model chemical conversions studied in this presentation are A+B→v x X and A+B↔ν x X. For the sake of simplicity, the thermal effects of chemical reactions have been considered as not adding to the perturbation as our main aim was to demonstrate how one should use systematically the proposed thermodynamic Lyapunov function following the steps of Lyapunov's second method of stability of motion. The domains of thermodynamic stability under the constantly acting small disturbances, thermodynamic asymptotic stability and thermodynamic instability in these model systems get established

  9. New class of thermosetting plastics has improved strength, thermal and chemical stability

    Science.gov (United States)

    Burns, E. A.; Dubrow, B.; Lubowitz, H. R.

    1967-01-01

    New class of thermosetting plastics has high hydrocarbon content, high stiffness, thermal stability, humidity resistance, and workability in the precured state. It is designated cyclized polydiene urethane, and is applicable as matrices to prepare chemically stable ablative materials for rocket nose cones of nozzles.

  10. Design and construction control guidance for chemically stabilized pavement base layers.

    Science.gov (United States)

    2013-12-01

    A laboratory and field study was conducted related to chemically stabilized pavement layers, which is also : referred to as soil-cement. Soil-cement practices within MDOT related to Class 9C soils used for base layers : were evaluated in this report....

  11. Leaching behavior and chemical stability of copper butyl xanthate complex under acidic conditions.

    Science.gov (United States)

    Chang, Yi Kuo; Chang, Juu En; Chiang, Li Choung

    2003-08-01

    Although xanthate addition can be used for treating copper-containing wastewater, a better understanding of the leaching toxicity and the stability characteristics of the copper xanthate complexes formed is essential. This work was undertaken to evaluate the leaching behavior of copper xanthate complex precipitates by means of toxicity characteristics leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) using 1 N acetic acid solution as the leachant. Also, the chemical stability of the copper xanthate complex during extraction has been examined with the studying of variation of chemical structure using UV-vis, Fourier transform infrared and X-ray photoelectron spectroscopies (XPS). Both TCLP and SDLT results showed that a negligible amount of copper ion was leached out from the copper xanthate complex precipitate, indicating that the complex exhibited a high degree of copper leaching stability under acidic conditions. Nevertheless, chemical structure of the copper xanthate complex precipitate varied during the leaching tests. XPS data suggested that the copper xanthate complex initially contained both cupric and cuprous xanthate, but the unstable cupric xanthate change to the cuprous form after acid extraction, indicating the cuprous xanthate to be the final stabilizing structure. Despite that, the changes of chemical structure did not induce the rapid leaching of copper from the copper xanthate complex.

  12. Evaluation of the effects of enzyme-based liquid chemical stabilizers on subgrade soils

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2009-07-01

    Full Text Available The purpose of this study was to asses the strength of enzyme treated soil material. Thus the aim of the paper is to present laboratory results on the effects of two enzyme-based liquid chemicals as soil stabilizers. Soil samples were prepared...

  13. Efficient first-principles prediction of solid stability: Towards chemical accuracy

    Science.gov (United States)

    Zhang, Yubo; Kitchaev, Daniil A.; Yang, Julia; Chen, Tina; Dacek, Stephen T.; Sarmiento-Pérez, Rafael A.; Marques, Maguel A. L.; Peng, Haowei; Ceder, Gerbrand; Perdew, John P.; Sun, Jianwei

    2018-03-01

    The question of material stability is of fundamental importance to any analysis of system properties in condensed matter physics and materials science. The ability to evaluate chemical stability, i.e., whether a stoichiometry will persist in some chemical environment, and structure selection, i.e. what crystal structure a stoichiometry will adopt, is critical to the prediction of materials synthesis, reactivity and properties. Here, we demonstrate that density functional theory, with the recently developed strongly constrained and appropriately normed (SCAN) functional, has advanced to a point where both facets of the stability problem can be reliably and efficiently predicted for main group compounds, while transition metal compounds are improved but remain a challenge. SCAN therefore offers a robust model for a significant portion of the periodic table, presenting an opportunity for the development of novel materials and the study of fine phase transformations even in largely unexplored systems with little to no experimental data.

  14. Vastly enhancing the chemical stability of phosphorene by employing an electric field.

    Science.gov (United States)

    Gao, Junfeng; Zhang, Gang; Zhang, Yong-Wei

    2017-03-23

    Currently, a major hurdle preventing phosphorene from various electronic applications is its rapid oxidation under ambient conditions. Thus how to enhance its chemical stability by suppressing oxidation becomes an urgent task. Here, we reveal a highly effective procedure to suppress the oxidation of phosphorene by employing a suitable van der Waals (vdW) substrate and a vertical electric field. Our first-principles study shows that the phosphorene-MoSe 2 vdW heterostructure is able to reverse the stability of physisorption and chemisorption of molecular O 2 on phosphorene. With further application of a vertical electric field of -0.6 V Å -1 , the energy barrier for oxidation is able to further increase to 0.91 eV, leading to a 10 5 times enhancement in its lifetime compared with that without using the procedure at room temperature. Our work presents a viable strategy to vastly enhance the chemical stability of phosphorene in air.

  15. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    Science.gov (United States)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  16. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  17. Evaluation of the influence of fluoroquinolone chemical structure on stability: forced degradation and in silico studies

    Directory of Open Access Journals (Sweden)

    André Valle de Bairros

    2018-05-01

    Full Text Available ABSTRACT Fluoroquinolones are a known antibacterial class commonly used around the world. These compounds present relative stability and they may show some adverse effects according their distinct chemical structures. The chemical hydrolysis of five fluoroquinolones was studied using alkaline and photolytic degradation aiming to observe the differences in molecular reactivity. DFT/B3LYP-6.31G* was used to assist with understanding the chemical structure degradation. Gemifloxacin underwent degradation in alkaline medium. Gemifloxacin and danofloxacin showed more degradation perceptual indices in comparison with ciprofloxacin, enrofloxacin and norfloxacin in photolytic conditions. Some structural features were observed which may influence degradation, such as the presence of five member rings attached to the quinolone ring and the electrostatic positive charges, showed in maps of potential electrostatic charges. These measurements may be used in the design of effective and more stable fluoroquinolones as well as the investigation of degradation products from stress stability assays.

  18. Physico-chemical, microbiological and sensory stability of chemically preserved mango pulp

    International Nuclear Information System (INIS)

    Akhtar, S.; Riaz, M.; Nisar, A.

    2010-01-01

    The effect of sodium benzoate (SB) and potassium metabisulphite (PMS) at various concentrations on chemical, microbiological and sensory quality of mango pulp during storage was assessed. Inhibitory activity of the chemical preservatives and their effect on chemical and sensory attributes was tested periodically by simulating the industrial mango pulp storage in the lab (30-42 deg. C in the dark), for a period of 90 days. Protein, fats, decreased while ash content and total soluble solid (TSS) increased during the storage period. A slight progressive decline in pH was observed with a proportional increase (p<0.05) in the acidity of the stored pulp samples. Significant inhibition of the total bacterial count (TBC) was observed on applying the specified concentrations, however PMS was shown to be more inhibitory. Storage time significantly (p<0.05) increased the CFU/g of the pulp samples as the maximum growth was observed after 90 days of storage. Sensory characteristics of the juice prepared from treated mango pulp samples were affected negatively on addition of preservatives however, the samples were accepted by the judges even after three months of storage. (author)

  19. Physical and chemical stability of palonosetron HCl in 4 infusion solutions.

    Science.gov (United States)

    Trissel, Lawrence A; Xu, Quanyun A

    2004-10-01

    Palonosetron HCl is a selective 5-HT(3) receptor antagonist used for the prevention of chemotherapy-induced nausea and vomiting. Palonosetron HCl may be diluted in an infusion solution for administraton. Consequently, stability information is needed for palonosetron HCl admixed in common infusion solutions. To evaluate the physical and chemical stability of palonosetron HCl in concentrations of 5 and 30 microg/mL in dextrose 5% injection, NaCl 0.9% injection, dextrose 5% in NaCl 0.45% injection, and dextrose 5% in lactated Ringer's injection. Triplicate test samples of palonosetron HCl at each concentration in each diluent were tested. Samples were stored and evaluated at appropriate intervals for up to 48 hours at room temperature ( approximately 23 degrees C) and 14 days under refrigeration (4 degrees C). Physical stability was assessed using turbidimetric and particulate measurement, as well as visual inspection. Chemical stability was assessed by HPLC. All of the admixtures were initially clear and colorless when viewed in normal fluorescent room light and with a Tyndall beam. Measured turbidity and particulate content were low initially and remained low throughout the study. The drug concentration was unchanged in any of the samples at either temperature throughout the study. Palonosetron HCl is physically and chemically stable in all 4 common infusion solutions for at least 48 hours at room temperature and 14 days under refrigeration.

  20. Application of isotope-labelled compounds in the study of the chemical stability of pesticides

    International Nuclear Information System (INIS)

    Roesseler, M.; Luther, D.; Abendroth, H.C.; Koch, H.

    1980-01-01

    The user of pesticides requires specific biological modes of action from the corresponding commercial products. Impurities and degradation products may cause uncontrollable toxicological reactions. Profound knowledge of the chemical stability of the effective substance in question and its formulations under storage conditions as well as under those of analytical sample preparation and detection is required. Radioisotope labelled effective substances dimethoate and 1-butyl-amino-cyclohexane-phosphonic acid dibutyl ester are used to study storage stability of the pure effective substance and its formulations; effects of selected impurities, such as technical by-products, moisture or water content, binding or carrier materials, organic solvents, chemical stabilizers and other formulation components on storage properties; temperature dependence of storage stability; selection of suitable analytical techniques for quantitative determination of the effective substance without interference effects from any by-product; reduction of the necessary analytical expense; disclosure of sources of error in the application of usual analytical techniques; improvement of possibilities of an immediate and clearer discrimination between types and amounts of compounds in a chemical system consisting of one pesticide and its degradation or reaction products at the beginning and at the end of an experimental or reaction period. Radiochemical analytical techniques, such as radio thin-layer chromatography (also combined with liquid scintillation counting), radio gas chromatography, autoradiography and isotope dilution analysis were used. Results are discussed, especially of experiments on dimethoate and its technical by-products

  1. Chemical derivation to enhance the chemical/oxidative stability of resorcinol-formaldehyde (R-F) resin

    International Nuclear Information System (INIS)

    Hubler, T.L.; Shaw, W.J.; Brown, G.N.; Linehan, J.C.; Franz, J.A.; Hart, T.R.; Hogan, M.O.

    1996-09-01

    Tank wastes at Hanford and SRS contain highly alkaline supernate solutions of conc. Na, K nitrates with large amounts of 137 Cs. It is desirable to remove and concentrate the highly radioactive fraction for vitrification. One candidate ion exchange material for removing the radiocesium is R-F resin. This report summarizes studies into synthesis and characterization of 4-derivatized R-F resins prepared in pursuit of more chemically/oxidatively robust resin. 85% 4-fluororesorcinol/15% phenol formaldehyde resin appears to have good stability in alkaline solution, although there may be some nucleophilic displacement reaction during synthesis; further studies are needed

  2. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  3. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  4. Chemical stability of fluorine-containing coatings of cold drying for radiation - protection technique articles

    International Nuclear Information System (INIS)

    Shigorina, I.I.; Zvyagintseva, N.V.; Egorov, B.N.

    1977-01-01

    The chemical stability of fluorolon coatings, which are not subjected to heat treatment or hot drying during application, has been studied. The test for layer life-time has been performed by submerging specimens in agressive medium. The time for one upper removable layer to fail under steady action of agressive liquid is found to be: > 12 months at 20 deg C, 6-9 months at 40 deg C; at 60 deg C the time of layer stability depends upon medium: 1 month for nitric, 2 months for acetic, 2-3 months for sulphuric and hydrochloric acid. The coatings are recommended for practical application in radiation-protective technique

  5. Real cause of detrimental carbonation in chemically stabilized layers and possible solutions

    CSIR Research Space (South Africa)

    Botha, PB

    2005-10-01

    Full Text Available to determine the other reaction that may take place in the material. KEYWORDS CARBONATION/ CHEMICAL REACTIONS/ WATER CURING/ NEW TESTING PROTOCOL 1 INTRODUCTION This paper deals with the problems related to the “curing” of the stabilized layers... than CO2 driven. In actually fact the so-called “detrimental carbonation” chemical reaction cannot even take place without free water being available. The water is normally supplied by the specified curing 2 technique to keep the layer moist...

  6. Characterization of milk proteins-lutein complexes and the impact on lutein chemical stability.

    Science.gov (United States)

    Yi, Jiang; Fan, Yuting; Yokoyama, Wallace; Zhang, Yuzhu; Zhao, Liqing

    2016-06-01

    In this study, the interaction of WPI (whey protein isolate) and SC (sodium caseinate) with hydrophobic lutein was investigated through UV-vis spectroscopy and circular dichroism (CD) as well as fluorescence. The effects on lutein's chemical stability were also examined. The decrease of turbidity of lutein suggested that lutein's aqueous solubility was improved after binding with milk proteins. CD analysis indicated lutein had little impact on the secondary structures of both proteins. Different preparation methods have significant impacts on the binding constant. Fluorescence results indicated that WPI and SC interact with lutein by hydrophobic contacts. Milk proteins have protective effects on lutein against oxidation and decomposition, and SC showed better capability in protecting lutein from oxidation than WPI during 16 days storage. The lutein's chemical stability was increased with increasing of proteins concentration. The results indicated that milk proteins may act as effective carriers for lipophilic nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.

    Science.gov (United States)

    Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E

    2011-09-01

    The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.

  8. Metal and anion composition of two biopolymeric chemical stabilizers and toxicity risk implication for the environment.

    Science.gov (United States)

    Ndibewu, P P; Mgangira, M B; Cingo, N; McCrindle, R I

    2010-01-01

    The objective of this study was to (1) measure the concentration of four anions (Cl(-), F(-), [image omitted], and [image omitted]) and nine other elements (Al, Ba, Ca, K, Mg, Mn, Fe, Ni, and Si) in two nontraditional biopolymeric chemical stabilizers (EBCS1 and EBCS2), (2) investigate consequent environmental toxicity risk implications, and (3) create awareness regarding environmental health issues associated with metal concentration levels in enzyme-based chemical stabilizers that are now gaining widespread application in road construction and other concrete materials. Potential ecotoxicity impacts were studied on aqueous extracts of EBCS1 and EBCS2 using two thermodynamic properties models: the Pitzer-Mayorga model (calculation of the electrolyte activity coefficients) and the Millero-Pitzer model (calculation of the ionic activity coefficients). Results showed not only high concentrations of a variety of metal ions and inorganic anions, but also a significant variation between two chemical stabilizing mixtures. The mixture (EBCS2) with the lower pH value was richer in all the cationic and anionic species than (EBCS1). Sulfate (SO(2-)(4)) concentrations were found to be higher in EBCS2 than in EBCS1. There was no correlation between electrolyte activity and presence of the ionic species, which may be linked to a possible high ionic environmental activity. The concentrations of trace metals found (Mn, Fe, and Ni) were low compared to those of earth metals (Ba, Ca, K, and Mg). The metal concentrations were higher in EBCS1 than in EBCS2. Data suggest that specific studies are needed to establish "zero" permissible metal ecotoxicity values for elements and anions in any such strong polyelectrolytic enzyme-based chemical stabilizers.

  9. A high throughput platform for understanding the influence of excipients on physical and chemical stability

    DEFF Research Database (Denmark)

    Raijada, Dhara; Cornett, Claus; Rantanen, Jukka

    2013-01-01

    The present study puts forward a miniaturized high-throughput platform to understand influence of excipient selection and processing on the stability of a given drug compound. Four model drugs (sodium naproxen, theophylline, amlodipine besylate and nitrofurantoin) and ten different excipients were...... for chemical degradation. The proposed high-throughput platform can be used during early drug development to simulate typical processing induced stress in a small scale and to understand possible phase transformation behaviour and influence of excipients on this....

  10. Chemical structure and radiation stability of solid crystalline antibiotics: thiamphenicol and chloramphenicol

    International Nuclear Information System (INIS)

    Varshney, Lalit; Soe Nwe

    1997-01-01

    Antibiotics in solid state show significant radiation resistance and some of them are exposed to gamma or electron beam irradiation for sterilization. Even small radiation degradation in solid state antibiotics is not desirable. Two antibiotics namely thiamphenicol (TPL) and chloramphenicol (CPL) having similar chemical and solid state structure were irradiated at different graded radiation doses to study their stability. Differential scanning calorimetry (DSC) was used to evaluate purity, entropy of radiation processing, heat of fusion and melting point. (author). 3 refs., 1 tab

  11. Enhancement of the chemical stability in confined δ-Bi2O3

    DEFF Research Database (Denmark)

    Sanna, Simone; Esposito, Vincenzo; Andreasen, Jens Wenzel

    2015-01-01

    Bismuth-oxide-based materials are the building blocks for modern ferroelectrics1, multiferroics2, gas sensors3, light photocatalysts4 and fuel cells5,6. Although the cubic fluorite δ-phase of bismuth oxide (δ-Bi2O3) exhibits the highest conductivity of known solid-state oxygen ion conductors5, its...... instability prevents use at low temperature7–10. Here we demonstrate the possibility of stabilizing δ-Bi2O3 using highly coherent interfaces of alternating layers of Er2O3-stabilized δ-Bi2O3 and Gd2O3-doped CeO2. Remarkably, an exceptionally high chemical stability in reducing conditions and redox cycles...

  12. On the stabilizing role of species diffusion in chemical enhanced oil recovery

    Science.gov (United States)

    Daripa, Prabir; Gin, Craig

    2015-11-01

    In this talk, the speaker will discuss a problem on the stability analysis related to the effect of species diffusion on stabilization of fingering in a Hele-Shaw model of chemical enhanced oil recovery. The formulation of the problem is motivated by a specific design principle of the immiscible interfaces in the hope that this will lead to significant stabilization of interfacial instabilities, there by improving oil recovery in the context of porous media flow. Testing the merits of this hypothesis poses some challenges which will be discussed along with some numerical results based on current formulation of this problem. Several open problems in this context will be discussed. This work is currently under progress. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  13. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    EI-Naggar, I.M.; Abou-Mesalam, M.M.; El-Shorbagy, M.M.; Shady, S.A.

    2006-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium eerie nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic system's, respectively. The chemical composition of both chromium and cerium titanates was determined by X-ray fluorescence technique and based on the data obtained with other different techniques. A molecular formula for chromium and cerium titanates as Cr 2 Ti 12 O 27 . 13H 2 O and Ce 2 Ti 3 O 10 . 7.46H 2 O, respectively, was proposed. Thermal stabilities of both ion exchangers were investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared with the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were also investigated

  14. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Abou-Mesalam, M. M.; El-Shorbagy, M.M.; Shady, S.A.

    2005-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium ceric nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic systems, respectively. The chemical composition of both chromium and cerium titanates were determined by X-ray fluorescence technique and based on the data obtained with other different techniques. We can proposed molecular formula for chromium and cerium titanates as Cr 2 Ti 1 2O27. 13H 2 O and Ce 2 ThO10. 7.46 H 2 O, respectively. Thermal stability of both ion exchangers was investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared to the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were investigated

  15. Formulation design of oral pediatric Acetazolamide suspension: dose uniformity and physico-chemical stability study.

    Science.gov (United States)

    Santoveña, Ana; Suárez-González, Javier; Martín-Rodríguez, Cristina; Fariña, José B

    2017-03-01

    The formulation of an active pharmaceutical ingredient (API) as oral solution or suspension in pediatrics is a habitual practice, due to the non-existence of many commercialized medicines in pediatric doses. It is also the simplest way to prepare and administer them to this vulnerable population. The design of a formulation that assures the dose and the system stability depends on the physico-chemical properties of the API. In this study, we formulate a class IV API, Acetazolamide (AZM) as suspension for oral administration to pediatric population. The suspension must comply attributes of quality, safety and efficacy for this route of administration. We use simple compounding procedures, as well as fewer pure excipients, as recommended for children. Mass and uniformity content assays and physical and chemical stability studies were performed. To quantify the API an UPLC method was used. We verified the physico-chemical stability of the suspensions and that they passed the mass test of the European Pharmacopeia (EP), but not the dose uniformity test. This reveals that AZM must be formulated as liquid forms with a more complex system of excipients (not usually indicated in pediatrics), or otherwise solid forms capable of assuring uniformity of mass and dose for every dosage unit.

  16. The Effects of Lyophilization on the Physico-Chemical Stability of Sirolimus Liposomes

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2013-02-01

    Full Text Available Purpose: The major limitation in the widespread use of liposome drug delivery system is its instability. Lyophilization is a promising approach to ensure the long-term stability of liposomes. The aim of this study was to prepare sirolimus-loaded liposomes, study their stability and investigate the effect of lyophilization either in the presence or in the absence of lyoprotectant on liposome properties. Methods: Two types of multi-lamellar liposomes, conventional and fusogenic, containing sirolimus were prepared by modified thin film hydration method with different ratio of dipalmitoylphosphatidylcholine (DPPC, cholesterol and dioleoylphosphoethanolamine (DOPE, and were lyophilized with or without dextrose as lyoprotectant. Chemical stability investigation was performed at 4°C and 25°C until 6 months using a validated HPLC method. Physical stability was studied with determination of particle size (PS and encapsulation efficiency (EE % of formulations through 6 months. Results: Chemical stability test at 4°C and 25°C until 6 months showed that drug content of liposomes decreased 8.4% and 20.2% respectively. Initial mean EE % and PS were 72.8 % and 582 nm respectively. After 6 months mean EE % for suspended form, lyophilized without lyoprotectant and lyophilized with lyoprotectant were 54.8 %, 62.3% and 67.1 % at 4°C and 48.2%, 60.4 % and 66.8 % at 25°C respectively. Corresponding data for mean PS were 8229 nm, 2397 nm and 688nm at 4°C and 9362 nm, 1944 nm and 737 nm at 25°C respectively. Conclusion: It is concluded that lyophilization with and without dextrose could increase shelf life of liposome and dextrose has lyoprotectant effect that stabilized liposomes in the lyophilization process.

  17. Physical and chemical stability of proflavine contrast agent solutions for early detection of oral cancer.

    Science.gov (United States)

    Kawedia, Jitesh D; Zhang, Yan-Ping; Myers, Alan L; Richards-Kortum, Rebecca R; Kramer, Mark A; Gillenwater, Ann M; Culotta, Kirk S

    2016-02-01

    Proflavine hemisulfate solution is a fluorescence contrast agent to visualize cell nuclei using high-resolution optical imaging devices such as the high-resolution microendoscope. These devices provide real-time imaging to distinguish between normal versus neoplastic tissue. These images could be helpful for early screening of oral cancer and its precursors and to determine accurate margins of malignant tissue for ablative surgery. Extemporaneous preparation of proflavine solution for these diagnostic procedures requires preparation in batches and long-term storage to improve compounding efficiency in the pharmacy. However, there is a paucity of long-term stability data for proflavine contrast solutions. The physical and chemical stability of 0.01% (10 mg/100 ml) proflavine hemisulfate solutions prepared in sterile water was determined following storage at refrigeration (4-8℃) and room temperature (23℃). Concentrations of proflavine were measured at predetermined time points up to 12 months using a validated stability-indicating high-performance liquid chromatography method. Proflavine solutions stored under refrigeration were physically and chemically stable for at least 12 months with concentrations ranging from 95% to 105% compared to initial concentration. However, in solutions stored at room temperature increased turbidity and particulates were observed in some of the tested vials at 9 months and 12 months with peak particle count reaching 17-fold increase compared to baseline. Solutions stored at room temperature were chemically stable up to six months (94-105%). Proflavine solutions at concentration of 0.01% were chemically and physically stable for at least 12 months under refrigeration. The solution was chemically stable for six months when stored at room temperature. We recommend long-term storage of proflavine solutions under refrigeration prior to diagnostic procedure. © The Author(s) 2014.

  18. Chemical stability of insulin. 4. Mechanisms and kinetics of chemical transformations in pharmaceutical formulation.

    Science.gov (United States)

    Brange, J

    1992-01-01

    Insulin decomposes by a multitude of chemical reactions [1-3]. It deamidates at two different residues by entirely different mechanisms. In acid, deamidation at AsnA21 is intramolecularly catalyzed by the protonated C-terminal, whereas above pH 6 an intermediate imide formation at residue AsnB3 leads to isoAsp and Asp derivatives. The imide formation requires a large rotation around the alpha-carbon/peptide carbonyl carbon bond at B3, corresponding to a 10 A movement of the B-chain N-terminal. The main determinant for the rate of B3 deamidation, as well as for the ratio between the two products formed, is the local conformational structure, which is highly influenced by various excipients and the physical state of the insulin. An amazing thermolysin-like, autoproteolytic cleavage of the A-chain takes place in rhombohedral insulin crystals, mediated by a concerted catalytic action by several, inter-hexameric functional groups and Zn2+. Intermolecular, covalent cross-linking of insulin molecules occurs via several mechanisms. The most prominent type of mechanism is aminolysis by the N-terminals, leading to isopeptide linkages with the A-chain side-chain amides of residues GlnA15, AsnA18 and AsnA21. The same type of reaction also leads to covalent cross-linking of the N-terminal in protamine with insulin. Disulfide exchange reactions, initiated by lysis of the A7-B7 disulfide bridge, lead mainly to formation of covalent oligo- and polymers. Activation energy (Ea) for the neutral deamidation and the aminolysis reactions was found to be 80 and 119 KJ/mol, respectively.

  19. Conception and methodology of a prospective safety report for uranium mills tailings ponds

    International Nuclear Information System (INIS)

    Weiss, D.; Larue, J.; Fischer- Appelt, K.

    2006-01-01

    Uranium mill tailings ponds (MTP) stand for the highest potential risk of all legacies from uranium milling. The overall objective of this work was to develop a standardised application document and a working tool for responsible authorities to conduct a continuous safety status description and assessment as well as a prognosis of the respective tailings pond site. - Safety Assessment Principles are based on guide and control values specified in or derived from laws, guidances, norms or standards for the main components who are: technical installations and geo-mechanics, radioactivity, chemical-toxic pollutants. - Data Base: Monitoring data (ground- and seepage water), Radon in near bottom air, Data and information from expertises, reports and technical documents, Site specific data and information (data base A.LAS.KA. / FbU). - Exposure Pathways Analysis. Determination of the radiation exposure to members of the public of different age caused by radioactivity discharges from the tailings pond by means of an authorized calculation procedure. 0.1 to 0.3 mSv/yr with a predominant contribution of ingestion of drinking water (about 80 %). Determination of the hazard resulting from chemical-toxic pollutants according to German regulations. Only relevance of Arsenic via seepage water path. - Forecast of Contaminant Propagation via Groundwater. A three dimensional site specific model was generated to forecast the contaminant distribution in the downstream groundwater flow by means of the available monitoring data. - Safety Assessment. The present status of the tailings pond 'Lengenfeld' was evaluated as to be safe for all three risk components and therefore it is no need for short term measures to minimize hazards or to reduce the contaminants spreading via groundwater. The geochemical environment of the tailings can be regarded as steady, but they are hydraulically tensed by overlaying spar cover. The low permeability of the tailings prevents a significant vertical

  20. Processing and stabilization of Aloe Vera leaf gel by adding chemical and natural preservatives

    Directory of Open Access Journals (Sweden)

    N. Nazemi

    2017-11-01

    Full Text Available Background and objectives: Aloe vera has been used as a medicinal herb for thousands of years. Aloe vera leaves can be separated into latex and gel which have biological effects. Aloe gel is a potent source of polysaccharides. When the gel is exposed to air, it quickly decomposes and decays and loses most of its biological activity. There are various processing techniques for sterilizing and stabilizing the gel. The aim of this study was to improve stabilization of the gel by adding some chemical and natural preservatives. Methods: The gel was obtained from Aloe vera leaves and after some processing chemical and natural preservatives were added. Chemicals included citric acid, ascorbic acid, vitamin E and potassium sorbate while natural preservatives were two essential oils derived from Cinnamomum zeylanicum and Eugenia caryophyllata. All these operations were performed under sterile conditions and they were evaluated at different temperatures and times. Appearance and taste changes of gel were studied organoleptic. Microbiological tests and some physical assays such as pH, refractometry and viscosity properties as well as determination of total sugars were measured. NMR and FT-IR analyses were performed for determining the quality of samples. Results: After data analyzing, the results showed that the samples formulated with chemical additives together with essential oils were more suitable and stable compared to the control samples after 90 days and the effective ingredient acemannan, remained stable. Conclusion: The stable gel can be considered for therapeutic properties and be used for edible and medicinal purposes.

  1. Conception and methodology of a prospective safety report for uranium mills tailings ponds

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D.; Larue, J.; Fischer- Appelt, K. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koln (Germany)

    2006-07-01

    Uranium mill tailings ponds (MTP) stand for the highest potential risk of all legacies from uranium milling. The overall objective of this work was to develop a standardised application document and a working tool for responsible authorities to conduct a continuous safety status description and assessment as well as a prognosis of the respective tailings pond site. - Safety Assessment Principles are based on guide and control values specified in or derived from laws, guidances, norms or standards for the main components who are: technical installations and geo-mechanics, radioactivity, chemical-toxic pollutants. - Data Base: Monitoring data (ground- and seepage water), Radon in near bottom air, Data and information from expertises, reports and technical documents, Site specific data and information (data base A.LAS.KA. / FbU). - Exposure Pathways Analysis. Determination of the radiation exposure to members of the public of different age caused by radioactivity discharges from the tailings pond by means of an authorized calculation procedure. 0.1 to 0.3 mSv/yr with a predominant contribution of ingestion of drinking water (about 80 %). Determination of the hazard resulting from chemical-toxic pollutants according to German regulations. Only relevance of Arsenic via seepage water path. - Forecast of Contaminant Propagation via Groundwater. A three dimensional site specific model was generated to forecast the contaminant distribution in the downstream groundwater flow by means of the available monitoring data. - Safety Assessment. The present status of the tailings pond 'Lengenfeld' was evaluated as to be safe for all three risk components and therefore it is no need for short term measures to minimize hazards or to reduce the contaminants spreading via groundwater. The geochemical environment of the tailings can be regarded as steady, but they are hydraulically tensed by overlaying spar cover. The low permeability of the tailings prevents a significant

  2. Remediation of the low-level radioactive waste tailing pond in Kowary

    International Nuclear Information System (INIS)

    Waclawek, Z.

    1999-01-01

    The town of Kowary was the centre of uranium mining activities in Poland. The headquarters of the uranium mining company ZPR-1 (Zaklady Przemyslowe R-1) were located there, as it was the only uranium processing plant in Poland. Mining in Uranium in Poland ceased in 1963, but processing of low-grade dumps was continued in Kowary until 1972. As a result of these processing activities, a significant volume of wastes was produced and the tailings pond in Kowary was constructed to accommodate these wastes. The tailings pond covers an area of 1,3 ha. It is a hydrotechnical construction closed on three sides by a dam, which has been modified a number of times over the years. It is now 300 m long (the sum of the three sides)m with a maximum height of 12 m, and is at the limits of the geotechnical stability. As a result of the uranium processing activities, the tailings pond was filled with about 2,5 x 10 5 t of disposed fine-grained gneisses and schists containing about 4,5 t of uranium and about 440 GBq of radium (from processing of uranium ores). A prompt remedial action in this case is particularly necessary because the tailings pond is located in a steep mountainous valley where the local climate involves rapid summer rains with heavy erosion. The nearest buildings in the town of Kowary are located literally at the foot of the 12 m high dam and private gardens extend onto the dam slope. The urgency has recently been demonstrated during the flood of summer 1997 when the base of the dam eroded. In the early seventies, Wroclaw University of Technology (WUT) received, by a governmental decision, ownership of both the area and the facilities of the former uranium mining company ZPR-1. Subsequently, the company Hydromet, Ltd., owned by WUT, has continued to use the existing chemical plant for the various experimental processes of rare (radioactive) metals, chemical production and galvanic processes. As a result, 30 t of mixed heavy metals and 300 t of the remnants from the

  3. Rapid continuous chemical methods for studies of nuclei far from stability

    CERN Document Server

    Trautmann, N; Eriksen, D; Gaggeler, H; Greulich, N; Hickmann, U; Kaffrell, N; Skarnemark, G; Stender, E; Zendel, M

    1981-01-01

    Fast continuous separation methods accomplished by combining a gas-jet recoil-transport system with a variety of chemical systems are described. Procedures for the isolation of individual elements from fission product mixtures with the multistage solvent extraction facility SISAK are presented. Thermochromatography in connection with a gas-jet has been studied as a technique for on-line separation of volatile fission halides. Based on chemical reactions in a gas-jet system itself separation procedures for tellurium, selenium and germanium from fission products have been worked out. All the continuous chemical methods can be performed within a few seconds. The application of such procedures to the investigation of nuclides far from the line of beta -stability is illustrated by a few examples. (16 refs).

  4. The physical and chemical stability of suspensions of sustained-release diclofenac microspheres.

    Science.gov (United States)

    Lewis, L; Boni, R L; Adeyeye, C M

    1998-01-01

    The major challenge in liquid sustained-release oral suspensions is to minimize drug diffusion into the suspending medium and to retain the original properties of the microparticles during storage. Diclofenac wax microspheres prepared by the hydrophobic congealable disperse phase method were formulated as a sustained release suspension and stored at three different temperatures (25, 37 and 45 degrees C) for 3 months, to evaluate the physical and chemical stability of the suspended microspheres. Suspensions of microspheres stored at ambient temperatures were both physically and chemically stable, but at higher temperatures, up to 45 degrees C, there was a decrease in drug release due to scaling and melting on the microsphere surface as observed by scanning electron microscopy. However, on prolonged storage, up to 90 days, especially at 45 degrees C, temperature became a dominant factor causing an increase in drug release. The suspension of diclofenac microspheres was chemically stable for 3 months, while the plain drug suspension exhibited slight degradation.

  5. Chemical properties and oxidative stability of Arjan (Amygdalus reuteri) kernel oil as emerging edible oil.

    Science.gov (United States)

    Tavakoli, Javad; Emadi, Teymour; Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Munekata, Paulo Eduardo Sichetti; Lorenzo, Jose Manuel; Brnčić, Mladen; Barba, Francisco J

    2018-05-01

    The oxidative stability, as well as the chemical composition of Amygdalus reuteri kernel oil (ARKO), were evaluated and compared to those of Amygdalus scoparia kernel oil (ASKO) and extra virgin olive oil (EVOO) during and after holding in the oven (170 °C for 8 h). The oxidative stability analysis was carried out by measuring the changes in conjugated dienes, carbonyl and acid values as well as oil/oxidative stability index and their correlation with the antioxidant compounds (tocopherol, polyphenols, and sterol compounds). The oleic acid was determined as the predominant fatty acid of ARKO (65.5%). Calculated oxidizability value and an iodine value of ARKO, ASKO and EVOO were reported as 3.29 and 3.24, 2.00 and 100.0, 101.4 and 81.9, respectively. Due to the high wax content (4.5% and 3.3%, respectively), the saponification number of ARKO and ASKO (96.4 and 99.8, respectively) was lower than that of EVOO (169.7). ARKO had the highest oxidative stability, followed by ASKO and EVOO. Therefore, ARKO can be introduced as a new source of edible oil with high oxidative stability. Copyright © 2018. Published by Elsevier Ltd.

  6. Microbiology of solar salt ponds

    Science.gov (United States)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  7. Idaho Chemical Processing Plant low-level waste grout stabilization development program FY-96 status report

    International Nuclear Information System (INIS)

    Herbst, A.K.

    1996-09-01

    The general purpose of the Grout Stabilization Development Program is to solidify and stabilize the liquid low-level wastes (LLW) generated at the Idaho Chemical Processing Plant (ICPP). It is anticipated that LLW will be produced from the following: (1) chemical separation of the tank farm high-activity sodium-bearing waste; (2) retrieval, dissolution, and chemical separation of the aluminum, zirconium, and sodium calcines; (3) facility decontamination processes; and (4) process equipment waste. The main tasks completed this fiscal year as part of the program were chromium stabilization study for sodium-bearing waste and stabilization and solidification of LLW from aluminum and zirconium calcines. The projected LLW will be highly acidic and contain high amounts of nitrates. Both of these are detrimental to Portland cement chemistry; thus, methods to precondition the LLW and to cure the grout were explored. A thermal calcination process, called denitration, was developed to solidify the waste and destroy the nitrates. A three-way blend of Portland cement, blast furnace slag, and fly ash was successfully tested. Grout cubes were prepared at various waste loadings to maximize loading while meeting compressive strength and leach resistance requirements. For the sodium LLW, a 25% waste loading achieves a volume reduction of 3.5 and a compressive strength of 2,500 pounds per square inch while meeting leach, mix, and flow requirements. It was found that the sulfur in the slag reduces the chromium leach rate below regulatory limits. For the aluminum LLW, a 15% waste loading achieves a volume reduction of 8.5 and a compressive strength of 4,350 pounds per square inch while meeting leach requirements. Likewise for zirconium LLW, a 30% waste loading achieves a volume reduction of 8.3 and a compressive strength of 3,570 pounds per square inch

  8. Monthly and diurnal variations of limnological conditions of two ponds

    Directory of Open Access Journals (Sweden)

    AKM Fazlur Rahaman

    2017-06-01

    Full Text Available A study on monthly and diurnal changes of limnological conditions of two ponds was conducted in the Bangladesh Agricultural University campus, Mymensingh. The research work was performed by studying the limnological parameters such as transparency, temperature, dissolved oxygen, free carbon dioxide, pH, total alkalinity, nitrate-nitrogen, phosphate-phosphorus and plankton. Diurnal variations of physico-chemical factors were studied fortnightly at 6 hrs intervals at 6 a.m., 12 noon, 6 p.m. and 12 midnight. The amounts of transparency, dissolved oxygen and pH were higher during winter months than in summer months in both the ponds. Transparency, water temperature, total alkalinity, NO3-N and PO4-P were higher during summer months than in winter months in both the ponds. But the amount of free carbon dioxide was higher during winter months than in summer months in pond 1 while in pond 2 the amount of free carbon dioxide was higher during summer months than in winter months. Qualitative and quantitative monthly variations of phytoplankton and zooplankton were observed in both the ponds during the study period. The highest amount of dissolved oxygen, pH and total alkalinity were recorded at 6 p.m. and the lowest amounts of those at 6 a.m. in both the ponds. The highest temperature was recorded at 12 noon and the lowest at 12 midnight. But the highest amount of free carbon dioxide was recorded at 6 a.m. and the lowest at 6 p.m. in both the ponds. All the factors showed appreciable diel variations throughout the study period, which indicate that the ponds are productive.

  9. Evaluation of chemical stabilizers and windscreens for wind erosion control of uranium mill tailings

    International Nuclear Information System (INIS)

    Elmore, M.R.; Hartley, J.N.

    1984-08-01

    Potential wind erosion of uranium mill tailings is a concern for the surface disposal of tailings at uranium mills. Wind-blown tailings may subsequently be redeposited on areas outside the impoundment. Pacific Northwest Laboratory (PNL) is investigating techniques for fugitive dust control at uranium mill tailings piles. Laboratory tests, including wind tunnel studies, were conducted to evaluate the relative effectiveness of 43 chemical stabilizers. Seventeen of the more promising stabilizers were applied to test plots on a uranium tailings pile at the American Nuclear Corporation-Gas Hills Project mill site in central Wyoming. The durabilities of these materials under actual site conditions were evaluated over time. In addition, field testing of commercially available windscreens was conducted. Test panels were constructed of eight different materials at the Wyoming test site to compare their durability. A second test site was established near PNL to evaluate the effectiveness of windscreens at reducing wind velocity, and thereby reduce the potential for wind erosion of mill tailings. Results of the laboratory land field tests of the chemical stabilizers and windscreens are presented, along with costs versus effectiveness of these techniques for control of wind erosion at mill tailings piles. 12 references, 4 figures, 6 tables

  10. Study on thermal stability and chemical structure of polyamide blended with small amount of Cu

    International Nuclear Information System (INIS)

    Arai, Tsuyoshi; Ueno, Tomonaga; Kajiya, Takafumi; Ishikawa, Tomoyuki; Takeda, Kunihiko

    2007-01-01

    The thermal stability and the chemical structure of Polyamide 66 (PA66) blended with a small amount of copper have been studied. The thermal degradation of the blend with 35 ppm or more of copper was restrained and no strong influence of the concentration of copper was observed. The molecular weight of PA66 decreased by the thermal aging process but the amount of decrease of the blend was smaller than that of the non-blend. The water uptake of the blend increased. The chemical structure, which was observed by IR and NMR, changed slightly by blending with copper after aging at higher temperatures. Multiple items influenced the thermal stability of PA66 blended with a small amount of copper instead of just one. Namely, the main chain of PA66 is cut by heat and the degree of the cut is restrained by the copper. The diffusion time of copper atoms that disperse uniformly in the PA66 matrix is short enough to cover the individual amide groups and the effect enlarges the entire configuration of the PA66 chain to enhance the thermal stability. (author)

  11. Inventory of vegetation and benthos in newly laid and natural ponds in Forsmark 2012

    International Nuclear Information System (INIS)

    Qvarfordt, Susanne; Wallin, Anders; Borgiel, Micke

    2013-01-01

    SKB plans to build a repository for the spent nuclear fuel. The repository is planned to be built in Forsmark and constitutes installations above and below ground. The building and operation of the construction will involve activities that might affect the nature in the area. The impact means, among other things, that a small water body, which today is a reproduction site for the red listed pool frog (Rana lessonae), will disappear. The lost locality for the pool frog has been compensated by creating four new ponds in the Forsmark area. This study is part of the follow-up of these new habitats. The aim is to describe the plant and animal communities in the ponds, and follow the succession, i.e. the development of the habitats. The study also includes two natural ponds that will serve as reference objects. The survey of vegetation and invertebrate fauna in the ponds was conducted in October 2012. The results show that the new ponds had low coverage of submersed vegetation and the species composition in the plant communities differed between the ponds. The reference ponds also had different plant communities, both in terms of species composition and coverage. This indicates that the species composition of the plant communities in the new ponds will likely depend on physical factors specific to the respective pond, but that higher vegetation coverage can be expected over time in all new ponds. The reference ponds had similar animal communities that differed from the animal communities in the new ponds. The similar species composition in the reference ponds, despite the variety of plant communities, suggests that similar animal communities are likely to develop in the new ponds, even if the plant communities continues to be different. Water chemical sampling has also been conducted in the ponds during 2012. A comparison of the inorganic environment (with regard to analysed ions) showed that the reference ponds had relatively similar ion compositions with little

  12. Deposition of yttria stabilized zirconia layer for solid oxide fuel cell by chemical vapor infiltration

    International Nuclear Information System (INIS)

    John, John T.; Dubey, Vivekanand; Kain, Vivekanand; Dey, Gautham Kumar; Prakash, Deep

    2011-01-01

    Free energy associated with a chemical reaction can be converted into electricity, if we can split the reaction into an anodic reaction and a cathodic reaction and carry out the reactions in an electrochemical cell using electrodes that will catalyze the reactions. We also have to use a suitable electrolyte, that serves to isolate the chemical species in the two compartments from getting mixed directly but allow an ion produced in one of the reactions to proceed to the other side and complete the reaction. For this reason cracks and porosity are not tolerated in the electrolyte. First generation solid oxide fuel cell (SOFC) uses yttria stabilized zirconia (YSZ) as the electrolyte. In spite of the fact that several solid electrolytes with higher conductivities at lower temperature are being investigated and developed, 8 mol% yttria stabilized zirconia (8YSZ) is considered to be the most favored electrolyte for the SOFC today. The electrolyte should be present as a thin, impervious layer of uniform thickness with good adherence, chemical and mechanical stability, in between the porous cathode and anode. Efforts to produce the 8YSZ coatings on porous lanthanum strontium manganite tubes by electrochemical vapor deposition (ECVD) have met with unexpected difficulties such as impurity pick up and chemical and mechanical instability of the LSM tubes in the ECVD environment. It was also difficult to keep the chemical composition of the YSZ coating at exactly 8 mol% Yttria in zirconia and to control the coating thickness in tight control. These problems were overcome by a two step deposition process where a YSZ layer of required thickness was produced by electrophoretic coating from an acetyl acetone bath at a voltage of 30-300V DC and sintered at 1300 deg C. The resulting porous YSZ layer was made impervious by chemical vapor infiltration (CVI) by the reaction between a mixture of vapors of YCl 3 and ZrCl 4 and steam at 1300 deg C as in the case of ECVD for a short

  13. A Pilot Chemical and Physical Stability Study of Extemporaneously Compounded Levetiracetam Intravenous Solution.

    Science.gov (United States)

    Raphael, Chenzira D; Zhao, Fang; Hughes, Susan E; Juba, Katherine M

    2015-01-01

    Levetiracetam is a commonly used antiepileptic medication for tumor-related epilepsy. However, the 100 mL intravenous (IV) infusion volume can be burdensome to imminently dying hospice patients. A reduced infusion volume would improve patient tolerability. The purpose of this study was to evaluate the stability of 1000 mg/25 mL (40 mg/mL) levetiracetam IV solution in sodium chloride 0.9%. We prepared levetiracetam 40 mg/mL IV solution and added it to polyvinyl chloride (PVC) bags, polyolefin bags, and polypropylene syringes. Triplicate samples of each product were stored at refrigeration (2-8°C) and analyzed on days 0, 1, 4, 7, and 14. Samples were subjected to visual inspection, pH measurement, and stability-indicating high-performance liquid chromatography (HPLC) analysis. Over the 2-week storage period, there was no significant change in visual appearance or pH for any of the stability samples. The HPLC results confirmed that all stability samples retained 94.2-101.3% of initial drug concentration and no degradation products or leachable material from the packaging materials were observed. We conclude that levetiracetam 1000 mg/25 mL IV solution in sodium chloride 0.9% is physically and chemically stable for up to 14 days under refrigeration in polypropylene syringes, PVC bags, and polyolefin bags.

  14. Integrated Application of the UASB Reactor and Ponds for Domestic Sewage Treatment in Tropical Regions

    NARCIS (Netherlands)

    Cavalcanti, P.F.F.

    2003-01-01

    Waste stabilization ponds are widely applied for domestic sewage treatment in Brazil. The main objective of conventional waste stabilisation ponds (WSP's) is, nomen est omen , to remove the organic material from wastewater. To achieve this objective, a quite long liquid retention time (

  15. Electrical conductivity and chemical stability of BaCe0· 8− xAxGd0 ...

    Indian Academy of Sciences (India)

    ... K. BaCe0.7In0.1Gd0.2O3− and BaCe0.7Zr0.1Gd0.2O3− ceramics exhibit an excellent chemical stability against boiling water. Indium is a suitable doping element to promote the sintering densification and to enhance both electrical conductivity and chemical stability of Gd-doped BaCeO3 at operating temperatures.

  16. The Pond Is Our Laboratory

    Science.gov (United States)

    Marchewka, Barbara Turco

    1978-01-01

    This science teacher's laboratory is a pond within walking distance of his school that provides a stimulating environment for exploring the natural world. With simple materials students practice making careful observations, taking measurements and compiling and graphing information for their science studies. They also extend their pond experiences…

  17. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  18. The chemical stability of TRISO-coated HTGR fuel. Pt. 1. Status report

    International Nuclear Information System (INIS)

    Groot, P.; Cordfunke, E.H.P.; Konings, R.J.M.

    1994-12-01

    The US fuel seemed to be more difficult to produce than the German fuel. Also the chemical stability of this fuel must be investigated. The conditions are more severe in the US concept than in the German concept. Oxidation of the graphite seems to be no problem, according to US HTGR concept. A ZrC coating seems to have a number of advantages with regard to the SiC coating: (1) Better retention, (2) no reaction with Pd, (3) no thermal dissociation. Only the oxidation resistance is worse than SiC. Also the maximum stress must be determined that the ZrC coating can have. (orig./HP)

  19. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    Science.gov (United States)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  20. Chemical stability and defect formation in CaHfO3

    KAUST Repository

    Alay-E-Abbas, Syed Muhammad

    2014-04-01

    Defects in CaHfO3 are investigated by ab initio calculations based on density functional theory. Pristine and anion-deficient CaHfO 3 are found to be insulating, whereas cation-deficient CaHfO 3 is hole-doped. The formation energies of neutral and charged cation and anion vacancies are evaluated to determine the stability in different chemical environments. Moreover, the energies of the partial and full Schottky defect reactions are computed. We show that clustering of anion vacancies in the HfO layers is energetically favorable for sufficiently high defect concentrations and results in metallicity. © 2014 EPLA.

  1. Chemical stability and defect formation in CaHfO3

    KAUST Repository

    Alay-E-Abbas, Syed Muhammad; Nazir, Safdar; Mun Wong, Kin; Shaukat, Ali; Schwingenschlö gl, Udo

    2014-01-01

    Defects in CaHfO3 are investigated by ab initio calculations based on density functional theory. Pristine and anion-deficient CaHfO 3 are found to be insulating, whereas cation-deficient CaHfO 3 is hole-doped. The formation energies of neutral and charged cation and anion vacancies are evaluated to determine the stability in different chemical environments. Moreover, the energies of the partial and full Schottky defect reactions are computed. We show that clustering of anion vacancies in the HfO layers is energetically favorable for sufficiently high defect concentrations and results in metallicity. © 2014 EPLA.

  2. Physico-chemical stability of eribulin mesylate containing concentrate and ready-to-administer solutions.

    Science.gov (United States)

    Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene

    2014-06-01

    The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.

  3. Effects of anticaking agents and relative humidity on the physical and chemical stability of powdered vitamin C.

    Science.gov (United States)

    Lipasek, Rebecca A; Taylor, Lynne S; Mauer, Lisa J

    2011-09-01

    Vitamin C is an essential nutrient that is widely used by the food industry in the powder form for both its nutritional and functional properties. However, vitamin C is deliquescent, and deliquescence has been linked to physical and chemical instabilities. Anticaking agents are often added to powder systems to delay or prevent caking, but little is known about their effect on the chemical stability of powders. In this study, various anticaking agents (calcium phosphate, calcium silicate, calcium stearate, corn starch, and silicon dioxide) were combined with sodium ascorbate at 2% and 50% w/w ratios and stored at various relative humidities (23%, 43%, 64%, 75%, 85%, and 98% RHs). Chemical and physical stability and moisture sorption were monitored over time. Additionally, saturated solution samples were stored at various pHs to determine the effect of surface pH and dissolution on the vitamin degradation rate. Storage RH, time, and anticaking agent type and ratio all significantly affected (P vitamin C stability. Silicon dioxide and calcium silicate (50% w/w) and calcium stearate (at both ratios) were the only anticaking agents to improve the physical stability of powdered sodium ascorbate while none of the anticaking agents improved its chemical stability. However, corn starch and calcium stearate had the least adverse effect on chemical stability. Dissolution rate and pH were also important factors affecting the chemical and physical stability of the powders. Therefore, monitoring storage environmental conditions and anticaking agent usage are important for understanding the stability of vitamin C. Anticaking agent type and ratio significantly affected the physical and chemical stability of vitamin C over time and over a range of RHs. No anticaking agent improved the chemical stability of the vitamin, and most caused an increase in chemical degradation even if physical stability was improved. It is possible that anticaking agents would greatly affect other

  4. Performance of constructed evaporation ponds for disposal of smelter waste water: a case study at Portland Aluminum, Victoria, Australia.

    Science.gov (United States)

    Salzman, S A; Allinson, G; Stagnitti, F; Coates, M; Hill, R J

    2001-06-01

    The construction of evaporative ponds and wetlands for the disposal of waste water high in ionic concentrations is a waste disposal strategy currently considered by many industries. However, the design, construction and management of these ponds and wetlands are not straightforward as complex chemical interactions result in both spatial and temporal changes in water quality. The effects of evaporation and drainage on the water quality in two constructed ponds, an adjacent man-made wetland and local groundwater at Portland Aluminium were investigated. The minimum volume of water entering the ponds during the study period was 0.96 +/- 0.16 ML per month. The predicted theoretical evaporative capacity of the two ponds was calculated to be 0.30 +/- 0.07 ML per month. More water enters the ponds than it is theoretically possible to evaporate under the ambient weather conditions at Portland, yet the ponds do not overflow, suggesting percolation through the pond lining. No spatial differences in solute concentrations (fluoride, sulphate, bicarbonate, carbonate, sodium, potassium, calcium, and magnesium ions) were found within the waters of either pond, although temporal differences were apparent. The results support the conclusion that the ponds are not impermeable, and that much of the waste water entering the ponds is being lost through seepage. The impacts on local groundwater chemistry of this seepage are addressed. Significant correlations exist between solute presence within and between the ponds. wetland and groundwater. Fluoride and sulphate concentrations were significantly higher in pond waters throughout the duration of the experiment. Pond sediments revealed a high degree of spatial and temporal heterogeneity in the concentration of all monitored ions resulting from the chemical heterogeneity of the material making up the pond linings. Adsorption isotherms for fluoride indicate that the adsorption capacity of the pond linings remains high for this ion

  5. Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction.

    Science.gov (United States)

    Minkina, Tatiana; Nevidomskaya, Dina; Bauer, Tatiana; Shuvaeva, Victoria; Soldatov, Alexander; Mandzhieva, Saglara; Zubavichus, Yan; Trigub, Alexander

    2018-09-01

    For a correct assessment of risk of polluted soil, it is crucial to establish the speciation and mobility of the contaminants. The aim of this study was to investigate the speciation and transformation of Zn in strongly technogenically transformed contaminated Spolic Technosols for a long time in territory of sludge collectors by combining analytical techniques and synchrotron techniques. Sequential fractionation of Zn compounds in studied soils revealed increasing metal mobility. Phyllosilicates and Fe and Mn hydroxides were the main stabilizers of Zn mobility. A high degree of transformation was identified for the composition of the mineral phase in Spolic Technosols by X-ray powder diffraction. Technogenic phases (Zn-containing authigenic minerals) were revealed in Spolic Technosols samples through the analysis of their Zn K-edge EXAFS and XANES spectra. In one of the samples Zn local environment was formed by predominantly oxygen atoms, and in the other one mixed ZnS and ZnO bonding was found. Zn speciation in the studied technogenically transformed soils was due to the composition of pollutants contaminating the floodplain landscapes for a long time, and, second, this is the combination of physicochemical properties controlling the buffer properties of investigated soils. X-ray spectroscopic and X-ray powder diffraction analyses combined with sequential extraction assays is an effective tool to check the affinity of the soil components for heavy metal cations. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Environmental impact of industrial sludge stabilization/solidification products: chemical or ecotoxicological hazard evaluation?

    Science.gov (United States)

    Silva, Marcos A R; Testolin, Renan C; Godinho-Castro, Alcione P; Corrêa, Albertina X R; Radetski, Claudemir M

    2011-09-15

    Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. An investigation on the chemical stability and a novel strategy for long-term stabilization of diphenylalanine nanostructures in aqueous solution

    Directory of Open Access Journals (Sweden)

    H. Nezammahalleh

    2015-01-01

    Full Text Available The stability of diphenylalanine (FF microwires and microtubes in phosphate buffer solution was investigated and a novel strategy was developed for their chemical stabilization. This stability investigation was carried out by optical microscopy and by high performance liquid chromatography (HPLC. These microstructures dissolve in the solution depending upon their degree of FF saturation. The dissolution mechanisms of the structures in kinetically limited processes were found by accurately fitting the experimental dissolution data to a theoretical kinetic equation. The dissolution data were well fitted to the particular Avrami-Erofe’ev kinetic expression (R2 > 0.98. These findings suggest that the structures can be stabilized by a decrease in the hydration of the constituent molecules thorough a chemical conformational induced transition upon heat treatment. The stable microtubes were fabricated in a novel three step procedure consisting of the reduction of silver ions in unstable FF microtubes by a citrate reductant, the stabilization by chemical conformational induced transition upon heat treatment, and the consequent oxidation of the reduced silver by a persulfate oxidant. These materials were characterized by electron microscopy and powder X-ray diffraction techniques. The long-term stability of both structures was also confirmed by optical microscopy and HPLC.

  8. Geohydrology and limnology of Walden Pond, Concord, Massachusetts

    Science.gov (United States)

    Colman, John A.; Friesz, Paul J.

    2001-01-01

    nitrogen inputs (858 kilograms per year) were dominated (30 percent) by plume water from the septic leach field and, possibly, by swimmers (34 percent). Phosphorus inputs (32 kilograms per year) were dominated by atmospheric dry deposition, background ground water, and estimated swimmer inputs. Swimmer inputs may represent more than 50 percent of the phosphorus load during the summer. The septic-system plume did not contribute phosphorus, but increased the nitrogen to phosphorus ratio for inputs from 41 to 59, on an atom-to-atom basis. The ratio of nitrogen to phosphorus in input loads and within the lake indicated algal growth would be strongly phosphorus limited. Nitrogen supply in excess of plant requirements may mitigate against nitrogen fixing organisms including undesirable blooms of cyanobacteria. Based on areal nutrient loading, Walden Pond is a mesotrophic lake. Hypolimnetic oxygen demand of Walden Pond has increased since a profile was measured in 1939. Currently (1999), the entire hypolimnion of Walden Pond becomes devoid of dissolved oxygen before fall turnover in late November; whereas historical data indicated dissolved oxygen likely remained in the hypolimnion during 1939. The complete depletion of dissolved oxygen likely causes release of phosphorus from the sediments. Walden Pond contains a large population of the deep-growing benthic macro alga Nitella, which has been hypothesized to promote water clarity in other clear-water lakes by sequestering nutrients and keeping large areas of the sediment surface oxygenated. Loss of Nitella populations in other lakes has correlated with a decline in water quality. Although the Nitella standing crop is large in Walden Pond, Nitella still appears to be controlled by nutrient availability. Decreasing phosphorus inputs to Walden Pond, by amounts under anthropogenic control would likely contribute to the stability of the Nitella population in the metalimnion, may reverse oxygen depletion in the hypolimnion, and decreas

  9. Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure-Physico-chemical characterization of the processed organic matter.

    Science.gov (United States)

    Hachicha, Salma; Sellami, Fatma; Cegarra, Juan; Hachicha, Ridha; Drira, Noureddine; Medhioub, Khaled; Ammar, Emna

    2009-02-15

    Olive mill sludge (OMS), a by-product resulting from natural evaporation of olive oil processing effluent, poses a major environmental threat. A current cost-effective practice of OMS management is composting. A mixture of OMS (60%) with poultry manure (PM) was successfully composted for 210 days. During the process, effluents of olive oil mill and confectionary were used to keep moisture at optimal level (40-60%). Biological indicators reflecting stability of the compost (microbial biota respiration and enumeration, and germination index) were analysed for the assessment of the product quality. The composted mixture showed a high microbial activity with a succession of microbial populations depending on the temperature reached during the biodegradation. The pathogen content from PM decreased with composting as did phytotoxic compounds. Phenols and lipids were reduced, respectively, by 40% and 84% while germination index increased with composting progress. Fourier transform infrared (FTIR) spectroscopic analysis revealed that the final compost improved the aromatic content compared to the starting materials, with a decrease in aliphatic groups and a reduction in the easily assimilated components by the microflora acting during the biological process. The final compost was characterized by relatively high organic matter content (26.21%), a low C/N ratio (16.21), an alkaline pH (8.32), a relatively high electrical conductivity (9.21mS/cm) and a high level of nutrients. The germination index for Lepidium sativum L. was 87.71% after 210 days of composting, showing that the final compost was not phytotoxic.

  10. Chemical quality and oxidative stability of extra virgin olive oils from San Juan province (Argentina).

    Science.gov (United States)

    Ceci, Liliana N; Mattar, Susana B; Carelli, Amalia A

    2017-10-01

    This study provides information about the chemical quality (quality indices, fatty acid profile, total polyphenols (PPs), tocopherols and pigments) and oxidative stability index (OSI) of virgin olive oils of Arbequina, Changlot Real and Coratina cultivars (San Juan province, Argentina). The influence of the cultivar and the effect of earlier harvest dates on the yields (OY), quality and OSI of the oils were also evaluated. All the oils were classified as extra virgin. The OY (L/100kg) averaged: Arbequina=13.2, Changlot Real=21.3, Coratina=18.3. The oleic acid (O) percentage, oleic to linoleic plus linolenic ratio [O/(L+Ln)], PPs and OSI were highly dependent on cultivar (Arbequinachemical and nutritional quality, higher oxidative stability and a fatty acid profile according to the IOC trade standard. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Preparation and chemical stability of iron-nitride-coated iron microparticles

    International Nuclear Information System (INIS)

    Luo Xin; Liu Shixiong

    2007-01-01

    Iron-nitride-coated iron microparticles were prepared by nitridation of the surface of iron microparticles with ammonia gas at a temperature of 510 deg. C. The phases, composition, morphology, magnetic properties, and chemical stability of the particles were studied. The phases were α-Fe, ε-Fe 3 N, and γ-Fe 4 N. The composition varied from the core to the surface, with 99.8 wt% Fe in the core, and 93.8 wt% Fe and 6 wt% N in the iron-nitride coating. The thickness of the iron-nitride coating was about 0.28 μm. The chemical stability of the microparticles was greatly improved, especially the corrosion resistance in corrosive aqueous media. The saturation magnetization and the coercive force were 17.1x10 3 and 68 kA/m, respectively. It can be concluded that iron-nitride-coated iron microparticles will be very useful in many fields, such as water-based magnetorheological fluids and polishing fluids

  12. Data validation report for the 100-D Ponds Operable Unit: 100-D ponds sampling

    International Nuclear Information System (INIS)

    Stankovich, M.T.

    1994-01-01

    Westinghouse-Hanford has requested that 100 percent of the Sample Delivery Groups be validated for the 100-D Ponds Operable Unit Sampling Investigation. Therefore the data from the chemical analysis of all 30 samples from this sampling event and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site

  13. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  14. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  15. Supported liquid membrane stability in chiral resolution by chemically and physically modified membranes

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, R.; Argurio, P. [Arcavata di Rende Univ. of Calabria, Arcavata di Rende, CS (Italy). Dept. of Chemical and Materials Engineering

    2001-04-01

    In the present work some stability studies on Supported Liquid Membranes (SLMs) to be used for chiral separations were realized. In particular, primary aim was to determine how a modification of the support surface influences the SLM stability. First, the procedure for support modification was optimised, making a screening of various compounds (sulphuric acid, nitric acid, chromic acid, sodium dodecyl sulphate (SDS), glycerol, oleic alcohol, propylene glycol (PPG), bovine serum albumin (BSA)) and testing their performance by means of contact angle measurements. Next, a second screening was realized by permeation tests in a stirred cell. Finally, to compare the stability of modified with unmodified support in a process of interest for chemical and/or biochemical industries, some permeation tests for resolution of DNB-DL-Leucine were realized in a re-circulation system. Results showed a better surface hydrophilization of chemically modified support and better stability of the sulphonated support. However, in operating conditions a little high stability of the unmodified support was obtained. [Italian] Nel presente lavoro sono stati realizzati degli studi di stabilita' di Membrane Liquide Supportate (SLMs) da impiegare in separazioni chirali. In particolare, obiettivo principale e' stato quello di determinare l'influenza che una modifica della superficie del supporto ha sulla stabilita' della SLM. Cosi', in un primo momento, e' stata ottimizzata le procedura di modifica del supporto, facendo una selezione tra vari composti (acido solforico, acido nitrico, acido cromico, sodio dodecil solfato (SDS), glicerolo, alcool oleico, glicole propilenico (PPG), siero di albumina bovina (BSA)) basata su misure dell'angolo di contatto. Successivamente, e' stata realizzata una seconda selezione mediante prove di permeazione in una cella agitata. Infine, con lo scopo di confrontare la stabilita' della SLM con supporto modificato rispetto

  16. Bifurcation and stability analysis of rotating chemical spirals in circular domains: Boundary-induced meandering and stabilization

    Science.gov (United States)

    Bär, Markus; Bangia, Anil K.; Kevrekidis, Ioannis G.

    2003-05-01

    Recent experimental and model studies have revealed that the domain size may strongly influence the dynamics of rotating spirals in two-dimensional pattern forming chemical reactions. Hartmann et al. [Phys. Rev. Lett. 76, 1384 (1996)], report a frequency increase of spirals in circular domains with diameters substantially smaller than the spiral wavelength in a large domain for the catalytic NO+CO reaction on a microstructured platinum surface. Accompanying simulations with a simple reaction-diffusion system reproduced the behavior. Here, we supplement these studies by a numerical bifurcation and stability analysis of rotating spirals in a simple activator-inhibitor model. The problem is solved in a corotating frame of reference. No-flux conditions are imposed at the boundary of the circular domain. At large domain sizes, eigenvalues and eigenvectors very close to those corresponding to infinite medium translational invariance are observed. Upon decrease of domain size, we observe a simultaneous change in the rotation frequency and a deviation of these eigenvalues from being neutrally stable (zero real part). The latter phenomenon indicates that the translation symmetry of the spiral solution is appreciably broken due to the interaction with the (now nearby) wall. Various dynamical regimes are found: first, the spiral simply tries to avoid the boundary and its tip moves towards the center of the circular domain corresponding to a negative real part of the “translational” eigenvalues. This effect is noticeable at a domain radius of R

  17. Analysis of Geological, Mechanical and Characteristics of Aggregates Used in Tailings Ponds

    Directory of Open Access Journals (Sweden)

    G. Ertugrul

    2017-01-01

    Full Text Available Increasing social demand, economic developments, consumption fluctuations, urbanization, industrialization, modernization, population growth and technical needs have resulted due toincrease in the production of natural resources throughout the world. However, there is a less importance focused on the environmental regulations. Waste water is one of the environmental problemsthatmining activities may cause. It contains a lot of solid and liquid contaminants.Aggregatesare found among the most abundant ones in natural resources. They are obtained from river basins, sea and lake edges, quarries and industries as by products and waste. During mining activities or terminated mining activities, these materials are used in the creation of stability, impermeability and settlement of tailings dam. In this paper, construction of tailings pond by using aggregates are given in detail together with their classification, particle stability, particle shape, particle size, particle texture, covered in minerals of particle, particle porosity and trending to chemical reactivity of aggregates.

  18. Effect of Cation Ordering on the Performance and Chemical Stability of Layered Double Perovskite Cathodes

    Directory of Open Access Journals (Sweden)

    Carlos Bernuy-Lopez

    2018-01-01

    Full Text Available The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3−δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3−δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3−δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm2 at 400 °C and 0.16 and 0.32 Ω·cm2 at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3−δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration.

  19. Holocene closure of Lib Pond, Marshall Islands.

    Directory of Open Access Journals (Sweden)

    Conor L Myhrvold

    Full Text Available Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ and El Niño Southern Oscillation (ENSO. We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.

  20. Holocene closure of Lib Pond, Marshall Islands.

    Science.gov (United States)

    Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.

  1. Rescue of glaucoma-causing mutant myocilin thermal stability by chemical chaperones

    Science.gov (United States)

    Burns, J. Nicole; Orwig, Susan D.; Harris, Julia L.; Watkins, J. Derrick; Vollrath, Douglas; Lieberman, Raquel L.

    2010-01-01

    Mutations in myocilin cause an inherited form of open angle glaucoma, a prevalent neurodegenerative disorder associated with increased intraocular pressure. Myocilin forms part of the trabecular meshwork extracellular matrix presumed to regulate intraocular pressure. Missense mutations, clustered in the olfactomedin (OLF) domain of myocilin, render the protein prone to aggregation in the endoplasmic reticulum of trabecular meshwork cells, causing cell dysfunction and death. Cellular studies have demonstrated temperature-sensitive secretion of myocilin mutants, but difficulties in expression and purification have precluded biophysical characterization of wild-type (wt) myocilin and disease-causing mutants in vitro. We have overcome these limitations by purifying wt and select glaucoma-causing mutant (D380A, I477N, I477S, K423E) forms of the OLF domain (228–504) fused to maltose binding protein (MBP) from E. coli. Monomeric fusion proteins can be isolated in solution. To determine the relative stability of wt and mutant OLF domains, we developed a fluorescence thermal stability assay without removal of MBP, and provide the first direct evidence that mutated OLF is folded but less thermally stable than wt. We tested the ability of seven chemical chaperones to stabilize mutant myocilin. Only sarcosine and trimethylamine N-oxide were capable of shifting the melting temperature of all mutants tested to near that of wt OLF. Our work lays the foundation for the identification of tailored small molecules capable of stabilizing mutant myocilin and promoting secretion to the extracellular matrix, to better control intraocular pressure and ultimately delay the onset of myocilin glaucoma. PMID:20334347

  2. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.

    Science.gov (United States)

    Jewett, Scott A; Ivanisevic, Albena

    2012-09-18

    In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can

  3. Stabilization of contaminated soil and wastewater with chemically bonded phosphate ceramics

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    At Argonne National Laboratory, we have developed chemically Bonded phosphate ceramic (CBPC) technology to stabilize the U.S. Department of Energy's problem mixed waste streams, for which no other stabilization technology is suitable. In this technology, solid waste is mixed with MgO and reacted with aqueous solutions of phosphoric acid or acid phosphates at room temperature to form a slurry that sets in ∼2 h into a hard and dense ceramic waste form. Initial studies involved stabilizing the surrogate waste streams and then testing the waste forms for leaching of contaminants. After achieving satisfactory performance of the waste forms, we next incorporated actual waste streams at bench scale and produced waste forms that were then tested with the Toxicity Characteristic Leaching Procedure (TCLP). This presentation deals with stabilization of soil contaminated with Cd, Cr, Pb, Ag, Ba, and Hg, and of low-level radioactive wastewater. To enhance the contaminant levels in the soil, we further spiked the soil with additional amounts of Cd, Cr, Pb, and Hg. Both the soil and the wastewater were incorporated in the same waste form by stabilizing them with the CBPC process. The waste forms had a total waste loading of ∼77 wt.% and were dense with an open porosity of 2.7 vol.% and a density of 2.17 g/cm 3 . Compression strength was 4910 psi. The TCLP results showed excellent immobilization of all the RCRA metals, and radioactive contaminant levels were below the detection limit of 0.2 pCi/mL. Long-term leaching studies using the ANS 16.1 procedure showed that the retention of contaminants is excellent and comparable to or better than most of other stabilization processes. These results demonstrate that the CBPC process is a very superior process for treatment of low level mixed wastes; we therefore conclude that the CBPC process is well suited to the treatment of low-level mixed waste streams with high waste loading

  4. Functional and chemical stability of a medicinal herb, Artemisia capillaris, following gamma sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Uhee; Jeong, Ill Yun; Bae, Mun Hyoung; Byun, Myung Woo; Jo, Sung Kee [Radiation Research Center for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2007-08-15

    The stability of functional and chemical properties of gamma-irradiated (10 kGy) Artemisia capillaris, a widely used herb in the traditional Oriental medicine, was investigated. Functional properties of the extracts of gamma-irradiated and non-irradiated A. capillaris were compared in antioxidant activities, such as 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical and superoxide anion radical scavenging, lipid peroxidation inhibition, and protection of lymphocyte and plasmid DNA. Their chemical properties were assessed by HPLC analysis, comparing with chlorogenic acid and caffeic acid, which were isolated from ethylacetate fraction as major compounds with strong antioxidant activities. No significant difference in functional properties between irradiated and non-irradiated A. capillaris was found in all antioxidant assays. Also HPLC analysis of ethyl acetate fractions of irradiated and non-irradiated A. capillaris revealed the preservation of chlorogenic acid ({sub t}R=3.124 min) and caffeic acid ({sub t}R=3.672 min), and showed almost the same pattern in the general peaks. These results suggest that the chemical components and antioxidant properties of A. capillaris are not affected largely by gamma-ray irradiation. Therefore, this study may provide evidence that the irradiated herbs retain their potential functional properties.

  5. Comment on the Long-Term Chemical and Mineralogical Stability of the Buffer

    International Nuclear Information System (INIS)

    Arthur, Randy; Apted, Mick; Stenhouse, Mike

    2005-03-01

    This report examines concepts and data that SKB may use to assess the long-term chemical and mineralogical evolution of bentonite barriers in a KBS-3 repository for spent nuclear fuel. Three interrelated topics are considered: mineral chemistry of the smectite clays; thermodynamic stability of the smectite clays; and bentonite-water interactions during the early thermal period of repository evolution. Smectites are complex solid solutions having variable compositions resulting from ionic substitutions on exchange, octahedral and tetrahedral sites in the crystalline lattice. Although little is known about the mechanisms and rates of reactions involving the latter two sites, abundant observational evidence from natural systems suggests that such reactions could occur to an appreciable extent in the buffer over the million year time frame being considered for an intact canister. We are not aware of any efforts in SKB's current modeling strategy to account for such reactions, and therefore question whether the strategy is appropriate for modeling the long-term chemical evolution of the buffer and associated potential effects on the desirable physical and rheological properties of this barrier material. The variable chemistry of smectites affects their thermodynamic stability. Models of smectite-water equilibria use either a fixed stoichiometric composition to approximate representative smectite varieties, or account for compositional variations using solid solution models and ideal mixing relations among thermodynamic components. In either case the thermodynamic properties of a specific smectite composition or of individual solid-solution components must usually be estimated. Recent reports suggest that SKB will not account explicitly for the thermodynamic properties of smectite in its models of bentonite-water interactions. Rather, the models will assume that this clay mineral has a fixed, though unspecified, composition representing an ion-exchanger phase. This phase

  6. Revegetation of flue gas desulfurization sludge pond disposal sites

    International Nuclear Information System (INIS)

    Artiola, J.F.

    1994-12-01

    A comprehensive search of published literature was conducted to summarize research undertaken to date on revegetation of flue gas desulfurization (FGD) waste disposal ponds. A review of the physical and chemical properties of FGD sludges and wastes with similar characteristics is also included in order to determine the advantages and limitations of FGD sludge for plant growth. No specific guidelines have been developed for the revegetation of FGD sludge disposal sites. Survey studies showed that the wide-ranging composition of FGD wastes was determined primarily by the sulfur dioxide and other flue gas scrubbing processes used at powerplants. Sulfate rich (>90%CaSO 4 ) FGD sludges are physically and chemically more stable, and thus more amenable to revegetation. Because of lack of macronutrients and extremely limited microbial activity, FBD sludge ponds presented a poor plant growth environment without amendment. Studies showed the natural process of inoculation of the FGD sludge with soil microbes that promote plant growth be can after disposal but proceeded slowly. Revegetation studies reviewed showed that FGD sludges amended with soils supported a wider variety of plant species better and longer than abandoned FGD ponds. Two major types of plants have been successful in revegetation of FGD waste ponds and similar wastes: salt-tolerant plants and aquatic plants. A comprehensive list of plant species with potential for regetation of FGD sludge disposal pond sites is presented along with successful revegetation techniques

  7. Arctic melt ponds and energy balance in the climate system

    Science.gov (United States)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  8. Diffusion of single oxidation pond

    Directory of Open Access Journals (Sweden)

    Song Ruo-Yuan

    2016-01-01

    Full Text Available The hydraulic characteristic of an oxidation pond was studied by the tracer experiment, and an empirical formula of Peclet number was obtained, which can be well applied to the model of plug flow reactor with longitudinal diffusion.

  9. Biogeochemical ecology of aquaculture ponds

    International Nuclear Information System (INIS)

    Weisburd, R.S.J.

    1988-01-01

    Two methods to determine rates of organic matter production and consumption were applied in shrimp aquaculture ponds. Several questions were posed: can net rates of organic matter production and consumption be determined accurately through application of dissolved inorganic carbon (DIC) mass balance in a pond with high advective through-put? Are organically loaded aquaculture ponds autotrophic? How do rates of organic production vary temporally? Are there diurnal changes in respiration rates? Four marine ponds in Hawaii have been evaluated for a 53 day period through the use of geochemical mass balances. All fluxes of DIC into and out of the ponds were considered. DIC was calculated from hourly pH measurements and weekly alkalinity measurements. Average uptake of DIC from the pond water, equivalent to net community production, revealed net autotrophy in all cases. Hourly and longer period variations in organic matter production rates were examined. The daily cycle dominated the variation in rates of net community production. Maximal rates of net community production were maintained for four to six hours starting in mid-morning. Respiration rates decreased rapidly during the night in two of the ponds and remained essentially constant in the others. A similar pattern of decreasing respiration at night was seen in freshwater shrimp ponds which were studied with incubations. A new method involving isotope dilution of 14 C-labeled DIC was used to measure respiration rates in light and dark bottles. This method is an inexpensive and convenient procedure which should also be useful in other environments. The incubations demonstrated that plankton respiration rates peak at or soon after solar noon and vary over the course of the day by about a factor of two

  10. Par Pond vegetation status 1996

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into the early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned

  11. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    International Nuclear Information System (INIS)

    Matar, S.F.; Nakhl, M.; Al Alam, A.F.; Ouaini, N.; Chevalier, B.

    2010-01-01

    Graphical abstract: Base centered orthorhombic YNiH X structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH 4 is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH 3 and YNiH 4 hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  12. YNi and its hydrides: Phase stabilities, electronic structures and chemical bonding properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France); Nakhl, M. [Universite Libanaise, Laboratoire de Chimie-Physique des Materiaux LCPM, Fanar (Lebanon); Al Alam, A.F.; Ouaini, N. [Universite Saint-Esprit de Kaslik, Faculte des Sciences et de Genie Informatique, Jounieh (Lebanon); Chevalier, B. [CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Docteur Albert Schweitzer, F-33608 Pessac (France)

    2010-11-25

    Graphical abstract: Base centered orthorhombic YNiH{sub X} structure. For x = 3, only H1 and H2 are present. Highest hydrogen content YNiH{sub 4} is obtained when H3 are added. - Abstract: Within density functional theory, establishing the equations of states of YNi in two different controversial structures in the literature, leads to determine the orthorhombic FeB-type as the ground state one with small energy difference. For YNiH{sub 3} and YNiH{sub 4} hydrides crystallizing in the orthorhombic CrB-type structure the geometry optimization and the ab initio determination of the H atomic positions show that the stability of hydrogen decreases from the tri- to the tetra- hydride. New states brought by hydrogen within the valence band lead to its broadening and to enhanced localization of metal density of states. The chemical bonding analysis shows a preferential Ni-H bonding versus Y-H.

  13. Chemical stability of {gamma}-butyrolactone-based electrolytes for aluminium electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Takeda, Masayuki [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Suzuki, Yoko [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)

    1996-06-01

    {gamma}-Butyrolactone-based electrolytes have been used as the operating electrolytes for aluminum electrolytic capacitors. The chemical stability of these electrolytes at elevated temperatures has been examined by monitoring the decrease in their electrolytic conductivities. The deteriorated electrolytes were analyzed by gas and liquid chromatography and the conductivity decrease was directly correlated with the loss of acid components. In quaternary ammonium hydrogen maleate/{gamma}-butyrolactone electrolytes, the maleate anion decomposed by decarboxylation resulting in a complex polymer containing polyester and polyacrylate structures. Quaternary ammonium benzoate/{gamma}-butyrolactone electrolytes decomposed by SN2 reactions giving alkyl benzoates and trialkylamines. The deterioration of the carboxylate salt/{gamma}-butyrolactone electrolytes was accelerated by electrolysis. (orig.)

  14. Assessment of chromatographic methods for the chemical stability of a new miconazole nitrate cream

    International Nuclear Information System (INIS)

    Garcia Pulpeiro, Oscar; Calzadilla Aguiar, Wendy; Rodriguez Bencomo, Wendy

    2013-01-01

    To assess the chromatographic methods for the chemical stability of a new 2 % miconazol nitrate cream. arious degradation conditions were firstly used in the raw material miconazole nitrate in order to obtain the possible degradation products of this drug and to evaluate them by thin layer chromatography-based method, which was validated to identify the degradation products in the new cream. The performance of the official method based on high resolution liquid chromatography and reported in British Pharmacopoeia 2010 was evaluated, and its selectivity against the possible degradation products were also analyzed. Both chromatographic methods were applied to the analysis of cream samples from the three pilot batches under heat stress for 30 days

  15. Colour stability, staining and roughness of silorane after prolonged chemical challenges

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Ribeiro de Jesus, Vivian Cristiane Bueno; Martinelli, Natan Luiz

    2013-01-01

    methacrylate or silorane composites. Specimens were individually stored at 37°C in 0.02 N citric acid, 0.02 N phosphoric acid, 75% ethanol or distilled water for 7, 14, 21 and 180 days, when new measurements were performed. A staining test was performed after the chemical challenge by immersion in coffee...... considered acceptable (although significantly different) after immersion in water, citric acid, phosphoric acid or ethanol, but were unacceptable for the silorane composite immersed in ethanol for 180 days. The methacrylate-based resins stored in ethanol were significantly more stained by coffee than those...... stored in other media. The silorane composite demonstrated no staining, but increased roughness, when compared to the methacrylate-based resins. CONCLUSIONS: No effect of the immersion solution was noticed on roughness of the investigated materials. Ethanol influenced colour stability and staining...

  16. Thermal stability of chemically denatured green fluorescent protein (GFP) A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Attila; Malnasi-Csizmadia, Andras; Somogyi, Bela; Lorinczy, Denes

    2004-02-09

    Green fluorescent protein (GFP) is a light emitter in the bioluminescence reaction of the jellyfish Aequorea victoria. The protein consist of 238 amino acids and produces green fluorescent light ({lambda}{sub max}=508 nm), when irradiated with near ultraviolet light. The fluorescence is due to the presence of chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser{sup 65}-Tyr{sup 66}-Gly{sup 67}-, which buried into {beta}-barrel. GFP is extremely compact and heat stable molecule. In this work, we present data for the effect of chemical denaturing agent on the thermal stability of GFP. When denaturing agent is applied, global thermal stability and the melting point of the molecule is decreases, that can be monitored with differential scanning calorimetry. The results indicate, that in 1-6 M range of GuHCl the melting temperature is decreasing continuously from 83 to 38 deg. C. Interesting finding, that the calculated calorimetric enthalpy decreases with GuHCl concentration up to 3 M (5.6-0.2 kJ mol{sup -1}), but at 4 M it jumps to 8.4 and at greater concentration it is falling down to 1.1 kJ mol{sup -1}. First phenomena, i.e. the decrease of melting point with increasing GuHCl concentration can be easily explained by the effect of the extended chemical denaturation, when less and less amount of heat required to diminish the remaining hydrogen bonds in {beta}-barrel. The surprising increase of calorimetric enthalpy at 4 M concentration of GuHCl could be the consequence of a dimerization or a formation of stable complex between GFP and denaturing agent as well as a precipitation at an extreme GuHCl concentration. We are planning further experiments to elucidate fluorescent consequence of these processes.

  17. 2101-M pond closure plan

    International Nuclear Information System (INIS)

    1993-06-01

    This document describes activities for the closure of a surface impoundment (2101-M Pond) at the Hanford Site. The 2101-H Pond was initially constructed in 1953 to serve as a drainage collection area for the 2101-H Building. (Until the Basalt Waste Isolation Project (BWIP) Laboratory was constructed in the 2101-M Building in 1979--1981, the only source contributing discharge to the pond was condensate water from the 2101-H Building heating, ventilation, and air conditioning (HVAC) system. The drains for the BWIP Laboratory rooms were plumbed into a 4-in., cast-iron, low-pressure drain pipe that carries waste water from the HVAC system to the pond. During the active life of the BWIP Laboratory, solutions of dissolved barium in groundwater samples were discharged to the 2101-M Pond via the laboratory drains. As a result of the discharges, a Part A permit application was initially submitted to the Washington State Department of Ecology (Ecology) in August 1986 which designates the 2101-M Pond as a surface impoundment

  18. Isoparaffinic diluents for tri-n-butyl phosphate. Chemical, radiation-chemical stability, effect on tetravalent plutonium and thorium extraction

    International Nuclear Information System (INIS)

    Renard, E.V.; Pyatibratov, Yu.P.; Neumoev, N.V.; Chizhov, A.A.; Kulikov, I.A.; Gol'dfarb, Yu.Ya.; Sirotkina, I.G.; Semenova, T.I.

    1989-01-01

    By means of catalytic hydroisomerization of the n-paraffinic raw material in a reactor using alumino-platinum catalysts, there was attained a 45-90% degree of conversion of n-paraffins into branched iso-paraffins with mono- and dimethyl structure. From a batch of extensively isomerized n-paraffins, by carrying out the operations of distillation of the light (benzine) fraction, dearomatization, de-n-paraffinization and fractional distillation on a rectification column, isoparaffinic (99%) concentrates were obtained with a constant molecular weight, from iso-C 10 to isoC 15 . The solubility of plutonium and thorium nitrates in 30% solutions of TBP in iso-paraffins (mixtures of iso-paraffins with the same number of C-atoms) increases with decrease in the molecular weight of the iso-paraffin; a system with a 30% TBP in a mixture of iso-decanes practically does not stratify (∼104 g Pu/liter, 22-25 degree C). Nevertheless, a twofold increase (compared with NP) of the maximally permissible (up to the formation of the third phase) concentration, is attained when iso-paraffins are introduced into NP with a similar molecular composition in a 1:1 ratio. With respect to the main requirements demanded of diluents for radiochemical extractional operations, such as density, viscosity, boiling point, flash point, and freezing point, the chemical stability and radiation resistance, content of radioruthenium and radiozirconium, rate of stratification of two-phase systems, the synthetic iso-paraffin-containing solvents are as suitable as n-paraffins

  19. Chemical stabilization of subgrade soil for the strategic expeditionary landing field

    Science.gov (United States)

    Conaway, M. H.

    1983-06-01

    The Strategic Expeditionary Landing Field (SELF) is a military expeditionary-type airfield with an aluminum matted surface that is designed for sustained tactical and cargo airlift operations in an amphibious objective area. Because of the operational traffic parameters such as loads of the various types of aircraft, tire pressures and volume of traffic, a base layer must be constructed over subgrade soil support conditions which may be only marginal. The base layer could be constructed with conventional soil construction techniques (compaction) and yield the required strength. It would be difficult, however, to maintain this strength for the required one-year service life under many climatic conditions due to the degrading effects of water on the support capacity of many soils. Chemical soil stabilization with lime, portland cement and asphalt stabilizing agents could be used to treat the soil. These additives, when properly mixed with certain types of soils, initiate reactions which will increase soil support strength and enhance durability (resistance to the degrading effects of water). Technically, this procedure is quite viable but logistically, it may not be feasible.

  20. Chemical and physical stability of smectites and illite in electrolyte solutions: experimental study at 150 C

    International Nuclear Information System (INIS)

    Boutiche, M.

    1995-01-01

    Chemical interactions between electrolytic solutions commonly used i drilling muds and clays have been studies under P-T conditions similar to those of drillings (150 deg C) in order to determine the eventual consequences on the stability of clay rich formations. The experimental work has been carried out using several solutions (water, NaOH (pH 8, 10, 12), KCI (0,1, 1 2 mol./l), sea water, and K 2 CO 3 ) and clay minerals with low to high amounts of swelling layers (smectite (Na, Na-Ca, Ca), mixed layered illite-smectite minerals). Run products are studied by X-ray diffraction and electronic microprobe. Smectite layers show series of mineralogical changes (cation exchange in the interlayer site, formation of non-swelling layers, hydrolysis), which, however, do not yield to the formation of new minerals, except in the case of the interaction with K 2 CO 3 at 150 deg C (zeolite crystallisation). Cation exchange in the interlayer depends on the nature of the cation, cation concentration in the solution, exchange constants, and liquid/solid ratio. In dilute solutions ( 1 mol./l), because they favour the collapse of swelling layers, and dispersion. Solutions of K 2 CO 3 at 150 deg C are at the origin of the transformation of smectite to zeolites, and high pH - highly saline solutions are rather aggressive, and would probably not stabilize the argilites. (author)

  1. Stabilization of heavy oil-water emulsions using a bio/chemical emulsifier mixture

    Energy Technology Data Exchange (ETDEWEB)

    Farahbakhsh, A.; Taghizadeh, M.; Movagharnejad, K. [Chemical Engineering Department, Babol University of Technology, Babol (Iran, Islamic Republic of); Yakhchali, B. [National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)

    2011-11-15

    In this study, the viscosity reduction of heavy oil has been investigated through the formation of oil-water emulsion using a bio/chemical emulsifier mixture. Four bioemulsifiers from indigenous Rhodococcus ergthropolis and Bacillus licheniformis strains were used to stabilize a highly-viscous oil-in-water emulsion. The Taguchi method with an L{sub 9} orthogonal array design was used to investigate the effect of various control factors on the formation of the oil/water emulsions. An emulsion with lowest viscosity was formed using ACO4 strain. The substantial stability of the oil-in-water emulsion allows the heavy oil to be transported practically over long distances or remain stationary for a considerable period of time prior to utilization. As the result of Taguchi analysis, the temperature and concentration of the emulsifier had a significant influence on viscosity reduction of the emulsion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Thulium oxide fuel characterization study: Part 2, Environmental behavior and mechanical, thermal and chemical stability enhancement

    International Nuclear Information System (INIS)

    Nelson, C.A.

    1970-12-01

    A study was performed of the correlation between fuel form stability and exposure environment of (temperature and atmosphere). 100% Tm 2 O 3 , 80% Tm 2 O 3 /20% Yb 2 O 3 and 100% Yb 2 O 3 wafers were subjected to air, dynamic vacuum and static vacuum at temperatures to 2000 0 C for times to 100 hours. Results showed the Tm 2 O 3 /Yb 2 O 3 cubic structure to be unaffected by elemental levels of iron, aluminum, magnesium and silicon and unaffected by the environmental conditions imposed on the wafers. A second task emphasized the optimization of the thermal, mechanical and chemical stability of Tm 2 O 3 fuel forms. Enhancement was sought through process variable optimization and the addition of metal oxides to Tm 2 O 3 . CaO, TiO 2 and Al 2 O 3 were added to form a grain boundary precipitate to control fines generation. The presence of 1% additive was inadequate to depress the melting point of Tm 2 O 3 or to change the cubic crystalline structure of Tm 2 O 3 /Yb 2 O 3 . Tm 2 O 3 /Yb 2 O 3 wafers containing CaO developed a grain boundary phase that improved the resistance to fines generation. The presence of Yb 2 O 3 did not appear to measurably influence behavior

  3. Aerobic stability, chemical composition and ruminal degradability of sugarcane silage with glycerin from biodiesel

    Directory of Open Access Journals (Sweden)

    Marco Antonio Bensimon Gomes

    2015-06-01

    Full Text Available The experiment was performed with the objective of studying the ensiled sugarcane silage with 0, 5, 10, 15 and 20% of glycerin in experimental PVC silos. The aerobic stability was assessed by measuring the pH and the temperature of the silage at 0, 24, 48, 72, 96 and 120h. The chemical composition, the levels of non-fiber carbohydrates (NFC and the total digestible nutrients (TDN were evaluated. The in vitro digestibility of dry matter (IVDDM and the in vitro digestibility of the cell wall (IVDCW in the silages were evaluated. In three fistulated cattle the in situ degradability of dry matter (DM and the disappearance percentage of the neutral detergent fiber (NDF in samples incubated at 0, 2, 6, 12, 24, 48, 72 and 96h were analyzed. The experimental design was completely randomized and the statistical analyzes were done using Bayesian inference. Increases were observed in DM, TDN, mineral matter, NFC and reductions in NDF, acid detergent fiber, crude protein and ether extract as the inclusion of glycerin was higher. IVDDM increased (P <0.05 in silage with 15 and 20% of glycerin in relation to those with 0, 5 and 10%. The IVDCW at levels of 10, 15 and 20% of glycerin was higher (P <0.05 compared to the other treatments. Increases were observed in the soluble portion (a, a reduction in the insoluble fraction (b, and an increase in the degradability fraction constant (c of the silages with 5, 10, 15 and 20% of glycerin (P <0.05 compared to the control. Glycerin improved aerobic stability while maintaining a low pH and temperature during the observation period at levels of 15 and 20% of glycerin against the silage with 0, 5 and 10%. These results indicate glycerin as a promising additive for sugarcane silage, being able to enhance energy density and improve the aerobic stability of the ensiled matter when its inclusion is from 10 to 20%.

  4. Chemical stability of a cold-active cellulase with high tolerance toward surfactants and chaotropic agent

    Directory of Open Access Journals (Sweden)

    Thaís V. Souza

    2016-03-01

    Full Text Available CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.

  5. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines.

    Science.gov (United States)

    Kemp, Belinda; Condé, Bruna; Jégou, Sandrine; Howell, Kate; Vasserot, Yann; Marchal, Richard

    2018-02-08

    The visual properties of sparkling wine including foam and bubbles are an indicator of sparkling wine quality. Foam properties, particularly foam height (FH) and foam stability (TS), are significantly influenced by the chemical composition of the wine. This review investigates our current knowledge of specific chemical compounds and, the mechanisms by which they influence the foam properties of sparkling wines. Grape and yeast proteins, amino acids, polysaccharides, phenolic compounds, organic acids, fatty acids, ethanol and sugar are examined with respect to their contribution to foam characteristics in sparkling wines made with the Traditional, Transfer, and Charmat and carbonation methods. Contradictory results have been identified that appear to be due to the analytical methods used to measure and quantify compounds and foam. Biopolymer complexes are discussed and absent knowledge with regards to thaumatin-like proteins (TLPs), polysaccharides, amino acids, oak-derived phenolic compounds and organic acids are identified. Future research is also likely to concentrate on visual analysis of sparkling wines by in-depth imaging analysis and specific sensory analysis techniques.

  6. Silver-mediated base pairings: towards dynamic DNA nanostructures with enhanced chemical and thermal stability

    International Nuclear Information System (INIS)

    Swasey, Steven M; Gwinn, Elisabeth G

    2016-01-01

    The thermal and chemical fragility of DNA nanomaterials assembled by Watson–Crick (WC) pairing constrain the settings in which these materials can be used and how they can be functionalized. Here we investigate use of the silver cation, Ag + , as an agent for more robust, metal-mediated self-assembly, focusing on the simplest duplex building blocks that would be required for more elaborate Ag + –DNA nanostructures. Our studies of Ag + -induced assembly of non-complementary DNA oligomers employ strands of 2–24 bases, with varied base compositions, and use electrospray ionization mass spectrometry to determine product compositions. High yields of duplex products containing narrowly distributed numbers of Ag + can be achieved by optimizing solution conditions. These Ag + -mediated duplexes are stable to at least 60 mM Mg 2+ , higher than is necessary for WC nanotechnology schemes such as tile assemblies and DNA origami, indicating that sequential stages of Ag + -mediated and WC-mediated assembly may be feasible. Circular dichroism spectroscopy suggests simple helical structures for Ag + -mediated duplexes with lengths to at least 20 base pairs, and further indicates that the structure of cytosine-rich duplexes is preserved at high urea concentrations. We therefore propose an approach towards dynamic DNA nanomaterials with enhanced thermal and chemical stability through designs that combine sturdy silver-mediated ‘frames’ with WC paired ‘pictures’. (paper)

  7. Preparing for chemical terrorism: a study of the stability of expired pralidoxime (2-PAM).

    Science.gov (United States)

    Hoffman, Robert S; Mercurio-Zappala, Maria; Bouchard, Nicole; Ravikumar, Padinjarekuttu; Goldfrank, Lewis

    2012-03-01

    Oximes such as pralidoxime (2-PAM) are essential antidotes for life-threatening organophosphate poisoning. Unfortunately, oximes are expensive, have limited use, and have short shelf lives. As such, maintaining large stockpiles in preparation for terrorist activity is not always possible. We have demonstrated that atropine is stable well beyond its labeled shelf life and that recently expired 2-PAM was clinically efficacious in a series of poisoned patients. Because 2-PAM is often dosed empirically, clinical improvement does not guarantee pharmacological stability. We therefore chose to analyze the chemical stability of expired 2-PAM. Samples of lyophylized 2-PAM were maintained according to the manufacturer's recommendations for 20 years beyond the published shelf life. We studied 2-PAM contained in a MARK I autoinjector that was stored properly for 3 years beyond its expiration date. An Agilent LC/MSD 1100 with diode-array detector and an Agilent Sorbax SB-C-18, 4.6 × 150-mm, 5-μm column were used with the following solvent systems: water with 0.01% trifluoroacetic acid and methanol with 0.01% trifluoroacetic acid. Fresh reagent grade 2-PAM was used as a standard. Results were repeated for consistency. Lyophylized 2-PAM was a white powder that was clear and colorless in solution. Liquid chromatography was identical to the standard and resulted in 2 isolated peaks with identical mass spectra, suggesting that they are stereoisomers. The autoinjector discharged a clear, yellowish solution. In addition to the 2 peaks identified for lyophylized 2-PAM, a small third peak was identified with a mass spectra corresponding to the reported N -methyl pyridinium carboxaldehyde degradation product. When properly stored, lyophylized 2-PAM appears to be chemically stable well beyond its expiration date. Although the relative amount of degradation product found in solubilized (autoinjector) 2-PAM was small, it is unclear whether this may be toxic and therefore is of concern

  8. Chemical Stability Analysis of Hair Cleansing Conditioners under High-Heat Conditions Experienced during Hair Styling Processes

    Directory of Open Access Journals (Sweden)

    Derek A. Drechsel

    2018-03-01

    Full Text Available Chemical stability is a key component of ensuring that a cosmetic product is safe for consumer use. The objective of this study was to evaluate the chemical stability of commercially available hair cleansing conditioners subjected to high heat stresses from the styling processes of blow drying or straightening. Two hair cleansing conditioners were subjected to temperatures of 60 °C and 185 °C to simulate the use of a blow dryer or flatiron hair straightener, respectively and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS, High-Performance Liquid Chromatography-UV (HPLC and Fourier-Transform Infrared Spectroscopy (FT-IR to capture a chemical profile of the samples. The resulting spectra from matched heated and unheated samples were compared to identify any changes in chemical composition. Overall, no differences in the spectra were observed between the heated and unheated samples at both temperatures evaluated. Specifically, no new peaks were observed during analysis, indicating that no degradation products were formed. In addition, all chemicals identified during GC-MS analysis were known listed ingredients of the products. In summary, no measurable changes in chemical composition were observed in the hair cleansing conditioner samples under high-heat stress conditions. The presented analytical methods can serve as an initial screening tool to evaluate the chemical stability of a cosmetic product under conditions of anticipated use.

  9. Effect of stabilizers on the physico-chemical and sensory attributes ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... a source of highly nutritive protein, energy from added cane sugar ... stability of the grain during storage, value of its product and ease of .... Effect of stabilizers on the solids and specific gravity of thermized yoghurt*+. Stabilize.

  10. Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach.

    Science.gov (United States)

    Chang, Mincheol; Kim, Taejoon; Park, Hyun-Woo; Kang, Minjeong; Reichmanis, Elsa; Yoon, Hyeonseok

    2012-08-01

    Only limited information is available on the design and synthesis of functional materials for preventing corrosion of metal nanostructures. In the nanometer regime, even noble metals are subject to chemical attack. Here, the corrosion behavior of noble metal nanoparticles coated with a conjugated polymer nanolayer was explored for the first time. Specifically, electrochemical corrosion and sulfur tarnishing behaviors were examined for Ag-polypyrrole (PPy) core-shell nanoparticles using potentiodynamic polarization and spectrophotometric analysis, respectively. First, the Ag-PPy nanoparticles exhibited enhanced resistance to electrochemically induced corrosion compared to their exposed silver counterparts. Briefly, a neutral PPy shell provided the highest protection efficiency (75.5%), followed by sulfate ion- (61.3%) and dodecylbenzenesulfonate ion- (53.6%) doped PPy shells. However, the doping of the PPy shell with chloride ion induced an adverse effect (protection efficiency, -120%). Second, upon exposure to sulfide ions, the Ag-PPy nanoparticles preserved their morphology and colloidal stability while the bare silver analog underwent significant structural deformation. To further understand the function of the PPy shell as a protection layer for the silver core, the catalytic activity of the nanostructures was also evaluated. Using the reduction of 4-nitrophenol as a representative example of a catalytic reaction, the rate constant for that reduction using the PPy encased Ag nanoparticles was found to be 1.1 × 10(-3) s(-1), which is approximately 33% less than that determined for the parent silver. These results demonstrate that PPy can serve as both an electrical and chemical barrier for mitigating undesirable chemical degradation in corrosive environments, as well as provide a simple physical barrier to corrosive substances under appropriate conditions.

  11. Physical and chemical stability of reconstituted and diluted dexrazoxane infusion solutions.

    Science.gov (United States)

    Zhang, Yan-Ping; Myers, Alan L; Trinh, Van A; Kawedia, Jitesh D; Kramer, Mark A; Benjamin, Robert S; Tran, Hai T

    2014-02-01

    Dexrazoxane is used clinically to prevent anthracycline-associated cardiotoxicity. Hydrolysis of dexrazoxane prior to reaching the cardiac membranes severely hampers its mode of action; therefore, degradation during the preparation and administration of intravenous dexrazoxane admixtures demands special attention. Moreover, the ongoing national shortage of one dexrazoxane formulation in the United States has forced pharmacies to dispense other commercially available dexrazoxane products. However, the manufacturers' limited stability data restrict the flexibility of dexrazoxane usage in clinical practice. The aims of this study are to determine the physical and chemical stability of reconstituted and diluted solutions of two commercially available dexrazoxane formulations. The stability of two dexrazoxane products, brand and generic name, in reconstituted and intravenous solutions stored at room temperature without light protection in polyvinyl chloride bags was determined. The concentrations of dexrazoxane were measured at predetermined time points up to 24 h using a validated reversed phase high-performance liquid chromatography with ultraviolet detection assay. Brand (B-) and generic (G-) dexrazoxane products, reconstituted in either sterile water or 0.167 M sodium lactate (final concentration of 10 mg/mL), were found stable for at least to 8 h. Infusion solutions of B-dexrazoxane, prepared according to each manufacturer's directions, were stable for at least 24 h and 8 h at 1 mg/mL and 3 mg/mL, respectively. Infusion solutions of G-dexrazoxane, prepared in either 5% dextrose or 0.9% sodium chloride following the manufacturer's guidelines, were also stable for at least 24 h and 8 h at 1 mg/mL and 3 mg/mL, respectively. All tested solutions were found physically stable up to 24 h at room temperature. The stability of dexrazoxane infusion solutions reported herein permits advance preparation of dexrazoxane intravenous admixtures, facilitating

  12. Evaluation of physical stability and leachability of Portland Pozzolona Cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants

    International Nuclear Information System (INIS)

    Patel, Hema; Pandey, Suneel

    2012-01-01

    Highlights: ► Stabilization/solidification of chemical sludge from textile wastewater treatment plants using Portland Pozzolona Cement (PPC) containing fly ash. ► Physical engineering (compressive strength and block density) indicates that sludge has potential to be reused for construction purpose after stabilization/solidification. ► Leaching of heavy metals from stabilized/solidified materials were within stipulated limits. ► There is a modification of microstructural properties of PPC with sludge addition as indicated by XRD and SEM patterns. - Abstract: The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland Pozzolona Cement (PPC) was selected as the binder system which is commercially available cement with 10–25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62–33.62 MPa) and block density (1222.17–1688.72 kg/m 3 ) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  13. Double-Layer Structured CO2 Adsorbent Functionalized with Modified Polyethyleneimine for High Physical and Chemical Stability.

    Science.gov (United States)

    Jeon, Sunbin; Jung, Hyunchul; Kim, Sung Hyun; Lee, Ki Bong

    2018-06-18

    CO 2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO 2 -rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO 2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.

  14. Antifoaming materials studies in G.S. (Girlder sulfide) heavy water plants. Chemical and thermical stability. Pt. 3

    International Nuclear Information System (INIS)

    Delfino, C.A.; Rojo, E.A.

    1988-01-01

    In Girlder sulfide (G.S.) heavy water plants hydrogen sulfide-water systems are inherentely foaming, so the adding of antifoaming materials is of great importance. These may be of high volatility, pyrolizable or chemically unstable in plant operation conditions (water and hydrogen sulfide at 2 MPa, up to 230 deg C). Five commercial surfactants were studied from the point of view of their chemical and thermical stability in order to select the most suitable. (Author) [es

  15. Study on stability of labeled yttrium-90 with lipiodol by chemical extraction for liver cancer

    International Nuclear Information System (INIS)

    Mu, P.Y.; Jiang, X.L.; Chen, J.; Zhu, Y.J.

    2005-01-01

    Liver cancer, particularly hepatocellular carcinoma, is one of the most common malignant diseases in many developed and developing countries. It is also one of the most common diseases endangering the people's lives and health heavily. Surgery is very effective in early-stage patients. Unfortunately, there is less than 10% of the patients with hepatocellular carcinoma fitting for surgical therapy. Instead of surgical therapy, other methods are considered for patients in whom surgery may not work well. Systemic administration of chemotherapeutic agents is not often considered in liver cancer patients, due to discouraging result and adverse side effects. Also, hepatocellular carcinoma is not keen on usual radioactive therapy. However, method of inner interventional radioactive nuclide is a potential way to cure liver tumors. Hepatocellular carcinoma would be cured with inner interventional radioactive nuclide, which is a hot topic in experimental research on hepatocellular carcinoma at home and abroad. The purpose of the study is to label Yttrium-90 with lipiodol by means of the chemical extraction method and research the stability of labeled Yttrium-90 ( 90 Y-P204-Lipiodol) in serum of a newly-born cattle and human's blood. We chose to label steady yttrium with lipiodol, because radioactive yttrium has great nuclear character for liver cancer, yttrium-90 can eradiate pure β radial, and it's half time is 64 hours. Average energy of it is 0.93 Mev, the highest energy is 2.27 Mev. Yttrium-90 can be labeled with lipiodol by means of the chemical extraction method, which is mature in chemical techniques, combined with method of radioactive nuclide labeled in. nuclear medicine. At first, yttrium-90 is extracted in certain condition(pH, temperature, whisk time, whisk frequency, etc ) after adding yttrium-90 solution. We use some distilled water to balance the labeled organic phase twice, and test the stability of labeled yttrium-90 in serum of a newly-born cattle and

  16. Dewatering and RCRA partial closure action on solar evaporation ponds, Rocky Flats Plant, Golden, Colorado

    International Nuclear Information System (INIS)

    1991-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (DOE/EA-0487) on its proposal to partially close five solar evaporation ponds at the Rocky Flats Plant (RFP) pursuant to the requirements of the Resource Conservation and Recovery Act (RCRA). This proposal would be known as a RCRA partial closure and would be accomplished by dewatering the ponds, where necessary, and converting any remaining sludge or evaporator concentrate to a solid wasteform (pondcrete and saltcrete). The pond sites would be stabilized to prevent erosion or other disturbance to the soil and to prevent infiltration of rain or snowmelt. The solid wasteform would be transported offsite for disposal. The five solar ponds (designated 207-A, 207-B (north, center, and south), and 207-C), are the only solar evaporation ponds that exist at the RFP. A finding of no significant impact is included

  17. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe 3 O 4 ) and haematite (Fe 2 O 3 ). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  18. Chemical de-conjugation for investigating the stability of small molecule drugs in antibody-drug conjugates.

    Science.gov (United States)

    Chen, Tao; Su, Dian; Gruenhagen, Jason; Gu, Christine; Li, Yi; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-05

    Antibody-drug conjugates (ADCs) offer new therapeutic options for advanced cancer patients through precision killing with fewer side effects. The stability and efficacy of ADCs are closely related, emphasizing the urgency and importance of gaining a comprehensive understanding of ADC stability. In this work, a chemical de-conjugation approach was developed to investigate the in-situ stability of the small molecule drug while it is conjugated to the antibody. This method involves chemical-mediated release of the small molecule drug from the ADC and subsequent characterization of the released small molecule drug by HPLC. The feasibility of this technique was demonstrated utilizing a model ADC containing a disulfide linker that is sensitive to the reducing environment within cancer cells. Five reducing agents were screened for use in de-conjugation; tris(2-carboxyethyl) phosphine (TCEP) was selected for further optimization due to its high efficiency and clean impurity profile. The optimized de-conjugation assay was shown to have excellent specificity and precision. More importantly, it was shown to be stability indicating, enabling the identification and quantification of the small molecule drug and its degradation products under different formulation pHs and storage temperatures. In summary, the chemical de-conjugation strategy demonstrated here offers a powerful tool to assess the in-situ stability of small molecule drugs on ADCs and the resulting information will shed light on ADC formulation/process development and storage condition selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 216-B-3 expansion ponds closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

  20. 216-B-3 expansion ponds closure plan

    International Nuclear Information System (INIS)

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA

  1. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, J.P.

    1999-01-27

    Understanding the fundamental chemical and physical aging mechanisms is necessary to learn how to produce a bio-oil that is more stable during shipping and storage. This review provides a basis for this understanding and identifies possible future research paths to produce bio-oils with better storage stability.

  2. Flocculation of retention pond water

    International Nuclear Information System (INIS)

    Hart, B.T.; McGregor, R.J.

    1982-05-01

    An integral part of the water management strategy proposed by Ranger Uranium Mining Pty. Ltd. involves the collection of runoff water in a series of retention ponds. This water will subsequently be used in the uranium milling plant or released to Magela Creek. Runoff water collected during the wet season caused a section of Magela Creek to become turbid when it was released. The eroded material causing the turbidity was very highly dispersed and showed little tendency to sediment out in the retention ponds. Results of a preliminary study to determine the feasibility of clarifying retention pond water by flocculation with alum are presented. A concentration of 30 Mg/L alum reduced turbidity from an initial 340 NTU to less than 30 NTU in four hours

  3. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.

    Science.gov (United States)

    Wang, Huawei; Fan, Xinxiu; Wang, Ya-Nan; Li, Weihua; Sun, Yingjie; Zhan, Meili; Wu, Guizhi

    2018-02-15

    The leaching behavior of six typical toxic metals (Pb, Zn, Cr, Cd, Cu and Ni) from raw and chemically stabilized (phosphate and chelating agent) municipal solid waste incineration (MSWI) fly ash were investigated using citric acid. Leaching tests indicated that phosphate stabilization can effectively decrease the leaching of Zn, Cd and Cr; whereas chelating agent stabilization shows a strong ability to lower the release of Pb, Cd and Cu, but instead increases the solubility of Zn and Cr at low pH conditions. Sequential extraction results suggested that the leaching of Pb, Zn and Cd in both the stabilized MSWI fly ash samples led to the decrease in Fe/Mn oxide fraction and the increase in exchangeable and carbonate fractions. The leaching of Cr was due to the decrease in exchangeable, carbonate and Fe/Mn oxide fractions in phosphate-stabilized and chelating agent-stabilized MSWI fly ash. The leaching of Cu in both stabilized MSWI fly ash was greatly ascribed to the decrease in Fe/Mn oxide and oxidisable fractions. Moreover, predicted curves by geochemical model indicated that both stabilized MSWI fly ash have the risk of releasing toxic metals under strong acid environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Influence of Chemically Modified Potato Maltodextrins on Stability and Rheological Properties of Model Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    Karolina Pycia

    2018-01-01

    Full Text Available The aim of this study was to determine the effect of the maltodextrins prepared from chemically modified starches (crosslinked, stabilized, crosslinked and stabilized on the stability and rheological properties of model oil-in-water (o/w emulsions. Based on the obtained results, it was concluded that emulsion stability depended on hydrolysates dextrose equivalent (DE value. Maltodextrin with the lowest degree of depolymerization effectively stabilized the dispersed system, and the effectiveness of this action depended on the maltodextrin type and concentration. Addition of distarch phosphate-based maltodextrin stabilized emulsion at the lowest applied concentration, and the least effective was maltodextrin prepared from acetylated starch. Emulsions stabilized by maltodextrins (DE 6 prepared from distarch phosphate and acetylated distarch adipate showed the predominance of the elastic properties over the viscous ones. Only emulsion stabilized by maltodextrin prepared from distarch phosphate (E1412 revealed the properties of strong gel. Additionally, the decrease in emulsions G′ and G″ moduli values, combined with an increase in the value of DE maltodextrins, was observed.

  5. Chemical stability and in chemico reactivity of 24 fragrance ingredients of concern for skin sensitization risk assessment.

    Science.gov (United States)

    Avonto, Cristina; Wang, Mei; Chittiboyina, Amar G; Vukmanovic, Stanislav; Khan, Ikhlas A

    2018-02-01

    Twenty-four pure fragrance ingredients have been identified as potential concern for skin sensitization. Several of these compounds are chemically unstable and convert into reactive species upon exposure to air or light. In the present work, a systematic investigation of the correlation between chemical stability and reactivity has been undertaken. The compounds were subjected to forced photodegradation for three months and the chemical changes were studied with GC-MS. At the end of the stability study, two-thirds of the samples were found to be unstable. The generation of chemically reactive species was investigated using the in chemico HTS-DCYA assay. Eleven and fourteen compounds were chemically reactive before and after three months, respectively. A significant increase in reactivity upon degradation was found for isoeugenol, linalool, limonene, lyral, citronellol and geraniol; in the same conditions, the reactivity of hydroxycitronellal decreased. The non-reactive compounds α-isomethyl ionone, benzyl alcohol, amyl cinnamal and farnesol became reactive after photo-oxidative degradation. Overall, forced degradation resulted in four non-reactive fragrance compounds to display in chemico thiol reactivity, while ten out of 24 compounds remained inactive. Chemical degradation does not necessarily occur with generation of reactive species. Non-chemical activation may be involved for the 10 stable unreactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production

    International Nuclear Information System (INIS)

    McCabe, Bernadette K.; Hamawand, Ihsan; Harris, Peter; Baillie, Craig; Yusaf, Talal

    2014-01-01

    Highlights: • We report on the performance of a novel covered anaerobic pond system. • Potential biogas production was estimated using BioWin modelling software. • Ponds maintained stable operation; however, accumulation of crust was an issue. • Modelling indicated that biogas yield can be influenced by decomposition efficiency. • Configuration and operation of ponds can also impact potential biogas production. - Abstract: Covered anaerobic ponds offer significant advantages to the red meat processing industry by capturing methane rich gas as a fuel source for bioenergy while reducing greenhouse gas emissions (GHG). This paper presents the results of a novel-designed anaerobic pond system at an Australian abattoir in relation to pond performance and potential biogas production. Key findings in assessing the effectiveness of the system revealed that the covered ponds are capable of efficient wastewater decomposition and biogas production. The primary issue with the covered ponds at the abattoir was the build-up of fat/crust that prevented the accurate measurement of biogas and effective use of the cover. In the absence of field biogas data the novel application of the computer modelling software BioWin® was carried out to simulate chemical oxygen demand (COD) removal rates and subsequent biogas yield. The unique parameter used to fit field data was the fraction of the inlet COD due to a superficial crust which did not follow anaerobic digestion. Field data effluent COD removal rates were matched to simulated rates predicted by BioWin when measured influent COD was reduced to 30%. Biogas modelling results suggest significant variation in the economic benefit of biogas energy, with the quantity of biogas potentially varying tenfold (from 328 m 3 /d to 3284 m 3 /d) depending on site factors such as pond efficiency, pond configuration and operational practices

  7. Influence of N-Oxide Introduction on the Stability of Nitrogen-Rich Heteroaromatic Rings: A Quantum Chemical Study.

    Science.gov (United States)

    Yuan, Jia; Long, Xinping; Zhang, Chaoyang

    2016-12-01

    N-Oxidization is an important strategy for enhancing the density and energy of energetic materials. Nevertheless, the influence of N + -O - introduction on molecular stability remains relatively unknown. Thus, the present work comprehensively studied 102 basic N-rich ring structures, including azoles, furazans, and azines, as well as their N-oxides by quantum chemical calculations. The introduction of N + -O - weakens molecular stability in most cases because the process elongates chemical bonds, decreases ring aromaticity, narrows the gaps between the highest occupied and lowest unoccupied molecular orbitals, and increases the photochemical reactivity. Besides, the easy H transfer to the neighboring O atom, which forms a N-OH isomer in azoles, renders the stabilization by N-oxide introduction ineffective. However, N-oxide introduction can enhance the molecular stability of 1,2,3,4-tetrazine-1,3-dioxide and tetrazino-tetrazine 1,3,6,8-tetraoxide by promoting σ-π separation and relieving lone-pair repulsion. Moreover, the alternate arrangement of positive and negative charges is another factor stabilizing the 1,2,3,4-tetrazine ring by 1,3-dioxidation. Finally, we assess the accessibility of N-oxidized azoles and azines by regarding N 2 O and H 2 O 2 as oxidizers. We find that all the oxidations were exothermic, thermodynamically spontaneous, and kinetically feasible. After an overall evaluation, we propose 19 N-oxides as basic structures for high-energy materials with considerable stability.

  8. Physical and chemical stability of expired fixed dose combination artemether-lumefantrine in uncontrolled tropical conditions

    Directory of Open Access Journals (Sweden)

    Hess Kimberly

    2009-02-01

    Full Text Available Abstract Background New artemisinin combination therapies pose difficulties of implementation in developing and tropical settings because they have a short shelf-life (two years relative to the medicines they replace. This limits the reliability and cost of treatment, and the acceptability of this treatment to health care workers. A multi-pronged investigation was made into the chemical and physical stability of fixed dose combination artemether-lumefantrine (FDC-ALU stored under heterogeneous, uncontrolled African conditions, to probe if a shelf-life extension might be possible. Methods Seventy samples of expired FDC-ALU were collected from private pharmacies and malaria researchers in seven African countries. The samples were subjected to thin-layer chromatography (TLC, disintegration testing, and near infrared Raman spectrometry for ascertainment of active ingredients, tablet integrity, and chemical degradation of the tablet formulation including both active ingredients and excipients. Results Seventy samples of FDC-ALU were tested in July 2008, between one and 58 months post-expiry. 68 of 70 (97% samples passed TLC, disintegration and Raman spectrometry testing, including eight samples that were post-expiry by 20 months or longer. A weak linear association (R2 = 0.33 was observed between the age of samples and their state of degradation relative to brand-identical samples on Raman spectrometry. Sixty-eight samples were retested in February 2009 using Raman spectrometry, between eight and 65 months post-expiry. 66 of 68 (97% samples passed Raman spectrometry retesting. An unexpected observation about African drug logistics was made in three batches of FDC-ALU, which had been sold into the public sector at concessional pricing in accordance with a World Health Organization (WHO agreement, and which were illegally diverted to the private sector where they were sold for profit. Conclusion The data indicate that FDC-ALU is chemically and

  9. Nutritional Profile and Chemical Stability of Pasta Fortified with Tilapia (Oreochromis niloticus) Flour.

    Science.gov (United States)

    Monteiro, Maria Lúcia G; Mársico, Eliane T; Soares, Manoel S; Magalhães, Amanda O; Canto, Anna Carolina V C S; Costa-Lima, Bruno R C; Alvares, Thiago S; Conte, Carlos A

    2016-01-01

    Physicochemical parameters of pasta enriched with tilapia (Oreochromis niloticus) flour were investigated. Five formulations were prepared with different concentrations of tilapia flour as partial substitute of wheat flour: pasta without tilapia flour (PTF0%), pasta with 6% (PTF6%), 12% (PTF12%), 17% (PTF17%), and 23% (PTF23%) of tilapia flour. The formulations were assessed for proximate composition, fatty acid and amino acid profile on day 1 whereas, instrumental color parameters (L*, a* and b* values), pH, water activity (aw), and lipid and protein oxidation were evaluated on days 1, 7, 14, and 21 of storage at 25°C. Fortification with tilapia flour increased (p pasta with tilapia flour decreased (p pasta containing 12%, 17%, and 23% of tilapia flour than their counterparts, and the storage promoted an increase (p pasta with 6% of tilapia flour has the potential to be a technological alternative to food industry for the nutritional enrichment of traditional pasta with negligible negative effects on the chemical stability of the final product during 21 days at 25°C.

  10. Energetics and stability of azulene: From experimental thermochemistry to high-level quantum chemical calculations

    International Nuclear Information System (INIS)

    Sousa, Clara C.S.; Matos, M. Agostinha R.; Morais, Victor M.F.

    2014-01-01

    Highlights: • Experimental standard molar enthalpy of formation, sublimation azulene. • Mini-bomb combustion calorimetry, sublimation Calvet microcalorimetry. • High level composite ab initio calculations. • Computational estimate of the enthalpy of formation of azulene. • Discussion of stability and aromaticity of azulene. - Abstract: The standard (p 0 = 0.1 MPa) molar enthalpy of formation for crystalline azulene was derived from the standard molar enthalpy of combustion, in oxygen, at T = 298.15 K, measured in a mini-bomb combustion calorimeter (aneroid isoperibol calorimeter) and the standard molar enthalpy of sublimation, at T = 298.15 K, measured by Calvet microcalorimetry. From these experiments, the standard molar enthalpy of formation of azulene in the gaseous phase at T = 298.15 K was calculated. In addition, very accurate quantum chemical calculations at the G3 and G4 composite levels of calculation were conducted in order to corroborate our experimental findings and further clarify and establish the definitive standard enthalpy of formation of this interesting non-benzenoid hydrocarbon

  11. Arsenic stability and mobilization in soil at an amenity grassland overlying chemical waste (St. Helens, UK)

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)], E-mail: w.hartley@ljmu.ac.uk; Dickinson, Nicholas M. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Clemente, Rafael [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Apartado 4195, 30080 Murcia (Spain); French, Christopher [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Piearce, Trevor G. [Biological Sciences Division, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Sparke, Shaun; Lepp, Nicholas W. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2009-03-15

    A 6.6 ha grassland, established on a former chemical waste site adjacent to a residential area, contains arsenic (As) in surface soil at concentrations 200 times higher than UK Soil Guideline Values. The site is not recognized as statutory contaminated land, partly on the assumption that mobility of the metalloid presents a negligible threat to human health, groundwater and ecological receptors. Evidence for this is evaluated, based on studies of the effect of organic (green waste compost) and inorganic (iron oxides, lime and phosphate) amendments on As fractionation, mobility, plant uptake and earthworm communities. Arsenic mobility in soil was low but significantly related to dissolved organic matter and phosphate, with immobilization associated with iron oxides. Plant uptake was low and there was little apparent impact on earthworms. The existing vegetation cover reduces re-entrainment of dust-blown particulates and pathways of As exposure via this route. Minimizing risks to receptors requires avoidance of soil exposure, and no compost or phosphate application. - Stabilization of alkali industry waste requires careful management to minimise soil arsenic mobilization and dispersal to the wider environment.

  12. A conceptual chemical solidification/stabilization system to remediate radioactive raffinate sludge

    International Nuclear Information System (INIS)

    Carpenter, D.J.; Ansted, J.P.; Foldyna, J.T.

    1994-01-01

    Past operations at the U.S. Department of Energy's (DOE) Weldon Spring, Missouri, Superfund Site included the manufacture of nitroaromatic-based munitions and the production of uranium and thorium metal from ore concentrates. These operations generated a large quantity of diverse contaminated waste media including raffinate sludge, soil, sediment, and building debris. These various waste media are contaminated with varying amounts of radionuclides nitroaromatics, metals, metalloids, non-metals, polychlorinated biphenyls (PCBs) and asbestos. The volumes and diversity of contaminants and waste media pose significant challenges in identifying applicable remedial technologies, particularly for the excavation and treatment of the water-rich raffinate sludge. This paper presents the results of comprehensive efforts to develop a conceptual chemical solidification/stabilization (CSS) system to treat a variety of waste media. The emphasis of this paper is the treatment of a water-rich refractory raffinate sludge and site contaminated soils both radioactive and nonradioactive. The conceptual system design includes raffinate sludge excavation, dewatering, and CSS processing (reagent selection and formulation, reagent and waste storage and metering, and product mixing). Many innovations were incorporated into the design, producing a system that can process the various waste types. Additionally, the radioactive and hazardous constituents are sufficiently immobilized to allow the secured disposal in a waste cell of the treated product. The conceptual CSS system can also produce a variety of treated product types, ranging from a monolithic form to a compactible soil-like medium. The advantages of this system flexibility are also presented

  13. Physico-chemical and mineralogical properties influencing water-stability of aggregates of some Italian surface soils

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.; Bazzoffi, P.; Unamba Oparah, I.

    1994-06-01

    A laboratory study was conducted to determine the relationship between physical, chemical and mineralogical properties of some surface soils (developed in north central Italy) and the stability of their aggregates to water. The index of stability used is the mean-weight diameter of water-stable aggregates (MWD). The ratio of total sand to clay which correlated negatively with MWD (r=-0.638) is the physical property which explained most of the variability in aggregate stability. The chemical properties which correlated best with aggregate stability are FeO (r=0.671), CaO (R=0.635), CaCO 3 (r=0.651) and SiO 2 (r=-0.649). Feldspar, chlorite and calcite are the minerals which influence MWD most, with respective ''r'' values of -0.627, 0.588 and 0.550. The best-fit model developed from soil physical properties explained 59% of the variation in MWD with a standard error of 0.432, that developed from chemical properties explained 97% of the variation in MWD with a standard error of 0.136, whereas the model developed from mineralogical properties explained 78% of the variation in MWD with a standard error of 0.222. Also the closest relationship between measured and model-predicted MWD was obtained with the chemical properties-based model (r=0.985), followed by the mineralogical properties-based model (r=0.884) and then the physical properties-based model (r=0.656). This indicates that the most reliable inference on the stability of these soils in water can be made from a knowledge of the amount and composition of their chemical constituents. (author). 32 refs, 1 fig., 9 tabs

  14. Radiation and chemical stability of 2-deoxy-2-[18F]fluoro-D-glucose radiopharmaceutical

    International Nuclear Information System (INIS)

    Buriova, M.

    2004-07-01

    molecules association with formate anion HCOO - and also for negative ions of deprotonised molecules. All acids appeared in the form of their lactones. FDG and GLC exhibited tendency for formation of a mixed associate charged by HCOO - anion. On the amine bond silica gel HPTLC column, FDG is poorly separated from fluoride, which even in presence of Kryptofix 2.2.2 remains on the start like on the silica gel layer. The last parathion is to be used as a standard technique for [ 18 F]F - assay. At LC-MS Kryptofix provides a very well measurable signals of associates with NH 4 + a H + ions in positive mode of ESI MS. Sensitivity of the ESI MS detector towards sugars is for three orders of magnitude higher than the refraction index detector, which is used for routine analysis, and enables estimation of molar activity of non-carrier-added 2-[ 18 F]FDG. The results of quantitative LC/MS analysis and high-efficient radiometric detector were used for specific activity of 2-[ 18 F]FDG assessment. Concentration of FDG carrier in 2-[ 18 F]FDG preparation was found to be 6 mg.dm -3 and in combination with a radiometric detector the specific activity 6.6 GBq.μmol -1 of 2-[ 18 F]FDG was found. The molar activity of carrier-free ( 18 F)FDG is 63 TBq.μmol -1 , and for good quality of bio-specific ligands at PET it is supposed to be minimally 1 kBq.fmol -1 . Radiation and chemical stability of 2-deoxy-2-[ 18 F]fluoro-D-glucose, and its comparison with glucose at oxidation by Fenton's reagent and autoradiolysis was found. The main oxidation products of FDG and glucose by Fenton's reagent were arabonic acid at 14-23% yield, gluconic acid 12%, both glucuronic acid and arabinose at 5%. In case of FDG among the principal products 2-fluorgluconic acid and 2-fluorgluconic acid by 2.7 % and 4% yields respectively were identified. The dose rates in real solutions of 2-[ 18 F]FDG, as well as the radiation-chemical yields of radioactive (fluorinated), but also further products of autoradiolysis of 2

  15. Study for reclamation of land occupied by solar evaporation pond at UCIL, Bhopal, India.

    Science.gov (United States)

    George, K V; Patil, M R; Swaminathan, R

    2001-12-01

    Solar Evaporation Ponds (SEP) were used by Union Carbide India Limited (UCIL), Bhopal for storage of wastewater containing high concentrations of inorganic chemicals especially chlorides. Area occupied by the SEPs had to be recovered due to closure of the plant. A prerequisite to the reclamation of the SEP area is a study of adjoining soil and groundwater, which may be contaminated due to possible leakage in the pond. Surface soil, subsurface soil and groundwater samples were collected and analysed. The electrical conductivity method was employed inside the pond to test for leak in the geo-membrane liner. This was further confirmed by physically checking the liners. Based on the wet period, total rainfall and evaporation rate of the region, drying of remaining wastewater by spreading in dry ponds followed by pond dismantling was scheduled.

  16. Par Pond Fish, Water, and Sediment Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond.

  17. Par Pond Fish, Water, and Sediment Chemistry

    International Nuclear Information System (INIS)

    Paller, M.H.; Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond

  18. Master plan for remediation of the Sillamaee tailings pond and technical design project

    International Nuclear Information System (INIS)

    Kaasik, T.

    2000-01-01

    Remediation of the Sillamaee radioactive tailings pond is a priority in the Estonian National Environmental Plan. The Sillamaee plant has processed metal ores by hydrometallurgical methods since 1946. Processing continued until 1990, but in the 1970s, production of rare earths and rare metals was introduced and continues today at a smaller scale. The tailings pond contains residues from these operations. The environmental problems associated with the tailings pond are the stability of the dam and the release of contaminants. In order to deal with these two issues effectively, a master plan was drawn up. The master plan covers the period from 1997 to 2008 and was compiled with the cooperation of the Silmet Group and the Sillamaee International Expert Reference Group (SIERG). The master plan sets up a systematic approach for the overall tailings pond remediation, including drying its interior, reshaping and covering the surface, minimizing water flow through the tailings, and ensuring long-term dam stability

  19. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids.

    Science.gov (United States)

    Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana

    2015-04-09

    An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Liner used in tailings ponds

    International Nuclear Information System (INIS)

    Dinchak, W.G.

    1984-01-01

    A composite liner has been developed for use in hazardous waste impoundments and in tailings ponds where uranium is involved. The liner offers a high degree of reliability against seepage, is durable, and provides a firm working surface. The advantages of the liner are discussed

  1. Physical and chemical stability of palonosetron hydrochloride with dacarbazine and with methylprednisolone sodium succinate during simulated y-site administration.

    Science.gov (United States)

    Trissel, Lawrence A; Zhang, Yanping; Xu, Quanyun A

    2006-01-01

    The objective of this study was to evaluate the physical and chemical stability of mixtures of undiluted palonosetron hydrochloride 50 micrograms/mL with dacarbazine 4 mg/mL and with methylprednisolone sodium succinate 5 mg/mL in 5% dextrose injection during simulated Y-site administration. Triplicate test samples were prepared by admixing 7.5 mL of palonosetron hydrochloride with 7.5 mL of dacarbazine solution and, separately, methylprednisolone sodium succinate solution. Physical stability was assessed by using a multistep evaluation procedure that included both turbidimetric and particulate measurement as well as visual inspection. Chemical stability was assessed by using stability-indicating high-performance liquid chromatographic analytical techniques that determined drug concentrations. Evaluations were performed immediately after mixing and 1 and 4 hours after mixing. The palonosetron hydrochloride-dacarbazine samples were clear and colorless when viewed in normal fluorescent room light and when viewed with a Tyndall beam. Measured turbidities remained unchanged; particulate contents were low and exhibited little change. High-performance liquid chromatography analysis revealed that palonosetron hydrochloride and dacarbazine remained stable throughout the 4-hour test with no drug loss. Palonosetron hydrochloride is, therefore, physically compatible and chemically stable with dacarbazine during Y-site administration. Within 4 hours, the mixtures of palonosetron hydrochloride and methylprednisolone sodium succinate developed a microprecipitate that became a white precipitate visible to the unaided eye. The precipitate was analyzed and identified as methylprednisolone. Palonosetron hydrochloride is incompatible with methylprednisolone sodium succinate.

  2. Evaluation of Universitas Indonesia’s Recharge Pond Performance and Potential Utilization for Raw Water Source

    Directory of Open Access Journals (Sweden)

    Nyoman Suwartha

    2012-05-01

    Full Text Available The UI recharge pond has been constructed 5 years ago. However, monitoring and evaluation activities on its performances are very lack. Aims of this study are to understand the recharge rate, and to evaluate existing quantity and water quality of the pond during dry and rainy season. Measurement of water depth, rainfall intensity, and evaporation is conducted to determine water availability, recharge rate, and water balance of the recharge pond. Amount of surface water is collected from recharge pond and river at three sampling point to determine existing water quality of the pond. The results showed that recharge rate of the pond between dry season (3.2 mm/day and wet season (6.1 mm/day are considered as insignificant different. The water balance of the recharge pond shows an excessive rate. Various physics and chemical parameters (turbidity, color, TDS, pH, and  Cl are found to have concentration lower than the water quality standard. The results suggest that the pond surface water is remain suitable to be recharged into aquifer zone so that sustaining ground water conservation campaign, and it is potential to be utilized as an additional  raw water source for domestic water demand of UI Campus Depok.

  3. Restoration of a shady urban pond - The pros and cons.

    Science.gov (United States)

    Jurczak, Tomasz; Wojtal-Frankiewicz, Adrianna; Kaczkowski, Zbigniew; Oleksińska, Zuzanna; Bednarek, Agnieszka; Zalewski, Maciej

    2018-07-01

    The Bzura-7 pond (Łódź, Poland) is a typical shallow and shady urban reservoir situated on the Bzura River that is exposed to pollutants introduced mainly by internal loads and the supply from the catchment. In 2010-2012, the following characteristics were observed in the pond: a high allochthonous input of organic matter, high concentration of ammonium, low concentration of dissolved oxygen and low diversity of zooplankton, dominated mainly by Daphnia spp. From January to June 2013, restoration measures were performed, including sediment removal, increasing light access to the pond and construction of a sequential sedimentation-biofiltration system (SSBS). The aim of the present study was to investigate how the water quality in the Bzura-7 pond was affected by the restoration process, which included reducing pollutant inflows and enhancing habitat potential, thus increasing the diversity of this ecosystem. Restoration efforts improved the chemical and physical parameters of the water. The oxygen concentration increased, and the concentrations of TN and ammonium significantly decreased. Despite the increase in pond lighting, the growth of cyanobacteria was limited. However, we observed increased abundance of green algae and diatoms but less than adequate changes in the zooplankton community structures. Although we observed a significant increase in the zooplankton species richness after restoration, this increase was related to the small-bodied groups of zooplankton, rotifers and bosminiids, characteristic of eutrophic ecosystems. In addition, a planktivorous fish - sunbleak (Leucaspius delineatus) - was identified as an unintended side effect of the restoration effort. Further conservation efforts in the Bzura-7 pond and monitoring of results are still needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  5. Application of a high-throughput relative chemical stability assay to screen therapeutic protein formulations by assessment of conformational stability and correlation to aggregation propensity.

    Science.gov (United States)

    Rizzo, Joseph M; Shi, Shuai; Li, Yunsong; Semple, Andrew; Esposito, Jessica J; Yu, Shenjiang; Richardson, Daisy; Antochshuk, Valentyn; Shameem, Mohammed

    2015-05-01

    In this study, an automated high-throughput relative chemical stability (RCS) assay was developed in which various therapeutic proteins were assessed to determine stability based on the resistance to denaturation post introduction to a chaotrope titration. Detection mechanisms of both intrinsic fluorescence and near UV circular dichroism (near-UV CD) are demonstrated. Assay robustness was investigated by comparing multiple independent assays and achieving r(2) values >0.95 for curve overlays. The complete reversibility of the assay was demonstrated by intrinsic fluorescence, near-UV CD, and biologic potency. To highlight the method utility, we compared the RCS assay with differential scanning calorimetry and dynamic scanning fluorimetry methodologies. Utilizing C1/2 values obtained from the RCS assay, formulation rank-ordering of 12 different mAb formulations was performed. The prediction of long-term stability on protein aggregation is obtained by demonstrating a good correlation with an r(2) of 0.83 between RCS and empirical aggregation propensity data. RCS promises to be an extremely useful tool to aid in candidate formulation development efforts based on the complete reversibility of the method to allow for multiple assessments without protein loss and the strong correlation between the C1/2 data obtained and accelerated stability under stressed conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Assessing the physical-chemical properties and stability of dapivirine-loaded polymeric nanoparticles.

    Science.gov (United States)

    das Neves, José; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2013-11-18

    Nanocarriers may provide interesting delivery platforms for microbicide drugs and their characterization should be addressed early in development. Differently surface-engineered dapivirine-loaded, poly(epsilon-caprolactone) (PCL)-based nanoparticles (NPs) were obtained by nanoprecipitation using polyethylene oxide (PEO), sodium lauryl sulfate (SLS), or cetyltrimethylammonium bromide (CTAB) as surface modifiers. Physical-chemical properties of NP aqueous dispersions were evaluated upon storage at -20-40 °C for one year. NPs presented 170-200 nm in diameter, roundish-shape, low polydispersity index (≤0.18), and high drug association efficiency (≥97%) and loading (≥12.7%). NPs differed in zeta potential, depending on surface modifier (PEO: -27.9 mV; SLS: -54.7 mV; CTAB: +42.4 mV). No interactions among formulation components were detected by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), except for SLS-PCL NPs. Colloidal properties of NPs were lost at -20 °C storage. Negatively charged NPs were stable up to one year at 5-40°C; as for CTAB-PCL NPs, particle aggregation was observed from 30 to 90 days of storage depending on temperature. Colloidal instability affected the in vitro drug release of CTAB-PCL NPs after 360 days. In any case, no degradation of dapivirine was apparent. Overall, PEO-PCL and SLS-PCL NPs presented suitable properties as nanocarriers for dapivirine. Conversely, CTAB-PCL NPs require additional strategies in order to increase stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Achieving synergy between chemical oxidation and stabilization in a contaminated soil.

    Science.gov (United States)

    Srivastava, Vipul J; Hudson, Jeffrey Michael; Cassidy, Daniel P

    2016-07-01

    Eight in situ solidification/stabilization (ISS) amendments were tested to promote in situ chemical oxidation (ISCO) with activated persulfate (PS) in a contaminated soil. A 3% (by weight) dose of all ISS amendments selected for this study completely activated a 1.5% dose of PS within 3 h by raising temperatures above 30 °C (heat activation) and/or increasing pH above 10.5 (alkaline activation). Heat is released by the reaction of CaO with water, and pH increases because this reaction produces Ca(OH)2. Heat activation is preferred because it generates 2 mol of oxidizing radicals per mole of PS, whereas alkaline activation releases only 1. The relative contribution of heat vs. alkaline activation increased with CaO content of the ISS amendment, which was reflected by enhanced contaminant oxidation with increasing CaO content, and was confirmed by comparing to controls promoting purely heat or alkaline (NaOH) activation. The test soil was contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAH), particularly naphthalene (NAP). ISS-activated PS oxidized between 47% and 84% of the BTEX & NAP, and between 13% and 33% of the higher molecular weight PAH. ISS-activated PS reduced the leachability of BTEX & NAP by 76%-91% and of the 17 PAH by 83%-96%. Combined ISCO/ISS reduced contaminant leachability far than ISCO or ISS treatments alone, demonstrating the synergy that is possible with combined remedies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 216-S-10 Pond and Ditch supplemental information to the Hanford Facility Contingency Plan (DOE/RL-93-75)

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-05-01

    The 216-S-10 Pond and Ditch were used as disposal sites for the Chemical Engineering Laboratory between 1980 and 1983. The 216-S-10 Ditch last received a discharge October 1991. Both the pond and the ditch have been physically isolated, and the pond has been backfilled and decommissioned; both will be closed under final facility standards. Waste management activities are no longer required at the unit. The unit does not present and significant hazard to adjacent units, personnel, or the environment. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the 215-S-10 Pond and Ditch

  9. Thermal evolutions of two kinds of melt pond with different salinity

    Science.gov (United States)

    Kim, Joo-Hong; Wilkinson, Jeremy; Moon, Woosok; Hwang, Byongjun; Granskog, Mats

    2016-04-01

    Melt ponds are water pools on sea ice. Their formation reduces ice surface albedo and alter surface energy balance, by which the ice melting and freezing processes are regulated. Thus, better understanding of their radiative characteristics has been vital to improve the simulation of melting/freezing of sea ice in numerical models. A melt pond would preserve nearly fresh water if it formed on multi-year ice and no flooding of sea water occurred, whereas a melt pond would contain more salty water if it formed on thinner and porous first-year ice, if there were an inflow of sea water by streams or cracks. One would expect that the fluid dynamic/thermodynamic properties (e.g., turbulence, stability, etc.) of pond water are influenced by the salinity, so that the response of pond water to any heat input (e.g., shortwave radiation) would be different. Therefore, better understanding of the salinity-dependent thermal evolution also has significant potential to improve the numerical simulation of the sea ice melting/freezing response to radiative thermal forcing. To observe and understand the salinity-dependent thermal evolution, two ice mass balance buoys (IMBs) were deployed in two kinds (fresh and salty) of melt pond on a same ice floe on 13 August 2015 during Araon Arctic cruise. The thermistor chain, extending from the air through the pond and ice into the sea water, was deployed through a drilled borehole inside the pond. Besides, the IMBs were also accompanied with three broadband solar radiation sensors (two (up and down) in the air over melt pond and one upward-looking under sea ice) to measure the net shortwave radiation at the pond surface and the penetrating solar radiation through ice. Also, the web camera was installed to observe any updates in the conditions of equipment and surrounding environment (e.g., weather, surface state, etc.). On the date of deployment, the fresh pond had salinity of 2.3 psu, light blue color, lots of slush ice particles which

  10. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    analysis (TGA) and thermo mechanical analysis (TMA). An increase in thermal expansion and oxygen permeation associated with an increase in oxygen vacancy concentration, observed also in the TGA curves, occurs during heating. BSCF50 exhibits permeation fluxes well above those of LSCF58, PSCF58 and La{sub 2}NiO{sub 4+{delta}}, which are quite similar to each other. After exposure, no degradation of LSCF58, La{sub 2}NiO{sub 4+{delta}} and PSCF58 occurs. On the other hand BSCF50 is found to be unstable in CO{sub 2}- and/or H{sub 2}O-containing atmospheres and also to exhibit a chemical demixing. The thermo-chemical stability and the oxygen permeation performances are both crucial factors in the selection of high purity oxygen separation membranes for the oxyfuel process, thus making LSCF58, PSCF58 and La{sub 2}NiO{sub 4+{delta}} in this study the most suitable materials for this application. Serious issues arise, however, from the fact that secondary non-ion conducting oxide phases are formed in the bulk of every material, forming obstacles for oxygen ion migration, and also that a reaction with chromia occurs, preventing their use without protection. (orig.)

  11. Quality of drinking water from ponds in villages of Kolleru Lake region.

    Science.gov (United States)

    Rao, A S; Rao, P R; Rao, N S

    2001-01-01

    Kolleru Lake is the largest natural freshwater lake in the districts of East and West Godavari of Andhra Pradesh. The major population centres in the Kolleru Lake region are the 148 villages of which 50 bed villages and 98 belt villages. All bed and belt villages in lake region have at least one drinking water pond. Drinking water ponds are filled with lake water during monsoon season and directly supplied to the public throughout the year. The water samples were collected from village drinking water ponds in a year by covering three seasons and analysed for different physico-chemical parameters to assess the quality of drinking water.

  12. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U. A.; Mody, F. K.; Mese, A. I. [Haliburton Energy Services, TX (United States)

    2002-07-01

    In order to develop a real-time wellbore (in)stability modelling capability, experimental work was carried out to investigate the role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations. Time-dependent alterations in the pore pressure, acoustic and rock properties of formations subjected to compressive tri-axial test were recorded during the experiments involving the Pore Pressure Transmission (PPT) test. Based on the transient pore pressure of shale exposed to the test fluid presented here, the 20 per cent calcium chloride showed a very low membrane efficiency of 4.45 per cent. The need for a thorough understanding of the drilling fluid/shale interaction prior to applying any chemical potential wellbore (in)stability model to real-time drilling operations was emphasized. 9 refs., 5 figs.

  13. Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.; Assary, Rajeev S.

    2017-01-01

    1,4-Dimethoxybenzene derivatives are materials of choice for use as catholytes in nonaqueous redox flow batteries, as they exhibit high open-circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring-addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10-bis(2-methoxyethoxy)-1,2,3,4,5,6,7,8-octahydro-1,4:5, 8-dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. As a result, a hybrid flow cell containing BODMA is operated for 150 charge–discharge cycles with minimal loss of capacity.

  14. PHYSICAL AND CHEMICAL STABILITY ANALYSIS OF COSMETIC MULTI- PLE EMULSIONS LOADED WITH ASCORBYL PALMITATE AND SODIUM ASCORBYL PHOSPHATE SALTS.

    Science.gov (United States)

    Khan, Hira; Akhtar, Naveed; Ali, Atif; Khan, Haji M Shoaib; Sohail, Muhammad; Naeem, Muhammad; Nawaz, Zarqa

    2016-09-01

    Stability of hydrophilic and lipophilic vitamin C derivatives for quenching synergistic antioxidant activities and to treat oxidative related diseases is a major issue. This study was aimed to encapsulate hydrophilic and lipophilic vitamin C derivatives (ascorbyl palmitate and sodium ascorbyl phosphate) as functional ingredients in a newly formulated multiple emulsion of the W//W type to attain the synergistic antioxidant effects and the resultant system's long term physical and chemical stability. Several multiple emulsions using the same concentration of emulsifiers but different concentrations of ascorbyl palmitate and sodium ascorbyl phosphate were developed. Three finally selected multiple emulsions (ME₁, ME₂ and ME₃) were evaluated for physical stability in terms of rheology, microscopy, conductivity, pH, and organoleptic characteristics under different storage conditions for 3 months. Chemical stability was determined by HPLC on Sykam GmbH HPLC system (Germany), equipped with a variable UV detector. Results showed that at accelerated storage conditions all the three multiple emulsions had shear thinning behavior of varying shear stress with no influence of location of functional ingredients in a carrier system. Conductivity values increased and pH values remained within the skin pH range for 3 months. Microscopic analysis showed an increase in globule size with the passage of time, especially at higher temperatures while decreased at low temperatures. Centrifugation test did not cause phase separation till the 45th day, but little effects after 2 months. Chemical stability analysis by HPLC at the end of 3 months showed that ascorbyl palmitate and sodium ascorbyl phosphate were almost stable in all multiple emulsions with no influence of their location in a carrier system. Multiple emulsions were found a stable carrier for hydrophilic and lipophilic vitamin C derivatives to enhance their desired effects. Considering that many topical formulations

  15. Sequestration of maize crop straw C in different soils: role of oxyhydrates in chemical binding and stabilization as recalcitrance.

    Science.gov (United States)

    Song, Xiangyun; Li, Lianqing; Zheng, Jufeng; Pan, Genxing; Zhang, Xuhui; Zheng, Jinwei; Hussain, Qaiser; Han, Xiaojun; Yu, Xinyan

    2012-05-01

    While biophysical controls on the sequestration capacity of soils have been well addressed with physical protection, chemical binding and stabilization processes as well as microbial community changes, the role of chemical binding and stabilization has not yet well characterized for soil organic carbon (SOC) sequestration in rice paddies. In this study, a 6-month laboratory incubation with and without maize straw amendment (MSA) was conducted using topsoil samples from soils with different clay mineralogy and free oxy-hydrate contents collected across Southern China. The increase in SOC under MSA was found coincident with that in Fe- and Al-bound OC (Fe/Al-OC) after incubation for 30 d (R(2)=0.90, P=0.05), and with sodium dithionate-citrate-bicarbonate (DCB) extractable Fe after incubation for 180 d (R(2)=0.99, Psoils rich in DCB extractable Fe than those poor in DCB extractable Fe. The greater SOC sequestration in soils rich in DCB extractable Fe was further supported by the higher abundance of (13)C which was a natural signature of MSA. Moreover, a weak positive correlation of the increased SOC under MSA with the increased humin (R(2)=0.87, P=0.06) observed after incubation for 180 d may indicate a chemical stabilization of sequestered SOC as humin in the long run. These results improved our understanding of SOC sequestration in China's rice paddies that involves an initial chemical binding of amended C and a final stabilization as recalcitrant C of humin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation.

    Science.gov (United States)

    Martínez-Delgado, Alejandra Anahí; Khandual, Sanghamitra; Villanueva-Rodríguez, Socorro Josefina

    2017-06-15

    Astaxanthin is a carotenoid pigment found in numerous organisms ranging from bacteria to algae, yeasts, plants, crustaceans and fish such as salmon. Technological importance of this pigment emerged from various studies demonstrating that it is a powerful antioxidant, even with higher activity than alpha-tocopherol and other carotenoids. It has been included in various pharmaceutical products because of several beneficial properties. By its nature, astaxanthin is susceptible to degradation and can undergo chemical changes during food processing. Therefore, different studies have focused on improving the stability of the carotenoid under conditions such as high temperatures, pressures and mechanical force, among others. In this review, common processes involved in food processing and their effect on the stability of astaxanthin, integrated into a food matrix are discussed. Moreover, preservation techniques such as microencapsulation, inclusion in emulsions, suspensions, liposomes, etc., that are being employed to maintain stability of the product are also reviewed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Relationship between bacterial density and chemical composition of ...

    African Journals Online (AJOL)

    TUOYO

    Key words: Bacterial density, chemical composition, oxidation pond, sewage, tropics. INTRODUCTION ... pond for about two weeks during which algae, bacteria and other organisms act ..... Chloride can serve as nutrient for micro- organisms ...

  18. Chemical Stability of Cd(II and Cu(II Ionic Imprinted Amino-Silica Hybrid Material in Solution Media

    Directory of Open Access Journals (Sweden)

    Buhani, Narsito, Nuryono, Eko Sri Kunarti

    2015-12-01

    Full Text Available Chemical stability of Cd(II and Cu(II ionic imprinted hybrid material of (i-Cd-HAS and i-Cu-HAS derived from silica modification with active compound (3-aminopropyl-trimethoxysilane (3-APTMS has been studied in solution media. Stability test was performed with HNO3 0.1 M (pH 1.35 to investigate material stability at low pH condition, CH3COONa 0.1 M (pH 5.22 for adsorption process optimum pH condition, and in the water (pH 9.34 for base condition. Material characteristics were carried out with infrared spectrophotometer (IR and atomic absorption spectrophotometer (AAS. At interaction time of 4 days in acid and neutral condition, i-Cd-HAS is more stable than i-Cu-HAS with % Si left in material 95.89 % (acid media, 43.82 % (close to neutral, and 9.39 % (base media.Keywords: chemical stability, amino-silica hybrid, ionic imprinting technique

  19. Chemical Stability of Cd(II and Cu(II Ionic Imprinted Amino-Silica Hybrid Material in Solution Media

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2012-02-01

    Full Text Available Chemical stability of Cd(II and Cu(II ionic imprinted amino-silica (HAS material of (i-Cd-HAS and i-Cu-HAS derived from silica modification with active compound (3-aminopropyl-trimethoxysilane (3-APTMS has been studied in solution media.  Stability test was performed with HNO3 0.1 M (pH 1.35 to investigate material stability at low pH condition, acetat buffer at pH 5.22 for adsorption process optimum pH condition, and in the water (pH 9.34 for base condition.  Material characteristics were carried out with infrared spectrophotometer (IR and atomic absorption spectrophotometer (AAS.  At interaction time of 4 days in acid and neutral condition, i-Cd-HAS is more stable than i-Cu-HAS with % Si left in material 95.89 % (acid media, 43.82 % (close to neutral, and 9.39 % (base media.Keywords: chemical stability, amino-silica hybrid, ionic imprinting technique.

  20. Effect of stabilizers on the physico-chemical and sensory attributes ...

    African Journals Online (AJOL)

    Stabilized thermized yoghurt was produced by the addition of gelatin, carboxyl methyl cellulose (CMC) and corn starch, into yoghurt mix as stabilizers, each at 0, 0.5, 0.75 and 1.0% concentrations. The yoghurt samples produced after pasteurization of the mix, cooling, inoculation of starter culture and incubation for about 16 ...

  1. Stability issues of conjugated polymer / fullerene solar cells from a chemical viewpoint

    NARCIS (Netherlands)

    Hummelen, J.C.; Knol, J.; Sánchez, L.

    2001-01-01

    The efficiency of energy conversion and the stability or lifetime of ‘plastic’ photovoltaic cells, based on conjugated polymer/ fullerene blends, are the two main issues to be improved for this type of devices. The stability of these PV cells depends potentially on a large number of factors. A brief

  2. The Ruminant and the Pond

    OpenAIRE

    Lajarin-Encina, Aitor

    2015-01-01

    The Ruminant and the Pond presents a group of paintings and a film that explore contemporary psycho-social conditions through fictional narratives. Paintings and film explore territories of thinking and emotion engaging the audience in subjective digressions related to ideas of artificiality, relativeness, absurdity, futility or alienation in relation to intersubjective reality perception, production and representation. At the same time the project delves in the specific relationship existin...

  3. Storage stability of margarines produced from enzymatically interesterified fats compared to those prepared by conventional methods - Chemical properties

    DEFF Research Database (Denmark)

    Zhang, Hong; Jacobsen, Charlotte; Pedersen, Lars Saaby

    2006-01-01

    margarines in a pilot plant. Storage stability studies were carried out at storage temperatures of 5 and 25øC for 12wk. Margarines from the enzymatically interesterified fats were compared to the margarines produced by the conventional methods (chemical interesterification and physical blending......In this study, four margarine hardstocks were produced, two from enzymatically interesterified fats at 80 and 100% conversion, one from chemically randomized fat and one from physically mixed fat. These four hardstocks, blended with 50% sunflower oil, were mainly used for the production of table...... interesterified fat had higher PV in weeks4, 8 and10 than the margarines produced from the enzymatically interesterified fats and the physically blended fat. These differences were not caused by different contents of tocopherols in the hardstocks. The differences between the processes for chemical and enzymatic...

  4. Effects of pond draining on biodiversity and water quality of farm ponds.

    Science.gov (United States)

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo. © 2013 Society for Conservation Biology.

  5. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and ... compared to the crystalline form. The rank of solubility was found to be QC-big=QC-small>CM>crystalline. For the physical stability, the highest crystallization rate was observed for CM, and the slowest rate was detected for QC-big, with an intermediate rate occurring for QC-small. QC exhibited lower...

  6. Chemical and physical aspects of the stability of mica on heating

    International Nuclear Information System (INIS)

    Muromtsev, V.A.; Arkhangel'skii, S.V.; Egorov, S.V.

    1989-01-01

    An attempt was made in this study to comparatively determine the degree of hydration and thermal stability of micas and to analyze the possible causes of differences in interpreting the results on establishment of the degree of hydration on the example of phlogopites from the Kovdor and Aldan deposits by methods of flame photometry, γ-radiometric determination of K 2 O, thermal stability, and gravimetric methods of analysis of the moisture content and weight loss in calcination

  7. Microbial population responses in three stratified Antarctic meltwater ponds during the autumn freeze

    DEFF Research Database (Denmark)

    Safi, Karl; Hawes, Ian; Sorrell, Brian Keith

    2012-01-01

    The planktonic microbial communities of three meltwater ponds, located on the McMurdo Ice Shelf, were investigated from the end of January 2008 to early April, during which almost the entire pond volumes froze. The ponds were comprised of an upper mixed layer overlying a salt-stabilized density g...... for increasing heterotrophy within the remaining microbial communities, although all components of the food web eventually decline as the final freeze approaches....... role of autotrophic and heterotrophic microplankton within the ponds. The results showed that microbial groups responded to the onset of winter by declining in abundance, though an exception was the appearance of filamentous cyanobacteria in the water column in March. As freezing progressed, autotrophs...... declined more rapidly than heterotrophs and grazing rates and abundances of mixotrophic and heterotrophic organisms increased. Grazing pressure on bacteria and picophytoplankton also increased, in part explaining their decline over time. The results indicate that stressors imposed during freezing select...

  8. Solar pond conception - experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Huseyin [Zonguldak Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey); Halici, Fethi [Sakarya Univ., Mechanical Engineering Dept., Adapazari (Turkey); Binark, A. Korhan [Marmara Univ., Technical Education Faculty, Istanbul (Turkey)

    2000-07-01

    A one dimensional transient mathematical model for predicting the thermal performance of the salt gradient solar pond is developed and presented. In this paper, the natural solar ponds and different artificial solar pond systems found in the literature are introduced. Necessary modifications are made on the experimental stand located in Istanbul Technical University, the experimental stand is introduced and natural phenomena produced in the pond by the different solar pond variations under natural conditions are observed. In the theoretical work based on a one dimensional unsteady state heat conduction model with internal heat generation, the energy and mass balance equations for the upper convective zone, the non-convective zone and the lower convective zone, all of which form the solar pond, are written in terms of differential equations. These equations are solved analytically and numerically. The results obtained from the analysis are compared with the experimental results. The temperature and the concentration profiles are separately presented in the figures. (Author)

  9. uG-LilyPond - Floating Plant Pond for Microgravity, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed μG-LilyPond is an autonomous environmentally controlled floating plant cultivation system for use in microgravity. The μG-LilyPond concept expands the...

  10. South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  11. A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Kim, Seung-Goo; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Lim, Tae Hoon; Oh, In-Hwan; Hong, Seong-Ahn

    2004-01-01

    The chemical stabilities of modified NiO cathodes doped with 1.5 mol% CoO and 1.5 mol% LiCoO 2 fabricated by a conventional tape casting method were evaluated through the real MCFC single cell operation. The heat-treated samples before oxidation had proper porosities and microstructures for a MCFC cathode. At 150 mA cm -2 in current density, the MCFC single cell using a CoO-doped NiO cathode showed stable cell voltages in the range of 0.833-0.843 V for 1000 h. In contrast, the cell using a LiCoO 2 -doped NiO cathode with a maximum of 0.836 V at 500 h degraded to 0.826 V at 1000 h due to a wet seal breakdown at the cathode side. The amounts of nickel precipitated in the electrolytes of the cells using modified NiO cathodes doped with CoO and LiCoO 2 after the operation for 1000 h were 1.2 and 1.4 wt.%, respectively, which were about 60% lower than that of the standard cells using pure NiO cathodes. The enhanced chemical stability of modified NiO cathodes seems to be attributed to the fact that the presence of cobalt increases the lithium content in the cathodes by converting Ni 2+ to Ni 3+ , resulting in stabilizing the layered crystal structure

  12. EFFECT OF STABILIZERS ON THE CHEMICAL AND PHOTODEGRADATION OF ASCORBIC ACID IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Iqbal Ahmad

    2016-06-01

    Full Text Available Ascorbic acid (vitamin C is susceptible to light and air and forms various degradation products. A number of stabilizers have been used to study their effect on the degradation of ascorbic acid (AH2 in dark and light at pH 4.0 and 6.0 alone and in combination with citric and tartaric acids. The assay of AH2 in degraded solutions was performed by a specific UV spectrometric method. The degradation product of AH2 at pH 4.0 and 6.0 was identified as dehydroascorbic acid. The degradation of AH2 has been found to follow first-order kinetics. The apparent first-order rate constants, t90 and percent inhibition in rate in the presence of stabilizers and the second-order rate constants for the interaction of stabilizers with AH2 have been determined. The highest stabilizing effect on AH2 was found by sodium metabisulfite, followed by sodium sulfite, sodium bisulfate, sodium thiosulfate and thiourea. The pH of the solutions has also been found to influence the degradation of AH2 as the rates are higher at pH 6.0 compared to those of pH 4.0, probably due to the ionization of AH2. A synergistic effect has been observed when citric or tartaric acid was added to the solutions containing stabilizers where citric acid showed comparatively better effect.

  13. Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review

    International Nuclear Information System (INIS)

    Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch

    2013-01-01

    Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. - In situ stabilization of metals and As in contaminated soils using oxides combined with phytostabilization is a potential alternative to conventional remediation techniques.

  14. There Is Still Room for Improvement: Presentation of a Neutral Borosilicate Glass with Improved Chemical Stability for Parenteral Packaging.

    Science.gov (United States)

    Boltres, Bettine; Tratzky, Stephan; Kass, Christof; Eichholz, Rainer; Naß, Peter

    2016-01-01

    For pharmaceutical parenteral packaging the glass compositions have always been either Type I borosilicate or Type III soda-lime glass. As both the compositions and certain chemical and physical properties are mandated by international standards, there has not been room for any changes. However, by applying only minor adjustments, a borosilicate glass was developed that showed improved chemical stability. The chemical composition is still in the range of currently used borosilicate glasses, which makes it a Type I glass according to all current pharmacopeia. A study was performed on glass vials comparing the new glass with the standard FIOLAX(®) and two other publicly available glasses. In an extraction study with water at 121 °C the new glass showed the highest chemical stability with the lowest amount of extractables. In an accelerated ageing study, which was done with water, phosphate, and carbonate buffer at 40 °C for 12 months, the new glass also proved to have the lowest amount of leachables. In this article the new glass and the results from the studies are presented, showing the reader how much of an effect can be attained with only minor adjustments if the scientific fundamentals are clear. The pharmaceutical market has been quite constant and risk-oriented due to the high impact on the safety of the patient. As any change necessitates a complicated change process, this has, in consequence, lead the industry to resist changing the parenteral primary packaging material for decades. The main glasses have either been Type I borosilicate or Type III soda-lime glass. On the other hand, a combination of improved inspection systems and the development of more sensitive biologically based drugs has elevated the standards for parental packaging materials. For example, the measurement of extractables and leachables from the packaging material steadily came into focus. In this article, a new glass is presented that still belongs to the group of Type I borosilicate

  15. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    Science.gov (United States)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  16. Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent

    Science.gov (United States)

    Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian

    2017-10-01

    In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.

  17. 40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond

    International Nuclear Information System (INIS)

    Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

    1989-03-01

    This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs

  18. SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency.

    Science.gov (United States)

    Fang, Xian; Wang, Xueting; Li, Guiling; Zeng, Jun; Li, Jian; Liu, Jingwen

    2018-05-01

    PEGylation is one of the most promising and extensively studied strategies for improving the properties of proteins as well as enzymic physical and thermal stability. Phospholipase C, hydrolyzing the phospholipids offers tremendous applications in diverse fields. However, the poor thermal stability and higher cost of production have restricted its industrial application. This study focused on improving the stabilization of recombinant PLC by chemical modification with methoxypolyethylene glycol-Succinimidyl Succinate (SS-mPEG, MW 5000). PLC gene from isolate Bacillus cereus HSL3 was fused with SUMO, a novel small ubiquitin-related modifier expression vector and over expressed in Escherichia coli. The soluble fraction of SUMO-PLC reached 80% of the total recombinant protein. The enzyme exhibited maximum catalytic activity at 80 °C and was relatively thermostable at 40-70 °C. It showed extensive substrate specificity pattern and marked activity toward phosphatidylcholine, which made it a typical non-specific PLC for industrial purpose. SS-mPEG-PLC complex exhibited an enhanced thermal stability at 70-80 °C and the catalytic efficiency (K cat /K m ) had increased by 3.03 folds compared with free PLC. CD spectrum of SS-mPEG-PLC indicated a possible enzyme aggregation after chemical modification, which contributed to the higher thermostability of SS-mPEG-PLC. The increase of antiparallel β sheets in secondary structure also made it more stable than parallel β sheets. The presence of SS-mPEG chains on the enzyme molecule surface somewhat changed the binding rate of the substrates, leading to a significant improvement in catalytic efficiency. This study provided an insight into the addition of SS-mPEG for enhancing the industrial applications of phospholipase C at higher temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. High pressure stability analysis and chemical bonding of Ti1-xZrxN alloy: A first principle study

    International Nuclear Information System (INIS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-01-01

    First-principles pseudo-potential calculations have been performed to analyze the stability of Ti 1-x Zr x N alloy under high pressures. The first order phase transition from B1 to B2 phase has been observed in this alloy at high pressure. The variation of lattice parameter with the change in concentration of Zr atom in Ti 1-x Zr x N is also reported in both the phases. The calculations for density of states have been performed to understand the alloying effects on chemical bonding of Ti-Zr-N alloy.

  20. The effect of lunar soil, metal oxides on thermal and radio-chemical stability of amino acids

    International Nuclear Information System (INIS)

    Khenokh, M.A.; Lapinskaya, E.M.

    1983-01-01

    Data on study of the effect of lunar soil and some metal oxides characteristic both for land and sea basaltS of lunar sojls on thermal and radio-chemical stability of amino acids are presented. The data obtained permit to suppose that extremely small quantity of amino acids discovered in lunar soil is conditioned by their decomposition under combined effect of different types of radiation, solar wind and sharp change of temperature. Probably, the effect of soil on photochemical activity of UV-radiation of the Sun and solid-phase radiolysis is not practically observed

  1. Anatase thin film with diverse epitaxial relationship grown on yttrium stabilized zirconia substrate by chemical vapor deposition

    International Nuclear Information System (INIS)

    Miyagi, Takahira; Ogawa, Tomoyuki; Kamei, Masayuki; Wada, Yoshiki; Mitsuhashi, Takefumi; Yamazaki, Atsushi

    2003-01-01

    An anatase epitaxial thin film with diverse epitaxial relationship, YSZ (001) // anatase (001), YSZ (010) // anatase (110), was grown on a single crystalline yttrium stabilized zirconia (YSZ) (001) substrate by metal organic chemical vapor deposition (MOCVD). The full width at half maximum (FWHM) of the (004) reflection of this anatase epitaxial film was 0.4deg, and the photoluminescence of this anatase epitaxial film showed visible emission with broad spectral width and large Stokes shift at room temperature. These results indicate that this anatase epitaxial film possessed almost equal crystalline quality compared with that grown under identical growth conditions on single crystalline SrTiO 3 substrate. (author)

  2. Macroelements in the surface microlayer of water of urban ponds

    Directory of Open Access Journals (Sweden)

    Antonowicz Józef Piotr

    2016-03-01

    Full Text Available Analyses were conducted concerning the accumulation of four metals representing the group of macroelements, i.e. sodium, potassium, calcium and magnesium in two ponds located in the city of Słupsk. Water samples for chemical analyses were collected from the surface microlayer using a Garrett net. At the same time subsurface water samples were collected. Concentrations of metals were determined using a mass spectrometer. Generally, amounts of sodium, potassium, calcium and magnesium were similar in surface microlayer and subsurface water. Only in the case of potassium and calcium was low enrichment observed in the surface microlayer in one pond, while the greatest extent for magnesium enrichment was observed in the spring period.

  3. Inventory of vegetation and benthos in newly laid and natural ponds in Forsmark 2012; Inventering av vegetation och bottenfauna i nyanlagda och naturliga goelar i Forsmark 2012

    Energy Technology Data Exchange (ETDEWEB)

    Qvarfordt, Susanne; Wallin, Anders; Borgiel, Micke [Sveriges Vattenekologer AB, Vingaaker (Sweden)

    2013-01-15

    SKB plans to build a repository for the spent nuclear fuel. The repository is planned to be built in Forsmark and constitutes installations above and below ground. The building and operation of the construction will involve activities that might affect the nature in the area. The impact means, among other things, that a small water body, which today is a reproduction site for the red listed pool frog (Rana lessonae), will disappear. The lost locality for the pool frog has been compensated by creating four new ponds in the Forsmark area. This study is part of the follow-up of these new habitats. The aim is to describe the plant and animal communities in the ponds, and follow the succession, i.e. the development of the habitats. The study also includes two natural ponds that will serve as reference objects. The survey of vegetation and invertebrate fauna in the ponds was conducted in October 2012. The results show that the new ponds had low coverage of submersed vegetation and the species composition in the plant communities differed between the ponds. The reference ponds also had different plant communities, both in terms of species composition and coverage. This indicates that the species composition of the plant communities in the new ponds will likely depend on physical factors specific to the respective pond, but that higher vegetation coverage can be expected over time in all new ponds. The reference ponds had similar animal communities that differed from the animal communities in the new ponds. The similar species composition in the reference ponds, despite the variety of plant communities, suggests that similar animal communities are likely to develop in the new ponds, even if the plant communities continues to be different. Water chemical sampling has also been conducted in the ponds during 2012. A comparison of the inorganic environment (with regard to analysed ions) showed that the reference ponds had relatively similar ion compositions with little

  4. Comet Pond II: Synergistic Intersection of Concentrated Extraterrestrial Materials and Planetary Environments to Form Procreative Darwinian Ponds.

    Science.gov (United States)

    Clark, Benton C; Kolb, Vera M

    2018-05-11

    In the “comet pond” model, a rare combination of circumstances enables the entry and landing of pristine organic material onto a planetary surface with the creation of a pond by a soft impact and melting of entrained ices. Formation of the constituents of the comet in the cold interstellar medium and our circumstellar disk results in multiple constituents at disequilibrium which undergo rapid chemical reactions in the warmer, liquid environment. The planetary surface also provides minerals and atmospheric gases which chemically interact with the pond’s organic- and trace-element-rich constituents. Pond physical morphology and the heterogeneities imposed by gravitational forces (bottom sludge; surface scum) and weather result in a highly heterogeneous variety of macro- and microenvironments. Wet/dry, freeze/thaw, and natural chromatography processes further promote certain reaction sequences. Evaporation concentrates organics less volatile than water. Freezing concentrates all soluble organics into a residual liquid phase, including CH₃OH, HCN, etc. The pond’s evolutionary processes culminate in the creation of a Macrobiont with the metabolically equivalent capabilities of energy transduction and replication of RNA (or its progenitor informational macromolecule), from which smaller organisms can emerge. Planet-wide dispersal of microorganisms is achieved through wind transport, groundwater, and/or spillover from the pond into surface hydrologic networks.

  5. Comet Pond II: Synergistic Intersection of Concentrated Extraterrestrial Materials and Planetary Environments to Form Procreative Darwinian Ponds

    Directory of Open Access Journals (Sweden)

    Benton C. Clark

    2018-05-01

    Full Text Available In the “comet pond” model, a rare combination of circumstances enables the entry and landing of pristine organic material onto a planetary surface with the creation of a pond by a soft impact and melting of entrained ices. Formation of the constituents of the comet in the cold interstellar medium and our circumstellar disk results in multiple constituents at disequilibrium which undergo rapid chemical reactions in the warmer, liquid environment. The planetary surface also provides minerals and atmospheric gases which chemically interact with the pond’s organic- and trace-element-rich constituents. Pond physical morphology and the heterogeneities imposed by gravitational forces (bottom sludge; surface scum and weather result in a highly heterogeneous variety of macro- and microenvironments. Wet/dry, freeze/thaw, and natural chromatography processes further promote certain reaction sequences. Evaporation concentrates organics less volatile than water. Freezing concentrates all soluble organics into a residual liquid phase, including CH3OH, HCN, etc. The pond’s evolutionary processes culminate in the creation of a Macrobiont with the metabolically equivalent capabilities of energy transduction and replication of RNA (or its progenitor informational macromolecule, from which smaller organisms can emerge. Planet-wide dispersal of microorganisms is achieved through wind transport, groundwater, and/or spillover from the pond into surface hydrologic networks.

  6. Quantum chemical evaluation for the stability of liquid sodium containing titanium nanoparticles

    International Nuclear Information System (INIS)

    Suzuki, Ai; Inaba, Kenji; Ishizawa, Yukie; Miura, Ryuji; Hatakeyama, Nozomu; Miyamoto, Akira; Saito, Jun-ichi; Ara, Kuniaki

    2015-01-01

    Recently, liquid sodium containing titanium nanoparticles (LSnanop) have attracted considerable attention. In this study, suspension state of Ti nanoparticle in liquid sodium was quantum chemically evaluated. The atomic interaction between Ti nanoparticles and sodium atoms in the liquid sodium medium was investigated. There were some literatures which gained quantum chemical insight into a nanoparticle with the surrounding sodium atom. However, liquid sodium medium itself together with a Ti nanoparticle under the realistic temperature has not yet been investigated theoretically. To overcome the problem of conventional theoretical method, we applied computationally low-load Tight Binding Quantum Chemical Molecular Dynamics (TB-QCMD) calculation method to investigate the suspension state of the Ti nanoparticle in liquid sodium metal. (author)

  7. Invariant boxes and stability of some systems from biomathematics and chemical reactions

    International Nuclear Information System (INIS)

    Pavel, N.H.

    1984-08-01

    A general theorem on the flow-invariance of a time-dependent rectangular box with respect to a differential system is first recalled [''Analysis of some non-linear problems'' in Banach Spaces and Applications, Univ. of Iasi (Romania) (1982)]. Then a theorem applicable to the study of some differential systems from biomathematics and chemical reactions is given and proved. The theorem can be applied to enzymatic reactions, the chemical mechanism in the Belousov reaction, and the kinetic system for the chemical scheme of Hanusse of two processes with three intermediate species [in Pavel, N.H., Differential Equations, Flow-invariance and Applications, Pitman Publishing, Ltd., London (to appear)]. Next, the matrices A for which the corresponding linear system x'=Ax is component-wise positive asymptotically stable are characterized. In the Appendix a partial answer to an open problem regarding the preservation of both continuity and dissipativity in the extension of functions to a Banach space is given

  8. Stabilization of enzymatically polymerized phenolic chemicals in a model soil organic matter-free geomaterial.

    Science.gov (United States)

    Palomo, Mónica; Bhandari, Alok

    2012-01-01

    A variety of remediation methods, including contaminant transformation by peroxidase-mediated oxidative polymerization, have been proposed to manage soils and groundwater contaminated with chlorinated phenols. Phenol stabilization has been successfully observed during cross polymerization between phenolic polymers and soil organic matter (SOM) for soils with SOM >3%. This study evaluates peroxidase-mediated transformation and removal of 2,4-dichlorophenol (DCP) from an aqueous phase in contact with a natural geomaterial modified to contain negligible (soils with higher SOM. The SOM-free sorbent was generated by removing SOM using a NaOCl oxidation. When horseradish peroxidase (HRP) was used to induce polymerization of DCP, the soil-water phase distribution relationship (PDR) of DCP polymerization products (DPP) was complete within 1 d and PDRs did not significantly change over the 28 d of study. The conversion of DCP to DPP was close to 95% efficient. Extractable solute consisted entirely of DPP with 5% or less of unreacted DCP. The aqueous extractability of DPP from SOM-free geomaterial decreased at longer contact times and at smaller residual aqueous concentrations of DPP. DCP stabilization appeared to have resulted from a combination of sorption, precipitation, and ligand exchange between oligomeric products and the exposed mineral surfaces. Modification of the mineral surface through coverage with DPP enhanced the time-dependent retention of the oligomers. DPP stabilization in SOM-free geomaterial was comparable with that reported in the literature with soil containing SOM contents >1%. Results from this study suggest that the effectiveness of HRP-mediated stabilization of phenolic compounds not only depends on the cross-coupling with SOM, but also on the modification of the surface of the sorbent that can augment affinity with oligomers and enhance stabilization. Coverage of the mineral surface by phenolic oligomers may be analogous to SOM that can potentially

  9. Evaluation of quantum-chemical methods of radiolysis stability for macromolecular structures

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2005-01-01

    The behavior of macromolecular structures in ionising fields was analyzed by quantum-chemical methods. In this study the primary radiolytic effect was analyzed using a two-step radiolytic mechanism: a) ionisation of molecule and spatial redistribution of atoms in order to reach a minimum value of energy, characteristic to the quantum state; b) neutralisation of the molecule by electron capture and its rapid dissociation into free radicals. Chemical bonds suspected to break are located in the distribution region of LUMO orbital and have minimal homolytic dissociation energies. Representative polymer structures (polyethylene, polypropylene, polystyrene, poly α and β polystyrene, polyisobutylene, polytetrafluoroethylene, poly methylsiloxanes) were analyzed. (authors)

  10. 100-D Ponds closure plan. Revision 1

    International Nuclear Information System (INIS)

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure

  11. Aquatic studies of Gable Mountain Pond

    International Nuclear Information System (INIS)

    Cushing, C.E.; Watson, D.G.

    1974-12-01

    Studies of the biotic and abiotic components of the Gable Mountain Pond (HAPO cooling water disposal pond) ecosystem were undertaken to determine if there was a potential problem for off-site transfer of radioactivity to man originating with the aquatic food web. Most of the 137 Cs in the pond is associated with the sediments which are probably the main source of 137 Cs for uptake by the biota. Generally, highest concentrations of 137 Cs and other radioisotopes were found in the upper two inches of sediments in the northwest end of the pond and in the deeper areas along the long-axis of the pond. Native goldfish had maximum and average 137 Cs concentrations of about 340 and 170 pCi/g dry wt, respectively. Algae, macrophytes, and detritus comprised the main food items of the goldfish, and the 137 Cs levels in the plants were usually higher than the 137 Cs concentration in the fish. The 137 Cs concentrations of wild experimental ducks restricted to Gable Mountain Pond were approximately the same as resident coots, but significantly higher than transient wild ducks. Neither the goldfish nor the waterfowl inhabiting the pond attained concentrations of 137 Cs exceeding acceptable limits. Sediment, however, could be a source of high concentrations of radioactivity or radioactive contamination concern if the concentration of radiocontaminants increased and/or the pond dries up, and the contaminated sediments become windborne. (U.S.)

  12. Par Pond vegetation status Summer 1995 -- Summary

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned

  13. Organic matter decomposition in simulated aquaculture ponds

    NARCIS (Netherlands)

    Torres Beristain, B.

    2005-01-01

    Different kinds of organic and inorganic compounds (e.g. formulated food, manures, fertilizers) are added to aquaculture ponds to increase fish production. However, a large part of these inputs are not utilized by the fish and are decomposed inside the pond. The microbiological decomposition of the

  14. Chemical functionalization and stabilization of type I collagen with organic tanning agents

    International Nuclear Information System (INIS)

    Albu, Madalina Georgiana; Deselnicu, Viorica; Ioannidis, Ioannis; Deselnicu, Dana; Chelaru, Ciprian

    2015-01-01

    We investigated the interactions between selected organic tanning agents and type I fibrillar collagen as a model fibrillar substrate to enable the fast direct evaluation and validation of interpretations of tanning activity. Type I fibrillar collagen (1%) as gel was used as substrate of tanning and tannic acid, resorcinol- and melamine-formaldehyde and their combination at three concentrations as crosslinking agents (tannins). To evaluate the stability of collagen during tanning, the crosslinked gels at 2.8, 4.5 and 9.0 pHs were freeze-dried as discs which were characterized by FTIR, shrinkage temperature, enzymatic degradation and optical microscopy, and the results were validated by statistical analyses. The best stability was given by combinations between resorcinol- and melamine-formaldehyde at isoelectric pH

  15. Chemical functionalization and stabilization of type I collagen with organic tanning agents

    Energy Technology Data Exchange (ETDEWEB)

    Albu, Madalina Georgiana; Deselnicu, Viorica; Ioannidis, Ioannis; Deselnicu, Dana; Chelaru, Ciprian [Leather and Footwear Research Institute, Bucharest (Romania)

    2015-02-15

    We investigated the interactions between selected organic tanning agents and type I fibrillar collagen as a model fibrillar substrate to enable the fast direct evaluation and validation of interpretations of tanning activity. Type I fibrillar collagen (1%) as gel was used as substrate of tanning and tannic acid, resorcinol- and melamine-formaldehyde and their combination at three concentrations as crosslinking agents (tannins). To evaluate the stability of collagen during tanning, the crosslinked gels at 2.8, 4.5 and 9.0 pHs were freeze-dried as discs which were characterized by FTIR, shrinkage temperature, enzymatic degradation and optical microscopy, and the results were validated by statistical analyses. The best stability was given by combinations between resorcinol- and melamine-formaldehyde at isoelectric pH.

  16. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.

    Science.gov (United States)

    Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch

    2013-01-01

    Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    OpenAIRE

    Kristina Wedege; Emil Dražević; Denes Konya; Anders Bentien

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined ...

  18. Physical and Chemical Stability of Urapidil in 0.9% Sodium Chloride in Elastomeric Infusion Pump.

    Science.gov (United States)

    Tomasello, Cristina; Leggieri, Anna; Rabbia, Franco; Veglio, Franco; Baietto, Lorena; Fulcheri, Chiara; De Nicolò, Amedeo; De Perri, Giovanni; D'Avolio, Antonio

    2016-01-01

    Urapidil is an antihypertensive agent, usually administered through intravenous bolus injection, slow-intravenous infusion, or continuous-drug infusion by perfusor. Since to date no evidences are available on drug stability in elastomeric pumps, patients have to be hospitalized. The purpose of this study was to validate an ultra-performance liquid chromatographic method to evaluate urapidil stability in an elastomeric infusion pump, in order to allow continuous infusion as home-care treatment. Analyses were conducted by diluting urapidil in an elastomeric pump. Two concentrations were evaluated: 1.6 mg/mL and 3.3 mg/mL. For the analyses, a reverse-phase ultra-performance liquid chromatographic- photodiode array detection instrument was used. Stressed degradation, pH changes, and visual clarity were used as stability indicators up to 10 days after urapidil solution preparation. The drug showed no more than 5% degradation during the test period at room temperature. No pH changes and no evidences of incompatibility were observed. Stress tests resulted in appreciable observation of degradation products. Considering the observed mean values, urapidil hydrochloride in sodium chloride 0.9% in elastomeric infusion pumps is stable for at least 10 days. These results indicate that this treatment could be administered at home for a prolonged duration (at least 7 days) with a satisfactory response. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  19. Influence of chemical treatment on dimensional stability of narrow-leaved ash - part one: Tangential swelling

    Directory of Open Access Journals (Sweden)

    Popović Jasmina

    2012-01-01

    Full Text Available Dimensional change in wood occurs with the change in hygroscopic moisture content, as a consequence of available hydroxyl groups in wood constituents, allowing for the hydrogen bonding with water molecules. Various pretreatments of wood material are being frequently applied in the wood processing industry. One of the main effects of such processes is the hydrolysis of hemicelluloses, which is the main carrier of the free hydroxyl groups in wood material. Hence, the influence of water treatment and the acetic acid treatment on dimensional stability of narrow-leaved ash (Fraxinus angustifolia Vahl. ssp. Pannonica Soó & Simon were examined in this paper. Duration of treatments was 1h, 2h, 3h and 4h for both solvents. In addition the acetic acid was separately used in concentrations of 3% and 6%. Dimensional stability of the control (referent and treated sample groups were tested on oven dried samples which were consequently submerged in the distilled water during 32 days. The increase of dimensional stability of narrow-leaved ash was achieved with all of the three treatments (one treatment with water and the two with acetic acid solutions. Simultaneously, it was noticed that the results of water uptake and tangential swelling were not significantly affected by the duration (length of the treatments. [Projekat Ministarstva nauke Republike Srbije, br. TP-031041

  20. Mechanical properties and chemical stability of pivalolactone-based poly(ether ester)s

    NARCIS (Netherlands)

    Tijsma, E.J.; Tijsma, E.J.; van der Does, L.; Bantjes, A.; Bantjes, A.; Vulic, I.

    1994-01-01

    The processing, mechanical and chemical properties of poly(ether ester)s, prepared from pivalolactone (PVL), 1,4-butanediol (4G) and dimethyl terephthalate (DMT), were studied. The poly(ether ester)s could easily be processed by injection moulding, owing to their favourable rheological and thermal

  1. Validation and refinement of chemical stabilization procedures for pavement subgrade soils in Oklahoma : volume I.

    Science.gov (United States)

    2011-07-01

    Additions of byproduct chemicals, such as fly ash or cement kiln dust, have been shown to increase the unconfined compression strength (UCS) of soils. To be considered effective, the soil must exhibit a strength increase of at least 50 psi. Many curr...

  2. Stability fields of smectites and illites as a function of temperature and chemical composition

    International Nuclear Information System (INIS)

    Tardy, Y.; Duplay, J.; Fritz, B.; Strasbourg-1 Univ., 67

    1987-04-01

    A thermodynamic ideal solid solution analogue is proposed which accounts the correlations which clearly reflect the temperatures at which the nonmineralic population are supposed to have been formed. The solid solution is considered, at a particle scale, as an ideal mixture of individual layers, weakly bent each to the next. Each layer presents the chemical composition of a given end member, so that the proportions of the different end members change from one particle to another. Considering one particle of a given chemical composition, the multipole solid solution theory allows to calculate the wheighted contributions of each end member into the ideal clay solid solution along with the chemical composition of the aqueous solutions in equilibrium with the considered particle in its independent microenvironment. This model is able to predict the nature of the chemical correlations which are expected, at a given temperature, within a given population. This model is also applied to the prediction of the temperature required for the conversion of smectite into illite during the burial diagenesis. (orig./HP)

  3. Pond of Illusion: Interacting through Mixed Reality

    DEFF Research Database (Denmark)

    Nobel-Jørgensen, Morten; Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    Pond of Illusion is a mixed reality installation where a virtual space (the pond) is injected between two real spaces. The users are in either of the real spaces, and they can see each other through windows in the virtual space as illustrated in Figure 1(left). The installation attracts people...... to a large display in either of the real spaces by allowing them to feed virtual fish swimming in the pond. Figure 1(middle) shows how a Microsoft Kinect mounted on top of the display is used for detecting throw motions, which triggers virtual breadcrumbs to be thrown into the pond for feeding the nearby...... fish. Of course, the fish may not be available because they are busy eating what people have thrown into the pond from the other side....

  4. Isoparaffin diluents for tri-n-butyl phosphate. Chemical, radiation-chemical stability, effect on solvent extraction of tetravalet plutonium and thorium

    International Nuclear Information System (INIS)

    Renard, Eh.V.; Pyatibratov, Yu.P.; Neumoev, N.V.

    1988-01-01

    45-90% conversion degree of n-paraffin into branched isoparaffin with mono- and dimethyl structure is achieved by means of catalytic hydroisomerization of n-paraffin raw material in reactor with alumoplatinum catalyser. Isoparaffin (99%) concentrates with constant molecular mass from iso-C 10 to iso-C 15 are produced of a batch of deeply isomerized n-paraffins. Plutonium and thorum nitrate solubility in 30% TBP solutions in iso-paraffins (iso-paraffin mixtures with similar C atom number) increases with the reduction of iso-paraffin molecular mass; system with 30% TBP in isodecane mixture is practically not stratified (∼ 104 g Pu/l, 22-25 deg C). By the main requirements to diluents for radiochemical extraction operations, including density, viscosity, boiling point flashed and freezines, chemical and radiation stability, radioruthenium and radiozirconium confinement systems, synthetic isoparaffin-containing solvents are as good as n-paraffins

  5. College Students' Conceptions of Chemical Stability: The Widespread Adoption of a Heuristic Rule out of Context and beyond Its Range of Application

    Science.gov (United States)

    Taber, Keith S.

    2009-01-01

    This paper reports evidence that learners commonly develop a notion of chemical stability that, whilst drawing upon ideas taught in the curriculum, is nevertheless inconsistent with basic scientific principles. A series of related small-scale studies show that many college-level students consider a chemical species with an octet structure, or a…

  6. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians.

    Directory of Open Access Journals (Sweden)

    Raymond D Semlitsch

    Full Text Available We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes.

  7. Guia para a determinação da estabilidade de produtos químicos Guide for determining the stability of chemical products

    Directory of Open Access Journals (Sweden)

    Luciana R. Oriqui

    2013-01-01

    Full Text Available Companies worldwide are reviewing their working process to avoid waste, become aligned with environmental management standards and to fulfill specifications defined for national and international regulations. In this context, it is important that Brazilian Chemical companies have a specific stability guide for their products. The main purpose of this work is to present a stability guide for chemical products based on the existing guides of the Pharmaceutical and Cosmetics segments. Furthermore, this work proposes to offer an additional period of shelf life for chemical products, provided they meet certain prerequisites.

  8. Single crystal growth and surface chemical stability of KPb2Br5

    Science.gov (United States)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Tarasova, A. Yu.

    2011-03-01

    Single crystal of KPb2Br5 has been grown using the Bridgman technique. Initially the synthesis of stoichiometric KPb2Br5 compound was performed from high purity bromide salts. Electronic structure of KPb2Br5 has been determined with X-ray photoelectron spectroscopy for powdered sample fabricated by grinding in air. Drastic chemical interaction of KPb2Br5 with atmosphere has not been detected. Chemical bonding in potassium- and lead-containing bromides is considered using binding energy differences ΔK=(BE K 2p3/2-BE Br 3d) and ΔPb=(BE Pb 4f7/2-BE Br 3d), respectively, as representative parameters.

  9. Evaluation of chemical stability of vitrification media for radioactive waste products

    International Nuclear Information System (INIS)

    Barkatt, A.; Simmons, J.H.; Macedo, P.B.

    1981-01-01

    Test methods and test results concerning the measurement of chemical durability of glass media proposed for nuclear waste fixation are described. In order to develop predictive models and risk calculations, the release rates of individual components are measured. The results are used to determine matrix dissolution rates, possible transport of components through the matrix, and chemical and physical corrosion mechanisms. Measurements on model borosilicate and high silica glass fixation media are reported and discussed in terms of layer formation, approach to steady state, interaction of polyvalent ions with the dealkalised layer, structural disintegration of the layer, and the effects of glass composition and of environmental conditions (temperature, leachant composition and pH, γ dose). The extrapolation of short term laboratory tests to long time storage conditions and the use of such extrapolation in predicting safe upper limits for the release rates of components of the glass are described. (author)

  10. Film thickness and chemical processing effects on the stability of cadmium telluride solar cells

    International Nuclear Information System (INIS)

    Albin, D.S.; Demtsu, S.H.; McMahon, T.J.

    2006-01-01

    The performance and stability of CdS/CdTe solar cells as a function of layer thickness, back contact etch, and oxygen during the CdCl 2 anneal was determined. Multiple linear regression models were used to analyze the statistical significance of various first order effects and interactions. With stress, all devices showed a reduction in open-circuit voltage (V oc ) and fill factor (FF) characteristic of increased recombination. Devices using thinner CdS were vulnerable to shunt formation. Oxygen during the CdCl 2 anneal minimizes this effect. A thermodynamic model involving the formation of Cu-oxide is presented to explain the latter

  11. Study of stability of terrylitine chemically bound with polymer to γ-irradiation

    International Nuclear Information System (INIS)

    Yudanova, T.N.; Skokova, I.F.; Dovbij, E.V.; Kalashnik, A.T.

    1987-01-01

    Using ESR method the mechanism of the increase in stability to γ-irradiation of proteolytic enzyme terrylitine immobilized on cellulose derivatives, has been studied. It is shown that in the process of γ-sterilization by the doses of 25 kGy at the dose rate 1.1 Gy/s migration of terrylitine free valency to macromolecule of polymer-carrier takes place, and in certain cases recombination of enzyme and polymer macroradicals occurs. Due to the fact proteolytic activity of immobilized terrylitine during γ-sterilization does not decrease practically

  12. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  13. Linking measurements of biodegradability, thermal stability and chemical composition to evaluate the effects of management on soil organic matter

    Science.gov (United States)

    Gregorich, Ed; Gillespie, Adam; Beare, Mike; Curtin, Denis; Sanei, Hamed; Yanni, Sandra

    2015-04-01

    The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to accurately quantify and characterise the labile and stable forms of soil organic C. Our objectives in this study were to evaluate and describe relationships among the biodegradability, thermal stability and chemistry of SOM in soil under widely contrasting management regimes. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: managements and that sand-associated organic matter was significantly more susceptible than that in the silt or clay fractions. Analysis by XANES showed accumulation of carboxylates and strong depletion of amides (protein) and aromatics in the fallow whole soil. Moreover, protein depletion was most significant in the sand fraction of the fallow soil. Sand fractions in fallow and cropped soils were, however, enriched in plant-derived phenols, aromatics and carboxylates compared to the sand fraction of pasture soils. In contrast, ketones, which have been identified as products of microbially-processed organic matter, were slightly enriched in the silt fraction of the pasture soil. These data suggest reduced inputs and cropping restrict the decomposition of plant residues and, without supplemental N additions, protein-N in native SOM is significantly mineralized in fallow systems to meet microbial C mineralization demands. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the size fractions and management treatments; it also showed that the loss of SOM generally involved dehydrogenation. The temperature at which half of the C was pyrolyzed showed strong correlation with mineralizable C and thus provides solid evidence for a link between the biological and

  14. Starved air combustion-solidification/stabilization of primary chemical sludge from a tannery

    Energy Technology Data Exchange (ETDEWEB)

    Swarnalatha, S. [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India); Ramani, K. [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India); Karthi, A. Geetha [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India); Sekaran, G. [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India)]. E-mail: ganesansekaran@hotmail.com

    2006-09-01

    The high concentration of trivalent chromium along with organic/inorganic compounds in tannery sludge causes severe ground water contamination in the case of land disposal and chronic air pollution during incineration. In the present investigation, the sludge was subjected to flow-through column test to evaluate the concentration of leachable organics (tannin, COD and TOC) and heavy metal ions (Cr{sup 3+}, Fe{sup 2+}) present in it. The dried sludge was incinerated at 800 deg. C in an incinerator under starved oxygen supply (starved-air combustion) to prevent the conversion of Cr{sup 3+} to Cr{sup 6+}. The efficiency of starved air combustion was studied under different loading rates of sludge. The calcined sludge was solidified/stabilized using fly ash and Portland cement/gypsum. The solidified bricks were tested for unconfined compressive strength and heavy metal leaching. Unconfined compressive strength of the blocks was in the range of 83-156 kg/cm{sup 2}. The stabilization of chromium (III) in the cement gel matrix was confirmed with scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDX). Leachability studies on solidified bricks were carried out to determine the metal fixation and dissolved organic (as COD) concentration in the leachate.

  15. [Physical and chemical stability of fortified ophtalmic ready-to-use solutions: review of literature].

    Science.gov (United States)

    Sourdeau, P; Evrard, J-M; Remy, G; Hecq, J-D

    2012-03-01

    Ophtalmic infections and inflammations are often encountered during hospitalization. They require the preparation of "fortified" ophtalmic solutions, i.e. pharmaceutical ophtalmic solutions which are hyperconcentrated in active substance. The data of physicochemical stabilities are modified and it is therefore essential to gather the results of the various publications devoted to this subject. In 2006, an initial literature review was undertaken to identify the molecules mostly used in the preparation of fortified ophtalmic solutions in hospital. A second review of the literature in 2010 has enriched the knowledge about it. Two new drugs have entered the summary table: amikacin and ticarcillin disodium. Date on 12 molecules already known in 2006 were updated to improve clinical practices. A review of the literature was undertaken in order to collect the results of the molecules mostly used for the preparation of the fortified ophtalmic solutions in hospitals. A summary table, indicating the active substance, its concentration, the assay method, the storage temperature and physicochemical modifications, presents all the results. This review of literature makes it possible to match stability and validity period to these preparations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Swelling, Mechanics, and Thermal/Chemical Stability of Hydrogels Containing Phenylboronic Acid Side Chains

    Directory of Open Access Journals (Sweden)

    Arum Kim

    2017-12-01

    Full Text Available We report here studies of swelling, mechanics, and thermal stability of hydrogels consisting of 20 mol % methacrylamidophenylboronic acid (MPBA and 80 mol % acrylamide (AAm, lightly crosslinked with methylenebisacrylamide (Bis. Swelling was measured in solutions of fixed ionic strength, but with varying pH values and fructose concentrations. Mechanics was studied by compression and hold. In the absence of sugar or in the presence of fructose, the modulus was mostly maintained during the hold period, while a significant stress relaxation was seen in the presence of glucose, consistent with reversible, dynamic crosslinks provided by glucose, but not fructose. Thermal stability was determined by incubating hydrogels at pH 7.4 at room temperature, and 37, 50, and 65 °C, and monitoring swelling. In PBS (phosphate buffered saline solutions containing 9 mM fructose, swelling remained essentially complete for 50 days at room temperature, but decreased substantially with time at the higher temperatures, with accelerated reduction of swelling with increasing temperature. Controls indicated that over long time periods, both the MPBA and AAm units were experiencing conversion to different species.

  17. Tetracycline removal during wastewater treatment in high-rate algal ponds

    International Nuclear Information System (INIS)

    Godos, Ignacio de; Muñoz, Raúl; Guieysse, Benoit

    2012-01-01

    Highlights: ► Tetracycline removal was most likely caused by photodegradation and biosorption. ► Tetracycline presence was linked to biomass deflocculation and poor settleability. ► Deflocculation did not impact treatment efficiency. ► Deflocculation may hamper biomass recover during full-scale treatment. - Abstract: With the hypothesis that light supply can impact the removal of veterinary antibiotics during livestock wastewater treatment in high rate algal ponds (HRAPs), this study was undertaken to determine the mechanisms of tetracycline removal in these systems. For this purpose, two HRAPs were fed with synthetic wastewater for 46 days before tetracycline was added at 2 mg L −1 to the influent of one of the reactors (Te-HRAP). From day 62, dissolved tetracycline removal stabilized around 69 ± 1% in the Te-HRAP and evidence from batch assays suggests that this removal was mainly caused by photodegradation and biosorption. Tetracycline addition was followed by the deflocculation of the Te-HRAP biomass but had otherwise no apparent impact on the removal of the chemical oxygen demand (COD) and biomass productivity. The results from the batch assays also suggested that the light-shading and/or pollutant-sequestrating effects of the biomass limited tetracycline removal in the pond. For the first time, these results demonstrate that the shallow geometry of HRAPs is advantageous to support the photodegradation of antibiotics during wastewater biological treatment but that the presence of these pollutants could hamper biomass recovery. These findings have significant implications for algal-based environmental biotechnologies and must be confirmed under field conditions.

  18. 216-U-10 Pond and 216-Z-19 Ditch characterization studies

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Duncan, D.W.; Graham, M.J.; Hall, M.D.; Hall, V.W.; Landeen, D.S.; Leitz, J.G.; Mitchell, R.M.

    1994-02-01

    The chemical, reprocessing of spent nuclear fuels at the US Department of Energy`s Hanford Site has generated large volumes of radioactive liquid effluents. The majority of these effluents have been used strictly for cooling or other supportive functions and have been discharged to ditches and ponds. The 216-U-10 Pond and 216-Z-19 Ditch are two such disposal facilities. These facilities are components of an integrated system of ditches, ponds, and overflow facilities collectively referred to as the U-Pond disposal system. The U-Pond system has been used since 1943 and has received a large variety of radioisotopes from several sources. This study covered tho major aspects of the environment, including wind resuspension, biological uptake and transport, geologic distribution in surface and subsurface sediments, and ground-water impacts. The long-term use of U-Pond and the Z-19 Ditch has resulted in the localized accumulation of transuranic and fission product inventories as a result of sorption and filtration of particulates onto the uppermost sediments.

  19. Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.

    Science.gov (United States)

    Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K

    2012-06-01

    The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage.

  20. 216-U-10 Pond and 216-Z-19 Ditch characterization studies

    International Nuclear Information System (INIS)

    Last, G.V.; Duncan, D.W.; Graham, M.J.; Hall, M.D.; Hall, V.W.; Landeen, D.S.; Leitz, J.G.; Mitchell, R.M.

    1994-02-01

    The chemical, reprocessing of spent nuclear fuels at the US Department of Energy's Hanford Site has generated large volumes of radioactive liquid effluents. The majority of these effluents have been used strictly for cooling or other supportive functions and have been discharged to ditches and ponds. The 216-U-10 Pond and 216-Z-19 Ditch are two such disposal facilities. These facilities are components of an integrated system of ditches, ponds, and overflow facilities collectively referred to as the U-Pond disposal system. The U-Pond system has been used since 1943 and has received a large variety of radioisotopes from several sources. This study covered tho major aspects of the environment, including wind resuspension, biological uptake and transport, geologic distribution in surface and subsurface sediments, and ground-water impacts. The long-term use of U-Pond and the Z-19 Ditch has resulted in the localized accumulation of transuranic and fission product inventories as a result of sorption and filtration of particulates onto the uppermost sediments

  1. Radiolabeled hydroxamate-based matrix metalloproteinase inhibitors: How chemical modifications affect pharmacokinetics and metabolic stability

    International Nuclear Information System (INIS)

    Hugenberg, Verena; Hermann, Sven; Galla, Fabian; Schäfers, Michael

    2016-01-01

    Introduction: Dysregulated MMP expression or activation is associated with several diseases. To study MMP activity in vivo by means of PET a radiolabeled MMP inhibitor (MMPI) functioning as radiotracer has been developed by our group based on the lead structure CGS 25966. Materials and methods: Aiming at the modification of the pharmacokinetics of this lipophilic model tracer a new class of MMPIs has been discovered, consisting of additional fluorinated hydrophilic substructures, such as mini-PEG and/or 1,2,3-triazole units. To identify the best candidate for further clinical applications, radiofluorinated compounds of each subgroup have been (radio) synthesized and evaluated regarding their biodistribution behavior and their metabolic stability. Results: Radiosyntheses of different triazole based MMPIs could be realized using two step “click chemistry” procedures. Compared to lead structure [ 18 F]FEtO-CGS 25966 ([ 18 F]1e, log D(exp) = 2.02, IC 50 = 2–50 nM) all selected candidates showed increased hydrophilicities and inhibition potencies (log D(exp) = 0.23–1.25, IC 50 = 0.006–6 nM). Interestingly, despite different hydrophilicities most triazole based MMPIs showed no significant differences in their in vivo biodistribution behavior and were cleared predominantly via the hepatobiliary excretion route. Biostability and metabolism studies in vitro and in vivo revealed significant higher metabolic stability for the triazole moiety compared to the benzyl ring in the lead structure. Cleavage of ethylene glycol subunits of the mini-PEG chain led to a faster metabolism of mini-PEG containing MMPIs. Conclusion: The introduction of hydrophilic groups such as mini-PEG and 1,2,3-triazole units did not lead to a significant shift of the hepatobiliary elimination towards renal clearance. Particularly the introduction of mini-PEG chains led to an intense metabolic decomposition. Substitution of the benzyl moiety in lead structure 1e by a 1,2,3-trizole ring resulted

  2. Chemical stability of insulin. 5. Isolation, characterization and identification of insulin transformation products.

    Science.gov (United States)

    Brange, J; Hallund, O; Sørensen, E

    1992-01-01

    During storage of insulin formulated for therapy, minor amounts of various degradation and covalent di- and polymerization products are formed [1-3]. The main chemical transformation products were isolated from aged preparations and characterized chemically and biologically. The most prominent products formed in neutral medium were identified as a mixture of deamidation products hydrolyzed at residue B3, namely isoAsp B3 and Asp B3 derivatives. A hydrolysis product formed only in crystals of insulin zinc suspensions containing a surplus of zinc ions in the supernatant was identified as an A8-A9 cleavage product. The small amounts of covalent insulin dimers (CID) formed in all formulations were shown to be a heterogenous mixture of 5-6 different CIDs with a composition dependent on the pharmaceutical formulation. The chemical characteristics of the CIDs indicate that they are formed through a transamidation reaction mainly between the B-chain N-terminal and one of the four amide side-chains of the A chain. GlnA15, AsnA18 and, in particular, AsnA21 participate in the formation of such isopeptide links between two insulin molecules. The covalent insulin-protamine products (CIPP) formed during storage of NPH preparations presumably originate from a similar reaction between the protamine N-terminal with an amide in insulin. Covalent polymerization products, mainly formed during storage of amorphously suspended insulin at higher temperature, were shown to be due to disulfide interactions. Biological in vivo potencies relative to native insulin were less than 2% for the split-(A8-A9)-product and for the covalent disulfide exchange polymers, 4% for the CIPP, approximately 15% for the CIDs, whereas the B3 derivatives exhibited full potency. Rabbit immunization experiments revealed that none of the insulin transformation products had significantly increased immunogenicity in rabbits.

  3. Technical manual for calculating cooling pond performance

    International Nuclear Information System (INIS)

    Krstulovich, S.F.

    1988-01-01

    This manual is produced in response to a growing number of requests for a technical aid to explain methods for simulating cooling pond performance. As such, it is a compilation of reports, charts and graphs developed through the years for use in analyzing situations. Section II contains a report summarizing the factors affecting cooling pond performance and lists statistical parameters used in developing performance simulations. Section III contains the graphs of simulated cooling pond performance on an hourly basis for various combinations of criteria (wind, solar, depth, air temperature and humidity) developed from the report in Section II. Section IV contains correspondence describing how to develop further data from the graphs in Section III, as well as mathematical models for the system of performance calculation. Section V contains the formulas used to simulate cooling pond performances in a cascade arrangement, such as the Fermilab Main Ring ponds. Section VI contains the calculations currently in use to evaluate the Main Ring pond performance based on current flows and Watts loadings. Section VII contains the overall site drawing of the Main Ring cooling ponds with thermal analysis and physical data

  4. CO₂ efflux from shrimp ponds in Indonesia.

    Science.gov (United States)

    Sidik, Frida; Lovelock, Catherine E

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere.

  5. CO₂ efflux from shrimp ponds in Indonesia.

    Directory of Open Access Journals (Sweden)

    Frida Sidik

    Full Text Available The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂ efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere.

  6. Chemical modifications and stability of diamond nanoparticles resolved by infrared spectroscopy and Kelvin force microscopy

    Czech Academy of Sciences Publication Activity Database

    Kozak, Halyna; Remeš, Zdeněk; Houdková, Jana; Stehlík, Štěpán; Kromka, Alexander; Rezek, Bohuslav

    2013-01-01

    Roč. 15, č. 4 (2013), "1568-1"-"1568-9" ISSN 1388-0764 R&D Projects: GA ČR GAP108/12/0910; GA ČR GPP205/12/P331; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : diamond nanoparticles * chemical modification * GAR-FTIR * AFM * KFM * XPS Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.278, year: 2013 http://link.springer.com/article/10.1007%2Fs11051-013-1568-7

  7. Photo- and radiation-chemical stability of molecules. Reactions of monomolecular hydrogen atom splitting off

    International Nuclear Information System (INIS)

    Plotnikov, V.G.; Ovchinnikov, A.A.

    1978-01-01

    In the review of works published up to 1978 one of the main problems of radiation chemistry is discussed, namely the relationship between the structure of organic molecules and their resistance to the effect of ionizing radiation. Theoretical aspects of this problem are considered for reactions of monomolecular hydrogen atom splitting off. It is shown that the radical yield in low-temperature radiation-chemical experiments is connected with the position of lower triplet states of molecules, ionization potentials, polarity of medium and the energy of C-H bonds in cation radicals

  8. Ponded infiltration tests at the Box Canyon site: data report and preliminary analysis

    International Nuclear Information System (INIS)

    Cook, Paul; Faybishenko, Boris; Freifeld, Barry; Jacobsen, Janet; Lee, Ki Ha; Salve, Rohit; Zawislanski, Peter

    1998-01-01

    We discuss the design and present the main results of a two-week ponded infiltration test conducted in 1996 at the Box Canyon site near the Idaho National Engineering and Environmental Laboratory. To investigate liquid flow and chemical transport in fractured basalt, the following types of instruments were installed in boreholes: tensiometers, suction lysimeters, thermistors, time domain reflectrometry probes, and electrical resisitivity probes. These probes were installed using an innovative technology of borehole instrumentation and completion using polyurethane foam injection. The probes were attached to plastic packers that were inflated using the polyurethane foam, and then the space between packers was back-filled with the foam in order to ensure the isolation of the instruments at different depths. Polyurethane foam showed great promise in enabling rapid, cost-effective installation of sensors and probes in fractured rock. A ponded infiltration test was conducted from 8/27/96 to 9/9/96, by maintaining water to an average depth of 23 cm in a rectangular infiltration pond. Within the 7 x 8 m pond, nine local infiltrometers (0.25 m diameter) were-installed to determine local values of the water flux. A slug of conservative tracer (KM) was added to the pond on 9/2/96, yielding a tracer concentration in the pond of approximately 3 g/L. The water supply to the pond was halted for two days so that the tracer concentration in the pond water would remain essentially constant. Thereafter, the water supply was re-established to maintain a constant water level. Installation procedures and measurement results for each type of probe are presented, along with a description of the data acquisition system. The attachments include a description of the calibration and testing of instrumentation. The data files can be found at the FTP site zenitMnel/ or the Web site http://www- esd.lbl.gov/ERT/inel/inel.htrnl

  9. COMPARISON OF POND AND RACEWAY PRODUCTION METHODS ON TEXTURE OF CHANNEL CATFISH (Ictalurus punctatus) FILLETS, SHOWING A DEPENDENCY ON SIZE AND FILLET POSITION

    Science.gov (United States)

    The objective of this study was to compare the effect of the production environment (pond vs in-pond raceway) on the chemical composition, color, and textural properties of channel catfish fillets. Compositional analysis consisted of percent moisture, lipid, protein, and ash content. Additional sa...

  10. Chemically stabilized reduced graphene oxide/zirconia nanocomposite: synthesis and characterization

    Science.gov (United States)

    Sagadevan, Suresh; Zaman Chowdhury, Zaira; Enamul Hoque, Md; Podder, Jiban

    2017-11-01

    In this research, chemical method was used to fabricate reduced graphene oxide/zirconia (rGO/ZrO2) nanocomposite. X-ray Diffraction analysis (XRD) was carried out to examine the crystalline structure of the nanocomposites. The nanocomposite prepared here has average crystallite size of 14 nm. The surface morphology was observed using scanning electron microscopic analysis (SEM) coupled with electron dispersion spectroscopy (EDS) to detect the chemical element over the surface of the nanocomposites. High-resolution Transmission electron microscopic analysis (HR-TEM) was carried out to determine the particle size and shape of the nanocomposites. The optical property of the prepared samples was determined using UV-visible absorption spectrum. The functional groups were identified using FTIR and Raman spectroscopic analysis. Efficient, cost effective and properly optimized synthesis process of rGO/ZrO2 nanocomposite can ensure the presence of infiltrating graphene network inside the ZrO2 matrix to enhance the electrical properties of the hybrid composites up to a greater scale. Thus the dielectric constant, dielectric loss and AC conductivity of the prepared sample was measured at various frequencies and temperatures. The analytical results obtained here confirmed the homogeneous dispersion of ZrO2 nanostructures over the surface of reduced graphene oxide nanosheets. Overall, the research demonstrated that the rGO/ZrO2 nano-hybrid structure fabricated here can be considered as a promising candidate for applications in nanoelectronics and optoelectronics.

  11. Comparative study on the freeze stability of yeast and chemical leavened steamed bread dough.

    Science.gov (United States)

    Wang, Pei; Yang, Runqiang; Gu, Zhenxin; Xu, Xueming; Jin, Zhengyu

    2017-04-15

    The present study comparatively evaluated the evolution of yeast and chemical leavened steamed bread dough (YLD/CLD) quality during freeze/thaw (FT) cycles. The steamed bread quality of CLD was more freeze-stable than that of the YLD after 3 FT cycles. Decreased yeast viability contributed to the loss of gassing power in YLD while no significant differences were observed for CLD during FT cycles. However, faster gas release rate in frozen CLD indicated gas retention loss due to the distortion of gluten network. Glutenin macropolymers (GMP) depolymerization via breakage of inter-chain disulfide (SS) bonds and conversions of α-helix and β-turn to β-sheet structures were the main indicators of gluten deterioration. Gluten network was more vulnerable in frozen YLD, resulting in detectable loss of viscoelasticity. The results suggested that supplement of chemical leavener contributed to a more freeze-tolerant gluten network besides its stable gassing power. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. ANL-W 779 pond seepage test

    International Nuclear Information System (INIS)

    Braun, D.R.

    1992-11-01

    The ANL-W 779 sanitary wastewater treatment ponds are located on the Idaho National Engineering Laboratory (INEL), north of the Argonne National Laboratory -- West (ANL-W) site A seepage test was performed for two Argonne National Laboratory -- West (ANL-W) sanitary wastewater treatment ponds, Facility 779. Seepage rates were measured to determine if the ponds are a wastewater land application facility. The common industry standard for wastewater land application facilities is a field-measured seepage rate of one quarter inch per day or greater

  13. 100-D Ponds groundwater quality assessment

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-01-01

    The 100-D Ponds facility is regulated under the Resource Conservation and Recovery Act of 1976. The pH of groundwater in a downgradient well is statistically different than local background, triggering an assessment of groundwater contamination under 40 CFR 265.93. Results of a similar assessment, conducted in 1993, show that the elevated pH is caused by the presence of alkaline ash sediments beneath the ponds, which are not part of the RCRA unit. The 100-D Ponds should remain in indicator evaluation monitoring

  14. WWER-type NPP spray ponds screen

    International Nuclear Information System (INIS)

    Nikolova, M.; Jordanov, M.; Denev, J.; Markov, D.

    2003-01-01

    The objective of this study is to develop a protection screen of WWER-type NPP spray ponds. The screen design is to ensure reduction of the water droplets blown by the wind and, if possible, their return back to the spray ponds. The cooling capacity of the ponds is not to be changed below the design level for safety reasons. Computational fluid dynamics analysis is used to assess the influence of each design variant on the behavior of the water droplets distribution. Two variants are presented here. The one with plants is found not feasible. The second variant, with steel screen and terrain profile modification is selected for implementation. (author)

  15. Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries

    International Nuclear Information System (INIS)

    Heine, Jennifer; Rodehorst, Uta; Badillo, Juan Pablo; Winter, Martin; Bieker, Peter

    2015-01-01

    ABSTRACT: The side reactions of LiO 2 , Li 2 O 2 and Li 2 O, formed during the discharge process at the cathode/electrolyte interphase, are still a main challenge of lithium-air batteries. During these reactions, polyvinylidene difluoride (PVdF), as the commonly used cathode binder material, is decomposing, leading to a shorter lifetime of the battery. In this paper, we introduced and investigated polyisobutylene (PIB), a chemically and electrochemically inert polymeric material, to substitute PVdF as binder for lithium-air batteries. Results obtained by X-ray diffraction and spectroscopic methods showed, that PIB is far more stable in the presence of O 2 − , O 2 2− as well as O 2− species compared to PVdF. This distinct inertness makes PIB a promising binder for lithium-air batteries

  16. Physico-chemical stability of busulfan in injectable solutions in various administration packages.

    Science.gov (United States)

    Houot, Mélanie; Poinsignon, Vianney; Mercier, Lionel; Valade, Cyril; Desmaris, Romain; Lemare, François; Paci, Angelo

    2013-03-01

    Busulfan is used as part of a conditioning regimen prior to hematopoietic stem cell transplantation for the treatment of certain cancers and immune deficiency syndromes. Due to its instability in aqueous preparations, busulfan for infusion is prepared from a concentrate and has a relatively short shelf life once prepared. The purpose of this study was to identify the most suitable storage container and temperature to maximize the shelf life of busulfan therapeutic infusions prepared from Busilvex(®). Busilvex(®) 6 mg/mL was diluted to 0.55 mg/mL with 0.9 % NaCl and aliquots dispensed into polypropylene syringes, polyvinyl chloride bags, and glass bottles. Three storage temperatures were evaluated: 2-8 °C, 13-15 °C (thermostatically controlled chamber), and room temperature (20 ± 5 °C). At set time points, samples were analysed for busulfan content, using a high-performance liquid chromatography (HPLC) system with ultraviolet detection. The change in pH and osmolarity on storage was also determined, and solutions were inspected visually for formation of a precipitate or colour change. To determine the contribution of precipitation to loss of busulfan content on storage, samples from one time series were treated with the solvent dimethylacetamide prior to HPLC separation and quantitation of busulfan. The results of the active substance content monitoring study over a 48-h period demonstrate that busulfan solution is stable at a 5 % threshold, at 2-8 °C for 16 h in syringes, 14 h in glass bottles, and 6 h in bags. In addition, the period of stability decreases as the temperature increases (4 h at 20 ± 5 °C). The solution is considered to be stable, subject to precipitation liable to be observed regardless of the temperature. The best stability was observed for busulfan solutions placed at 2-8 °C in syringes. This study demonstrated that precipitation, in addition to hydrolysis, has a significant influence on the busulfan content.

  17. Chemical stability of soda-alumina-zirconia-silica glasses to Na, Na2S4, and S

    International Nuclear Information System (INIS)

    Bloom, S.I.; Bradley, J.; Nelson, P.A.; Roche, M.F.

    1985-01-01

    Twenty-two glasses with a broad range of compositions, spanning the quaternary soda-alumina-zirconia-silica system, have been prepared to allow characterization of the various properties of the system. The glasses were characterized by their resistivities, energies of activation for conduction, and glass transition temperatures. The glasses were screened for compositions of especially high chemical stability of static corrosion tests in Na, S, and Na 2 S 4 for 1000h at 400 0 C. Among the glasses tested, the high soda glasses showed the smallest weight change after exposure to the three media. The weight change observed was comparable to that seen in the Dow borate glass and beta'' alumina

  18. Assessment of chemical and biochemical stabilization of organic C in soils from the long-term experiments at Rothamsted (UK).

    Science.gov (United States)

    De Nobili, M; Contin, M; Mahieu, N; Randall, E W; Brookes, P C

    2008-01-01

    Biological and chemical stabilization of organic C was assessed in soils sampled from the long-term experiments at Rothamsted (UK), representing a wide range of carbon inputs and managements by extracting labile, non-humified organic matter (NH) and humic substances (HS). Four sequentially extracted humic substances fractions of soil organic matter (SOM) were extracted and characterized before and after a 215-day laboratory incubation at 25 degrees C from two arable soils, a woodland soil and an occasionally stubbed soil. The fractions corresponded to biochemically stabilised SOM extracted in 0.5M NaOH (free fulvic acids (FA) and humic acids (HA)) and chemically plus biochemically stabilised SOM extracted from the residue with 0.1M Na4P2O7 plus 0.1M NaOH (bound FA and HA). Our aim was to investigate the effects of chemical and biochemical stabilization on carbon sequestration. The non-humic to humic (NH/H) C ratio separated the soils into two distinct groups: arable soils (unless fertilised with farmyard manure) had an NH/H C ratio between 1.05 and 0.71, about twice that of the other soils (0.51-0.26). During incubation a slow, but detectable, decrease in the NH/H C ratio occurred in soils of C input equivalent or lower to 4Mgha(-1)y(-1), whereas the ratio remained practically constant in the other soils. Before incubation the free to bound humic C ratio increased linearly (R2=0.91) with C inputs in the soils from the Broadbalk experiment and decreased during incubation, showing that biochemical stabilization is less effective than chemical stabilization in preserving humic C. Changes in delta13C and delta15N after incubation were confined to the free FA fractions. The delta13C of free FA increased by 1.48 and 0.80 per thousand, respectively, in the stubbed and woodland soils, indicating a progressive biological transformation. On the contrary, a decrease was observed for the bound FA of both soils. Concomitantly, a Deltadelta15N of up to +3.52 per thousand was

  19. Interactions of an insecticide with competition and pond drying in amphibian communities

    Science.gov (United States)

    Boone, M.D.; Semlitsch, R.D.

    2002-01-01

    Amphibian populations are often imbedded in agricultural landscapes. Therefore the potential for contamination of their habitat is considerable. Our study examined the effects of an insecticide (carbaryl, a neurotoxin), on larval amphibian communities experiencing natural stresses of competition for resources, predation, and pond drying. In a set of experimental ponds, tadpoles of three anuran species (southern leopard frog [Rana sphenocephala], plains leopard frog [R. blairi], and the Woodhouse's toad [Bufo woodhousii]) were added to 1000-L ponds containing leaf litter, plankton, two newts (Notophthalmus viridescens), and four overwintered green frog (R. clamitans) tadpoles. We manipulated the overall tadpole density (low or high), pond hydroperiod (constant or drying), and chemical exposure (0, 3.5, 5.0, or 7.0 mg/L carbaryl) of the ponds. We measured mass, time, and survival to metamorphosis to determine treatment effects. Carbaryl positively affected Woodhouse's toad survival, although it had a negligible effect on both leopard frog species. Tadpole density interacted with the chemical treatment: Proportionately more Woodhouse's toads survived to metamorphosis in high-density environments than in low-density or control environments. Greater survival may be an indirect effect of increased algal food resources from carbaryl exposure. Most newts lost mass over the course of the experiment, although ponds with drying hydroperiods and high anuran density were the least favorable environments. Overwintered green frogs exposed to carbaryl had longer larval periods on average than did green frogs in control ponds. Our study demonstrated that even sublethal, short-lived contaminants can alter natural communities in ways that cannot be predicted from simple, one-factor studies.

  20. Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings.

    Science.gov (United States)

    Lu, Xiang; Li, Kai; Xie, Youtao; Huang, Liping; Zheng, Xuebin

    2016-11-01

    In recent years, CaSiO 3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO 3 ceramic (Ca 11 Si 4 B 2 O 22 , B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity. Scanning electron microscope and immunofluorescence studies showed that better cellular adhesion and extinctive filopodia-like processes were observed on the B-CS coating. Compared with the pure CaSiO 3 (CS) coating, the B-CS coating promoted MC3T3-E1 cells attachment and proliferation. In addition, enhanced collagen I (COL-I) secretion, alkaline phosphatase activity, and extracellular matrix mineralization levels were detected from the B-CS coating. According to RT-PCR results, notable up-regulation expressions of mineralized tissue-related genes, such as runt-related transcription factor 2 (Runx2), bone sialoprotein and osteocalcin, and bone morphogenetic protein 7 (BMP-7) were observed on the B-CS coating compared with the CS coating. The above results suggested that Ca 11 Si 4 B 2 O 22 coatings possess excellent osteogenic activity and might be a promising candidate for orthopedic applications.

  1. Chemical stability of the fiber coating/matrix interface in silicon-based ceramic matrix composites

    International Nuclear Information System (INIS)

    Lee, K.N.; Jacobson, N.S.

    1995-01-01

    Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si 3 N 4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and by microstructural examination. in the carbon/Si 3 N 4 system, carbon reacted with Si 3 N 4 to form gaseous N 2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si 3 N 4 . Consequently, the development of high p(N 2 ) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating

  2. CHEMICAL STABILITY OF COTTONSEED AND GROUNDNUT OIL USED FOR FRYING BHAJIAS AND ITS SENSORY QUALITIES

    Directory of Open Access Journals (Sweden)

    Ashima Gupta

    2014-12-01

    Full Text Available Deep fried snacks, which evolved as snacks between meals include bhajia, samosa, etc are very popular in India and commercially exploited on a wide scale.Cottonseed and Groundnut oil frequently used in Gujarat for cooking purpose studied for its intermittent frying stability. Indian fried snack popularly known as ‘Bhajia’ fried for 5 min at an interval of 1 h; 5 times a day for 5 consecutive days and studied for its various sensory attributes using 9-point hedonic scale. Standard AOCS and AOAC methods were used to determine the quality of oil. Peroxide and p-anisidine values of both oils increased significantly p<0.001 during the 25 h of intermittent frying. Iodine value of cottonseed oil did not decrease throughout the intermittent frying period. Polar components increased 257.5% in cottonseed oil (CSO and 142.9% in groundnut oil (GNO.The saturated and monounsaturated fatty acid content increased significantly with the increase in frying hours.No significant change was seen in linoleic/palmitic acid ratio of both the oils during bhajias frying. The sensory qualities of bhajia fried at different intervals did not change significantly for various attributes namely flavor, taste, crispness, greasiness, odor, color, appearance and overall acceptability.

  3. PHYSICO-CHEMICAL PHENOMENA IN SOIL STABILIZATION FOR ROADS OR HIGHWAYS INFRASTRUCTURES

    Directory of Open Access Journals (Sweden)

    Anghel STANCIU

    2013-11-01

    Full Text Available Reducing the impact on the environment of constructing transportation infrastructures can be achieved through reusing or recycling certain materials. In this context, the current trend is to use materials that do not have a negative impact on the environment and provide a long term solution. Such local materials for the construction of transportation infrastructure are the active clays. This paper presents the physicochemical and mineralogical structure of clays and their behavior regarding the interaction with water. A negative effect of this interaction is the swelling, the contraction and, respectively, the swell pressure. These produce effects (fissures, cracks in the structure of roads, highways and, respectively, airport runways. The authors analyze the possibility to reduce these effects by clay stabilization with mineral binders (cement, lime. Results on lime mixtures testing are presented in terms of physical and mechanical properties, and optimum percentages of the mixtures are presented. It is also concluded that this solution is more cost-effective than the classical one as replacing the clay layer from the roadbed with other filling materials transported from other areas.

  4. Evaluation of Chemical Characterization, Antioxidant Activity and Oxidative Stability of Some Waste Seed Oil

    Directory of Open Access Journals (Sweden)

    Sibel Uluata

    2017-01-01

    Full Text Available In this study, fatty acid composition, antioxidant activity, total phenolic compounds (TPC and oxidative stability of cherry seed (SCO, sweet cherry seed (SCSO, mulberry seed (MSO and plum seed oil (PSO were determined. Oleic acid was determined as primary fatty acid (42.9-67.3%, and followed by linoleic acid (23.4-41.8% for SCO, SCSO and PSO. Linoleic acid was determined as primary fatty acid in MSO. γ-tocopherol was determined the main and highest tocopherol isomers varied from 579.9 to 605 mg/kg oil in SCO, SCSO and PSO, whereas δ-tocopherol was determined main tocopherol isomer with 1354mg/kg oil value in MSO. Plum seed oil (PSO was the highest antioxidant activity values in both 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS assays. There was no significant differences in lipid hydroperoxide and TBARS (2-thiobarbituric acid-reactive substance formation among SCO, SCSO and MSO. PSO had the highest induction period (15.1 h, followed by MSO (1.4 h, SCSO (1.5 h, SCO(1.3 h. PSO was oxidatively more stable than the other oil samples. This research shows that these waste seed oils have high antioxidant capacity and tocopherol content, so they could be used in food industry.

  5. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    Science.gov (United States)

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was soil.

  6. Amorphous nano-curcumin stabilized oil in water emulsion: Physico chemical characterization.

    Science.gov (United States)

    Aditya, N P; Hamilton, Ian E; Norton, Ian T

    2017-06-01

    Particle characteristics e.g. size and polymorphism are known to significantly affect the Pickering ability of the solid particles by influencing their interaction at the oil and water (O/W) interface. In this study, nano-sized amorphous curcumin particles were fabricated using nanonization technology to use them as Pickering particles. After nanonization, native crystalline curcumin particles were converted into amorphous, nanosized particles of ∼220nm. Amorphous nature of the particle was evident from the decreased melting point from 177±1°C (native curcumin) to 146±3°C (nanonized curcumin) and enthalpy from 27±2J/g to 3.5±1J/g. Interfacial tension (IFT) studies have shown a decrease in IFT at the O/W interface from ∼27mN/m to ∼15mN/m in the presence of amorphous curcumin particles in water phase compared to crystalline curcumin particles. Curcumin stabilized O/W emulsion has an initial droplet size of ∼1.2μm and they were stable for 30days at 4°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An investigation of the chemical stability of a monomer/polymer gel dosimeter

    International Nuclear Information System (INIS)

    De Deene, Y.; De Wagter, C.; De Neve, W.; Achten, E.

    2000-01-01

    The aim of this work is to investigate the temporal stability of a polyacrylamide gelatin hydrogel used for 3D monomer/polymer gel dosimetry techniques involving different methods of analysis. Long-term instabilities for a similar gel have recently been reported, but differ markedly from those described in this work. Two kinds of long-term instabilities are described. One affects the slope of the dose-R 2 plot and is related to post-irradiation polymerization of the comonomer/polymer aggregates. It is observed that post-irradiation polymerization only lasts 12 hours after irradiation. The other instability affects the intercept of the dose-R 2 plot, lasts for up to 30 days and is related to the gelation process of gelatin. Further studies were performed on gelatin gels of varying compositions to obtain a better understanding of the molecular mechanism that causes the instability due to gelation. The studies included observations of the spin-spin and spin-lattice relaxation rates in combination with diffusion measurements and optical measurements. It is shown that the heating history during the manufacture of the gel affects the absolute R 2 value of the gel but not its variation. The findings presented in this study may help in producing more stable and reproducible monomer/polymer gel dosimeters. (author)

  8. Wet Chemical Oxidation and Stabilization of Mixed and Low Level Organic Wastes

    International Nuclear Information System (INIS)

    Pierce, R.A.; Livingston, R.R.; Burge, D.A.; Ramsey, W.G.

    1998-03-01

    Mixed acid oxidation is a non-incineration process capable of destroying organic compounds, including papers, plastics, resins, and oils, at moderate temperatures and pressures. The technology, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a holding medium which allows appreciable amounts of the oxidant to be retained in solution at atmospheric pressure and at the temperatures needed for oxidation. The phosphoric acid also provides the raw materials for making a final waste which contains the metal contaminants from the waste stream. Savannah River has designed, built, and started up a 40-liter pilot reaction vessel to demonstrate the process and its sub-systems on a larger scale than earlier testing. The unit has been demonstrated and has provided important data on the operation of the oxidation and acid recovery systems. Specific results will be presented on oxidation conditions, acid recovery efficiency, chloride removal, metal retention, and process monitoring. Additional studies have been conducted with a smaller vessel in a radioactive hood. Testing with plutonium-bearing waste simulants was performed to make preliminary predictions about the behavior of plutonium in the process. Samples of the remaining phosphoric acid from these tests has been converted to two separate final forms for analysis. Results will be presented on plutonium fractionation during the oxidation process and waste form stability

  9. Chemical Stability of the Fiber Coating/Matrix Interface in Silicon-Based Ceramic Matrix Composites

    Science.gov (United States)

    Lee, Kang N.; Jacobson, Nathan S.

    1995-01-01

    Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si3N4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and microstructural examination. In the carbon/Si3N4 system, carbon reacted with Si3N4 to form gaseous N2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si3N4. Consequently, the development of high p(N2) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating.

  10. Obtaining Highly Crystalline Barium Sulphate Nanoparticles via Chemical Precipitation and Quenching in Absence of Polymer Stabilizers

    Directory of Open Access Journals (Sweden)

    Ángela B. Sifontes

    2015-01-01

    Full Text Available Here we report the synthesis of barium sulphate (BaSO4 nanoparticles from Ba(OH2/BaCl2 solutions by a combined method of precipitation and quenching in absence of polymer stabilizers. Transmission electron microscopy (HRTEM, Fourier transforms infrared spectroscopy (FTIR, and X-ray diffraction (XRD were employed to characterize the particles. The Scherrer formula was applied to estimate the particle size using the width of the diffraction peaks. The obtained results indicate that the synthesized material is mainly composed of nanocrystalline barite, with nearly spherical morphology, and diameters ranging from 4 to 92 nm. The lattice images of nanoparticles were clearly observed by HRTEM, indicating a high degree of crystallinity and phase purity. In addition, agglomerates with diameters between 20 and 300 nm were observed in both lattice images and dynamic light scattering measurements. The latter allowed obtaining the particle size distribution, the evolution of the aggregate size in time of BaSO4 in aqueous solutions, and the sedimentation rate of these solutions from turbidimetry measurements. A short discussion on the possible medical applications is presented.

  11. HR-EELS study of hydrogen bonding configuration, chemical and thermal stability of detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Sh.; Akhvlediani, R. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Petit, T.; Girard, H.A.; Arnault, J.C. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif sur Yvette (France); Hoffman, A., E-mail: choffman@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2014-06-01

    Nano-diamond films composed of 3–10 nm grains prepared by the detonation method and deposited onto silicon substrates by drop-casting were examined by high resolution electron energy loss spectroscopy (HR-EELS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). The impact of (i) ex-situ ambient annealing at 400 °C and (ii) ex-situ hydrogenation on hydrogen bonding and its thermal stability were examined. In order to clarify the changes in hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing, in-situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and medium temperature ambient annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the nano-diamond surfaces. In-situ 1000 °C annealing results in irreversible changes of the film surface and partial nano-diamond silicidation.

  12. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    Energy Technology Data Exchange (ETDEWEB)

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  13. Understanding chemical-potential-related transient pore-pressure response to improve real-time borehole (in)stability predictions

    Energy Technology Data Exchange (ETDEWEB)

    Tare, U.A.; Mody, F.K.; Mese, A.I. [Halliburton Energy Services, Cairo (Egypt)

    2000-11-01

    Experimental studies were conducted to explain the concept of a real-time wellbore (in)stability logging methodology. The role of the chemical potential of drilling fluids on transient pore pressure and time-dependent rock property alterations of shale formations was examined by providing details about a pore pressure transmission (PPT) test. The PPT experiments exposed formation (shale) cores under simulated downhole conditions to various salt solutions and drilling fluids. The main objective was to translate the results of the PPT tests to actual drilling conditions. A 20 per cent w/w calcium chloride solution was exposed to a Pierre II shale under high pressure in the PPT apparatus. The PPT test was used to estimate the impact of a drilling fluid on shale pore pressure. The efficiency of the salt solution/shale system was also estimated. Estimates of the dynamic rock properties were made based on the obtained acoustic data. It was determined that in order to accurately model time-dependent wellbore (in)stability in the field, it is important to calibrate representative shale core response to drilling fluids under realistic in-situ conditions. The 20 per cent w/w calcium chloride solution showed very low membrane efficiency of 4.45 per cent. It was concluded that changes in the shale dynamic rock properties as a function of test fluid exposure can be obtained from the simultaneous acquisition of sonic compression and shear wave velocity data. 12 refs., 5 figs.

  14. Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use

    Science.gov (United States)

    2011-01-01

    Background The objective of this work was to study the vitamins B1, B2, B6 and C stability in a pediatric formulation containing high amounts of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulfate, pediatric vitamins and trace elements under different conditions using developed and validated analytical methods. Methods The study was carried out during 72 h with formulations packaged in recommended storage temperature (4°C) and 25°C, with and without photoprotection. Results The results showed that the methodologies used for assessing the chemical stability of vitamins B1, B2, B6 and C in the formulation were selective, linear, precise and accurate. The vitamins could be considered stable in the formulation during the three days of study if stored at 4°C. When stored at 25°C vitamin C presented instability after 48 h. Conclusion The pediatric formulation containing high amount of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulphate, pediatric vitamins and trace elements packaged in bag-type trilaminate presented a shelf life of the 72 h, when maintained under refrigeration, between 2°C and 8°C. This shelf life was measured considering the vitamins studied. Further studies are needed including all the vitamins present in this formulation. PMID:21569609

  15. Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use

    Directory of Open Access Journals (Sweden)

    Cabral Lúcio M

    2011-05-01

    Full Text Available Abstract Background The objective of this work was to study the vitamins B1, B2, B6 and C stability in a pediatric formulation containing high amounts of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulfate, pediatric vitamins and trace elements under different conditions using developed and validated analytical methods. Methods The study was carried out during 72 h with formulations packaged in recommended storage temperature (4°C and 25°C, with and without photoprotection. Results The results showed that the methodologies used for assessing the chemical stability of vitamins B1, B2, B6 and C in the formulation were selective, linear, precise and accurate. The vitamins could be considered stable in the formulation during the three days of study if stored at 4°C. When stored at 25°C vitamin C presented instability after 48 h. Conclusion The pediatric formulation containing high amount of calcium in the presence of organic phosphate, amino acids, glucose, sodium chloride, magnesium sulphate, pediatric vitamins and trace elements packaged in bag-type trilaminate presented a shelf life of the 72 h, when maintained under refrigeration, between 2°C and 8°C. This shelf life was measured considering the vitamins studied. Further studies are needed including all the vitamins present in this formulation.

  16. Chemical Synthesis of Porous Barium Titanate Thin Film and Thermal Stabilization of Ferroelectric Phase by Porosity-Induced Strain.

    Science.gov (United States)

    Suzuki, Norihiro; Osada, Minoru; Billah, Motasim; Bando, Yoshio; Yamauchi, Yusuke; Hossain, Shahriar A

    2018-03-27

    Barium titanate (BaTiO3, hereafter BT) is an established ferroelectric material first discovered in the 1940s and still widely used because of its well-balanced ferroelectricity, piezoelectricity, and dielectric constant. In addition, BT does not contain any toxic elements. Therefore, it is considered to be an eco-friendly material, which has attracted considerable interest as a replacement for lead zirconate titanate (PZT). However, bulk BT loses its ferroelectricity at approximately 130 °C, thus, it cannot be used at high temperatures. Because of the growing demand for high-temperature ferroelectric materials, it is important to enhance the thermal stability of ferroelectricity in BT. In previous studies, strain originating from the lattice mismatch at hetero-interfaces has been used. However, the sample preparation in this approach requires complicated and expensive physical processes, which are undesirable for practical applications. In this study, we propose a chemical synthesis of a porous material as an alternative means of introducing strain. We synthesized a porous BT thin film using a surfactant-assisted sol-gel method, in which self-assembled amphipathic surfactant micelles were used as an organic template. Through a series of studies, we clarified that the introduction of pores had a similar effect on distorting the BT crystal lattice, to that of a hetero-interface, leading to the enhancement and stabilization of ferroelectricity. Owing to its simplicity and cost effectiveness, this fabrication process has considerable advantages over conventional methods.

  17. Solar pond for heating anaerobic digesters

    International Nuclear Information System (INIS)

    Song Kehui; Li Shensheng

    1991-10-01

    A theoretical analysis and numerical results calculated for solar pond heating anaerobic digesters in Beijing area in China are presented. The effect of temperature rise is evident and rather steady. 3 refs, 1 fig., 1 tab

  18. South Bay Salt Pond Mercury Studies Project

    Science.gov (United States)

    Information about the SFBWQP South Bay Salt Pond Mercury Studies Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  19. Solar pond design for Arabian Gulf conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hassab, M.A.; Tag, I.A.; Jassim, I.A.; Al-Juburi, F.Y.

    1987-01-01

    Collection and storage of solar energy in salt gradient solar ponds under conditions of high ambient and ground temperatures and all year-round sunny weather are investigated theoretically. A transient model based on measured local environmental conditions is developed to predict solar transmission, temperature distribution and salt distribution inside the pond for any day of the year. In the model the effects of heat dissipation into the ground, bottom reflection, pond dimensions, load extraction and variation of the pond's physical properties with temperature and concentration are investigated. The generated non-linear coupled system of heat and salt concentration equations for the composite media, considered to have isothermal boundary conditions, is solved numerically using the implicit finite-difference scheme.

  20. Musculoskeletal disorder survey for pond workers

    Science.gov (United States)

    Maryani, A.; Partiwi, S. G.; Dewi, H. N. F.

    2018-04-01

    Mucsuloskeletal disorder will affect worker performance and become serious injury when ignored, so that workers cannot work normally. Therefore, an effective strategy plan is needed to reduce the risk of musculoskeletal disorder. A pond worker is profession with high risk of physical complain. Four main activities are ponds preparation, seed distribution, pond maintenance, and harvesting. The methods employed in this current musculoskeletal disorder survey are questionnaire and interview. The result from 73 questionnaires shown that most of pond workers were working for 7 days a week. Prevalence physical complain are on neck, shoulders, upper back, lower back, and knees. The level of perceived complaint is moderate pain. However, most of them do not contact therapists or physicians. Therefore it is necessary to improve the working methods to be able to reduce physical complains due to musculoskeletal disorder.

  1. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Science.gov (United States)

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  2. Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations.

    Science.gov (United States)

    Brange, J; Langkjaer, L; Havelund, S; Vølund, A

    1992-06-01

    Hydrolysis of insulin has been studied during storage of various preparations at different temperatures. Insulin deteriorates rapidly in acid solutions due to extensive deamidation at residue AsnA21. In neutral formulations deamidation takes place at residue AsnB3 at a substantially reduced rate under formation of a mixture of isoAsp and Asp derivatives. The rate of hydrolysis at B3 is independent of the strength of the preparation, and in most cases the species of insulin, but varies with storage temperature and formulation. Total transformation at B3 is considerably reduced when insulin is in the crystalline as compared to the amorphous or soluble state, indicating that formation of the rate-limiting cyclic imide decreases when the flexibility of the tertiary structure is reduced. Neutral solutions containing phenol showed reduced deamidation probably because of a stabilizing effect of phenol on the tertiary structure (alpha-helix formation) around the deamidating residue, resulting in a reduced probability for formation of the intermediate imide. The ratio of isoAsp/Asp derivative was independent of time and temperature, suggesting a pathway involving only intermediate imide formation, without any direct side-chain hydrolysis. However, increasing formation of Asp relative to isoAsp derivative was observed with decreasing flexibility of the insulin three-dimensional structure in the formulation. In certain crystalline suspensions a cleavage of the peptide bond A8-A9 was observed. Formation of this split product is species dependent: bovine greater than porcine greater than human insulin. The hydrolytic cleavage of the peptide backbone takes place only in preparations containing rhombohedral crystals in addition to free zinc ions.

  3. Effect of impregnation of ZrO2 on the chemical stability and the superconductivity of Y- and Bi-systems

    International Nuclear Information System (INIS)

    Muroya, Masaaki; Minamiyama, Hideaki

    1994-01-01

    The results are given concerning the influence of impregnation of Zr on chemical stability and superconductivity of YBa 2 (Cu 1-x · Zr x ) 3 O 7-y (123-system) and Bi 1.84 Zr x Pb 0.34 Sr 1.91 Ca 2.03 Cu 3.06 O y (2223-system) superconductors, when the samples are contacted with the solutions of acid (pH3), distilled water (pH5.6) and base (pH9), where x = 0-0.35. It is concluded that the low chemical stability was found in the case of YBZCO, barium hydroxide and/or barium carbonate were precipitated into the solutions, even though mechanical strength was increased by impregnation of Zr, and the chemical stability of Bi-system is high compared with that of the Y-system. 8 refs., 5 figs

  4. Wintertime Emissions from Produced Water Ponds

    Science.gov (United States)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond

  5. Chemical Composition and Storage Stability of Beef burger Steaks as Influenced by Cooking and Irradiation

    International Nuclear Information System (INIS)

    Tawfik, S.S.; El kabbani, H.M.; Sallam, M.H.; Attia, A.I.

    2007-01-01

    Meat industry in Egypt has a great economic potential, but till now it has not received adequate attention. Beef burgers were prepared (50 g, 1 cm thick steaks) and aerobically packaged into polyethylene pages then divided into control, cooking and gamma-irradiated (3 and 4 kGy) groups. Samples stored at (5±degree c) and periodically judged after 5, 10, 15, 20,25 and 30 days. The results showed that irradiation increased the shelf life of stored cooked beef burger, as compared to control samples. In addition, the dose of 3 kGy is considered the most adequate for irradiation of this meat product because it obtained the same results reflected by 4 kGy. The microbiological, chemical and sensorial testing for stored cooking and irradiated beef burger steaks were examined according an experimental design presented conditions that were adequate for human consumption of this product during the refrigeration storage periods. For the non-irradiated beef burger samples, bacterial contamination was the main limiting factor with respect to the shelf life, whereas for the irradiated beef burger samples this factor was lipid oxidation. Conclusion: The cooking before food irradiation may be of practical efficacy in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat products. Recommendation: The necessity for a proper preservation method for marketing the processing beef burger steaks in each of its numerous retail markets should be established central irradiation units for processing and packing before distribution in these retail markets

  6. UHS, Ultimate Heat Sink Cooling Pond Analysis

    International Nuclear Information System (INIS)

    Codell, R.; Nuttle, W.K.

    1998-01-01

    1 - Description of program or function: Three programs model performance of an ultimate heat sink cooling pond. National Weather Service data is read and analyzed to predict periods of lowest cooling performance and highest evaporative loss. The data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. Five programs model performance of an ultimate heat sink spray pond. The cooling performance, evaporative water loss, and drift water loss as a function of wind speed are estimated for a spray field. These estimates are used in conjunction with National Weather Service data to predict periods of lowest cooling performance and highest evaporative loss. This data is compared to local site data for significant differences. Then the maximum pond temperature is predicted. 2 - Method of solution: The transfer of heat and water vapor is modeled using an equilibrium temperature procedure for an UHS cooling pond. The UHS spray pond model considers heat, mass, and momentum transfer from a single water drop with the surrounding air, and modification of the surrounding air resulting from the heat, mass, and momentum transfer from many drops in different parts of a spray field. 3 - Restrictions on the complexity of the problem: The program SPRCO uses RANF, a uniform random number generator which is an intrinsic function on the CDC. All programs except COMET use the NAMELIST statement, which is non standard. Otherwise these programs conform to the ANSI Fortran 77 standard. The meteorological data scanning procedure requires tens of years of recorded data to be effective. The models and methods, provided as useful tool for UHS analyses of cooling ponds and spray ponds, are intended as guidelines only. Use of these methods does not automatically assure NRC approval, nor are they required procedures for nuclear-power-plant licensing

  7. Electronic parameters and top surface chemical stability of RbPb{sub 2}Br{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kesler, V.G. [Laboratory of Physical Principles for Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Pokrovsky, L.D. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Tarasova, A.Yu. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer Bridgman growth of RbPb{sub 2}Br{sub 5} crystal. Black-Right-Pointing-Pointer Electronic structure measurements with XPS. Black-Right-Pointing-Pointer Optical crystalline surface fabrication. - Abstract: The RbPb{sub 2}Br{sub 5} crystal has been grown by Bridgman method. The electronic structure of RbPb{sub 2}Br{sub 5} has been measured with XPS for a powder sample. High chemical stability of RbPb{sub 2}Br{sub 5} surface is verified by weak intensity of O 1s core level recorded by XPS and structural RHEED measurements. Chemical bonding effects have been observed by the comparative analysis of element core levels and crystal structure of RbPb{sub 2}Br{sub 5} and several rubidium- and lead-containing bromides using binding energy difference parameters {Delta}{sub Rb} = (BE Rb 3d - BE Br 3d) and {Delta}{sub Pb} = (BE Pb 4f{sub 7/2} - BE Br 3d).

  8. Optimization of Bicomponent Electrospun Fibers for Therapeutic Use: Post-Treatments to Improve Chemical and Biological Stability

    Directory of Open Access Journals (Sweden)

    Antonio Papa

    2017-10-01

    Full Text Available Bicomponent electrospun nanofibers based on the combination of synthetic (i.e., aliphatic polyesters such as polycaprolactone (PCL and natural proteins (i.e., gelatin have been extensively investigated as temporary platforms to instruct cells by the release of molecular/pharmaceutical signals for the regeneration of several tissues. Here, water soluble proteins (i.e., gelatin, strictly embedded to PCL, act as carriers of bioactive molecules, thus improving bioavailability and supporting cell activities during in vitro regeneration. However, these proteins are rapidly digested by enzymes, locally produced by many different cell types, both in vitro and in vivo, with significant drawbacks in the control of molecular release. Hence, we have investigated three post-processing strategies based on the use of different crosslinking agents—(1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride (EDC, glyceraldehyde (GC, and 1,4-butanediol diglycidyl ether (BDDGE—to delay the dissolution time of gelatin macromolecules from bicomponent fibers. All of the qualitative (i.e., SEM, TGA and quantitative (i.e., Trinitrobenzene sulfonate (TNBS and bicinchoninic acid (BCA assays morphological/chemical analyses as well as biocompatibility assays indicate that EDC crosslinking improves the chemical stability of bicomponent fibers at 37 °C and provides a more efficient encapsulation and controlled sustained release of drug, thus resulting in the best post-treatment to design bio-inspired fibrous platforms for the extended in vitro release of drugs.

  9. Thermal stability and chemical bonding states of AlOxNy/Si gate stacks revealed by synchrotron radiation photoemission spectroscopy

    International Nuclear Information System (INIS)

    He, G.; Toyoda, S.; Shimogaki, Y.; Oshima, M.

    2010-01-01

    Annealing-temperature dependence of the thermal stability and chemical bonding states of AlO x N y /SiO 2 /Si gate stacks grown by metalorganic chemical vapor deposition (MOCVD) using new chemistry was investigated by synchrotron radiation photoemission spectroscopy (SRPES). Results have confirmed the formation of the AlN and AlNO compounds in the as-deposited samples. Annealing the AlO x N y samples in N 2 ambient in 600-800 deg. C promotes the formation of SiO 2 component. Meanwhile, there is no formation of Al-O-Si and Al-Si binding states, suggesting no interdiffusion of Al with the Si substrate. A thermally induced reaction between Si and AlO x N y to form volatile SiO and Al 2 O is suggested to be responsible for the full disappearance of the Al component that accompanies annealing at annealing temperature of 1000 deg. C. The released N due to the breakage of the Al-N bonding will react with the SiO 2 interfacial layer and lead to the formation of the Si 3 -N-O/Si 2 -N-O components at the top of Si substrate. These results indicate high temperature processing induced evolution of the interfacial chemistry and application range of AlO x N y /Si gate stacks in future CMOS devices.

  10. Optimization of Bicomponent Electrospun Fibers for Therapeutic Use: Post-Treatments to Improve Chemical and Biological Stability.

    Science.gov (United States)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2017-10-16

    Bicomponent electrospun nanofibers based on the combination of synthetic (i.e., aliphatic polyesters such as polycaprolactone (PCL)) and natural proteins (i.e., gelatin) have been extensively investigated as temporary platforms to instruct cells by the release of molecular/pharmaceutical signals for the regeneration of several tissues. Here, water soluble proteins (i.e., gelatin), strictly embedded to PCL, act as carriers of bioactive molecules, thus improving bioavailability and supporting cell activities during in vitro regeneration. However, these proteins are rapidly digested by enzymes, locally produced by many different cell types, both in vitro and in vivo, with significant drawbacks in the control of molecular release. Hence, we have investigated three post-processing strategies based on the use of different crosslinking agents-(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) (EDC), glyceraldehyde (GC), and 1,4-butanediol diglycidyl ether (BDDGE)-to delay the dissolution time of gelatin macromolecules from bicomponent fibers. All of the qualitative (i.e., SEM, TGA) and quantitative (i.e., Trinitrobenzene sulfonate (TNBS) and bicinchoninic acid (BCA) assays) morphological/chemical analyses as well as biocompatibility assays indicate that EDC crosslinking improves the chemical stability of bicomponent fibers at 37 °C and provides a more efficient encapsulation and controlled sustained release of drug, thus resulting in the best post-treatment to design bio-inspired fibrous platforms for the extended in vitro release of drugs.

  11. Hydrodynamic evaluation of a full-scale facultative pond by computational fluid dynamics (CFD) and field measurements.

    Science.gov (United States)

    Passos, Ricardo Gomes; von Sperling, Marcos; Ribeiro, Thiago Bressani

    2014-01-01

    Knowledge of the hydraulic behaviour is very important in the characterization of a stabilization pond, since pond hydrodynamics plays a fundamental role in treatment efficiency. An advanced hydrodynamics characterization may be achieved by carrying out measurements with tracers, dyes and drogues or using mathematical simulation employing computational fluid dynamics (CFD). The current study involved experimental determinations and mathematical simulations of a full-scale facultative pond in Brazil. A 3D CFD model showed major flow lines, degree of dispersion, dead zones and short circuit regions in the pond. Drogue tracking, wind measurements and dye dispersion were also used in order to obtain information about the actual flow in the pond and as a means of assessing the performance of the CFD model. The drogue, designed and built as part of this research, and which included a geographical positioning system (GPS), presented very satisfactory results. The CFD modelling has proven to be very useful in the evaluation of the hydrodynamic conditions of the facultative pond. A virtual tracer test allowed an estimation of the real mean hydraulic retention time and mixing conditions in the pond. The computational model in CFD corresponded well to what was verified in the field.

  12. Spinel-structured surface layers for facile Li ion transport and improved chemical stability of lithium manganese oxide spinel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae Ri [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Seo, Hyo Ree; Lee, Boeun; Cho, Byung Won [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Kwan-Young [Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Oh, Si Hyoung, E-mail: sho74@kist.re.kr [Center for Energy Convergence Research, Korea Institute of Science Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2017-01-15

    Graphical abstract: Strategically-designed spinel-structured nano-scale surface layer, LiM{sub x}Mn{sup IV}{sub 1−x}O{sub 4}, featuring a high Li{sup +} ion conductivity and a good chemical stability was applied on Al-doped LiMn{sub 2}O{sub 4} spinel for the drastic improvement of the electrochemical performance at the elevated temperature as a promising cathode material for lithium rechargeable batteries. - Highlights: • Spinel-structured surface layer with a high Li-ion conductivity and a good chemical stability was prepared. • Simple wet process was developed to apply nano-scale surface layer on aluminum doped lithium manganese oxide spinel. • The properties of nano-scale surface layer were characterized by analytical tools including GITT, HR-TEM and XAS. • Materials with surface coating layer exhibit an excellent electrochemical performance at the elevated temperature. - Abstract: Li-ion conducting spinel-structured oxide layer with a manganese oxidation state close to being tetravalent was prepared on aluminum-doped lithium manganese oxide spinel for improving the electrochemical performances at the elevated temperatures. This nanoscale surface layer provides a good ionic conduction path for lithium ion transport to the core and also serves as an excellent chemical barrier for protecting the high-capacity core material from manganese dissolution into the electrolyte. In this work, a simple wet process was employed to prepare thin LiAlMnO{sub 4} and LiMg{sub 0.5}Mn{sub 1.5}O{sub 4} layers on the surface of LiAl{sub 0.1}Mn{sub 1.9}O{sub 4}. X-ray absorption studies revealed an oxidation state close to tetravalent manganese on the surface layer of coated materials. Materials with these surface coating layers exhibited excellent capacity retentions superior to the bare material, without undermining the lithium ion transport characteristics and the high rate performances.

  13. Sensory and chemical stability in coated peanuts with the addition of essential oils and synthetic antioxidants

    Directory of Open Access Journals (Sweden)

    Olmedo, R. H.

    2012-03-01

    Full Text Available The objective of this work was to evaluate the antioxidant effect of essential oils on the oxidative stability of coated peanuts. Untreated coated peanuts (CP and treated coated peanuts with the addition of rosemary (CP-R, oregano (CP-O and laurel (CP-L essential oils and BHT (CPBHT were prepared. Peroxide values (PV and p-anisidine values (AV and the intensity ratings of sensory attributes by descriptive analysis were measured during 112 days of storage at room temperature (23°C. CP-BHT exhibited the lowest PV and AV increase. CP-R, CP-O and CP-L showed lower rates of increase in PV and AV than CP. The oxidized and cardboard flavor intensity ratings increased much more in CP during storage than the other studied products. CPBHT also showed the lowest increase in the intensity ratings of these sensory attributes. Three essential oils, namely, laurel, oregano and rosemary showed antioxidant activity and increased the shelf life of coated peanuts.

    El objetivo de este trabajo fue evaluar el efecto antioxidante de aceites esenciales sobre la estabilidad oxidativa en maní recubiertos. Se prepararon maníes recubiertos sin agregados (CP, y con el agregado de aceites esenciales de romero (CP-R, orégano (CP-O y laurel (CP-L y BHT (CPBHT. Se midieron, durante 112 días de almacenamiento, los valores de peróxidos (PV y p-anisidina (AV, y las intensidades de atributos sensoriales mediante análisis descriptivo. CP-BHT presentó el menor valor de PV y AV. CP-R, CP-O y CP-L tuvieron mayor PV y AV respecto a CP. Los valores de intensidad del sabor oxidado y cartón tuvieron un mayor incremento en CP durante el almacenamiento con respecto a los otros productos estudiados. La muestra CP-BHT también mostró los menores valores de intensidad de estos atributos sensoriales. Los aceites esenciales de laurel, orégano y romero presentaron actividad antioxidante e incrementaron la vida útil del maní recubierto.

  14. Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments.

    Directory of Open Access Journals (Sweden)

    Julianne M O'Reilly-Wapstra

    Full Text Available Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E. We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h(2op = 0.24 to high (e.g., macrocarpal G h(2op = 0.48 narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.

  15. Sampling and Hydrogeology of the Vadose Zone Beneath the 300 Area Process Ponds

    International Nuclear Information System (INIS)

    Bjornstad, Bruce N.

    2004-01-01

    Four open pits were dug with a backhoe into the vadose zone beneath the former 300 Area Process Ponds in April 2003. Samples were collected about every 2 feet for physical, chemical, and/or microbiological characterization. This reports presents a stratigraphic and geohydrologic summary of the four excavations

  16. Avaliação de métodos espectrofotométricos para determinação de proteína em amostras de lagoas de estabilização Evaluation of spectrophotometric methods for protein determination in waste stabilization ponds sample

    Directory of Open Access Journals (Sweden)

    Adriana Cristina Poli Miwa

    2008-06-01

    Full Text Available Esta pesquisa teve como objetivo principal comparar cinco métodos espectrofotométricos para determinação de proteínas em amostras provenientes de estações de tratamento de efluentes sanitários. O intuito foi definir uma metodologia de aplicação rápida, fácil e confiável para este tipo de amostra. As lagoas de estabilização, como sistemas de tratamento biológico, têm como principais constituintes proteínas, carboidratos e lipídeos, mas também apresentam muitos compostos interferentes, como por exemplo, uréia, detergentes e compostos fenólicos, que podem prejudicar a quantificação de tais parâmetros. Os métodos analisados foram Lowry, Biureto, Bradford e Ácido bicinconínico. O método de Lowry mostrou-se mais adequado às características da amostra, com boa reprodutibilidade, reagente específico, custo moderado e ausência de substancias interferentes.This research had as main objective to compare five spectrophotometric methods for protein determination in samples proceeding from sanitary effluent of treatment plant. Intention was to define a methodology that is of fast and easy and reliable application for this type of sample. The stabilization ponds, as systems of biological treatment, have as main constituent proteins, carbohydrates and lipids, but also they present many interfering composites, for example, phenolic urea, detergents and composites, that can harm the quantification of such parameters. The analyzed methods had been Lowry, Biuret, Bradford and Acid bicinconinic. The method of Lowry revealed more adequate to the characteristics of the sample, with good reproducibility, specific reagent, moderate cost and absence of interfering substance.

  17. Eficiência da interação biodigestor e lagoas de estabilização na remoção de poluentes em dejetos de suínos Efficiency of biodigester and stabilization pond interaction in removal of swine manure pollutants

    Directory of Open Access Journals (Sweden)

    Marcelo Vivan

    2010-03-01

    Full Text Available A suinocultura é considerada atividade de alto poder poluidor, face ao elevado número de contaminantes nos seus efluentes, maximizado com o modelo de criação intensiva. Com o objetivo de contribuir para a reversão deste quadro, o presente trabalho teve a finalidade de avaliar o desempenho de um sistema de tratamento composto de um biodigestor e lagoas de estabilização (lagoa anaeróbia, uma facultativa e duas lagoas de maturação ligadas em série alimentadas com lodo proveniente de uma estação de tratamento de dejetos de suínos. O sistema mostrou-se eficiente para estabilização do resíduo, principalmente da carga orgânica; no entanto, apresenta algumas limitações para redução de nutrientes, sobretudo do nitrogênio, pela contribuição de volatilização de amônia.Swine production is considered an activity with a high environmental impact, due to the presence of a high number of contaminants in the effluents that come out from the piggery. In this study the feasibility of a combined process biodigestor and stabilization ponds (anaerobic, facultative and maturation connected in sequence fed with sludge from a swine manure treatment unit was evaluated. The system showed itsetf as efficient in the removal of organic matter, however it presented some limitations in removing nutrients, especially nitrogen, mainly due to the contribution of volatilization of ammonia.

  18. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  19. Study on the chemical stability of catalyst counter electrodes for dye-sensitized solar cells using a simple X-ray photoelectron spectroscopy-based method

    Science.gov (United States)

    Yun, Dong-Jin; Kim, Jungmin; Chung, Jongwon; Park, SungHoon; Baek, WoonJoong; Kim, Yongsu; Kim, Seongheon; Kwon, Young-Nam; Chung, JaeGwan; Kyoung, Yongkoo; Kim, Ki-Hong; Heo, Sung

    2014-12-01

    Since the chemical/electrical stability and catalytic activity are essential conditions for catalyst counter electrodes (CCEs) in dye-sensitized solar cells (DSSCs), a simple dipping method is employed for evaluating the chemical stability of CCE candidates in an iodine-based liquid electrolyte (I-electrolyte). The chemical stabilities and transition mechanisms of the CCEs are successfully analyzed by studying the chemical transitions in X-ray photoelectron spectroscopy (XPS) core levels after dipping in the I-electrolyte. All films including the Pt film undergo degradation depending on the type of material. While dipping in the I-electrolyte, Cu and Au films scarcely dissolves as their respective metal sulfides, and the Al film gradually loss its metallic properties owing to Al2O3 growth. On the other hand, a previously unknown transition mechanism of organic conducting CCEs is determined based on the proposed method. Compared to the other metal films, the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and multi wall carbon nanotube (MWCNT)/PEDOT:PSS films undergo an entirely unique transition mechanism, which results from the chemical adsorption of organic molecules onto PEDOT:PSS molecules in the I-electrolyte. Consequently, these chemical structure transitions correspond well to the degrees of alternation in the electrical properties of DSSCs with all the investigated CCEs.

  20. Sunlight inactivation of Escherichia coli in waste stabilization microcosms in a sahelian region (Ouagadougou, Burkina Faso).

    Science.gov (United States)

    Maïga, Ynoussa; Denyigba, Kokou; Wethe, Joseph; Ouattara, Aboubakar Sidiki

    2009-02-09

    Experiments on sunlight inactivation of Escherichia coli were conducted from November 2006 to June 2007 in eight outdoors microcosms with different depths filled with maturation pond wastewater in order to determine pond depth influence on sunlight inactivation of E. coli. The long-term aim was to maximize sunlight inactivation of waterborne pathogens in waste stabilization ponds (WSPs) in sahelian regions where number of sunny days enable longer exposure of wastewater to sunlight. The inactivation was followed during daylight from 8.00 h to 17.00 h and during the night. Sunlight inactivation rates (K(S)), as a function of cumulative global solar radiation (insolation), were 16 and 24 times higher than the corresponding dark inactivation (K(D)) rates, respectively in cold and warm season. In warm season, E. coli was inactivated far more rapidly. Inactivation of E. coli follows the evolution of radiation during the day. In shallow depth microcosms, E. coli was inactivated far more rapidly than in high depth microcosms. The physical chemical parameters [pH, dissolved oxygen (DO)] of microcosms water were higher in shallow depth microcosms than in high depth microcosms suggesting a synergistic effect of sunlight and these parameters to damage E. coli. To increase the efficiency of the elimination of waterborne bacteria, the use of maturation ponds with intermediate depths (0.4m) would be advisable in view of the high temperatures and thus evaporation recorded in sahelian regions.

  1. Limnology of Kharland (saline) ponds of Ratnagiri, Maharashtra in relation to prawn culture potential.

    Science.gov (United States)

    Saksena, D N; Gaidhane, D M; Singh, H

    2006-01-01

    The coastal saline soils, Kharlands, have great potential for their use in aquaculture. This study has been taken up to understand the limnology of the ponds in Kharland area for assessing their prawn culture potential. This study was carried out during September, 1999 to August, 2001. Each Kharland pond has an area of 0.045 hectare. During the study, depth of pond water was 47.7 to 120.0 cm, temperature varied from 25.7 to 34.5 degrees C; transparency from nil to 65.0 cm; specific conductivity from 1.78 to 94.5 microS.cm(-1); total dissolved solids from 0.89 to 27.55 ppt; pH 5.42 to 8.25; dissolved oxygen 1.6 to 8 mg.l(-1); free carbon dioxide 10.00 to 44.00 mg.l(-1); total alkalinity 5.00 to 142.00 mg.l(-1); salinity 0.45 to 39.55 ppt; total hardness 245.00 to 5945.00; calcium 56.05 to 1827.6; magnesium 110.74 to 4507.75 mg.l(-1); dissolved organic matter 1.45 to 9.68 mg.l(-1); ammonia 1.00-8.00 microg.l(-1); nitrite nil to 20.00 micro l(-1) and nitrate 7.5 to 17.5 microg.l(-1). These Kharland ponds are unique in physio-chemical characteristics during their seasonal cycle. From July to October, these ponds have nearly freshwater while from November to May pond water becomes saline. Thus, there is a great possibility of taking up monoculture of both the freshwater and brackish water prawns as well as polyculture of prawns and fishes in the Kharland ponds.

  2. Heat, Acid and Chemically Induced Unfolding Pathways, Conformational Stability and Structure-Function Relationship in Wheat α-Amylase.

    Directory of Open Access Journals (Sweden)

    Kritika Singh

    Full Text Available Wheat α-amylase, a multi-domain protein with immense industrial applications, belongs to α+β class of proteins with native molecular mass of 32 kDa. In the present study, the pathways leading to denaturation and the relevant unfolded states of this multi-domain, robust enzyme from wheat were discerned under the influence of temperature, pH and chemical denaturants. The structural and functional aspects along with thermodynamic parameters for α-amylase unfolding were probed and analyzed using fluorescence, circular dichroism and enzyme assay methods. The enzyme exhibited remarkable stability up to 70°C with tendency to aggregate at higher temperature. Acid induced unfolding was also incomplete with respect to the structural content of the enzyme. Strong ANS binding at pH 2.0 suggested the existence of a partially unfolded intermediate state. The enzyme was structurally and functionally stable in the pH range 4.0-9.0 with 88% recovery of hydrolytic activity. Careful examination of biophysical properties of intermediate states populated in urea and GdHCl induced denaturation suggests that α-amylase unfolding undergoes irreversible and non-coincidental cooperative transitions, as opposed to previous reports of two-state unfolding. Our investigation highlights several structural features of the enzyme in relation to its catalytic activity. Since, α-amylase has been comprehensively exploited for use in a range of starch-based industries, in addition to its physiological significance in plants and animals, knowledge regarding its stability and folding aspects will promote its biotechnological applications.

  3. Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption.

    Science.gov (United States)

    Zhang, Feng; Sautter, Ken; Larsen, Adam M; Findley, Daniel A; Davis, Robert C; Samha, Hussein; Linford, Matthew R

    2010-09-21

    Covalently bonded monolayers of two monofunctional aminosilanes (3-aminopropyldimethylethoxysilane, APDMES, and 3-aminopropyldiisopropylethoxysilane, APDIPES) and one trifunctional aminosilane (3-aminopropyltriethoxysilane, APTES) have been deposited on dehydrated silicon substrates by chemical vapor deposition (CVD) at 150 °C and low pressure (a few Torr) using reproducible equipment. Standard surface analytical techniques such as x-ray photoelectron spectroscopy (XPS), contact angle goniometry, spectroscopic ellipsometry, atomic force microscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) have been employed to characterize the resulting films. These methods indicate that essentially constant surface coverages are obtained over a wide range of gas phase concentrations of the aminosilanes. XPS data further indicate that the N1s/Si2p ratio is higher after CVD with the trifunctional silane (APTES) compared to the monofunctional ones, with a higher N1s/Si2p ratio for APDMES compared to that for APDIPES. AFM images show an average surface roughness of 0.12- 0.15 nm among all three aminosilane films. Stability tests indicate that APDIPES films retain most of their integrity at pH 10 for several hours and are more stable than APTES or APDMES layers. The films also showed good stability against storage in the laboratory. ToF-SIMS of these samples showed expected peaks, such as CN(-), as well as CNO(-), which may arise from an interaction between monolayer amine groups and silanols. Optical absorption measurements on adsorbed cyanine dye at the surface of the aminosilane films show the formation of dimer aggregates on the surface. This is further supported by ellipsometry measurements. The concentration of dye on each surface appears to be consistent with the density of the amines.

  4. Physical-chemical characterization and stability study of alpha-trypsin at ph 3.0 by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.M.C.; Santana, M.A.; Gomide, F.T.F.; Oliveira, J.S.; Vilas Boas, F.A.S.; Santoro, M.M.; Teixera, K.N. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas (ICB). Dept. de Bioquimica e Imunologia; Miranda, A.A.C.; Biondi, I. [Universidade Estadual de Feira de Santana (UEFS), BA (Brazil). Dept. de Ciencias Biologicas; Vasconcelos, A.B.; Bemquerer, M.P. [EMBRAPA Recursos Geneticos e Biotecnologia, Brasilia, DF (Brazil). Parque Estacao Biologica (PqEB)

    2008-07-01

    Full text: {alpha}-Trypsin is a serine-protease with a polypeptide chain of 223 amino acid residues and six disulfide bridges. It is a globular protein with predominance of antiparallel {beta}-sheet secondary structure and it has two domains with similar structures. In the present work, a stability study of {alpha}-trypsin in the acid pH range was performed and physical-chemical denaturation parameters were measured by using differential scanning calorimetry (DSC). The {alpha}-trypsin has a shelf-life (t{sub 95%}) of about ten months at pH 3.0 and 4 deg C and its hydrolysis into the {psi}-trypsin isoform is negligible during six months as monitored by mass spectrometry (Micromass Q-ToF). The observed {delta}H{sub cal}/{delta}H{sub vH} ratio is close to unity for {alpha}-trypsin denaturation, which suggests the occurrence of a two-state transition, devoid of molten-globule intermediates. At pH 3.0, {alpha}-trypsin unfolded with T{sub m} 325.9 K and {delta}H= 99.10 kcal mol{sup -1}, and the change in heat capacity between the native and unfolded forms of the protein was estimated to be 1.96 {+-} 0.18 kcal mol{sup -1} K{sup -1}. The stability of {alpha}-trypsin calculated at 298 K and at pH 3.0 was {delta}G{sub U} = 6.10 kcal mol{sup -1}. These values are in the range expected for a small globular protein. These results show that the thermodynamic parameters for unfolding of {beta}-trypsin do not change substantially after its conversion to {alpha}-trypsin.

  5. A comparison between evaporation ponds and evaporation surfaces as a source of the concentrated salt brine for salt gradient maintenance at Tajoura solar pond

    International Nuclear Information System (INIS)

    Ramadan, Abdulghani M.; Agha, Khairy R.; Abughres, M.

    2012-01-01

    One of the main problems that negatively affect the operation of salt gradient solar ponds and influence its thermal stability is the maintenance of salt gradient profile. Evaporation pond (EP) is designed to generate the salt which lost upward salt diffusion from the lower convective zone (LCZ) of the solar pond. Another attractive method is the evaporation surface facility (ES). Regions with moderate to high precipitation favor Evaporation Surface over Evaporation Ponds. Dry climates will generally favor Evaporation Ponds for the brine re-concentration. In previous studies [1-3], the authors have shown that the (EP) of Tajoura's Experimental Solar Pond (TESP) is under sized and can provide only about 30% of the salt required by a Salt Gradient Solar Pond (SGSP). The anticipated size of (EP) was estimated and presented in those studies under different design conditions, including Summer, Autumn and Spring designs, while the winter design was excluded due to the low rates of net evaporation during the winter season. In addition, the results presented were predicted for the first three years of operation. The daily variations of brine concentration in the (EP) of (TESP) and those based on different designs were predicted and discussed under different scenarios. The quantities of brine provided by the evaporation pond and that required by SGSP were predicted for both cases of surface water flushing (fresh water and sea-water) under the different design conditions as shown in Table 1. This paper investigates the differences between (EP) and (ES) both as a source for salt brine generation by evaporation. The effect of (EP) depth on the area ratio and daily variations of salt concentrations for three years of operation is shown. Results show that evaporation can be a reasonable method for salt brine generation. Reducing the depth of (EP) improves the capability of (EP) for brine re-concentration. It also increases the (EP) surface area for the same quantity of

  6. Effect Of Chromium Nicotinate On Oxidative Stability, Chemical Composition And Meat Quality Of Growing-Finishing Pigs

    Directory of Open Access Journals (Sweden)

    Ondřej Bučko

    2015-12-01

    Full Text Available The effect of different organic sources of Cr on growth, feed efficiency and carcass value is known but there is a lack of information between chromium nicotinate (CrNic and pork quality. Therefore, purpose of this research was to investigate the effects of CrNic on chemical composition, quality and oxidative stability of pork meat. In the study, pigs of Large White breed (40 pcs were used. The pigs were divided into two groups, namely the control and the experimental of 20 pcs with equal number of barrows and gilts. The pigs were fed the same diet which consisted of three feed mixtures applied at the different growth phases, from 30 - 45 kg OS-03, 45 - 70 kg OS-04 and 70 - 100 kg OS-05. The pigs were allowed ad libitum access to feed and water. The diet of experimental group was supplemented with 0.75 mg.kg-1 CrNic in the form of chromium-inactivated yeast Saccharomyces cerevisiae. The fattening period in pigs lasted from 30 to 100 kg. The chromium supplementation led to a significantly higher content of chromium in longissimus thoracis muscle (LT of experimental pigs. In addition, the results showed a statistically significant difference (p ≤0.05 in retention of chromium in the LT, monounsaturated and omega-3 polyunsaturated fatty acids content in experimental group compared with control. Moreover, there was highly significant (p £0.05 difference in essential fatty acids, as well as in oxidative stability in 7 days, among the groups. The highly significant differences were also observed among sexes, namely in total water, protein and intramuscular fat contents, colour CIE b* in both times, and oxidative stability. However, physical-technological parameters (pH, drip loss, shear force and meat colour were not affected when pigs were fed the supplement. On the whole, the positive effect of chromium nicotinate in most of investigated parameters may be beneficial not only for pork industry but also for consumers. Normal 0 21 false false false

  7. Toad in the hole : Suncor finds amphibious life at tailings ponds

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2004-08-02

    Suncor, a giant oilsands operator, has discovered Canadian toads in five of its nine tailings ponds surveyed in 2002. The numbers are greater than any recorded in the boreal forests. Most are living in a dike along the company's oldest tailings pond which include slurries of sand, water, clay, residual bitumen and chemicals left from oilsands production. Reclamation efforts have involved emptying the tailings and filling the area with sand to create a combination of wet and dry lands. The presence of Canadian toads is a good indicator of environmental health. In the late 1990s, the species was among those listed at risk of declining levels. It is believed that the sandy soil layers in the reclamation ponds are ideal for toad hibernation. Suncor and Golder and Associations are currently examining the feasibility of having the reclaimed areas become future restorations of toad habitat.

  8. Assumed non-persistent environmental chemicals in human adipose tissue; matrix stability and correlation with levels measured in urine and serum

    DEFF Research Database (Denmark)

    Artacho-Cordón, F; Arrebola, J P; Nielsen, O

    2017-01-01

    The aim of this study was to (1) optimize a method for the measurement of parabens and phenols in adipose tissue, (2) evaluate the stability of chemical residues in adipose tissue samples, and (3) study correlations of these compounds in urine, serum, and adipose tissue. Samples were obtained fro...

  9. Technology demonstration assessment report for X-701B Holding Pond

    International Nuclear Information System (INIS)

    1992-07-01

    This Technology Demonstration Assessment Report (TDAR) was developed to evaluate and recommend the most feasible approach for cleanup of contaminated Minford soils below the X-701B Holding Pond and to summarize closure activities at the Portsmouth Gaseous Diffusion Plant (PORTS)X-701B Holding Pond(X-701B)site. In this TDAR, the recommended alternative and the activities for closure of the X-701B site are discussed. Four treatment technologies chosen for the TD, along with a contingent design, were evaluated to determine which approach would be appropriate for final closure of X-701B. These technologies address removal of soil contamination from the vadose zone and the saturated zone. The four technologies plus the Contingent Design evaluated were: In situ Soil Mixing with Solidification/Stabilization; In situ Soil Mixing with Isothermal Vapor Extraction; In situ Soil Mixing with Thermally Enhanced Vapor Extraction; In situ Soil Mixing with Peroxidation Destruction; and Contingent Closure. These technologies were evaluated according to their performance, reliability, implementability, safety, waste minimization, cost, and implementation time. Based on these criteria, a preferred treatment approach was recommended. The goal of the treatment approach is to apply the most appropriate technology demonstrated at X-231 B in order to reduce Volatile Organic Compounds (VOCs) in the saturated Minford soils directly beneath the X-701B Holding Pond. The closure schedule will include bid and award of two construction contracts, mobilization and demobilization, soil treatment, cap design, and cap construction. The total time required for soil treatment will be established based on actual performance of the soil treatment approach in the field

  10. Assesing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia

    Science.gov (United States)

    S'habou, Rakia; Zairi, Moncef; Kallel, Amjed; Aydi, Abdelwaheb; Ben Dhia, Hamed

    2009-08-01

    Olive oil is a typical and valuable agro-industrial product in Mediterranean countries. In Tunisia, olive mill wastewaters (OMW) reach an amount of about 1,000,000 t year-1 and constitute a serious organic pollution risk because of the high chemical oxygen demand values and the presence of phytotoxic and antibacterial polyphenols. OMW have been generally stored in pond sites to be eliminated by natural evaporation or valorised by spreading on cultivated soils or by composting. Many researches on the interactions of OMW with soils at laboratory scale (columns) have been reported, but less attention have been paid to the effect of OMW on soils at field scale. The aim of this work is to investigate an area used for >15 years as an uncontrolled OMW pond site. The transformations of soil properties and groundwater occurring during OMW storage were characterised by the pH, phenolic contents, electrical conductivity (EC), moisture content and organic contents. The soil samples were taken from two borings and compared to those of a control one located near the pond site. Groundwater samples were taken on the accessible and nearest water wells to the evaporation ponds. The permeable silty and sandy layers in the site support the infiltration of OMW near the evaporation ponds. This infiltration has reached a depth of 6 m at a distance of almost 50 m laterally. The results show that the OMW infiltration in the subsoil has affected the pH, EC, organic content, phenolic compounds and the moisture.

  11. Models and observations of Arctic melt ponds

    Science.gov (United States)

    Golden, K. M.

    2016-12-01

    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  12. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    Science.gov (United States)

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Chemical stability of seven years aged cement-PET composite waste form containing radioactive borate waste simulates

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt); Tawfik, M.E. [Department of Polymers and Pigments, National Research Center, Dokki (Egypt); Bayoumi, T.A. [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt)

    2011-04-15

    Different samples of radioactive borate waste simulate [originating from pressurized water reactors (PWR)] have been prepared and solidified after mixing with cement-water extended polyester composite (CPC). The polymer-cement composite samples were prepared from recycled poly (ethylene terephthalate) (PET) waste and cement paste (water/cement ratio of 40%). The prepared samples were left to set at room temperature (25 deg. C {+-} 5) under humid conditions. After 28 days curing time the obtained specimens were kept in their molds to age for 7 years under ambient conditions. Cement-polymer composite waste form specimens (CPCW) have been subjected to leach tests for both {sup 137}Cs and {sup 60}Co radionuclides according to the method proposed by the International Atomic Energy Agency (IAEA). Leaching tests were justified under various factors that may exist within the disposal site (e.g. type of leachant, surrounding temperature, leachant behavior, the leachant volume to CPCW surface area...). The obtained data after 260 days of leaching revealed that after 7 years of aging the candidate cement-polymer composite (CPC) containing radioactive borate waste samples are characterized by adequate chemical stability required for the long-term disposal process.

  15. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    Science.gov (United States)

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  16. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    International Nuclear Information System (INIS)

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-01-01

    A rapid thermal anneal (RTA) in an NH 3 ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 0 C in NH 3 and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (≥1000 0 C) RTA in Ar completely converted W into the low resistivity (31 μΩ cm) tetragonal WSi 2 phase. In contrast, after a prior 900 0 C RTA in NH 3 , N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi 2 formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 0 C NH 3 anneal. The NH 3 -treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 0 C, at which point some increase in contact resistance was measured

  17. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-12-15

    A rapid thermal anneal (RTA) in an NH/sub 3/ ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 /sup 0/C in NH/sub 3/ and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (greater than or equal to1000 /sup 0/C) RTA in Ar completely converted W into the low resistivity (31 ..mu cap omega.. cm) tetragonal WSi/sub 2/ phase. In contrast, after a prior 900 /sup 0/C RTA in NH/sub 3/, N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi/sub 2/ formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 /sup 0/C NH/sub 3/ anneal. The NH/sub 3/-treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 /sup 0/C, at which point some increase in contact resistance was measured.

  18. The effects of flow-path modification on water-quality constituent retention in an urban stormwater detention pond and wetland system, Orlando, Florida

    Science.gov (United States)

    Gain, W.S.

    1996-01-01

    Changes in constituent retention in a wet stormwater-detention pond and wetland system in Orlando, Florida, were evaluated following the 1988 installation of a flow barrier which approximately doubled the flow path and increased detention time in the pond. The pond and wetland were arranged in series so that stormwater first enters the pond and overflows into the wetland before spilling over to the regional stream system. Several principal factors that contribute to constituent retention were examined, including changes in pond-water quality between storms, stormwater quality, and pond-water flushing during storms. A simple, analytical pond-water mixing model was used as the basis for interpreting changes in retention efficiencies caused by pond modification. Retention efficiencies were calculated by a modified event-mean concentration efficiency method using a minimum variance unbiased estimator approach. The results of this study generally support the hypothesis that changes in the geometry of stormwater treatment systems can significantly affect the constituent retention efficiency of the pond and wetland system. However, the results also indicate that these changes in efficiency are caused not only by changes in residence time, but also by changes in stormwater mixing and pond water flushing during storms. Additionally, the use of average efficiencies as indications of treatment effectiveness may fail to account for biases associated with sample distribution and independent physical properties of the system, such as the range and concentrations of constituents in stormwater inflows and stormwater volume. Changes in retention efficiencies varied among chemical constituents and were significantly different in the pond and wetland. Retention efficiency was related to inflow concentration for most constituents. Increased flushing of the pond after modification caused decreases in retention efficiencies for constituents that concentrate in the pond between storms

  19. Accumulation of Pollutants in Highway Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    single rain event. From the hindcast results it is possible to calculate mean water and pollutant loads. This method is commonly used in urban drainage systems for capacity analysis or for prediction of CSO's. The challenge is to develop a simplified and still accurate description of flow and transport......This PhD study deals with issues related to water and pollutant transport from highway surfaces caused by rain. It is essential in the study to apply methods and models in which improvements in relation to removal of pollutants can be identified and to be able to predict the yearly discharges....... Measurements of water and pollutant transport are carried out in different highway systems. A geometrically well-defined test pond is established, wherein the deposition of particulate matter can be measured. The result from the test pond is transferred to real detention ponds in which the three...

  20. Fate of Pyrethroids in Farmland Ponds

    DEFF Research Database (Denmark)

    Mogensen, B. B.; Sørensen, P. B.; Stuer-Lauridsen, F.

    Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively. The measur......Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively...

  1. Pond dyes are Culex mosquito oviposition attractants

    Directory of Open Access Journals (Sweden)

    Natali Ortiz Perea

    2017-05-01

    Full Text Available Background British mosquito population distribution, abundance, species composition and potential for mosquito disease transmission are intimately linked to the physical environment. The presence of ponds and water storage can significantly increase the density of particular mosquito species in the garden. Culex pipiens is the mosquito most commonly found in UK gardens and a potential vector of West Nile Virus WNV, although the current risk of transmission is low. However any factors that significantly change the distribution and population of C. pipiens are likely to impact subsequent risk of disease transmission. Pond dyes are used to control algal growth and improve aesthetics of still water reflecting surrounding planting. However, it is well documented that females of some species of mosquito prefer to lay eggs in dark water and/or containers of different colours and we predict that dyed ponds will be attractive to Culex mosquitoes. Methods Black pond dye was used in oviposition choice tests using wild-caught gravid C. pipiens. Larvae from wild-caught C. pipiens were also reared in the pond dye to determine whether it had any impact on survival. An emergence trap caught any adults that emerged from the water. Water butts (80 L were positioned around university glasshouses and woodland and treated with black pond dye or left undyed. Weekly sampling over a six month period through summer and autumn was performed to quantified numbers of larvae and pupae in each treatment and habitat. Results Gravid female Culex mosquitoes preferred to lay eggs in dyed water. This was highly significant in tests conducted under laboratory conditions and in a semi-field choice test. Despite this, survivorship in black dyed water was significantly reduced compared to undyed water. Seasonal analysis of wild larval and pupal numbers in two habitats with and without dye showed no impact of dye but a significant impact of season and habitat. Mosquitoes were more

  2. variation of some waste stabilization pond parameters with shape

    African Journals Online (AJOL)

    solids, oxygen demand and nutrient environment. ... quality guidelines both at low cost and with ... are not the best option for less developed ... Many models by Polprasert and Others, 1983; ... quality, design and dynamic, temperature profile, .... The variance determination represents and includes all points in the curve.

  3. The water quality and Cultivant enrichment potency of pond based on saprobic index at north coastal waters of Central Java, Indonesia

    Science.gov (United States)

    Hidayat, Jafron W.

    2018-05-01

    Central Java is one of many areas which has long coastline, especially in the Northern Coast of Java Island. Intertidal activities occurred at this area may affect the transport of material and energy from surroundings. Cultivation activity supplies many inputs, i.e. feeds, chemicals (vitamin and mineral), including pollutants from feces and unconsumed feeds that affects the environment. One of water management is done through bioremediation by using vegetative agents (soft rehabilitation), such as seaweed and mangrove stands. The implementation of soft rehabilitation is highly depend on the existing environmental conditions of the ponds and surrounding waters. Therefore, it is very important to identify the condition of those waters first. The purpose of this study is to identify the quality of waters in the north coast of Central Java. Besides, it is also to analyze the potency of enriching cultivated commodity (cultivant), as well as a soft remediation mechanism using seaweed. The study was conducted in the coastal areas of Central Java, mainly to the locations commonly practicing cultivation in the pond waters; namely Brebes, Pemalang, Semarang, Demak, Pati and Jepara. Data were taken by sampling at least at 3 different sites as repetition, included ponds, public irrigations and coastline waters. The water sample was taken as much as 30 lt and filtered using plankton net no 25. Biodiversity of Shannon-Wiener Index (H'), evenness index (e) and Saprobic Index were used to analyze the plankton data. Result showed that plankton diversity in Central Java coasts were varied generally between 10 – 28 species. The most widely found species were Oscillatoria sp, Rhizosolenia styliformes, Surirella sp and Lyngbia conferoides. The diversity index varied from 1.83 to 2.9 with the stability status were between small to medium. The saprobic index showed a value between 0.33 up to 2.27; which indicated very small up to lightly contaminated status. The biggest stability

  4. Sea Ice Melt Pond Data from the Canadian Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains observations of albedo, depth, and physical characteristics of melt ponds on sea ice, taken during the summer of 1994. The melt ponds studied...

  5. Valuing Multiple Benefits, and the Public Perception of SUDS Ponds

    Directory of Open Access Journals (Sweden)

    Joy Jarvie

    2017-02-01

    Full Text Available Understanding how the public perceive and value ponds is fundamental to appreciate the synergy between Sustainable urban Drainage (SUDS ponds and the multiple benefits they provide. This paper investigates this, through the application of a structured postal and online survey, for a case study area of Edinburgh, in the UK. It compares man-made ponds (including SUDS, and ponds with natural origins. The results from Whole Life Cost show that the benefits (based on Contingent Valuation exceed the CAPEX and OPEX costs for three of five artificial ponds studied. Benefits from natural (reference ponds exceed the replacement costs for a pond with the same surface area/catchment. This paper highlights the importance of monetising the multiple benefits from ponds.

  6. Chemical Characterization and Oxidative Stability of Medium- and Long-Chain Fatty Acid Profiles in Tree-Borne Seed Oils

    Directory of Open Access Journals (Sweden)

    Da-Som Kim

    2018-01-01

    Full Text Available This study was undertaken to evaluate chemical characteristics and oxidative stability of tree-borne seed oils. A total of 15 different fatty acids were identified in six tree-borne seed oils, which included seven types of saturated fatty acids, four types of monounsaturated fatty acids, and four types of polyunsaturated fatty acids. Japanese camphor tree (JCT had a high content of medium-chain fatty acids (97.94 ± 0.04%, in which fatty acid composition was distinct from those of the other five plant seed oils. Overall, contents of tocopherols, a type of fat-soluble vitamin, ranged between 3.82 ± 0.04 mg/100 g and 101.98 ± 1.34 mg/100 g, respectively. Phytosterol contents ranged from 117.77 ± 1.32 mg/100 g to 479.45 ± 4.27 mg/100 g, respectively. Of all tree-borne seed oils, β-sitosterol was the phytosterol at the highest concentration. Contents of unsaponifiables were between 0.13 ± 0.08 and 2.01 ± 0.02, and values of acid, peroxide, and p-anisidine were between 0.79 ± 0.01 and 38.94 ± 0.24 mg KOH/g, 3.53 ± 0.21 and 127.67 ± 1.79 meq/kg, and 2.07 ± 0.51 and 9.67 ± 0.25, respectively. Oxidative stability of tree-borne seed oils was assessed through measurement of oxidation-induction periods. These results should serve as a foundation to identify the potential of tree-borne seed oils in industrial application as well as in providing fundamental data.

  7. Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends.

    Science.gov (United States)

    Imran, Muhammad; Nadeem, Muhammad

    2015-10-29

    Partial hydrogenation process is used worldwide to produce shortening, baking, and pastry margarines for food applications. However, demand for such products is decreased during last decade due to their possible links to consumer health and disease. This has raised the need to replace hydrogenation with alternative acceptable interesterification process which has advantage in context of modifying the physico-chemical properties of edible fat-based products. Therefore, the main mandate of research was the development of functional fat through chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) mixtures. Blends were prepared in the proportions of 75:25 (T1), 50:50 (T2) and 25:75 (T3) of CaO:FHCSO (w/w). Interesterification was performed using sodium methoxide (0.2 %) as catalyst at 120 °C, under reduced pressure and constant agitation for 60 minutes. The non-interesterified and interesterified CaO:FHCSO blends were evaluated for triacylglycerol (TAG) composition, physico-chemical characteristics, oxidative stability and consumer acceptability at 0, 30 and 60 days of storage interval. The oleic acid (58.3 ± 0.6 %) was predominantly present in CaO while the contents of stearic acid (72 ± 0.8 %) were significantly higher in FHCSO. Maximum trisaturated (S3) contents (63.9 ± 0.5 %) were found in T3 while monounsaturated (S2U), diunsaturated (U2S) and triunsaturated (U3) contents were quite low in T2 and T3 before interesterification. A marked reduction in S3 and U3 contents with concomitant increase in S2U and U2S contents was observed for all CaO:FHCSO blends on interesterification. During storage, the changes in S3, S2U and U2S contents were not found significant (p ≥ 0.05). However, maximum decrease 13 %, 7.5 and 5.6 % in U3 contents for T1, T2 and T3 was noted after 60-days of interesterification, respectively. The Lovibond color R, melting point, refractive index, specific gravity, peroxide and free

  8. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  9. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    International Nuclear Information System (INIS)

    Cassidy, Daniel P.; Srivastava, Vipul J.; Dombrowski, Frank J.; Lingle, James W.

    2015-01-01

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks

  10. Scandium complexes: physico-chemical study and evaluation of stability in vitro and in vivo for nuclear medicine application

    International Nuclear Information System (INIS)

    Kerdjoudj, Rabha

    2014-01-01

    Among the different isotopes of Scandium that can be used in nuclear medicine may be mentioned the 47 Sc and 44 Sc. The first decays by emitting an electron associated with a 159 keV gamma can thus be used either for radiotherapy or TEMP imaging. The 44 Sc (3.97 h) decays in 94.27% in case by emitting a positron, with a γ photon energy equal to 1.157 MeV. This isotope is then an ideal candidate for applications in PET imaging. Currently, the Cyclotron of high energy and high intensity ARRONAX produce 44 Sc and co-produces the isomeric state the 44m Sc (2.44 d). The 44m Sc has properties (E(γ) = 270 keV, 98.8%), which allows to consider its use as a potential in vivo generator. Previous work had demonstrated that the DOTA ligand is most suitable and stable for Sc. This thesis aims; make in evidence the feasibility of the in vivo 44m / 44 Sc generator. Initially a procedure was optimized and validated for the production of 44m / 44 Sc with a high specific activity and chemical purity. Radiolabeling of DOTA conjugated peptides was then developed and optimized. Theoretical and experimental studies have been performed in order to demonstrate the feasibility of 44m / 44 Sc as a potential in vivo generator. Finally, in vitro stability studies on radiolabeled 44m / 44 Sc complexes were performed, followed by biodistribution studies and PET imaging. (author)

  11. Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: evaluation in 1-D transport systems.

    Science.gov (United States)

    Crimi, Michelle; Quickel, Mark; Ko, Saebom

    2009-02-27

    In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport, and contact between the oxidant and contaminants of concern. Sodium hexametaphosphate (HMP) has previously been identified as a promising aid to stabilize MnO2 in solution when included in the oxidizing solution, increasing the potential to inhibit particle deposition and impact subsurface flow. The goal of the experimental studies described herein was to investigate the ability of HMP to prevent particle deposition in transport studies using four different types of porous media. Permanganate was delivered to a contaminant source zone (trichloroethylene) located within four different media types with variations in sand, clay, organic carbon, and iron oxides (as goethite) content. Deposition of MnO2 within the columns was quantified with distance from the source zone. Experiments were repeated in replicate columns with the inclusion of HMP directly with the oxidant delivery solution, and MnO2 deposition was again quantified. While total MnO2 deposition within the 60 cm columns did not change significantly with the addition of HMP, deposition within the contaminant source zone decreased by 25-85%, depending on the specific media type. The greatest differences in deposition were observed in the goethite-containing and clay-containing columns. Columns containing these two media types experienced completely plugged flow in the oxidant-only delivery systems; however

  12. Chemical modification with phthalic anhydride and chitosan: Viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius.

    Science.gov (United States)

    Nwagu, Tochukwu Nwamaka; Okolo, Bartholomew; Aoyagi, Hideki; Yoshida, Shigeki

    2017-06-01

    The raw starch digesting type of amylase (RSDA) presents greater opportunities for process efficiency at cheaper cost and shorter time compared to regular amylases. Chemical modification is a simple and rapid method toward their stabilization for a wider application. RSDA from Aspergillus carbonarius was modified with either phthalic anhydride (PA) or chitosan. Activity retention was 87.3% for PA-modified and 80.9% for chitosan-modified RSDA. Optimum pH shifted from 5 to 7 after PA-modification. Optimum temperature changed from 30°C (native) to 30-40°C and 60°C for PA-modified and chitosan-modified, respectively. Activation energy (kJmol -1 ) for hydrolysis was 13.5, 12.7, and 10.2 while the activation energy for thermal denaturation was 32.8, 80.3, 81.9 for free, PA-modified and chitosan-modified, respectively. The specificity constants (V max /K m ) were 73.2 for PA-modified, 63.1 for chitosan-modified and 77.1 for native RSDA. The half-life (h) of the RSDA at 80°C was increased from 6.1 to 25.7 for the PA-modified and 138.6 for the chitosan derivative. Modification also led to increase in D value, activation enthalpy and Gibbs free energy of enzyme deactivation. Fluorescence spectra showed that center of spectral mass decreased for the PA-modified RSDA but increased for chitosan modified RSDA. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Environmental Projects. Volume 8: Modifications of wastewater evaporation ponds

    Science.gov (United States)

    1989-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 45 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of NASA's Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards: use of hazardous chemicals, asbestos, and underground storage tanks as well as the generation of hazardous wastes and the disposal of wastewater. Federal, state, and local laws governing the management of hazardous substances, asbestos, underground storage tanks and wastewater disposal have become so complex there is a need to devise specific programs to comply with the many regulations that implement these laws. In support of the national goal of the preservation of the environment and the protection of human health and safety, NASA, JPL, and the GDSCC have adopted a position that their operating installations shall maintain a high level of compliance with these laws. One of the environmental problems at the GDSCC involved four active, operational, wastewater evaporation ponds designed to receive and evaporate sewage effluent from upstream septic tank systems. One pair of active wastewater evaporation ponds is located at Echo Site, while another operational pair is at Mars Site.

  14. The refreezing of melt ponds on Arctic sea ice

    Science.gov (United States)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David

    2015-02-01

    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  15. Characterisation of potential aquaculture pond effluents, and ...

    African Journals Online (AJOL)

    Conventional treatment of effluents from these small-scale, low-volume operations, which discharge relatively dilute effluents infrequently, might not be cost-effective. Keywords: aquaculture–environment interaction, earthen ponds, effluent characterisation, K-means clustering, t ilapia, water quality. African Journal of Aquatic ...

  16. Aquatic Habitats: Exploring Desktop Ponds. Teacher's Guide.

    Science.gov (United States)

    Barrett, Katharine; Willard, Carolyn

    This book, for grades 2-6, is designed to provide students with a highly motivating and unique opportunity to investigate an aquatic habitat. Students set up, observe, study, and reflect upon their own "desktop ponds." Accessible plants and small animals used in these activities include Elodea, Tubifex worms, snails, mosquito larvae, and fish.…

  17. Interconnected ponds operation for flood hazard distribution

    Science.gov (United States)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  18. Scenario evaluation of open pond microalgae production

    NARCIS (Netherlands)

    Slegers, P.M.; Lösing, M.B.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2013-01-01

    To evaluate microalgae production in large scale open ponds under different climatologic conditions, a model-based framework is used to study the effect of light conditions, water temperature and reactor design on trends in algae productivity. Scenario analyses have been done for two algae species

  19. Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): southern Brazil.

    Science.gov (United States)

    Mohedano, R A; Velho, V F; Costa, R H R; Hofmann, S M; Belli Filho, P

    2012-01-01

    Brazil is one of the most important countries in pork production worldwide, ranking third. This activity has an important role in the national economic scenario. However, the fast growth of this activity has caused major environmental impacts, especially in developing countries. The large amount of nitrogen and phosphorus compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Moreover, much of the pig production in developing countries occurs on small farms, and therefore causes diffuse pollution. Therefore, duckweed pond have been successfully used in the swine waste polishing, generating further a biomass with high protein content. The present study evaluated the efficiency of two full scale duckweed ponds for the polishing of a small pig farm effluent, biomass yield and crude protein (CP) content. Duckweed pond series received the effluent from a biodigester-storage pond, with a flow rate of 1 m(3)/day (chemical oxygen demand rate = 186 kg/ha day) produced by 300 animals. After 1 year a great improvement of effluent quality was observed, with removal of 96% of total Kjeldahl nitrogen (TKN) and 89% of total phosphorus (TP), on average. Nitrogen removal rate is one of the highest ever found (4.4 g TKN/m(2) day). Also, the dissolved oxygen rose from 0.0 to 3.0 mg/L. The two ponds produced together over 13 tons of fresh biomass (90.5% moisture), with 35% of CP content, which represents a productivity of 24 tonsCP/ha year. Due to the high rate of nutrient removal, and also the high protein biomass production, duckweed ponds revealed, under the presented conditions, a great potential for the polishing and valorization of swine waste. Nevertheless, this technology should be better exploited to improve the sustainability of small pig farms in order to minimize the impacts of this activity on the environment.

  20. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    Science.gov (United States)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a

  1. Basal-topographic control of stationary ponds on a continuously moving landslide

    Science.gov (United States)

    Coe, J.A.; McKenna, J.P.; Godt, J.W.; Baum, R.L.

    2009-01-01

    The Slumgullion landslide in the San Juan Mountains of southwestern Colorado has been moving for at least the last few hundred years and has multiple ponds on its surface. We have studied eight ponds during 30 trips to the landslide between July 1998 and July 2007. During each trip, we have made observations on the variability in pond locations and water levels, taken ground-based photographs to document pond water with respect to moving landslide material and vegetation, conducted Global Positioning System surveys of the elevations of water levels and mapped pond sediments on the landslide surface. Additionally, we have used stereo aerial photographs taken in October 1939, October 1940 and July 2000 to measure topographic profiles of the eight pond locations, as well as a longitudinal profile along the approximate centerline of the landslide, to examine topographic changes over a 60- to 61-year period of time. Results from field observations, analyses of photographs, mapping and measurements indicate that all pond locations have remained spatially stationary for 60-300 years while landslide material moves through these locations. Water levels during the observation period were sensitive to changes in the local, spring-fed, stream network, and to periodic filling of pond locations by sediment from floods, hyperconcentrated flows, mud flows and debris flows. For pond locations to remain stationary, the locations must mimic depressions along the basal surface of the landslide. The existence of such depressions indicates that the topography of the basal landslide surface is irregular. These results suggest that, for translational landslides that have moved distances larger than the dimensions of the largest basal topographic irregularities (about 200 m at Slumgullion), landslide surface morphology can be used as a guide to the morphology of the basal slip surface. Because basal slip surface morphology can affect landslide stability, kinematic models and stability

  2. Incorporation of Fe2O3, FeO and Al2O3 in silicate glasses and its effect on their structure and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Van Iseghem, P; De Grave, E; Peters, L; De Batist, R

    1983-09-01

    Large amounts of the glass intermediates Al2O3, Fe2O3 and FeO are present in the amorphous silicate slags developed at the S.C.K./C.E.N. for the conditioning of Pu contaminated radioactive waste. Strong ambiguity exists in literature about both the structural incorporation and the effect on the chemical stability of Fe2O3 and FeO. The chemical stability and its relationship to the glass structure therefore was investigated for a number of silicate base glasses, taking into consideration the following parameters (the amount of glass modifiers was kept constant at 16 mole %, equimolarly spread over Li2O, K2O, MgO and CaO): 1) Fe2Ox concentrations (x = 2 or 3) varying between 2.5 and 30 mole % (compensated by changes in SiO2 concentration); 2)Equimolar replacement of Fe2Ox by Al2O3 and Fe2Ox in all glasses listed in 1. The structural incorporation of Fe2Ox was investigated by 57 Fe Mossbauer Spectroscopy, the chemical stability by the Soxhlet corrosion test. The sample weight was measured after 14 days of corrosion, after drying and removal of the weakly bounded surface layer.

  3. Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization

    International Nuclear Information System (INIS)

    Peethamparan, Sulapha; Olek, Jan; Lovell, Janet

    2008-01-01

    The interaction of CKDs with a given soil depends on the chemical and physical characteristics of the CKDs. Hence, the characterization of CKDs and their hydration products may lead to better understanding of their suitability as soil stabilizers. In the present article, four different CKD powders are characterized and their hydration products are evaluated. A detailed chemical (X-ray diffraction), thermogravimetric and morphological (scanning electron microscope) analyses of both the CKD powders and the hydrated CKD pastes are presented. In general, high free-lime content (∼ 14-29%) CKDs, when reacted with water produced significant amounts of calcium hydroxide, ettringite and syngenite. These CKDs also developed higher unconfined compressive strength and higher temperature of hydration compared to CKDs with lower amounts of free-lime. An attempt was made to qualitatively correlate the performance of CKD pastes with the chemical and physical characteristics of the original CKD powders and to determine their potential suitability as soil stabilizers. To that effect a limited unconfined compressive strength testing of CKD-treated kaolinite clays was performed. The results of this study suggest that both the compressive strength and the temperature of hydration of the CKD paste can give early indications of the suitability of particular CKD for soil stabilization

  4. A high-response transparent heater based on a CuS nanosheet film with superior mechanical flexibility and chemical stability.

    Science.gov (United States)

    Xie, Shuyao; Li, Teng; Xu, Zijie; Wang, Yanan; Liu, Xiangyang; Guo, Wenxi

    2018-04-05

    Transparent heaters are widely used in technologies such as window defrosting/defogging, displays, gas sensing, and medical equipment. Apart from mechanical robustness and electrical and optical reliabilities, outstanding chemical stability is also critical to the application of transparent heaters. In this regard, we first present a highly flexible and large-area CuS transparent heater fabricated by a colloidal crackle pattern method with an optimized sheet resistance (Rs) as low as 21.5 Ω sq-1 at a ∼80% transmittance. The CuS transparent heater exhibits remarkable mechanical robustness during bending tests as well as high chemical stability against acid and alkali environments. In the application as a transparent heater, the CuS heater demonstrates a high thermal resistance of 197 °C W-1 cm2 with a fast switching time (solar panels. These CuS network TCEs with high flexibility, transparency, conductivity, and chemical stability could be widely used in wearable electronic products.

  5. Developing Ecological Models on Carbon and Nitrogen in Secondary Facultative Ponds

    Directory of Open Access Journals (Sweden)

    Aponte-Reyes Alexander

    2014-07-01

    Full Text Available Ecological models formulated for TOC, CO2, NH4+, NO3- and NTK, based in literature reviewed and field work were obtained monitoring three facultative secondary stabilization ponds, FSSP, pilots: conventional pond, CP, baffled pond, BP, and baffled-meshed pond, BMP. Models were sensitive to flow inlet, solar radiation, pH and oxygen content; the sensitive parameters in Carbon Model were KCOT Ba, umax Ba, umax Al, K1OX, VAl, R1DCH4, YBh. The sensitive parameters in the Nitrogen model were KCOT Ba, umax Ba, umax Al, VAl, KOPH, KOPA, r4An. The test t–paired showed a good simulating of Carbon model refers to TOC in FSSP; on the other side, the Nitrogen model showed a good simulating of NH4+. Different topological models modify ecosystem ecology forcing different transformation pathways of Nitrogen; equal transformations of the Carbon BMP topology could be achieved using lower volumes, however, a calibration for a new model would be required. Carbon and Nitrogen models developed could be coupled to hydrodynamics models for better modeling of FSSP.

  6. Microbial activities and communities in oil sands tailings ponds

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, Lisa; Ramos, Esther; Clothier, Lindsay; Bordenave, Sylvain; Lin, Shiping; Voordouw, Gerrit; Dong, Xiaoli; Sensen, Christoph [University of Calgary (Canada)

    2011-07-01

    This paper discusses how the microbial communities and their activity play a vital role in tailings ponds. The ponds contain microorganisms along with metals, hydrocarbon diluent, naphthenic acid and others. The ponds play an important role in mining operations because they store bitumen extraction waste and also allow water to be re-used in the bitumen extraction process. Pond management presents a few challenges that include, among others, gas emissions and the presence of toxic and corrosive acids. Microbial activities and communities help in managing these ponds. Microbial activity measurement in active and inactive ponds is described and analyzed and the results are presented. The conditions for reducing sulfate, nitrate and iron are also presented. From the results it can be concluded that naphthenic acids can potentially serve as substrates for anaerobic populations in tailings ponds.

  7. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  8. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna

    2011-01-01

    ). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate. This ensures that the results can be extended to other relevant stormwater pollutants. All three models use......Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...

  9. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    Energy Technology Data Exchange (ETDEWEB)

    E. James Davis

    1998-05-01

    The objective of this research is to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. In this experimental and analytical study the authors elucidate the transport processes that control the rate of concentrated colloidal particle removal, demonstrate the process on a laboratory scale, and develop the scale-up laws needed to design commercial-scale processes. The authors are also addressing the fundamental problems associated with particle-particle interactions (electrical and hydrodynamic), the effects of particle concentration on the applied electric field, the electrochemical reactions that occur at the electrodes, and the prediction of power requirements.

  10. Development of the chemical stabilization and solidification process for the treatment of radioactive raffinate sludges at the DOE Weldon Spring Site Remedial Action Project

    International Nuclear Information System (INIS)

    Cole, P.M.; Kakaria, V.; Enger, J.

    1996-01-01

    Chemical Solidification and Stabilization (CSS) is the mixing of chemical reagents with waste to solidify and chemically stabilize the contaminated material. The resulting product is resistant to leaching of certain contaminants. CSS treatment using Class C fly ash and Portland cement was chosen as the most feasible method for treatment of the chemically and radioactively contaminated sludge (raffinate) contained in raffinate pits on the Weldon Spring Site Remedial Action Project (WSSRAP) located outside of St. Louis, Missouri. Due to the uniqueness of the material, substantial bench-scale testing was performed on the raffinate to better understand its properties. Similarly, due to mixed results in the application of CSS treatment to radioactive materials, a pilot-scale testing facility was built to verify bench testing results and to establish and quantify design parameters for the full-scale CSS production facility. This paper discusses the development of the pilot-scale testing facility, the testing plan, and the results of the testing activities. Particular attention has been given to the applicability of the CSS treatment method and to the value of pilot-scale testing

  11. Assessment of groundwater pollution from the oxidation ponds in tenth of Ramadan city, using isotopic techniques and hydrogeological modelling

    International Nuclear Information System (INIS)

    Abd El-Samie, S.G.; Sadek, M.A.; Mahmoud, N.S.

    2002-01-01

    The tenth of ramadan city is an intensive industrial settement on the peripheries of cairo. All types of wastewater from industrial and domestic practices are discharged into three unlined oxidation ponds to eliminate pollutants. The present srudy has been conduted to assess the extent of seepage to groundwater from the ponds and how efficient they are for pollution reduction. The chemical composition is more developed in the groundwater of the miocene aquifer due to the less active recharge and the dominance of readily dissolved salts that interact with the inflow. The seepage from ismailia canal and the excess irrigation from agricultural lands and the infiltration from the oxidation ponds as well as the upleaked water represent the main sources of recharge in the quaternary aquifer. The chemical and isotopic composition of the water in the oxidation ponds is controlled by the nature of the drained water and the geochemical processes affecting the solute content. The isotopic enrichment differs for the three ponds being related to the evaporation intensity in each

  12. Evaluation of winter resistance of age-1+ galician carp in Рrikarpattya ponds

    Directory of Open Access Journals (Sweden)

    I. Hrytsynyak

    2018-03-01

    Full Text Available Purpose. To evaluate the winter resistance of age-1+ Galician carp in pond conditions of the Prykarpattya region. Methodology. Analysis of the winter resistance of age-1+ Galician carp was carried out at the base of the fish farm “Korop” during 2015-2017. Wintering took place in a 2.5 ha pond. Hydrochemical parameters were determined using general chemical tests. The temperature and oxygen regimes of water in ponds were determined by a thermo-oximeter. The material for the study were age-1+ Galician carp. Determination of fish culture parameters of the preparedness for wintering of the Galician carp was carried out according to the instructions for organizing the wintering of fish seeds in ponds. To analyze the physiological preparedness of carp for wintering, the method of zootechnical analysis was used. Findings. The stocking density of age-1+ Galician carp in the wintering pond was 1000 kg/ha. The average individual weight of fish seeds ranged from 1650 g during 2015-2016 season and 1760 g during 2016-2017. The condition factor of age-1+ Galician carp was within the normative values. During the wintering season, the chemical composition of the meat-fillet of the Galician carp at the second year of culturing was within the normative parameters. During wintering, the environmental conditions corresponded to the necessary fish culture requirements. The dissolved oxygen content in water during the winter period did not exceed the critical limits. The water temperature ranged from 1 ° C to 8 ° C. As a result of fish harvesting in the wintering pond, 1483 and 1291 specimens of age-2 Galician carp were obtained in 2016 and 2017, respectively. The average individual weight of fish was 1450 ± 191 g and 1528 ± 124 g. The total yield from wintering exceeded 90%. Originality. For the first time, an evaluation of winter resistance of age-1+ Galician carp in pond conditions of the Prykarpattya region was carried out. Practical value. The results of

  13. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    Science.gov (United States)

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  14. Geochemistry and toxicity of sediment porewater in a salt-impacted urban stormwater detention pond

    International Nuclear Information System (INIS)

    Mayer, T.; Rochfort, Q.; Borgmann, U.; Snodgrass, W.

    2008-01-01

    A comprehensive study was carried out to investigate the impacts of road salts on the benthic compartment of a small urban detention facility, Rouge River Pond. Although the pond is an engineered water body, it is representative of many small urban lakes, ponds and wetlands, which receive road runoff and are probable high impact areas. Specific objectives of the study were to document the porewater chemistry of an aquatic system affected by elevated salt concentrations and to carry out a toxicological assessment of sediment porewater to determine what factors may cause porewater toxicity. The results indicate that the sediment porewater may itself attain high salt concentrations. The computations show that increased chloride levels have important implications on the Cd complexation, augmenting its concentration in porewater. The toxicity tests suggest that the toxicity in porewater is caused by metals or other toxic chemicals, rather than high levels of chloride. - Effects of chlorides on metal chemistry and toxicity of sediment porewater in a stormwater detention pond impacted by road salts

  15. Abundance of plankton population densities in relation to bottom soil textural types in aquaculture ponds

    Directory of Open Access Journals (Sweden)

    F. Siddika

    2012-06-01

    Full Text Available Plankton is an important food item of fishes and indicator for the productivity of a water body. The present study was conducted to evaluate the effects of bottom soil textural conditions on abundance of plankton in aquaculture pond. The experiment was carried out using three treatments, i.e., ponds bottom with sandy loam (T1, with loam (T2 and with clay loam (T3. The ranges of water quality parameters analyzed were suitable for the growth of plankton during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed higher ranges in T2. A total 20 genera of phytoplankton were recorded belonged to Chlorophyceae (7, Cyanophyceae (5, Bacillariophyceae (5, Euglenophyceae (2 and Dinophyceae (1. On the other hand, total 13 genera of zooplankton were recorded belonged to Crustacea (7 and Rotifera (6. The highest ranges of phytoplankton and zooplankton densities were found in T2 where low to medium-type bloom was observed during the study period. Consequently, the mean abundance of plankton (phytoplankton and zooplankton density was significantly highest in T2. The highest abundance of plankton in the T2 indicated that pond bottom with loamy soil is suitable for the growth and production of plankton in aquaculture ponds.

  16. Seasonal distribution and uptake of gamma emitting radionuclides at the test reactor area leaching ponds

    International Nuclear Information System (INIS)

    Millard, J.B.

    1986-01-01

    Radioactive leaching ponds adjacent to the Test Reactor Area (TRA) located on the Idaho National Engineering Laboratory (INEL) site were investigated to determine the seasonal distribution and ecological behavior of gamma emitting radionuclides in various pond compartments. The physical, chemical and biological properties of the TRA ponds were documented including basic morphometry, water chemistry and species identification. Penetrating radiation exposure rates at the ponds ranged from 35 to 65 mR/d at the water surface and up to 3400 mR/d one meter above bottom sediments. Seasonal concentrations and concentration ratios were determined for 16 principle radionuclides in filtered water, sediment, seston, zooplankton, net plankton, nannoplankton, periphyton, macrophytes, thistle, speedwell and willow. Seston and nannoplankton had the highest concentration ratios with substantial decreases observed for higher trophic level compartments. Significant (P < 0.01 to P < 0.001) seasonal effects wee found for concentration ratios. Radionuclides without nutrient analogs had the highest ratios in spring for periphyton, macrophytes and littoral plants. Concentration ratios were highest in summer, fall or winter for radionuclides with nutrient analogs

  17. Evaluating Chemical Reactivity And Mechanical Stability Of Nano Palladized Iron Embedded In Activated Carbon On Dechlorination Of Polychlorinated Biphenyls

    Science.gov (United States)

    Remediation of contaminated sites with hydrophobic organic compounds such as polychlorinated biphenyls (PCBs) remains a scientific and technical challenge. The high stability, low aqueous solubility, and high organic affinity of PCBs make them difficult to treat. Many physical,...

  18. Par Pond refill water quality sampling

    International Nuclear Information System (INIS)

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column

  19. Engineered design of SSC cooling ponds

    International Nuclear Information System (INIS)

    Bear, J.B.

    1993-05-01

    The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project's successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency

  20. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients.

    Science.gov (United States)

    Roy, Virginie; Amyot, Marc; Carignan, Richard

    2009-08-01

    Beaver impoundments flood forested areas and may be important production sites for methylmercury (MeHg) because of the resulting enhanced microbial activity and oxygen depletion. The influence of 17 beaver impoundments on streamwater chemistry (total mercury (THg), MeHg, nutrients, cations, and anions)] was investigated by sampling sites located along vegetation and pond-age gradients in southwestern Quebec (Canada). Recently inundated beaver ponds (beaver ponds as suggested by depletions of dissolved oxygen, sulfate and nitrite-nitrate concentrations, and increases in nutrients (e.g., dissolved organic carbon, total phosphorus, and total nitrogen) in outlets compared to inlets. Acidic waters at coniferous sites may have stimulated more MeHg production than in mixed woodland regions. Lower methylation efficiencies in older ponds (> 20 years old) may be due to the degradation of less labile organic matter as ponds age. Beavers actively alter watersheds by building impoundments, and our findings indicate that this landscape disturbance may be a significant source of MeHg to downstream water bodies.

  1. Application of a Method for Intelligent Multi-Criteria Analysis of the Environmental Impact of Tailing Ponds in Northern Kosovo and Metohija

    Directory of Open Access Journals (Sweden)

    Gordana Milentijević

    2016-11-01

    Full Text Available The technological process of exploitation of mineral resources and processing of mined ores to cater to the market results, among other things, in a large amount of tailings deposed on tailing ponds. Because of the chemical composition of the material, the increasing amount of waste, and the mismanagement of recovery and reclamation of ponds, these ponds have become a significant element of negative impact on the surrounding ecosystem. Economics was behind the discharging of this material, resulting in tailing ponds created in inappropriate areas. There is an ongoing process of depositing tailings on old tailing ponds, although no special attention has been paid to the subsequent effect on the environment. Application of intelligent multi-criteria analysis AHP and PROMETHEE has been performed in this paper for the purpose of ranking the degree of negative impact on the environment of tailing ponds. Analysis is performed for five tailing ponds of MMCC (Mining Metallurgy Chemical Combine “Trepča”, whereby two of the ponds are active and three inactive. The ponds are in relatively close proximity to the municipalities of Zvečan and Kosovska Mitrovica, to the north of Kosovo and Metohija, Republic of Serbia. In order to achieve the most objective results, the AHP and PROMETHEE methods were applied. By using these methods for calculations, the following ranking for the flotation tailing waste deposits was obtained, regarding their environmental impact: Žitkovac, Tvrđanski Do, Bostanište, Gornje Polje and Žarkov Potok. This result can contribute to the decision-making process of a prioritizing strategy for rehabilitation and remediation of these five flotation tailings. The analysis illustrates that application of intelligent multi-criteria analysis is a useful environmental management tool to be included in the decision-making process.

  2. Mechanisms for parasites removal in a waste stabilisation pond.

    Science.gov (United States)

    Reinoso, Roberto; Blanco, Saúl; Torres-Villamizar, Linda A; Bécares, Eloy

    2011-04-01

    A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m(-2) day(-1), respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.

  3. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  4. The color of melt ponds on Arctic sea ice

    Science.gov (United States)

    Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg

    2018-04-01

    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi 1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.

  5. Chemical and radiation stability of SuperLig reg-sign 644, resorcinol-formaldehyde, and CS-100 cesium ion exchange materials

    International Nuclear Information System (INIS)

    Brown, G.N.; Adami, S.R.; Bray, L.A.

    1995-09-01

    At the request of the Initial Pretreatment Module Project within Westinghouse Hanford Company, Pacific Northwest Laboratory (PNL) conducted this study for the Efficient Separations and Processing Crosscutting Program (ESP) under the task ''Develop and Test Sorbents.'' The purpose of the study was to assess and compare the chemical and radiolytic stability of several cesium-selective ion exchange materials in simulated alkaline Hanford tank waste matrices. Pretreatment of nuclear process wastes to remove of cesium and other radionuclides by ion exchange was proposed previously as one method of minimizing the amount of high-level radioactive waste at Hanford. In this study, PNL evaluated three cesium-selective materials SuperLig reg-sign 644, resorcinol-formaldehyde (R-F), and CS-100 for chemical and radiation stability in 1 M NaOH and a simulated neutralized current acid waste (NCAW). The objective of the study is to investigate the stability of the newly produced SuperLig reg-sign 644 under a variety of conditions in an attempt to simulate and predict the degradation process. The following specific conclusions and recommendations resulted from the study

  6. Chemical and radiation stability of SuperLig{reg_sign}644, resorcinol-formaldehyde, and CS-100 cesium ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Adami, S.R.; Bray, L.A. [and others

    1995-09-01

    At the request of the Initial Pretreatment Module Project within Westinghouse Hanford Company, Pacific Northwest Laboratory (PNL) conducted this study for the Efficient Separations and Processing Crosscutting Program (ESP) under the task ``Develop and Test Sorbents.`` The purpose of the study was to assess and compare the chemical and radiolytic stability of several cesium-selective ion exchange materials in simulated alkaline Hanford tank waste matrices. Pretreatment of nuclear process wastes to remove of cesium and other radionuclides by ion exchange was proposed previously as one method of minimizing the amount of high-level radioactive waste at Hanford. In this study, PNL evaluated three cesium-selective materials SuperLig{reg_sign}644, resorcinol-formaldehyde (R-F), and CS-100 for chemical and radiation stability in 1 M NaOH and a simulated neutralized current acid waste (NCAW). The objective of the study is to investigate the stability of the newly produced SuperLig{reg_sign}644 under a variety of conditions in an attempt to simulate and predict the degradation process. The following specific conclusions and recommendations resulted from the study.

  7. Development of shrimp in small ponds

    Directory of Open Access Journals (Sweden)

    Armando Adolfo Ortega Salas

    2014-06-01

    Full Text Available Development of white shrimp Litopenaeus vannamei in small ponds ( 6 m3 in fresh water (2-3‰ and seawater; ponds 3.66 x 1.65 x 1.0 m; availability of fresh water, sea water, aeration and drainage. Two cycles of three months each were made. The postlarvae were acclimated to seawater fresh water in four days. Four hundred postlarvas/m3 were seeded in freshwater pond and 500 in the pool of seawater. First, a culture of Daphnia magna in the freshwater pond, also appeared chyronomid larvae; Artemia cysts were seeded in sea water as a dietary supplement. The shrimp were fed Camaronina (25% protein at libitum, daily; is offered on a tray of food; the temperature ranged between 27 and 30° C, oxygen 4.26 ± 1.43 mg / L , pH between 7 and 8 . Detritus siphoned every third day. Water changes between 10 and 20% are often performed. The feed conversion rate (FCR was 1:1.3 . The shrimp were measured in length and weight to calculate weekly growth by Bertalanffy model. Survival in the first cycle was 95.8 , and 97.9% for the second cycle. In seawater parameters of the population of the first cycle were k = 0.0301, L ∞ = 322.16 and t0 = -0.8852, the second cycle of k = 0.0203, L ∞ = 294.42 and t0 = -5.3771. The biomass of 27 kg was obtained for the first cycle and 16 kg for the second cycle. Freshwater population parameters of the first cycle were k = 0.0957, L ∞ = 146.98 and t0 = - 0.93; in the second cycle of k = 0.0172 , L ∞ = 367.82 and t0 = - 4.60. The biomass of 26 kg was obtained for the first cycle and 16 kg for the second cycle. The results indicate a rapid growth during the first 10 weeks. In small ponds can be handled well aseptic conditions without disease problems, good crop was obtained.

  8. Remediation of the low-level radioactive waste tailing pond at Kowary, Poland

    International Nuclear Information System (INIS)

    Goerner, R.; Hartsch, J.; Koszela, J.; Krzyskow, A.; Machniewicz, B.; Sennewald, R.; Sowa, J.

    2002-03-01

    The last remaining uranium mining tailing pond in Poland, situated at Kowary, was the subject of the Kowary Tailing Pond Remediation Programme financed by Polish public bodies (70%) and by the European Commission (30%) within the framework of its programme of co-operation on radioactive waste issues with candidate countries. The EC-part of the project comprised investigations of the site, project management duties and large-scale civil works following the initial remediation planning performed by the Wroclaw University of Technology (WUT) in 1998-2000. The EC-part was contracted to G.E.O.S. Freiberg Ingenieurgesellschaft mbH following an Open Call for Tender launched by the European Commission in 1999. The following general tasks were performed in close co-operation with WUT, with the construction works subcontracted to local companies, as proposed in the Terms of Reference (TOR) of the EC-part: review of General Remediation Plan (GRP), technical design of the pond cover, construction work: internal drainage system, pond cover and site reclamation. From the information in the TOR, the following aims of remediation were defined: minimise the detrimental impact of the tailing pond on the environment, provide long-term stability of the slopes surrounding the pond, ensure the remediated site is in harmony with the surrounding natural scenery. Based on the experience gathered in similar projects, which had been running under PHARE-MCE or which belonged to the WISMUT-remediation programme in Germany, cost efficient remediation solutions were designed in close co-operation with all involved parties. They were delineated in the detailed planning documents approved in the overall remediation programme managed by WUT. The planned remediation works were prepared and performed successfully according to Polish law and in agreement with the competent local authorities. The aims of remediation were met. However, some additional tasks have been recommended in zones adjacent to the

  9. Evaluation of chemical stability of polymers of XIENCE everolimus-eluting coronary stents in vivo by pyrolysis-gas chromatography/mass spectrometry.

    Science.gov (United States)

    Kamberi, Marika; Pinson, David; Pacetti, Stephen; Perkins, Laura E L; Hossainy, Syed; Mori, Hiroyoshi; Rapoza, Richard J; Kolodgie, Frank; Virmani, Renu

    2017-09-07

    The polymers poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(n-butyl methacrylate) (PBMA) are employed in manufacturing the XIENCE family of coronary stents. PBMA serves as a primer and adheres to both the stent and the drug coating. PVDF-HFP is employed in the drug matrix layer to hold the drug everolimus on the stent and control its release. Chemical stability of the polymers of XIENCE stents in the in-vivo environment was evaluated by pyrolysis-gas chromatography with mass spectrometry (Py-GC/MS) detection. For this evaluation, XIENCE stents explanted from porcine coronary arteries and from human coronary artery specimens at autopsy after 2-4 and 5-7 years of implantation, respectively, were compared to freshly manufactured XIENCE stents (controls). The comparison of pyrograms of explanted stent samples and controls showed identical fragmentation fingerprints of polymers, indicating that PVDF-HFP and PBMA maintained their chemical integrity after multiple years of XIENCE coronary stent implantation. The findings of the present study demonstrate the chemical stability of PVDF-HFP and PBMA polymers of the XIENCE family of coronary stents in the in-vivo environment, and constitute a further proof of the suitability of PVDF-HFP as a drug carrier for the drug eluting stent applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  10. Electronic structure, chemical bonding, phase stability, and ground-state properties of YNi2-x(Co/Cu)xB2C

    International Nuclear Information System (INIS)

    Ravindran, P.; Johansson, B.; Eriksson, O.

    1998-01-01

    In order to understand the role of Ni site substitution on the electronic structure and chemical bonding in YNi 2 B 2 C, we have made systematic electronic-structure studies on YNi 2 B 2 C as a function of Co and Cu substitution using the supercell approach within the local density approximation. The equilibrium volume, bulk modulus (B 0 ) and its pressure derivative (B 0 ' ), Grueneisen constant (γ G ), Debye temperature (Θ D ), cohesive energy (E c ), and heat of formation (ΔH) are calculated for YNi 2-x (Co/Cu) x B 2 C (x=0,0.5,1.0,1.5,2). From the total energy, electron-energy band structure, site decomposed density of states, and charge-density contour we have analyzed the structural stability and chemical bonding behavior of YNi 2 B 2 C as a function of Co/Cu substitution. We find that the simple rigid band model successfully explains the electronic structure and structural stability of Co/Cu substitution for Ni. In addition to studying the chemical bonding and electronic structure we present a somewhat speculative analysis of the general trends in the behavior of critical temperature for superconductivity as a function of alloying. copyright 1998 The American Physical Society

  11. Site-specific health and safety plan 100-D Pond remediation project

    International Nuclear Information System (INIS)

    Hobbs, B.J.

    1996-06-01

    The 100-D Ponds are located north of the northern perimeter fence of the 100-D Area. The ponds were excavated in a preexisting basin that had been used for disposal of coal ash. There are two ponds, one used as a settling pond and the other a percolation pond. Liquid effluent from the 100-D process sewers was discharged to the ponds from 1977 through 1987; after 1987 the ponds received backwash