WorldWideScience

Sample records for stability theory predicts

  1. Three caveats for linear stability theory: Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Greenside, H.S.

    1984-06-01

    Recent theories and experiments challenge the applicability of linear stability theory near the onset of buoyancy-driven (Rayleigh-Benard) convection. This stability theory, based on small perturbations of infinite parallel rolls, is found to miss several important features of the convective flow. The reason is that the lateral boundaries have a profound influence on the possible wave numbers and flow patterns even for the largest cells studied. Also, the nonlinear growth of incoherent unstable modes distorts the rolls, leading to a spatially disordered and sometimes temporally nonperiodic flow. Finally, the relation of the skewed varicose instability to the onset of turbulence (nonperiodic time dependence) is examined. Linear stability theory may not suffice to predict the onset of time dependence in large cells close to threshold

  2. Elements of magnetohydrodynamic stability theory

    International Nuclear Information System (INIS)

    Spies, G.O.

    1976-11-01

    The nonlinear equations of ideal magnetohydrodynamics are discussed along with the following topics: (1) static equilibrium, (2) strict linear theory, (3) stability of a system with one degree of freedom, (4) spectrum and variational principles in magnetohydrodynamics, (5) elementary proof of the modified energy principle, (6) sufficient stability criteria, (7) local stability, and (8) normal modes

  3. Advanced Tokamak Stability Theory

    Science.gov (United States)

    Zheng, Linjin

    2015-03-01

    The intention of this book is to introduce advanced tokamak stability theory. We start with the derivation of the Grad-Shafranov equation and the construction of various toroidal flux coordinates. An analytical tokamak equilibrium theory is presented to demonstrate the Shafranov shift and how the toroidal hoop force can be balanced by the application of a vertical magnetic field in tokamaks. In addition to advanced theories, this book also discusses the intuitive physics pictures for various experimentally observed phenomena.

  4. Robust flow stability: Theory, computations and experiments in near wall turbulence

    Science.gov (United States)

    Bobba, Kumar Manoj

    Helmholtz established the field of hydrodynamic stability with his pioneering work in 1868. From then on, hydrodynamic stability became an important tool in understanding various fundamental fluid flow phenomena in engineering (mechanical, aeronautics, chemical, materials, civil, etc.) and science (astrophysics, geophysics, biophysics, etc.), and turbulence in particular. However, there are many discrepancies between classical hydrodynamic stability theory and experiments. In this thesis, the limitations of traditional hydrodynamic stability theory are shown and a framework for robust flow stability theory is formulated. A host of new techniques like gramians, singular values, operator norms, etc. are introduced to understand the role of various kinds of uncertainty. An interesting feature of this framework is the close interplay between theory and computations. It is shown that a subset of Navier-Stokes equations are globally, non-nonlinearly stable for all Reynolds number. Yet, invoking this new theory, it is shown that these equations produce structures (vortices and streaks) as seen in the experiments. The experiments are done in zero pressure gradient transiting boundary layer on a flat plate in free surface tunnel. Digital particle image velocimetry, and MEMS based laser Doppler velocimeter and shear stress sensors have been used to make quantitative measurements of the flow. Various theoretical and computational predictions are in excellent agreement with the experimental data. A closely related topic of modeling, simulation and complexity reduction of large mechanics problems with multiple spatial and temporal scales is also studied. A nice method that rigorously quantifies the important scales and automatically gives models of the problem to various levels of accuracy is introduced. Computations done using spectral methods are presented.

  5. Efficient first-principles prediction of solid stability: Towards chemical accuracy

    Science.gov (United States)

    Zhang, Yubo; Kitchaev, Daniil A.; Yang, Julia; Chen, Tina; Dacek, Stephen T.; Sarmiento-Pérez, Rafael A.; Marques, Maguel A. L.; Peng, Haowei; Ceder, Gerbrand; Perdew, John P.; Sun, Jianwei

    2018-03-01

    The question of material stability is of fundamental importance to any analysis of system properties in condensed matter physics and materials science. The ability to evaluate chemical stability, i.e., whether a stoichiometry will persist in some chemical environment, and structure selection, i.e. what crystal structure a stoichiometry will adopt, is critical to the prediction of materials synthesis, reactivity and properties. Here, we demonstrate that density functional theory, with the recently developed strongly constrained and appropriately normed (SCAN) functional, has advanced to a point where both facets of the stability problem can be reliably and efficiently predicted for main group compounds, while transition metal compounds are improved but remain a challenge. SCAN therefore offers a robust model for a significant portion of the periodic table, presenting an opportunity for the development of novel materials and the study of fine phase transformations even in largely unexplored systems with little to no experimental data.

  6. Theory and theory-based models for the pedestal, edge stability and ELMs in tokamaks

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Mahajan, S.M.; Yoshida, Z.; Dorland, W.; Rogers, B.N.; Bateman, G.; Kritz, A.H.; Pankin, A.; Voitsekhovitch, I.; Onjun, T.; Snyder, S.

    2005-01-01

    Theories for equilibrium and stability of H-modes, and models for use within integrated modeling codes with the objective of predicting the height, width and shape of the pedestal at the edge of H-mode plasmas in tokamaks, as well as the onset and frequency of Edge Localized Modes (ELMs), are developed. A theory model for relaxed plasma states with flow, which uses two-fluid Hall-MHD equations, predicts that the natural scale length of the pedestal is the ion skin depth and the pedestal width is larger than the ion poloidal gyro-radius, in agreement with experimental observations. Computations with the GS2 code are used to identify micro-instabilities, such as electron drift waves, that survive the strong flow shear, diamagnetic flows, and magnetic shear that are characteristic of the pedestal. Other instabilities on the pedestal and gyro-radius scale, such as the Kelvin-Helmholtz instability, are also investigated. Time-dependent integrated modeling simulations are used to follow the transition from L-mode to H-mode and the subsequent evolution of ELMs as the heating power is increased. The flow shear stabilization that produces the transport barrier at the edge of the plasma reduces different modes of anomalous transport and, consequently, different channels of transport at different rates. ELM crashes are triggered in the model by pressure-driven ballooning modes or by current-driven peeling modes. (author)

  7. First Principles Prediction of Structure, Structure Selectivity, and Thermodynamic Stability under Realistic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, Gerbrand [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials and Engineering

    2018-01-28

    Novel materials are often the enabler for new energy technologies. In ab-initio computational materials science, method are developed to predict the behavior of materials starting from the laws of physics, so that properties can be predicted before compounds have to be synthesized and tested. As such, a virtual materials laboratory can be constructed, saving time and money. The objectives of this program were to develop first-principles theory to predict the structure and thermodynamic stability of materials. Since its inception the program focused on the development of the cluster expansion to deal with the increased complexity of complex oxides. This research led to the incorporation of vibrational degrees of freedom in ab-initio thermodynamics, developed methods for multi-component cluster expansions, included the explicit configurational degrees of freedom of localized electrons, developed the formalism for stability in aqueous environments, and culminated in the first ever approach to produce exact ground state predictions of the cluster expansion. Many of these methods have been disseminated to the larger theory community through the Materials Project, pymatgen software, or individual codes. We summarize three of the main accomplishments.

  8. Information-entropic method for studying the stability bound of nonrelativistic polytropic stars within modified gravity theories

    Science.gov (United States)

    Wibisono, C.; Sulaksono, A.

    We study the stability of nonrelativistic polytropic stars within two modified gravity theories, i.e. beyond Horndeski gravity and Eddington-inspired Born-Infeld theories, using the configuration entropy method. We use the spatially localized bounded function of energy density as solutions from stellar effective equations to construct the corresponding configuration entropy. We use the same argument as the one used by Gleiser and coworkers [M. Gleiser and D. Sowinski, Phys. Lett. B 727 (2013) 272; M. Gleiser and N. Jiang, Phys. Rev. D 92 (2015) 044046] that the stars are stable if there is a peak in configuration entropy as a function of adiabatic index curve. Specifically, the boundary between stable and unstable regions which corresponds to Chandrasekhar stability bound is indicated from the existence of the maximum peak while the most stable polytropic stars are indicated by the minimum peak in the corresponding curve. We have found that the values of critical adiabatic indexes of Chandrasekhar stability bound and the most stable polytropic stars predicted by the nonrelativistic limits of beyond Horndeski gravity and Eddington-inspired Born-Infeld theories are different to those predicted by general relativity where the corresponding differences depend on the free parameters of both theories.

  9. Handbook of functional equations stability theory

    CERN Document Server

    2014-01-01

    This  handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications.                           The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with...

  10. Role of secondary instability theory and parabolized stability equations in transition modeling

    Science.gov (United States)

    El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.

    1993-01-01

    In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.

  11. Stability theory and transition prediction applied to a general aviation fuselage

    Science.gov (United States)

    Spall, R. E.; Wie, Y.-S.

    1993-01-01

    The linear stability of a fully three-dimensional boundary layer formed over a general aviation fuselage was investigated. The location of the onset of transition was estimated using the N-factor method. The results were compared with existing experimental data and indicate N-factors of approximately 8.5 on the side of the fuselage and 3.0 near the top. Considerable crossflow existed along the side of the body, which significantly affected the unstable modes present in the boundary layer. Fair agreement was found between the predicted frequency range of linear instability modes and available experimental data concerning the spectral content of the boundary layer.

  12. General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.

    Science.gov (United States)

    Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini

    2015-12-01

    General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy. © The Author(s) 2014.

  13. The Theory of Linear Prediction

    CERN Document Server

    Vaidyanathan, PP

    2007-01-01

    Linear prediction theory has had a profound impact in the field of digital signal processing. Although the theory dates back to the early 1940s, its influence can still be seen in applications today. The theory is based on very elegant mathematics and leads to many beautiful insights into statistical signal processing. Although prediction is only a part of the more general topics of linear estimation, filtering, and smoothing, this book focuses on linear prediction. This has enabled detailed discussion of a number of issues that are normally not found in texts. For example, the theory of vecto

  14. Stability of cosmic structures in scalar-tensor theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Panotopoulos, Grigoris [Universidade de Lisboa, Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Lisbon (Portugal); Rincon, Angel [Pontificia Universidad Catolica de Chile, Instituto de Fisica, Santiago (Chile)

    2018-01-15

    In the present work we study a concrete model of scalar-tensor theory of gravity characterized by two free parameters, and we compare its predictions to observational data and constraints coming from supernovae, solar system tests and the stability of cosmic structures. First an exact analytical solution at the background level is obtained. Using that solution the expression for the turnaround radius is computed. Finally we show graphically how current data and limits put bounds on the parameters of the model at hand. (orig.)

  15. M-Theory Model-Building and Proton Stability

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John; Faraggi, Alon E.

    1998-01-01

    We study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. We exhibit the underlying geometric (bosonic) interpretation of these models, which have a $Z_2 \\times Z_2$ orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory.

  16. M-theory model-building and proton stability

    International Nuclear Information System (INIS)

    Ellis, J.; Faraggi, A.E.; Nanopoulos, D.V.; Houston Advanced Research Center, The Woodlands, TX; Academy of Athens

    1997-09-01

    The authors study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. The authors exhibit the underlying geometric (bosonic) interpretation of these models, which have a Z 2 x Z 2 orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory

  17. Advances in stability theory at the end of the 20th century

    CERN Document Server

    Martynyuk, AA

    2003-01-01

    This volume presents surveys and research papers on various aspects of modern stability theory, including discussions on modern applications of the theory, all contributed by experts in the field. The volume consists of four sections that explore the following directions in the development of stability theory: progress in stability theory by first approximation; contemporary developments in Lyapunov''s idea of the direct method; the stability of solutions to periodic differential systems; and selected applications. Advances in Stability Theory at the End of the 20th Century will interest postgraduates and researchers in engineering fields as well as those in mathematics.

  18. Aspects of Moduli Stabilization in Type IIB String Theory

    Directory of Open Access Journals (Sweden)

    Shaaban Khalil

    2016-01-01

    Full Text Available We review moduli stabilization in type IIB string theory compactification with fluxes. We focus on KKLT and Large Volume Scenario (LVS. We show that the predicted soft SUSY breaking terms in KKLT model are not phenomenological viable. In LVS, the following result for scalar mass, gaugino mass, and trilinear term is obtained: m0=m1/2=-A0=m3/2, which may account for Higgs mass limit if m3/2~O(1.5 TeV. However, in this case, the relic abundance of the lightest neutralino cannot be consistent with the measured limits. We also study the cosmological consequences of moduli stabilization in both models. In particular, the associated inflation models such as racetrack inflation and Kähler inflation are analyzed. Finally, the problem of moduli destabilization and the effect of string moduli backreaction on the inflation models are discussed.

  19. Optimal control theory applied to fusion plasma thermal stabilization

    International Nuclear Information System (INIS)

    Sager, G.; Miley, G.; Maya, I.

    1985-01-01

    Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research

  20. Explaining young adults' drinking behaviour within an augmented Theory of Planned Behaviour : Temporal stability of drinker prototypes

    NARCIS (Netherlands)

    Lettow, B. van; Vries, H. de; Burdorf, A.; Conner, M.; Empelen, P. van

    2014-01-01

    Objectives: Prototypes (i.e., social images) predict health-related behaviours and intentions within the context of the Theory of Planned Behaviour (TPB). This study tested the moderating role of temporal stability of drinker prototype perceptions on prototype-intentions and prototype-behaviour

  1. A simple extension of contraction theory to study incremental stability properties

    DEFF Research Database (Denmark)

    Jouffroy, Jerome

    Contraction theory is a recent tool enabling to study the stability of nonlinear systems trajectories with respect to one another, and therefore belongs to the class of incremental stability methods. In this paper, we extend the original definition of contraction theory to incorporate...... in an explicit manner the control input of the considered system. Such an extension, called universal contraction, is quite analogous in spirit to the well-known Input-to-State Stability (ISS). It serves as a simple formulation of incremental ISS, external stability, and detectability in a differential setting....... The hierarchical combination result of contraction theory is restated in this framework, and a differential small-gain theorem is derived from results already available in Lyapunov theory....

  2. Stability in quadratic torsion theories

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)

    2017-11-15

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

  3. Stability in quadratic torsion theories

    International Nuclear Information System (INIS)

    Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado

    2017-01-01

    We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)

  4. Analytical Prediction of the Spin Stabilized Satellite's Attitude Using The Solar Radiation Torque

    International Nuclear Information System (INIS)

    Motta, G B; Carvalho, M V; Zanardi, M C

    2013-01-01

    The aim of this paper is to present an analytical solution for the spin motion equations of spin-stabilized satellite considering only the influence of solar radiation torque. The theory uses a cylindrical satellite on a circular orbit and considers that the satellite is always illuminated. The average components of this torque were determined over an orbital period. These components are substituted in the spin motion equations in order to get an analytical solution for the right ascension and declination of the satellite spin axis. The time evolution for the pointing deviation of the spin axis was also analyzed. These solutions were numerically implemented and compared with real data of the Brazilian Satellite of Data Collection – SCD1 an SCD2. The results show that the theory has consistency and can be applied to predict the spin motion of spin-stabilized artificial satellites

  5. Stability in higher-derivative matter fields theories

    International Nuclear Information System (INIS)

    Tretyakov, Petr V.

    2016-01-01

    We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β 1 and β 4 . By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β 4 < 0. By using the quantum field theory approach we also find an additional restriction for the parameters, β 1 > -(1)/(3)β 4 , which is needed to avoid a tachyon-like instability. (orig.)

  6. Collisionless two-fluid theory of toroidal ηi stability

    International Nuclear Information System (INIS)

    Mondt, J.; Weiland, J.

    1989-01-01

    A collisionless two-fluid theory based on a fourteen-moment generalization of the 'double-adiabatic' equations is developed to lowest order in the Larmor radius parameter, and applied to derive the toroidal η i stability boundary for all values of the ratio of the density gradient scale length divided by the field curvature length. The present model is an improvement over existing collisional two-fluid models in view of the collisionless nature of the η i instability, while retaining the advantage over kinetic theory of the practability of mode-coupling simulations. The linear stability boundary, linear growth rate and real frequency agree fairly accurately with draft-kinetic theory

  7. Present status of mirror stability theory

    International Nuclear Information System (INIS)

    Baldwin, D.E.; Berk, H.L.; Byers, J.A.

    1976-01-01

    A status report of microinstability as it applies to 2XIIB and MX theory for mirror machines is presented. It is shown that quasilinear computations reproduce many of the parameters observed in the 2XIIB experiment. In regard to large mirror machines, there are presented detailed calculations of the linear theory of the drift cyclotron loss-cone mode, with inhomogeneous geometry and nonlinear diffusive effects. Further, the stability of a mirror machine to the Alfven ion-cyclotron instability is assessed, and the Baldwin-Callen diffusion is estimated for a spatially varying plasma

  8. The linearization method in hydrodynamical stability theory

    CERN Document Server

    Yudovich, V I

    1989-01-01

    This book presents the theory of the linearization method as applied to the problem of steady-state and periodic motions of continuous media. The author proves infinite-dimensional analogues of Lyapunov's theorems on stability, instability, and conditional stability for a large class of continuous media. In addition, semigroup properties for the linearized Navier-Stokes equations in the case of an incompressible fluid are studied, and coercivity inequalities and completeness of a system of small oscillations are proved.

  9. Critical evidence for the prediction error theory in associative learning.

    Science.gov (United States)

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-03-10

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an "auto-blocking", which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning.

  10. Vacuum stability of asymptotically safe gauge-Yukawa theories

    DEFF Research Database (Denmark)

    Litim, Daniel F.; Mojaza, Matin; Sannino, Francesco

    2016-01-01

    We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatr......, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established....

  11. Ultraviolet stability of three-dimensional lattice pure gauge field theories

    International Nuclear Information System (INIS)

    Balaban, T.

    1985-01-01

    We prove the ultraviolet stability for three-dimensional lattice gauge field theories. We consider only the Wilson lattice approximation for pure Yang-Mills field theories. The proof is based on results of the previous papers on renormalization group method for lattice gauge theories. (orig.)

  12. Comparing theories' performance in predicting violence.

    Science.gov (United States)

    Haas, Henriette; Cusson, Maurice

    2015-01-01

    The stakes of choosing the best theory as a basis for violence prevention and offender rehabilitation are high. However, no single theory of violence has ever been universally accepted by a majority of established researchers. Psychiatry, psychology and sociology are each subdivided into different schools relying upon different premises. All theories can produce empirical evidence for their validity, some of them stating the opposite of each other. Calculating different models with multivariate logistic regression on a dataset of N = 21,312 observations and ninety-two influences allowed a direct comparison of the performance of operationalizations of some of the most important schools. The psychopathology model ranked as the best model in terms of predicting violence right after the comprehensive interdisciplinary model. Next came the rational choice and lifestyle model and third the differential association and learning theory model. Other models namely the control theory model, the childhood-trauma model and the social conflict and reaction model turned out to have low sensitivities for predicting violence. Nevertheless, all models produced acceptable results in predictions of a non-violent outcome. Copyright © 2015. Published by Elsevier Ltd.

  13. Electroweak vacuum stability in the Higgs-Dilaton theory

    Energy Technology Data Exchange (ETDEWEB)

    Shkerin, A. [Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL),CH-1015, Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, 117312, Moscow (Russian Federation)

    2017-05-30

    We study the stability of the Electroweak (EW) vacuum in a scale-invariant extension of the Standard Model and General Relativity, known as a Higgs-Dilaton theory. The safety of the EW vacuum against possible transition towards another vacuum is a necessary condition for the model to be phenomenologically acceptable. We find that, within a wide range of parameters of the theory, the decay rate is significantly suppressed compared to that of the Standard Model. We also discuss properties of a tunneling solution that are specific to the Higgs-Dilaton theory.

  14. The Development of Mathematical Prediction Model to Predict Resilient Modulus for Natural Soil Stabilized by Pofa-Opc Additive for the Use in Unpaved Road Design

    Science.gov (United States)

    Gamil, Y. M. R.; Bakar, I. H.

    2016-07-01

    Resilient Modulus (Mr) is considered one of the most important parameters in the design of road structure. This paper describes the development of the mathematical model to predict resilient modulus of organic soil stabilized by the mix of Palm Oil Fuel Ash - Ordinary Portland Cement (POFA-OPC) soil stabilization additives. It aims to optimize the use of the use of POFA in soil stabilization. The optimization models enable to eliminate the arbitrary selection and its associated disadvantages in determination of the optimum additive proportion. The model was developed based on Scheffe regression theory. The mix proportions of the samples in the experiment were adopted from similar studies reported in the literature Twenty five samples were designed, prepared and then characterized for each mix proportion based on the MR in 28 days curing. The results are used to develop the mathematical prediction model. The model was statistically analyzed and verified for its adequacy and validity using F-test.

  15. Unrenormalizable theories can be predictive

    CERN Document Server

    Kubo, J

    2003-01-01

    Unrenormalizable theories contain infinitely many free parameters. Considering these theories in terms of the Wilsonian renormalization group (RG), we suggest a method for removing this large ambiguity. Our basic assumption is the existence of a maximal ultraviolet cutoff in a cutoff theory, and we require that the theory be so fine tuned as to reach the maximal cutoff. The theory so obtained behaves as a local continuum theory to the shortest distance. In concrete examples of the scalar theory we find that at least in a certain approximation to the Wilsonian RG, this requirement enables us to make unique predictions in the infrared regime in terms of a finite number of independent parameters. Therefore, this method might provide a way for calculating quantum corrections in a low-energy effective theory of quantum gravity. (orig.)

  16. Stability prediction of berm breakwater using neural network

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Manjunath, Y.R.

    In the present study, an artificial neural network method has been applied to predict the stability of berm breakwaters. Four neural network models are constructed based on the parameters which influence the stability of breakwater. Training...

  17. Stochastic Stability of Endogenous Growth: Theory and Applications

    OpenAIRE

    Boucekkine, Raouf; Pintus, Patrick; Zou, Benteng

    2015-01-01

    We examine the issue of stability of stochastic endogenous growth. First, stochastic stability concepts are introduced and applied to stochastic linear homogenous differen- tial equations to which several stochastic endogenous growth models reduce. Second, we apply the mathematical theory to two models, starting with the stochastic AK model. It’s shown that in this case exponential balanced paths, which characterize optimal trajectories in the absence of uncertainty, are not robust to uncerta...

  18. Atmospheric stability modelling for nuclear emergency response systems using fuzzy set theory

    International Nuclear Information System (INIS)

    Walle, B. van de; Ruan, D.; Govaerts, P.

    1993-01-01

    A new approach to Pasquill stability classification is developed using fuzzy set theory, taking into account the natural continuity of the atmospheric stability and providing means to analyse the obtained stability classes. (2 figs.)

  19. Statistical predictions from anarchic field theory landscapes

    International Nuclear Information System (INIS)

    Balasubramanian, Vijay; Boer, Jan de; Naqvi, Asad

    2010-01-01

    Consistent coupling of effective field theories with a quantum theory of gravity appears to require bounds on the rank of the gauge group and the amount of matter. We consider landscapes of field theories subject to such to boundedness constraints. We argue that appropriately 'coarse-grained' aspects of the randomly chosen field theory in such landscapes, such as the fraction of gauge groups with ranks in a given range, can be statistically predictable. To illustrate our point we show how the uniform measures on simple classes of N=1 quiver gauge theories localize in the vicinity of theories with certain typical structures. Generically, this approach would predict a high energy theory with very many gauge factors, with the high rank factors largely decoupled from the low rank factors if we require asymptotic freedom for the latter.

  20. Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart: Web Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blackmon, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Launey, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scielzo, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-12

    Recent years have seen exciting new developments and progress in nuclear structure theory, reaction theory, and experimental techniques, that allow us to move towards a description of exotic systems and environments, setting the stage for new discoveries. The purpose of the 5-week program was to bring together physicists from the low-energy nuclear structure and reaction communities to identify avenues for achieving reliable and predictive descriptions of reactions involving nuclei across the isotopic chart. The 4-day embedded workshop focused on connecting theory developments to experimental advances and data needs for astrophysics and other applications. Nuclear theory must address phenomena from laboratory experiments to stellar environments, from stable nuclei to weakly-bound and exotic isotopes. Expanding the reach of theory to these regimes requires a comprehensive understanding of the reaction mechanisms involved as well as detailed knowledge of nuclear structure. A recurring theme throughout the program was the desire to produce reliable predictions rooted in either ab initio or microscopic approaches. At the same time it was recognized that some applications involving heavy nuclei away from stability, e.g. those involving fi ssion fragments, may need to rely on simple parameterizations of incomplete data for the foreseeable future. The goal here, however, is to subsequently improve and refine the descriptions, moving to phenomenological, then microscopic approaches. There was overarching consensus that future work should also focus on reliable estimates of errors in theoretical descriptions.

  1. Predicting the stability of ternary intermetallics with density functional theory and machine learning

    Science.gov (United States)

    Schmidt, Jonathan; Chen, Liming; Botti, Silvana; Marques, Miguel A. L.

    2018-06-01

    We use a combination of machine learning techniques and high-throughput density-functional theory calculations to explore ternary compounds with the AB2C2 composition. We chose the two most common intermetallic prototypes for this composition, namely, the tI10-CeAl2Ga2 and the tP10-FeMo2B2 structures. Our results suggest that there may be ˜10 times more stable compounds in these phases than previously known. These are mostly metallic and non-magnetic. While the use of machine learning reduces the overall calculation cost by around 75%, some limitations of its predictive power still exist, in particular, for compounds involving the second-row of the periodic table or magnetic elements.

  2. Relativistic theory of gravitation and nonuniqueness of the predictions of general relativity theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Loskutov, Yu.M.

    1986-01-01

    It is shown that while the predictions of relativistic theory of gravitation (RTG) for the gravitational effects are unique and consistent with the experimental data available, the relevant predictions of general relativity theory are not unique. Therewith the above nonuniqueness manifests itself in some effects in the first order in the gravitational interaction constant in others in the second one. The absence in GRT of the energy-momentum and angular momentum conservation laws for the matter and gravitational field taken together and its inapplicability to give uniquely determined predictions for the gravitational phenomena compel to reject GRT as a physical theory

  3. Predictive microbiology in a dynamic environment: a system theory approach.

    Science.gov (United States)

    Van Impe, J F; Nicolaï, B M; Schellekens, M; Martens, T; De Baerdemaeker, J

    1995-05-01

    The main factors influencing the microbial stability of chilled prepared food products for which there is an increased consumer interest-are temperature, pH, and water activity. Unlike the pH and the water activity, the temperature may vary extensively throughout the complete production and distribution chain. The shelf life of this kind of foods is usually limited due to spoilage by common microorganisms, and the increased risk for food pathogens. In predicting the shelf life, mathematical models are a powerful tool to increase the insight in the different subprocesses and their interactions. However, the predictive value of the sigmoidal functions reported in the literature to describe a bacterial growth curve as an explicit function of time is only guaranteed at a constant temperature within the temperature range of microbial growth. As a result, they are less appropriate in optimization studies of a whole production and distribution chain. In this paper a more general modeling approach, inspired by system theory concepts, is presented if for instance time varying temperature profiles are to be taken into account. As a case study, we discuss a recently proposed dynamic model to predict microbial growth and inactivation under time varying temperature conditions from a system theory point of view. Further, the validity of this methodology is illustrated with experimental data of Brochothrix thermosphacta and Lactobacillus plantarum. Finally, we propose some possible refinements of this model inspired by experimental results.

  4. Predictive Game Theory

    Science.gov (United States)

    Wolpert, David H.

    2005-01-01

    Probability theory governs the outcome of a game; there is a distribution over mixed strat.'s, not a single "equilibrium". To predict a single mixed strategy must use our loss function (external to the game's players. Provides a quantification of any strategy's rationality. Prove rationality falls as cost of computation rises (for players who have not previously interacted). All extends to games with varying numbers of players.

  5. Robust stability in predictive control with soft constraints

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    In this paper we take advantage of the primary and dual Youla parameterizations for setting up a soft constrained model predictive control (MPC) scheme for which stability is guaranteed in face of norm-bounded uncertainties. Under special conditions guarantees are also given for hard input...... constraints. In more detail, we parameterize the MPC predictions in terms of the primary Youla parameter and use this parameter as the online optimization variable. The uncertainty is parameterized in terms of the dual Youla parameter. Stability can then be guaranteed through small gain arguments on the loop...

  6. Explaining young adults' drinking behaviour within an augmented Theory of Planned Behaviour: temporal stability of drinker prototypes.

    Science.gov (United States)

    van Lettow, Britt; de Vries, Hein; Burdorf, Alex; Conner, Mark; van Empelen, Pepijn

    2015-05-01

    Prototypes (i.e., social images) predict health-related behaviours and intentions within the context of the Theory of Planned Behaviour (TPB). This study tested the moderating role of temporal stability of drinker prototype perceptions on prototype-intentions and prototype-behaviour relationships, within an augmented TPB. The study examined abstainer, moderate drinker, heavy drinker, tipsy, and drunk prototypes. An online prospective study with 1-month follow-up was conducted among 410 young adults (18-25 years old, Mage = 21.0, SD = 2.14, 21.7% male). Assessed were prototype perceptions (favourability and similarity, T1, T2), stability of prototype perceptions, TPB variables (T1), intentions (T2), and drinking behaviour (T2). Intention analyses were corrected for baseline behaviour; drinking behaviour analyses were corrected for intentions and baseline behaviour. Hierarchical regressions showed that prototype stability moderated the relationships of drunk and abstainer prototype similarity with intentions. Similarity to the abstainer prototype explained intentions to drink sensibly more strongly among individuals with stable perceptions than among those with unstable perceptions. Conversely, intentions were explained stronger among individuals with stable perceptions of dissimilarity to the drunk prototype than among those with unstable perceptions. No moderation effects were found for stability of favourability or for relationships with behaviour. Stable prototype similarity perceptions were more predictive of intentions than unstable perceptions. These perceptions were most relevant in enhancing the explanation of young adults' intended drinking behaviour. Specifically, young adults' health intentions seem to be guided by the dissociation from the drunk prototype and association with the abstainer prototype. Statement of contribution What is already known on this subject? Prototypes have augmented the Theory of Planned Behaviour in explaining risk behaviour

  7. Extending Theory-Based Quantitative Predictions to New Health Behaviors.

    Science.gov (United States)

    Brick, Leslie Ann D; Velicer, Wayne F; Redding, Colleen A; Rossi, Joseph S; Prochaska, James O

    2016-04-01

    Traditional null hypothesis significance testing suffers many limitations and is poorly adapted to theory testing. A proposed alternative approach, called Testing Theory-based Quantitative Predictions, uses effect size estimates and confidence intervals to directly test predictions based on theory. This paper replicates findings from previous smoking studies and extends the approach to diet and sun protection behaviors using baseline data from a Transtheoretical Model behavioral intervention (N = 5407). Effect size predictions were developed using two methods: (1) applying refined effect size estimates from previous smoking research or (2) using predictions developed by an expert panel. Thirteen of 15 predictions were confirmed for smoking. For diet, 7 of 14 predictions were confirmed using smoking predictions and 6 of 16 using expert panel predictions. For sun protection, 3 of 11 predictions were confirmed using smoking predictions and 5 of 19 using expert panel predictions. Expert panel predictions and smoking-based predictions poorly predicted effect sizes for diet and sun protection constructs. Future studies should aim to use previous empirical data to generate predictions whenever possible. The best results occur when there have been several iterations of predictions for a behavior, such as with smoking, demonstrating that expected values begin to converge on the population effect size. Overall, the study supports necessity in strengthening and revising theory with empirical data.

  8. Stability, causality, and hyperbolicity in Carter's ''regular'' theory of relativistic heat-conducting fluids

    International Nuclear Information System (INIS)

    Olson, T.S.; Hiscock, W.A.

    1990-01-01

    Stability and causality are studied for linear perturbations about equilibrium in Carter's ''regular'' theory of relativistic heat-conducting fluids. The ''regular'' theory, when linearized around an equilibrium state having vanishing expansion and shear, is shown to be equivalent to the inviscid limit of the linearized Israel-Stewart theory of relativistic dissipative fluids for a particular choice of the second-order coefficients β 1 and γ 2 . A set of stability conditions is determined for linear perturbations of a general inviscid Israel-Stewart fluid using a monotonically decreasing energy functional. It is shown that, as in the viscous case, stability implies that the characteristic velocities are subluminal and that perturbations obey hyperbolic equations. The converse theorem is also true. We then apply this analysis to a nonrelativistic Boltzmann gas and to a strongly degenerate free Fermi gas in the ''regular'' theory. Carter's ''regular'' theory is shown to be incapable of correctly describing the nonrelativistic Boltzmann gas and the degenerate Fermi gas (at all temperatures)

  9. Finite Unification: Theory, Models and Predictions

    CERN Document Server

    Heinemeyer, S; Zoupanos, G

    2011-01-01

    All-loop Finite Unified Theories (FUTs) are very interesting N=1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. The reduction of the dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exist RGI relations among dimensional couplings that guarantee the vanishing of all beta-functions in certain N=1 GUTs even to all orders. Furthermore developments in the soft supersymmetry breaking sector of N=1 GUTs and FUTs lead to exact RGI relations, i.e. reduction of couplings, in this dimensionful sector of the theory, too. Based on the above theoretical framework phenomenologically consistent FUTs have been constructed. Here we review FUT models based on the SU(5) and SU(3)^3 gauge groups and their predictions. Of particular interest is the Hig...

  10. Stability Analysis for Car Following Model Based on Control Theory

    International Nuclear Information System (INIS)

    Meng Xiang-Pei; Li Zhi-Peng; Ge Hong-Xia

    2014-01-01

    Stability analysis is one of the key issues in car-following theory. The stability analysis with Lyapunov function for the two velocity difference car-following model (for short, TVDM) is conducted and the control method to suppress traffic congestion is introduced. Numerical simulations are given and results are consistent with the theoretical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Prediction and theory evaluation: the case of light bending.

    Science.gov (United States)

    Brush, S G

    1989-12-01

    Is a theory that makes successful predictions of new facts better than one that does not? Does a fact provide better evidence for a theory if it was not known before being deduced from the theory? These questions can be answered by analyzing historical cases. Einstein's successful prediction of gravitational light bending from his general theory of relativity has been presented as an important example of how "real" science works (in contrast to alleged pseudosciences like psychoanalysis). But, while this success gained favorable publicity for the theory, most scientists did not give it any more weight than the deduction of the advance of Mercury's perihelion (a phenomenon known for several decades). The fact that scientists often use the word "prediction" to describe the deduction of such previously known facts suggests that novelty may be of little importance in evaluating theories. It may even detract from the evidential value of a fact, until it is clear that competing theories cannot account for the new fact.

  12. Phase stability of random brasses: pseudopotential theory revisited

    International Nuclear Information System (INIS)

    Rahman, S.M.M.

    1987-06-01

    We review the theoretical development concerning the phase stability of random brasses. The introductory discussion of the subject embraces the rules of metallurgy in general, but we emphasize on the roles of electron-per-atom ratio in the major bulk of our discussion. Starting from the so-called rigid-band model the discussion goes up to the recent higher-order pseudopotential theory. The theoretical refinements within the pseudopotential framework are discussed briefly. The stability criteria of the random phases are analysed both in the static lattice and dynamic lattice approximations. (author). 71 refs, figs and tabs

  13. Experimental test of theory for the stability of partially saturated vertical cut slopes

    Science.gov (United States)

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  14. Model predictive control of hybrid systems : stability and robustness

    NARCIS (Netherlands)

    Lazar, M.

    2006-01-01

    This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior

  15. Synchrophasor-Assisted Prediction of Stability/Instability of a Power System

    Science.gov (United States)

    Saha Roy, Biman Kumar; Sinha, Avinash Kumar; Pradhan, Ashok Kumar

    2013-05-01

    This paper presents a technique for real-time prediction of stability/instability of a power system based on synchrophasor measurements obtained from phasor measurement units (PMUs) at generator buses. For stability assessment the technique makes use of system severity indices developed using bus voltage magnitude obtained from PMUs and generator electrical power. Generator power is computed using system information and PMU information like voltage and current phasors obtained from PMU. System stability/instability is predicted when the indices exceeds a threshold value. A case study is carried out on New England 10-generator, 39-bus system to validate the performance of the technique.

  16. Observational attachment theory-based parenting measures predict children's attachment narratives independently from social learning theory-based measures.

    Science.gov (United States)

    Matias, Carla; O'Connor, Thomas G; Futh, Annabel; Scott, Stephen

    2014-01-01

    Conceptually and methodologically distinct models exist for assessing quality of parent-child relationships, but few studies contrast competing models or assess their overlap in predicting developmental outcomes. Using observational methodology, the current study examined the distinctiveness of attachment theory-based and social learning theory-based measures of parenting in predicting two key measures of child adjustment: security of attachment narratives and social acceptance in peer nominations. A total of 113 5-6-year-old children from ethnically diverse families participated. Parent-child relationships were rated using standard paradigms. Measures derived from attachment theory included sensitive responding and mutuality; measures derived from social learning theory included positive attending, directives, and criticism. Child outcomes were independently-rated attachment narrative representations and peer nominations. Results indicated that Attachment theory-based and Social Learning theory-based measures were modestly correlated; nonetheless, parent-child mutuality predicted secure child attachment narratives independently of social learning theory-based measures; in contrast, criticism predicted peer-nominated fighting independently of attachment theory-based measures. In young children, there is some evidence that attachment theory-based measures may be particularly predictive of attachment narratives; however, no single model of measuring parent-child relationships is likely to best predict multiple developmental outcomes. Assessment in research and applied settings may benefit from integration of different theoretical and methodological paradigms.

  17. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    Science.gov (United States)

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  18. On the stability of the asymptotically free scalar field theories

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, A M. [Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha (Qatar); Physics Department, Faculty of Science, Mansoura University, Egypt. amshalab@qu.edu.qa (Egypt)

    2015-03-30

    Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.

  19. Comparing three attitude-behavior theories for predicting science teachers' intentions

    Science.gov (United States)

    Zint, Michaela

    2002-11-01

    Social psychologists' attitude-behavior theories can contribute to understanding science teachers' behaviors. Such understanding can, in turn, be used to improve professional development. This article describes leading attitude-behavior theories and summarizes results from past tests of these theories. A study predicting science teachers' intention to incorporate environmental risk education based on these theories is also reported. Data for that study were collected through a mail questionnaire (n = 1336, radjusted = 80%) and analyzed using confirmatory factor and multiple regression analysis. All determinants of intention to act in the Theory of Reasoned Action and Theory of Planned Behavior and some determinants in the Theory of Trying predicted science teachers' environmental risk education intentions. Given the consistency of results across studies, the Theory of Planned Behavior augmented with past behavior is concluded to provide the best attitude-behavior model for predicting science teachers' intention to act. Thus, science teachers' attitude toward the behavior, perceived behavioral control, and subjective norm need to be enhanced to modify their behavior. Based on the Theory of Trying, improving their attitude toward the process and toward success, and expectations of success may also result in changes. Future research should focus on identifying determinants that can further enhance the ability of these theories to predict and explain science teachers' behaviors.

  20. The Prediction of Item Parameters Based on Classical Test Theory and Latent Trait Theory

    Science.gov (United States)

    Anil, Duygu

    2008-01-01

    In this study, the prediction power of the item characteristics based on the experts' predictions on conditions try-out practices cannot be applied was examined for item characteristics computed depending on classical test theory and two-parameters logistic model of latent trait theory. The study was carried out on 9914 randomly selected students…

  1. Size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage based on strain gradient elasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Sahmani, Saeid; Bahrami, Mohsen [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-01-15

    In the current paper, dynamic stability analysis of microbeams subjected to piezoelectric voltage is presented in which the microbeam is integrated with piezoelectric layers on the lower and upper surfaces. Both of the flutter and divergence instabilities of microbeams with clamped-clamped and clamped-free boundary conditions are predicted corresponding to various values of applied voltage. To take size effect into account, the classical Timoshenko beam theory in conjunction with strain gradient elasticity theory is utilized to develop nonclassical beam model containing three additional internal length scale parameters. By using Hamilton's principle, the higher-order governing differential equations and associated boundary conditions are derived. Afterward, generalized differential quadrature method is employed to discretize the size-dependent governing differential equations along with clamped-clamped and clamped-free end supports. The critical piezoelectric voltages corresponding to various values dimensionless length scale parameter are evaluated and compared with those predicted by the classical beam theory. It is revealed that in the case of clamped-free boundary conditions, the both of flutter and divergence instabilities occur. However, for the clamped-clamped microbeams, only divergence instability takes place.

  2. Finite and Gauge-Yukawa unified theories: Theory and predictions

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kubo, J.; Mondragon, M.; Zoupanos, G.

    1999-01-01

    All-loop Finite Unified Theories (FUTs) are very interesting N=1 GUTs in which a complete reduction of couplings has been achieved. FUTs realize an old field theoretical dream and have remarkable predictive power. Reduction of dimensionless couplings in N=1 GUTs is achieved by searching for renormalization group invariant (RGI) relations among them holding beyond the unification scale. Finiteness results from the fact that there exists RGI relations among dimensionless couplings that guarantee the vanishing of the β- functions in certain N=1 supersymmetric GUTS even to all orders. Recent developments in the soft supersymmetry breaking (SSB) sector of N=1 GUTs and FUTs lead to exact RGI relations also in this sector of the theories. Of particular interest is a RGI sum rule for the soft scalar masses holding to all orders. The characteristic features of SU(5) models that have been constructed based on the above tools are: a) the old agreement of the top quark prediction with the measured value remains unchanged, b) the lightest Higgs boson is predicted to be around 120 GeV, c) the s-spectrum starts above several hundreds of GeV

  3. Predictions of a theory of quark confinement

    International Nuclear Information System (INIS)

    Mack, G.

    1980-03-01

    We propose a theory of quark confinement which uses only the simplest of approximations. It explains persistence of quark confinement in Yang Mills theories with gauge group SU(2) or SU(3) as a consequence of asymptotic freedom in perturbation theory and of the known phase structure of Z(2) resp. Z(3) lattice gauge theory. Predictions are derived which can in principle be tested by computer simulation. Some are already tested by results of Creutz. They are in good agreement. (orig.)

  4. Predictions of a theory of quark confinement

    International Nuclear Information System (INIS)

    Mack, G.

    1980-01-01

    A theory of quark confinement is proposed which uses only the simplest of approximations. It explains persistence of quark confinement in Yang-Mills theories with gauge group SU(2) or SU(3) as a consequence of asymptotic freedom in perturbation theory and of the known phase structure of Z(2) and Z(3) lattice gauge theory. Predictions are derived which can in principle be tested by computer simulation. Some are are already tested by results of Creutz. They are in good agreement

  5. Stability of a neural predictive controller scheme on a neural model

    DEFF Research Database (Denmark)

    Luther, Jim Benjamin; Sørensen, Paul Haase

    2009-01-01

    In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue....... The resulting controller is tested on a nonlinear pneumatic servo system.......In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue...... has not been addressed specifically for these controllers. On the other hand a number of results concerning the stability of receding horizon controllers on a nonlinear system exist. In this paper we present a proof of stability for a predictive controller controlling a neural network model...

  6. Toward a complete theory for predicting inclusive deuteron breakup away from stability

    Science.gov (United States)

    Potel, G.; Perdikakis, G.; Carlson, B. V.; Atkinson, M. C.; Dickhoff, W. H.; Escher, J. E.; Hussein, M. S.; Lei, J.; Li, W.; Macchiavelli, A. O.; Moro, A. M.; Nunes, F. M.; Pain, S. D.; Rotureau, J.

    2017-09-01

    We present an account of the current status of the theoretical treatment of inclusive ( d, p) reactions in the breakup-fusion formalism, pointing to some applications and making the connection with current experimental capabilities. Three independent implementations of the reaction formalism have been recently developed, making use of different numerical strategies. The codes also originally relied on two different but equivalent representations, namely the prior (Udagawa-Tamura, UT) and the post (Ichimura-Austern-Vincent, IAV) representations. The different implementations have been benchmarked for the first time, and then applied to the Ca isotopic chain. The neutron-Ca propagator is described in the Dispersive Optical Model (DOM) framework, and the interplay between elastic breakup (EB) and non-elastic breakup (NEB) is studied for three Ca isotopes at two different bombarding energies. The accuracy of the description of different reaction observables is assessed by comparing with experimental data of ( d, p) on 40,48Ca. We discuss the predictions of the model for the extreme case of an isotope (60Ca) currently unavailable experimentally, though possibly available in future facilities (nominally within production reach at FRIB). We explore the use of ( d, p) reactions as surrogates for (n,γ ) processes, by using the formalism to describe the compound nucleus formation in a (d,pγ ) reaction as a function of excitation energy, spin, and parity. The subsequent decay is then computed within a Hauser-Feshbach formalism. Comparisons between the (d,pγ ) and (n,γ ) induced gamma decay spectra are discussed to inform efforts to infer neutron captures from (d,pγ ) reactions. Finally, we identify areas of opportunity for future developments, and discuss a possible path toward a predictive reaction theory.

  7. Toward a complete theory for predicting inclusive deuteron breakup away from stability

    Energy Technology Data Exchange (ETDEWEB)

    Potel, G.; Li, W.; Rotureau, J. [Michigan State University, Facility for Rare Isotope Beams, East Lansing, MI (United States); Perdikakis, G. [Michigan State University, Facility for Rare Isotope Beams, East Lansing, MI (United States); Central Michigan University, Department of Physics, Mt. Pleasant, MI (United States); Center for the Evolution of the Elements, Joint Institute for Nuclear Astrophysics, East Lansing, MI (United States); Carlson, B.V. [DCTA, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); Atkinson, M.C.; Dickhoff, W.H. [Washington University, Department of Physics, St. Louis, MO (United States); Escher, J.E. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hussein, M.S. [DCTA, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); Universidade de Sao Paulo, Departamento de Fisica Matematica, Instituto de Fisica, Sao Paulo, SP (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, Sao Paulo, SP (Brazil); Lei, J.; Moro, A.M. [Universidad de Sevilla, Departamento de FAMN, Sevilla (Spain); Macchiavelli, A.O. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Nunes, F.M. [Michigan State University, Facility for Rare Isotope Beams, East Lansing, MI (United States); Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Pain, S.D. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States)

    2017-09-15

    We present an account of the current status of the theoretical treatment of inclusive (d, p) reactions in the breakup-fusion formalism, pointing to some applications and making the connection with current experimental capabilities. Three independent implementations of the reaction formalism have been recently developed, making use of different numerical strategies. The codes also originally relied on two different but equivalent representations, namely the prior (Udagawa-Tamura, UT) and the post (Ichimura-Austern-Vincent, IAV) representations. The different implementations have been benchmarked for the first time, and then applied to the Ca isotopic chain. The neutron-Ca propagator is described in the Dispersive Optical Model (DOM) framework, and the interplay between elastic breakup (EB) and non-elastic breakup (NEB) is studied for three Ca isotopes at two different bombarding energies. The accuracy of the description of different reaction observables is assessed by comparing with experimental data of (d, p) on {sup 40,48}Ca. We discuss the predictions of the model for the extreme case of an isotope ({sup 60}Ca) currently unavailable experimentally, though possibly available in future facilities (nominally within production reach at FRIB). We explore the use of (d, p) reactions as surrogates for (n,γ) processes, by using the formalism to describe the compound nucleus formation in a (d,pγ) reaction as a function of excitation energy, spin, and parity. The subsequent decay is then computed within a Hauser-Feshbach formalism. Comparisons between the (d,pγ) and (n,γ) induced gamma decay spectra are discussed to inform efforts to infer neutron captures from (d,pγ) reactions. Finally, we identify areas of opportunity for future developments, and discuss a possible path toward a predictive reaction theory. (orig.)

  8. A tutorial on incremental stability analysis using contraction theory

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Fossen, Thor I.

    2010-01-01

    This paper introduces a methodology for dierential nonlinear stability analysis using contraction theory (Lohmiller and Slotine, 1998). The methodology includes four distinct steps: the descriptions of two systems to be compared (the plant and the observer in the case of observer convergence...... on several simple examples....

  9. Quantum resource theory of non-stabilizer states in the one-shot regime

    Science.gov (United States)

    Ahmadi, Mehdi; Dang, Hoan; Gour, Gilad; Sanders, Barry

    Universal quantum computing is known to be impossible using only stabilizer states and stabilizer operations. However, addition of non-stabilizer states (also known as magic states) to quantum circuits enables us to achieve universality. The resource theory of non-stablizer states aims at quantifying the usefulness of non-stabilizer states. Here, we focus on a fundamental question in this resource theory in the so called single-shot regime: Given two resource states, is there a free quantum channel that will (approximately or exactly) convert one to the other?. To provide an answer, we phrase the question as a semidefinite program with constraints on the Choi matrix of the corresponding channel. Then, we use the semidefinite version of the Farkas lemma to derive the necessary and sufficient conditions for the conversion between two arbitrary resource states via a free quantum channel. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter.

  10. Prediction and Stability of Mathematics Skill and Difficulty

    OpenAIRE

    Martin, Rebecca B.; Cirino, Paul T.; Barnes, Marcia A.; Ewing-Cobbs, Linda; Fuchs, Lynn S.; Stuebing, Karla K.; Fletcher, Jack M.

    2012-01-01

    The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also evaluated. Participants were 144 students initially identified as having a math difficulty (MD) or no learning difficulty according to low achievem...

  11. Theory and modelling of nanocarbon phase stability.

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, A. S.

    2006-01-01

    The transformation of nanodiamonds into carbon-onions (and vice versa) has been observed experimentally and has been modeled computationally at various levels of sophistication. Also, several analytical theories have been derived to describe the size, temperature and pressure dependence of this phase transition. However, in most cases a pure carbon-onion or nanodiamond is not the final product. More often than not an intermediary is formed, known as a bucky-diamond, with a diamond-like core encased in an onion-like shell. This has prompted a number of studies investigating the relative stability of nanodiamonds, bucky-diamonds, carbon-onions and fullerenes, in various size regimes. Presented here is a review outlining results of numerous theoretical studies examining the phase diagrams and phase stability of carbon nanoparticles, to clarify the complicated relationship between fullerenic and diamond structures at the nanoscale.

  12. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures.

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J

    2018-02-25

    In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be

  13. Age-Related Differences in Goals: Testing Predictions from Selection, Optimization, and Compensation Theory and Socioemotional Selectivity Theory

    Science.gov (United States)

    Penningroth, Suzanna L.; Scott, Walter D.

    2012-01-01

    Two prominent theories of lifespan development, socioemotional selectivity theory and selection, optimization, and compensation theory, make similar predictions for differences in the goal representations of younger and older adults. Our purpose was to test whether the goals of younger and older adults differed in ways predicted by these two…

  14. Stability analysis of embedded nonlinear predictor neural generalized predictive controller

    Directory of Open Access Journals (Sweden)

    Hesham F. Abdel Ghaffar

    2014-03-01

    Full Text Available Nonlinear Predictor-Neural Generalized Predictive Controller (NGPC is one of the most advanced control techniques that are used with severe nonlinear processes. In this paper, a hybrid solution from NGPC and Internal Model Principle (IMP is implemented to stabilize nonlinear, non-minimum phase, variable dead time processes under high disturbance values over wide range of operation. Also, the superiority of NGPC over linear predictive controllers, like GPC, is proved for severe nonlinear processes over wide range of operation. The necessary conditions required to stabilize NGPC is derived using Lyapunov stability analysis for nonlinear processes. The NGPC stability conditions and improvement in disturbance suppression are verified by both simulation using Duffing’s nonlinear equation and real-time using continuous stirred tank reactor. Up to our knowledge, the paper offers the first hardware embedded Neural GPC which has been utilized to verify NGPC–IMP improvement in realtime.

  15. Stabilizing intermediate-term medium-range earthquake predictions

    International Nuclear Information System (INIS)

    Kossobokov, V.G.; Romashkova, L.L.; Panza, G.F.; Peresan, A.

    2001-12-01

    A new scheme for the application of the intermediate-term medium-range earthquake prediction algorithm M8 is proposed. The scheme accounts for the natural distribution of seismic activity, eliminates the subjectivity in the positioning of the areas of investigation and provides additional stability of the predictions with respect to the original variant. According to the retroactive testing in Italy and adjacent regions, this improvement is achieved without any significant change of the alarm volume in comparison with the results published so far. (author)

  16. Output Feedback Stabilization with Nonlinear Predictive Control: Asymptotic properties

    Directory of Open Access Journals (Sweden)

    Lars Imsland

    2003-07-01

    Full Text Available State space based nonlinear model predictive control (NM PC needs the state for the prediction of the system behaviour. Unfortunately, for most applications, not all states are directly measurable. To recover the unmeasured states, typically a stable state observer is used. However, this implies that the stability of the closed-loop should be examined carefully, since no general nonlinear separation principle exists. Recently semi-global practical stability results for output feedback NMPC using a high-gain observer for state estimation have been established. One drawback of this result is that (in general the observer gain must be increased, if the desired set the state should converge to is made smaller. We show that under slightly stronger assumptions, not only practical stability, but also convergence of the system states and observer error to the origin for a sufficiently large but bounded observer gain can be achieved.

  17. Entity versus incremental theories predict older adults' memory performance.

    Science.gov (United States)

    Plaks, Jason E; Chasteen, Alison L

    2013-12-01

    The authors examined whether older adults' implicit theories regarding the modifiability of memory in particular (Studies 1 and 3) and abilities in general (Study 2) would predict memory performance. In Study 1, individual differences in older adults' endorsement of the "entity theory" (a belief that one's ability is fixed) or "incremental theory" (a belief that one's ability is malleable) of memory were measured using a version of the Implicit Theories Measure (Dweck, 1999). Memory performance was assessed with a free-recall task. Results indicated that the higher the endorsement of the incremental theory, the better the free recall. In Study 2, older and younger adults' theories were measured using a more general version of the Implicit Theories Measure that focused on the modifiability of abilities in general. Again, for older adults, the higher the incremental endorsement, the better the free recall. Moreover, as predicted, implicit theories did not predict younger adults' memory performance. In Study 3, participants read mock news articles reporting evidence in favor of either the entity or incremental theory. Those in the incremental condition outperformed those in the entity condition on reading span and free-recall tasks. These effects were mediated by pretask worry such that, for those in the entity condition, higher worry was associated with lower performance. Taken together, these studies suggest that variation in entity versus incremental endorsement represents a key predictor of older adults' memory performance. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  18. Non-adiabatic stability analysis of current and magnetic curvature driven modes in cold plasmas penetrated by neutral gas

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1978-08-01

    Previous stability theories concerning electrostatic current and magnetic curvature driven modes in cold plasma mantle boundary layers are generalized. In particular the commonly used adiabatic approximation is relaxed. In the general theory presented important new effects associated with heat conduction, ionization and ohmic heating are found. In combination with viscosity and resistivity these effects introduce additional stabilizing as well as destabilizing effects. Furthermore the present theory typically predicts similar stability properties as the adiabatic theory in the limit |d(1nT)/d(1nn)| >1 the general theory predicts less favourable stability properties. One may speculate that these conclusions also apply to more general types of electrostatic modes associated with density and temperature gradients in cold plasma mantel boundary layers. (author)

  19. Robust stability in constrained predictive control through the Youla parameterisations

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2011-01-01

    In this article we take advantage of the primary and dual Youla parameterisations to set up a soft constrained model predictive control (MPC) scheme. In this framework it is possible to guarantee stability in face of norm-bounded uncertainties. Under special conditions guarantees are also given...... for hard input constraints. In more detail, we parameterise the MPC predictions in terms of the primary Youla parameter and use this parameter as the on-line optimisation variable. The uncertainty is parameterised in terms of the dual Youla parameter. Stability can then be guaranteed through small gain...

  20. A Theory for Stability and Buzz Pulsation Amplitude in Ram Jets and an Experimental Investigation Including Scale Effects

    Science.gov (United States)

    Trimpi, Robert L

    1956-01-01

    From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author)

  1. Equilibrium and stability of relativistic stars in extended theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Wojnar, Aneta [Maria Curie-Sklodowska University, Institute of Physics, Lublin (Poland); Univ. di Monte S. Angelo, Napoli (Italy); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); INFN, Napoli (Italy); Velten, Hermano [Universidade Federal do Espirito Santo (UFES), Vitoria (Brazil)

    2016-12-15

    We study static, spherically symmetric equilibrium configurations in extended theories of gravity (ETG) following the notation introduced by Capozziello et al. We calculate the differential equations for the stellar structure in such theories in a very generic form i.e., the Tolman-Oppenheimer-Volkoff generalization for any ETG is introduced. Stability analysis is also investigated with special focus on the particular example of scalar-tensor gravity. (orig.)

  2. Hypothesis for prediction of environmental stability of chemicals by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tremolada, P; Di Guardo, A; Calamari, D; Davoli, E; Fanelli, R [Milan Univ. (Italy). Ist. di Entomologia Agraria Istituto di Ricerche Farmacologiche Mario Negri, Milan (Italy)

    1992-01-01

    The environmental persistence of organic chemicals is generally very hard to predict. In this work, the hypothesis of the use of fragmentation data in Mass Spectrometry (MS) as a possible 'stability index' of the molecules is presented. Since the fragmentation is determined by the thermodynamic properties of the molecules, it is possible to deduct information about the 'intrinsic stability' of a chemical. Such information can be used and correlated to predict the environmental degradability of a substance, especially referring to abiotic degradation. To study this relation, three different methods of measuring the fragmentation patterns are compared. All the methods show similar behaviour and one of them, in particular, shows a very good qualitative correlation between fragmentation data and persistence values found in literature. A possible 'stability index' for the quantitative prediction of the environmental degradation of a chemical is discussed.

  3. Relationship between plant diversity and spatial stability of ...

    African Journals Online (AJOL)

    Theory predicts that greater biodiversity is expected to enhance stability of ecosystem. In field experiment, we created some diversity-level assemblages by removing functional groups across two grassland ecosystems and evaluated the responses of spatial stability of aboveground net primary productivity (ANPP) to varying ...

  4. Conformal prediction for reliable machine learning theory, adaptations and applications

    CERN Document Server

    Balasubramanian, Vineeth; Vovk, Vladimir

    2014-01-01

    The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detecti

  5. Bifurcation and stability in Yang-Mills theory with sources

    International Nuclear Information System (INIS)

    Jackiw, R.

    1979-06-01

    A lecture is presented in which some recent work on solutions to classical Yang-Mills theory is discussed. The investigations summarized include the field equations with static, external sources. A pattern allowing a comprehensive description of the solutions and stability in dynamical systems are covered. A list of open questions and problems for further research is given. 20 references

  6. Viscosity Prediction of Hydrocarbon Mixtures Based on the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2001-01-01

    The application and capability of the friction theory (f-theory) for viscosity predictions of hydrocarbon fluids is further illustrated by predicting the viscosity of binary and ternary liquid mixtures composed of n-alkanes ranging from n-pentane to n-decane for wide ranges of temperature and from...

  7. Explaining the electroweak scale and stabilizing moduli in M theory

    International Nuclear Information System (INIS)

    Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.; Kumar, Piyush; Shao Jing

    2007-01-01

    In a recent paper [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).] it was shown that in fluxless M theory vacua with at least two hidden sectors undergoing strong gauge dynamics and a particular form of the Kaehler potential, all moduli are stabilized by the effective potential and a stable hierarchy is generated, consistent with standard gauge unification. This paper explains the results of [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).] in more detail and generalizes them, finding an essentially unique de Sitter vacuum under reasonable conditions. One of the main phenomenological consequences is a prediction which emerges from this entire class of vacua: namely, gaugino masses are significantly suppressed relative to the gravitino mass. We also present evidence that, for those vacua in which the vacuum energy is small, the gravitino mass, which sets all the superpartner masses, is automatically in the TeV-100 TeV range

  8. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  9. Stability of the Einstein static universe in modified theories of gravity

    OpenAIRE

    Boehmer, Christian G.; Hollenstein, Lukas; Lobo, Francisco S. N.; Seahra, Sanjeev S.

    2010-01-01

    We present a brief overview of the stability analysis of the Einstein static universe in various modified theories of gravity, like f(R) gravity, Gauss-Bonnet or f(G) gravity, and Horava-Lifshitz gravity.

  10. Viscosity Prediction of Natural Gas Using the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2002-01-01

    Based on the concepts of the friction theory (f-theory) for viscosity modeling, a procedure is introduced for predicting the viscosity of hydrocarbon mixtures rich in one component, which is the case for natural gases. In this procedure, the mixture friction coefficients are estimated with mixing...... rules based on the values of the pure component friction coefficients. Since natural gases contain mainly methane, two f-theory models are combined, where the friction coefficients of methane are estimated by a seven-constant f-theory model directly fitted to methane viscosities, and the friction...... coefficients of the other components are estimated by the one-parameter general f-theory model. The viscosity predictions are performed with the SRK, the PR, and the PRSV equations of state, respectively. For recently measured viscosities of natural gases, the resultant AAD (0.5 to 0.8%) is in excellent...

  11. Robust stability analysis of large power systems using the structured singular value theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)

    2005-07-01

    This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)

  12. Investigation of the effects of human body stability on joint angles’ prediction

    International Nuclear Information System (INIS)

    Pasha Zanoosi, A. A.; Naderi, D.; Sadeghi-Mehr, M.; Feri, M.; Beheshtiha, A. Sh.; Fallahnejad, K.

    2015-01-01

    Loosing stability control in elderly or paralyzed has motivated researchers to study how a stability control system works and how to determine its state at every time instant. Studying the stability of a human body is not only an important problem from a scientific viewpoint, but also finally leads to new designs of prostheses and orthoses and rehabilitation methods. Computer modeling enables researchers to study and describe the reactions and propose a suitable and optimized motion pattern to strengthen the neuromuscular system and helps a human body maintain its stability. A perturbation as a tilting is exposed to an underfoot plate of a musculoskeletal model of the body to study the stability. The studied model of a human body included four links and three degrees of freedom with eight muscles in the sagittal plane. Lagrangian dynamics was used for deriving equations of motion and muscles were modeled using Hill’s model. Using experimental data of joint trajectories for a human body under tilting perturbation, forward dynamics has been applied to predict joint trajectories and muscle activation. This study investigated the effects of stability on predicting body joints’ motion. A new stability function for a human body, based on the zero moment point, has been employed in a forward dynamics procedure using a direct collocation method. A multi-objective optimization based on genetic algorithm has been proposed to employ stability as a robotic objective function along with muscle stresses as a biological objective function. The obtained results for joints’ motion were compared to experimental data. The results show that, for this type of perturbations, muscle stresses are in conflict with body stability. This means that more body stability requires more stresses in muscles and reverse. Results also show the effects of the stability objective function in better prediction of joint trajectories

  13. Investigation of the effects of human body stability on joint angles’ prediction

    Energy Technology Data Exchange (ETDEWEB)

    Pasha Zanoosi, A. A., E-mail: aliakbar.pasha@yahoo.com, E-mail: aliakbar.pasha@qiau.ac.ir [Islamic Azad University, Faculty of Industrial & Mechanical Engineering, Qazvin Branch (Iran, Islamic Republic of); Naderi, D.; Sadeghi-Mehr, M.; Feri, M. [Bu Ali-Sina University, Mechanical Engineering Department, Faculty of Engineering (Iran, Islamic Republic of); Beheshtiha, A. Sh. [Leibniz Universität Hannover, Institute of Mechanics and Computational Mechanics (Germany); Fallahnejad, K. [Flinders University, Discipline of Mechanical Engineering, School of Computer Science, Engineering and Mathematics (Australia)

    2015-10-15

    Loosing stability control in elderly or paralyzed has motivated researchers to study how a stability control system works and how to determine its state at every time instant. Studying the stability of a human body is not only an important problem from a scientific viewpoint, but also finally leads to new designs of prostheses and orthoses and rehabilitation methods. Computer modeling enables researchers to study and describe the reactions and propose a suitable and optimized motion pattern to strengthen the neuromuscular system and helps a human body maintain its stability. A perturbation as a tilting is exposed to an underfoot plate of a musculoskeletal model of the body to study the stability. The studied model of a human body included four links and three degrees of freedom with eight muscles in the sagittal plane. Lagrangian dynamics was used for deriving equations of motion and muscles were modeled using Hill’s model. Using experimental data of joint trajectories for a human body under tilting perturbation, forward dynamics has been applied to predict joint trajectories and muscle activation. This study investigated the effects of stability on predicting body joints’ motion. A new stability function for a human body, based on the zero moment point, has been employed in a forward dynamics procedure using a direct collocation method. A multi-objective optimization based on genetic algorithm has been proposed to employ stability as a robotic objective function along with muscle stresses as a biological objective function. The obtained results for joints’ motion were compared to experimental data. The results show that, for this type of perturbations, muscle stresses are in conflict with body stability. This means that more body stability requires more stresses in muscles and reverse. Results also show the effects of the stability objective function in better prediction of joint trajectories.

  14. Tree-level stability without spacetime fermions: novel examples in string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Niarchos, Vasilis

    2007-01-01

    Is perturbative stability intimately tied with the existence of spacetime fermions in string theory in more than two dimensions? Type 0'B string theory in ten-dimensional flat space is a rare example of a non-tachyonic, non-supersymmetric string theory with a purely bosonic closed string spectrum. However, all known type 0' constructions exhibit massless NSNS tadpoles signaling the fact that we are not expanding around a true vacuum of the theory. In this note, we are searching for perturbatively stable examples of type 0' string theory without massless tadpoles in backgrounds with a spatially varying dilaton. We present two examples with this property in non-critical string theories that exhibit four- and six-dimensional Poincare invariance. We discuss the D-branes that can be embedded in this context and the type of gauge theories that can be constructed in this manner. We also comment on the embedding of these non-critical models in critical string theories and their holographic (Little String Theory) interpretation and propose a general conjecture for the role of asymptotic supersymmetry in perturbative string theory

  15. Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods

    National Research Council Canada - National Science Library

    DeSpirito, James; Silton, Sidra I; Weinacht, Paul

    2008-01-01

    The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...

  16. Robust stabilization control based on guardian maps theory for a longitudinal model of hypersonic vehicle.

    Science.gov (United States)

    Liu, Yanbin; Liu, Mengying; Sun, Peihua

    2014-01-01

    A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.

  17. Advanced nonlinear theory: Long-term stability at the SSC

    International Nuclear Information System (INIS)

    Heifets, S.

    1987-01-01

    This paper discussed the long-term stability of the particle beams in the Superconducting Super Collider. In particular the dynamics of a single particle beam is considered in depth. The topics of this paper include: the Hamiltonian of this particle approach, perturbation theory, canonical transformations, interaction of the resonances, structure of the phase space, synchro-Betatron oscillations, modulation diffusion and noise-resonance interaction. 36 refs

  18. Limitations of Evolutionary Theory in Explaining Marital Satisfaction and Stability of Couple Relationships

    Directory of Open Access Journals (Sweden)

    Victoria Cabrera García

    2014-01-01

    Full Text Available The explanation of marital satisfaction and stability in trajectories of couple relationships has been the central interest in different studies (Karney, Bradbury. & Johnson, 1999; Sabatelli & Ripoll, 2004; Schoebi, Karney & Bradbury, 2012. However, there are still several questions and unknown aspects surrounding the topic. Within this context, the present reflection seeks to analyze whether the principles of Evolutionary Theory suffice to explain three marital trajectories in terms of satisfaction and stability. With this in mind, we have included other explanations proposed by the Psychosocial Theory that Evolutionary Theory does not refer to in order to better understand mating behavior. Moreover, other factors that could account for satisfied and stable relationships were analyzed. Suggestions for future investigations include the analysis of other marital trajectories that may or may not end in separation or divorce but are not included in this article.

  19. Structural predictions for Correlated Electron Materials Using the Functional Dynamical Mean Field Theory Approach

    Science.gov (United States)

    Haule, Kristjan

    2018-04-01

    The Dynamical Mean Field Theory (DMFT) in combination with the band structure methods has been able to address reach physics of correlated materials, such as the fluctuating local moments, spin and orbital fluctuations, atomic multiplet physics and band formation on equal footing. Recently it is getting increasingly recognized that more predictive ab-initio theory of correlated systems needs to also address the feedback effect of the correlated electronic structure on the ionic positions, as the metal-insulator transition is almost always accompanied with considerable structural distortions. We will review recently developed extension of merger between the Density Functional Theory (DFT) and DMFT method, dubbed DFT+ embedded DMFT (DFT+eDMFT), whichsuccessfully addresses this challenge. It is based on the stationary Luttinger-Ward functional to minimize the numerical error, it subtracts the exact double-counting of DFT and DMFT, and implements self-consistent forces on all atoms in the unit cell. In a few examples, we will also show how the method elucidated the important feedback effect of correlations on crystal structure in rare earth nickelates to explain the mechanism of the metal-insulator transition. The method showed that such feedback effect is also essential to understand the dynamic stability of the high-temperature body-centered cubic phase of elemental iron, and in particular it predicted strong enhancement of the electron-phonon coupling over DFT values in FeSe, which was very recently verified by pioneering time-domain experiment.

  20. Stability theory of critical cases and the bifurcation points of the stationary solutions of the Lorenz model

    International Nuclear Information System (INIS)

    Bakasov, A.A.; Govorkov, B.B. Jr.

    1990-08-01

    The critical case in stability theory is the case when it is impossible to study the stability of solutions over the linear part of ordinary differential equations. This situation is usual at the bifurcation points. There exists a powerful and constructive approach to investigate the stability - the theory of critical cases created by Lyapunov. The famous Lorenz model is used in this article as an illustration of the power of the method (new results). (author). 27 refs

  1. Stability of EBT of guiding-centre fluid theory

    International Nuclear Information System (INIS)

    Miller, R.L.

    1981-01-01

    The stability of the hot-electron annulus in the ELMO Bumpy Torus (EBT) is not yet completely understood despite considerable attention. Most stability studies have dealt with localized analysis of simplified models in which the actual magnetic configuration is replaced by a straight-line slab with a gravity to emulate the effects of curvature and gradients in the actual magnetic field. Here, a more realistic geometry, a 'bumpy' cylinder with a 2:1 magnetic mirror ratio, is considered and the response of the hot-electron rings to various non-local perturbations, specifying only the mode number in the ignorable co-ordinate, is examined. Guiding-centre theory (with psub(perpendicular) > psub(parallel)) is used and the second variation in the plasma energy (σW) using a finite-element representation to identify the least stable mode for the plasma is studied. All the equilibria that are examined are found to be unstable for all poloidal mode numbers m>=1, with growth rates increasing with increasing ring beta, plasma beta, and poloidal mode number. It is concluded that two-fluid and/or kinetic effects are required to explain the observed global stability of EBT-I. (author)

  2. Predicting heavy episodic drinking using an extended temporal self-regulation theory.

    Science.gov (United States)

    Black, Nicola; Mullan, Barbara; Sharpe, Louise

    2017-10-01

    Alcohol consumption contributes significantly to the global burden from disease and injury, and specific patterns of heavy episodic drinking contribute uniquely to this burden. Temporal self-regulation theory and the dual-process model describe similar theoretical constructs that might predict heavy episodic drinking. The aims of this study were to test the utility of temporal self-regulation theory in predicting heavy episodic drinking, and examine whether the theoretical relationships suggested by the dual-process model significantly extend temporal self-regulation theory. This was a predictive study with 149 Australian adults. Measures were questionnaires (self-report habit index, cues to action scale, purpose-made intention questionnaire, timeline follow-back questionnaire) and executive function tasks (Stroop, Tower of London, operation span). Participants completed measures of theoretical constructs at baseline and reported their alcohol consumption two weeks later. Data were analysed using hierarchical multiple linear regression. Temporal self-regulation theory significantly predicted heavy episodic drinking (R 2 =48.0-54.8%, ptheory and the extended temporal self-regulation theory provide good prediction of heavy episodic drinking. Intention, behavioural prepotency, planning ability and inhibitory control may be good targets for interventions designed to decrease heavy episodic drinking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Stability of the spreading in small-world network with predictive controller

    International Nuclear Information System (INIS)

    Bao, Z.J.; Jiang, Q.Y.; Yan, W.J.; Cao, Y.J.

    2010-01-01

    In this Letter, we apply the predictive control strategy to suppress the propagation of diseases or viruses in small-world network. The stability of small-world spreading model with predictive controller is investigated. The sufficient and necessary stability condition is given, which is closely related to the controller parameters and small-world rewiring probability p. Our simulations discover a phenomenon that, with the fixed predictive controller parameters, the spreading dynamics become more and more stable when p decreases from a larger value to a smaller one, and the suitable controller parameters can effectively suppress the spreading behaviors even when p varies within the whole spectrum, and the unsuitable controller parameters can lead to oscillation when p lies within a certain range.

  4. Explaining the electroweak scale and stabilizing moduli in M theory

    Science.gov (United States)

    Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.; Kumar, Piyush; Shao, Jing

    2007-12-01

    In a recent paper [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).PRLTAO0031-900710.1103/PhysRevLett.97.191601] it was shown that in fluxless M theory vacua with at least two hidden sectors undergoing strong gauge dynamics and a particular form of the Kähler potential, all moduli are stabilized by the effective potential and a stable hierarchy is generated, consistent with standard gauge unification. This paper explains the results of [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).PRLTAO0031-900710.1103/PhysRevLett.97.191601] in more detail and generalizes them, finding an essentially unique de Sitter vacuum under reasonable conditions. One of the main phenomenological consequences is a prediction which emerges from this entire class of vacua: namely, gaugino masses are significantly suppressed relative to the gravitino mass. We also present evidence that, for those vacua in which the vacuum energy is small, the gravitino mass, which sets all the superpartner masses, is automatically in the TeV 100 TeV range.

  5. Atomic stabilization in superintense laser fields

    International Nuclear Information System (INIS)

    Gavrila, Mihai

    2002-01-01

    Atomic stabilization is a highlight of superintense laser-atom physics. A wealth of information has been gathered on it; established physical concepts have been revised in the process; points of contention have been debated. Recent technological breakthroughs are opening exciting perspectives of experimental study. With this in mind, we present a comprehensive overview of the phenomenon. We discuss the two forms of atomic stabilization identified theoretically. The first one, 'quasistationary (adiabatic) stabilization' (QS), refers to the limiting case of plane-wave monochromatic radiation. QS characterizes the fact that ionization rates, as calculated from single-state Floquet theory, decrease with intensity (possibly in an oscillatory manner) at high values of the field. We present predictions for QS from various forms of Floquet theory: high frequency (that has led to its discovery and offers the best physical insight), complex scaling, Sturmian, radiative close coupling and R-matrix. These predictions all agree quantitatively, and high-accuracy numerical results have been obtained for hydrogen. Predictions from non-Floquet theories are also discussed. Thereafter, we analyse the physical origin of QS. The alternative form of stabilization, 'dynamic stabilization' (DS), is presented next. This expresses the fact that the ionization probability at the end of a laser pulse of fixed shape and duration does not approach unity as the peak intensity is increased, but either starts decreasing with the intensity (possibly in an oscillatory manner), or flattens out at a value smaller than unity. We review the extensive research done on one-dimensional models, that has provided valuable insights into the phenomenon; two- and three-dimensional models are also considered. Full three-dimensional Coulomb calculations have encountered severe numerical handicaps in the past, and it is only recently that a comprehensive mapping of DS could be made for hydrogen. An adiabatic

  6. Observant, Nonaggressive Temperament Predicts Theory of Mind Development

    Science.gov (United States)

    Wellman, Henry M.; Lane, Jonathan D.; LaBounty, Jennifer; Olson, Sheryl L.

    2010-01-01

    Temperament dimensions influence children’s approach to and participation in social interactive experiences which reflect and impact children’s social understandings. Therefore, temperament differences might substantially impact theory of mind development in early childhood. Using longitudinal data, we report that certain early temperament characteristics (at age 3) – lack of aggressiveness, a shy-withdrawn stance to social interaction, and social-perceptual sensitivity – predict children’s more advanced theory-of-mind understanding two years later. The findings contribute to our understanding of how theory of mind develops in the formative preschool period; they may also inform debates as to the evolutionary origins of theory of mind. PMID:21499499

  7. Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas

    Science.gov (United States)

    Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.

    2017-10-01

    KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.

  8. The use of stability indices in predicting asphaltene problems in upstream and downstream oil operations

    Energy Technology Data Exchange (ETDEWEB)

    Asomaning, S. [Baker Petrolite, Sugar Land, TX (United States)

    2003-07-01

    A series of test methods have been developed to determine the stability of asphaltenes in crude oils. They were developed due to the high cost of remediating asphaltene deposition in offshore operations. This study described the characteristics of the Oliensis Spot Test, two saturates, aromatics, resins and asphaltenes (SARA)-based screens (the Colloidal Instability Index and Asphaltene-Resin ratio), a solvent titration method with near infrared radiation (NIR) solids detection, and live oil depressurization. Each method is used to predict the stability of asphaltenes in crude oils with different API gravity. A complete description of the test methods was provided along with experimental data. The effectiveness of the different tests in predicting the stability of asphaltenes in crude oils was also assessed. Results indicate that the prediction of a crude oil's tendency towards asphaltene precipitation was more accurate with the Colloidal Instability Index and the solvent titration method. Live oil depressurization proved to be very effective in predicting the stability of asphaltenes for light oils, where most stability tests fail. tabs., figs.

  9. Asymptotic theory of neutral stability of the Couette flow of a vibrationally excited gas

    Science.gov (United States)

    Grigor'ev, Yu. N.; Ershov, I. V.

    2017-01-01

    An asymptotic theory of the neutral stability curve for a supersonic plane Couette flow of a vibrationally excited gas is developed. The initial mathematical model consists of equations of two-temperature viscous gas dynamics, which are used to derive a spectral problem for a linear system of eighth-order ordinary differential equations within the framework of the classical linear stability theory. Unified transformations of the system for all shear flows are performed in accordance with the classical Lin scheme. The problem is reduced to an algebraic secular equation with separation into the "inviscid" and "viscous" parts, which is solved numerically. It is shown that the thus-calculated neutral stability curves agree well with the previously obtained results of the direct numerical solution of the original spectral problem. In particular, the critical Reynolds number increases with excitation enhancement, and the neutral stability curve is shifted toward the domain of higher wave numbers. This is also confirmed by means of solving an asymptotic equation for the critical Reynolds number at the Mach number M ≤ 4.

  10. Prediction of attendance at fitness center: a comparison between the theory of planned behavior, the social cognitive theory, and the physical activity maintenance theory

    OpenAIRE

    Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O.; Mess, Filip; Reiner, Miriam; Renner, Britta

    2015-01-01

    In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed...

  11. Higgs, Top, and Bottom Mass Predictions in Finite Unified Theories

    CERN Document Server

    Heinemeyer, Sven; Zoupanos, George

    2014-01-01

    All-loop Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) based on the principle of reduction of couplings, which have a remarkable predictive power. The reduction of couplings implies the existence of renormalization group invariant relations among them, which guarantee the vanishing of the beta functions at all orders in perturbation theory in particular N = 1 GUTs. In the soft breaking sector these relations imply the existence of a sum rule among the soft scalar masses. The confrontation of the predictions of a SU(5) FUT model with the top and bottom quark masses and other low-energy experimental constraints leads to a prediction of the light Higgs-boson mass in the rangeMh ∼ 121−126 GeV, in remarkable agreement with the discovery of the Higgs boson with a mass around ∼ 125.7 GeV. Also a relatively heavy spectrum with coloured supersymmetric particles above ∼ 1.5 TeV is predicted, consistent with the non-observation of those particles at the LHC.

  12. Prediction of turning stability using receptance coupling

    Science.gov (United States)

    Jasiewicz, Marcin; Powałka, Bartosz

    2018-01-01

    This paper presents an issue of machining stability prediction of dynamic "lathe - workpiece" system evaluated using receptance coupling method. Dynamic properties of the lathe components (the spindle and the tailstock) are assumed to be constant and can be determined experimentally based on the results of the impact test. Hence, the variable of the system "machine tool - holder - workpiece" is the machined part, which can be easily modelled analytically. The method of receptance coupling enables a synthesis of experimental (spindle, tailstock) and analytical (machined part) models, so impact testing of the entire system becomes unnecessary. The paper presents methodology of analytical and experimental models synthesis, evaluation of the stability lobes and experimental validation procedure involving both the determination of the dynamic properties of the system and cutting tests. In the summary the experimental verification results would be presented and discussed.

  13. Theory of mind and switching predict prospective memory performance in adolescents.

    Science.gov (United States)

    Altgassen, Mareike; Vetter, Nora C; Phillips, Louise H; Akgün, Canan; Kliegel, Matthias

    2014-11-01

    Research indicates ongoing development of prospective memory as well as theory of mind and executive functions across late childhood and adolescence. However, so far the interplay of these processes has not been investigated. Therefore, the purpose of the current study was to investigate whether theory of mind and executive control processes (specifically updating, switching, and inhibition) predict prospective memory development across adolescence. In total, 42 adolescents and 41 young adults participated in this study. Young adults outperformed adolescents on tasks of prospective memory, theory of mind, and executive functions. Switching and theory of mind predicted prospective memory performance in adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Chimpanzee choice rates in competitive games match equilibrium game theory predictions.

    Science.gov (United States)

    Martin, Christopher Flynn; Bhui, Rahul; Bossaerts, Peter; Matsuzawa, Tetsuro; Camerer, Colin

    2014-06-05

    The capacity for strategic thinking about the payoff-relevant actions of conspecifics is not well understood across species. We use game theory to make predictions about choices and temporal dynamics in three abstract competitive situations with chimpanzee participants. Frequencies of chimpanzee choices are extremely close to equilibrium (accurate-guessing) predictions, and shift as payoffs change, just as equilibrium theory predicts. The chimpanzee choices are also closer to the equilibrium prediction, and more responsive to past history and payoff changes, than two samples of human choices from experiments in which humans were also initially uninformed about opponent payoffs and could not communicate verbally. The results are consistent with a tentative interpretation of game theory as explaining evolved behavior, with the additional hypothesis that chimpanzees may retain or practice a specialized capacity to adjust strategy choice during competition to perform at least as well as, or better than, humans have.

  15. Analytical Prediction of Three Dimensional Chatter Stability in Milling

    Science.gov (United States)

    Altintas, Yusuf

    The chip regeneration mechanism during chatter is influenced by vibrations in three directions when milling cutters with ball end, bull nose, or inclined cutting edges are used. A three dimensional chatter stability is modeled analytically in this article. The dynamic milling system is formulated as a function of cutter geometry, the frequency response of the machine tool structure at the cutting zone in three Cartesian directions, cutter engagement conditions and material property. The dynamic milling system with nonlinearities and periodic delayed differential equations is reduced to a three dimensional linear stability problem by approximations based on the physics of milling. The chatter stability lobes are predicted in the frequency domain using the proposed analytical solution, and verified experimentally in milling a Titanium alloy with a face milling cutter having circular inserts.

  16. Constraints and stability in vector theories with spontaneous Lorentz violation

    International Nuclear Information System (INIS)

    Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus; Vrublevskis, Arturs

    2008-01-01

    Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stability of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge

  17. DNA Sequencing and Predictions of the Cosmic Theory of Life

    Science.gov (United States)

    Wickramasinghe, N. Chandra

    The theory of cometary panspermia, developed by the late Sir Fred Hoyle and the present author argues that life originated cosmically as a unique event in one of a great multitude of comets or planetary bodies in the Universe. Life on Earth did not originate here but was introduced by impacting comets, and its further evolution was driven by the subsequent acquisition of cosmically derived genes. Explicit predictions of this theory published in 1979-1981, stating how the acquisition of new genes drives evolution, are compared with recent developments in relation to horizontal gene transfer, and the role of retroviruses in evolution. Precisely-stated predictions of the theory of cometary panspermia are shown to have been verified.

  18. Dynamic Data-Driven Prediction of Lean Blowout in a Swirl-Stabilized Combustor

    Directory of Open Access Journals (Sweden)

    Soumalya Sarkar

    2015-09-01

    Full Text Available This paper addresses dynamic data-driven prediction of lean blowout (LBO phenomena in confined combustion processes, which are prevalent in many physical applications (e.g., land-based and aircraft gas-turbine engines. The underlying concept is built upon pattern classification and is validated for LBO prediction with time series of chemiluminescence sensor data from a laboratory-scale swirl-stabilized dump combustor. The proposed method of LBO prediction makes use of the theory of symbolic dynamics, where (finite-length time series data are partitioned to produce symbol strings that, in turn, generate a special class of probabilistic finite state automata (PFSA. These PFSA, called D-Markov machines, have a deterministic algebraic structure and their states are represented by symbol blocks of length D or less, where D is a positive integer. The D-Markov machines are constructed in two steps: (i state splitting, i.e., the states are split based on their information contents, and (ii state merging, i.e., two or more states (of possibly different lengths are merged together to form a new state without any significant loss of the embedded information. The modeling complexity (e.g., number of states of a D-Markov machine model is observed to be drastically reduced as the combustor approaches LBO. An anomaly measure, based on Kullback-Leibler divergence, is constructed to predict the proximity of LBO. The problem of LBO prediction is posed in a pattern classification setting and the underlying algorithms have been tested on experimental data at different extents of fuel-air premixing and fuel/air ratio. It is shown that, over a wide range of fuel-air premixing, D-Markov machines with D > 1 perform better as predictors of LBO than those with D = 1.

  19. Simulation studies on stability of hot electron plasma

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu

    1985-01-01

    Stability of a hot electron plasma in an NBT(EBT)-like geometry is studied by using a 2-1/2 dimensional relativistic, electromagnetic particle code. For the low-frequency hot electron interchange mode, comparison of the simulation results with the analytical predictions of linear stability theory show fairly good agreement with the magnitude of the growth rates calculated without hot electron finite Larmor radius effects. Strong stabilizing effects by finite Larmor radius of the hot electrons are observed for short wavelength modes. As for the high-frequency hot electron interchange mode, there is a discrepancy between the simulation results and the theory. The high-frequency instability is not observed though a parameter regime is chosen in which the high-frequency hot electron interchange mode is theoretically predicted to grow. Strong cross-field diffusion in a poloidal direction of the hot electrons might explain the stability. Each particle has a magnetic drift velocity, and the speed of the magnetic drift is proportional to the kinetic energy of each particle. Hence, if the particles have high temperature, the spread of the magnetic drift velocity is large. This causes a strong cross-field diffusion of the hot electrons. In the simulation for this interchange mode, an enhanced temperature relaxation is observed between the hot and cold electrons although the theoretically predicted high frequency modes are stable. (Nogami, K.)

  20. Theory of mind predicts severity level in autism.

    Science.gov (United States)

    Hoogenhout, Michelle; Malcolm-Smith, Susan

    2017-02-01

    We investigated whether theory of mind skills can indicate autism spectrum disorder severity. In all, 62 children with autism spectrum disorder completed a developmentally sensitive theory of mind battery. We used intelligence quotient, Diagnostic and Statistical Manual of Mental Disorders (4th ed.) diagnosis and level of support needed as indicators of severity level. Using hierarchical cluster analysis, we found three distinct clusters of theory of mind ability: early-developing theory of mind (Cluster 1), false-belief reasoning (Cluster 2) and sophisticated theory of mind understanding (Cluster 3). The clusters corresponded to severe, moderate and mild autism spectrum disorder. As an indicator of level of support needed, cluster grouping predicted the type of school children attended. All Cluster 1 children attended autism-specific schools; Cluster 2 was divided between autism-specific and special needs schools and nearly all Cluster 3 children attended general special needs and mainstream schools. Assessing theory of mind skills can reliably discriminate severity levels within autism spectrum disorder.

  1. Towards a predictive theory for genetic regulatory networks

    Science.gov (United States)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  2. Wake meandering under non-neutral atmospheric stability conditions – theory and facts

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Machefaux, Ewan; Chougule, Abhijit S.

    2015-01-01

    This paper deals with modelling of wake dynamics under influence of atmospheric stability conditions different from neutral. In particular, it is investigated how the basic split in turbulent scales, on which the Dynamic Wake Meandering model is based, can be utilized to include atmospheric...... stability effects in this model. This is done partly by analyzing a large number of turbulence spectra obtained from sonic measurements, partly by analyzing dedicated full-scale LiDAR measurements from which wake dynamics can be directly resolved. The theory behind generalizing the Dynamic Wake Meandering...

  3. Life history theory predicts fish assemblage response to hydrologic regimes.

    Science.gov (United States)

    Mims, Meryl C; Olden, Julian D

    2012-01-01

    The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.

  4. The cross-national pattern of happiness. Test of predictions implied in three theories of happiness

    NARCIS (Netherlands)

    R. Veenhoven (Ruut); J.J. Ehrhardt (Joop)

    1995-01-01

    textabstractABSTRACT. Predictions about level and dispersion of happiness in nations are derived from three theories of happiness: comparison-theory, folklore-theory and livability-theory. The predictions are tested on two cross national data-sets: a comparative survey among university students in

  5. Executive functioning predicts reading, mathematics, and theory of mind during the elementary years.

    Science.gov (United States)

    Cantin, Rachelle H; Gnaedinger, Emily K; Gallaway, Kristin C; Hesson-McInnis, Matthew S; Hund, Alycia M

    2016-06-01

    The goal of this study was to specify how executive functioning components predict reading, mathematics, and theory of mind performance during the elementary years. A sample of 93 7- to 10-year-old children completed measures of working memory, inhibition, flexibility, reading, mathematics, and theory of mind. Path analysis revealed that all three executive functioning components (working memory, inhibition, and flexibility) mediated age differences in reading comprehension, whereas age predicted mathematics and theory of mind directly. In addition, reading mediated the influence of executive functioning components on mathematics and theory of mind, except that flexibility also predicted mathematics directly. These findings provide important details about the development of executive functioning, reading, mathematics, and theory of mind during the elementary years. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Prediction of overall in vitro microsomal stability of drug candidates based on molecular modeling and support vector machines. Case study of novel arylpiperazines derivatives.

    Directory of Open Access Journals (Sweden)

    Szymon Ulenberg

    Full Text Available Other than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model and predict metabolic stability quantitatively is still lacking. This study proposes a workflow for developing quantitative metabolic stability-structure relationships, taking a set of 30 arylpiperazine derivatives as an example. The metabolic stability of the compounds was assessed in in vitro incubations in the presence of human liver microsomes and NADPH and subsequently quantified by liquid chromatography-mass spectrometry (LC-MS. Density functional theory (DFT calculations were used to obtain 30 models of the molecules, and Dragon software served as a source of structure-based molecular descriptors. For modeling structure-metabolic stability relationships, Support Vector Machines (SVM, a non-linear machine learning technique, were found to be more effective than a regression technique, based on the validation parameters obtained. Moreover, for the first time, general sites of metabolism for arylpiperazines bearing the 4-aryl-2H-pyrido[1,2-c]pyrimidine-1,3-dione system were defined by analysis of Q-TOF-MS/MS spectra. The results indicated that the application of one of the most advanced chemometric techniques combined with a simple and quick in vitro procedure and LC-MS analysis provides a novel and valuable tool for predicting metabolic half-life values. Given the reduced time and simplicity of analysis, together with the accuracy of the predictions obtained, this is a valid approach for predicting metabolic stability using structural data. The approach presented provides a novel, comprehensive and reliable tool

  7. Improved asymptotic stability analysis for uncertain delayed state neural networks

    International Nuclear Information System (INIS)

    Souza, Fernando O.; Palhares, Reinaldo M.; Ekel, Petr Ya.

    2009-01-01

    This paper presents a new linear matrix inequality (LMI) based approach to the stability analysis of artificial neural networks (ANN) subject to time-delay and polytope-bounded uncertainties in the parameters. The main objective is to propose a less conservative condition to the stability analysis using the Gu's discretized Lyapunov-Krasovskii functional theory and an alternative strategy to introduce slack matrices. Two computer simulations examples are performed to support the theoretical predictions. Particularly, in the first example, the Hopf bifurcation theory is used to verify the stability of the system when the origin falls into instability. The second example is presented to illustrate how the proposed approach can provide better stability performance when compared to other ones in the literature

  8. Phase stabilities at a glance: Stability diagrams of nickel dipnictides

    International Nuclear Information System (INIS)

    Bachhuber, F.; Rothballer, J.; Weihrich, R.; Söhnel, T.

    2013-01-01

    In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn 2 (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb 2 , and the NiAs 2 types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB 2 structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases

  9. A theory of life satisfaction dynamics : Stability, change and volatility in 25-year life trajectories in Germany

    NARCIS (Netherlands)

    Headey, Bruce; Muffels, R.J.A.

    2018-01-01

    An adequate theory of life satisfaction (LS) needs to take account of both factors that tend to stabilise LS and those that change it. The most widely accepted theory in the recent past—set-point theory—focussed solely on stability (Brickman and Campbell, in:Appley (ed) Adaptation level theory,

  10. Capabilities and limitations of predictive engineering theories for multicomponent adsorption

    DEFF Research Database (Denmark)

    Bartholdy, Sofie; Bjørner, Martin Gamel; Solbraa, Even

    2013-01-01

    for the prediction of multicomponent adsorption with parameters obtained solely from correlating single gas/solid data. We have tested them over an extensive database with emphasis on polar systems (both gases and solids). The three theories are the multicomponent Langmuir, the ideal adsorbed solution theory (IAST...

  11. Theory of asymptotic matching for resistive magnetohydrodynamic stability in a negative magnetic shear configuration

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Watanabe, Tomoko.

    1996-11-01

    A theory and a numerical method are presented for the asymptotic matching analysis of resistive magnetohydrodynamic stability in a negative magnetic shear configuration with two rational surfaces. The theory formulates the problem of solving both the Newcomb equations in the ideal MHD region and the inner-layer equations around rational surfaces as boundary value/eigenvalue problems to which the finite element method and the finite difference method can be applied. Hence, the problem of stability analysis is solved by a numerically stable method. The present numerical method has been applied to model equations having analytic solutions in a negative magnetic shear configuration. Comparison of the numerical solutions with the analytical ones verifies the validity of the numerical method proposed. (author)

  12. Method for stability analysis based on the Floquet theory and Vidyn calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ganander, Hans

    2005-03-01

    This report presents the activity 3.7 of the STEM-project Aerobig and deals with aeroelastic stability of the complete wind turbine structure at operation. As a consequence of the increase of sizes of wind turbines dynamic couplings are being more important for loads and dynamic properties. The steady ambition to increase the cost competitiveness of wind turbine energy by using optimisation methods lowers design margins, which in turn makes questions about stability of the turbines more important. The main objective of the project is to develop a general stability analysis tool, based on the VIDYN methodology regarding the turbine dynamic equations and the Floquet theory for the stability analysis. The reason for selecting the Floquet theory is that it is independent of number of blades, thus can be used for 2 as well as 3 bladed turbines. Although the latter ones are dominating on the market, the former has large potential when talking about offshore large turbines. The fact that cyclic and individual blade pitch controls are being developed as a mean for reduction of fatigue also speaks for general methods as Floquet. The first step of a general system for stability analysis has been developed, the code VIDSTAB. Together with other methods, as the snap shot method, the Coleman transformation and the use of Fourier series, eigenfrequences and modes can be analysed. It is general with no restrictions on the number of blades nor the symmetry of the rotor. The derivatives of the aerodynamic forces are calculated numerically in this first version. Later versions would include state space formulations of these forces. This would also be the case for the controllers of turbine rotation speed, yaw direction and pitch angle.

  13. A machine learns to predict the stability of circumbinary planets

    Science.gov (United States)

    Lam, Christopher; Kipping, David

    2018-01-01

    Long-period circumbinary planets appear to be as common as those orbiting single stars and have been found to frequently have orbital radii just beyond the critical distance for dynamical stability. Assessing the stability is typically done either through N-body simulations or using the classic Holman-Wiegert stability criterion: a second-order polynomial calibrated to broadly match numerical simulations. However, the polynomial is unable to capture islands of instability introduced by mean motion resonances, causing the accuracy of the criterion to approach that of a random coin-toss when close to the boundary. We show how a deep neural network (DNN) trained on N-body simulations generated with REBOUND is able to significantly improve stability predictions for circumbinary planets on initially coplanar, circular orbits. Specifically, we find that the accuracy of our DNN never drops below 86%, even when tightly surrounding the boundary of instability, and is fast enough to be practical for on-the-fly calls during likelihood evaluations typical of modern Bayesian inference. Our binary classifier DNN is made publicly available at https://github.com/CoolWorlds/orbital-stability.

  14. Predicting short-term weight loss using four leading health behavior change theories

    Directory of Open Access Journals (Sweden)

    Barata José T

    2007-04-01

    Full Text Available Abstract Background This study was conceived to analyze how exercise and weight management psychosocial variables, derived from several health behavior change theories, predict weight change in a short-term intervention. The theories under analysis were the Social Cognitive Theory, the Transtheoretical Model, the Theory of Planned Behavior, and Self-Determination Theory. Methods Subjects were 142 overweight and obese women (BMI = 30.2 ± 3.7 kg/m2; age = 38.3 ± 5.8y, participating in a 16-week University-based weight control program. Body weight and a comprehensive psychometric battery were assessed at baseline and at program's end. Results Weight decreased significantly (-3.6 ± 3.4%, p Conclusion The present models were able to predict 20–30% of variance in short-term weight loss and changes in weight management self-efficacy accounted for a large share of the predictive power. As expected from previous studies, exercise variables were only moderately associated with short-term outcomes; they are expected to play a larger explanatory role in longer-term results.

  15. Theory of mind selectively predicts preschoolers' knowledge-based selective word learning.

    Science.gov (United States)

    Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane

    2015-11-01

    Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory-of-mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children's preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children's developing social cognition and early learning. © 2015 The British Psychological Society.

  16. Theory of mind selectively predicts preschoolers’ knowledge-based selective word learning

    Science.gov (United States)

    Brosseau-Liard, Patricia; Penney, Danielle; Poulin-Dubois, Diane

    2015-01-01

    Children can selectively attend to various attributes of a model, such as past accuracy or physical strength, to guide their social learning. There is a debate regarding whether a relation exists between theory-of-mind skills and selective learning. We hypothesized that high performance on theory-of-mind tasks would predict preference for learning new words from accurate informants (an epistemic attribute), but not from physically strong informants (a non-epistemic attribute). Three- and 4-year-olds (N = 65) completed two selective learning tasks, and their theory of mind abilities were assessed. As expected, performance on a theory-of-mind battery predicted children’s preference to learn from more accurate informants but not from physically stronger informants. Results thus suggest that preschoolers with more advanced theory of mind have a better understanding of knowledge and apply that understanding to guide their selection of informants. This work has important implications for research on children’s developing social cognition and early learning. PMID:26211504

  17. Risk of co-occuring psychopathology: testing a prediction of expectancy theory.

    Science.gov (United States)

    Capron, Daniel W; Norr, Aaron M; Schmidt, Norman B

    2013-01-01

    Despite the high impact of anxiety sensitivity (AS; a fear of anxiety related sensations) research, almost no research attention has been paid to its parent theory, Reiss' expectancy theory (ET). ET has gone largely unexamined to this point, including the prediction that AS is a better predictor of number of fears than current anxiety. To test Reiss' prediction, we used a large (N = 317) clinical sample of anxiety outpatients. Specifically, we examined whether elevated AS predicted number of comorbid anxiety and non-anxiety disorder diagnoses in this sample. Consistent with ET, findings indicated that AS predicted number of comorbid anxiety disorder diagnoses above and beyond current anxiety symptoms. Also, AS did not predict the number of comorbid non-anxiety diagnoses when current anxiety symptoms were accounted for. These findings represent an important examination of a prediction of Reiss' ET and are consistent with the idea that AS may be a useful transdiagnostic treatment target. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Limits of Nuclear Stability

    CERN Document Server

    Nerlo-Pomorska, B; Kleban, M

    2003-01-01

    The modern version of the liquid-drop model (LSD) is compared with the macroscopic part of the binding energy evaluated within the Hartree-Fock- Bogoliubov procedure with the Gogny force and the relativistic mean field theory. The parameters of a liquid-drop like mass formula which approximate on the average the self-consistent results are compared with other models. The limits of nuclear stability predicted by these models are discussed.

  19. Motion Of Bodies And Its Stability In The General Relativity Theory

    International Nuclear Information System (INIS)

    Ryabushko, Anton P.; Zhur, Tatyana A.; Nemanova, Inna T.

    2010-01-01

    This paper reviews the works by the Belarusian school investigators on relativistic motion and its stability for a system of bodies, each of which may have its own rotation, charge, and magnetic field of the dipole type. The corresponding Lagrangian and conservation laws are derived, several secular effects are predicted. For motion of bodies in the medium the secular effect of the periastron reverse shift is predicted as compared to the Mercury perihelion shift. The cause for the Pioneer anomaly is explained.

  20. Why Education Predicts Decreased Belief in Conspiracy Theories

    NARCIS (Netherlands)

    van Prooijen, Jan Willem

    2017-01-01

    People with high education are less likely than people with low education to believe in conspiracy theories. It is yet unclear why these effects occur, however, as education predicts a range of cognitive, emotional, and social outcomes. The present research sought to identify mediators of the

  1. A machine learns to predict the stability of circumbinary planets

    Science.gov (United States)

    Lam, Christopher; Kipping, David

    2018-06-01

    Long-period circumbinary planets appear to be as common as those orbiting single stars and have been found to frequently have orbital radii just beyond the critical distance for dynamical stability. Assessing the stability is typically done either through N-body simulations or using the classic stability criterion first considered by Dvorak and later developed by Holman and Wiegert: a second-order polynomial calibrated to broadly match numerical simulations. However, the polynomial is unable to capture islands of instability introduced by mean motion resonances, causing the accuracy of the criterion to approach that of a random coin-toss when close to the boundary. We show how a deep neural network (DNN) trained on N-body simulations generated with REBOUND is able to significantly improve stability predictions for circumbinary planets on initially coplanar, circular orbits. Specifically, we find that the accuracy of our DNN never drops below 86 per cent, even when tightly surrounding the boundary of instability, and is fast enough to be practical for on-the-fly calls during likelihood evaluations typical of modern Bayesian inference. Our binary classifier DNN is made publicly available at https://github.com/CoolWorlds/orbital-stability.

  2. Goal Setting and Expectancy Theory Predictions of Effort and Performance.

    Science.gov (United States)

    Dossett, Dennis L.; Luce, Helen E.

    Neither expectancy (VIE) theory nor goal setting alone are effective determinants of individual effort and task performance. To test the combined ability of VIE and goal setting to predict effort and performance, 44 real estate agents and their managers completed questionnaires. Quarterly income goals predicted managers' ratings of agents' effort,…

  3. Predicting entrepreneurial career intentions: Values and the theory of planned behavior.

    NARCIS (Netherlands)

    M.J. Gorgievski-Duijvesteijn (Marjan); U. Stephan (Ute); M. Laguna (Mariola); J.A. Moriano (Juan)

    2017-01-01

    textabstractIntegrating predictions from the theory of human values with the theory of planned behavior (TPB), our primary goal is to investigate mechanisms through which individual values are related to entrepreneurial career intentions using a sample of 823 students from four European countries.

  4. Prediction of beauty particle masses with the heavy quark effective theory

    International Nuclear Information System (INIS)

    Aglietti, U.

    1992-01-01

    Using symmetry properties of the static theory for heavy quarks, the spectrum of beauty particles is predicted in terms of the spectrum of charmed particles. A simple technique for cancelling spin dependent corrections to the static theory is explained and systematically applied. (orig.)

  5. Free-boundary stability of straight stellarators

    International Nuclear Information System (INIS)

    Barnes, D.C.; Cary, J.R.

    1984-02-01

    The sharp-boundary model is used to investigate the stability of straight stellarators to free-boundary, long-wavelength modes. To correctly analyze the heliac configuration, previous theory is generalized to the case of arbitrary helical aspect ratio (ratio of plasma radius to periodicity lengths). A simple low-β criterion involving the vacuum field and the normalized axial current is derived and used to investigate a large variety of configurations. The predictions of this low-β theory are verified by numerical minimization of deltaW at arbitrary β. The heliac configuration is found to be remarkably stable, with a critical β of over 15% determined by the lack of equilibrium rather than the onset of instability. In addition, other previously studied systems are found to be stabilized by net axial plasma current

  6. Stability analysis of jointed rock slope by the block theory

    International Nuclear Information System (INIS)

    Yoshinaka, Ryunoshin; Yamabe, Tadashi; Fujita, Tomoo.

    1990-01-01

    The block theory to analyze three dimensional stability problems of discontinuous rock masses is applied to the actual discontinuous rock slope. Taking into consideration that the geometrical information about discontinuities generally increases according to progressive steps of rock investigation in field, the method adopted for analysis is divided into following two steps; 1) the statistical/probabilitical analysis using information from the primary investigation stage which mainly consists of that of natural rock outcrops, and 2) the deterministic analysis correspond to the secondary stage using exploration adits. (author)

  7. Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion

    International Nuclear Information System (INIS)

    Yanez Vico, C.

    2012-11-01

    For moderate-Z materials, the hydrodynamic structure of the ablation region formed by the irradiation of high intensity laser beams differs from that of low-Z materials (hydrogenic ablators). In particular, the role played by the radiative energy flux becomes non-negligible for increasing atomic number material and ended up forming a second ablation front. This structure of two separated ablation fronts, called double ablation (DA) front, was confirmed in the simulations carried out by Fujioka et al. In this work a linear stability theory of DA fronts is developed for direct-drive inertial confinement fusion targets. Two models are proposed. First, a sharp boundary model where the thin front approximation is assumed for both ablation fronts. The information about the corona region that permits to close the sharp boundary model is obtained from a prior self-consistent analysis of the electronic-radiative ablation (ERA) front. Numerical results are presented as well as an analytical approach for the radiation dominated regime of very steep double ablation front structure. Second, a self-consistent numerical method where the finite length of the ablation fronts is considered. Accurate hydrodynamic profiles are taken into account in the theoretical model by means of a fitting parameters method using one-dimensional simulation results. Numerical dispersion relation is compared to the analytical sharp boundary model showing an excellent agreement for the radiation dominated regime, and the stabilization due to smooth profiles. 2D simulations are presented to validate the linear stability theory

  8. StaRProtein, A Web Server for Prediction of the Stability of Repeat Proteins

    Science.gov (United States)

    Xu, Yongtao; Zhou, Xu; Huang, Meilan

    2015-01-01

    Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins. PMID:25807112

  9. Implicit theories about willpower predict the activation of a rest goal following self-control exertion.

    Science.gov (United States)

    Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte

    2015-10-01

    Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower. (c) 2015 APA, all rights reserved).

  10. Theoretical prediction of the energy stability of graphene nanoblisters

    Science.gov (United States)

    Glukhova, O. E.; Slepchenkov, M. M.; Barkov, P. V.

    2018-04-01

    The paper presents the results of a theoretical prediction of the energy stability of graphene nanoblisters with various geometrical parameters. As a criterion for the evaluation of the stability of investigated carbon objects we propose to consider the value of local stress of the nanoblister atomic grid. Numerical evaluation of stresses experienced by atoms of the graphene blister framework was carried out by means of an original method for calculation of local stresses that is based on energy approach. Atomistic models of graphene nanoblisters corresponding to the natural experiment data were built for the first time in this work. New physical regularities of the influence of topology on the thermodynamic stability of nanoblisters were established as a result of the analysis of the numerical experiment data. We built the distribution of local stresses for graphene blister structures, whose atomic grid contains a variety of structural defects. We have shown how the concentration and location of defects affect the picture of the distribution of the maximum stresses experienced by the atoms of the nanoblisters.

  11. Analysis and Prediction of Micromilling Stability with Variable Tool Geometry

    Directory of Open Access Journals (Sweden)

    Ziyang Cao

    2014-11-01

    Full Text Available Micromilling can fabricate miniaturized components using micro-end mill at high rotational speeds. The analysis of machining stability in micromilling plays an important role in characterizing the cutting process, estimating the tool life, and optimizing the process. A numerical analysis and experimental method are presented to investigate the chatter stability in micro-end milling process with variable milling tool geometry. The schematic model of micromilling process is constructed and the calculation formula to predict cutting force and displacements is derived. This is followed by a detailed numerical analysis on micromilling forces between helical ball and square end mills through time domain and frequency domain method and the results are compared. Furthermore, a detailed time domain simulation for micro end milling with straight teeth and helical teeth end mill is conducted based on the machine-tool system frequency response function obtained through modal experiment. The forces and displacements are predicted and the simulation result between variable cutter geometry is deeply compared. The simulation results have important significance for the actual milling process.

  12. Modeling and simulation of adaptive Neuro-fuzzy based intelligent system for predictive stabilization in structured overlay networks

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2017-02-01

    Full Text Available Intelligent prediction of neighboring node (k well defined neighbors as specified by the dht protocol dynamism is helpful to improve the resilience and can reduce the overhead associated with topology maintenance of structured overlay networks. The dynamic behavior of overlay nodes depends on many factors such as underlying user’s online behavior, geographical position, time of the day, day of the week etc. as reported in many applications. We can exploit these characteristics for efficient maintenance of structured overlay networks by implementing an intelligent predictive framework for setting stabilization parameters appropriately. Considering the fact that human driven behavior usually goes beyond intermittent availability patterns, we use a hybrid Neuro-fuzzy based predictor to enhance the accuracy of the predictions. In this paper, we discuss our predictive stabilization approach, implement Neuro-fuzzy based prediction in MATLAB simulation and apply this predictive stabilization model in a chord based overlay network using OverSim as a simulation tool. The MATLAB simulation results present that the behavior of neighboring nodes is predictable to a large extent as indicated by the very small RMSE. The OverSim based simulation results also observe significant improvements in the performance of chord based overlay network in terms of lookup success ratio, lookup hop count and maintenance overhead as compared to periodic stabilization approach.

  13. Using the theory of reasoned action to predict organizational misbehavior.

    Science.gov (United States)

    Vardi, Yoav; Weitz, Ely

    2002-12-01

    A review of literature on organizational behavior and management on predicting work behavior indicated that most reported studies emphasize positive work outcomes, e.g., attachment, performance, and satisfaction, while job related misbehaviors have received relatively less systematic research attention. Yet, forms of employee misconduct in organizations are pervasive and quite costly for both individuals and organizations. We selected two conceptual frameworks for the present investigation: Vardi and Wiener's model of organizational misbehavior and Fishbein and Ajzen's Theory of Reasoned Action. The latter views individual behavior as intentional, a function of rationally based attitudes toward the behavior, and internalized normative pressures concerning such behavior. The former model posits that different (normative and instrumental) internal forces lead to the intention to engage in job-related misbehavior. In this paper we report a scenario based quasi-experimental study especially designed to test the utility of the Theory of Reasoned Action in predicting employee intentions to engage in self-benefitting (Type S), organization-benefitting (Type O, or damaging (Type D) organizational misbehavior. Results support the Theory of Reasoned Action in predicting negative workplace behaviors. Both attitude and subjective norm are useful in explaining organizational misbehavior. We discuss some theoretical and methodological implications for the study of misbehavior intentions in organizations.

  14. Prediction of attendance at fitness center: a comparison between the theory of planned behavior, the social cognitive theory, and the physical activity maintenance theory.

    Science.gov (United States)

    Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O; Mess, Filip; Reiner, Miriam; Renner, Britta

    2015-01-01

    In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed for 101 college students (53 female) aged between 19 and 32 years (M = 23.6; SD = 2.9) over 20 weeks using a magnetic card. In order to predict the pattern of participation TPB, SCT and PAMT were used. A latent class zero-inflated Poisson growth curve analysis identified two participation patterns: regular attenders and intermittent exercisers. SCT showed the highest predictive power followed by PAMT and TPB. Impeding aspects as life stress and barriers were the strongest predictors suggesting that overcoming barriers might be an important aspect for working out on a regular basis. Self-efficacy, perceived behavioral control, and social support could also significantly differentiate between the participation patterns.

  15. After the fall of the Berlin wall: Perceptions and consequences of stability and change among middle aged and older East- and West-Germans

    NARCIS (Netherlands)

    Westerhof, G.J.; Keyes, C.L.M.

    2006-01-01

    Objectives. This study empirically tested the self-systems theory of subjective change in light of the rapid change after the fall of the Berlin Wall. The theory predicts that individuals have a tendency to perceive stability and that perceived stability exerts a strong positive effect on subjective

  16. Stabilizing bottomless action theories

    International Nuclear Information System (INIS)

    Greensite, J.; Halpern, M.B.

    1983-12-01

    The authors show how to construct the Euclidean quantum theory corresponding to classical actions which are unbounded from below. The method preserves the classical limit, the large-N limit, and the perturbative expansion of the unstabilized theories. (Auth.)

  17. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    Science.gov (United States)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  18. Prediction on corrosion rate of pipe in nuclear power system based on optimized grey theory

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Chen Dengke; Jiang Wei

    2007-01-01

    For the prediction of corrosion rate of pipe in nuclear power system, the pre- diction error from the grey theory is greater, so a new method, optimized grey theory was presented in the paper. A comparison among predicted results from present and other methods was carried out, and it is seem that optimized grey theory is correct and effective for the prediction of corrosion rate of pipe in nuclear power system, and it provides a fundamental basis for the maintenance of pipe in nuclear power system. (authors)

  19. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    Science.gov (United States)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  20. Undergraduates' intentions to take a second language proficiency test: a comparison of predictions from the theory of planned behavior and social cognitive theory.

    Science.gov (United States)

    Lin, Bih-Jiau; Chiou, Wen-Bin

    2010-06-01

    English competency has become essential for obtaining a better job or succeeding in higher education in Taiwan. Thus, passing the General English Proficiency Test is important for college students in Taiwan. The current study applied Ajzen's theory of planned behavior and the notions of outcome expectancy and self-efficacy from Bandura's social cognitive theory to investigate college students' intentions to take the General English Proficiency Test. The formal sample consisted of 425 undergraduates (217 women, 208 men; M age = 19.5 yr., SD = 1.3). The theory of planned behavior showed greater predictive ability (R2 = 33%) of intention than the social cognitive theory (R2 = 7%) in regression analysis and made a unique contribution to prediction of actual test-taking behavior one year later in logistic regression. Within-model analyses indicated that subjective norm in theory of planned behavior and outcome expectancy in social cognitive theory are crucial factors in predicting intention. Implications for enhancing undergraduates' intentions to take the English proficiency test are discussed.

  1. Optimized Extreme Learning Machine for Power System Transient Stability Prediction Using Synchrophasors

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    2015-01-01

    Full Text Available A new optimized extreme learning machine- (ELM- based method for power system transient stability prediction (TSP using synchrophasors is presented in this paper. First, the input features symbolizing the transient stability of power systems are extracted from synchronized measurements. Then, an ELM classifier is employed to build the TSP model. And finally, the optimal parameters of the model are optimized by using the improved particle swarm optimization (IPSO algorithm. The novelty of the proposal is in the fact that it improves the prediction performance of the ELM-based TSP model by using IPSO to optimize the parameters of the model with synchrophasors. And finally, based on the test results on both IEEE 39-bus system and a large-scale real power system, the correctness and validity of the presented approach are verified.

  2. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rak, Zs.; Rost, C. M.; Lim, M.; Maria, J.-P.; Brenner, D. W. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States); Sarker, P.; Toher, C.; Curtarolo, S. [Department of Mechanical Engineering and Materials Science and Center for Materials Genomics, Duke University, Durham, North Carolina 27708 (United States)

    2016-09-07

    Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg{sub 0.1}Co{sub 0.1}Ni{sub 0.1}Cu{sub 0.1}Zn{sub 0.1})O{sub 0.5}, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co{sup +3} in J14 + Li are very different from Co{sup +2}, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.

  3. Towards a theory of life satisfaction : Accounting for stability, change and volatility in 25-year life trajectories in Germany

    NARCIS (Netherlands)

    Headey, Bruce; Muffels, Ruud

    2016-01-01

    An adequate theory of Life Satisfaction (LS) needs to take account of both factors that tend to stabilise LS and those that change it. The most widely accepted theory in the recent past – set-point theory – focussed solely on stability (Brickman and Campbell, 1971; Lykken and Tellegen, 1996). That

  4. Economic Growth as a Factor of Political Stability

    Directory of Open Access Journals (Sweden)

    Анна Олеговна Ярославцева

    2015-12-01

    Full Text Available The article analyzes actual problems of the impact of economic growth on the political stability of different state. The author shows that despite the undoubted correlation of the level of economic development and political stability, economic growth by itself is not a panacea for destabilization risks because of the effects of inflated expectations and transformations of social consciousness. The author argues that the impact of economic growth on political stability is largely ambivalent. On the basis of “Tocqueville's law” and the range of theories of “relative deprivation”, the author makes a conclusion about the principal limitations of predictive and interpretive capabilities of economic indicators (primarily economic growth for the analysis of political stability.

  5. Utility of the theory of reasoned action and theory of planned behavior for predicting Chinese adolescent smoking.

    Science.gov (United States)

    Guo, Qian; Johnson, C Anderson; Unger, Jennifer B; Lee, Liming; Xie, Bin; Chou, Chih-Ping; Palmer, Paula H; Sun, Ping; Gallaher, Peggy; Pentz, MaryAnn

    2007-05-01

    One third of smokers worldwide live in China. Identifying predictors of smoking is important for prevention program development. This study explored whether the Theory of Reasoned Action (TRA) and Theory of Planned Behavior (TPB) predict adolescent smoking in China. Data were obtained from 14,434 middle and high school students (48.6% boys, 51.4% girls) in seven geographically varied cities in China. TRA and TPB were tested by multilevel mediation modeling, and compared by multilevel analyses and likelihood ratio tests. Perceived behavioral control was tested as a main effect in TPB and a moderation effect in TRA. The mediation effects of smoking intention were supported in both models (p<0.001). TPB accounted for significantly more variance than TRA (p<0.001). Perceived behavioral control significantly interacted with attitudes and social norms in TRA (p<0.001). Therefore, TRA and TPB are applicable to China to predict adolescent smoking. TPB is superior to TRA for the prediction and TRA can better predict smoking among students with lower than higher perceived behavioral control.

  6. The predictive validity of prospect theory versus expected utility in health utility measurement.

    Science.gov (United States)

    Abellan-Perpiñan, Jose Maria; Bleichrodt, Han; Pinto-Prades, Jose Luis

    2009-12-01

    Most health care evaluations today still assume expected utility even though the descriptive deficiencies of expected utility are well known. Prospect theory is the dominant descriptive alternative for expected utility. This paper tests whether prospect theory leads to better health evaluations than expected utility. The approach is purely descriptive: we explore how simple measurements together with prospect theory and expected utility predict choices and rankings between more complex stimuli. For decisions involving risk prospect theory is significantly more consistent with rankings and choices than expected utility. This conclusion no longer holds when we use prospect theory utilities and expected utilities to predict intertemporal decisions. The latter finding cautions against the common assumption in health economics that health state utilities are transferable across decision contexts. Our results suggest that the standard gamble and algorithms based on, should not be used to value health.

  7. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem.......The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  8. Numerical Prediction of the Influence of Thrust Reverser on Aeroengine's Aerodynamic Stability

    Science.gov (United States)

    Zhiqiang, Wang; Xigang, Shen; Jun, Hu; Xiang, Gao; Liping, Liu

    2017-11-01

    A numerical method was developed to predict the aerodynamic stability of a high bypass ratio turbofan engine, at the landing stage of a large transport aircraft, when the thrust reverser was deployed. 3D CFD simulation and 2D aeroengine aerodynamic stability analysis code were performed in this work, the former is to achieve distortion coefficient for the analysis of engine stability. The 3D CFD simulation was divided into two steps, the single engine calculation and the integrated aircraft and engine calculation. Results of the CFD simulation show that with the decreasing of relative wind Mach number, the engine inlet will suffer more severe flow distortion. The total pressure and total temperature distortion coefficients at the inlet of the engines were obtained from the results of the numerical simulation. Then an aeroengine aerodynamic stability analysis program was used to quantitatively analyze the aerodynamic stability of the high bypass ratio turbofan engine. The results of the stability analysis show that the engine can work stably, when the reverser flow is re-ingested. But the anti-distortion ability of the booster is weaker than that of the fan and high pressure compressor. It is a weak link of engine stability.

  9. Linear stability of tearing modes

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.; Hahm, T.S.

    1986-05-01

    This paper examines the stability of tearing modes in a sheared slab when the width of the tearing layer is much smaller than the ion Larmor radius. The ion response is nonlocal, and the quasineutrality retains its full integal form. An expansion procedure is introduced to solve the quasineutrality equation in powers of the width of the tearing layer over the ion Larmor radius. The expansion procedure is applied to the collisionless and semi-collisional tearing modes. The first order terms in the expansion we find to be strongly stabilizing. The physics of the mode and of the stabilization is discussed. Tearing modes are observed in experiments even though the slab theory predicts stability. It is proposed that these modes grow from an equilibrium with islands at the rational surfaces. If the equilibrium islands are wider than the ion Larmor radius, the mode is unstable when Δ' is positive

  10. From the Neutral Theory to a Comprehensive and Multiscale Theory of Ecological Equivalence.

    Science.gov (United States)

    Munoz, François; Huneman, Philippe

    2016-09-01

    The neutral theory of biodiversity assumes that coexisting organisms are equally able to survive, reproduce, and disperse (ecological equivalence), but predicts that stochastic fluctuations of these abilities drive diversity dynamics. It predicts remarkably well many biodiversity patterns, although substantial evidence for the role of niche variation across organisms seems contradictory. Here, we discuss this apparent paradox by exploring the meaning and implications of ecological equivalence. We address the question whether neutral theory provides an explanation for biodiversity patterns and acknowledges causal processes. We underline that ecological equivalence, although central to neutral theory, can emerge at local and regional scales from niche-based processes through equalizing and stabilizing mechanisms. Such emerging equivalence corresponds to a weak conception of neutral theory, as opposed to the assumption of strict equivalence at the individual level in strong conception. We show that this duality is related to diverging views on hypothesis testing and modeling in ecology. In addition, the stochastic dynamics exposed in neutral theory are pervasive in ecological systems and, rather than a null hypothesis, ecological equivalence is best understood as a parsimonious baseline to address biodiversity dynamics at multiple scales.

  11. Macroscopic plasma properties and stability theory

    International Nuclear Information System (INIS)

    Sakanaka, P.H.

    1981-01-01

    1. Two-fluid equations: (a) Boltzmann equation: complete set of equations; collision models - Vlasov, BGK, Fokker-Planck-Landau, Boltzmann. (b) Moments of the Boltzmann equation: problem of closure. (c) Two-fluid equations. 2. One-fluid equation: (a) One-fluid variables. (b) One-fluid equations: quasi-neutrality. (c) Resistive MHD equations. (d) Ideal MHD equations: one-adiabatic approximation; double-adiabatic approximation - CGL. 3. MHD stability problem - energy principle: (a) Linearized ideal MHD equations: force-operator equation. (b) Boundary conditions. (c) Self-adjointness of force operator. (d) The energy principle. 4. Stability problems: application of the energy principle; stability of sharp-boundary plasmas. 5. Thermodynamic approach for stability of plasmas: Newcomb and Rosenbluth's stability criteria. (author)

  12. The utility of theory of planned behavior in predicting consistent ...

    African Journals Online (AJOL)

    admin

    disease. Objective: To examine the utility of theory of planned behavior in predicting consistent condom use intention of HIV .... (24-25), making subjective norms as better predictors of intention ..... Organizational Behavior and Human Decision.

  13. Applying psychological theories to evidence-based clinical practice: identifying factors predictive of placing preventive fissure sealants.

    Science.gov (United States)

    Bonetti, Debbie; Johnston, Marie; Clarkson, Jan E; Grimshaw, Jeremy; Pitts, Nigel B; Eccles, Martin; Steen, Nick; Thomas, Ruth; Maclennan, Graeme; Glidewell, Liz; Walker, Anne

    2010-04-08

    Psychological models are used to understand and predict behaviour in a wide range of settings, but have not been consistently applied to health professional behaviours, and the contribution of differing theories is not clear. This study explored the usefulness of a range of models to predict an evidence-based behaviour -- the placing of fissure sealants. Measures were collected by postal questionnaire from a random sample of general dental practitioners (GDPs) in Scotland. Outcomes were behavioural simulation (scenario decision-making), and behavioural intention. Predictor variables were from the Theory of Planned Behaviour (TPB), Social Cognitive Theory (SCT), Common Sense Self-regulation Model (CS-SRM), Operant Learning Theory (OLT), Implementation Intention (II), Stage Model, and knowledge (a non-theoretical construct). Multiple regression analysis was used to examine the predictive value of each theoretical model individually. Significant constructs from all theories were then entered into a 'cross theory' stepwise regression analysis to investigate their combined predictive value. Behavioural simulation - theory level variance explained was: TPB 31%; SCT 29%; II 7%; OLT 30%. Neither CS-SRM nor stage explained significant variance. In the cross theory analysis, habit (OLT), timeline acute (CS-SRM), and outcome expectancy (SCT) entered the equation, together explaining 38% of the variance. Behavioural intention - theory level variance explained was: TPB 30%; SCT 24%; OLT 58%, CS-SRM 27%. GDPs in the action stage had significantly higher intention to place fissure sealants. In the cross theory analysis, habit (OLT) and attitude (TPB) entered the equation, together explaining 68% of the variance in intention. The study provides evidence that psychological models can be useful in understanding and predicting clinical behaviour. Taking a theory-based approach enables the creation of a replicable methodology for identifying factors that may predict clinical behaviour

  14. A game theory model for stabilizing price of chili: A case study

    Science.gov (United States)

    Wardayanti, Ari; Aviv, Afgan Suffan; Sutopo, Wahyudi; Hisjam, Muh.

    2017-11-01

    Chili is one of the important agricultural commodity in Indonesia because of its widely consumption by the Indonesian. Chili becomes one of the commodities that experience price fluctuations and important cause of yearly inflation in Indonesia. The unstable price of chili is affected by the scarcity of the commodity in some months and the difference of the harvest season. This study proposes a model to solve the problem by considering the substitution of fresh chilies with dried chili. We propose the cooperative of chili's farmer as entities that process fresh chili into dry ones. The existence of substitution products is expected to maintain the price stability chili. This research was conducted by taking a case study on chili commodity markets in Surakarta which consists of 19 traditional markets. This study aims to create a price stabilization scheme with product substitution using a game theory model. There are 4 strategies proposed in game theory model to describe the relationship between producers and consumers. In this case, the producers are the farmers and the consumers are the trade market. A mixed strategy of was chosen to determine the optimal value among 4 strategies. From the calculation results obtained optimal value when doing a mixed strategy of IDR 201,188,829,000.

  15. Amiet theory extension to predict leading-edge generated noise in compact airfoils

    NARCIS (Netherlands)

    De Santana, Leandro Dantas; Schram, C.

    2015-01-01

    This paper extends the Amiet theory to frequencies where the airfoil can be considered a compact noise source. The original Amiet theory proposes to apply the Schwarzschild theorem in an iterative procedure, which generally leads to noise over-prediction at low-frequencies. To overcome this problem,

  16. Theory of lithium islands and monolayers: Electronic structure and stability

    International Nuclear Information System (INIS)

    Quassowski, S.; Hermann, K.

    1995-01-01

    Systematic calculations on planar clusters and monolayers of lithium are performed to study geometries and stabilities of the clusters as well as their convergence behavior with increasing cluster size. The calculations are based on ab initio methods using density-functional theory within the local-spin-density approximation for exchange and correlation. The optimized nearest-neighbor distances d NN of the Li n clusters, n=1,...,25, of both hexagonal and square geometry increase with cluster size, converging quite rapidly towards the monolayer results. Further, the cluster cohesive energies E c increase with cluster size and converge towards the respective monolayer values that form upper bounds. Clusters of hexagonal geometry are found to be more stable than square clusters of comparable size, consistent with the monolayer results. The size dependence of the cluster cohesive energies can be described approximately by a coordination model based on the concept of pairwise additive nearest-neighbor binding. This indicates that the average binding in the Li n clusters and their relative stabilities can be explained by simple geometric effects which derive from the nearest-neighbor coordination

  17. Maximal locality and predictive power in higher-dimensional, compactified field theories

    International Nuclear Information System (INIS)

    Kubo, Jisuke; Nunami, Masanori

    2004-01-01

    To realize maximal locality in a trivial field theory, we maximize the ultraviolet cutoff of the theory by fine tuning the infrared values of the parameters. This optimization procedure is applied to the scalar theory in D + 1 dimensional (D ≥ 4) with one extra dimension compactified on a circle of radius R. The optimized, infrared values of the parameters are then compared with the corresponding ones of the uncompactified theory in D dimensions, which is assumed to be the low-energy effective theory. We find that these values approximately agree with each other as long as R -1 > approx sM is satisfied, where s ≅ 10, 50, 50, 100 for D = 4,5,6,7, and M is a typical scale of the D-dimensional theory. This result supports the previously made claim that the maximization of the ultraviolet cutoff in a nonrenormalizable field theory can give the theory more predictive power. (author)

  18. Implicit Theories, Expectancies, and Values Predict Mathematics Motivation and Behavior across High School and College.

    Science.gov (United States)

    Priess-Groben, Heather A; Hyde, Janet Shibley

    2017-06-01

    Mathematics motivation declines for many adolescents, which limits future educational and career options. The present study sought to identify predictors of this decline by examining whether implicit theories assessed in ninth grade (incremental/entity) predicted course-taking behaviors and utility value in college. The study integrated implicit theory with variables from expectancy-value theory to examine potential moderators and mediators of the association of implicit theories with college mathematics outcomes. Implicit theories and expectancy-value variables were assessed in 165 American high school students (47 % female; 92 % White), who were then followed into their college years, at which time mathematics courses taken, course-taking intentions, and utility value were assessed. Implicit theories predicted course-taking intentions and utility value, but only self-concept of ability predicted courses taken, course-taking intentions, and utility value after controlling for prior mathematics achievement and baseline values. Expectancy for success in mathematics mediated associations between self-concept of ability and college outcomes. This research identifies self-concept of ability as a stronger predictor than implicit theories of mathematics motivation and behavior across several years: math self-concept is critical to sustained engagement in mathematics.

  19. Prediction of in-service time period of three differently stabilized single base propellants

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Manfred A. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)

    2009-06-15

    Three nitrocellulose-based propellants for use in micro gas generators equipped with different stabilizing systems have been investigated to assess the stabilization capability with regard to in-service time, whereby strong time-temperature profiles have been applied. The three stabilizing systems have been (i) 0.74 mass-% diphenylamine (DPA) and 0.48 mass-% Akardite II (Ak II); (ii) 1.25 mass-% Ak II; (iii) 2.04 mass-% Ak II. Several profiles were considered. Two simulate the heating at sun exposure in hot areas, others consider environmental temperatures in hot-humid and hot-dry areas. They were evaluated according to the load and finally one was chosen for the assessment. The contents of stabilizers were determined by high performance liquid chromatography after Soxhlet type extraction. To describe stabilizer consumption, the most suitable kinetic model was taken. Therewith a prediction was made using the chosen time-temperature profile named 'Phoenix', designed for temperatures at the steering wheel. The objective was to reach with this profile 15 years until the consumption of primary stabilizer content. This is conservative, because with the stabilizing action of the consecutive products of the stabilizers longer times are possible. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  20. A prediction method based on grey system theory in equipment condition based maintenance

    International Nuclear Information System (INIS)

    Yan, Shengyuan; Yan, Shengyuan; Zhang, Hongguo; Zhang, Zhijian; Peng, Minjun; Yang, Ming

    2007-01-01

    Grey prediction is a modeling method based on historical or present, known or indefinite information, which can be used for forecasting the development of the eigenvalues of the targeted equipment system and setting up the model by using less information. In this paper, the postulate of grey system theory, which includes the grey generating, the sorts of grey generating and the grey forecasting model, is introduced first. The concrete application process, which includes the grey prediction modeling, grey prediction, error calculation, equal dimension and new information approach, is introduced secondly. Application of a so-called 'Equal Dimension and New Information' (EDNI) technology in grey system theory is adopted in an application case, aiming at improving the accuracy of prediction without increasing the amount of calculation by replacing old data with new ones. The proposed method can provide a new way for solving the problem of eigenvalue data exploding in equal distance effectively, short time interval and real time prediction. The proposed method, which was based on historical or present, known or indefinite information, was verified by the vibration prediction of induced draft fan of a boiler of the Yantai Power Station in China, and the results show that the proposed method based on grey system theory is simple and provides a high accuracy in prediction. So, it is very useful and significant to the controlling and controllable management in safety production. (authors)

  1. Kinetic Stability of the Field Reversed Configuration

    International Nuclear Information System (INIS)

    E.V. Belova; R.C. Davidson; H. Ji; and M. Yamada

    2002-01-01

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments

  2. Vapor Pressure and Predicted Stability of American Contact Dermatitis Society Core Allergens

    Science.gov (United States)

    Jou, Paul C.; Siegel, Paul D.; Warshaw, Erin M.

    2018-01-01

    Background Accurate patch testing is reliant on proper preparation of patch test allergens. The stability of patch test allergens is dependent on several factors including vapor pressure (VP). Objective This investigation reviews the VP of American Contact Dermatitis Society Core Allergens and compares stability predictions based on VP with those established through clinical testing. Methods Standard references were accessed for determining VP in millimeters of mercury and associated temperature in degrees celsius. If multiple values were listed, VP at temperatures that most approximate indoor storage conditions (20°C and 25°C) were chosen. For mixes, the individual component with the highest VP was chosen as the overall VP, assuming that the most volatile substance would evaporate first. Antigens were grouped into low (≤0.001 mm Hg), moderate (0.001 mm Hg), and high (≥1 mm Hg) volatility using arbitrary cutoff values. Conclusions This review is consistent with previously reported data on formaldehyde, acrylates, and fragrance material instability. Given lack of testing data, VP can be useful in predicting patch test compound stability. Measures such as air-tight multidose reagent containers, sealed single-application dispensers, preparation of patches immediately before application, and storage at lower temperatures may remedy some of these issues. PMID:27427821

  3. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  4. Applying psychological theories to evidence-based clinical practice: identifying factors predictive of placing preventive fissure sealants

    Directory of Open Access Journals (Sweden)

    Maclennan Graeme

    2010-04-01

    Full Text Available Abstract Background Psychological models are used to understand and predict behaviour in a wide range of settings, but have not been consistently applied to health professional behaviours, and the contribution of differing theories is not clear. This study explored the usefulness of a range of models to predict an evidence-based behaviour -- the placing of fissure sealants. Methods Measures were collected by postal questionnaire from a random sample of general dental practitioners (GDPs in Scotland. Outcomes were behavioural simulation (scenario decision-making, and behavioural intention. Predictor variables were from the Theory of Planned Behaviour (TPB, Social Cognitive Theory (SCT, Common Sense Self-regulation Model (CS-SRM, Operant Learning Theory (OLT, Implementation Intention (II, Stage Model, and knowledge (a non-theoretical construct. Multiple regression analysis was used to examine the predictive value of each theoretical model individually. Significant constructs from all theories were then entered into a 'cross theory' stepwise regression analysis to investigate their combined predictive value Results Behavioural simulation - theory level variance explained was: TPB 31%; SCT 29%; II 7%; OLT 30%. Neither CS-SRM nor stage explained significant variance. In the cross theory analysis, habit (OLT, timeline acute (CS-SRM, and outcome expectancy (SCT entered the equation, together explaining 38% of the variance. Behavioural intention - theory level variance explained was: TPB 30%; SCT 24%; OLT 58%, CS-SRM 27%. GDPs in the action stage had significantly higher intention to place fissure sealants. In the cross theory analysis, habit (OLT and attitude (TPB entered the equation, together explaining 68% of the variance in intention. Summary The study provides evidence that psychological models can be useful in understanding and predicting clinical behaviour. Taking a theory-based approach enables the creation of a replicable methodology for

  5. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Science.gov (United States)

    Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova

    2016-01-01

    The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  6. Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions.

    Directory of Open Access Journals (Sweden)

    Preston Donovan

    Full Text Available The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.

  7. Model-based chatter stability prediction and detection for the turning of a flexible workpiece

    Science.gov (United States)

    Lu, Kaibo; Lian, Zisheng; Gu, Fengshou; Liu, Hunju

    2018-02-01

    Machining long slender workpieces still presents a technical challenge on the shop floor due to their low stiffness and damping. Regenerative chatter is a major hindrance in machining processes, reducing the geometric accuracies and dynamic stability of the cutting system. This study has been motivated by the fact that chatter occurrence is generally in relation to the cutting position in straight turning of slender workpieces, which has seldom been investigated comprehensively in literature. In the present paper, a predictive chatter model of turning a tailstock supported slender workpiece considering the cutting position change during machining is explored. Based on linear stability analysis and stiffness distribution at different cutting positions along the workpiece, the effect of the cutting tool movement along the length of the workpiece on chatter stability is studied. As a result, an entire stability chart for a single cutting pass is constructed. Through this stability chart the critical cutting condition and the chatter onset location along the workpiece in a turning operation can be estimated. The difference between the predicted tool locations and the experimental results was within 9% at high speed cutting. Also, on the basis of the predictive model the dynamic behavior during chatter that when chatter arises at some cutting location it will continue for a period of time until another specified location is arrived at, can be inferred. The experimental observation is in good agreement with the theoretical inference. In chatter detection respect, besides the delay strategy and overlap processing technique, a relative threshold algorithm is proposed to detect chatter by comparing the spectrum and variance of the acquired acceleration signals with the reference saved during stable cutting. The chatter monitoring method has shown reliability for various machining conditions.

  8. Towards a theory of life satisfaction: Accounting for stability, change and volatility in 25-year life trajectories in Germany

    OpenAIRE

    Headey, Bruce; Muffels, Ruud

    2016-01-01

    An adequate theory of Life Satisfaction (LS) needs to take account of both factors that tend to stabilise LS and those that change it. The most widely accepted theory in the recent past - set-point theory - focussed solely on stability (Brickman and Campbell, 1971; Lykken and Tellegen, 1996). That theory is now regarded as inadequate by most researchers, given that national panel surveys in several Western countries show that substantial minorities of respondents have recorded large, long ter...

  9. Psychodynamic theory and counseling in predictive testing for Huntington's disease.

    Science.gov (United States)

    Tassicker, Roslyn J

    2005-04-01

    This paper revisits psychodynamic theory, which can be applied in predictive testing counseling for Huntington's Disease (HD). Psychodynamic theory has developed from the work of Freud and places importance on early parent-child experiences. The nature of these relationships, or attachments are reflected in adult expectations and relationships. Two significant concepts, identification and fear of abandonment, have been developed and expounded by the psychodynamic theorist, Melanie Klein. The processes of identification and fear of abandonment can become evident in predictive testing counseling and are colored by the client's experience of growing up with a parent affected by Huntington's Disease. In reflecting on family-of-origin experiences, clients can also express implied expectations of the future, and future relationships. Case examples are given to illustrate the dynamic processes of identification and fear of abandonment which may present in the clinical setting. Counselor recognition of these processes can illuminate and inform counseling practice.

  10. Heterotic moduli stabilization

    International Nuclear Information System (INIS)

    Cicoli, M.; De Alwis, S.; Colorado Univ., Boulder, CO; Westphal, A.

    2013-04-01

    We perform a systematic analysis of moduli stabilization for weakly coupled heterotic string theory compactified on smooth Calabi-Yau three-folds. We focus on both supersymmetric and supersymmetry breaking vacua of generic (0,2) compactifications obtained by minimising the total (F+D)-term scalar potential. After reviewing how to stabilise all the geometric moduli in a supersymmetric way by including fractional fluxes, non-perturbative and threshold effects, we show that the inclusion of α' corrections leads to new de Sitter or nearly Minkowski vacua which break supersymmetry spontaneously. The minimum lies at moderately large volumes of all the geometric moduli, at perturbative values of the string coupling and at the right phenomenological value of the GUT gauge coupling. However the structure of the heterotic 3-form flux used for complex structure moduli stabilization does not contain enough freedom to tune the superpotential. This results in the generic prediction of high-scale supersymmetry breaking around the GUT scale. We finally provide a dynamical derivation of anisotropic compactifications with stabilized moduli which allow for perturbative gauge coupling unification around 10 16 GeV.

  11. Heterotic moduli stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, M. [Bologna Univ. (Italy). Dipt. Fisica ed Astronomia; INFN, Bologna (Italy); Adbus Salam ICTP, Trieste (Italy); De Alwis, S. [Adbus Salam ICTP, Trieste (Italy); Colorado Univ., Boulder, CO (United States). UCB 390 Physics Dept.; Westphal, A. [DESY Hamburg (Germany). Theory Group

    2013-04-15

    We perform a systematic analysis of moduli stabilization for weakly coupled heterotic string theory compactified on smooth Calabi-Yau three-folds. We focus on both supersymmetric and supersymmetry breaking vacua of generic (0,2) compactifications obtained by minimising the total (F+D)-term scalar potential. After reviewing how to stabilise all the geometric moduli in a supersymmetric way by including fractional fluxes, non-perturbative and threshold effects, we show that the inclusion of {alpha}' corrections leads to new de Sitter or nearly Minkowski vacua which break supersymmetry spontaneously. The minimum lies at moderately large volumes of all the geometric moduli, at perturbative values of the string coupling and at the right phenomenological value of the GUT gauge coupling. However the structure of the heterotic 3-form flux used for complex structure moduli stabilization does not contain enough freedom to tune the superpotential. This results in the generic prediction of high-scale supersymmetry breaking around the GUT scale. We finally provide a dynamical derivation of anisotropic compactifications with stabilized moduli which allow for perturbative gauge coupling unification around 10{sup 16} GeV.

  12. Oasis in the desert: weakly broken parity in grand unified theories

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1981-07-01

    A discussion of low energy parity restoration in simple grand unified theories, such as SO(10), is presented. The consistency of phenomenological requirements and unification constraints is emphasized and various predictions of the theory are stressed, in particular: substantially lighter W and Z bosons than in the standard model and increased stability of the proton with tau/sub p/ approx. = 10 38 years

  13. Prediction of Concrete Mix Cost Using Modified Regression Theory ...

    African Journals Online (AJOL)

    The cost of concrete production which largely depends on the cost of the constituent materials, affects the overall cost of construction. In this paper, a model based on modified regression theory is formulated to optimise concrete mix cost (in Naira). Using the model, one can predict the cost per cubic meter of concrete if the ...

  14. Can the theory of planned behaviour predict the physical activity behaviour of individuals?

    Science.gov (United States)

    Hobbs, Nicola; Dixon, Diane; Johnston, Marie; Howie, Kate

    2013-01-01

    The theory of planned behaviour (TPB) can identify cognitions that predict differences in behaviour between individuals. However, it is not clear whether the TPB can predict the behaviour of an individual person. This study employs a series of n-of-1 studies and time series analyses to examine the ability of the TPB to predict physical activity (PA) behaviours of six individuals. Six n-of-1 studies were conducted, in which TPB cognitions and up to three PA behaviours (walking, gym workout and a personally defined PA) were measured twice daily for six weeks. Walking was measured by pedometer step count, gym attendance by self-report with objective validation of gym entry and the personally defined PA behaviour by self-report. Intra-individual variability in TPB cognitions and PA behaviour was observed in all participants. The TPB showed variable predictive utility within individuals and across behaviours. The TPB predicted at least one PA behaviour for five participants but had no predictive utility for one participant. Thus, n-of-1 designs and time series analyses can be used to test theory in an individual.

  15. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  16. Cy3 and Cy5 dyes attached to oligonucleotide terminus stabilize DNA duplexes: predictive thermodynamic model.

    Science.gov (United States)

    Moreira, Bernardo G; You, Yong; Owczarzy, Richard

    2015-03-01

    Cyanine dyes are important chemical modifications of oligonucleotides exhibiting intensive and stable fluorescence at visible light wavelengths. When Cy3 or Cy5 dye is attached to 5' end of a DNA duplex, the dye stacks on the terminal base pair and stabilizes the duplex. Using optical melting experiments, we have determined thermodynamic parameters that can predict the effects of the dyes on duplex stability quantitatively (ΔG°, Tm). Both Cy dyes enhance duplex formation by 1.2 kcal/mol on average, however, this Gibbs energy contribution is sequence-dependent. If the Cy5 is attached to a pyrimidine nucleotide of pyrimidine-purine base pair, the stabilization is larger compared to the attachment to a purine nucleotide. This is likely due to increased stacking interactions of the dye to the purine of the complementary strand. Dangling (unpaired) nucleotides at duplex terminus are also known to enhance duplex stability. Stabilization originated from the Cy dyes is significantly larger than the stabilization due to the presence of dangling nucleotides. If both the dangling base and Cy3 are present, their thermodynamic contributions are approximately additive. New thermodynamic parameters improve predictions of duplex folding, which will help design oligonucleotide sequences for biophysical, biological, engineering, and nanotechnology applications. Copyright © 2015. Published by Elsevier B.V.

  17. Food web complexity and stability across habitat connectivity gradients.

    Science.gov (United States)

    LeCraw, Robin M; Kratina, Pavel; Srivastava, Diane S

    2014-12-01

    The effects of habitat connectivity on food webs have been studied both empirically and theoretically, yet the question of whether empirical results support theoretical predictions for any food web metric other than species richness has received little attention. Our synthesis brings together theory and empirical evidence for how habitat connectivity affects both food web stability and complexity. Food web stability is often predicted to be greatest at intermediate levels of connectivity, representing a compromise between the stabilizing effects of dispersal via rescue effects and prey switching, and the destabilizing effects of dispersal via regional synchronization of population dynamics. Empirical studies of food web stability generally support both this pattern and underlying mechanisms. Food chain length has been predicted to have both increasing and unimodal relationships with connectivity as a result of predators being constrained by the patch occupancy of their prey. Although both patterns have been documented empirically, the underlying mechanisms may differ from those predicted by models. In terms of other measures of food web complexity, habitat connectivity has been empirically found to generally increase link density but either reduce or have no effect on connectance, whereas a unimodal relationship is expected. In general, there is growing concordance between empirical patterns and theoretical predictions for some effects of habitat connectivity on food webs, but many predictions remain to be tested over a full connectivity gradient, and empirical metrics of complexity are rarely modeled. Closing these gaps will allow a deeper understanding of how natural and anthropogenic changes in connectivity can affect real food webs.

  18. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases

    Science.gov (United States)

    Vriend, Gert; Eijsink, Vincent

    1993-08-01

    Bacillus neutral proteases (NPs) form a group of well-characterized homologous enzymes, that exhibit large differences in thermostability. The three-dimensional (3D) structures of several of these enzymes have been modelled on the basis of the crystal structures of the NPs of B. thermoproteolyticus (thermolysin) and B. cercus. Several new techniques have been developed to improve the model-building procedures. Also a model-building by mutagenesis' strategy was used, in which mutants were designed just to shed light on parts of the structures that were particularly hard to model. The NP models have been used for the prediction of site-directed mutations aimed at improving the thermostability of the enzymes. Predictions were made using several novel computational techniques, such as position-specific rotamer searching, packing quality analysis and property-profile database searches. Many stabilizing mutations were predicted and produced: improvement of hydrogen bonding, exclusion of buried water molecules, capping helices, improvement of hydrophobic interactions and entropic stabilization have been applied successfully. At elevated temperatures NPs are irreversibly inactivated as a result of autolysis. It has been shown that this denaturation process is independent of the protease activity and concentration and that the inactivation follows first-order kinetics. From this it has been conjectured that local unfolding of (surface) loops, which renders the protein susceptible to autolysis, is the rate-limiting step. Despite the particular nature of the thermal denaturation process, normal rules for protein stability can be applied to NPs. However, rather than stabilizing the whole protein against global unfolding, only a small region has to be protected against local unfolding. In contrast to proteins in general, mutational effects in proteases are not additive and their magnitude is strongly dependent on the location of the mutation. Mutations that alter the stability

  19. Stability of DIII-D high-performance, negative central shear discharges

    Science.gov (United States)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  20. Towards a general theory of neural computation based on prediction by single neurons.

    Directory of Open Access Journals (Sweden)

    Christopher D Fiorillo

    Full Text Available Although there has been tremendous progress in understanding the mechanics of the nervous system, there has not been a general theory of its computational function. Here I present a theory that relates the established biophysical properties of single generic neurons to principles of Bayesian probability theory, reinforcement learning and efficient coding. I suggest that this theory addresses the general computational problem facing the nervous system. Each neuron is proposed to mirror the function of the whole system in learning to predict aspects of the world related to future reward. According to the model, a typical neuron receives current information about the state of the world from a subset of its excitatory synaptic inputs, and prior information from its other inputs. Prior information would be contributed by synaptic inputs representing distinct regions of space, and by different types of non-synaptic, voltage-regulated channels representing distinct periods of the past. The neuron's membrane voltage is proposed to signal the difference between current and prior information ("prediction error" or "surprise". A neuron would apply a Hebbian plasticity rule to select those excitatory inputs that are the most closely correlated with reward but are the least predictable, since unpredictable inputs provide the neuron with the most "new" information about future reward. To minimize the error in its predictions and to respond only when excitation is "new and surprising," the neuron selects amongst its prior information sources through an anti-Hebbian rule. The unique inputs of a mature neuron would therefore result from learning about spatial and temporal patterns in its local environment, and by extension, the external world. Thus the theory describes how the structure of the mature nervous system could reflect the structure of the external world, and how the complexity and intelligence of the system might develop from a population of

  1. Stability of executive function and predictions to adaptive behavior from middle childhood to pre-adolescence

    Directory of Open Access Journals (Sweden)

    Madeline eHarms

    2014-04-01

    Full Text Available The shift from childhood to adolescence is characterized by rapid remodeling of the brain and increased risk-taking behaviors. Current theories hypothesize that developmental enhancements in sensitivity to affective environmental cues in adolescence may undermine executive function (EF and increase the likelihood of problematic behaviors. In the current study, we examined the extent to which EF in childhood predicts EF in early adolescence. We also tested whether individual differences in neural responses to affective cues (rewards/punishments in childhood serve as a biological marker for EF, sensation-seeking, academic performance, and social skills in early adolescence. At age 8, 84 children completed a gambling task while event-related potentials (ERPs were recorded. We examined the extent to which selections resulting in rewards or losses in this task elicited (i the P300, a post-stimulus waveform reflecting the allocation of attentional resources toward a stimulus, and (ii the SPN, a pre-stimulus anticipatory waveform reflecting a neural representation of a hunch about an outcome that originates in insula and ventromedial PFC. Children also completed a Dimensional Change Card-Sort (DCCS and Flanker task to measure EF. At age 12, 78 children repeated the DCCS and Flanker and completed a battery of questionnaires. Flanker and DCCS accuracy at age 8 predicted Flanker and DCCS performance at age 12, respectively. Individual differences in the magnitude of P300 (to losses vs. rewards and SPN (preceding outcomes with a high probability of punishment at age 8 predicted self-reported sensation seeking (lower and teacher-rated academic performance (higher at age 12. We suggest there is stability in EF from age 8 to 12, and that childhood neural sensitivity to reward and punishment predicts individual differences in sensation seeking and adaptive behaviors in children entering adolescence.

  2. Intrinsic Stability of the Smallest Possible Silver Nanotube

    Science.gov (United States)

    Autreto, P. A. S.; Lagos, M. J.; Sato, F.; Bettini, J.; Rocha, A. R.; Rodrigues, V.; Ugarte, D.; Galvao, D. S.

    2011-02-01

    Recently, Lagos et al. [Nature Nanotech. 4, 149 (2009)1748-338710.1038/nnano.2008.414] reported the discovery of the smallest possible Ag nanotube with a square cross section. Ab initio density functional theory calculations strongly support that the stability of these hollow structures is structurally intrinsic and not the result of contamination by light atoms. We also report the first experimental observation of the theoretically predicted corrugation of the hollow structure. Quantum conductance calculations predict a unique signature of 3.6G0 for this new family of nanotubes.

  3. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    Chung-Wen Kao; Barbara Pasquini; Marc Vanderhaeghen

    2004-01-01

    We extract the next-to-next-to-leading order results for spin-flip generalized polarizabilities (GPs) of the nucleon from the spin-dependent amplitudes for virtual Compton scattering (VCS) at Ο(p 4 ) in heavy baryon chiral perturbation theory. At this order, no unknown low energy constants enter the theory, allowing us to make absolute predictions for all spin-flip GPs. Furthermore, by using constraint equations between the GPs due to nucleon crossing combined with charge conjugation symmetry of the VCS amplitudes, we get a next-to-next-to-next-to-leading order prediction for one of the GPs. We provide estimates for forthcoming double polarization experiments which allow to access these spin-flip GPs of the nucleon

  4. Exploring the Combination of Dempster-Shafer Theory and Neural Network for Predicting Trust and Distrust

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-01-01

    Full Text Available In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework.

  5. Applying psychological theories to evidence-based clinical practice: Identifying factors predictive of managing upper respiratory tract infections without antibiotics

    Directory of Open Access Journals (Sweden)

    Glidewell Elizabeth

    2007-08-01

    Full Text Available Abstract Background Psychological models can be used to understand and predict behaviour in a wide range of settings. However, they have not been consistently applied to health professional behaviours, and the contribution of differing theories is not clear. The aim of this study was to explore the usefulness of a range of psychological theories to predict health professional behaviour relating to management of upper respiratory tract infections (URTIs without antibiotics. Methods Psychological measures were collected by postal questionnaire survey from a random sample of general practitioners (GPs in Scotland. The outcome measures were clinical behaviour (using antibiotic prescription rates as a proxy indicator, behavioural simulation (scenario-based decisions to managing URTI with or without antibiotics and behavioural intention (general intention to managing URTI without antibiotics. Explanatory variables were the constructs within the following theories: Theory of Planned Behaviour (TPB, Social Cognitive Theory (SCT, Common Sense Self-Regulation Model (CS-SRM, Operant Learning Theory (OLT, Implementation Intention (II, Stage Model (SM, and knowledge (a non-theoretical construct. For each outcome measure, multiple regression analysis was used to examine the predictive value of each theoretical model individually. Following this 'theory level' analysis, a 'cross theory' analysis was conducted to investigate the combined predictive value of all significant individual constructs across theories. Results All theories were tested, but only significant results are presented. When predicting behaviour, at the theory level, OLT explained 6% of the variance and, in a cross theory analysis, OLT 'evidence of habitual behaviour' also explained 6%. When predicting behavioural simulation, at the theory level, the proportion of variance explained was: TPB, 31%; SCT, 26%; II, 6%; OLT, 24%. GPs who reported having already decided to change their management to

  6. Design of stabilizing output feedback nonlinear model predictive controllers with an application to DC-DC converters

    NARCIS (Netherlands)

    Roset, B.J.P.; Lazar, M.; Heemels, W.P.M.H.; Nijmeijer, H.

    2007-01-01

    Abstract—This paper focuses on the synthesis of nonlinear Model Predictive Controllers that can guarantee robustness with respect to measurement noise. The input-to-state stability framework is employed to analyze the robustness of the resulting Model Predictive Control (MPC) closed-loop system. It

  7. Lifetime prediction of EC, DPA, akardite II and MNA stabilized triple base propellants, comparison of heat generation rate and stabilizer consumption

    NARCIS (Netherlands)

    Boers, M.N.; Klerk, W.P.C. de

    2005-01-01

    A lifetime prediction study is carried out on four triple base propellant compositions by artificial ageing. The ageing effects are studied with High Performance Liquid Chromatography (HPLC) and Heat Flow Calorimetry (HFC) in order to find the most effective stabilizer and to evaluate the advantages

  8. Predicting the Appearance of Materials Using Lorenz-Mie Theory

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Christensen, Niels Jørgen; Jensen, Henrik Wann

    2012-01-01

    Computer graphics systems today are able to produce highly realistic images. The realism has reached a level where an observer has difficulties telling whether an image is real or synthetic. The exception is when we try to compute a picture of a scene that really exists and compare the result...... in the scene have few geometrical details, a graphics system will still have a hard time predicting the result of taking a picture with a digital camera. The problem here is to model the optical properties of the materials correctly. In this chapter, we show how Lorenz–Mie theory enables us to compute...... the optical properties of turbid materials such that we can predict their appearance. To describe the entire process of predicting the appearance of amaterial, we include a description of the mathematical models used in realistic image synthesis....

  9. Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R

    Science.gov (United States)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2015-10-01

    A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.

  10. Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R

    International Nuclear Information System (INIS)

    Setiadi, A C; Brunsell, P R; Frassinetti, L

    2015-01-01

    A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM. (paper)

  11. Stability thresholds of a disk-shaped Migma

    International Nuclear Information System (INIS)

    Wong, H.V.; Rosenbluth, M.N.; Berk, H.L.

    1988-08-01

    The stability of a Migma disc is re-examined to determined the threshold to the interchange instability. It is shown that a previous calculation which assumes a rigid mode eigenfunction, is inaccurate at the predicted particle number for marginal stability. As a result the integral equation for the system must be solved. A variational method of solution is developed and is shown to give good agreement with a direct numerical solution is developed and is shown to give good agreement with a direct numerical solution. The threshold for instability is found to be sensitive to the details of the distribution function. For highly focused system, where all ions pass close to the axis, the threshold particle number (N/sup u1/) for instability is substantially below that predicted by rigid mode theory (N/sup rigid/)(by a factor /approximately/8ε 2 where ε = r 1 /r/sub L/, r 1 the spread in the distance of closest approach to the axis and r/sub L/ the ion Larmor radius). At a higher density a second band of stability appears that again destabilizes at yet higher article number (N/sub u2/). If ε /much lt/ 1, N/sub u2/ is substantially below the rigid mode prediction, while for 0.2 < ε < 0.3, N/sub u2/ is comparable to the rigid mode prediction. At moderate values of ε(ε ∼ 0.3 /minus/ 0.4) the second stability band disappears and the instability particle number threshold varies from about .4ε, when ε = 0.4, to .7ε when ε is about unity. The stability criteria wound be consistent with the observed particle storage number obtained in experimental configurations if the spread in ε is sufficiently large. 11 refs., 6 figs., 6 tabs

  12. On the predictivity of the non-renormalizable quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Pittau, Roberto [CERN, PH-TH, Geneva (Switzerland)

    2015-02-01

    Following a Four Dimensional Renormalization approach to ultraviolet divergences (FDR), we extend the concept of predictivity to non-renormalizable quantum field theories at arbitrarily large perturbative orders. The idea of topological renormalization is introduced, which keeps a finite value for the parameters of the theory by trading the usual order-by-order renormalization procedure for an order-by-order redefinition of the perturbative vacuum. One additional measurement is then sufficient to systematically compute quantum corrections at any loop order, with no need of absorbing ultraviolet infinities in the Lagrangian. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Stability of Thin Shell Wormholes in Born-Infeld Theory Supported by Polytropic Phantom Energy

    Energy Technology Data Exchange (ETDEWEB)

    Eid, Ali [Cairo University, Giza (Egypt)

    2017-02-15

    In the framework of the Darmois-Israel formalism, the dynamical equations of motion of spherically-symmetric thin-shell wormholes supported by a polytropic phantom energy in Einstein-Born-Infeld theory are constructed. A stability analysis of the spherically-symmetric thin-shell wormhole by using the standard potential method is carried out. The existence of stable, static solutions depends on the values of some parameters.

  14. A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J. D. (Prostat, Mesa, AZ); Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ); Storlie, Curtis B. (North Carolina State University, Raleigh, NC)

    2006-10-01

    Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a model is more computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo) procedures are impracticable due to computational cost.

  15. Molecular structure stability of short-chain chlorinated paraffins (SCCPs): Evidence from lattice compatibility and Simha-Somcynsky theories

    Science.gov (United States)

    Yumak, A.; Boubaker, K.; Petkova, P.; Yahsi, U.

    2015-10-01

    In is known that short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with single chlorine content. Due to their physical properties (viscosity, flame resistance) they are used in many different applications, such as lubricant additives, metal processing, leather fat-liquoring, plastics softening, PVC plasticizing and flame retardants in paints, adhesives and sealants. SCCPs are studied here in terms of processing-linked molecular structure stability, under Simha and Somcynsky-EOS theory calculations and elements from Simha-Somcynsky-related Lattice Compatibility Theory. Analyses were carried out on 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro 2-methylane, and 2-chloro 2-methylane as (SCCPs) universal representatives. This paper gives evidence to this stability and reviews the current state of knowledge and highlights the need for further research in order to improve future (SCCPs) monitoring efforts.

  16. Predicting Facebook users' online privacy protection: risk, trust, norm focus theory, and the theory of planned behavior.

    Science.gov (United States)

    Saeri, Alexander K; Ogilvie, Claudette; La Macchia, Stephen T; Smith, Joanne R; Louis, Winnifred R

    2014-01-01

    The present research adopts an extended theory of the planned behavior model that included descriptive norms, risk, and trust to investigate online privacy protection in Facebook users. Facebook users (N = 119) completed a questionnaire assessing their attitude, subjective injunctive norm, subjective descriptive norm, perceived behavioral control, implicit perceived risk, trust of other Facebook users, and intentions toward protecting their privacy online. Behavior was measured indirectly 2 weeks after the study. The data show partial support for the theory of planned behavior and strong support for the independence of subjective injunctive and descriptive norms. Risk also uniquely predicted intentions over and above the theory of planned behavior, but there were no unique effects of trust on intentions, nor of risk or trust on behavior. Implications are discussed.

  17. The statistical stability phenomenon

    CERN Document Server

    Gorban, Igor I

    2017-01-01

    This monograph investigates violations of statistical stability of physical events, variables, and processes and develops a new physical-mathematical theory taking into consideration such violations – the theory of hyper-random phenomena. There are five parts. The first describes the phenomenon of statistical stability and its features, and develops methods for detecting violations of statistical stability, in particular when data is limited. The second part presents several examples of real processes of different physical nature and demonstrates the violation of statistical stability over broad observation intervals. The third part outlines the mathematical foundations of the theory of hyper-random phenomena, while the fourth develops the foundations of the mathematical analysis of divergent and many-valued functions. The fifth part contains theoretical and experimental studies of statistical laws where there is violation of statistical stability. The monograph should be of particular interest to engineers...

  18. Is quantum theory predictably complete?

    Energy Technology Data Exchange (ETDEWEB)

    Kupczynski, M [Department of Mathematics and Statistics, University of Ottawa, 585 King-Edward Avenue, Ottawa, Ontario K1N 6N5 (Canada); Departement de l' Informatique, UQO, Case postale 1250, succursale Hull, Gatineau, Quebec J8X 3X 7 (Canada)], E-mail: mkupczyn@uottawa.ca

    2009-07-15

    Quantum theory (QT) provides statistical predictions for various physical phenomena. To verify these predictions a considerable amount of data has been accumulated in the 'measurements' performed on the ensembles of identically prepared physical systems or in the repeated 'measurements' on some trapped 'individual physical systems'. The outcomes of these measurements are, in general, some numerical time series registered by some macroscopic instruments. The various empirical probability distributions extracted from these time series were shown to be consistent with the probabilistic predictions of QT. More than 70 years ago the claim was made that QT provided the most complete description of 'individual' physical systems and outcomes of the measurements performed on 'individual' physical systems were obtained in an intrinsically random way. Spin polarization correlation experiments (SPCEs), performed to test the validity of Bell inequalities, clearly demonstrated the existence of strong long-range correlations and confirmed that the beams hitting far away detectors somehow preserve the memory of their common source which would be destroyed if the individual counts of far away detectors were purely random. Since the probabilities describe the random experiments and are not the attributes of the 'individual' physical systems, the claim that QT provides a complete description of 'individual' physical systems seems not only unjustified but also misleading and counter productive. In this paper, we point out that we even do not know whether QT is predictably complete because it has not been tested carefully enough. Namely, it was not proven that the time series of existing experimental data did not contain some stochastic fine structures that could have been averaged out by describing them in terms of the empirical probability distributions. In this paper, we advocate various statistical tests that

  19. Predicting entrepreneurial behaviour: A test of the theory of planned behaviour

    NARCIS (Netherlands)

    Kautonen, T.; van Gelderen, M.W.; Fink, M.

    2013-01-01

    This article contributes to the occupational choice literature pertaining to entrepreneurship by applying the Theory of Planned Behaviour (TPB) to predict entrepreneurial behaviour. Originating from social psychology, the TPB posits that intention, a function of behavioural beliefs, is a significant

  20. A rapid colorimetric method for predicting the storage stability of middle distillate fuels

    Energy Technology Data Exchange (ETDEWEB)

    Marshman, S.J. [Defense Research Agency, Surrey (United Kingdom)

    1995-05-01

    Present methods used to predict the storage stability of distillate fuels such as ASTM D2274, ASTM D4625, DEF STAN 05-50 Method 40 and in-house methods are very time consuming, taking a minimum of 16 hours. In addition, some of these methods under- or over-predict the storage stability of the test fuel. A rapid colorimetric test for identifying cracked, straight run or hydrofined fuels was reported at the previous Conference. Further work has shown that while a visual appraisal is acceptable for refinery-fresh fuels, colour development may be masked by other coloured compounds in older fuels. Use of a spectrometric finish to the method has extended the scope of the method to include older fuels. The test can be correlated with total sediment from ASTM D4625 (13 weeks at 43{degrees}C) over a sediment range of 0-60mg/L. A correlation of 0.94 was obtained for 40 fuels.

  1. Structure and stability of acrolein and allyl alcohol networks on Ag(111) from density functional theory based calculations with dispersion corrections

    Science.gov (United States)

    Ferullo, Ricardo M.; Branda, Maria Marta; Illas, Francesc

    2013-11-01

    The interaction of acrolein and allyl alcohol with the Ag(111) surface has been studied by means of periodic density functional theory based calculations including explicitly dispersion terms. Different coverage values have been explored going from isolated adsorbed molecules to isolated dimers, interacting dimers or ordered overlayers. The inclusion of the dispersion terms largely affects the calculated values of the adsorption energy and also the distance between adsorbed molecule and the metallic surface but much less the adsorbate-adsorbate interactions. Owing to the large dipole moment of acrolein, the present calculations predict that at high coverage this molecule forms a stable extensive two-dimensional network on the surface, caused by the alignment of the adsorbate dipoles. For the case of allyl alcohol, dimers and complex networks exhibit similar stability.

  2. Numerical estimation of aircrafts' unsteady lateral-directional stability derivatives

    Directory of Open Access Journals (Sweden)

    Maričić N.L.

    2006-01-01

    Full Text Available A technique for predicting steady and oscillatory aerodynamic loads on general configuration has been developed. The prediction is based on the Doublet-Lattice Method, Slender Body Theory and Method of Images. The chord and span wise loading on lifting surfaces and longitudinal bodies (in horizontal and vertical plane load distributions are determined. The configuration may be composed of an assemblage of lifting surfaces (with control surfaces and bodies (with circular cross sections and a longitudinal variation of radius. Loadings predicted by this method are used to calculate (estimate steady and unsteady (dynamic lateral-directional stability derivatives. The short outline of the used methods is given in [1], [2], [3], [4] and [5]. Applying the described methodology software DERIV is developed. The obtained results from DERIV are compared to NASTRAN examples HA21B and HA21D from [4]. In the first example (HA21B, the jet transport wing (BAH wing is steady rolling and lateral stability derivatives are determined. In the second example (HA21D, lateral-directional stability derivatives are calculated for forward- swept-wing (FSW airplane in antisymmetric quasi-steady maneuvers. Acceptable agreement is achieved comparing the results from [4] and DERIV.

  3. Instabilities of collisionless current sheets: Theory and simulations

    International Nuclear Information System (INIS)

    Silin, I.; Buechner, J.; Zelenyi, L.

    2002-01-01

    The problem of Harris current sheet stability is investigated. A linear dispersion relation in the long-wavelength limit is derived for instabilities, propagating in the neutral plane at an arbitrary angle to the magnetic field but symmetric across the sheet. The role of electrostatic perturbations is especially investigated. It appears, that for the tearing-mode instability electrostatic effects are negligible. However, for obliquely propagating modes the modulation of the electrostatic potential φ is essential. In order to verify the theoretical results, the limiting cases of tearing and sausage instabilities are compared to the two-dimensional (2D) Vlasov code simulations. For tearing the agreement between theory and simulations is good for all mass ratios. For sausage-modes, the theory predicts fast stabilization for mass ratios m i /m e ≥10. This is not observed in simulations due to the diminishing of the wavelength for higher mass ratios, which leads beyond the limit of applicability of the theory developed here

  4. Comparison of ITER performance predicted by semi-empirical and theory-based transport models

    International Nuclear Information System (INIS)

    Mukhovatov, V.; Shimomura, Y.; Polevoi, A.

    2003-01-01

    The values of Q=(fusion power)/(auxiliary heating power) predicted for ITER by three different methods, i.e., transport model based on empirical confinement scaling, dimensionless scaling technique, and theory-based transport models are compared. The energy confinement time given by the ITERH-98(y,2) scaling for an inductive scenario with plasma current of 15 MA and plasma density 15% below the Greenwald value is 3.6 s with one technical standard deviation of ±14%. These data are translated into a Q interval of [7-13] at the auxiliary heating power P aux = 40 MW and [7-28] at the minimum heating power satisfying a good confinement ELMy H-mode. Predictions of dimensionless scalings and theory-based transport models such as Weiland, MMM and IFS/PPPL overlap with the empirical scaling predictions within the margins of uncertainty. (author)

  5. Theory of hot particle stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.; Tsang, K.T.

    1986-10-01

    The investigation of stabilization of hot particle drift reversed systems to low frequency modes has been extended to arbitrary hot beta, β/sub H/ for systems that have unfavorable field line curvature. We consider steep profile equilibria where the thickness of the pressure drop, Δ, is less than plasma radius, r/sub p/. The analysis describes layer modes which have mΔ/r/sub p/ 2/3. When robust stability conditions are fulfilled, the hot particles will have their axial bounce frequency less than their grad-B drift frequency. This allows for a low bounce frequency expansion to describe the axial dependence of the magnetic compressional response

  6. Predicting Condom Use: A Comparison of the Theory of Reasoned Action, the Theory of Planned Behavior and an Extended Model of TPB

    Directory of Open Access Journals (Sweden)

    Alexandra Isabel Cabral da Silva Gomes

    2018-01-01

    Full Text Available ABSTRACT It was our goal to give a contribution to the prediction of condom use using socio-cognitive models, comparing classic theories to an extended model. A cross-sectional study was conducted using a questionnaire of self-reported measures. From the students who agreed to participate in the study, 140 were eligible for the full study. A confirmatory analysis was used to assess the predictive value of the researched model. The model tested had slightly better fit indexes and predictive value than classic Theories of Reasoned Action and Planned Behaviour. Although the results found, discussion continues to understand the gap between intention and behaviour, as further investigation is necessary to fully understand the reasons for condom use inconsistency.

  7. Stability of large orbit, high-current particle rings

    International Nuclear Information System (INIS)

    Lovelace, R.V.E.

    1994-01-01

    A review is made of theory of the low-frequency stability of large orbit, high-current particle rings which continue to be of interest for compact fusion systems. The precession mode was the first mode predicted by Furth and observed by Christofilos to be unstable under certain conditions. Subsequently, many detailed studies have been made of the stability of particle rings- different modes, different ring geometries, systems with/without a toroidal B field, and sytems with/without a current carrying plasma component. The possibly dangerous modes are still thought to include the precession mode, the tilting mode, and the low order kink modes. copyright American Institute of Physics

  8. Benchmarking and qualification of the NUFREQ-NPW code for best estimate prediction of multi-channel core stability margins

    International Nuclear Information System (INIS)

    Taleyarkhan, R.; Lahey, R.T. Jr.; McFarlane, A.F.; Podowski, M.Z.

    1988-01-01

    The NUFREQ-NPW code was modified and set up at Westinghouse, USA for mixed fuel type multi-channel core-wide stability analysis. The resulting code, NUFREQ-NPW, allows for variable axial power profiles between channel groups and can handle mixed fuel types. Various models incorporated into NUFREQ-NPW were systematically compared against the Westinghouse channel stability analysis code MAZDA-NF, for which the mathematical model was developed, in an entirely different manner. Excellent agreement was obtained which verified the thermal-hydraulic modeling and coding aspects. Detailed comparisons were also performed against nuclear-coupled reactor core stability data. All thirteen Peach Bottom-2 EOC-2/3 low flow stability tests were simulated. A key aspect for code qualification involved the development of a physically based empirical algorithm to correct for the effect of core inlet flow development on subcooled boiling. Various other modeling assumptions were tested and sensitivity studies performed. Good agreement was obtained between NUFREQ-NPW predictions and data. Moreover, predictions were generally on the conservative side. The results of detailed direct comparisons with experimental data using the NUFREQ-NPW code; have demonstrated that BWR core stability margins are conservatively predicted, and all data trends are captured with good accuracy. The methodology is thus suitable for BWR design and licensing purposes. 11 refs., 12 figs., 2 tabs

  9. Natural hazards impact on the technosphere from the point of view of the stability and chaos theory

    Science.gov (United States)

    Kudin, Valery; Petrova, Elena

    2013-04-01

    Technological disasters occur when the technosphere gets into the transition interval from its stable state to the chaos. Unstable state of the system is one of the possible patterns in scenario of dynamic transition to a chaotic state through a cascade of bifurcations. According to the theory of stability, the chaotic dynamics of the state is caused due to a constant supply of energy into the system from the outside. The role of external source of energy for the man-made technosphere play environmental impacts such as natural hazards or phenomena. A qualitative change in the state of the system depends on the scale and frequency of these natural impacts. Each of the major natural-technological catastrophes is associated with a long chain of triggers and effects in the unfavorable combination of many unlikely accidental circumstances and human factors. According to the classical Gaussian distribution, large deviations are so rare that they can be ignored. However, many accidents and disasters generate statistics with an exponental distribution. In this case, rare events can not be ignored, such cases are often referred to as "heavy-tailed distributions". We should address them differently than the "usual" accidents that fit the description of normal distributions. In the case of "an exponental disaster" we should expect the worst. This is a sphere in which the elements of the stability and chaos theory are of a crucial position. Nowadays scientific research related to the forecast focus on the description and prediction of rare catastrophic events. It should be noted that the asymptotic behavior of such processes before the disaster is so-called blow-up regime, where one or more variables that characterize the system, grow to infinity in a finite time. Thus, in some cases we can reffer to some generic scenarios of disasters. In some model problems, where some value changes in chaotic regime and sometimes makes giant leaps, we can identify precursors that signal

  10. Cognitive Models of Risky Choice: Parameter Stability and Predictive Accuracy of Prospect Theory

    Science.gov (United States)

    Glockner, Andreas; Pachur, Thorsten

    2012-01-01

    In the behavioral sciences, a popular approach to describe and predict behavior is cognitive modeling with adjustable parameters (i.e., which can be fitted to data). Modeling with adjustable parameters allows, among other things, measuring differences between people. At the same time, parameter estimation also bears the risk of overfitting. Are…

  11. Combining structural modeling with ensemble machine learning to accurately predict protein fold stability and binding affinity effects upon mutation.

    Directory of Open Access Journals (Sweden)

    Niklas Berliner

    Full Text Available Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases.

  12. Predicting Ecosystem Alliances Using Landscape Theory

    Directory of Open Access Journals (Sweden)

    Shruti Satsangi

    2012-08-01

    Full Text Available Previous articles in the TIM Review have covered various aspects of the concept of business ecosystems, from the types of ecosystems to keystone strategy, to different member roles and value co-creation. While there is no dearth of suggested best practices that organizations should follow as ecosystem members, it can be difficult to apply these insights into actionable steps for them to take. This is especially true when the ecosystem members already have a prior history of cooperation or competition with each other, as opposed to where a new ecosystem is created. Landscape theory, a political science approach to predicting coalition formation and strategic alliances, can be a useful complement to ecosystems studies by providing a tool to evaluate the best possible alliance options for an organization, given information about itself and the other companies in the system. As shown in the case study of mobile device manufacturers choosing platform providers in the mobile ecosystem, this tool is highly flexible and customizable, with more data providing a more accurate view of the alliances in the ecosystem. At the same time, with even basic parameters, companies can glean significant information about which coalitions will best serve their interest and overall standing within the ecosystem. This article shows the synergies between landscape theory and an ecosystems approach and offers a practical, actionable way in which to analyze individual member benefits.

  13. Rotation, Stability and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Connor, J. W.

    2007-07-01

    Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic

  14. Random matrix theory filters in portfolio optimisation: A stability and risk assessment

    Science.gov (United States)

    Daly, J.; Crane, M.; Ruskin, H. J.

    2008-07-01

    Random matrix theory (RMT) filters, applied to covariance matrices of financial returns, have recently been shown to offer improvements to the optimisation of stock portfolios. This paper studies the effect of three RMT filters on the realised portfolio risk, and on the stability of the filtered covariance matrix, using bootstrap analysis and out-of-sample testing. We propose an extension to an existing RMT filter, (based on Krzanowski stability), which is observed to reduce risk and increase stability, when compared to other RMT filters tested. We also study a scheme for filtering the covariance matrix directly, as opposed to the standard method of filtering correlation, where the latter is found to lower the realised risk, on average, by up to 6.7%. We consider both equally and exponentially weighted covariance matrices in our analysis, and observe that the overall best method out-of-sample was that of the exponentially weighted covariance, with our Krzanowski stability-based filter applied to the correlation matrix. We also find that the optimal out-of-sample decay factors, for both filtered and unfiltered forecasts, were higher than those suggested by Riskmetrics [J.P. Morgan, Reuters, Riskmetrics technical document, Technical Report, 1996. http://www.riskmetrics.com/techdoc.html], with those for the latter approaching a value of α=1. In conclusion, RMT filtering reduced the realised risk, on average, and in the majority of cases when tested out-of-sample, but increased the realised risk on a marked number of individual days-in some cases more than doubling it.

  15. Test Framing Generates a Stability Bias for Predictions of Learning by Causing People to Discount their Learning Beliefs

    Science.gov (United States)

    Ariel, Robert; Hines, Jarrod C.; Hertzog, Christopher

    2014-01-01

    People estimate minimal changes in learning when making predictions of learning (POLs) for future study opportunities despite later showing increased performance and an awareness of that increase (Kornell & Bjork, 2009). This phenomenon is conceptualized as a stability bias in judgments about learning. We investigated the malleability of this effect, and whether it reflected people’s underlying beliefs about learning. We manipulated prediction framing to emphasize the role of testing vs. studying on memory and directly measured beliefs about multi-trial study effects on learning by having participants construct predicted learning curves before and after the experiment. Mean POLs were more sensitive to the number of study-test opportunities when performance was framed in terms of study benefits rather than testing benefits and POLs reflected pre-existing beliefs about learning. The stability bias is partially due to framing and reflects discounted beliefs about learning benefits rather than inherent belief in the stability of performance. PMID:25067885

  16. A Hierarchical Method for Transient Stability Prediction of Power Systems Using the Confidence of a SVM-Based Ensemble Classifier

    Directory of Open Access Journals (Sweden)

    Yanzhen Zhou

    2016-09-01

    Full Text Available Machine learning techniques have been widely used in transient stability prediction of power systems. When using the post-fault dynamic responses, it is difficult to draw a definite conclusion about how long the duration of response data used should be in order to balance the accuracy and speed. Besides, previous studies have the problem of lacking consideration for the confidence level. To solve these problems, a hierarchical method for transient stability prediction based on the confidence of ensemble classifier using multiple support vector machines (SVMs is proposed. Firstly, multiple datasets are generated by bootstrap sampling, then features are randomly picked up to compress the datasets. Secondly, the confidence indices are defined and multiple SVMs are built based on these generated datasets. By synthesizing the probabilistic outputs of multiple SVMs, the prediction results and confidence of the ensemble classifier will be obtained. Finally, different ensemble classifiers with different response times are built to construct different layers of the proposed hierarchical scheme. The simulation results show that the proposed hierarchical method can balance the accuracy and rapidity of the transient stability prediction. Moreover, the hierarchical method can reduce the misjudgments of unstable instances and cooperate with the time domain simulation to insure the security and stability of power systems.

  17. Implicit theories about willpower predict self-regulation and grades in everyday life.

    Science.gov (United States)

    Job, Veronika; Walton, Gregory M; Bernecker, Katharina; Dweck, Carol S

    2015-04-01

    Laboratory research shows that when people believe that willpower is an abundant (rather than highly limited) resource they exhibit better self-control after demanding tasks. However, some have questioned whether this "nonlimited" theory leads to squandering of resources and worse outcomes in everyday life when demands on self-regulation are high. To examine this, we conducted a longitudinal study, assessing students' theories about willpower and tracking their self-regulation and academic performance. As hypothesized, a nonlimited theory predicted better self-regulation (better time management and less procrastination, unhealthy eating, and impulsive spending) for students who faced high self-regulatory demands. Moreover, among students taking a heavy course load, those with a nonlimited theory earned higher grades, which was mediated by less procrastination. These findings contradict the idea that a limited theory helps people allocate their resources more effectively; instead, it is people with the nonlimited theory who self-regulate well in the face of high demands. (c) 2015 APA, all rights reserved).

  18. Aircraft nonlinear stability analysis and multidimensional stability region estimation under icing conditions

    Directory of Open Access Journals (Sweden)

    Liang QU

    2017-06-01

    Full Text Available Icing is one of the crucial factors that could pose great threat to flight safety, and thus research on stability and stability region of aircraft safety under icing conditions is significant for control and flight. Nonlinear dynamical equations and models of aerodynamic coefficients of an aircraft are set up in this paper to study the stability and stability region of the aircraft under an icing condition. Firstly, the equilibrium points of the iced aircraft system are calculated and analyzed based on the theory of differential equation stability. Secondly, according to the correlation theory about equilibrium points and the stability region, this paper estimates the multidimensional stability region of the aircraft, based on which the stability regions before and after icing are compared. Finally, the results are confirmed by the time history analysis. The results can give a reference for stability analysis and envelope protection of the nonlinear system of an iced aircraft.

  19. On the experimental prediction of the stability threshold speed caused by rotating damping

    Science.gov (United States)

    Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.

    2016-08-01

    An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.

  20. Hillslope hydrology and stability

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan

    2012-01-01

    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  1. Stability of interbed for salt cavern gas storage in solution mining considering cusp displacement catastrophe theory

    Directory of Open Access Journals (Sweden)

    Le Yu

    2015-03-01

    Full Text Available Cusp displacement catastrophe theory can be introduced to propose a new method about instability failure of the interbed for gas storage cavern in bedded salt in solution mining. We can calculate initial fracture drawing pace of this interbed to obtain 2D and 3D gas storage shapes at this time. Moreover, Stability evaluation of strength reduction finite element method (FEM based on this catastrophe theory can used to evaluate this interbed stability after initial fracture. A specific example is simulated to obtain the influence of the interbed depth, cavern internal pressure, and cavern building time on stability safety factor (SSF. The results indicate: the value of SSF will be lower with the increase of cavern building time in solution mining and the increase of interbed depth and also this value remains a rise with the increase of cavern internal pressure Especially, we can conclude that the second-fracture of the interbed may take place when this pressure is lower than 6 MPa or after 6 days later of the interbed after initial fracture. According to above analysis, some effective measures, namely elevating the tube up to the top of the interbed, or changing the circulation of in-and-out lines, can be introduced to avoid the negative effects when the second-fracture of the interbed may occur.

  2. Habit in the physical activity domain: integration with intention stability and action control

    NARCIS (Netherlands)

    Rhodes, R.E.; de Bruijn, G.J.; Matheson, D.

    2010-01-01

    The purpose of this study was to explore the role of habit in predicting physical activity with the theory of planned behavior (TPB). The study extended previous research by (a) including a measure of temporal intention stability in the regression equation, and (b) unpacking the intention x behavior

  3. Plant interactions alter the predictions of metabolic scaling theory

    DEFF Research Database (Denmark)

    Lin, Yue; Berger, Uta; Grimm, Volker

    2013-01-01

    Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during densitydependent mortality (self-thinning). Empirical tests have...... processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive....... of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories...

  4. Prediction of sodium critical heat flux (CHF) in annular channel using grey systems theory

    International Nuclear Information System (INIS)

    Zhou Tao; Su Guanghui; Zhang Weizhong; Qiu Suizheng; Jia Dounan

    2001-01-01

    Using grey systems theory and experimental data obtained from sodium boiling test loop in China, the grey mutual analysis of some parameters influencing sodium CHF is carried out, and the CHF values are predicted by GM(1, 1) model. The GM(1, h) model is established for CHF prediction, and the predicted CHF values are good agreement with the experimental data

  5. Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory

    International Nuclear Information System (INIS)

    Du-Qu, Wei; Bo, Zhang

    2009-01-01

    This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation. (general)

  6. Tuning Transcriptional Regulation through Signaling: A Predictive Theory of Allosteric Induction.

    Science.gov (United States)

    Razo-Mejia, Manuel; Barnes, Stephanie L; Belliveau, Nathan M; Chure, Griffin; Einav, Tal; Lewis, Mitchell; Phillips, Rob

    2018-04-25

    Allosteric regulation is found across all domains of life, yet we still lack simple, predictive theories that directly link the experimentally tunable parameters of a system to its input-output response. To that end, we present a general theory of allosteric transcriptional regulation using the Monod-Wyman-Changeux model. We rigorously test this model using the ubiquitous simple repression motif in bacteria by first predicting the behavior of strains that span a large range of repressor copy numbers and DNA binding strengths and then constructing and measuring their response. Our model not only accurately captures the induction profiles of these strains, but also enables us to derive analytic expressions for key properties such as the dynamic range and [EC 50 ]. Finally, we derive an expression for the free energy of allosteric repressors that enables us to collapse our experimental data onto a single master curve that captures the diverse phenomenology of the induction profiles. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Predicting the stability of horizontal wells and multi-laterals - the role of in situ stress and rock properties

    Energy Technology Data Exchange (ETDEWEB)

    Moos, A.; Peska, P. [GeoMechanics International (United States); Zoback, M. D. [Stanford Univ., CA (United States)

    1998-12-31

    A new suite of software tools, developed to study wellbore stability in a wide variety of geologic environments is introduced as means by which to accurately predict optimally-stable wellbore trajectories from knowledge of the stress tensor. In step one of the process stress, is determined from observations of failure in existing wells; in step two, this knowledge is applied to predict the stability of proposed wells while drilling, as well as later during production. Three case studies are presented to illustrate use of this approach. The examples concentrate on issues related to the stability of highly inclined wells, but the approach can be used to determine the state of stress for other purposes as well. 21 refs., 8 figs.

  8. Predictive transport modelling of type I ELMy H-mode dynamics using a theory-motivated combined ballooning-peeling model

    International Nuclear Information System (INIS)

    Loennroth, J-S; Parail, V; Dnestrovskij, A; Figarella, C; Garbet, X; Wilson, H

    2004-01-01

    This paper discusses predictive transport simulations of the type I ELMy high confinement mode (H-mode) with a theory-motivated edge localized mode (ELM) model based on linear ballooning and peeling mode stability theory. In the model, a total mode amplitude is calculated as a sum of the individual mode amplitudes given by two separate linear differential equations for the ballooning and peeling mode amplitudes. The ballooning and peeling mode growth rates are represented by mutually analogous terms, which differ from zero upon the violation of a critical pressure gradient and an analytical peeling mode stability criterion, respectively. The damping of the modes due to non-ideal magnetohydrodynamic effects is controlled by a term driving the mode amplitude towards the level of background fluctuations. Coupled to simulations with the JETTO transport code, the model qualitatively reproduces the experimental dynamics of type I ELMy H-mode, including an ELM frequency that increases with the external heating power. The dynamics of individual ELM cycles is studied. Each ELM is usually triggered by a ballooning mode instability. The ballooning phase of the ELM reduces the pressure gradient enough to make the plasma peeling unstable, whereby the ELM continues driven by the peeling mode instability, until the edge current density has been depleted to a stable level. Simulations with current ramp-up and ramp-down are studied as examples of situations in which pure peeling and pure ballooning mode ELMs, respectively, can be obtained. The sensitivity with respect to the ballooning and peeling mode growth rates is investigated. Some consideration is also given to an alternative formulation of the model as well as to a pure peeling model

  9. Predicting homeowners' approval of fuel management at the wild-urban interface using the theory of reasoned action.

    Science.gov (United States)

    Christine A. Vogt; Greg Winter; Jeremy S. Fried

    2005-01-01

    Social science models are increasingly needed as a framework for explaining and predicting how members of the public respond to the natural environment and their communities. The theory of reasoned action is widely used in human dimensions research on natural resource problems and work is ongoing to increase the predictive power of models based on this theory. This...

  10. Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability.

    Science.gov (United States)

    Armbruster-Genç, Diana J N; Ueltzhöffer, Kai; Fiebach, Christian J

    2016-04-06

    Recent research yielded the intriguing conclusion that, in healthy adults, higher levels of variability in neuronal processes are beneficial for cognitive functioning. Beneficial effects of variability in neuronal processing can also be inferred from neurocomputational theories of working memory, albeit this holds only for tasks requiring cognitive flexibility. However, cognitive stability, i.e., the ability to maintain a task goal in the face of irrelevant distractors, should suffer under high levels of brain signal variability. To directly test this prediction, we studied both behavioral and brain signal variability during cognitive flexibility (i.e., task switching) and cognitive stability (i.e., distractor inhibition) in a sample of healthy human subjects and developed an efficient and easy-to-implement analysis approach to assess BOLD-signal variability in event-related fMRI task paradigms. Results show a general positive effect of neural variability on task performance as assessed by accuracy measures. However, higher levels of BOLD-signal variability in the left inferior frontal junction area result in reduced error rate costs during task switching and thus facilitate cognitive flexibility. In contrast, variability in the same area has a detrimental effect on cognitive stability, as shown in a negative effect of variability on response time costs during distractor inhibition. This pattern was mirrored at the behavioral level, with higher behavioral variability predicting better task switching but worse distractor inhibition performance. Our data extend previous results on brain signal variability by showing a differential effect of brain signal variability that depends on task context, in line with predictions from computational theories. Recent neuroscientific research showed that the human brain signal is intrinsically variable and suggested that this variability improves performance. Computational models of prefrontal neural networks predict differential

  11. Playing off the curve - testing quantitative predictions of skill acquisition theories in development of chess performance.

    Science.gov (United States)

    Gaschler, Robert; Progscha, Johanna; Smallbone, Kieran; Ram, Nilam; Bilalić, Merim

    2014-01-01

    Learning curves have been proposed as an adequate description of learning processes, no matter whether the processes manifest within minutes or across years. Different mechanisms underlying skill acquisition can lead to differences in the shape of learning curves. In the current study, we analyze the tournament performance data of 1383 chess players who begin competing at young age and play tournaments for at least 10 years. We analyze the performance development with the goal to test the adequacy of learning curves, and the skill acquisition theories they are based on, for describing and predicting expertise acquisition. On the one hand, we show that the skill acquisition theories implying a negative exponential learning curve do a better job in both describing early performance gains and predicting later trajectories of chess performance than those theories implying a power function learning curve. On the other hand, the learning curves of a large proportion of players show systematic qualitative deviations from the predictions of either type of skill acquisition theory. While skill acquisition theories predict larger performance gains in early years and smaller gains in later years, a substantial number of players begin to show substantial improvements with a delay of several years (and no improvement in the first years), deviations not fully accounted for by quantity of practice. The current work adds to the debate on how learning processes on a small time scale combine to large-scale changes.

  12. Why are predictions of general relativity theory for gravitational effects non-unique?

    International Nuclear Information System (INIS)

    Loskutov, Yu.M.

    1990-01-01

    Reasons of non-uniqueness of predictions of the general relativity theory (GRT) for gravitational effects are analyzed in detail. To authors' opinion, the absence of comparison mechanism of curved and plane metrics is the reason of non-uniqueness

  13. Hierarchy stability for spontaneously broken theories

    Energy Technology Data Exchange (ETDEWEB)

    Galvan, J B; Perez-Mercader, J; Sanchez, F J

    1987-04-16

    By using Weisberger's method for the integration of heavy degrees of freedom in multiscale theories, we show that tree level hierarchies are not destabilized byquantum corrections in a two-scale, two scalar field theory model where the heavy sector undergoes spontaneous symmetry breaking. We see explicitly the role played by the one-loop heavy log corrections to the effective parameters in maintaining the original tree level hierarchy and in keeping the theory free of hierarchy problems.

  14. Hierarchy stability for spontaneously broken theories

    International Nuclear Information System (INIS)

    Galvan, J.B.; Perez-Mercader, J.; Sanchez, F.J.

    1987-01-01

    By using Weisberger's method for the integration of heavy degrees of freedom in multiscale theories, we show that tree level hierarchies are not destabilized byquantum corrections in a two-scale, two scalar field theory model where the heavy sector undergoes spontaneous symmetry breaking. We see explicitly the role played by the one-loop heavy log corrections to the effective parameters in maintaining the original tree level hierarchy and in keeping the theory free of hierarchy problems. (orig.)

  15. a Classical Isodual Theory of Antimatter and its Prediction of Antigravity

    Science.gov (United States)

    Santilli, Ruggero Maria

    An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus

  16. Lifetime prediction of EC, DPA, Akardite II and MNA stabilized triple base propellants, comparison of heat generation rate and stabilizer consumption

    Energy Technology Data Exchange (ETDEWEB)

    Boers, Marco N.; Klerk, Willem (Wim) P.C. de [TNO Defence, Security and Safety, P. O. Box 45, 2280 AA Rijswijk ZH (Netherlands)

    2005-10-01

    A lifetime prediction study is carried out on four triple base propellant compositions by artificial ageing. The ageing effects are studied with High Performance Liquid Chromatography (HPLC) and Heat Flow Calorimetry (HFC) in order to find the most effective stabilizer and to evaluate the advantages and disadvantages of both methods. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  17. Stabilizing model predictive control of a gantry crane based on flexible set-membership constraints

    NARCIS (Netherlands)

    Iles, Sandor; Lazar, M.; Kolonic, Fetah; Jadranko, Matusko

    2015-01-01

    This paper presents a stabilizing distributed model predictive control of a gantry crane taking into account the variation of cable length. The proposed algorithm is based on the off-line computation of a sequence of 1-step controllable sets and a condition that enables flexible convergence towards

  18. Money creation, employment and economic stability: The monetary theory of unemployment and inflation

    Directory of Open Access Journals (Sweden)

    Parguez Alain

    2008-01-01

    Full Text Available This paper by building on the general theory of the monetary circuit, proves that money-as a pure bank credit liability-exists to overcome constraints on required expenditures by firms, household and mainly the State. From this perspective the paper derives the employment function in the modern monetary economy. Thereby it is explained that full employment policy is both always possible and required. It is proven that this conclusion holds in a perfectly open economy. Ultimately it is explained that there is no trade-off between full employment and sustainable price stability.

  19. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  20. Theories of Person Perception Predict Patterns of Neural Activity During Mentalizing.

    Science.gov (United States)

    Thornton, Mark A; Mitchell, Jason P

    2017-08-22

    Social life requires making inferences about other people. What information do perceivers spontaneously draw upon to make such inferences? Here, we test 4 major theories of person perception, and 1 synthetic theory that combines their features, to determine whether the dimensions of such theories can serve as bases for describing patterns of neural activity during mentalizing. While undergoing functional magnetic resonance imaging, participants made social judgments about well-known public figures. Patterns of brain activity were then predicted using feature encoding models that represented target people's positions on theoretical dimensions such as warmth and competence. All 5 theories of person perception proved highly accurate at reconstructing activity patterns, indicating that each could describe the informational basis of mentalizing. Cross-validation indicated that the theories robustly generalized across both targets and participants. The synthetic theory consistently attained the best performance-approximately two-thirds of noise ceiling accuracy--indicating that, in combination, the theories considered here can account for much of the neural representation of other people. Moreover, encoding models trained on the present data could reconstruct patterns of activity associated with mental state representations in independent data, suggesting the use of a common neural code to represent others' traits and states. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. The role of descriptive norm within the theory of planned behavior in predicting Korean Americans' exercise behavior.

    Science.gov (United States)

    Lee, Hyo

    2011-08-01

    There are few studies investigating psychosocial mechanisms in Korean Americans' exercise behavior. The present study tested the usefulness of the theory of planned behavior in predicting Korean American's exercise behavior and whether the descriptive norm (i.e., perceptions of what others do) improved the predictive validity of the theory of planned behavior. Using a retrospective design and self-report measures, web-survey responses from 198 Korean-American adults were analyzed using hierarchical regression analyses. The theory of planned behavior constructs accounted for 31% of exercise behavior and 43% of exercise intention. Intention and perceived behavioral control were significant predictors of exercise behavior. Although the descriptive norm did not augment the theory of planned behavior, all original constructs--attitude, injunctive norm (a narrow definition of subjective norm), and perceived behavioral control--statistically significantly predicted leisure-time physical activity intention. Future studies should consider random sampling, prospective design, and objective measures of physical activity.

  2. Current decay and stability in SPICA, ch. 7

    International Nuclear Information System (INIS)

    Bobeldijk, C.; Hoekzema, J.A.; Mimura, M.; Oepts, D.; Oomens, A.A.M.

    1976-08-01

    The equilibrium and stability of the toroidal screw pinch has been studied in SPICA at q-values around 1.5. This regime is of interest because theory predicts stability there for rather high values of β. The experimental results show that plasmas with peak β-values of 0.2 (Tsub(e) = 60 eV, nsub(e) = 5x10 21 /m 3 ) can be contained in stable equilibrium during 100 μs. Low-current decay rates indicate a well-developed force-free field profile in a sufficiently hot dilute plasma region outside the main column. In unstable discharges, m-2 modes appear. These discharges are characterized by faster decay and larger eccentricity of the plasma column

  3. The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study.

    KAUST Repository

    Martinez-Veracoechea, Francisco J.

    2009-11-24

    Using self-consistent field theory, the Plumber\\'s Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our knowledge, this is the first time that the P phase has been predicted to be stable using self-consistent field theory. The stabilization is achieved by tuning the composition or conformational asymmetry of the DBC chain, and the architecture or length of the homopolymer. The basic features of the phase diagrams are the same in all cases studied, suggesting a general type of behavior for these systems. Finally, it is noted that the homopolymer length should be a convenient variable to stabilize bicontinuous phases in experiments. © 2009 American Chemical Society.

  4. High level model predictive control for plug-and-play process control with stability guaranty

    DEFF Research Database (Denmark)

    Michelsen, Axel Gottlieb; Stoustrup, Jakob

    2010-01-01

    In this paper a method for designing a stabilizing high level model predictive controller for a hierarchical plug- and-play process is presented. This is achieved by abstracting the lower layers of the controller structure as low order models with uncertainty and by using a robust model predictive...... controller for generating the references for these. A simulation example, in which the actuators in a process control system are changed, is reported to show the potential of this approach for plug and play process control....

  5. Rolling Bearing Life Prediction, Theory, and Application

    Science.gov (United States)

    Zaretsky, Erwin V.

    2016-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg-Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. (The use of ISO 281:2007 with a fatigue limit in these calculations would result in a bearing life approaching infinity.) Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application. Rules had been developed to distinguish and compare predicted lives with those actually obtained. Based upon field and test results of 51 ball and roller bearing sets, 98 percent of these bearing sets had acceptable

  6. Sausage mode stability boundaries: enumeration and verification

    International Nuclear Information System (INIS)

    Chambers, F.W.

    1980-01-01

    An axially symmetric sausage mode instability has been observed using particle simulation codes to propagate beams with a high degree of current neutralization. In this report the stability boundaries in terms of the magnitude and location of the return current are delineated for beams with square, Gaussian, and Bennett radial current profiles using the theoretical analysis of others. For the case in which the return current is held fixed as the beam propagates, a detailed comparison is made between the theoretical predictions and the results of the RINGFAST single disk particle simulation code. Agreement between theory and code results is good although the code results do show a slightly larger than predicted unstable region

  7. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran)

    International Nuclear Information System (INIS)

    Choobbasti, A J; Farrokhzad, F; Barari, A

    2009-01-01

    Investigations of failures of soil masses are subjects touching both geology and engineering. These investigations call the joint efforts of engineering geologists and geotechnical engineers. Geotechnical engineers have to pay particular attention to geology, ground water, and shear strength of soils in assessing slope stability. Artificial neural networks (ANNs) are very sophisticated modeling techniques, capable of modeling extremely complex functions. In particular, neural networks are nonlinear. In this research, with respect to the above advantages, ANN systems consisting of multilayer perceptron networks are developed to predict slope stability in a specified location, based on the available site investigation data from Noabad, Mazandaran, Iran. Several important parameters, including total stress, effective stress, angle of slope, coefficient of cohesion, internal friction angle, and horizontal coefficient of earthquake, were used as the input parameters, while the slope stability was the output parameter. The results are compared with the classical methods of limit equilibrium to check the ANN model's validity. (author)

  8. Use of Plant Hydraulic Theory to Predict Ecosystem Fluxes Across Mountainous Gradients in Environmental Controls and Insect Disturbances

    Science.gov (United States)

    Ewers, B. E.; Pendall, E.; Reed, D. E.; Barnard, H. R.; Whitehouse, F.; Frank, J. M.; Massman, W. J.; Brooks, P. D.; Biederman, J. A.; Harpold, A. A.; Naithani, K. J.; Mitra, B.; Mackay, D. S.; Norton, U.; Borkhuu, B.

    2011-12-01

    While mountainous areas are critical for providing numerous ecosystem benefits at the regional scale, the strong gradients in environmental controls make predictions difficult. A key part of the problem is quantifying and predicting the feedback between mountain gradients and plant function which then controls ecosystem cycling. The emerging theory of plant hydraulics provides a rigorous yet simple platform from which to generate testable hypotheses and predictions of ecosystem pools and fluxes. Plant hydraulic theory predicts that plant controls over carbon, water, energy and nutrient fluxes can be derived from the limitation of plant water transport from the soil through xylem and out of stomata. In addition, the limit to plant water transport can be predicted by combining plant structure (e.g. xylem diameters or root-to-shoot ratios) and plant function (response of stomatal conductance to vapor pressure deficit or root vulnerability to cavitation). We evaluate the predictions of the plant hydraulic theory by testing it against data from a mountain gradient encompassing sagebrush steppe through subalpine forests (2700 to 3400 m). We further test the theory by predicting the carbon, water and nutrient exchanges from several coniferous trees in the same gradient that are dying from xylem dysfunction caused by blue-stain fungi carried by bark beetles. The common theme of both of these data sets is a change in water limitation caused by either changing precipitation along the mountainous gradient or lack of access to soil water from xylem-occluding fungi. Across all of the data sets which range in scale from individual plants to hillslopes, the data fit the predictions of plant hydraulic theory. Namely, there was a proportional tradeoff between the reference canopy stomatal conductance to water vapor and the sensitivity of that conductance to vapor pressure deficit that quantitatively fits the predictions of plant hydraulic theory. Incorporating this result into

  9. Nonlinear ω*-stabilization of the m = 1 mode in tokamaks

    International Nuclear Information System (INIS)

    Rogers, B.; Zakharov, L.

    1995-08-01

    Earlier studies of sawtooth oscillations in Tokamak Fusion Test Reactor supershots (Levinton et al, Phys. Rev. Lett. 72, 2895 (1994); Zakharov, et al, Plasma Phys. and Contr. Nucl. Fus. Res., Proc. 15th Int. Conf., Seville 1994, Vienna) have found an apparent contradiction between conventional linear theory and experiment: even in sawtooth-free discharges, the theory typically predicts instability due to a nearly ideal m = 1 mode. Here, the nonlinear evolution of such mode is analyzed using numerical simulations of a two-fluid magnetohydrodynamic (MHD) model. We find the mode saturates nonlinearly at a small amplitude provided the ion and electron drift-frequencies ω* i,e are somewhat above the linear stability threshold of the collisionless m = 1 reconnecting mode. The comparison of the simulation results to m = 1 mode activity in TFTR suggests additional, stabilizing effects outside the present model are also important

  10. Comparison of Predictive Contract Mechanisms from an Information Theory Perspective

    OpenAIRE

    Zhang, Xin; Ward, Tomas; McLoone, Seamus

    2012-01-01

    Inconsistency arises across a Distributed Virtual Environment due to network latency induced by state changes communications. Predictive Contract Mechanisms (PCMs) combat this problem through reducing the amount of messages transmitted in return for perceptually tolerable inconsistency. To date there are no methods to quantify the efficiency of PCMs in communicating this reduced state information. This article presents an approach derived from concepts in information theory for a dee...

  11. Fault trend prediction of device based on support vector regression

    International Nuclear Information System (INIS)

    Song Meicun; Cai Qi

    2011-01-01

    The research condition of fault trend prediction and the basic theory of support vector regression (SVR) were introduced. SVR was applied to the fault trend prediction of roller bearing, and compared with other methods (BP neural network, gray model, and gray-AR model). The results show that BP network tends to overlearn and gets into local minimum so that the predictive result is unstable. It also shows that the predictive result of SVR is stabilization, and SVR is superior to BP neural network, gray model and gray-AR model in predictive precision. SVR is a kind of effective method of fault trend prediction. (authors)

  12. Physical stability of API/polymer-blend amorphous solid dispersions.

    Science.gov (United States)

    Lehmkemper, Kristin; Kyeremateng, Samuel O; Bartels, Mareike; Degenhardt, Matthias; Sadowski, Gabriele

    2018-03-01

    The preparation of amorphous solid dispersions (ASDs) is a well-established strategy for formulating active pharmaceutical ingredients by embedding them in excipients, usually amorphous polymers. Different polymers can be combined for designing ASDs with desired properties like an optimized dissolution behavior. One important criterion for the development of ASD compositions is the physical stability. In this work, the physical stability of API/polymer-blend ASDs was investigated by thermodynamic modeling and stability studies. Amorphous naproxen (NAP) and acetaminophen (APAP) were embedded in blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and either poly(vinylpyrrolidone) (PVP) or poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64). Parameters for modeling the API solubility in the blends and the glass-transition temperature curves of the water-free systems with Perturbed-Chain Statistical Associating Fluid Theory and Kwei equation, respectively, were correlated to experimental data. The phase behavior for standardized storage conditions (0%, 60% and 75% relative humidity (RH)) was predicted and compared to six months-long stability studies. According to modeling and experimental results, the physical stability was reduced with increasing HPMCAS content and increasing RH. This trend was observed for all investigated systems, with both APIs (NAP and APAP) and both polymer blends (PVP/HPMCAS and PVPVA64/HPMCAS). PC-SAFT and the Kwei equation turned out to be suitable tools for modeling and predicting the physical stability of the investigated API/polymer-blends ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Large-scale transportation network congestion evolution prediction using deep learning theory.

    Science.gov (United States)

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

  14. Stability of extra dimensions in the inflating early universe

    International Nuclear Information System (INIS)

    Wieck, Clemens

    2015-08-01

    Cosmic inflation is an attractive paradigm to explain the initial conditions of the universe. It can be conveniently described by the dynamics of a single scalar field within N=1 supergravity. Due to the high energy scale during the inflationary epoch, which is favored by recent observations of the cosmic microwave background radiation, and the flatness of the inflaton potential it is necessary to consider inflation in the context of a UV-complete theory like string theory. To this end, we study the effects of moduli stabilization on inflation models in supergravity, focussing on Kahler moduli in type IIB string theory which govern the size of extra dimensions. For generic models of F-term inflation we calculate back-reaction terms by integrating out the moduli at a high energy scale. When the moduli are stabilized supersymmetrically, all effects decouple in the limit of very heavy moduli. The corrections, however, may be sizeable for realistic moduli masses above the Hubble scale and affect the predicted observables of many models like chaotic inflation and hybrid inflation. If, on the other hand, moduli stabilization entails spontaneous supersymmetry breaking, there are non-decoupling effects like soft mass terms for the inflaton. By the example of chaotic inflation we show that a careful choice of parameters and initial conditions is necessary to reconcile large-field inflation with popular moduli stabilization schemes like KKLT stabilization or the Large Volume Scenario. Furthermore, we study the interplay of moduli stabilization and D-term inflation. If inflation is driven by a constant Fayet-Iliopoulos term, the back-reaction decouples but the gravitino mass in the vacuum is surprisingly constrained. For a field-dependent Fayet-Iliopoulos term associated with an anomalous U(1) symmetry we discuss a number of obstructions to realizing inflation. Moreover, we propose a way to evade them using a new mechanism for supersymmetric moduli stabilization with world

  15. Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory

    Science.gov (United States)

    Kesler, Steven R.

    The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

  16. Predicting Study Abroad Intentions Based on the Theory of Planned Behavior

    Science.gov (United States)

    Schnusenberg, Oliver; de Jong, Pieter; Goel, Lakshmi

    2012-01-01

    The emphasis on study abroad programs is growing in the academic context as U.S. based universities seek to incorporate a global perspective in education. Using a model that has underpinnings in the theory of planned behavior (TPB), we predict students' intention to participate in short-term study abroad program. We use TPB to identify behavioral,…

  17. Performance Feedback Processing Is Positively Biased As Predicted by Attribution Theory.

    Directory of Open Access Journals (Sweden)

    Christoph W Korn

    Full Text Available A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities but negative feedback externally (e.g., to environmental factors. However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors' credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did--or did not--receive feedback on their veridical performance. Finally, participants re-rated the actors' credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors' credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or

  18. Performance Feedback Processing Is Positively Biased As Predicted by Attribution Theory.

    Science.gov (United States)

    Korn, Christoph W; Rosenblau, Gabriela; Rodriguez Buritica, Julia M; Heekeren, Hauke R

    2016-01-01

    A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities) but negative feedback externally (e.g., to environmental factors). However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors' credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did--or did not--receive feedback on their veridical performance. Finally, participants re-rated the actors' credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors' credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or incorrect performance

  19. Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine

    International Nuclear Information System (INIS)

    Ghazimirsaied, Ahmad; Koch, Charles Robert

    2012-01-01

    Highlights: ► Misfire reduction in a combustion engine based on chaotic theory methods. ► Chaotic theory analysis of cyclic variation of a HCCI engine near misfire. ► Symbol sequence approach is used to predict ignition timing one cycle-ahead. ► Prediction is combined with feedback control to lower HCCI combustion variation. ► Feedback control extends the HCCI operating range into the misfire region. -- Abstract: Cyclic variation of a Homogeneous Charge Compression Ignition (HCCI) engine near misfire is analyzed using chaotic theory methods and feedback control is used to stabilize high cyclic variations. Variation of consecutive cycles of θ Pmax (the crank angle of maximum cylinder pressure over an engine cycle) for a Primary Reference Fuel engine is analyzed near misfire operation for five test points with similar conditions but different octane numbers. The return map of the time series of θ Pmax at each combustion cycle reveals the deterministic and random portions of the dynamics near misfire for this HCCI engine. A symbol-statistic approach is used to predict θ Pmax one cycle-ahead. Predicted θ Pmax has similar dynamical behavior to the experimental measurements. Based on this cycle ahead prediction, and using fuel octane as the input, feedback control is used to stabilize the instability of θ Pmax variations at this engine condition near misfire.

  20. Adolescents' implicit theories predict desire for vengeance after peer conflicts: correlational and experimental evidence.

    Science.gov (United States)

    Yeager, David S; Trzesniewski, Kali H; Tirri, Kirsi; Nokelainen, Petri; Dweck, Carol S

    2011-07-01

    Why do some adolescents respond to interpersonal conflicts vengefully, whereas others seek more positive solutions? Three studies investigated the role of implicit theories of personality in predicting violent or vengeful responses to peer conflicts among adolescents in Grades 9 and 10. They showed that a greater belief that traits are fixed (an entity theory) predicted a stronger desire for revenge after a variety of recalled peer conflicts (Study 1) and after a hypothetical conflict that specifically involved bullying (Study 2). Study 3 experimentally induced a belief in the potential for change (an incremental theory), which resulted in a reduced desire to seek revenge. This effect was mediated by changes in bad-person attributions about the perpetrators, feelings of shame and hatred, and the belief that vengeful ideation is an effective emotion-regulation strategy. Together, the findings illuminate the social-cognitive processes underlying reactions to conflict and suggest potential avenues for reducing violent retaliation in adolescents. PsycINFO Database Record (c) 2011 APA, all rights reserved

  1. Predicting behavioural responses to novel organisms: state-dependent detection theory.

    Science.gov (United States)

    Trimmer, Pete C; Ehlman, Sean M; Sih, Andrew

    2017-01-25

    Human activity alters natural habitats for many species. Understanding variation in animals' behavioural responses to these changing environments is critical. We show how signal detection theory can be used within a wider framework of state-dependent modelling to predict behavioural responses to a major environmental change: novel, exotic species. We allow thresholds for action to be a function of reserves, and demonstrate how optimal thresholds can be calculated. We term this framework 'state-dependent detection theory' (SDDT). We focus on behavioural and fitness outcomes when animals continue to use formerly adaptive thresholds following environmental change. In a simple example, we show that exposure to novel animals which appear dangerous-but are actually safe-(e.g. ecotourists) can have catastrophic consequences for 'prey' (organisms that respond as if the new organisms are predators), significantly increasing mortality even when the novel species is not predatory. SDDT also reveals that the effect on reproduction can be greater than the effect on lifespan. We investigate factors that influence the effect of novel organisms, and address the potential for behavioural adjustments (via evolution or learning) to recover otherwise reduced fitness. Although effects of environmental change are often difficult to predict, we suggest that SDDT provides a useful route ahead. © 2017 The Author(s).

  2. Economic model predictive control theory, formulations and chemical process applications

    CERN Document Server

    Ellis, Matthew; Christofides, Panagiotis D

    2017-01-01

    This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...

  3. Expectancy Theory Prediction of the Preference to Remain Employed or to Retire

    Science.gov (United States)

    Eran, Mordechai; Jacobson, Dan

    1976-01-01

    Vroom's expectancy theory model to predict older worker's choices between employment or retirement hypothesized that a person's preference would be a function of differences between instrumentality of employment and retirement for attainment of outcomes, multiplied by the valence of each outcome, summed over outcomes. Results supported the…

  4. Extending the Theory of Normative Social Behavior to Predict Hand-Washing among Koreans.

    Science.gov (United States)

    Chung, Minwoong; Lapinski, Maria Knight

    2018-04-10

    The current study tests the predictions of the theory of normative social behavior (TNSB) in a hand-washing context in a Korean sample and extends the theory to examine the role of perceived publicness, a variable believed to activate face concerns, as a moderator of the norm-behavior relationship. The findings show substantial main effects for all of the study variables on behavior. In addition, the descriptive norm-behavior relationship is moderated by perceived publicness and outcome expectations, but the nature of the interactions is not consistent with that evidenced in previous literature on US samples. Implications for normative theory and communication campaigns are discussed.

  5. Analysis of Heuristic Uniform Theory of Diffraction Coefficients for Electromagnetic Scattering Prediction

    Directory of Open Access Journals (Sweden)

    Diego Tami

    2018-01-01

    Full Text Available We discuss three sets of heuristic coefficients used in uniform theory of diffraction (UTD to characterize the electromagnetic scattering in realistic urban scenarios and canonical examples of diffraction by lossy conducting wedges using the three sets of heuristic coefficients and the Malyuzhinets solution as reference model. We compare not only the results of the canonical models but also their implementation in real outdoor scenarios. To predict the coverage of mobile networks, we used propagation models for outdoor environments by using a 3D ray-tracing model based on a brute-force algorithm for ray launching and a propagation model based on image theory. To evaluate each set of coefficients, we analyzed the mean and standard deviation of the absolute error between estimates and measured data in Ottawa, Canada; Valencia, Spain; and Cali, Colombia. Finally, we discuss the path loss prediction for each set of heuristic UTD coefficients in outdoor environment, as well as the comparison with the canonical results.

  6. AAA gunnermodel based on observer theory. [predicting a gunner's tracking response

    Science.gov (United States)

    Kou, R. S.; Glass, B. C.; Day, C. N.; Vikmanis, M. M.

    1978-01-01

    The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories.

  7. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  8. Advanced numerical methods for uncertainty reduction when predicting heat exchanger dynamic stability limits: Review and perspectives

    International Nuclear Information System (INIS)

    Longatte, E.; Baj, F.; Hoarau, Y.; Braza, M.; Ruiz, D.; Canteneur, C.

    2013-01-01

    Highlights: ► Proposal of hybrid computational methods for investigating dynamical system stability. ► Modeling turbulence disequilibrium due to interaction with moving solid boundaries. ► Providing computational procedure for large size system solution approximation through model reduction. -- Abstract: This article proposes a review of recent and current developments in the modeling and advanced numerical methods used to simulate large-size systems involving multi-physics in the field of mechanics. It addresses the complex issue of stability analysis of dynamical systems submitted to external turbulent flows and aims to establish accurate stability maps applicable to heat exchanger design. The purpose is to provide dimensionless stability limit modeling that is suitable for a variety of configurations and is as accurate as possible in spite of the large scale of the systems to be considered. The challenge lies in predicting local effects that may impact global systems. A combination of several strategies that are suited concurrently to multi-physics, multi-scale and large-size system computation is therefore required. Based on empirical concepts, the heuristic models currently used in the framework of standard stability analysis suffer from a lack of predictive capabilities. On the other hand, numerical approaches based on fully-coupled fluid–solid dynamics system computation remain expensive due to the multi-physics patterns of physics and the large number of degrees of freedom involved. In this context, since experimentation cannot be achieved and numerical simulation is unavoidable but prohibitive, a hybrid strategy is proposed in order to take advantage of both numerical local solutions and empirical global solutions

  9. On the accuracy and reliability of predictions by control-system theory.

    Science.gov (United States)

    Bourbon, W T; Copeland, K E; Dyer, V R; Harman, W K; Mosley, B L

    1990-12-01

    In three experiments we used control-system theory (CST) to predict the results of tracking tasks on which people held a handle to keep a cursor even with a target on a computer screen. 10 people completed a total of 104 replications of the task. In each experiment, there were two conditions: in one, only the handle affected the position of the cursor; in the other, a random disturbance also affected the cursor. From a person's performance during Condition 1, we derived constants used in the CST model to predict the results of Condition 2. In two experiments, predictions occurred a few minutes before Condition 2; in one experiment, the delay was 1 yr. During a 1-min. experimental run, the positions of handle and cursor, produced by the person, were each sampled 1800 times, once every 1/30 sec. During a modeling run, the model predicted the positions of the handle and target for each of the 1800 intervals sampled in the experimental run. In 104 replications, the mean correlation between predicted and actual positions of the handle was .996; SD = .002.

  10. Predicting Malaysian palm oil price using Extreme Value Theory

    OpenAIRE

    Chuangchid, K; Sriboonchitta, S; Rahman, S; Wiboonpongse, A

    2013-01-01

    This paper uses the extreme value theory (EVT) to predict extreme price events of Malaysian palm oil in the future, based on monthly futures price data for a 25 year period (mid-1986 to mid-2011). Model diagnostic has confirmed non-normal distribution of palm oil price data, thereby justifying the use of EVT. Two principal approaches to model extreme values – the Block Maxima (BM) and Peak-Over- Threshold (POT) models – were used. Both models revealed that the palm oil price will peak at ...

  11. Weak Convergence and Banach Space-Valued Functions: Improving the Stability Theory of Feynman’s Operational Calculi

    International Nuclear Information System (INIS)

    Nielsen, Lance

    2011-01-01

    In this paper we investigate the relation between weak convergence of a sequence {μ n } of probability measures on a Polish space S converging weakly to the probability measure μ and continuous, norm-bounded functions into a Banach space X. We show that, given a norm-bounded continuous function f:S→X, it follows that lim n∞ ∫ S f, dμ n = ∫ S f, dμ —the limit one has for bounded and continuous real (or complex)—valued functions on S. This result is then applied to the stability theory of Feynman’s operational calculus where it is shown that the theory can be significantly improved over previous results.

  12. Causal beliefs about depression in different cultural groups—what do cognitive psychological theories of causal learning and reasoning predict?

    OpenAIRE

    Hagmayer, York; Engelmann, Neele

    2014-01-01

    Cognitive psychological research focuses on causal learning and reasoning while cognitive anthropological and social science research tend to focus on systems of beliefs. Our aim was to explore how these two types of research can inform each other. Cognitive psychological theories (causal model theory and causal Bayes nets) were used to derive predictions for systems of causal beliefs. These predictions were then applied to lay theories of depression as a specific test case. A systematic lite...

  13. Theoretical explanation of present mirror experiments and linear stability of larger scaled machines

    International Nuclear Information System (INIS)

    Berk, H.L.; Baldwin, D.E.; Cutler, T.A.; Lodestro, L.L.; Maron, N.; Pearlstein, L.D.; Rognlien, T.D.; Stewart, J.J.; Watson, D.C.

    1976-01-01

    A quasilinear model for the evolution of the 2XIIB mirror experiment is presented and shown to reproduce the time evolution of the experiment. From quasilinear theory it follows that the energy lifetime is the Spitzer electron drag time for T/sub e/ approximately less than 0.1T/sub i/. By computing the stability boundary of the DCLC mode, with warm plasma stabilization, the electron temperature is predicted as a function of radial scale length. In addition, the effect of finite length corrections to the Alfven cyclotron mode is assessed

  14. Predicting maintenance of attendance at walking groups: testing constructs from three leading maintenance theories.

    Science.gov (United States)

    Kassavou, Aikaterini; Turner, Andrew; Hamborg, Thomas; French, David P

    2014-07-01

    Little is known about the processes and factors that account for maintenance, with several theories existing that have not been subject to many empirical tests. The aim of this study was to test how well theoretical constructs derived from the Health Action Process Approach, Rothman's theory of maintenance, and Verplanken's approach to habitual behavior predicted maintenance of attendance at walking groups. 114 participants, who had already attended walking groups in the community for at least 3 months, completed a questionnaire assessing theoretical constructs regarding maintenance. An objective assessment of attendance over the subsequent 3 months was gained. Multilevel modeling was used to predict maintenance, controlling for clustering within walking groups. Recovery self-efficacy predicted maintenance, even after accounting for clustering. Satisfaction with social outcomes, satisfaction with health outcomes, and overall satisfaction predicted maintenance, but only satisfaction with health outcomes significantly predicted maintenance after accounting for clustering. Self-reported habitual behavior did not predict maintenance despite mean previous attendance being 20.7 months. Recovery self-efficacy, and satisfaction with health outcomes of walking group attendance appeared to be important for objectively measured maintenance, whereas self-reported habit appeared not to be important for maintenance at walking groups. The findings suggest that there is a need for intervention studies to boost recovery self-efficacy and satisfaction with outcomes of walking group attendance, to assess impact on maintenance.

  15. Changing theories of change: strategic shifting in implicit theory endorsement.

    Science.gov (United States)

    Leith, Scott A; Ward, Cindy L P; Giacomin, Miranda; Landau, Enoch S; Ehrlinger, Joyce; Wilson, Anne E

    2014-10-01

    People differ in their implicit theories about the malleability of characteristics such as intelligence and personality. These relatively chronic theories can be experimentally altered, and can be affected by parent or teacher feedback. Little is known about whether people might selectively shift their implicit beliefs in response to salient situational goals. We predicted that, when motivated to reach a desired conclusion, people might subtly shift their implicit theories of change and stability to garner supporting evidence for their desired position. Any motivated context in which a particular lay theory would help people to reach a preferred directional conclusion could elicit shifts in theory endorsement. We examine a variety of motivated situational contexts across 7 studies, finding that people's theories of change shifted in line with goals to protect self and liked others and to cast aspersions on disliked others. Studies 1-3 demonstrate how people regulate their implicit theories to manage self-view by more strongly endorsing an incremental theory after threatening performance feedback or memories of failure. Studies 4-6 revealed that people regulate the implicit theories they hold about favored and reviled political candidates, endorsing an incremental theory to forgive preferred candidates for past gaffes but leaning toward an entity theory to ensure past failings "stick" to opponents. Finally, in Study 7, people who were most threatened by a previously convicted child sex offender (i.e., parents reading about the offender moving to their neighborhood) gravitated most to the entity view that others do not change. Although chronic implicit theories are undoubtedly meaningful, this research reveals a previously unexplored source of fluidity by highlighting the active role people play in managing their implicit theories in response to goals. 2014 APA, all rights reserved

  16. The predictive capacity of the theory of reasoned action and the theory of planned behavior in exercise research: an integrated literature review.

    Science.gov (United States)

    Blue, C L

    1995-04-01

    Although the association between habitual exercise and health benefits has been well documented, physical activity levels in the United States are lower than is necessary to reach the nation's health potential. Beliefs that people hold can be a motivating factor in engaging in exercise. A critical review of the literature was conducted to assess the efficacy of using the Theory of Reasoned Action and the Theory of Planned Behavior with respect to exercise. Evidence for the predictive utility of the theories was found. The Theory of Planned Behavior is a more promising framework for the study of exercise because it includes beliefs about control of factors that would facilitate or inhibit carrying out exercise. Strategies for use of the theories in planning exercise programs are provided and suggestions for future research discussed.

  17. Toward a predictive theory for environmental enrichment.

    Science.gov (United States)

    Watters, Jason V

    2009-11-01

    There have been many applications of and successes with environmental enrichment for captive animals. The theoretical spine upon which much enrichment work hangs largely describes why enrichment should work. Yet, there remains no clear understanding of how enrichment should be applied to achieve the most beneficial results. This lack of understanding may stem in part from the assumptions that underlie the application of enrichment by practitioners. These assumptions are derived from an understanding that giving animals choice and control in their environment stimulates their motivation to perform behaviors that may indicate a heightened state of well-being. Learning theory provides a means to question the manner in which these constructs are routinely applied, and converting learning theory's findings to optimality predictions suggests a particularly vexing paradox-that motivation to perform appears to be maintained best when acquiring a payoff for expressing the behavior is uncertain. This effect occurs even when the actual value of the payoff is the same for all schedules of certainty of payoff acquisition. The paradox can be resolved by invoking rewards of an alternative type, such as cognitive rewards, or through an understanding of how the average payoff changes with changes in the probability of reward. This model, with measures of the average change of the payoff, suggests testable scenarios by which practitioners can measure the quality of environmental uncertainty in enrichment programs.

  18. Imaging carbon nanotube interactions, diffusion, and stability in nanopores.

    Science.gov (United States)

    Eichmann, Shannon L; Smith, Billy; Meric, Gulsum; Fairbrother, D Howard; Bevan, Michael A

    2011-07-26

    We report optical microscopy measurements of three-dimensional trajectories of individual multiwalled carbon nanotubes (MWCNTs) in nanoscale silica slit pores. Trajectories are analyzed to nonintrusively measure MWCNT interactions, diffusion, and stability as a function of pH and ionic strength. Evanescent wave scattering is used to track MWCNT positions normal to pore walls with nanometer-scale resolution, and video microscopy is used to track lateral positions with spatial resolution comparable to the diffraction limit. Analysis of MWCNT excursions normal to pore walls yields particle-wall potentials that agree with theoretical electrostatic and van der Waals potentials assuming a rotationally averaged potential of mean force. MWCNT lateral mean square displacements are used to quantify translational diffusivities, which are comparable to predictions based on the best available theories. Finally, measured MWCNT pH and ionic strength dependent stabilities are in excellent agreement with predictions. Our findings demonstrate novel measurement and modeling tools to understand the behavior of confined MWCNTs relevant to a broad range of applications.

  19. Statistical significance of theoretical predictions: A new dimension in nuclear structure theories (I)

    International Nuclear Information System (INIS)

    DUDEK, J; SZPAK, B; FORNAL, B; PORQUET, M-G

    2011-01-01

    In this and the follow-up article we briefly discuss what we believe represents one of the most serious problems in contemporary nuclear structure: the question of statistical significance of parametrizations of nuclear microscopic Hamiltonians and the implied predictive power of the underlying theories. In the present Part I, we introduce the main lines of reasoning of the so-called Inverse Problem Theory, an important sub-field in the contemporary Applied Mathematics, here illustrated on the example of the Nuclear Mean-Field Approach.

  20. Transition-state theory predicts clogging at the microscale

    Science.gov (United States)

    Laar, T. Van De; Klooster, S. Ten; Schroën, K.; Sprakel, J.

    2016-06-01

    Clogging is one of the main failure mechanisms encountered in industrial processes such as membrane filtration. Our understanding of the factors that govern the build-up of fouling layers and the emergence of clogs is largely incomplete, so that prevention of clogging remains an immense and costly challenge. In this paper we use a microfluidic model combined with quantitative real-time imaging to explore the influence of pore geometry and particle interactions on suspension clogging in constrictions, two crucial factors which remain relatively unexplored. We find a distinct dependence of the clogging rate on the entrance angle to a membrane pore which we explain quantitatively by deriving a model, based on transition-state theory, which describes the effect of viscous forces on the rate with which particles accumulate at the channel walls. With the same model we can also predict the effect of the particle interaction potential on the clogging rate. In both cases we find excellent agreement between our experimental data and theory. A better understanding of these clogging mechanisms and the influence of design parameters could form a stepping stone to delay or prevent clogging by rational membrane design.

  1. Aespoe Pillar Stability Experiment. Summary of preparatory work and predictive modelling

    International Nuclear Information System (INIS)

    Andersson, J. Christer

    2004-11-01

    The Aespoe Pillar Stability Experiment, APSE, is a large scale rock mechanics experiment for research of the spalling process and the possibility for numerical modelling of it. The experiment can be summarized in three objectives: Demonstrate the current capability to predict spalling in a fractured rock mass; Demonstrate the effect of backfill (confining pressure) on the rock mass response; and Comparison of 2D and 3D mechanical and thermal predicting capabilities. This report is a summary of the works that has been performed in the experiment prior to the heating of the rock mass. The major activities that have been performed and are discussed herein are: 1) The geology of the experiment drift in general and the experiment volume in particular. 2) The design process of the experiment and thoughts behind some of the important decisions. 3) The monitoring programme and the supporting constructions for the instruments. 4) The numerical modelling, approaches taken and a summary of the predictions. In the end of the report there is a comparison of the results from the different models. Included is also a comparison of the time needed for building, realizing and make changes in the different models

  2. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    Science.gov (United States)

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.

  3. Using Social Cognitive Theory to Predict Physical Activity and Fitness in Underserved Middle School Children

    Science.gov (United States)

    Martin, Jeffrey J.; McCaughtry, Nate; Flory, Sara; Murphy, Anne; Wisdom, Kimberlydawn

    2011-01-01

    Few researchers have used social cognitive theory and environment-based constructs to predict physical activity (PA) and fitness in underserved middle-school children. Hence, we evaluated social cognitive variables and perceptions of the school environment to predict PA and fitness in middle school children (N = 506, ages 10-14 years). Using…

  4. Experimental investigation of the stability of the floating water bridge

    Science.gov (United States)

    Montazeri Namin, Reza; Azizpour Lindi, Shiva; Amjadi, Ahmad; Jafari, Nima; Irajizad, Peyman

    2013-09-01

    When a high voltage is applied between two beakers filled with deionized water, a floating bridge of water is formed in between exceeding the length of 2 cm when the beakers are pulled apart. Currently two theories regarding the stability of the floating water bridge exist, one suggesting that the tension caused by electric field in the dielectric medium is holding the bridge and the other suggesting surface tension to be responsible for the vertical equilibrium. We construct experiments in which the electric field and the geometry of the bridge are measured and compared with predictions of theories of the floating water bridge stability. We use a numerical simulation for estimation of the electric field. Our results indicate that the two forces of dielectric and surface tensions hold the bridge against gravity simultaneously and, having the same order of magnitude, neither of the two forces are negligible. In bridges with larger diameters, the effect of dielectric tension is slightly more in the vertical equilibrium than surface tension. Results show that the stability can be explained by macroscopic forces, regardless of the microscopic changes in the water structure.

  5. Nano-resonator frequency response based on strain gradient theory

    International Nuclear Information System (INIS)

    Miandoab, Ehsan Maani; Yousefi-Koma, Aghil; Pishkenari, Hossein Nejat; Fathi, Mohammad

    2014-01-01

    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results show that, regarding the applied dc voltage, the dynamic behaviours expected by classical and non-classical theories are significantly different, such that one theory predicts the un-deformed shape as the stable condition, while the other theory predicts that the beam will experience bi-stability. To obtain the frequency response of the nano-resonator, a general equation including cubic and quadratic nonlinearities in addition to parametric electrostatic excitation terms is derived, and the analytical solution is determined using a second-order multiple scales method. Based on frequency response analysis, the softening and hardening effects given by two theories are investigated and compared, and it is observed that neglecting the size effect can lead to two completely different predictions in the dynamic behaviour of the resonators. The findings of this article can be helpful in the design and characterization of the size-dependent dynamic behaviour of resonators on small scales. (paper)

  6. Large-scale transportation network congestion evolution prediction using deep learning theory.

    Directory of Open Access Journals (Sweden)

    Xiaolei Ma

    Full Text Available Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS and Internet of Things (IoT, transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

  7. Further Development of Ko Displacement Theory for Deformed Shape Predictions of Nonuniform Aerospace Structures

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2009-01-01

    The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.

  8. Association of grey matter changes with stability and flexibility of prediction in akinetic-rigid Parkinson's disease.

    Science.gov (United States)

    Trempler, Ima; Binder, Ellen; El-Sourani, Nadiya; Schiffler, Patrick; Tenberge, Jan-Gerd; Schiffer, Anne-Marike; Fink, Gereon R; Schubotz, Ricarda I

    2018-06-01

    Parkinson's disease (PD), which is caused by degeneration of dopaminergic neurons in the midbrain, results in a heterogeneous clinical picture including cognitive decline. Since the phasic signal of dopamine neurons is proposed to guide learning by signifying mismatches between subjects' expectations and external events, we here investigated whether akinetic-rigid PD patients without mild cognitive impairment exhibit difficulties in dealing with either relevant (requiring flexibility) or irrelevant (requiring stability) prediction errors. Following our previous study on flexibility and stability in prediction (Trempler et al. J Cogn Neurosci 29(2):298-309, 2017), we then assessed whether deficits would correspond with specific structural alterations in dopaminergic regions as well as in inferior frontal cortex, medial prefrontal cortex, and the hippocampus. Twenty-one healthy controls and twenty-one akinetic-rigid PD patients on and off medication performed a task which required to serially predict upcoming items. Switches between predictable sequences had to be indicated via button press, whereas sequence omissions had to be ignored. Independent of the disease, midbrain volume was related to a general response bias to unexpected events, whereas right putamen volume correlated with the ability to discriminate between relevant and irrelevant prediction errors. However, patients compared with healthy participants showed deficits in stabilisation against irrelevant prediction errors, associated with thickness of right inferior frontal gyrus and left medial prefrontal cortex. Flexible updating due to relevant prediction errors was also affected in patients compared with controls and associated with right hippocampus volume. Dopaminergic medication influenced behavioural performance across, but not within the patients. Our exploratory study warrants further research on deficient prediction error processing and its structural correlates as a core of cognitive symptoms

  9. Biomechanical Measures During Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury After Anterior Cruciate Ligament Reconstruction and Return to Sport

    Science.gov (United States)

    Paterno, Mark V.; Schmitt, Laura C.; Ford, Kevin R.; Rauh, Mitchell J.; Myer, Gregory D.; Huang, Bin; Hewett, Timothy E.

    2016-01-01

    Background Athletes who return to sport participation after anterior cruciate ligament reconstruction (ACLR) have a higher risk of a second anterior cruciate ligament injury (either reinjury or contralateral injury) compared with non–anterior cruciate ligament–injured athletes. Hypotheses Prospective measures of neuromuscular control and postural stability after ACLR will predict relative increased risk for a second anterior cruciate ligament injury. Study Design Cohort study (prognosis); Level of evidence, 2. Methods Fifty-six athletes underwent a prospective biomechanical screening after ACLR using 3-dimensional motion analysis during a drop vertical jump maneuver and postural stability assessment before return to pivoting and cutting sports. After the initial test session, each subject was followed for 12 months for occurrence of a second anterior cruciate ligament injury. Lower extremity joint kinematics, kinetics, and postural stability were assessed and analyzed. Analysis of variance and logistic regression were used to identify predictors of a second anterior cruciate ligament injury. Results Thirteen athletes suffered a subsequent second anterior cruciate ligament injury. Transverse plane hip kinetics and frontal plane knee kinematics during landing, sagittal plane knee moments at landing, and deficits in postural stability predicted a second injury in this population (C statistic = 0.94) with excellent sensitivity (0.92) and specificity (0.88). Specific predictive parameters included an increase in total frontal plane (valgus) movement, greater asymmetry in internal knee extensor moment at initial contact, and a deficit in single-leg postural stability of the involved limb, as measured by the Biodex stability system. Hip rotation moment independently predicted second anterior cruciate ligament injury (C = 0.81) with high sensitivity (0.77) and specificity (0.81). Conclusion Altered neuromuscular control of the hip and knee during a dynamic landing task

  10. [Prediction of regional soil quality based on mutual information theory integrated with decision tree algorithm].

    Science.gov (United States)

    Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu

    2012-02-01

    In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.

  11. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    Science.gov (United States)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  12. Capacity Prediction Model Based on Limited Priority Gap-Acceptance Theory at Multilane Roundabouts

    Directory of Open Access Journals (Sweden)

    Zhaowei Qu

    2014-01-01

    Full Text Available Capacity is an important design parameter for roundabouts, and it is the premise of computing their delay and queue. Roundabout capacity has been studied for decades, and empirical regression model and gap-acceptance model are the two main methods to predict it. Based on gap-acceptance theory, by considering the effect of limited priority, especially the relationship between limited priority factor and critical gap, a modified model was built to predict the roundabout capacity. We then compare the results between Raff’s method and maximum likelihood estimation (MLE method, and the MLE method was used to predict the critical gaps. Finally, the predicted capacities from different models were compared, with the observed capacity by field surveys, which verifies the performance of the proposed model.

  13. Predicting Social Support for Grieving Persons: A Theory of Planned Behavior Perspective

    Science.gov (United States)

    Bath, Debra M.

    2009-01-01

    Research has consistently reported that social support from family, friends, and colleagues is an important factor in the bereaved person's ability to cope after the loss of a loved one. This study used a Theory of Planned Behavior framework to identify those factors that predict a person's intention to interact with, and support, a grieving…

  14. Using Theory of Planned Behavior to Predict Healthy Eating among Danish Adolescents

    Science.gov (United States)

    Gronhoj, Alice; Bech-Larsen, Tino; Chan, Kara; Tsang, Lennon

    2013-01-01

    Purpose: The purpose of the study was to apply the theory of planned behavior to predict Danish adolescents' behavioral intention for healthy eating. Design/methodology/approach: A cluster sample survey of 410 students aged 11 to 16 years studying in Grade 6 to Grade 10 was conducted in Denmark. Findings: Perceived behavioral control followed by…

  15. Boundary feedback stabilization of distributed parameter systems

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1988-01-01

    The author introduces the method of pseudo-differential stabilization. He notes that the theory of pseudo-differential boundary operators is a fruitful approach to problems arising in control and stabilization theory of distributed-parameter systems. The basic pseudo-differential calculus can...

  16. DFT study of stabilization effects on N-doped graphene for ORR catalysis

    DEFF Research Database (Denmark)

    Reda, Mateusz; Hansen, Heine Anton; Vegge, Tejs

    2018-01-01

    Noble metal free catalysts, such as N-doped graphene, have drawn a lot of attention as a promising replacement for platinum in low temperature fuel cells. Computational prediction of catalytic activity requires accurate description of the oxygen reduction reaction (ORR) intermediates adsorption...... energies. Two stabilizing effects, immanently present in experimental ORR setups with basal plane N-doped graphene catalyst, are studied systematically by means of density functional theory. Distant nitrogen with no adsorbates on neighboring carbon atoms selectively stabilizes *O and *O2 adsorbates. Water...... solvation stabilizes all ORR intermediates, having a greater impact on *O and *O2, than on *OH and *OOH, in contrast to metal and oxide catalysts. Synergistic stabilization of *O caused by both effects reaches remarkably a high value of 1.5 eV for nitrogen concentrations above 4.2% N. Such a strong effect...

  17. Short-term prediction of windfarm power output - from theory to practice

    International Nuclear Information System (INIS)

    Landberg, L.

    1998-01-01

    From the very complicated and evolved theories of boundary-layer meteorology encompassing the equations of turbulence and mean flow, a model has been derived to predict the power output from wind farms. For practical dispatching purposes the predictions must reach as far into the future as 36 hours. The model has been put into an operation frame-work where the predictions for a number of wind farms scattered all over Europe are available on-line on the World Wide Web. The system is very versatile and new wind farms can be included within a few days. The system is made up of predictions from the Danish Meteorological Institute HIRLAM model which are refined using the WASP model from Risoe National Laboratory. The paper will describe this operation set-up, give examples of the performance of the model of wind farms in the UK, Denmark, Greece and the US. An analysis of the error for a one-year period will also be presented. Finally, possible improvements will be discussed. These include Kalman filtering and other statistical methods. (Author)

  18. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    Science.gov (United States)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  19. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly

    KAUST Repository

    Hur, Kahyun

    2012-06-13

    "Bottom up" type nanoparticle (NP) self-assembly is expected to provide facile routes to nanostructured materials for various, for example, energy related, applications. Despite progress in simulations and theories, structure prediction of self-assembled materials beyond simple model systems remains challenging. Here we utilize a field theory approach for predicting nanostructure of complex and multicomponent hybrid systems with multiple types of short- and long-range interactions. We propose design criteria for controlling a range of NP based nanomaterial structures. In good agreement with recent experiments, the theory predicts that ABC triblock terpolymer directed assemblies with ligand-stabilized NPs can lead to chiral NP network structures. Furthermore, we predict that long-range Coulomb interactions between NPs leading to simple NP lattices, when applied to NP/block copolymer (BCP) assemblies, induce NP superlattice formation within the phase separated BCP nanostructure, a strategy not yet realized experimentally. We expect such superlattices to be of increasing interest to communities involved in research on, for example, energy generation and storage, metamaterials, as well as microelectronics and information storage. © 2012 American Chemical Society.

  20. Theory of Mind and Emotion Understanding Predict Moral Development in Early Childhood

    Science.gov (United States)

    Lane, Jonathan D.; Wellman, Henry M.; Olson, Sheryl L.; LaBounty, Jennifer; Kerr, David C. R.

    2010-01-01

    The current study utilized longitudinal data to investigate how theory of mind (ToM) and emotion understanding (EU) concurrently and prospectively predicted young children's moral reasoning and decision making. One hundred twenty-eight children were assessed on measures of ToM and EU at 3.5 and 5.5 years of age. At 5.5 years, children were also…

  1. Predictions of new AB O3 perovskite compounds by combining machine learning and density functional theory

    Science.gov (United States)

    Balachandran, Prasanna V.; Emery, Antoine A.; Gubernatis, James E.; Lookman, Turab; Wolverton, Chris; Zunger, Alex

    2018-04-01

    We apply machine learning (ML) methods to a database of 390 experimentally reported A B O3 compounds to construct two statistical models that predict possible new perovskite materials and possible new cubic perovskites. The first ML model classified the 390 compounds into 254 perovskites and 136 that are not perovskites with a 90% average cross-validation (CV) accuracy; the second ML model further classified the perovskites into 22 known cubic perovskites and 232 known noncubic perovskites with a 94% average CV accuracy. We find that the most effective chemical descriptors affecting our classification include largely geometric constructs such as the A and B Shannon ionic radii, the tolerance and octahedral factors, the A -O and B -O bond length, and the A and B Villars' Mendeleev numbers. We then construct an additional list of 625 A B O3 compounds assembled from charge conserving combinations of A and B atoms absent from our list of known compounds. Then, using the two ML models constructed on the known compounds, we predict that 235 of the 625 exist in a perovskite structure with a confidence greater than 50% and among them that 20 exist in the cubic structure (albeit, the latter with only ˜50 % confidence). We find that the new perovskites are most likely to occur when the A and B atoms are a lanthanide or actinide, when the A atom is an alkali, alkali earth, or late transition metal atom, or when the B atom is a p -block atom. We also compare the ML findings with the density functional theory calculations and convex hull analyses in the Open Quantum Materials Database (OQMD), which predicts the T =0 K ground-state stability of all the A B O3 compounds. We find that OQMD predicts 186 of 254 of the perovskites in the experimental database to be thermodynamically stable within 100 meV/atom of the convex hull and predicts 87 of the 235 ML-predicted perovskite compounds to be thermodynamically stable within 100 meV/atom of the convex hull, including 6 of these to

  2. Stability of non-linear constitutive formulations for viscoelastic fluids

    CERN Document Server

    Siginer, Dennis A

    2014-01-01

    Stability of Non-linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the stability of these constitutive equations that is their predictive power, and the impact of these constitutive equations on the dynamics of viscoelastic fluid flow in tubes. This book gives an overall view of the theories and attendant methodologies developed independently of thermodynamic considerations as well as those set within a thermodynamic framework to derive non-linear rheological constitutive equations for viscoelastic fluids. Developments in formulating Maxwell-like constitutive differential equations as well as single integral constitutive formulations are discussed in the light of Hadamard and dissipative type of instabilities.

  3. Ideal MHD stability properties of pressure-driven modes in low shear tokamaks

    International Nuclear Information System (INIS)

    Manickam, J.; Pomphrey, N.; Todd, A.M.M.

    1987-03-01

    The role of shear in determining the ideal MHD stability properties of tokamaks is discussed. In particular, we assess the effects of low shear within the plasma upon pressure-driven modes. The standard ballooning theory is shown to break down, as the shear is reduced and the growth rate is shown to be an oscillatory function of n, the toroidal mode number, treated as a continuous parameter. The oscillations are shown to depend on both the pressure and safety-factor profiles. When the shear is sufficiently weak, the oscillations can result in bands of unstable n values which are present even when the standard ballooning theory predicts complete stability. These instabilities are named ''infernal modes.'' The occurrence of these instabilities at integer n is shown to be a sensitive function of q-axis, raising the possibility of a sharp onset as plasma parameters evolve. 20 refs., 31 figs

  4. Linear-stability theory of thermocapillary convection in a model of float-zone crystal growth

    Science.gov (United States)

    Neitzel, G. P.; Chang, K.-T.; Jankowski, D. F.; Mittelmann, H. D.

    1992-01-01

    Linear-stability theory has been applied to a basic state of thermocapillary convection in a model half-zone to determine values of the Marangoni number above which instability is guaranteed. The basic state must be determined numerically since the half-zone is of finite, O(1) aspect ratio with two-dimensional flow and temperature fields. This, in turn, means that the governing equations for disturbance quantities will remain partial differential equations. The disturbance equations are treated by a staggered-grid discretization scheme. Results are presented for a variety of parameters of interest in the problem, including both terrestrial and microgravity cases.

  5. Robustness of the Theory of Planned Behavior in predicting entrepreneurial intentions and actions

    NARCIS (Netherlands)

    Kautonen, T.; van Gelderen, M.W.; Fink, M.

    2015-01-01

    This analysis demonstrates the relevance and robustness of the theory of planned behavior in the prediction of business start-up intentions and subsequent behavior based on longitudinal survey data (2011 and 2012; n=969) from the adult population in Austria and Finland. By doing so, the study

  6. Infiltration on sloping terrain and its role on runoff generation and slope stability

    Science.gov (United States)

    Loáiciga, Hugo A.; Johnson, J. Michael

    2018-06-01

    A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by homogeneous soil wetted by surficial water application. This paper's theory for quantifying infiltration relies on the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff. These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration, the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope's hydraulic and geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope stability with respect to translational sliding. This paper's theory also develops the 1D pde governing suspended sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate the application of the developed theory to calculate infiltration and runoff on a slope and their role on the stability of cohesive and cohesionless soils forming sloping terrain.

  7. Seismic stability analysis of rock slopes by yield design theory using the generalized Hoek-Brown criterion

    Directory of Open Access Journals (Sweden)

    Belghali Mounir

    2018-01-01

    Full Text Available The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.

  8. Stability and Hopf bifurcation analysis of a prey-predator system with two delays

    International Nuclear Information System (INIS)

    Li Kai; Wei Junjie

    2009-01-01

    In this paper, we have considered a prey-predator model with Beddington-DeAngelis functional response and selective harvesting of predator species. Two delays appear in this model to describe the time that juveniles take to mature. Its dynamics are studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the associated characteristic equation, its linear stability is investigated and Hopf bifurcations are demonstrated. The stability and direction of the Hopf bifurcation are determined by applying the normal form method and the center manifold theory. Numerical simulation results are given to support the theoretical predictions.

  9. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    Science.gov (United States)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  10. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.

    Science.gov (United States)

    Masso, Majid; Vaisman, Iosif I

    2008-09-15

    Accurate predictive models for the impact of single amino acid substitutions on protein stability provide insight into protein structure and function. Such models are also valuable for the design and engineering of new proteins. Previously described methods have utilized properties of protein sequence or structure to predict the free energy change of mutants due to thermal (DeltaDeltaG) and denaturant (DeltaDeltaG(H2O)) denaturations, as well as mutant thermal stability (DeltaT(m)), through the application of either computational energy-based approaches or machine learning techniques. However, accuracy associated with applying these methods separately is frequently far from optimal. We detail a computational mutagenesis technique based on a four-body, knowledge-based, statistical contact potential. For any mutation due to a single amino acid replacement in a protein, the method provides an empirical normalized measure of the ensuing environmental perturbation occurring at every residue position. A feature vector is generated for the mutant by considering perturbations at the mutated position and it's ordered six nearest neighbors in the 3-dimensional (3D) protein structure. These predictors of stability change are evaluated by applying machine learning tools to large training sets of mutants derived from diverse proteins that have been experimentally studied and described. Predictive models based on our combined approach are either comparable to, or in many cases significantly outperform, previously published results. A web server with supporting documentation is available at http://proteins.gmu.edu/automute.

  11. When do normative beliefs about aggression predict aggressive behavior? An application of I3 theory.

    Science.gov (United States)

    Li, Jian-Bin; Nie, Yan-Gang; Boardley, Ian D; Dou, Kai; Situ, Qiao-Min

    2015-01-01

    I(3) theory assumes that aggressive behavior is dependent on three orthogonal processes (i.e., Instigator, Impellance, and Inhibition). Previous studies showed that Impellance (trait aggressiveness, retaliation tendencies) better predicted aggression when Instigator was strong and Inhibition was weak. In the current study, we predicted that another Impellance (i.e., normative beliefs about aggression) might predict aggression when Instigator was absent and Inhibition was high (i.e., the perfect calm proposition). In two experiments, participants first completed the normative beliefs about aggression questionnaire. Two weeks later, participants' self-control resources were manipulated either using the Stroop task (study 1, N = 148) or through an "e-crossing" task (study 2, N = 180). Afterwards, with or without being provoked, participants played a game with an ostensible partner where they had a chance to aggress against them. Study 1 found that normative beliefs about aggression negatively and significantly predicted aggressive behavior only when provocation was absent and self-control resources were not depleted. In Study 2, normative beliefs about aggression negatively predicted aggressive behavior at marginal significance level only in the "no-provocation and no-depletion" condition. In conclusion, the current study provides partial support for the perfect calm proposition and I(3) theory. © 2015 Wiley Periodicals, Inc.

  12. Load Frequency Control in Isolated Micro-Grids with Electrical Vehicles Based on Multivariable Generalized Predictive Theory

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-03-01

    Full Text Available In power systems, although the inertia energy in power sources can partly cover power unbalances caused by load disturbance or renewable energy fluctuation, it is still hard to maintain the frequency deviation within acceptable ranges. However, with the vehicle-to-grid (V2G technique, electric vehicles (EVs can act as mobile energy storage units, which could be a solution for load frequency control (LFC in an isolated grid. In this paper, a LFC model of an isolated micro-grid with EVs, distributed generations and their constraints is developed. In addition, a controller based on multivariable generalized predictive control (MGPC theory is proposed for LFC in the isolated micro-grid, where EVs and diesel generator (DG are coordinated to achieve a satisfied performance on load frequency. A benchmark isolated micro-grid with EVs, DG, and wind farm is modeled in the Matlab/Simulink environment to demonstrate the effectiveness of the proposed method. Simulation results demonstrate that with MGPC, the energy stored in EVs can be managed intelligently according to LFC requirement. This improves the system frequency stability with complex operation situations including the random renewable energy resource and the continuous load disturbances.

  13. Analysis of the Evolution of Tannic Acid Stabilized Gold Nanoparticles Using Mie Theory

    Directory of Open Access Journals (Sweden)

    Assia Rachida Senoudi

    2014-01-01

    Full Text Available Spherical gold nanoparticles (GNPs have been synthesized in aqueous solutions using sodium citrate (SC and tannic acid (TA as reducing and stabilizing agents. Upon addition of TA and compared to the GNP TA-free aqueous solutions, a reduction of the GNPs size and consequently a dramatic change of their optical properties have been observed and quantitatively analyzed using Mie theory. An increase in the concentration of TA reveals a modification of the colloidal solution refractive index that is evidenced by the shift in the peak position of the localized surface plasmon resonance (LSPR band. The variations of the peak absorbance with the TA concentration are examined in the low and high concentration regimes.

  14. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance...... of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. RESULTS: The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation...... between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance...

  15. Electron band theory predictions and the construction of phase diagrams

    International Nuclear Information System (INIS)

    Watson, R.E.; Bennett, L.H.; Davenport, J.W.; Weinert, M.

    1985-01-01

    The a priori theory of metals is yielding energy results which are relevant to the construction of phase diagrams - to the solution phases as well as to line compounds. There is a wide range in the rigor of the calculations currently being done and this is discussed. Calculations for the structural stabilities (fcc vs bcc vs hcp) of the elemental metals, quantities which are employed in the constructs of the terminal phases, are reviewed and shown to be inconsistent with the values currently employed in such constructs (also see Miodownik elsewhere in this volume). Finally, as an example, the calculated heats of formation are compared with experiment for PtHf, IrTa and OsW, three compounds with the same electron to atom ratio but different bonding properties

  16. Theory of mind and emotion understanding predict moral development in early childhood.

    Science.gov (United States)

    Lane, Jonathan D; Wellman, Henry M; Olson, Sheryl L; LaBounty, Jennifer; Kerr, David C R

    2010-11-01

    The current study utilized longitudinal data to investigate how theory of mind (ToM) and emotion understanding (EU) concurrently and prospectively predicted young children's moral reasoning and decision making. One hundred twenty-eight children were assessed on measures of ToM and EU at 3.5 and 5.5 years of age. At 5.5 years, children were also assessed on the quality of moral reasoning and decision making they used to negotiate prosocial moral dilemmas, in which the needs of a story protagonist conflict with the needs of another story character. More sophisticated EU predicted greater use of physical- and material-needs reasoning, and a more advanced ToM predicted greater use of psychological-needs reasoning. Most intriguing, ToM and EU jointly predicted greater use of higher-level acceptance-authority reasoning, which is likely a product of children's increasing appreciation for the knowledge held by trusted adults and children's desire to behave in accordance with social expectations.

  17. Strongly nonlinear theory of rapid solidification near absolute stability

    Science.gov (United States)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the

  18. Real-Time Monitoring and Prediction of the Pilot Vehicle System (PVS) Closed-Loop Stability

    Science.gov (United States)

    Mandal, Tanmay Kumar

    Understanding human control behavior is an important step for improving the safety of future aircraft. Considerable resources are invested during the design phase of an aircraft to ensure that the aircraft has desirable handling qualities. However, human pilots exhibit a wide range of control behaviors that are a function of external stimulus, aircraft dynamics, and human psychological properties (such as workload, stress factor, confidence, and sense of urgency factor). This variability is difficult to address comprehensively during the design phase and may lead to undesirable pilot-aircraft interaction, such as pilot-induced oscillations (PIO). This creates the need to keep track of human pilot performance in real-time to monitor the pilot vehicle system (PVS) stability. This work focused on studying human pilot behavior for the longitudinal axis of a remotely controlled research aircraft and using human-in-the-loop (HuIL) simulations to obtain information about the human controlled system (HCS) stability. The work in this dissertation is divided into two main parts: PIO analysis and human control model parameters estimation. To replicate different flight conditions, this study included time delay and elevator rate limiting phenomena, typical of actuator dynamics during the experiments. To study human control behavior, this study employed the McRuer model for single-input single-output manual compensatory tasks. McRuer model is a lead-lag controller with time delay which has been shown to adequately model manual compensatory tasks. This dissertation presents a novel technique to estimate McRuer model parameters in real-time and associated validation using HuIL simulations to correctly predict HCS stability. The McRuer model parameters were estimated in real-time using a Kalman filter approach. The estimated parameters were then used to analyze the stability of the closed-loop HCS and verify them against the experimental data. Therefore, the main contribution of

  19. Mother-Child Attachment From Infancy to the Preschool Years: Predicting Security and Stability.

    Science.gov (United States)

    Meins, Elizabeth; Bureau, Jean-François; Fernyhough, Charles

    2018-05-01

    Relations between maternal mind-mindedness (appropriate and nonattuned mind-related comments), children's age-2 perspective-taking abilities, and attachment security at 44 (n = 165) and 51 (n = 128) months were investigated. Nonattuned comments predicted insecure preschool attachment, via insecure 15-month attachment security (44-month attachment) and poorer age-2 perspective-taking abilities (51-month attachment). With regard to attachment stability, higher perspective-taking abilities distinguished the stable secure groups from (a) the stable insecure groups and (b) children who changed from secure to insecure (at trend level). These effects were independent of child gender, stressful life events, and socioeconomic status (SES). The contribution of these findings to our understanding of stability and change in attachment security from infancy to the preschool years is discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  20. ICRF stabilization of sawteeth on TFTR

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.; Stevens, J.; Wilson, J.R.; Bell, M.; Bitter, M.; Cheng, C.Z.; Darrow, D.; Fredrickson, E.; Hammett, G.W.; Hill, K.; Hsuan, H.; Jassby, D.; McCune, D.; McGuire, K.; Owens, D.K.; Park, H.; Ramsey, A.; Schilling, G.; Schivell, J.; Stratton, B.; Synakowski, E.; Taylor, G.; Towner, H.; White, R.; Zweben, S.; Phillips, M.W.; Hughes, M.; Bush, C.; Goldfinger, R.; Hoffman, D.; Houlberg, W.; Nagayama, Y.; Smithe, D.N.

    1992-01-01

    Results obtained from experiments utilizing high power ICRF (ion cyclotron range of frequency) heating to stabilize sawtooth oscillations on TFTR are reviewed. The key observations include existence of a minimum ICRF power required to achieve stabilization, a dependence of the stabilization threshold on the relative size of the ICRF power deposition profile to the q=1 volume, and a peaking of the equilibrium pressure and current profiles during sawtooth-free phases of the discharges. In addition, preliminary measurements of the poloidal magnetic field profile indicate that q on axis decreases to a value of 0.55±0.15 after a sawtooth-stabilized period of ∼0.5 sec has transpired. The results are discussed in the context of theory, which suggests that the fast ions produced by the ICRF heating suppress sawteeth by stabilizing the m=1 MHD instabilities believed to be the trigger for the sawtooth oscillations. Though qualitative agreement is found between the observations and the theory, further refinement of the theory coupled with more accurate measurements of experimental profiles will be required in order to complete quantitative comparisons

  1. DYMEL code for prediction of dynamic stability limits in boilers

    International Nuclear Information System (INIS)

    Deam, R.T.

    1980-01-01

    Theoretical and experimental studies of Hydrodynamic Instability in boilers were undertaken to resolve the uncertainties of the existing predictive methods at the time the first Advanced Gas Cooled Reactor (AGR) plant was commissioned. The experiments were conducted on a full scale electrical simulation of an AGR boiler and revealed inadequacies in existing methods. As a result a new computer code called DYMEL was developed based on linearisation and Fourier/Laplace Transformation of the one-dimensional boiler equations in both time and space. Beside giving good agreement with local experimental data, the DYMEL code has since shown agreement with stability data from the plant, sodium heated helical tubes, a gas heated helical tube and an electrically heated U-tube. The code is now used widely within the U.K. (author)

  2. Attitudes, norms, identity and environmental behaviour: using an expanded theory of planned behaviour to predict participation in a kerbside recycling programme.

    Science.gov (United States)

    Nigbur, Dennis; Lyons, Evanthia; Uzzell, David

    2010-06-01

    In an effort to contribute to greater understanding of norms and identity in the theory of planned behaviour, an extended model was used to predict residential kerbside recycling, with self-identity, personal norms, neighbourhood identification, and injunctive and descriptive social norms as additional predictors. Data from a field study (N=527) using questionnaire measures of predictor variables and an observational measure of recycling behaviour supported the theory. Intentions predicted behaviour, while attitudes, perceived control, and the personal norm predicted intention to recycle. The interaction between neighbourhood identification and injunctive social norms in turn predicted personal norms. Self-identity and the descriptive social norm significantly added to the original theory in predicting intentions as well as behaviour directly. A replication survey on the self-reported recycling behaviours of a random residential sample (N=264) supported the model obtained previously. These findings offer a useful extension of the theory of planned behaviour and some practicable suggestions for pro-recycling interventions. It may be productive to appeal to self-identity by making people feel like recyclers, and to stimulate both injunctive and descriptive norms in the neighbourhood.

  3. Benchmarking and qualification of the nufreq-npw code for best estimate prediction of multi-channel core stability margins

    International Nuclear Information System (INIS)

    Taleyarkhan, R.; McFarlane, A.F.; Lahey, R.T. Jr.; Podowski, M.Z.

    1988-01-01

    The work described in this paper is focused on the development, verification and benchmarking of the NUFREQ-NPW code at Westinghouse, USA for best estimate prediction of multi-channel core stability margins in US BWRs. Various models incorporated into NUFREQ-NPW are systematically compared against the Westinghouse channel stability analysis code MAZDA, which the Mathematical Model was developed in an entirely different manner. The NUFREQ-NPW code is extensively benchmarked against experimental stability data with and without nuclear reactivity feedback. Detailed comparisons are next performed against nuclear-coupled core stability data. A physically based algorithm is developed to correct for the effect of flow development on subcooled boiling. Use of this algorithm (to be described in the full paper) captures the peak magnitude as well as the resonance frequency with good accuracy

  4. An evaluation of string theory for the prediction of dynamic tire properties using scale model aircraft tires

    Science.gov (United States)

    Clark, S. K.; Dodge, R. N.; Nybakken, G. H.

    1972-01-01

    The string theory was evaluated for predicting lateral tire dynamic properties as obtained from scaled model tests. The experimental data and string theory predictions are in generally good agreement using lateral stiffness and relaxation length values obtained from the static or slowly rolling tire. The results indicate that lateral forces and self-aligning torques are linearly proportional to tire lateral stiffness and to the amplitude of either steer or lateral displacement. In addition, the results show that the ratio of input excitation frequency to road speed is the proper independent variable by which frequency should be measured.

  5. Plant interactions alter the predictions of metabolic scaling theory.

    Directory of Open Access Journals (Sweden)

    Yue Lin

    Full Text Available Metabolic scaling theory (MST is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning. Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric, and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.

  6. Using the Theory of Planned Behavior to predict intention to comply with a food recall message.

    Science.gov (United States)

    Freberg, Karen

    2013-01-01

    The Theory of Planned Behavior (TPB) has provided considerable insight into the public's intention to comply with many different health-related messages, but has not been applied previously to intention to comply with food safety recommendations and recalls ( Hallman & Cuite, 2010 ). Because food recalls can differ from other health messages in their urgency, timing, and cessation, the applicability of the TPB in this domain is unknown. The research reported here attempted to address this gap using a nationally representative consumer panel. Results showed that, consistent with the theory's predictions, attitudes and subjective norms were predictive of the intention to comply with a food recall message, with attitudes having a much greater impact on intent to comply than subjective norms. Perceived behavioral control failed to predict intention to comply. Implications of these results for health public relations and crisis communications and recommendations for future research were discussed.

  7. Prediction of dynamic cutting force and regenerative chatter stability in inserted cutters milling

    Science.gov (United States)

    Li, Zhongqun; Liu, Qiang; Yuan, Songmei; Huang, Kaisheng

    2013-05-01

    Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications.

  8. Stability of dynamical systems

    CERN Document Server

    Liao, Xiaoxin; Yu, P 0

    2007-01-01

    The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents

  9. Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory

    Directory of Open Access Journals (Sweden)

    Jesse S. Jin

    2010-10-01

    Full Text Available Sensor data fusion technology can be used to best extract useful information from multiple sensor observations. It has been widely applied in various applications such as target tracking, surveillance, robot navigation, signal and image processing. This paper introduces a novel data fusion approach in a multiple radiation sensor environment using Dempster-Shafer evidence theory. The methodology is used to predict cloud presence based on the inputs of radiation sensors. Different radiation data have been used for the cloud prediction. The potential application areas of the algorithm include renewable power for virtual power station where the prediction of cloud presence is the most challenging issue for its photovoltaic output. The algorithm is validated by comparing the predicted cloud presence with the corresponding sunshine occurrence data that were recorded as the benchmark. Our experiments have indicated that comparing to the approaches using individual sensors, the proposed data fusion approach can increase correct rate of cloud prediction by ten percent, and decrease unknown rate of cloud prediction by twenty three percent.

  10. A Method to Predict the Structure and Stability of RNA/RNA Complexes.

    Science.gov (United States)

    Xu, Xiaojun; Chen, Shi-Jie

    2016-01-01

    RNA/RNA interactions are essential for genomic RNA dimerization and regulation of gene expression. Intermolecular loop-loop base pairing is a widespread and functionally important tertiary structure motif in RNA machinery. However, computational prediction of intermolecular loop-loop base pairing is challenged by the entropy and free energy calculation due to the conformational constraint and the intermolecular interactions. In this chapter, we describe a recently developed statistical mechanics-based method for the prediction of RNA/RNA complex structures and stabilities. The method is based on the virtual bond RNA folding model (Vfold). The main emphasis in the method is placed on the evaluation of the entropy and free energy for the loops, especially tertiary kissing loops. The method also uses recursive partition function calculations and two-step screening algorithm for large, complicated structures of RNA/RNA complexes. As case studies, we use the HIV-1 Mal dimer and the siRNA/HIV-1 mutant (T4) to illustrate the method.

  11. Comparing predicted yield and yield stability of willow and Miscanthus across Denmark

    DEFF Research Database (Denmark)

    Larsen, Søren; Jaiswal, Deepak; Bentsen, Niclas Scott

    2016-01-01

    was 12.1 Mg DM ha−1 yr−1 for willow and 10.2 Mg DM ha−1 yr−1 for Miscanthus. Coefficent of variation as a measure for yield stability was poorest on the sandy soils of northern and western Jutland and the year-to-year variation in yield was greatest on these soils. Willow was predicted to outyield...... Miscanthus on poor, sandy soils whereas Miscanthus was higher yielding on clay-rich soils. The major driver of yield in both crops was variation in soil moisture, with radiation and precipitation exerting less influence. This is the first time these two major feedstocks for northern Europe have been compared....... The semi-mechanistic crop model BioCro was used to simulate the production of both short rotation coppice (SRC) willow and Miscanthus across Denmark. Predictions were made from high spatial resolution soil data and weather records across this area for 1990-2010. The potential average, rain-fed mean yield...

  12. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Directory of Open Access Journals (Sweden)

    Ralph Blumenhagen

    2015-08-01

    Full Text Available Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  13. A flux-scaling scenario for high-scale moduli stabilization in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Font, Anamaría [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany); Fuchs, Michael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Herschmann, Daniela, E-mail: herschma@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Plauschinn, Erik [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sekiguchi, Yuta; Wolf, Florian [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU, Theresienstr. 37, 80333 München (Germany)

    2015-08-15

    Tree-level moduli stabilization via geometric and non-geometric fluxes in type IIB orientifolds on Calabi–Yau manifolds is investigated. The focus is on stable non-supersymmetric minima, where all moduli are fixed except for some massless axions. The scenario includes the purely axionic orientifold-odd moduli. A set of vacua allowing for parametric control over the moduli vacuum expectation values and their masses is presented, featuring a specific scaling with the fluxes. Uplift mechanisms and supersymmetry breaking soft masses on MSSM-like D7-branes are discussed as well. This scenario provides a complete effective framework for realizing the idea of F-term axion monodromy inflation in string theory. It is argued that, with all masses close to the Planck and GUT scales, one is confronted with working at the threshold of controlling all mass hierarchies.

  14. Comparing theories' performance in predicting violence

    OpenAIRE

    Haas, Henriette; Cusson, Maurice

    2015-01-01

    The stakes of choosing the best theory as a basis for violence prevention and offender rehabilitation are high. However, no single theory of violence has ever been universally accepted by a majority of established researchers. Psychiatry, psychology and sociology are each subdivided into different schools relying upon different premises. All theories can produce empirical evidence for their validity, some of them stating the opposite of each other. Calculating different models wit...

  15. Towards Predictive Association Theories

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Tsivintzelis, Ioannis; Michelsen, Michael Locht

    2011-01-01

    Association equations of state like SAFT, CPA and NRHB have been previously applied to many complex mixtures. In this work we focus on two of these models, the CPA and the NRHB equations of state and the emphasis is on the analysis of their predictive capabilities for a wide range of applications....... We use the term predictive in two situations: (i) with no use of binary interaction parameters, and (ii) multicomponent calculations using binary interaction parameters based solely on binary data. It is shown that the CPA equation of state can satisfactorily predict CO2–water–glycols–alkanes VLE...

  16. Application of large strain analysis for estimation of behavior and stability of rock mass

    International Nuclear Information System (INIS)

    Nakagawa, Mitsuo; Jiang, Yujing; Esaki, Tetsuro.

    1997-01-01

    It is difficult to simulate a large deformation phenomena with plastic flow after failure by using a general numerical approach, such as the FEM (finite element method), based on the infinitesimal strain theory. In order to investigate the behavior of tunnels excavated in soft rock mass, a new simulation technique which can represent large strain accurately is desired, and the code FLAC (Fast Lagragian Analysis of Continua) adopted in this study is being thought a best mean for this propose. In this paper, the basic principles and the application of the large strain analysis method to stability analysis and prediction of the deformational behavior of tunnels in soft rock are presented. First, the features of the large strain theory and some different points from the infinitesimal strain theory are made up. Next, as the examples, the reproduction of uniaxial compression test for soft rock material and the stability analysis of tunnel in soft rock are tried so as to determine the capability of presenting the large deformational behavior. (author)

  17. A Lyapunov Stability Theory-Based Control Strategy for Three-Level Shunt Active Power Filter

    Directory of Open Access Journals (Sweden)

    Yijia Cao

    2017-01-01

    Full Text Available The three-phase three-wire neutral-point-clamped shunt active power filter (NPC-SAPF, which most adopts classical closed-loop feedback control methods such as proportional-integral (PI, proportional-resonant (PR and repetitive control, can only output 1st–25th harmonic currents with 10–20 kHz switching frequency. The reason for this is that the controller design must make a compromise between system stability and harmonic current compensation ability under the condition of less than 20 kHz switching frequency. To broaden the bandwidth of the compensation current, a Lyapunov stability theory-based control strategy is presented in this paper for NPC-SAPF. The proposed control law is obtained by constructing the switching function on the basis of the mathematical model and the Lyapunov candidate function, which can avoid introducing closed-loop feedback control and keep the system globally asymptotically stable. By means of the proposed method, the NPC-SAPF has compensation ability for the 1st–50th harmonic currents, the total harmonic distortion (THD and each harmonic content of grid currents satisfy the requirements of IEEE Standard 519-2014. In order to verify the superiority of the proposed control strategy, stability conditions of the proposed strategy and the representative PR controllers are compared. The simulation results in MATLAB/Simulink (MathWorks, Natick, MA, USA and the experimental results obtained on a 6.6 kVA NPC-SAPF laboratory prototype validate the proposed control strategy.

  18. Natural Analoges as a Check of Predicted Drift Stability at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J. Stuckless

    2006-01-01

    Calculations made by the U.S. Department of Energy's Yucca Mountain Project as part of the licensing of a proposed geologic repository (in southwestern Nevada) for the disposal of high-level radioactive waste, predict that emplacement tunnels will remain open with little collapse long after ground support has disintegrated. This conclusion includes the effects of anticipated seismic events. Natural analogues cannot provide a quantitative test of this conclusion, but they can provide a reasonableness test by examining the natural and anthropogenic examples of stability of subterranean openings. Available data from a variety of sources, combined with limited observations by the author, show that natural underground openings tend to resist collapse for millions of years and that anthropogenic subterranean openings have remained open from before recorded history through today. This stability is true even in seismically active areas. In fact, the archaeological record is heavily skewed toward preservation of underground structures relative to those found at the surface

  19. Natural Analoges as a Check of Predicted Drift Stability at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Stuckless

    2006-03-10

    Calculations made by the U.S. Department of Energy's Yucca Mountain Project as part of the licensing of a proposed geologic repository (in southwestern Nevada) for the disposal of high-level radioactive waste, predict that emplacement tunnels will remain open with little collapse long after ground support has disintegrated. This conclusion includes the effects of anticipated seismic events. Natural analogues cannot provide a quantitative test of this conclusion, but they can provide a reasonableness test by examining the natural and anthropogenic examples of stability of subterranean openings. Available data from a variety of sources, combined with limited observations by the author, show that natural underground openings tend to resist collapse for millions of years and that anthropogenic subterranean openings have remained open from before recorded history through today. This stability is true even in seismically active areas. In fact, the archaeological record is heavily skewed toward preservation of underground structures relative to those found at the surface.

  20. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    Science.gov (United States)

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  1. Mean-field theory of photoinduced molecular reorientation in azobenzene liquid crystalline side-chain polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Johansen, P.M.

    1997-01-01

    . The theory provides an explanation for the high long-term stability of the photoinduced anisotropy as well as a theoretical prediction of the temporal behavior of photoinduced birefringence. The theoretical results agree favorably with measurements in the entire range of writing intensities used......A novel mean-field theory of photoinduced reorientation and optical anisotropy in liquid crystalline side-chain polymers is presented and compared with experiments, The reorientation mechanism is based on photoinduced trans cis isomerization and a multidomain model of the material is introduced...

  2. Exploiting sequence and stability information for directing nanobody stability engineering.

    Science.gov (United States)

    Kunz, Patrick; Flock, Tilman; Soler, Nicolas; Zaiss, Moritz; Vincke, Cécile; Sterckx, Yann; Kastelic, Damjana; Muyldermans, Serge; Hoheisel, Jörg D

    2017-09-01

    Variable domains of camelid heavy-chain antibodies, commonly named nanobodies, have high biotechnological potential. In view of their broad range of applications in research, diagnostics and therapy, engineering their stability is of particular interest. One important aspect is the improvement of thermostability, because it can have immediate effects on conformational stability, protease resistance and aggregation propensity of the protein. We analyzed the sequences and thermostabilities of 78 purified nanobody binders. From this data, potentially stabilizing amino acid variations were identified and studied experimentally. Some mutations improved the stability of nanobodies by up to 6.1°C, with an average of 2.3°C across eight modified nanobodies. The stabilizing mechanism involves an improvement of both conformational stability and aggregation behavior, explaining the variable degree of stabilization in individual molecules. In some instances, variations predicted to be stabilizing actually led to thermal destabilization of the proteins. The reasons for this contradiction between prediction and experiment were investigated. The results reveal a mutational strategy to improve the biophysical behavior of nanobody binders and indicate a species-specificity of nanobody architecture. This study illustrates the potential and limitations of engineering nanobody thermostability by merging sequence information with stability data, an aspect that is becoming increasingly important with the recent development of high-throughput biophysical methods. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Application of Intelligent Dynamic Bayesian Network with Wavelet Analysis for Probabilistic Prediction of Storm Track Intensity Index

    Directory of Open Access Journals (Sweden)

    Ming Li

    2018-06-01

    Full Text Available The effective prediction of storm track (ST is greatly beneficial for analyzing the development and anomalies of mid-latitude weather systems. For the non-stationarity, nonlinearity, and uncertainty of ST intensity index (STII, a new probabilistic prediction model was proposed based on dynamic Bayesian network (DBN and wavelet analysis (WA. We introduced probability theory and graph theory for the first time to quantitatively describe the nonlinear relationship and uncertain interaction of the ST system. Then a casual prediction network (i.e., DBN was constructed through wavelet decomposition, structural learning, parameter learning, and probabilistic inference, which was used for expression of relation among predictors and probabilistic prediction of STII. The intensity prediction of the North Pacific ST with data from 1961–2010 showed that the new model was able to give more comprehensive prediction information and higher prediction accuracy and had strong generalization ability and good stability.

  4. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  5. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods.

    Science.gov (United States)

    Burbrink, Frank T; McKelvy, Alexander D; Pyron, R Alexander; Myers, Edward A

    2015-11-22

    Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities. © 2015 The Author(s).

  6. Analysis of Green's functions and stability problem in models of quantum field theory with solitons

    International Nuclear Information System (INIS)

    Raczka, R.; Roszkowski, L.

    1983-10-01

    A class of models of quantum field theory for a multiplet phi-vector=(phi 1 ,...,phisub(N)) of real scalar fields, possessing a particle-like classical solution phi-vector 0 , is considered. A new formula for generating functional for time-ordered Green's functions in terms of effective propagators is derived. The problem of classical and quantum stability is analyzed in detail. It is shown by partly non-perturbative analysis that in the considered models the excited states of mesons do exist and form the trajectories in the plane mass 2 -spin. These trajectories are linear or approximately linear like experimental trajectories. (author)

  7. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    International Nuclear Information System (INIS)

    Chen, Xing.

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (β ≤ 0.3) hot electron plasmas (T/sub e/≅400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (ω/sub i//ω/sub r/ ≤ 10 -2 ) and saturate at very low level (δB//bar B/ ≤ 10 -3 ). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the Constance B mirror well. 57 refs

  8. Compact torus theory: MHD equilibrium and stability

    International Nuclear Information System (INIS)

    Barnes, D.C.; Seyler, C.E.; Anderson, D.V.

    1979-01-01

    Field reversed theta pinches have demonstrated the production and confinement of compact toroidal configurations with surprisingly good MHD stability. In these observations, the plasma is either lost by diffusion or by the loss of the applied field or is disrupted by an n = 2 (where n is the toroidal mode number) rotating instability only after 30 to 100 MHD times, when the configuration begins to rotate rigidly above a critical speed. These experiments have led one to investigate the equilibrium, stability, and rotation of a very elongated, toroidally axisymmetric configuration with no toroidal field. Many of the above observations are explained by recent results of these investigations which are summarized

  9. Predicting People's Environmental Behaviour: Theory of Planned Behaviour and Model of Responsible Environmental Behaviour

    Science.gov (United States)

    Chao, Yu-Long

    2012-01-01

    Using different measures of self-reported and other-reported environmental behaviour (EB), two important theoretical models explaining EB--Hines, Hungerford and Tomera's model of responsible environmental behaviour (REB) and Ajzen's theory of planned behaviour (TPB)--were compared regarding the fit between model and data, predictive ability,…

  10. Personality Predictors of Successful Development: Toddler Temperament and Adolescent Personality Traits Predict Well-Being and Career Stability in Middle Adulthood

    Science.gov (United States)

    2015-01-01

    The aim of the study was to predict both adaptive psychological functioning (well-being) and adaptive social functioning (career stability) in middle adulthood based on behaviors observed in toddlerhood and personality traits measured in adolescence. 83 people participated in an ongoing longitudinal study started in 1961 (58% women). Based on children’s behavior in toddlerhood, three temperamental dimensions were identified – positive affectivity, negative affectivity and disinhibition. In adolescence, extraversion and neuroticism were measured at the age of 16 years. Various aspects of well-being were used as indicators of adaptive psychological functioning in adulthood: life satisfaction, self-esteem and self-efficacy. Career stability was used as an indicator of adaptive social functioning. Job careers of respondents were characterized as stable, unstable or changeable. Extraversion measured at the age of 16 proved to be the best predictor of well-being indicators; in case of self-efficacy it was also childhood disinhibition. Extraversion in adolescence, childhood disinhibition and negative affectivity predicted career stability. Findings are discussed in the context of a theoretical framework of higher order factors of the Big Five personality constructs, stability and plasticity. PMID:25919394

  11. Personality predictors of successful development: toddler temperament and adolescent personality traits predict well-being and career stability in middle adulthood.

    Directory of Open Access Journals (Sweden)

    Marek Blatný

    Full Text Available The aim of the study was to predict both adaptive psychological functioning (well-being and adaptive social functioning (career stability in middle adulthood based on behaviors observed in toddlerhood and personality traits measured in adolescence. 83 people participated in an ongoing longitudinal study started in 1961 (58% women. Based on children's behavior in toddlerhood, three temperamental dimensions were identified - positive affectivity, negative affectivity and disinhibition. In adolescence, extraversion and neuroticism were measured at the age of 16 years. Various aspects of well-being were used as indicators of adaptive psychological functioning in adulthood: life satisfaction, self-esteem and self-efficacy. Career stability was used as an indicator of adaptive social functioning. Job careers of respondents were characterized as stable, unstable or changeable. Extraversion measured at the age of 16 proved to be the best predictor of well-being indicators; in case of self-efficacy it was also childhood disinhibition. Extraversion in adolescence, childhood disinhibition and negative affectivity predicted career stability. Findings are discussed in the context of a theoretical framework of higher order factors of the Big Five personality constructs, stability and plasticity.

  12. Stability Constraints for Robust Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Amanda G. S. Ottoni

    2015-01-01

    Full Text Available This paper proposes an approach for the robust stabilization of systems controlled by MPC strategies. Uncertain SISO linear systems with box-bounded parametric uncertainties are considered. The proposed approach delivers some constraints on the control inputs which impose sufficient conditions for the convergence of the system output. These stability constraints can be included in the set of constraints dealt with by existing MPC design strategies, in this way leading to the “robustification” of the MPC.

  13. Isomorph theory prediction for the dielectric loss variation along an isochrone

    DEFF Research Database (Denmark)

    Xiao, Wence; Tofteskov, Jon; Dyre, J. C.

    2015-01-01

    This paper derives a prediction for the variation of the amplitude of the dielectric loss from isomorph theory, and presents an experimental test of the prediction performed by measuring the dielectric relaxation behavior of the van der Waals liquid 5-phenyl-4-ether (5PPE). The liquid is studied...... isomorph-invariant terms, one of which is used in analyzing our data. It is the frequency-dependent term χe(f)ργ − 1, with electric susceptibility χe, density ρ, and density-scaling factor γ. Due to the unique design of our experimental setup, we obtain dielectric loss data where the amplitude...... is reproducible ± 0.1 %. We moreover find that the empty capacitance of the capacitor cell is stable within ± 0.3 % in our measuring range and can be assumed to be constant. Using this we predict for two isomorph states there is C2″(f) = C1″(f)(ρ1/ρ2)γ−1 to scale the imaginary capacitance, where C1...

  14. Stability of distributed MPC in an intersection scenario

    Science.gov (United States)

    Sprodowski, T.; Pannek, J.

    2015-11-01

    The research topic of autonomous cars and the communication among them has attained much attention in the last years and is developing quickly. Among others, this research area spans fields such as image recognition, mathematical control theory, communication networks, and sensor fusion. We consider an intersection scenario where we divide the shared road space in different cells. These cells form a grid. The cars are modelled as an autonomous multi-agent system based on the Distributed Model Predictive Control algorithm (DMPC). We prove that the overall system reaches stability using Optimal Control for each multi-agent and demonstrate that by numerical results.

  15. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    International Nuclear Information System (INIS)

    Redi, M.H.; Canik, J.; Dewar, R.L.; Johnson, J.L.; Klasky, S.; Cooper, W.A.; Kerbichler, W.

    2001-01-01

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult

  16. Stability of accelerated metal shells

    International Nuclear Information System (INIS)

    Tahsiri, H.

    1976-01-01

    A systematic treatment has been developed for the Rayleigh-Taylor instability of an accelerated liner. It is applicable to one-dimensional models either compressible or incompressible. With this model several points have been clarified. For an incompressible liner model, the Rayleigh-Taylor instability will have about five e-folding periods and the usual growth rate is independent of the current distribution or current rise time. Adequate stability will therefore depend on the magnitude of the initial perturbations or the precision of the initial liner and the thickness over which the shell is accelerated. However, for a compressible model, theory predicts that the current rise time is important and the Rayleigh-Taylor instability is suppressed if the current rise time is less than the shock transit time

  17. Whole-brain grey matter density predicts balance stability irrespective of age and protects older adults from falling.

    Science.gov (United States)

    Boisgontier, Matthieu P; Cheval, Boris; van Ruitenbeek, Peter; Levin, Oron; Renaud, Olivier; Chanal, Julien; Swinnen, Stephan P

    2016-03-01

    Functional and structural imaging studies have demonstrated the involvement of the brain in balance control. Nevertheless, how decisive grey matter density and white matter microstructural organisation are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear. Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an indicator of balance instability. The mean density of grey matter and mean white matter microstructural organisation were measured using voxel-based morphometry and diffusion tensor imaging, respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density, and white matter microstructural organisation predicted balance instability. Results showed that both grey matter density and age independently predicted balance instability. These predictions were reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted balance instability beyond age and at least as consistently as age across conditions. In other words, for balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old. Finally, brain grey matter appeared to be protective against falls in older adults as age increased the probability of losing balance in older adults with low, but not moderate or high grey matter density. No such results were observed for white matter microstructural organisation, thereby reinforcing the specificity of our grey matter findings. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration

    Directory of Open Access Journals (Sweden)

    Thongchart Kerdphol

    2017-05-01

    Full Text Available Renewable energy sources (RESs, such as wind and solar generations, equip inverters to connect to the microgrids. These inverters do not have any rotating mass, thus lowering the overall system inertia. This low system inertia issue could affect the microgrid stability and resiliency in the situation of uncertainties. Today’s microgrids will become unstable if the capacity of RESs become larger and larger, leading to the weakening of microgrid stability and resilience. This paper addresses a new concept of a microgrid control incorporating a virtual inertia system based on the model predictive control (MPC to emulate virtual inertia into the microgrid control loop, thus stabilizing microgrid frequency during high penetration of RESs. The additional controller of virtual inertia is applied to the microgrid, employing MPC with virtual inertia response. System modeling and simulations are carried out using MATLAB/Simulink® software. The simulation results confirm the superior robustness and frequency stabilization effect of the proposed MPC-based virtual inertia control in comparison to the fuzzy logic system and conventional virtual inertia control in a system with high integration of RESs. The proposed MPC-based virtual inertia control is able to improve the robustness and frequency stabilization of the microgrid effectively.

  19. Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual

    Science.gov (United States)

    Chang, Chau-Lyan

    2004-01-01

    LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.

  20. Calculability and stability in the flipped string

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V. (Texas A and M Univ., College Station, TX (USA). Center for Theoretical Physics Houston Advanced Research Center (HARC), The Woodlands, TX (USA). Astroparticle Physics Group)

    1991-03-07

    We show that the highly successful structure of the recently proposed superstring flipped SU(5) model remains intact after the inclusion in the superpotential of the low-energy effective theory of all relevant string-induced nonrenormalizable terms. This structure provides for only two light Higgs doublets, hierarchical fermion mass matrices, and an adequate proton lifetime. We reach this conclusion explicit calculations using a recently derived set of rules to evaluate nonrenormalizable terms in the four-dimensional free fermionic formulation of superstrings. This remarkable stability of the infrared limit of the flipped string makes its experimental predictions trustworthy and hence its physical existence falsifiable. (orig.).

  1. Understanding predicted shifts in diazotroph biogeography using resource competition theory

    Directory of Open Access Journals (Sweden)

    S. Dutkiewicz

    2014-10-01

    Full Text Available We examine the sensitivity of the biogeography of nitrogen fixers to a warming climate and increased aeolian iron deposition in the context of a global earth system model. We employ concepts from the resource-ratio theory to provide a simplifying and transparent interpretation of the results. First we demonstrate that a set of clearly defined, easily diagnosed provinces are consistent with the theory. Using this framework we show that the regions most vulnerable to province shifts and changes in diazotroph biogeography are the equatorial and South Pacific, and central Atlantic. Warmer and dustier climates favor diazotrophs due to an increase in the ratio of supply rate of iron to fixed nitrogen. We suggest that the emergent provinces could be a standard diagnostic for global change models, allowing for rapid and transparent interpretation and comparison of model predictions and the underlying mechanisms. The analysis suggests that monitoring of real world province boundaries, indicated by transitions in surface nutrient concentrations, would provide a clear and easily interpreted indicator of ongoing global change.

  2. A nomogram for interpreting slope stability of fine-grained deposits in modern and ancient-marine environments.

    Science.gov (United States)

    Booth, J.S.; Sangrey, D.A.; Fugate, J.K.

    1985-01-01

    This nomogram was designed to aid in interpreting the causes of mass movement in modern and ancient settings, to provide a basis for evaluating and predicting slope stability under given conditions and to further the understanding of the relationships among the several key factors that control slope stability. Design of the nomogram is based on effective stress and combines consolidation theory as applicable to depositional environments with the infinite-slope model of slope-stability analysis. If infinite-slope conditions are assumed to exist, the effective overburden stress can be used to derive a factor of safety against static slope failure by using the angle of internal friction and the slope angle. -from Authors

  3. The Predictive Effects of Protection Motivation Theory on Intention and Behaviour of Physical Activity in Patients with Type 2 Diabetes

    Science.gov (United States)

    Ali Morowatisharifabad, Mohammad; Abdolkarimi, Mahdi; Asadpour, Mohammad; Fathollahi, Mahmood Sheikh; Balaee, Parisa

    2018-01-01

    INTRODUCTION: Theory-based education tailored to target behaviour and group can be effective in promoting physical activity. AIM: The purpose of this study was to examine the predictive power of Protection Motivation Theory on intent and behaviour of Physical Activity in Patients with Type 2 Diabetes. METHODS: This descriptive study was conducted on 250 patients in Rafsanjan, Iran. To examine the scores of protection motivation theory structures, a researcher-made questionnaire was used. Its validity and reliability were confirmed. The level of physical activity was also measured by the International Short - form Physical Activity Inventory. Its validity and reliability were also approved. Data were analysed by statistical tests including correlation coefficient, chi-square, logistic regression and linear regression. RESULTS: The results revealed that there was a significant correlation between all the protection motivation theory constructs and the intention to do physical activity. The results showed that the Theory structures were able to predict 60% of the variance of physical activity intention. The results of logistic regression demonstrated that increase in the score of physical activity intent and self - efficacy increased the chance of higher level of physical activity by 3.4 and 1.5 times, respectively OR = (3.39, 1.54). CONCLUSION: Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour. PMID:29731945

  4. The Predictive Effects of Protection Motivation Theory on Intention and Behaviour of Physical Activity in Patients with Type 2 Diabetes.

    Science.gov (United States)

    Ali Morowatisharifabad, Mohammad; Abdolkarimi, Mahdi; Asadpour, Mohammad; Fathollahi, Mahmood Sheikh; Balaee, Parisa

    2018-04-15

    Theory-based education tailored to target behaviour and group can be effective in promoting physical activity. The purpose of this study was to examine the predictive power of Protection Motivation Theory on intent and behaviour of Physical Activity in Patients with Type 2 Diabetes. This descriptive study was conducted on 250 patients in Rafsanjan, Iran. To examine the scores of protection motivation theory structures, a researcher-made questionnaire was used. Its validity and reliability were confirmed. The level of physical activity was also measured by the International Short - form Physical Activity Inventory. Its validity and reliability were also approved. Data were analysed by statistical tests including correlation coefficient, chi-square, logistic regression and linear regression. The results revealed that there was a significant correlation between all the protection motivation theory constructs and the intention to do physical activity. The results showed that the Theory structures were able to predict 60% of the variance of physical activity intention. The results of logistic regression demonstrated that increase in the score of physical activity intent and self - efficacy increased the chance of higher level of physical activity by 3.4 and 1.5 times, respectively OR = (3.39, 1.54). Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour.

  5. Using the Theory of Planned Behavior to Predict College Students' Intention to Intervene With a Suicidal Individual.

    Science.gov (United States)

    Aldrich, Rosalie S

    2015-01-01

    Suicide among college students is an issue of serious concern. College peers may effectively intervene with at-risk persons due to their regular contact and close personal relationships with others in this population of significantly enhanced risk. The current study was designed to investigate whether the theory of planned behavior constructs predicted intention to intervene when a college peer is suicidal. Undergraduate students (n = 367) completed an on-line questionnaire; they answered questions about their attitudes, subjective norms, perceived behavioral control regarding suicide and suicide intervention, as well as their intention to intervene when someone is suicidal. The data were analyzed using multiple regression. The statistical significance of this cross-sectional study indicates that the theory of planned behavior constructs predicts self-reported intention to intervene with a suicidal individual. Theory of planned behavior is an effective framework for understanding peers' intention to intervene with a suicidal individual.

  6. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory.

    Science.gov (United States)

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-02-27

    This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.

  7. Prediction of incidence and stability of alcohol use disorders by latent internalizing psychopathology risk profiles in adolescence and young adulthood.

    Science.gov (United States)

    Behrendt, Silke; Bühringer, Gerhard; Höfler, Michael; Lieb, Roselind; Beesdo-Baum, Katja

    2017-10-01

    Comorbid internalizing mental disorders in alcohol use disorders (AUD) can be understood as putative independent risk factors for AUD or as expressions of underlying shared psychopathology vulnerabilities. However, it remains unclear whether: 1) specific latent internalizing psychopathology risk-profiles predict AUD-incidence and 2) specific latent internalizing comorbidity-profiles in AUD predict AUD-stability. To investigate baseline latent internalizing psychopathology risk profiles as predictors of subsequent AUD-incidence and -stability in adolescents and young adults. Data from the prospective-longitudinal EDSP study (baseline age 14-24 years) were used. The study-design included up to three follow-up assessments in up to ten years. DSM-IV mental disorders were assessed with the DIA-X/M-CIDI. To investigate risk-profiles and their associations with AUD-outcomes, latent class analysis with auxiliary outcome variables was applied. AUD-incidence: a 4-class model (N=1683) was identified (classes: normative-male [45.9%], normative-female [44.2%], internalizing [5.3%], nicotine dependence [4.5%]). Compared to the normative-female class, all other classes were associated with a higher risk of subsequent incident alcohol dependence (p<0.05). AUD-stability: a 3-class model (N=1940) was identified with only one class (11.6%) with high probabilities for baseline AUD. This class was further characterized by elevated substance use disorder (SUD) probabilities and predicted any subsequent AUD (OR 8.5, 95% CI 5.4-13.3). An internalizing vulnerability may constitute a pathway to AUD incidence in adolescence and young adulthood. In contrast, no indication for a role of internalizing comorbidity profiles in AUD-stability was found, which may indicate a limited importance of such profiles - in contrast to SUD-related profiles - in AUD stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy.

    Science.gov (United States)

    Doucet, Gaelle E; Rider, Robert; Taylor, Nathan; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael; Tracy, Joseph I

    2015-04-01

    This study determined the ability of resting-state functional connectivity (rsFC) graph-theory measures to predict neurocognitive status postsurgery in patients with temporal lobe epilepsy (TLE) who underwent anterior temporal lobectomy (ATL). A presurgical resting-state functional magnetic resonance imaging (fMRI) condition was collected in 16 left and 16 right TLE patients who underwent ATL. In addition, patients received neuropsychological testing pre- and postsurgery in verbal and nonverbal episodic memory, language, working memory, and attention domains. Regarding the functional data, we investigated three graph-theory properties (local efficiency, distance, and participation), measuring segregation, integration and centrality, respectively. These measures were only computed in regions of functional relevance to the ictal pathology, or the cognitive domain. Linear regression analyses were computed to predict the change in each neurocognitive domain. Our analyses revealed that cognitive outcome was successfully predicted with at least 68% of the variance explained in each model, for both TLE groups. The only model not significantly predictive involved nonverbal episodic memory outcome in right TLE. Measures involving the healthy hippocampus were the most common among the predictors, suggesting that enhanced integration of this structure with the rest of the brain may improve cognitive outcomes. Regardless of TLE group, left inferior frontal regions were the best predictors of language outcome. Working memory outcome was predicted mostly by right-sided regions, in both groups. Overall, the results indicated our integration measure was the most predictive of neurocognitive outcome. In contrast, our segregation measure was the least predictive. This study provides evidence that presurgery rsFC measures may help determine neurocognitive outcomes following ATL. The results have implications for refining our understanding of compensatory reorganization and predicting

  9. Understanding how biodiversity unfolds through time under neutral theory.

    Science.gov (United States)

    Missa, Olivier; Dytham, Calvin; Morlon, Hélène

    2016-04-05

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. © 2016 The Author(s).

  10. Using the Theory of Planned Behavior to Predict HPV Vaccination Intentions of College Men

    Science.gov (United States)

    Catalano, Hannah Priest; Knowlden, Adam P.; Birch, David A.; Leeper, James D.; Paschal, Angelia M.; Usdan, Stuart L.

    2017-01-01

    Objective: The purpose of this study was to test Theory of Planned Behavior (TPB) constructs in predicting human papillomavirus (HPV) vaccination behavioral intentions of vaccine-eligible college men. Participants: Participants were unvaccinated college men aged 18-26 years attending a large public university in the southeastern United States…

  11. Status of magnetically-insulated power transmission theory

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, Jr, C W [Sandia Labs., Albuquerque, NM (United States)

    1997-12-31

    The theory of magnetically-insulated power flow has improved dramatically over the last two decades. Theoretical improvements included a complete general kinetic theory that involved distributions of electrons based on quasi-conserved canonical variables and was used to study flow stability and to analyze simulations and pulsers with voltage adders. The status of theory at this time allowed us to understand many features of these flows, but did not allow detailed analysis for design and data interpretation. Recent theoretical advances have drastically changed this situation. Two recent static models based on layered flows have allowed us to understand and to improve power coupling in voltage adders, current adders, plasma opening switches and in systems where the vacuum impedance varies along the flow. A dynamic model based upon electrons flowing in one or more thin layers has permitted detailed self-consistent time-dependent calculations which include electron flow. This model accurately predicts experimental and simulation data. (author). 3 figs.

  12. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qihong [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Zunyi Normal College, School of Physics and Electronic Science, Zunyi (China); Wu, Puxun [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Peking University, Center for High Energy Physics, Beijing (China); Yu, Hongwei [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)

    2018-01-15

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity. (orig.)

  13. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    Science.gov (United States)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  14. Pupil dilation indicates the coding of past prediction errors: Evidence for attentional learning theory.

    Science.gov (United States)

    Koenig, Stephan; Uengoer, Metin; Lachnit, Harald

    2018-04-01

    The attentional learning theory of Pearce and Hall () predicts more attention to uncertain cues that have caused a high prediction error in the past. We examined how the cue-elicited pupil dilation during associative learning was linked to such error-driven attentional processes. In three experiments, participants were trained to acquire associations between different cues and their appetitive (Experiment 1), motor (Experiment 2), or aversive (Experiment 3) outcomes. All experiments were designed to examine differences in the processing of continuously reinforced cues (consistently followed by the outcome) versus partially reinforced, uncertain cues (randomly followed by the outcome). We measured the pupil dilation elicited by the cues in anticipation of the outcome and analyzed how this conditioned pupil response changed over the course of learning. In all experiments, changes in pupil size complied with the same basic pattern: During early learning, consistently reinforced cues elicited greater pupil dilation than uncertain, randomly reinforced cues, but this effect gradually reversed to yield a greater pupil dilation for uncertain cues toward the end of learning. The pattern of data accords with the changes in prediction error and error-driven attention formalized by the Pearce-Hall theory. © 2017 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  15. Theoretical study on microhydration of SeO42-: On the number of water molecules necessary to stabilize the dianion

    Science.gov (United States)

    Pathak, Arup Kumar

    2012-01-01

    Microhydration of SeO42-·nH2O (n = 1-5) clusters are reported at B3LYP/Aug-cc-pvtz level of theory. Lower size hydrated clusters are stabilized by only double-hydrogen-bonding arrangements and the most stable conformer for higher size cluster (n > 3) contains a cyclic water ring. It is observed that at least one water molecule is necessary to stabilize the dianion in the gas phase against spontaneous electron loss. The microscopic theory based expression provides a route to predict the instability of bare SeO42- and to obtain the VDE for a wide range of cluster sizes including the bulk from the knowledge of the same for a few stable hydrated clusters.

  16. A nanoscale temperature-dependent heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Cao, Y. Y.; Yang, G. W.

    2015-01-01

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale

  17. The kinetic stabilizer: Issues and opportunities

    International Nuclear Information System (INIS)

    Post, R.F.

    2002-01-01

    Five decades of fusion research have resulted in a solid base of understanding of the physics of plasma confinement by magnetic fields, including documentation of the role of the topology of the magnetic fields, i.e., 'open' or 'closed' field lines, in determining the confinement. Without known exception, closed systems, such as tokamaks, stellarators, or reversed-field pinches, have confinement times that are dominated by turbulence. As a result, to produce net fusion power, closed systems must be so large in size as to raise questions as to their practicality. By contrast, there are examples of open (mirror-based) systems where turbulence, if present at all, was at such low levels as to have a negligible influence on the confinement. Specifically, members of a subset of open systems, those with axisymmetric fields, have demonstrated cross-field transport rates that agree with classical predictions, opening up the possibility of fusion power systems that would be much smaller than their closed-field counterparts. Standing in the way of implementing axisymmetric mirror-based fusion systems is the MHD-unstable nature of their equilibria. The kinetic stabilizer represents a proposed way to overcome this difficulty, one based on theory that has been confirmed in the gas dynamic trap (GDT) axisymmetric mirror experiment in Novosibirsk, Russia. MHD-stabilization in the GDT arises from the presence of a sufficient density of effluent plasma on the outwardly expanding field lines outside the mirrors. However, in those mirror-based fusion systems, such as tandem-mirrors, that would operate at lower plasma collisionalities than the GDT, the effluent plasma density would be too low for this stabilization method to be effective. The kinetic stabilizer overcomes this difficulty by using ion beams injected from ion sources located far out on the expanding field lines beyond the outer mirror. These ion beams, aimed at small angles to the field lines, are compressed, stagnated

  18. Predicting Attitudes toward Press- and Speech Freedom across the U.S.A.: A Test of Climato-Economic, Parasite Stress, and Life History Theories.

    Science.gov (United States)

    Zhang, Jinguang; Reid, Scott A; Xu, Jing

    2015-01-01

    National surveys reveal notable individual differences in U.S. citizens' attitudes toward freedom of expression, including freedom of the press and speech. Recent theoretical developments and empirical findings suggest that ecological factors impact censorship attitudes in addition to individual difference variables (e.g., education, conservatism), but no research has compared the explanatory power of prominent ecological theories. This study tested climato-economic, parasite stress, and life history theories using four measures of attitudes toward censoring the press and offensive speech obtained from two national surveys in the U.S.A. Neither climate demands nor its interaction with state wealth--two key variables for climato-economic theory--predicted any of the four outcome measures. Interstate parasite stress significantly predicted two, with a marginally significant effect on the third, but the effects became non-significant when the analyses were stratified for race (as a control for extrinsic risks). Teenage birth rates (a proxy of human life history) significantly predicted attitudes toward press freedom during wartime, but the effect was the opposite of what life history theory predicted. While none of the three theories provided a fully successful explanation of individual differences in attitudes toward freedom of expression, parasite stress and life history theories do show potentials. Future research should continue examining the impact of these ecological factors on human psychology by further specifying the mechanisms and developing better measures for those theories.

  19. Periodic feedback stabilization for linear periodic evolution equations

    CERN Document Server

    Wang, Gengsheng

    2016-01-01

    This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.

  20. Predicting College Students' Intention to Graduate: A Test of the Theory of Planned Behavior

    Science.gov (United States)

    Sutter, Nate; Paulson, Sharon

    2016-01-01

    The current study examined whether it is possible to increase college students' intention to earn a four-year degree with the Theory of Planned Behavior (TPB). Three research questions were examined: (1) Can the TPB predict traditional undergraduates' graduation intention? (2) Does graduation intention differ by traditional students' year of…

  1. The organization of irrational beliefs in posttraumatic stress symptomology: testing the predictions of REBT theory using structural equation modelling.

    Science.gov (United States)

    Hyland, Philip; Shevlin, Mark; Adamson, Gary; Boduszek, Daniel

    2014-01-01

    This study directly tests a central prediction of rational emotive behaviour therapy (REBT) that has received little empirical attention regarding the core and intermediate beliefs in the development of posttraumatic stress symptoms. A theoretically consistent REBT model of posttraumatic stress disorder (PTSD) was examined using structural equation modelling techniques among a sample of 313 trauma-exposed military and law enforcement personnel. The REBT model of PTSD provided a good fit of the data, χ(2) = 599.173, df = 356, p depreciation beliefs. Results were consistent with the predictions of REBT theory and provides strong empirical support that the cognitive variables described by REBT theory are critical cognitive constructs in the prediction of PTSD symptomology. © 2013 Wiley Periodicals, Inc.

  2. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination.

    Science.gov (United States)

    Frankham, R

    2012-03-01

    Levels of genetic diversity in finite populations are crucial in conservation and evolutionary biology. Genetic diversity is required for populations to evolve and its loss is related to inbreeding in random mating populations, and thus to reduced population fitness and increased extinction risk. Neutral theory is widely used to predict levels of genetic diversity. I review levels of genetic diversity in finite populations in relation to predictions of neutral theory. Positive associations between genetic diversity and population size, as predicted by neutral theory, are observed for microsatellites, allozymes, quantitative genetic variation and usually for mitochondrial DNA (mtDNA). However, there are frequently significant deviations from neutral theory owing to indirect selection at linked loci caused by balancing selection, selective sweeps and background selection. Substantially lower genetic diversity than predicted under neutrality was found for chromosomes with low recombination rates and high linkage disequilibrium (compared with 'normally' recombining chromosomes within species and adjusted for different copy numbers and mutation rates), including W (median 100% lower) and Y (89% lower) chromosomes, dot fourth chromosomes in Drosophila (94% lower) and mtDNA (67% lower). Further, microsatellite genetic and allelic diversity were lost at 12 and 33% faster rates than expected in populations adapting to captivity, owing to widespread selective sweeps. Overall, neither neutral theory nor most versions of the genetic draft hypothesis are compatible with all empirical results.

  3. Mathematical foundations of transport theory

    International Nuclear Information System (INIS)

    Ershov, Yu.I.; Shikhov, S.B.

    1985-01-01

    Main items of application of the operator equations analyzing method in transport theory problems are considered. The mathematical theory of a reactor critical state is presented. Theorems of existence of positive solutions of non-linear non-stationary equations taking into account the temperature and xenon feedbacks are proved. Conditions for stability and asymptotic stability of steady-state regimes for different distributed models of a nuclear reactor are obtained on the basis of the modern operator perturbation theory, certain problems on control using an absorber are considered

  4. Falsification of matching theory and confirmation of an evolutionary theory of behavior dynamics in a critical experiment.

    Science.gov (United States)

    McDowell, J J; Calvin, Olivia L; Hackett, Ryan; Klapes, Bryan

    2017-07-01

    Two competing predictions of matching theory and an evolutionary theory of behavior dynamics, and one additional prediction of the evolutionary theory, were tested in a critical experiment in which human participants worked on concurrent schedules for money (Dallery et al., 2005). The three predictions concerned the descriptive adequacy of matching theory equations, and of equations describing emergent equilibria of the evolutionary theory. Tests of the predictions falsified matching theory and supported the evolutionary theory. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Rutting Prediction in Asphalt Pavement Based on Viscoelastic Theory

    Directory of Open Access Journals (Sweden)

    Nahi Mohammed Hadi

    2016-01-01

    Full Text Available Rutting is one of the most disturbing failures on the asphalt roads due to the interrupting it is caused to the drivers. Predicting of asphalt pavement rutting is essential tool leads to better asphalt mixture design. This work describes a method of predicting the behaviour of various asphalt pavement mixes and linking these to an accelerated performance testing. The objective of this study is to develop a finite element model based on viscoplastic theory for simulating the laboratory testing of asphalt mixes in Hamburg Wheel Rut Tester (HWRT for rutting. The creep parameters C1, C2 and C3 are developed from the triaxial repeated load creep test at 50°C and at a frequency of 1 Hz and the modulus of elasticity and Poisson’ s ratio determined at the same temperature. Viscoelastic model (creep model is adopted using a FE simulator (ANSYS in order to calculate the rutting for various mixes under a uniform loading pressure of 500 kPa. An eight-node with a three Degrees of Freedom (UX, UY, and UZ Element is used for the simulation. The creep model developed for HWRT tester was verified by comparing the predicted rut depths with the measured one and by comparing the rut depth with ABAQUS result from literature. Reasonable agreement can be obtained between the predicted rut depths and the measured one. Moreover, it is found that creep model parameter C1 and C3 have a strong relationship with rutting. It was clear that the parameter C1 strongly influences rutting than the parameter C3. Finally, it can be concluded that creep model based on finite element method can be used as an effective tool to analyse rutting of asphalt pavements.

  6. Buoyancy-driven instability in a vertical cylinder: Binary fluids with Soret effect. I - General theory and stationary stability results

    Science.gov (United States)

    Hardin, G. R.; Sani, R. L.; Henry, D.; Roux, B.

    1990-01-01

    The buoyancy-driven instability of a monocomponent or binary fluid completely contained in a vertical circular cylinder is investigated, including the influence of the Soret effect for the binary mixture. The Boussinesq approximation is used, and the resulting linear stability problem is solved using a Galerkin technique. The analysis considers fluid mixtures ranging from gases to liquid metals. The flow structure is found to depend strongly on both the cylinder aspect ratio and the magnitude of the Soret effect. The predicted stability limits are shown to agree closely with experimental observations.

  7. Predicting the Solubility of 1,1-Difluoroethane in Polystyrene Using the Perturbed Soft Chain Theory

    DEFF Research Database (Denmark)

    Pretel, Eduardo; Hong, Seong-Uk

    1998-01-01

    In this study, the solubility of 1,1-difluoroethane in polystyrene was correlated and predicted using the Perturbed Soft Chain Theory (PSCT) and compared with experimental data from the literature. For correlation, a binary interaction parameter was determined by using experimental solubility data...

  8. Recent Progress in Stability and Stabilization of Systems with Time-Delays

    Directory of Open Access Journals (Sweden)

    Magdi S. Mahmoud

    2017-01-01

    Full Text Available This paper overviews the research investigations pertaining to stability and stabilization of control systems with time-delays. The prime focus is the fundamental results and recent progress in theory and applications. The overview sheds light on the contemporary development on the linear matrix inequality (LMI techniques in deriving both delay-independent and delay-dependent stability results for time-delay systems. Particular emphases will be placed on issues concerned with the conservatism and the computational complexity of the results. Key technical bounding lemmas and slack variable introduction approaches will be presented. The results will be compared and connections of certain delay-dependent stability results are also discussed.

  9. Utility of the theories of reasoned action and planned behavior for predicting physician behavior: a prospective analysis.

    Science.gov (United States)

    Millstein, S G

    1996-09-01

    The utility of the theory of reasoned action (TRA) and the theory of planned behavior (TPB) for prospectively predicting physicians' delivery of preventive services was compared. Primary care physicians (N = 765) completed 2 mail surveys at periods 6 months apart. The addition of perceived behavioral control to the TRA model significantly increased the variance accounted for in behavioral intention and subsequent behavior (p behavioral control had direct effects on behavior and interacted with social norms and behavioral intentions. Applications of models such as the TRA or TPB have focused primarily on predicting the behavioral intentions and behaviors of patients. Results suggest that these models have relevance for studying the behavior of health care providers as well.

  10. Reward and Cognition: Integrating Reinforcement Sensitivity Theory and Social Cognitive Theory to Predict Drinking Behavior.

    Science.gov (United States)

    Hasking, Penelope; Boyes, Mark; Mullan, Barbara

    2015-01-01

    Both Reinforcement Sensitivity Theory and Social Cognitive Theory have been applied to understanding drinking behavior. We propose that theoretical relationships between these models support an integrated approach to understanding alcohol use and misuse. We aimed to test an integrated model in which the relationships between reward sensitivity and drinking behavior (alcohol consumption, alcohol-related problems, and symptoms of dependence) were mediated by alcohol expectancies and drinking refusal self-efficacy. Online questionnaires assessing the constructs of interest were completed by 443 Australian adults (M age = 26.40, sd = 1.83) in 2013 and 2014. Path analysis revealed both direct and indirect effects and implicated two pathways to drinking behavior with differential outcomes. Drinking refusal self-efficacy both in social situations and for emotional relief was related to alcohol consumption. Sensitivity to reward was associated with alcohol-related problems, but operated through expectations of increased confidence and personal belief in the ability to limit drinking in social situations. Conversely, sensitivity to punishment operated through negative expectancies and drinking refusal self-efficacy for emotional relief to predict symptoms of dependence. Two pathways relating reward sensitivity, alcohol expectancies, and drinking refusal self-efficacy may underlie social and dependent drinking, which has implications for development of intervention to limit harmful drinking.

  11. Adolescents' Implicit Theories Predict Desire for Vengeance after Peer Conflicts: Correlational and Experimental Evidence

    Science.gov (United States)

    Yeager, David S.; Trzesniewski, Kali H.; Tirri, Kirsi; Nokelainen, Petri; Dweck, Carol S.

    2011-01-01

    Why do some adolescents respond to interpersonal conflicts vengefully, whereas others seek more positive solutions? Three studies investigated the role of implicit theories of personality in predicting violent or vengeful responses to peer conflicts among adolescents in Grades 9 and 10. They showed that a greater belief that traits are fixed (an…

  12. After the fall of the Berlin Wall: perceptions and consequences of stability and change among middle-aged and older East and West Germans.

    Science.gov (United States)

    Westerhof, Gerben J; Keyes, Corey L M

    2006-09-01

    This study empirically tested the self-systems theory of subjective change in light of the rapid change after the fall of the Berlin Wall. The theory predicts that individuals have a tendency to perceive stability and that perceived stability exerts a strong positive effect on subjective well-being. We would expect perceptions of decline and, to a lesser extent, perceptions of improvement to be related to lower levels of subjective well-being. Data were from respondents aged 40-85 years who participated in the German Aging Survey. We used measures of well-being and temporal comparisons during the past 10 years (1986-1996). West Germans reported more stability than East Germans, in particular in the public domain and in older age groups. Compared with perceptions of stability, perceptions of decline were related to less life satisfaction and more negative affect, and perceptions of growth to more negative affect. Temporal comparisons were unrelated to positive affect. Our findings both confirm and reject the self-systems theory of subjective change as it relates to the fall of the Berlin Wall. Studying temporal comparisons is important in understanding the effects of historical events and their timing within an individual life course.

  13. Stability basin estimates fall risk from observed kinematics, demonstrated on the Sit-to-Stand task.

    Science.gov (United States)

    Shia, Victor; Moore, Talia Yuki; Holmes, Patrick; Bajcsy, Ruzena; Vasudevan, Ram

    2018-04-27

    The ability to quantitatively measure stability is essential to ensuring the safety of locomoting systems. While the response to perturbation directly reflects the stability of a motion, this experimental method puts human subjects at risk. Unfortunately, existing indirect methods for estimating stability from unperturbed motion have been shown to have limited predictive power. This paper leverages recent advances in dynamical systems theory to accurately estimate the stability of human motion without requiring perturbation. This approach relies on kinematic observations of a nominal Sit-to-Stand motion to construct an individual-specific dynamic model, input bounds, and feedback control that are then used to compute the set of perturbations from which the model can recover. This set, referred to as the stability basin, was computed for 14 individuals, and was able to successfully differentiate between less and more stable Sit-to-Stand strategies for each individual with greater accuracy than existing methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Predictions of Physicochemical Properties of Ionic Liquids with DFT

    Directory of Open Access Journals (Sweden)

    Karl Karu

    2016-07-01

    Full Text Available Nowadays, density functional theory (DFT-based high-throughput computational approach is becoming more efficient and, thus, attractive for finding advanced materials for electrochemical applications. In this work, we illustrate how theoretical models, computational methods, and informatics techniques can be put together to form a simple DFT-based throughput computational workflow for predicting physicochemical properties of room-temperature ionic liquids. The developed workflow has been used for screening a set of 48 ionic pairs and for analyzing the gathered data. The predicted relative electrochemical stabilities, ionic charges and dynamic properties of the investigated ionic liquids are discussed in the light of their potential practical applications.

  15. Predicting Attitudes toward Press- and Speech Freedom across the U.S.A.: A Test of Climato-Economic, Parasite Stress, and Life History Theories.

    Directory of Open Access Journals (Sweden)

    Jinguang Zhang

    Full Text Available National surveys reveal notable individual differences in U.S. citizens' attitudes toward freedom of expression, including freedom of the press and speech. Recent theoretical developments and empirical findings suggest that ecological factors impact censorship attitudes in addition to individual difference variables (e.g., education, conservatism, but no research has compared the explanatory power of prominent ecological theories. This study tested climato-economic, parasite stress, and life history theories using four measures of attitudes toward censoring the press and offensive speech obtained from two national surveys in the U.S.A. Neither climate demands nor its interaction with state wealth--two key variables for climato-economic theory--predicted any of the four outcome measures. Interstate parasite stress significantly predicted two, with a marginally significant effect on the third, but the effects became non-significant when the analyses were stratified for race (as a control for extrinsic risks. Teenage birth rates (a proxy of human life history significantly predicted attitudes toward press freedom during wartime, but the effect was the opposite of what life history theory predicted. While none of the three theories provided a fully successful explanation of individual differences in attitudes toward freedom of expression, parasite stress and life history theories do show potentials. Future research should continue examining the impact of these ecological factors on human psychology by further specifying the mechanisms and developing better measures for those theories.

  16. Extension of Ko Straight-Beam Displacement Theory to Deformed Shape Predictions of Slender Curved Structures

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2011-01-01

    The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail

  17. Touchscreen-paradigm for mice reveals cross-species evidence for an antagonistic relationship of cognitive flexibility and stability

    Directory of Open Access Journals (Sweden)

    S Helene Richter

    2014-05-01

    Full Text Available The abilities to either flexibly adjust behavior according to changing demands (cognitive flexibility or to maintain it in the face of potential distractors (cognitive stability are critical for adaptive behavior in many situations. Recently, a novel human paradigm has found individual differences of cognitive flexibility and stability to be related to common prefrontal networks. The aims of the present study were, first, to translate this paradigm from humans to mice and, second, to test conceptual predictions of a computational model of prefrontal working memory mechanisms, the Dual State Theory, which assumes an antagonistic relation between cognitive flexibility and stability.Mice were trained in a touchscreen-paradigm to discriminate visual cues. The task involved ‘ongoing’ and cued ‘switch’ trials. In addition distractor cues were interspersed to test the ability to resist distraction, and an ambiguous condition assessed the spontaneous switching between two possible responses without explicit cues. While response times did not differ substantially between conditions, error rates increased from the ‘ongoing’ baseline condition to the most complex condition, where subjects were required to switch between two responses in the presence of a distracting cue. Importantly, subjects switching more often spontaneously were found to be more distractible by task irrelevant cues, but also more flexible in situations, where switching was required. These results support a dichotomy of cognitive flexibility and stability as predicted by the Dual State Theory. Furthermore, they replicate critical aspects of the human paradigm, which indicates the translational potential of the testing procedure and supports the use of touchscreen procedures in preclinical animal research.

  18. Stability and change in political conservatism following the global financial crisis.

    Science.gov (United States)

    Milojev, Petar; Greaves, Lara; Osborne, Danny; Sibley, Chris G

    2015-01-01

    The current study analyzes data from a national probability panel sample of New Zealanders (N = 5,091) to examine stability and change in political orientation over four consecutive yearly assessments (2009-2012) following the 2007/2008 global financial crisis. Bayesian Latent Growth Modeling identified systematic variation in the growth trajectory of conservatism that was predicted by age and socio-economic status. Younger people (ages 25-45) did not change in their political orientation. Older people, however, became more conservative over time. Likewise, people with lower socio-economic status showed a marked increase in political conservatism. In addition, tests of rank-order stability showed that age had a cubic relationship with the stability of political orientation over our four annual assessments. Our findings provide strong support for System Justification Theory by showing that increases in conservatism in the wake of the recent global financial crisis occurred primarily among the poorest and most disadvantaged.

  19. Low beta rigid mode stability criterion for an arbitrary Larmor radius plasma

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.

    1987-05-01

    The low beta flute interchange dispersion relation for rigid displacement perturbation of axisymmetric plasma equilibria with arbitrary Larmor radius particles and field line curvature, large compared to the plasma radius, is derived. The equilibrium particle orbits are characterized by two constants of motion, energy and angular momentum, and a third adiabatic invariant derived from the rapid radial motion. The Vlasov equation is integrated, assuming that the mode frequency, axial ''bounce'' frequency, and particle drift frequency are small compared to the cyclotron frequency, and it is demonstrated that the plasma response to a rigid perturbation has a universal character independent of Larmor radius. As a result the interchange instability is the same as that predicted from conventional MHD theory. However, a new prediction, more optimistic than earlier work, is found for the low density threshold of systems like Migma, which are disc-shaped, that is, the axial extent Δz is less than the radial extent r 0 . For Δz/sub r 0 / much less than 1, the stability criterion is determined by the total particle number. Whereas the older theory (Δz/sub r 0 / much greater than 1) predicted instability at about the densities achieved in actual Migma experiments, the present theory (Δz/sub r 0 / much less than 1) indicates that the experimental results were for plasmas with particle number below the interchange threshold

  20. Implicit leadership theories in applied settings: factor structure, generalizability, and stability over time.

    Science.gov (United States)

    Epitropaki, Olga; Martin, Robin

    2004-04-01

    The present empirical investigation had a 3-fold purpose: (a) to cross-validate L. R. Offermann, J. K. Kennedy, and P. W. Wirtz's (1994) scale of Implicit Leadership Theories (ILTs) in several organizational settings and to further provide a shorter scale of ILTs in organizations; (b) to assess the generalizability of ILTs across different employee groups, and (c) to evaluate ILTs' change over time. Two independent samples were used for the scale validation (N1 = 500 and N2 = 439). A 6-factor structure (Sensitivity, Intelligence, Dedication, Dynamism, Tyranny, and Masculinity) was found to most accurately represent ELTs in organizational settings. Regarding the generalizability of ILTs, although the 6-factor structure was consistent across different employee groups, there was only partial support for total factorial invariance. Finally, evaluation of gamma, beta, and alpha change provided support for ILTs' stability over time.

  1. Integrating Self-Determination and Job Demands-Resources Theory in Predicting Mental Health Provider Burnout.

    Science.gov (United States)

    Dreison, Kimberly C; White, Dominique A; Bauer, Sarah M; Salyers, Michelle P; McGuire, Alan B

    2018-01-01

    Limited progress has been made in reducing burnout in mental health professionals. Accordingly, we identified factors that might protect against burnout and could be productive focal areas for future interventions. Guided by self-determination theory, we examined whether supervisor autonomy support, self-efficacy, and staff cohesion predict provider burnout. 358 staff from 13 agencies completed surveys. Higher levels of supervisor autonomy support, self-efficacy, and staff cohesion were predictive of lower burnout, even after accounting for job demands. Although administrators may be limited in their ability to reduce job demands, our findings suggest that increasing core job resources may be a viable alternative.

  2. The development of real-time stability supports visual working memory performance: Young children's feature binding can be improved through perceptual structure.

    Science.gov (United States)

    Simmering, Vanessa R; Wood, Chelsey M

    2017-08-01

    Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Strong practical stability and stabilization of uncertain discrete linear repetitive processes

    Czech Academy of Sciences Publication Activity Database

    Dabkowski, Pavel; Galkowski, K.; Bachelier, O.; Rogers, E.; Kummert, A.; Lam, J.

    2013-01-01

    Roč. 20, č. 2 (2013), s. 220-233 ISSN 1070-5325 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Institutional support: RVO:67985556 Keywords : strong practical stability * stabilization * uncertain discrete linear repetitive processes * linear matrix inequality Subject RIV: BC - Control Systems Theory Impact factor: 1.424, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/nla.812/abstract

  4. Stability of fluid motions I

    CERN Document Server

    Joseph, Daniel D

    1976-01-01

    The study of stability aims at understanding the abrupt changes which are observed in fluid motions as the external parameters are varied. It is a demanding study, far from full grown"whose most interesting conclusions are recent. I have written a detailed account of those parts of the recent theory which I regard as established. Acknowledgements I started writing this book in 1967 at the invitation of Clifford Truesdell. It was to be a short work on the energy theory of stability and if I had stuck to that I would have finished the writing many years ago. The theory of stability has developed so rapidly since 1967 that the book I might then have written would now have a much too limited scope. I am grateful to Truesdell, not so much for the invitation to spend endless hours of writing and erasing, but for the generous way he has supported my efforts and encouraged me to higher standards of good work. I have tried to follow Truesdell's advice to write this work in a clear and uncomplicated style. This is not ...

  5. Rational Homological Stability for Automorphisms of Manifolds

    DEFF Research Database (Denmark)

    Grey, Matthias

    In this thesis we prove rational homological stability for the classifying spaces of the homotopy automorphisms and block di↵eomorphisms of iterated connected sums of products of spheres of a certain connectivity.The results in particular apply to the manifolds       Npg,q  = (#g(Sp x Sq)) - int...... with coefficients in the homology of the universal covering, which is studied using rational homology theory. The result for the block di↵eomorphisms is deduced from the homological stability for the homotopy automorphisms upon using Surgery theory. Themain theorems of this thesis extend the homological stability...

  6. On Reynolds stress and neutral azimuthal modes in the stability ...

    Indian Academy of Sciences (India)

    Some results of Miles on the parallel flow stability theory are extended to the .... can lie on the stability boundary these modes were studied by him in detail. ... play important roles in the linear viscous critical layer theory (see, for example,.

  7. Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation.

    Science.gov (United States)

    Jacquet, Claire; Mouillot, David; Kulbicki, Michel; Gravel, Dominique

    2017-02-01

    The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species-area relationship. We compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation. © 2016 John Wiley & Sons Ltd/CNRS.

  8. Phase stability in yttria-stabilized zirconia from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Carbogno, Christian; Scheffler, Matthias [Materials Department, University of California, Santa Barbara, CA (United States); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Levi, Carlos G.; Van de Walle, Chris G. [Materials Department, University of California, Santa Barbara, CA (United States)

    2012-07-01

    Zirconia based ceramics are of pivotal importance for a variety of industrial technologies, e.g., for thermal barrier coatings in gas and airplane turbines. Naturally, the stability of such coatings at elevated temperatures plays a critical role in these applications. It is well known that an aliovalent doping of tetragonal ZrO{sub 2} with yttria, which induces oxygen vacancies due to charge conservation, increases its thermodynamic stability. However, the atomistic mechanisms that determine the phase stability of such yttria-stabilized Zirconia (YSZ) coatings are not yet fully understood. In this work, we use density functional theory calculations to assess the electronic structure of the different YSZ polymorphs at various levels of doping. With the help of population analysis schemes, we are able to unravel the intrinsic mechanisms that govern the interaction in YSZ and that can so explain the relative stabilities of the various polymorphs. We critically compare our results to experimental measurements and discuss the implications of our findings with respect to other oxides.

  9. Stability of Polymer Ultrathin Films (Top-Down Approach.

    Science.gov (United States)

    Bal, Jayanta Kumar; Beuvier, Thomas; Unni, Aparna Beena; Chavez Panduro, Elvia Anabela; Vignaud, Guillaume; Delorme, Nicolas; Chebil, Mohamed Souheib; Grohens, Yves; Gibaud, Alain

    2015-08-25

    In polymer physics, the dewetting of spin-coated polystyrene ultrathin films on silicon remains mysterious. By adopting a simple top-down method based on good solvent rinsing, we are able to prepare flat polystyrene films with a controlled thickness ranging from 1.3 to 7.0 nm. Their stability was scrutinized after a classical annealing procedure above the glass transition temperature. Films were found to be stable on oxide-free silicon irrespective of film thickness, while they were unstable (2.9 nm) on 2 nm oxide-covered silicon substrates. The Lifshitz-van der Waals intermolecular theory that predicts the domains of stability as a function of the film thickness and of the substrate nature is now fully reconciled with our experimental observations. We surmise that this reconciliation is due to the good solvent rinsing procedure that removes the residual stress and/or the density variation of the polystyrene films inhibiting thermodynamically the dewetting on oxide-free silicon.

  10. The Predictive Effects of Protection Motivation Theory on Intention and Behaviour of Physical Activity in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Morowatisharifabad

    2018-03-01

    CONCLUSION: Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour.

  11. Splay states in globally coupled Josephson arrays: Analytical prediction of Floquet multipliers

    International Nuclear Information System (INIS)

    Strogatz, S.H.; Mirollo, R.E.

    1993-01-01

    In recent numerical experiments on series arrays of overdamped Josephson junctions, Nichols and Wiesenfeld [Phys. Rev. A 45, 8430 (1992)] discovered that the periodic states known as splay states are neutrally stable in all but four directions in phase space. We present a theory that accounts for this enormous degree of neutral stability. The theory also predicts the four non-neutral Floquet multipliers to within 0.1% of their numerically computed values. The analytical approach used here may be appli- cable to other globally coupled systems of oscillators, such as multimode lasers, electronic oscillator circuits, and solid-state laser arrays

  12. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    Science.gov (United States)

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  13. Ductility prediction of substrate-supported metal layers based on rate-independent crystal plasticity theory

    Directory of Open Access Journals (Sweden)

    Akpama Holanyo K.

    2016-01-01

    Full Text Available In this paper, both the bifurcation theory and the initial imperfection approach are used to predict localized necking in substrate-supported metal layers. The self-consistent scale-transition scheme is used to derive the mechanical behavior of a representative volume element of the metal layer from the behavior of its microscopic constituents (the single crystals. The mechanical behavior of the elastomer substrate follows the neo-Hookean hyperelastic model. The adherence between the two layers is assumed to be perfect. Through numerical results, it is shown that the limit strains predicted by the initial imperfection approach tend towards the bifurcation predictions when the size of the geometric imperfection in the metal layer vanishes. Also, it is shown that the addition of an elastomer layer to a metal layer enhances ductility.

  14. Multiple Linear Regression Modeling To Predict the Stability of Polymer-Drug Solid Dispersions: Comparison of the Effects of Polymers and Manufacturing Methods on Solid Dispersion Stability.

    Science.gov (United States)

    Fridgeirsdottir, Gudrun A; Harris, Robert J; Dryden, Ian L; Fischer, Peter M; Roberts, Clive J

    2018-03-29

    Solid dispersions can be a successful way to enhance the bioavailability of poorly soluble drugs. Here 60 solid dispersion formulations were produced using ten chemically diverse, neutral, poorly soluble drugs, three commonly used polymers, and two manufacturing techniques, spray-drying and melt extrusion. Each formulation underwent a six-month stability study at accelerated conditions, 40 °C and 75% relative humidity (RH). Significant differences in times to crystallization (onset of crystallization) were observed between both the different polymers and the two processing methods. Stability from zero days to over one year was observed. The extensive experimental data set obtained from this stability study was used to build multiple linear regression models to correlate physicochemical properties of the active pharmaceutical ingredients (API) with the stability data. The purpose of these models is to indicate which combination of processing method and polymer carrier is most likely to give a stable solid dispersion. Six quantitative mathematical multiple linear regression-based models were produced based on selection of the most influential independent physical and chemical parameters from a set of 33 possible factors, one model for each combination of polymer and processing method, with good predictability of stability. Three general rules are proposed from these models for the formulation development of suitably stable solid dispersions. Namely, increased stability is correlated with increased glass transition temperature ( T g ) of solid dispersions, as well as decreased number of H-bond donors and increased molecular flexibility (such as rotatable bonds and ring count) of the drug molecule.

  15. Physical Activity Participation: Social Cognitive Theory versus the Theories of Reasoned Action and Planned Behavior.

    Science.gov (United States)

    Dzewaltowski, David A; Noble, John M; Shaw, Jeff M

    1990-12-01

    Social cognitive theory and the theories of reasoned action and planned behavior were examined in the prediction of 4 weeks of physical activity participation. The theories of reasoned action and planned behavior were supported. Attitude and perceived control predicted intention, and intention predicted physical activity participation. The social cognitive theory variables significantly predicted physical activity participation, with self-efficacy and self-evaluation of the behavior significantly contributing to the prediction. The greater the confidence in participating in physical activity and the greater the satisfaction with present physical activity, the more physical activity performed. Hierarchical regression analyses indicated that perceived control and intentions did not account for any unique variation in physical activity participation over self-efficacy. Therefore the social cognitive theory constructs were better predictors of physical activity than those from the theories of reasoned action and planned behavior.

  16. Occurence and prediction of sigma phase in fuel cladding alloys for breeder reactors

    International Nuclear Information System (INIS)

    Anantatmula, R.P.

    1982-01-01

    In sodium-cooled fast reactor systems, fuel cladding materials will be exposed for several thousand hours to liquid sodium. Satisfactory performance of the materials depends in part on the sodium compatibility and phase stability of the materials. This paper mainly deals with the phase stability aspect, with particular emphasis on sigma phase formation of the cladding materials upon extended exposures to liquid sodium. A new method of predicting sigma phase formation is proposed for austenitic stainless steels and predictions are compared with the experimental results on fuel cladding materials. Excellent agreement is obtained between theory and experiment. The new method is different from the empirical methods suggested for superalloys and does not suffer from the same drawbacks. The present method uses the Fe-Cr-Ni ternary phase diagram for predicting the sigma-forming tendencies and exhibits a wide range of applicability to austenitic stainless steels and heat-resistant Fe-Cr-Ni alloys

  17. Stereochemical criteria for prediction of the effects of proline mutations on protein stability.

    Directory of Open Access Journals (Sweden)

    Kanika Bajaj

    2007-12-01

    Full Text Available When incorporated into a polypeptide chain, proline (Pro differs from all other naturally occurring amino acid residues in two important respects. The phi dihedral angle of Pro is constrained to values close to -65 degrees and Pro lacks an amide hydrogen. Consequently, mutations which result in introduction of Pro can significantly affect protein stability. In the present work, we describe a procedure to accurately predict the effect of Pro introduction on protein thermodynamic stability. Seventy-seven of the 97 non-Pro amino acid residues in the model protein, CcdB, were individually mutated to Pro, and the in vivo activity of each mutant was characterized. A decision tree to classify the mutation as perturbing or nonperturbing was created by correlating stereochemical properties of mutants to activity data. The stereochemical properties including main chain dihedral angle phi and main chain amide H-bonds (hydrogen bonds were determined from 3D models of the mutant proteins built using MODELLER. We assessed the performance of the decision tree on a large dataset of 163 single-site Pro mutations of T4 lysozyme, 74 nsSNPs, and 52 other Pro substitutions from the literature. The overall accuracy of this algorithm was found to be 81% in the case of CcdB, 77% in the case of lysozyme, 76% in the case of nsSNPs, and 71% in the case of other Pro substitution data. The accuracy of Pro scanning mutagenesis for secondary structure assignment was also assessed and found to be at best 69%. Our prediction procedure will be useful in annotating uncharacterized nsSNPs of disease-associated proteins and for protein engineering and design.

  18. Stereochemical criteria for prediction of the effects of proline mutations on protein stability.

    Science.gov (United States)

    Bajaj, Kanika; Madhusudhan, M S; Adkar, Bharat V; Chakrabarti, Purbani; Ramakrishnan, C; Sali, Andrej; Varadarajan, Raghavan

    2007-12-01

    When incorporated into a polypeptide chain, proline (Pro) differs from all other naturally occurring amino acid residues in two important respects. The phi dihedral angle of Pro is constrained to values close to -65 degrees and Pro lacks an amide hydrogen. Consequently, mutations which result in introduction of Pro can significantly affect protein stability. In the present work, we describe a procedure to accurately predict the effect of Pro introduction on protein thermodynamic stability. Seventy-seven of the 97 non-Pro amino acid residues in the model protein, CcdB, were individually mutated to Pro, and the in vivo activity of each mutant was characterized. A decision tree to classify the mutation as perturbing or nonperturbing was created by correlating stereochemical properties of mutants to activity data. The stereochemical properties including main chain dihedral angle phi and main chain amide H-bonds (hydrogen bonds) were determined from 3D models of the mutant proteins built using MODELLER. We assessed the performance of the decision tree on a large dataset of 163 single-site Pro mutations of T4 lysozyme, 74 nsSNPs, and 52 other Pro substitutions from the literature. The overall accuracy of this algorithm was found to be 81% in the case of CcdB, 77% in the case of lysozyme, 76% in the case of nsSNPs, and 71% in the case of other Pro substitution data. The accuracy of Pro scanning mutagenesis for secondary structure assignment was also assessed and found to be at best 69%. Our prediction procedure will be useful in annotating uncharacterized nsSNPs of disease-associated proteins and for protein engineering and design.

  19. International Seminar on Stability Problems for Stochastic Models

    CERN Document Server

    Zolatarev, Vladimir

    1993-01-01

    The subject of this book is a new direction in the field of probability theory and mathematical statistics which can be called "stability theory": it deals with evaluating the effects of perturbing initial probabilistic models and embraces quite varied subtopics: limit theorems, queueing models, statistical inference, probability metrics, etc. The contributions are original research articles developing new ideas and methods of stability analysis.

  20. Impact Study of PMSG-Based Wind Power Penetration on Power System Transient Stability Using EEAC Theory

    Directory of Open Access Journals (Sweden)

    Zhongyi Liu

    2015-11-01

    Full Text Available Wind turbines with direct-driven permanent magnet synchronous generators (PMSGs are widely used in wind power generation. According to the dynamic characteristics of PMSGs, an impact analysis of PMSG-based wind power penetration on the transient stability of multi-machine power systems is carried out in this paper based on the theory of extended equal area criterion (EEAC. Considering the most severe PMSG integration situation, the changes in the system’s equivalent power-angle relationships after integrating PMSGs are studied in detail. The system’s equivalent mechanical input power and the fault period electrical output power curves are found to be mainly affected. The analysis demonstrates that the integration of PMSGs can cause either detrimental or beneficial effects on the system transient stability. It is determined by several factors, including the selection of the synchronous generators used to balance wind power, the reactive power control mode of PMSGs and the wind power penetration level. Two different simulation systems are also adopted to verify the analysis results.

  1. Control of locomotor stability in stabilizing and destabilizing environments.

    Science.gov (United States)

    Wu, Mengnan/Mary; Brown, Geoffrey; Gordon, Keith E

    2017-06-01

    To develop effective interventions targeting locomotor stability, it is crucial to understand how people control and modify gait in response to changes in stabilization requirements. Our purpose was to examine how individuals with and without incomplete spinal cord injury (iSCI) control lateral stability in haptic walking environments that increase or decrease stabilization demands. We hypothesized that people would adapt to walking in a predictable, stabilizing viscous force field and unpredictable destabilizing force field by increasing and decreasing feedforward control of lateral stability, respectively. Adaptations in feedforward control were measured using after-effects when fields were removed. Both groups significantly (pfeedforward adaptions to increase control of lateral stability. In contrast, in the destabilizing field, non-impaired subjects increased movement variability (p0.05). When the destabilizing field was removed, increases in movement variability persisted (pfeedforward decreases in resistance to perturbations. Published by Elsevier B.V.

  2. Application of social cognitive theory in predicting childhood obesity prevention behaviors in overweight and obese Iranian adolescents.

    Science.gov (United States)

    Bagherniya, Mohammad; Sharma, Manoj; Mostafavi, Firoozeh; Keshavarz, Seyed Ali

    2015-01-01

    The aim of this cross-sectional study was to use social cognitive theory to predict overweight and obesity behaviors in adolescent girls in Iran. Valid and reliable questionnaires about nutritional and physical activity regarding social cognitive theory constructs (self-efficacy, social support, outcome expectations, and outcome expectancies), dietary habits, and physical activity were filled by 172 overweight and obese girl adolescents. The mean age and body mass index were 13.4 ± 0.6 years and 28.2 ± 3.6 kg/m(2), respectively. Body mass index was significantly related to hours of television viewing (p = .003) and grams of junk food (p = .001). None of the social cognitive theory constructs were found to be significant predictors for servings of fruits and vegetables, grams of junk foods, minutes of physical activity, and hours of sedentary behaviors. In future, more culturally appropriate models need to be developed in Iran that can explain and predict prevention behaviors of obesity in Iranian adolescents. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Developing integrated performance assessment and forecasting the level of financial and economic enterprise stability

    Directory of Open Access Journals (Sweden)

    Khudyakova T.A.

    2017-01-01

    Full Text Available The article deals with the problem of assessing and forecasting the level of financial and economic enterprise stability through the integrated indicators development. Currently, many enterprises operate under variable external environment, which imposes a strict requirement to consider this uncertainty. For the evaluation, analysis and prediction of the sustainability of the enterprise in the conditions of crisis we believe it possible and necessary to use the apparatus of probability theory and mathematical statistics. This problem solution will improve quantitative assessing the financial and economic stability level, forecasting possible scenarios of the enterprise development and, therefore, based on the proactive management principles and adaptation processes will greatly increase their effective functioning, as well as reduce bankruptcy probability.

  4. High-pressure phases of S, Se, and P hydrides and their superconducting properties. Predictions from ab-initio theory

    Energy Technology Data Exchange (ETDEWEB)

    Gross, E.K.U. [Max Planck Institute of Microstructure Physics, Halle (Saale) (Germany)

    2016-07-01

    The quest for novel high-temperature superconductors in the family of hydrogen-rich compounds has recently been crowned with the experimental discovery of a record critical temperature of 190 K in a hydrogen-sulfur compound at 200 GPa. In the present contribution, we investigate the phase diagram of the H-S system, comparing the stability of H{sub n}S (n = 1,2,3,4) by means of the minima hopping method for structure prediction. Our extensive crystal structure search confirms the H{sub 3}S stoichiometry as the most stable configuration at high pressure. Superconducting properties are calculated using the fully ab-initio parameter-free approach of density functional theory for superconductors. We find a T{sub c} of 180 K at 200 GPa, in excellent agreement with experiment. We also show that Se-H has a phase diagram similar to its sulfur counterpart. We predict H{sub 3}Se to be superconducting at temperatures higher than 120 K at 100 GPa. We furthermore investigate the phase diagram of PH{sub n} (n = 1,2,3,4,5,6). The results of our crystal-structure search do not support the existence of thermodynamically stable PH{sub n} compounds, which exhibit a tendency for elemental decomposition at high pressure. Although the lowest energy phases of PH{sub n=1,2,3} display T{sub c} values comparable to experiment, it remains uncertain if the measured values of T{sub c} can be fully attributed to a phase-pure compound of PH{sub n}.

  5. Applying an extended theory of planned behaviour to predict breakfast consumption in adolescents.

    Science.gov (United States)

    Kennedy, S; Davies, E L; Ryan, L; Clegg, M E

    2017-05-01

    Breakfast skipping increases during adolescence and is associated with lower levels of physical activity and weight gain. Theory-based interventions promoting breakfast consumption in adolescents report mixed findings, potentially because of limited research identifying which determinants to target. This study aimed to: (i) utilise the Theory of Planned Behaviour (TPB) to identify the relative contribution of attitudes (affective, cognitive and behavioural) to predict intention to eat breakfast and breakfast consumption in adolescents and (ii) determine whether demographic factors moderate the relationship between TPB variables, intention and behaviour. Questionnaires were completed by 434 students (mean 14±0.9 years) measuring breakfast consumption (0-2, 3-6 or 7 days), physical activity levels and TPB measures. Data were analysed by breakfast frequency and demographics using hierarchical and multinomial regression analyses. Breakfast was consumed everyday by 57% of students, with boys more likely to eat a regular breakfast, report higher activity levels and report more positive attitudes towards breakfast than girls (Pbehaviours (Pbehaviour relationship for girls. Findings confirm that the TPB is a successful model for predicting breakfast intentions and behaviours in adolescents. The potential for a direct effect of attitudes on behaviours should be considered in the implementation and design of breakfast interventions.

  6. Stability and accuracy of metamemory in adulthood and aging: a longitudinal analysis.

    Science.gov (United States)

    McDonald-Miszczak, L; Hertzog, C; Hultsch, D F

    1995-12-01

    The stability and accuracy of memory perceptions in 2 longitudinal samples was examined. Sample 1 consisted of 231 adults (22-78 years) tested twice over 2 years. Sample 2 consisted of 234 adults (55-86 years) tested 3 times over 6 years. Measures of perceived and actual memory change were obtained. A primary focus was whether perceptions of memory change stem from application of an implicit theory about aging and memory or from accurate monitoring of actual changes in performance. Individual differences in metamemory were highly stable over time. Results suggested at least some accurate monitoring of memory in Sample 2, in which actual change was greatest. However the overall pattern of results is largely consistent with predictions derived from an implicit theory hypothesis.

  7. Oenin and Quercetin Copigmentation: Highlights From Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Yunkui Li

    2018-06-01

    Full Text Available Making use of anthocyanin copigmentation, it is possible to effectively improve color quality and stability of red wines and other foods. This can be done by selecting strong copigments, but a 1-fold experimental screening usually entails a high cost and a low efficiency. The aim of this work is to show how a theoretical model based on density functional theory can be useful for an accurate and rapid prediction of copigmentation ability of a copigment. The present study, concerning the copigmentation between oenin and quercetin under the framework of implicit solvent, indicates that, in these conditions, the intermolecular hydrogen bonds play an important role in the system stabilization. The dispersion interaction slightly affects the structure, energies and UV-Vis spectral properties of the copigmentation complex.

  8. Simple Mindreading Abilities Predict Complex Theory of Mind: Developmental Delay in Autism Spectrum Disorders

    Science.gov (United States)

    Pino, Maria Chiara; Mazza, Monica; Mariano, Melania; Peretti, Sara; Dimitriou, Dagmara; Masedu, Francesco; Valenti, Marco; Franco, Fabia

    2017-01-01

    Theory of mind (ToM) is impaired in individuals with autism spectrum disorders (ASD). The aims of this study were to: (i) examine the developmental trajectories of ToM abilities in two different mentalizing tasks in children with ASD compared to TD children; and (ii) to assess if a ToM simple test known as eyes-test could predict performance on…

  9. Fast and accurate covalent bond predictions using perturbation theory in chemical space

    Science.gov (United States)

    Chang, Kuang-Yu; von Lilienfeld, Anatole

    I will discuss the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among systems of different chemical composition. We have investigated single, double, and triple bonds occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order estimates of covalent bonding potentials can achieve chemical accuracy (within 1 kcal/mol) if the alchemical interpolation is vertical (fixed geometry) among chemical elements from third and fourth row of the periodic table. When applied to nonbonded systems of molecular dimers or solids such as III-V semiconductors, alanates, alkali halides, and transition metals, similar observations hold, enabling rapid predictions of van der Waals energies, defect energies, band-structures, crystal structures, and lattice constants.

  10. Stability at high performance in the MAST spherical tokamak

    International Nuclear Information System (INIS)

    Buttery, R.J.; Akers, R.; Arends, E. =

    2003-01-01

    The development of reliable H-modes on MAST, together with advances in heating power and a range of powerful diagnostics, has provided a platform to enable MAST to address some of he most important issues of tokamak stability. In particular the high β potential of the ST is highlighted with stable operation at β N ∼5-6 , β T ∼ 16% and β p as high as 1.9, confirmed by a range of profile diagnostics. Calculations indicate that β N levels are in the vicinity of no-wall stability limits. Studies have provided the first identification of the Neoclassical Tearing Mode (NTM) in the ST, using its behaviour to quantitatively validate predictions of NTM theory, previously only applied to conventional tokamaks. Experiments have demonstrated that sawteeth play a strong role in triggering NTMs - by avoiding large sawteeth much higher β N can, and has, been reached. Further studies have confirmed the NTM's significance, with large islands observed using the 300 point Thomson diagnostic, and locking of large n=1 modes frequently leading to disruptions. H-mode plasmas are also limited by ELMs, with confinement degraded as ELM frequency rises. However, unlike the conventional tokamak, the ELMs in high performing regimes on MAST (H IPB98Y2 ∼1) appear to be type III in nature. Modelling identifies instability to peeling modes, consistent with a type III interpretation, and shows considerable scope to raise pressure gradients (despite n=∞ ballooning theory predictions of instability) before ballooning type modes (perhaps associated with type I ELMs) occur. Finally sawteeth are shown not to remove the q=1 surface in the ST - other promising models are being explored. Thus research on MAST is not only demonstrating stable operation at high performance levels, and developing methods to control instabilities; it is also providing detailed tests of the stability physics and models applicable to conventional tokamaks, such as ITER. (author)

  11. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    Science.gov (United States)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  12. Predicting Attitudes toward Press- and Speech Freedom across the U.S.A.: A Test of Climato-Economic, Parasite Stress, and Life History Theories

    Science.gov (United States)

    Zhang, Jinguang; Reid, Scott A.; Xu, Jing

    2015-01-01

    National surveys reveal notable individual differences in U.S. citizens’ attitudes toward freedom of expression, including freedom of the press and speech. Recent theoretical developments and empirical findings suggest that ecological factors impact censorship attitudes in addition to individual difference variables (e.g., education, conservatism), but no research has compared the explanatory power of prominent ecological theories. This study tested climato-economic, parasite stress, and life history theories using four measures of attitudes toward censoring the press and offensive speech obtained from two national surveys in the U.S.A. Neither climate demands nor its interaction with state wealth—two key variables for climato-economic theory—predicted any of the four outcome measures. Interstate parasite stress significantly predicted two, with a marginally significant effect on the third, but the effects became non-significant when the analyses were stratified for race (as a control for extrinsic risks). Teenage birth rates (a proxy of human life history) significantly predicted attitudes toward press freedom during wartime, but the effect was the opposite of what life history theory predicted. While none of the three theories provided a fully successful explanation of individual differences in attitudes toward freedom of expression, parasite stress and life history theories do show potentials. Future research should continue examining the impact of these ecological factors on human psychology by further specifying the mechanisms and developing better measures for those theories. PMID:26030736

  13. Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Optimization of the surface charges is a promising strategy for increasing thermostability of proteins. Electrostatic contribution of ionizable groups to the protein stability can be estimated from the differences between the pKa values in the folded and unfolded states of a protein. Using this pKa-shift approach, we experimentally measured the electrostatic contribution of all aspartate and glutamate residues to the stability of a thermophilic ribosomal protein L30e from Thermococcus celer. The pKa values in the unfolded state were found to be similar to model compound pKas. The pKa values in both the folded and unfolded states obtained at 298 and 333 K were similar, suggesting that electrostatic contribution of ionizable groups to the protein stability were insensitive to temperature changes. The experimental pKa values for the L30e protein in the folded state were used as a benchmark to test the robustness of pKa prediction by various computational methods such as H++, MCCE, MEAD, pKD, PropKa, and UHBD. Although the predicted pKa values were affected by crystal contacts that may alter the side-chain conformation of surface charged residues, most computational methods performed well, with correlation coefficients between experimental and calculated pKa values ranging from 0.49 to 0.91 (p<0.01. The changes in protein stability derived from the experimental pKa-shift approach correlate well (r = 0.81 with those obtained from stability measurements of charge-to-alanine substituted variants of the L30e protein. Our results demonstrate that the knowledge of the pKa values in the folded state provides sufficient rationale for the redesign of protein surface charges leading to improved protein stability.

  14. Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics.

    Science.gov (United States)

    Zhang, Liping; Wang, Li; Zheng, Yanling; Wang, Kai; Zhang, Xueliang; Zheng, Yujian

    2017-03-04

    Echinococcosis, which can seriously harm human health and animal husbandry production, has become an endemic in the Xinjiang Uygur Autonomous Region of China. In order to explore an effective human Echinococcosis forecasting model in Xinjiang, three grey models, namely, the traditional grey GM(1,1) model, the Grey-Periodic Extensional Combinatorial Model (PECGM(1,1)), and the Modified Grey Model using Fourier Series (FGM(1,1)), in addition to a multiplicative seasonal ARIMA(1,0,1)(1,1,0)₄ model, are applied in this study for short-term predictions. The accuracy of the different grey models is also investigated. The simulation results show that the FGM(1,1) model has a higher performance ability, not only for model fitting, but also for forecasting. Furthermore, considering the stability and the modeling precision in the long run, a dynamic epidemic prediction model based on the transmission mechanism of Echinococcosis is also established for long-term predictions. Results demonstrate that the dynamic epidemic prediction model is capable of identifying the future tendency. The number of human Echinococcosis cases will increase steadily over the next 25 years, reaching a peak of about 1250 cases, before eventually witnessing a slow decline, until it finally ends.

  15. Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2017-03-01

    Full Text Available Echinococcosis, which can seriously harm human health and animal husbandry production, has become an endemic in the Xinjiang Uygur Autonomous Region of China. In order to explore an effective human Echinococcosis forecasting model in Xinjiang, three grey models, namely, the traditional grey GM(1,1 model, the Grey-Periodic Extensional Combinatorial Model (PECGM(1,1, and the Modified Grey Model using Fourier Series (FGM(1,1, in addition to a multiplicative seasonal ARIMA(1,0,1(1,1,04 model, are applied in this study for short-term predictions. The accuracy of the different grey models is also investigated. The simulation results show that the FGM(1,1 model has a higher performance ability, not only for model fitting, but also for forecasting. Furthermore, considering the stability and the modeling precision in the long run, a dynamic epidemic prediction model based on the transmission mechanism of Echinococcosis is also established for long-term predictions. Results demonstrate that the dynamic epidemic prediction model is capable of identifying the future tendency. The number of human Echinococcosis cases will increase steadily over the next 25 years, reaching a peak of about 1250 cases, before eventually witnessing a slow decline, until it finally ends.

  16. Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment.

    Science.gov (United States)

    Lane, S; Marsiglio, F; Zhi, Y; Meldrum, A

    2015-02-20

    Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.

  17. Economic theories of dictatorship

    OpenAIRE

    Alexandre Debs

    2010-01-01

    This article reviews recent advances in economic theories of dictatorships and their lessons for the political stability and economic performance of dictatorships. It reflects on the general usefulness of economic theories of dictatorship, with an application to foreign relations.

  18. Simultaneously estimation for surface heat fluxes of steel slab in a reheating furnace based on DMC predictive control

    International Nuclear Information System (INIS)

    Li, Yanhao; Wang, Guangjun; Chen, Hong

    2015-01-01

    The predictive control theory is utilized for the research of a simultaneous estimation of heat fluxes through the upper, side and lower surface of a steel slab in a walking beam type rolling steel reheating furnace. An inverse algorithm based on dynamic matrix control (DMC) is established. That is, each surface heat flux of a slab is simultaneously estimated through rolling optimization on the basis of temperature measurements in selected points of its interior by utilizing step response function as predictive model of a slab's temperature. The reliability of the DMC results is enhanced without prior assuming specific functions of heat fluxes over a period of future time. The inverse algorithm proposed a respective regularization to effectively improve the stability of the estimated results by considering obvious strength differences between the upper as well as lower and side surface heat fluxes of the slab. - Highlights: • The predictive control theory is adopted. • An inversion scheme based on DMC is established. • Upper, side and lower surface heat fluxes of slab are estimated based DMC. • A respective regularization is proposed to improve the stability of results

  19. Assessing the predictive value of means-end-chain theory: an application to meat product choice by Australian middle-aged women.

    Science.gov (United States)

    Le Page, Aurore; Cox, David N; Georgie Russell, C; Leppard, Phillip I

    2005-04-01

    Means-end-chain theory seeks to understand how consumers make links between products and self-relevant consequences and values. To date, means-end-chain theory has remained a descriptive process and has not been applied to predicting product choice. Within the context of cooking meat, the main objective of this research was to assess the predictive value of the means-end-chain theory. In a two part study, we first undertook a laddering study (n=58 middle-aged women) focusing on cooking three different meat products, using small group administration and paper-and-pencil responses to elicit mean-end-chains (MEC). In the second part, we considered all the MEC independently and incorporated them into a questionnaire, which was also comprised of psycho-social predictors from a range of behavioural models. Responses were elicited from a sample of middle-aged women (n=247). Although MEC explained little of the variance in self-reported behaviour, they were shown to be an important predictor of attitude. Contrary to expectations, the least abstract levels of the MEC appeared to be the most predictive. A critical examination of the data suggested a need to reconsider the means-end-chain theory since it appears to take the respondents beyond their own awareness of their behaviours.

  20. Predicting Alcohol-Impaired Driving among Spanish Youth with the Theory of Reasoned Action.

    Science.gov (United States)

    Espada, José P; Griffin, Kenneth W; Gonzálvez, María T; Orgilés, Mireia

    2015-06-19

    Alcohol consumption is a risk factor for motor vehicle accidents in young drivers. Crashes associated with alcohol consumption typically have greater severity. This study examines the prevalence of driving under the influence among Spanish youth and tests the theory of reasoned action as a model for predicting driving under the influence. Participants included 478 Spanish university students aged 17-26 years. Findings indicated that alcohol was the substance most associated with impaired driving, and was involved in more traffic crashes. Men engage in higher levels of alcohol and other drug use, and perceived less risk in drunk driving (p reasoned action as a predictive model of driving under the influence of alcohol among youth in Spain (p < .001) and can help in the design of prevention programs.

  1. A density functional theory and quantum theory of atoms-in-molecules analysis of the stability of Ni(II) complexes of some amino alcohol ligands.

    Science.gov (United States)

    Varadwaj, Pradeep R; Cukrowski, Ignacy; Perry, Christopher B; Marques, Helder M

    2011-06-23

    The structure of the complexes of the type [Ni(L)(H(2)O)(2)](2+), where L is an amino alcohol ligand, L = N,N'-bis(2-hydroxyethyl)-ethane-1,2-diamine (BHEEN), N,N'-bis(2-hydroxycyclohexyl)-ethane-1,2-diamine (Cy(2)EN), and N,N'-bis(2-hydroxycyclopentyl)-ethane-1,2-diamine, (Cyp(2)EN) were investigated at the X3LYP/6-31+G(d,p) level of theory both in the gas phase and in solvent (CPCM model) to gain insight into factors that control the experimental log K(1) values. We find that (i) analyses based on Bader's quantum theory of atoms in molecules (QTAIM) are useful in providing significant insight into the nature of metal-ligand bonding and in clarifying the nature of weak "nonbonded" interactions in these complexes and (ii) the conventional explanation of complex stability in these sorts of complexes (based on considerations of bond lengths, bite angles and H-clashes) could be inadequate and indeed might be misleading. The strength of metal-ligand bonds follows the order Ni-N > Ni-OH ≥ Ni-OH(2); the bonds are predominantly ionic with some covalent character decreasing in the order Ni-N > Ni-OH > Ni-OH(2), with Ni-OH(2) being close to purely ionic. We predict that the cis complexes are preferred over the trans complexes because of (i) stronger bonding to the alcoholic O-donor atoms and (ii) more favorable intramolecular interactions, which appear to be important in determining the conformation of a metal-ligand complex. We show that (i) the flexibility of the ligand, which controls the Ni-OH bond length, and (ii) the ability of the ligand to donate electron density to the metal are likely to be important factors in determining values of log K(1). We find that the electron density at the ring critical point of the cyclopentyl moieties in Cyp(2)EN is much higher than that in the cyclohexyl moieties of Cy(2)EN and interpret this to mean that Cyp(2)EN is a poorer donor of electron density to a Lewis acid than Cy(2)EN.

  2. Power Load Prediction Based on Fractal Theory

    OpenAIRE

    Jian-Kai, Liang; Cattani, Carlo; Wan-Qing, Song

    2015-01-01

    The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and...

  3. Utility of the Instability Severity Index Score in Predicting Failure After Arthroscopic Anterior Stabilization of the Shoulder.

    Science.gov (United States)

    Phadnis, Joideep; Arnold, Christine; Elmorsy, Ahmed; Flannery, Mark

    2015-08-01

    The redislocation rate after arthroscopic stabilization for anterior glenohumeral instability is up to 30%. The Instability Severity Index Score (ISIS) was developed to preoperatively rationalize the risk of failure, but it has not yet been validated by an independent group. To assess the utility of the ISIS in predicting failure of arthroscopic anterior shoulder stabilization and to identify other preoperative factors for failure. Case-control study; Level of evidence, 3. A case-control study was performed on 141 consecutive patients, comparing those who suffered failure of arthroscopic stabilization with those who had successful arthroscopic stabilization. The mean follow-up time was 47 months (range, 24-132 months). The ISIS was applied retrospectively, and an analysis was performed to establish independent risk factors for failure. A receiver operator coefficient curve was constructed to set a threshold ISIS for considering alternative surgery. Of 141 patients, 19 (13.5%) suffered recurrent instability. The mean ISIS of the failed stabilization group was higher than that of the successful stabilization group (5.1 vs 1.7; P surgery (P < .001), age at first dislocation (P = .01), competitive-level participation in sports (P < .001), and participation in contact or overhead sports (P = .03). The presence of glenoid bone loss carried the highest risk of failure (70%). There was a 70% risk of failure if the ISIS was ≥4, as opposed to a 4% risk of failure if the ISIS was <4. This is the first completely independent study to confirm that the ISIS is a useful preoperative tool. It is recommended that surgeons consider alternative forms of stabilization if the ISIS is ≥4. © 2015 The Author(s).

  4. The Density Functional Theory of Flies: Predicting distributions of interacting active organisms

    Science.gov (United States)

    Kinkhabwala, Yunus; Valderrama, Juan; Cohen, Itai; Arias, Tomas

    On October 2nd, 2016, 52 people were crushed in a stampede when a crowd panicked at a religious gathering in Ethiopia. The ability to predict the state of a crowd and whether it is susceptible to such transitions could help prevent such catastrophes. While current techniques such as agent based models can predict transitions in emergent behaviors of crowds, the assumptions used to describe the agents are often ad hoc and the simulations are computationally expensive making their application to real-time crowd prediction challenging. Here, we pursue an orthogonal approach and ask whether a reduced set of variables, such as the local densities, are sufficient to describe the state of a crowd. Inspired by the theoretical framework of Density Functional Theory, we have developed a system that uses only measurements of local densities to extract two independent crowd behavior functions: (1) preferences for locations and (2) interactions between individuals. With these two functions, we have accurately predicted how a model system of walking Drosophila melanogaster distributes itself in an arbitrary 2D environment. In addition, this density-based approach measures properties of the crowd from only observations of the crowd itself without any knowledge of the detailed interactions and thus it can make predictions about the resulting distributions of these flies in arbitrary environments, in real-time. This research was supported in part by ARO W911NF-16-1-0433.

  5. Are ecosystem services stabilized by differences among species? A test using crop pollination.

    Science.gov (United States)

    Winfree, Rachael; Kremen, Claire

    2009-01-22

    Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of 'stabilizing mechanisms.' However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly 'redundant' species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes.

  6. Gauge theory loop operators and Liouville theory

    International Nuclear Information System (INIS)

    Drukker, Nadav; Teschner, Joerg

    2009-10-01

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S 4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  7. Anterior Cruciate Ligament Tear: Reliability of MR Imaging to Predict Stability after Conservative Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hye Won; Ahn, Jin Hwan; Ahn, Joong Mo; Yoon, Young Cheol; Hong, Hyun Pyo; Yoo, So Young; Kim, Seon Woo [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2007-06-15

    The aim of this study is to evaluate the reliability of MR imaging to predict the stability of the torn anterior cruciate ligament (ACL) after complete recovery of the ligament's continuity. Twenty patients with 20 knee injuries (13 males and 7 females; age range, 20 54) were enrolled in the study. The inclusion criteria were a positive history of acute trauma, diagnosis of the ACL tear by both the physical examination and the MR imaging at the initial presentation, conservative treatment, complete recovery of the continuity of the ligament on the follow up (FU) MR images and availability of the KT-2000 measurements. Two radiologists, who worked in consensus, graded the MR findings with using a 3-point system for the signal intensity, sharpness, straightness and the thickness of the healed ligament. The insufficiency of ACL was categorized into three groups according to the KT-2000 measurements. The statistic correlations between the grades of the MR findings and the degrees of ACL insufficiency were analyzed using the Cochran-Mantel-Haenszel test (p < 0.05). The p-values for each category of the MR findings according to the different groups of the KT-2000 measurements were 0.9180 for the MR signal intensity, 1.0000 for sharpness, 0.5038 for straightness and 0.2950 for thickness of the ACL. The MR findings were not significantly different between the different KT-2000 groups. MR imaging itself is not a reliable examination to predict stability of the ACL rupture outcome, even when the MR images show an intact appearance of the ACL.

  8. Moduli stabilization in non-geometric backgrounds

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Vafa, Cumrun; Walcher, Johannes

    2007-01-01

    Type II orientifolds based on Landau-Ginzburg models are used to describe moduli stabilization for flux compactifications of type II theories from the world-sheet CFT point of view. We show that for certain types of type IIB orientifolds which have no Kaehler moduli and are therefore intrinsically non-geometric, all moduli can be explicitly stabilized in terms of fluxes. The resulting four-dimensional theories can describe Minkowski as well as anti-de Sitter vacua. This construction provides the first string vacuum with all moduli frozen and leading to a 4D Minkowski background

  9. Biorhythm theory does not predict admission for acute myocardial infarction.

    Science.gov (United States)

    Joncas, Sébastien X; Carrier, Nathalie; Nguyen, Michel; Farand, Paul

    2011-02-01

    Temporal variations in the incidence of acute myocardial infarction (AMI) have been described. However, AMI occurrence and biorhythm theory, which proposes the existence of three endogenous independent infradian cycles and AMI occurrence, has not been well studied. The purpose of this study is to determine whether specific days in the biorhythm cycles are related to AMI incidence. Patients (40-85 years old) admitted for AMI at the Sherbrooke University Hospital Center, 1993-2008 were subjects of this study. Potential vulnerable days and performance days of the biorhythm cycles were calculated using birth and admission dates from the warehouse database. Observed AMI frequencies were compared to those expected using χ² tests. There were 11,395 admissions for AMI. No relation was noted between single, double, or triple critical or noncritical days and AMI (χ² = 3.78; p > 0.05). Observed and expected AMI frequencies for maximal and minimal performance days were similar (χ² = 15.06; p > 0.05). We found no evidence for a possible relationship between the date of AMI and critical maximum and minimum performance days of an individual's physical, emotional, or intellectual biorhythm cycles. We conclude that biorhythm theory does not predict admission for AMI.

  10. Viscosity Prediction for Petroleum Fluids Using Free Volume Theory and PC-SAFT

    Science.gov (United States)

    Khoshnamvand, Younes; Assareh, Mehdi

    2018-04-01

    In this study, free volume theory ( FVT) in combination with perturbed-chain statistical associating fluid theory is implemented for viscosity prediction of petroleum reservoir fluids containing ill-defined components such as cuts and plus fractions. FVT has three adjustable parameters for each component to calculate viscosity. These three parameters for petroleum cuts (especially plus fractions) are not available. In this work, these parameters are determined for different petroleum fractions. A model as a function of molecular weight and specific gravity is developed using 22 real reservoir fluid samples with API grades in the range of 22 to 45. Afterward, the proposed model accuracy in comparison with the accuracy of De la Porte et al. with reference to experimental data is presented. The presented model is used for six real samples in an evaluation step, and the results are compared with available experimental data and the method of De la Porte et al. Finally, the method of Lohrenz et al. and the method of Pedersen et al. as two common industrial methods for viscosity calculation are compared with the proposed approach. The absolute average deviation was 9.7 % for free volume theory method, 15.4 % for Lohrenz et al., and 22.16 for Pedersen et al.

  11. Strong moduli stabilization and phenomenology

    CERN Document Server

    Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A

    2013-01-01

    We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).

  12. Stability and production of superheavy nuclei

    International Nuclear Information System (INIS)

    Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.

    1997-01-01

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation

  13. Mode-coupling theory predictions for a limited valency attractive square well model

    International Nuclear Information System (INIS)

    Zaccarelli, E; Saika-Voivod, I; Moreno, A J; Nave, E La; Buldyrev, S V; Sciortino, F; Tartaglia, P

    2006-01-01

    Recently we have studied, using numerical simulations, a limited valency model, i.e. an attractive square well model with a constraint on the maximum number of bonded neighbours. Studying a large region of temperatures T and packing fractions φ, we have estimated the location of the liquid-gas phase separation spinodal and the loci of dynamic arrest, where the system is trapped in a disordered non-ergodic state. Two distinct arrest lines for the system are present in the system: a (repulsive) glass line at high packing fraction, and a gel line at low φ and T. The former is essentially vertical φ controlled), while the latter is rather horizontal (T controlled) in the φ-T) plane. We here complement the molecular dynamics results with mode coupling theory calculations, using the numerical structure factors as input. We find that the theory predicts a repulsive glass line-in satisfactory agreement with the simulation results-and an attractive glass line, which appears to be unrelated to the gel line

  14. Using dynamo theory to predict the sunspot number during solar cycle 21

    Science.gov (United States)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the polar field strength of the sun near a solar minimum is closely related to the solar activity of the following cycle. Four methods of estimating the polar magnetic field strength of the sun near solar minimum are employed to provide an estimate of the yearly mean sunspot number of cycle 21 at solar maximum of 140 + or - 20. This estimate may be considered a first-order attempt to predict the cycle activity using one parameter of physical importance based upon dynamo theory.

  15. Theory of Reasoned Action predicts milk consumption in women.

    Science.gov (United States)

    Brewer, J L; Blake, A J; Rankin, S A; Douglass, L W

    1999-01-01

    To determine the factors influencing the consumption or avoidance of milk in women. One hundred women completed food frequency questionnaires and a milk attitudes questionnaire framed within the Theory of Reasoned Action and performed sensory evaluations of different milk samples. Differences among milk types were assessed using 2-way analysis of variance and least-significant-difference mean comparison procedures. Correlation and multiple regression analyses, and standardized partial regression coefficients, were used to determine the contribution of each component of the model in predicting behavior. Mean age of the 100 subjects was 39 years (range = 20-70 years). Milk consumption among subjects was low; 23 subjects indicated that they seldom or never drank milk. Data from the dairy frequency questionnaire showed that the primary milk for 42%, 36%, 27%, and 18% of the milk drinkers was skim, 2%, 1%, and whole, respectively (subjects could indicate more than 1 type of milk consumed). The Theory of Reasoned Action indicated that health and familiarity belief items were most associated with attitudes toward milk consumption. Skim milk had significantly lower scores for taste and texture belief items than 1%, 2%, and whole milk (P reasons other than beliefs about taste and texture or actual sensory preference. This study identifies important factors contributing to milk consumption such as beliefs, attitudes, and sensory evaluation, which can be used to develop a specific framework in which to examine other components of milk consumption behavior.

  16. Scattering and Gaussian Fluctuation Theory for Semiflexible Polymers

    Directory of Open Access Journals (Sweden)

    Xiangyu Bu

    2016-09-01

    Full Text Available The worm-like chain is one of the best theoretical models of the semiflexible polymer. The structure factor, which can be obtained by scattering experiment, characterizes the density correlation in different length scales. In the present review, the numerical method to compute the static structure factor of the worm-like chain model and its general properties are demonstrated. Especially, the chain length and persistence length involved multi-scale nature of the worm-like chain model are well discussed. Using the numerical structure factor, Gaussian fluctuation theory of the worm-like chain model can be developed, which is a powerful tool to analyze the structure stability and to predict the spinodal line of the system. The microphase separation of the worm-like diblock copolymer is considered as an example to demonstrate the usage of Gaussian fluctuation theory.

  17. Aespoe HRL - Geoscientific evaluation 1997/3. Results from pre-investigation and detailed site characterization. Comparison of predictions and observations. Geology and mechanical stability

    International Nuclear Information System (INIS)

    Stanfors, R.; Olsson, Paer; Stille, H.

    1997-05-01

    Prior to excavation of the laboratory in 1990 predictions were made for the excavation phase. The predictions concern five key issues: Geology, groundwater flow, groundwater chemistry, transport of solutes, and mechanical stability. Comparisons between predictions and observations were made during excavation in order to verify the reliability of the pre-investigations. This report presents a comparison between the geological and mechanical stability predictions and observations and an evaluation of data and investigation methods used for the 700-2874 m section of the tunnel. The report is specially highlighting the following conclusions: It is possible to localize major fracture zones during the pre-investigation at shallow (<200 m) depths; A number of minor fracture zones striking NNW-NNE were predicted to be hydraulically important and penetrate the southern area. A number of narrow fracture zone indications - 0.1-1 m wide - striking WNW-NE were mapped in the tunnel and pre-grouted sections confirm hydraulic conductors; It has not been possible to confirm the gently dipping zone EW-5, which was predicted as 'possible', with data from the tunnel; Predictions of the amount of different rock types were generally reliable as regards the major rocks, but the prediction of the distribution in space were poor as regards the minor rock types; The prediction of rock stress orientation corresponds well to the outcome; The prediction of rock quality for the tunnel, while applying the RMR-system, shows good correspondence to the observations made in the tunnel

  18. Prediction and discovery of extremely strong hydrodynamic instabilities due to a velocity jump: theory and experiments

    International Nuclear Information System (INIS)

    Fridman, A M

    2008-01-01

    The theory and the experimental discovery of extremely strong hydrodynamic instabilities are described, viz. the Kelvin-Helmholtz, centrifugal, and superreflection instabilities. The discovery of the last two instabilities was predicted and the Kelvin-Helmholtz instability in real systems was revised by us. (reviews of topical problems)

  19. The Prediction of College Student Academic Performance and Retention: Application of Expectancy and Goal Setting Theories

    Science.gov (United States)

    Friedman, Barry A.; Mandel, Rhonda G.

    2010-01-01

    Student retention and performance in higher education are important issues for educators, students, and the nation facing critical professional labor shortages. Expectancy and goal setting theories were used to predict academic performance and college student retention. Students' academic expectancy motivation at the start of the college…

  20. Addition and Subtraction Theory of TCM Using Xiao-Chaihu-Decoction and Naturopathy in Predicting Survival Outcomes of Primary Liver Cancer Patients: A Prospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Min Dai

    2016-01-01

    Full Text Available To investigate the therapeutic effect of combined Xiao-Chaihu-Decoction and naturopathic medicine therapy on survival outcomes of patients’ PLC. In XCHD group (n=76, patients were treated with Xiao-Chaihu-Decoction in accordance with the addition and subtraction theory of TCM; in NM group (n=89, patients were managed by naturopathic medicine; in combined group (n=70, the same volume of Xiao-Chaihu-Decoction combined with naturopathic medicine procedures was applied. There were no evident statistical differences of age, gender, KPS score, body weight, smoking status, AFP levels, HbsAg status, TBIL levels, tumor diameters, and numbers among different groups, showing comparability among groups. No significant difference was found regarding the total remission rate and stability rate of tumors in patients treated by Xiao-Chaihu-Decoction and naturopathic medicine, except the combined therapy. KPS scores were significantly improved after treatment among groups. After treatment, 52.8% cases maintained a stable or slight increase in weight, of which 42.1%, 48.3%, and 70.0% cases maintained weight stably in the XCHD group, NM group, and combined treatment group, respectively. Xiao-Chaihu-Decoction associated with naturopathy may predict improved prognostic outcomes in PLC patients, along with improved remission and stability rates, increased KPS scores, and stable weight maintenance.

  1. Why hydrological predictions should be evaluated using information theory

    Directory of Open Access Journals (Sweden)

    S. V. Weijs

    2010-12-01

    Full Text Available Probabilistic predictions are becoming increasingly popular in hydrology. Equally important are methods to test such predictions, given the topical debate on uncertainty analysis in hydrology. Also in the special case of hydrological forecasting, there is still discussion about which scores to use for their evaluation. In this paper, we propose to use information theory as the central framework to evaluate predictions. From this perspective, we hope to shed some light on what verification scores measure and should measure. We start from the ''divergence score'', a relative entropy measure that was recently found to be an appropriate measure for forecast quality. An interpretation of a decomposition of this measure provides insight in additive relations between climatological uncertainty, correct information, wrong information and remaining uncertainty. When the score is applied to deterministic forecasts, it follows that these increase uncertainty to infinity. In practice, however, deterministic forecasts tend to be judged far more mildly and are widely used. We resolve this paradoxical result by proposing that deterministic forecasts either are implicitly probabilistic or are implicitly evaluated with an underlying decision problem or utility in mind. We further propose that calibration of models representing a hydrological system should be the based on information-theoretical scores, because this allows extracting all information from the observations and avoids learning from information that is not there. Calibration based on maximizing utility for society trains an implicit decision model rather than the forecasting system itself. This inevitably results in a loss or distortion of information in the data and more risk of overfitting, possibly leading to less valuable and informative forecasts. We also show this in an example. The final conclusion is that models should preferably be explicitly probabilistic and calibrated to maximize the

  2. Prediction of the stability of BWR reactors during the start-up process

    International Nuclear Information System (INIS)

    Ruiz E, J.A.; Castillo D, R.; Blazquez M, J.B.

    2004-01-01

    The Boiling Water Reactors (BWR) are susceptible of uncertainties of power when they are operated to low flows of coolant (W) and high powers (P), being presented this situation mainly in the start-up process. The start-up process could be made but sure if the operator knew the value of the stability index Decay reason (Dr) before going up power and therefore to guarantee the stability. The power and the flow are constantly measures, the index Dr could also be considered its value in real time. The index Dr depends on the power, flow and many other values, such as, the distribution of the flow axial and radial neutronic, the temperature of the feeding water, the fraction of holes and other thermohydraulic and nuclear parameters. A simple relationship of Dr is derived leaving of the pattern reduced of March-Leuba, where three independent variables are had that are the power, the flow and a parameter that it contains the rest of the phenomenology, that is to say all the other quantities that affect the value of Dr. This relationship developed work presently and verified its prediction with data of start-up of commercial reactors could be used for the design of a practical procedure practice of start-up, what would support to the operator to prevent this type of events of uncertainty. (Author)

  3. M-Theory and Maximally Supersymmetric Gauge Theories

    CERN Document Server

    Lambert, Neil

    2012-01-01

    In this informal review for non-specalists we discuss the construction of maximally supersymmetric gauge theories that arise on the worldvolumes branes in String Theory and M-Theory. Particular focus is made on the relatively recent construction of M2-brane worldvolume theories. In a formal sense, the existence of these quantum field theories can be viewed as predictions of M-Theory. Their construction is therefore a reinforcement of the ideas underlying String Theory and M-Theory. We also briefly discuss the six-dimensional conformal field theory that is expected to arise on M5-branes. The construction of this theory is not only an important open problem for M-Theory but also a significant challenge to our current understanding of quantum field theory more generally.

  4. Boundary layer stability on a yawed spinning body of revolution and its effect on the magnus force and moment

    Science.gov (United States)

    Jacobson, I. D.; Morton, J. B.

    1972-01-01

    The parameters are established which are important to the stability of a boundary layer flow over a yawed spinning cylinder in a uniform stream. It is shown that transition occurs asymmetrically in general and this asymmetry can be important for the prediction of aerodynamic forces and moments (e.g., the Magnus effect). Instability of the steady-state boundary layer flow is determined using small disturbance theory. Although the approach is strictly valid only for the calculation of the conditions for stability in the small, experimental data indicate that in many problems, it provides a good estimate for the transition to turbulence.

  5. Erosion and stability of a mine soil

    International Nuclear Information System (INIS)

    Wu, T.H.; Stadler, A.T.; Low, C.

    1996-01-01

    Mine soils developed from mine spoils commonly have a wide range of particle size. The slopes of old spoil piles usually are marked by gullies due to years of uncontrolled erosion. These characteristics raise questions about applicability of available theories and models for estimating runoff and erosion. An investigation was made to determine whether available erosion models can work for mine soils and can account for gully erosion. The investigation at an abandoned surface mine consisted of measurement of soil and sediment properties, measurement of runoff and erosion, observations of armor by rock fragments on gully floor, and calculations with available theories of sediment transport and slope stability. The results at this site suggest that (1) predictions with the ANSWERS model have about the same accuracy as those made for agricultural lands; (2) armor provided by rock fragments are temporary as they are periodically removed by debris flows; (3) detachment by rainfall impact is the primary cause of erosion on short steep slopes; and (4) a simplified method can be used for estimating erosion on such slopes

  6. Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique

    International Nuclear Information System (INIS)

    Hou Zhijian; Lian Zhiwei; Yao Ye; Yuan Xinjian

    2006-01-01

    A novel method integrating rough sets (RS) theory and an artificial neural network (ANN) based on data-fusion technique is presented to forecast an air-conditioning load. Data-fusion technique is the process of combining multiple sensors data or related information to estimate or predict entity states. In this paper, RS theory is applied to find relevant factors to the load, which are used as inputs of an artificial neural-network to predict the cooling load. To improve the accuracy and enhance the robustness of load forecasting results, a general load-prediction model, by synthesizing multi-RSAN (MRAN), is presented so as to make full use of redundant information. The optimum principle is employed to deduce the weights of each RSAN model. Actual prediction results from a real air-conditioning system show that, the MRAN forecasting model is better than the individual RSAN and moving average (AMIMA) ones, whose relative error is within 4%. In addition, individual RSAN forecasting results are better than that of ARIMA

  7. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    Science.gov (United States)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  8. A Bayesian Framework for False Belief Reasoning in Children: A Rational Integration of Theory-Theory and Simulation Theory.

    Science.gov (United States)

    Asakura, Nobuhiko; Inui, Toshio

    2016-01-01

    Two apparently contrasting theories have been proposed to account for the development of children's theory of mind (ToM): theory-theory and simulation theory. We present a Bayesian framework that rationally integrates both theories for false belief reasoning. This framework exploits two internal models for predicting the belief states of others: one of self and one of others. These internal models are responsible for simulation-based and theory-based reasoning, respectively. The framework further takes into account empirical studies of a developmental ToM scale (e.g., Wellman and Liu, 2004): developmental progressions of various mental state understandings leading up to false belief understanding. By representing the internal models and their interactions as a causal Bayesian network, we formalize the model of children's false belief reasoning as probabilistic computations on the Bayesian network. This model probabilistically weighs and combines the two internal models and predicts children's false belief ability as a multiplicative effect of their early-developed abilities to understand the mental concepts of diverse beliefs and knowledge access. Specifically, the model predicts that children's proportion of correct responses on a false belief task can be closely approximated as the product of their proportions correct on the diverse belief and knowledge access tasks. To validate this prediction, we illustrate that our model provides good fits to a variety of ToM scale data for preschool children. We discuss the implications and extensions of our model for a deeper understanding of developmental progressions of children's ToM abilities.

  9. Structure stability index allocation theory and measurement of laser prototype facility

    International Nuclear Information System (INIS)

    Zhang Junwei; China Academy of Engineering Physics, Mianyang; Zhou Hai; Feng Bin; Lin Donghui; Jing Feng; Zhou Yi; Wang Shilong

    2008-01-01

    Structure stability is an important design index of ICF driver. Based on laser prototype facility(TIL) design characteristic of multi-pass amplifier and frame structure, the optical matrix is used to analyze the single optical element influence on the beam drift and get the mathematic model. Considering all the optical elements influence on the beam drift, the mathematic model of the optical element stability index allocation is built, the parameter relation of the mathematic model is defined according to the structure characteristic of TIL, the stability index of each optical element is got as the support structure design index. Charge-coupled device(CCD) detect technology is used to measure the general beam stability of TIL. The root mean square beam drift in x and y direction are 2.78 μm, the difference between peak and valley values are 14.4 μm and 15.60 μm, respectively. The result indicates that the stability drift of the prototype facility can satisfy the design requirement, the way of the stability allocation is reasonable. (authors)

  10. Friction Theory Prediction of Crude Oil Viscosity at Reservoir Conditions Based on Dead Oil Properties

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2003-01-01

    The general one-parameter friction theory (f-theory) models have been further extended to the prediction of the viscosity of real "live" reservoir fluids based on viscosity measurements of the "dead" oil and the compositional information of the live fluid. This work representation of the viscosity...... of real fluids is obtained by a simple one-parameter tuning of a linear equation derived from a general one-parameter f-theory model. Further, this is achieved using simple cubic equations of state (EOS), such as the Peng-Robinson (PR) EOS or the Soave-Redlich-Kwong (SRK) EOS, which are commonly used...... within the oil industry. In sake of completeness, this work also presents a simple characterization procedure which is based on compositional information of an oil sample. This procedure provides a method for characterizing an oil into a number of compound groups along with the critical constants...

  11. Island of stability for consistent deformations of Einstein's gravity.

    Science.gov (United States)

    Berkhahn, Felix; Dietrich, Dennis D; Hofmann, Stefan; Kühnel, Florian; Moyassari, Parvin

    2012-03-30

    We construct deformations of general relativity that are consistent and phenomenologically viable, since they respect, in particular, cosmological backgrounds. These deformations have unique symmetries in accordance with their Minkowski cousins (Fierz-Pauli theory for massive gravitons) and incorporate a background curvature induced self-stabilizing mechanism. Self-stabilization is essential in order to guarantee hyperbolic evolution in and unitarity of the covariantized theory, as well as the deformation's uniqueness. We show that the deformation's parameter space contains islands of absolute stability that are persistent through the entire cosmic evolution.

  12. An investigation of the Sutcliffe development theory

    Science.gov (United States)

    Dushan, J. D.

    1973-01-01

    Two case studies were used to test the Sutcliffe-Peterssen development theory for both cyclonic and anticyclonic development over the eastern United States. Each term was examined to determine when and where it made a significant contribution to the development process. Results indicate the advection of vorticity at the level of non-divergence exerts the dominant influence for initial cyclone development, and that the thermal terms (advection of thickness, stability, and diabatic influence) become important after development has begun. Anticyclonic development, however, depends primarily on the stability term throughout the life cycle of the anticyclone. Simple procedures for forecasting the development and movement of cyclones and anticyclones are listed. These rules indicate that routine National Meteorological Center analyses may be used to locate areas where the positive advection of 500-mb vorticity, indicative of cyclonic development, coincides with regions of severe weather activity. The development of anticyclones also is predicted easily. Regions of increasing stability, indicating anticyclonic development, may be located by use of National Meteorological Center radar summaries and analyses for 1000-500-mb thickness. A test of these techniques found them to be satisfactory for the case examined.

  13. Gauge theory loop operators and Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-10-15

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  14. The stability of DOTA-chelated radiopharmaceuticals within 225Ac decay pathway studied with density functional theory.

    Science.gov (United States)

    Karolak, Aleksandra; Khabibullin, Artem; Budzevich, Mikalai; Martinez, M.; Doliganski, Michael; McLaughlin, Mark; Woods, Lilia; Morse, David

    Ligand structures encapsulating metal ions play a central role as contrast agents in Magnetic Resonance Imaging (MRI) or as agents delivering toxic cargo directly to tumor cells in targeted cancer therapy. The structural stability and interaction with solutions of such complexes are the key elements in understanding the foundation of delivery process. We present a comparative study for the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelated to radioactive isotopes of 225Ac, 221Fr, 217At, 213Bi and a control 68Gd. Using density functional theory methods we investigate the structural stability of complexes for cancer therapy including binding energies, charge transfer, electron densities. The van der Waals interactions are included in the simulations to take into account weak dispersion forces present in such structures. Our results reveal that Ac-DOTA, Bi-DOTA and Gd-DOTA are the most stable complexes in the group. We also show that the water environment is a key ingredient for the structural coordination of the DOTA structures. Support from the US Department of Energy under Grant No. DE-FG02-06ER46297 is acknowledged.

  15. Behavioral change theories can inform the prediction of young adults' adoption of a plant-based diet.

    Science.gov (United States)

    Wyker, Brett A; Davison, Kirsten K

    2010-01-01

    Drawing on the Theory of Planned Behavior (TPB) and the Transtheoretical Model (TTM), this study (1) examines links between stages of change for following a plant-based diet (PBD) and consuming more fruits and vegetables (FV); (2) tests an integrated theoretical model predicting intention to follow a PBD; and (3) identifies associated salient beliefs. Cross-sectional. Large public university in the northeastern United States. 204 college students. TPB and TTM constructs were assessed using validated scales. Outcome, normative, and control beliefs were measured using open-ended questions. The overlap between stages of change for FV consumption and adopting a PBD was assessed using Spearman rank correlation analysis and cross-tab comparisons. The proposed model predicting adoption of a PBD was tested using structural equation modeling (SEM). Salient beliefs were coded using automatic response coding software. No association was found between stages of change for FV consumption and following a PBD. Results from SEM analyses provided support for the proposed model predicting intention to follow a PBD. Gender differences in salient beliefs for following a PBD were found. Results demonstrate the potential for effective theory-driven and stage-tailored public health interventions to promote PBDs. Copyright 2010 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  16. Predictions For New, Exotic Actinide Species

    International Nuclear Information System (INIS)

    Pyykko, P.

    2002-01-01

    The approach. New, simple chemical species can be predicted by studying isoelectronic series using ab initio quantum chemistry. We currently use in most cases relativistic pseudopotentials and handle the electron correlation using density functional theory (DFT) or wave-function-based methods, from MP2 to CCSD(T). Typical codes are Gaussian 98, Turbomole or MolCas. For full four-component Dirac-Fock calculations, the DREAMS code of K. G. Dyall has been utilized. For mapping out the possible new species, complete maps of all possibilities are made, whenever possible, and the new species typically occur along the coast-line of the 'island of stability' of already known species

  17. A multidimensional stability model for predicting shallow landslide size and shape across landscapes.

    Science.gov (United States)

    Milledge, David G; Bellugi, Dino; McKean, Jim A; Densmore, Alexander L; Dietrich, William E

    2014-11-01

    The size of a shallow landslide is a fundamental control on both its hazard and geomorphic importance. Existing models are either unable to predict landslide size or are computationally intensive such that they cannot practically be applied across landscapes. We derive a model appropriate for natural slopes that is capable of predicting shallow landslide size but simple enough to be applied over entire watersheds. It accounts for lateral resistance by representing the forces acting on each margin of potential landslides using earth pressure theory and by representing root reinforcement as an exponential function of soil depth. We test our model's ability to predict failure of an observed landslide where the relevant parameters are well constrained by field data. The model predicts failure for the observed scar geometry and finds that larger or smaller conformal shapes are more stable. Numerical experiments demonstrate that friction on the boundaries of a potential landslide increases considerably the magnitude of lateral reinforcement, relative to that due to root cohesion alone. We find that there is a critical depth in both cohesive and cohesionless soils, resulting in a minimum size for failure, which is consistent with observed size-frequency distributions. Furthermore, the differential resistance on the boundaries of a potential landslide is responsible for a critical landslide shape which is longer than it is wide, consistent with observed aspect ratios. Finally, our results show that minimum size increases as approximately the square of failure surface depth, consistent with observed landslide depth-area data.

  18. VARIATIONS OF THE ENERGY METHOD FOR STUDYING CONSTRUCTION STABILITY

    Directory of Open Access Journals (Sweden)

    A. M. Dibirgadzhiev

    2017-01-01

    Full Text Available Objectives. The aim of the work is to find the most rational form of expression of the potential energy of a nonlinear system with the subsequent use of algebraic means and geometric images of catastrophe theory for studying the behaviour of a construction under load. Various forms of stability criteria for the equilibrium states of constructions are investigated. Some aspects of the using various forms of expression of the system’s total energy are considered, oriented to the subsequent use of the catastrophe theory methods for solving the nonlinear problems of construction calculation associated with discontinuous phenomena.Methods. According to the form of the potential energy expression, the mathematical description of the problem being solved is linked to a specific catastrophe of a universal character from the list of catastrophes. After this, the behaviour of the system can be predicted on the basis of the fundamental propositions formulated in catastrophe theory without integrating the corresponding system of nonlinear differential equations of high order in partial derivatives, to which the solution of such problems is reduced.Results. The result is presented in the form of uniform geometric images containing all the necessary qualitative and quantitative information about the deformation of whole construction classes under load for a wide range of changes in the values of external (control and internal (behavioural parameters.Conclusion. Methods based on catastrophe theory are an effective mathematical tool for solving non-linear boundary-value problems with parameters associated with discontinuous phenomena, which are poorly analysable by conventional methods. However, they have not yet received due attention from researchers, especially in the field of stability calculations, which remains a complex, relevant and attractive problem within structural mechanics. To solve a concrete nonlinear boundary value problem for calculating

  19. Interface stability during rapid directional solidification

    International Nuclear Information System (INIS)

    Hoglund, D.E.; Aziz, M.J.

    1992-01-01

    This paper reports that at the solidification velocities observed during pulsed laser annealing, the planar interface between solid and liquid is stabilized by capillarity and nonequilibrium effects such as solute trapping. The authors used Rutherford backscattering and electron microscopy to determine the nonequilibrium partition coefficient and critical concentration for breakdown of the planar interface as a function of interface velocity for Sn-implanted silicon. This allows the authors to test the applicability of the Mulliins-Sekerka stability theory to interfaces not in local equilibrium and to test the Coriell-Sekerka and other theories for oscillatory instabilities

  20. Asymptotic stability estimates near an equilibrium point

    Science.gov (United States)

    Dumas, H. Scott; Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2017-07-01

    We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna [3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium point where our estimate applies satisfy a type of formal stability called Lie stability.