WorldWideScience

Sample records for sta gene genetic

  1. Genetic fusion protein 3×STa-ovalbumin is an effective coating antigen in ELISA to titrate anti-STa antibodies.

    Science.gov (United States)

    Duan, Qiangde; Zhang, Weiping

    2017-07-01

    Heat-stable toxin type I (STa)-ovalbumin chemical conjugates are currently used as the only coating antigen in ELISA to titrate anti-STa antibodies for ETEC vaccine candidates. STa-ovalbumin chemical conjugation requires STa toxin purification, a process that can be carried out by only a couple of laboratories and often with a low yield. Alternative ELISA coating antigens are needed for anti-STa antibody titration for ETEC vaccine development. In the present study, we genetically fused STa toxin gene (three copies) to a modified chicken ovalbumin gene for genetic fusion 3×STa-ovalbumin, and examined application of this fusion protein as an alternative coating antigen of anti-STa antibody titration ELISA. Data showed fusion protein 3×STa-ovalbumin was effectively expressed and extracted, and anti-STa antibody titration ELISA using this recombinant protein (25 ng per well) or STa-ovalbumin chemical conjugates (10 ng/well) showed the same levels of sensitivity and specificity. Furthermore, mice immunized with this fusion protein developed anti-STa antibodies; induced antibodies showed in vitro neutralization activity against STa toxin. These results indicate that recombinant fusion protein 3×STa-ovalbumin is an effective ELISA coating antigen for anti-STa antibody titration, enabling a reliable reagent supply to make standardization of STa antibody titration assay feasible and to accelerate ETEC vaccine development. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  2. Sequencing of 16S rRNA gene for id ntification of Sta h lococcus ...

    African Journals Online (AJOL)

    Asdmin

    2014-01-15

    Jan 15, 2014 ... The phylogeny of Trichoderma and the phylogenetic relationships of its species was investigated by maximum parsimony analysis and distance analysis of DNA sequences from multiple genetic loci 18S. rDNA sequence analysis suggests that the genus Trichoderma evolved at the same time as ...

  3. Níveis de seleção: uma avaliação a partir da teoria do \\"gene egoísta\\"

    OpenAIRE

    Maria Rita Spina Bueno

    2008-01-01

    Esta dissertação de mestrado aborda a controvérsia em torno de qual é o nível biológico no qual a seleção natural atua, com ênfase na proposta de Richard Dawkins do gene egoísta e nas questões que surgem em torno da mesma. Examina-se um panorama de questões de filosofia da biologia abordadas a partir do problema dos níveis nos quais a seleção natural atua. Esperamos que ao avaliar o impacto da teoria do gene egoísta na problemática evolutiva, consigamos compreender sua importância. O objetivo...

  4. GENETIC DI VERSITY OF A MPI CILLIN-RE SI STANT Vibri o ISOLATED FROM VAR IOUS STA GES OF TIGER SHRIMP LARVA E DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    WIDANARNI a

    2000-01-01

    Full Text Available This research was carri ed out to st udy genetic di versity of ampici llin-resi sta nt Vi brio from variou s stages o f t iger shrimp larvae (Penaeus Monodon de velopment from,Ta mbak Inti Raky at hatchery, near Labuan, West Jav a, Indonesia. A total of 25 am picillin- resistant Vi brio is ol at es were isolated using thiosul pha te citrat e bi le -sal t sucr os e agar ( TCBS -Aga r a nd s eawa ter complet e agar (SWC-Agar. Physiological and bioc he mical cha racteri zation showed that the i solates could be grouped into only two species, i.e. V. har veyi from the egg s tage; and V. metschnikovii from larvae and post-larval stage (i.e nauplius, zoe a, mysis, PLi, P L5, PL,0, and P L,5. Thes e is olates were also present i n t heir r espective rearing wate r of each s tage and som e natural feed. Schi zoty ping analysis e mployin g rest riction endonuclease Noll (5 '-GC4GGCCGC indicate d that the is ol at es could be grouped i nto at l east 13 differ en t ge no ty pe s. Therefore, schizoty ping was more di sc ri mi native than phy siologica l charac te riz ati on . This stud y showed that particu lar grou ps of Vi brio colonize d all s tages of shrimp la rvae and de monstrated cl os ed ph yl og en et ic r elationsh ip. These gro ups of Vi brio mi gh t be the do mi na nt microbiota whic h could suppress the de velopment of othe r Vi brio in cl ud ing th e pathogen ic Vi brio.

  5. Basics on Genes and Genetic Disorders

    Science.gov (United States)

    ... for Educators Search English Español The Basics on Genes and Genetic Disorders KidsHealth / For Teens / The Basics ... such as treating health problems. What Is a Gene? To understand how genes work, let's review some ...

  6. Genetic fusions of a CFA/I/II/IV MEFA (multiepitope fusion antigen and a toxoid fusion of heat-stable toxin (STa and heat-labile toxin (LT of enterotoxigenic Escherichia coli (ETEC retain broad anti-CFA and antitoxin antigenicity.

    Directory of Open Access Journals (Sweden)

    Xiaosai Ruan

    Full Text Available Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs and two distinct enterotoxins [heat-labile toxin (LT and heat-stable toxin type Ib (STa or hSTa]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2:243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3, CFA/IV (CS4, CS5, CS6] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5:1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in

  7. Genetic fusions of a CFA/I/II/IV MEFA (multiepitope fusion antigen) and a toxoid fusion of heat-stable toxin (STa) and heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC) retain broad anti-CFA and antitoxin antigenicity.

    Science.gov (United States)

    Ruan, Xiaosai; Sack, David A; Zhang, Weiping

    2015-01-01

    Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent

  8. Gene set analysis for interpreting genetic studies

    DEFF Research Database (Denmark)

    Pers, Tune H

    2016-01-01

    Interpretation of genome-wide association study (GWAS) results is lacking behind the discovery of new genetic associations. Consequently, there is an urgent need for data-driven methods for interpreting genetic association studies. Gene set analysis (GSA) can identify aetiologic pathways...

  9. A genetic ensemble approach for gene-gene interaction identification

    Directory of Open Access Journals (Sweden)

    Ho Joshua WK

    2010-10-01

    Full Text Available Abstract Background It has now become clear that gene-gene interactions and gene-environment interactions are ubiquitous and fundamental mechanisms for the development of complex diseases. Though a considerable effort has been put into developing statistical models and algorithmic strategies for identifying such interactions, the accurate identification of those genetic interactions has been proven to be very challenging. Methods In this paper, we propose a new approach for identifying such gene-gene and gene-environment interactions underlying complex diseases. This is a hybrid algorithm and it combines genetic algorithm (GA and an ensemble of classifiers (called genetic ensemble. Using this approach, the original problem of SNP interaction identification is converted into a data mining problem of combinatorial feature selection. By collecting various single nucleotide polymorphisms (SNP subsets as well as environmental factors generated in multiple GA runs, patterns of gene-gene and gene-environment interactions can be extracted using a simple combinatorial ranking method. Also considered in this study is the idea of combining identification results obtained from multiple algorithms. A novel formula based on pairwise double fault is designed to quantify the degree of complementarity. Conclusions Our simulation study demonstrates that the proposed genetic ensemble algorithm has comparable identification power to Multifactor Dimensionality Reduction (MDR and is slightly better than Polymorphism Interaction Analysis (PIA, which are the two most popular methods for gene-gene interaction identification. More importantly, the identification results generated by using our genetic ensemble algorithm are highly complementary to those obtained by PIA and MDR. Experimental results from our simulation studies and real world data application also confirm the effectiveness of the proposed genetic ensemble algorithm, as well as the potential benefits of

  10. Genes and Genetic Testing in Hereditary Ataxias

    Directory of Open Access Journals (Sweden)

    Erin Sandford

    2014-07-01

    Full Text Available Ataxia is a neurological cerebellar disorder characterized by loss of coordination during muscle movements affecting walking, vision, and speech. Genetic ataxias are very heterogeneous, with causative variants reported in over 50 genes, which can be inherited in classical dominant, recessive, X-linked, or mitochondrial fashion. A common mechanism of dominant ataxias is repeat expansions, where increasing lengths of repeated DNA sequences result in non-functional proteins that accumulate in the body causing disease. Greater understanding of all ataxia genes has helped identify several different pathways, such as DNA repair, ubiquitination, and ion transport, which can be used to help further identify new genes and potential treatments. Testing for the most common mutations in these genes is now clinically routine to help with prognosis and treatment decisions, but next generation sequencing will revolutionize how genetic testing will be done. Despite the large number of known ataxia causing genes, however, many individuals with ataxia are unable to obtain a genetic diagnosis, suggesting that more genes need to be discovered. Utilization of next generation sequencing technologies, expression studies, and increased knowledge of ataxia pathways will aid in the identification of new ataxia genes.

  11. Making Sense of Your Genes: A Guide to Genetic Counseling

    Science.gov (United States)

    Making Sense of Your Genes a Guide to Genetic Counseling 1 A Guide to Genetic Counseling Contents What is genetic counseling? 1 Why might I ... methods contained in the material therein. Understanding Your Genes What is genetic counseling? The goal of genetic ...

  12. Injury and mechanism of recombinant E. coli expressing STa on piglets colon.

    Science.gov (United States)

    Lv, Yang; Li, Xueni; Zhang, Lin; Shi, Yutao; DU, Linxiao; Ding, Binying; Hou, Yongqing; Gong, Joshua; Wu, Tao

    2018-02-09

    Enterotoxigenic Escherichia coli (ETEC) is primary pathogenic bacteria of piglet diarrhea, over two thirds of piglets diarrhea caused by ETEC are resulted from STa-producing ETEC strains. This experiment was conducted to construct the recombinant E. coli expressing STa and study the injury and mechanism of recombinant E. coli expressing STa on 7 days old piglets colon. Twenty-four 7 days old piglets were allotted to four treatments: control group, STa group (2 × 10 9 CFU E. coli LMG194-STa), LMG194 group (2 × 10 9 CFU E. coli LMG194) and K88 group (2 × 10 9 CFU E. coli K88). The result showed that E. coli infection significantly increased diarrhea rates; changed DAO activity in plasma and colon; damaged colonic mucosal morphology including crypt depth, number of globet cells, density of lymphocytes and lamina propria cell density; substantially reduced antioxidant capacity by altering activities of GSH-Px, SOD, and TNOS and productions of MDA and H 2 O 2 ; obviously decreased AQP3, AQP4 and KCNJ13 protein expression levels; substantially altered the gene expression levels of inflammatory cytokines. Conclusively, STa group had the biggest effect on these indices in four treatment groups. These results suggested that the recombinant strain expressed STa can induce piglets diarrhea and colonic morphological and funtional damage by altering expression of proteins connect to transportation function and genes associated with intestinal injury and inflammatory cytokines.

  13. On the relation between gene flow theory and genetic gain

    Directory of Open Access Journals (Sweden)

    Woolliams John A

    2000-01-01

    Full Text Available Abstract In conventional gene flow theory the rate of genetic gain is calculated as the summed products of genetic selection differential and asymptotic proportion of genes deriving from sex-age groups. Recent studies have shown that asymptotic proportions of genes predicted from conventional gene flow theory may deviate considerably from true proportions. However, the rate of genetic gain predicted from conventional gene flow theory was accurate. The current note shows that the connection between asymptotic proportions of genes and rate of genetic gain that is embodied in conventional gene flow theory is invalid, even though genetic gain may be predicted correctly from it.

  14. Drug-Gene Interactions between Genetic Polymorphisms and Antihypertensive Therapy

    NARCIS (Netherlands)

    Schelleman, Hedi; Stricker, Bruno H Ch; De Boer, Anthonius; Kroon, Abraham A; Verschuren, Monique W M; Van Duijn, Cornelia M; Psaty, Bruce M; Klungel, Olaf H

    2004-01-01

    Genetic factors may influence the response to antihypertensive medication. A number of studies have investigated genetic polymorphisms as determinants of cardiovascular response to antihypertensive drug therapy. In most candidate gene studies, no such drug-gene interactions were found. However,

  15. Genetic rhetoric: Science, authority, and genes

    Science.gov (United States)

    Shea, Elizabeth Parthenia

    This dissertation is an analysis of how the cultural authority of genetics works through language. An analysis of the rhetorical construction of knowledge and authority in cultural contexts, the study is intended to contribute to a larger discussion aimed at keeping the intersections of science and culture within the realm of rhetoric, that is within the realm of communication and dialogue. Of special concern is the influence of genetic rhetoric on the cultural momentum of biological determinism to explain away social organization, class inequalities, racial differences, gender differences, and stigmatized behaviors by rooting them in the construct of the biological individual. This study separates questions of legitimacy from questions of authority and focuses on the way that authority of genetics works through language. With authority defined as the function of resisting challenges to legitimacy and/or power, the study consists of three parts. First, a historical analysis of the terms science, genetics, and gene, shows how these words came to refer not only to areas and objects of study but also to sources of epistemological legitimacy outside culture and language. The relationships between these words and their referents are examined in socio-historical context to illustrate how the function of signaling authority was inscribed in the literal definition of these terms. Second, introductory chapters of contemporary Genetics textbooks are examined. In these texts the foundations of legitimacy associated with genetics and science are maintained as the authors articulate idealized views of science and genetics in relation to society. Finally, articles in the popular press reporting on and discussing recent research correlating genetics and homosexuality are examined. The popular press reports of "gay gene" research serve as textual examples of figurative representations of genetics concepts shaping discourse about social issues. I argue that the cultural authority

  16. viStaMPS: The Application For Viewing And Manipulating StaMPS Results

    Science.gov (United States)

    Sousa, Joaquim; Sousa, Antonio; Magalhaes, Luis; Ruiz, Antonio

    2013-12-01

    viStaMPS (visual StaMPS) is a new visual application developed to enhance the visualization, manipulation and exportation of StaMPS results. The programmed application is developed in Matlab® through the Graphical User Interface (GUI) and no coding is required for running it, which avoids any programming language knowledge for standard uses. This tool integrates fully new features together with various scripts from StaMPS, allowing the generation of the desired plots/maps in a user-friendly interface. It is done by simply clicking some buttons or changing some parameters located in visual panels, instead of input commands in a prompt. Moreover, since it is written in Matlab, it gives the users the opportunity to access the data very easily and make their own modifications. Being a research tool, viStaMPS is continually under development and will count on the dynamism of its users to improve and/or add new features.

  17. Genetically engineering adenoviral vectors for gene therapy.

    Science.gov (United States)

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  18. Imaging genetics studies on monoaminergic genes in major depressive disorder.

    Science.gov (United States)

    Won, Eunsoo; Ham, Byung-Joo

    2016-01-04

    Although depression is the leading cause of disability worldwide, current understanding of the neurobiology of depression has failed to be translated into clinical practice. Major depressive disorder (MDD) pathogenesis is considered to be significantly influenced by multiple risk genes, however genetic effects are not simply expressed at a behavioral level. Therefore the concept of endophenotype has been applied in psychiatric genetics. Imaging genetics applies anatomical or functional imaging technologies as phenotypic assays to evaluate genetic variation and their impact on behavior. This paper attempts to provide a comprehensive review of available imaging genetics studies, including reports on genetic variants that have most frequently been linked to MDD, such as the monoaminergic genes (serotonin transporter gene, monoamine oxidase A gene, tryptophan hydroxylase-2 gene, serotonin receptor 1A gene and catechol-O-methyl transferase gene), with regard to key structures involved in emotion processing, such as the hippocampus, amygdala, anterior cingulate cortex and orbitofrontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Gene replacement therapy for genetic hepatocellular jaundice.

    Science.gov (United States)

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy.

  20. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  1. Genetic Evaluation for the Scoliosis Gene(s) in Patients with Neurofibromatosis 1 and Scoliosis

    Science.gov (United States)

    2015-10-01

    with a dystrophic genetic predisposition , more. Earlier diagnosis of dystrophic scoliosis could inform clinical decision-making regarding early surgical...AWARD NUMBER: W81XWH-10-1-0469 TITLE: Genetic Evaluation for the Scoliosis Gene(s) in Patients with Neurofibromatosis 1 and Scoliosis...31Jul2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER " Genetic Evaluation for the Scoliosis Gene(s) in Patients with Neurofibromatosis 1 and Scoliosis." 5b

  2. Association of genetic polymorphism in GH gene with milk ...

    Indian Academy of Sciences (India)

    Association of genetic polymorphism in GH gene with milk production traits in Beijing Holstein cows ... Keywords. Beijing Holstein cows; growth hormone gene; genetic polymorphism; milk production traits ... I, II, and III). The A/A cows produced milk of higher protein content than of A/B individuals ( < 0.05 only in lactation II).

  3. Myostatin: genetic variants, therapy and gene doping

    Directory of Open Access Journals (Sweden)

    André Katayama Yamada

    2012-09-01

    Full Text Available Since its discovery, myostatin (MSTN has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.Desde sua descoberta, a miostatina (MSTN entrou na linha de frente em pesquisas relacionadas às terapias musculares porque mutações intrínsecas ou inibição desta proteína tanto por abordagens farmacológicas como genéticas resultam em hipertrofia muscular e hiperplasia. Além do aumento da massa muscular, a inibição de MSTN potencialmente prejudica o tecido conectivo, modula a força muscular, facilita o transplante de mioblastos, promove regeneração tecidual, induz termogênese no tecido adiposo e aumenta a oxidação na musculatura esquelética. É também sabido que os atuais avanços em terapia gênica têm uma relação com o esporte devido ao uso ilícito de tal método. Os efeitos adversos de tal abordagem, seus efeitos no desempenho de atletas e métodos para detectar doping genético s

  4. Gene therapy for carcinoma of the breast: Genetic toxins

    International Nuclear Information System (INIS)

    Vassaux, Georges; Lemoine, Nick R

    2000-01-01

    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

  5. On Gene Concepts and Teaching Genetics: Episodes from Classical Genetics

    Science.gov (United States)

    Burian, Richard M.

    2013-01-01

    This paper addresses the teaching of advanced high school courses or undergraduate courses for non-biology majors about genetics or history of genetics. It will probably be difficult to take the approach described here in a high school science course, although the general approach could help improve such courses. It would be ideal for a college…

  6. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  7. [Elucidation of key genes in sex determination in genetics teaching].

    Science.gov (United States)

    Li, Meng; He, Zhumei

    2014-06-01

    Sex is an important and complex feature of organisms, which is controlled by the genetic and environmental factors. The genetic factors, i.e., genes, are vital in sex determination. However, not all the related genes play the same roles, and some key genes play a vital role in the sex determination and differentiation. With the development of the modern genetics, a great progress on the key genes has been made in sex determination. In this review, we summarize the mechanism of sex determination and the strategy of how to study the key genes in sex determination. It will help us to understand the mechanism of sex determination better in the teaching of genetics.

  8. Genetic architecture of gene expression in ovine skeletal muscle

    DEFF Research Database (Denmark)

    Kogelman, Lisette Johanna Antonia; Byrne, Keren; Vuocolo, Tony

    2011-01-01

    weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing...... has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny......-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle.Results: The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing...

  9. Genetic coding and gene expression - new Quadruplet genetic coding model

    Science.gov (United States)

    Shankar Singh, Rama

    2012-07-01

    Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.

  10. Common Gene Variants Account for Most Genetic Risk for Autism

    Science.gov (United States)

    ... gene variants account for most genetic risk for autism Roles of heritability, mutations, environment estimated – NIH-funded study. The bulk of risk, or liability, for autism spectrum disorders (ASD) was traced to inherited variations ...

  11. Radiation application on development of marker genes for genetic manipulation

    International Nuclear Information System (INIS)

    Lee, Young Il

    1997-04-01

    This state of art report was dealt with the recent progress of genetic engineering techniques and prospect of gene manipulation. Especially the selection of new genetic marker genes such as variants to environmental stress, pest or insect resistance, herbicide resistance and nutritional requirement was reviewed by using plant cell and tissue culture combined with radiation mutation induction. Biotechnology has taken us from the era hybrid plants to the era of transgenic plants. Although there are still many problems to solve in transformation method and the regeneration of transformed cell and tissue. Genetic marker genes are very important material to improve the technique of genetic manipulation. Most of the genes have been developed by radiation. (author). 180 refs., 6 tabs

  12. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    National Research Council Canada - National Science Library

    Baylink, David

    2004-01-01

    The primary goal of the proposed work is to apply several state of the art molecular genetic and gene therapy technologies to address fundamental questions in bone biology with a particular emphasis on attempting: l...

  13. [Genetic basis of head and neck cancers and gene therapy].

    Science.gov (United States)

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  14. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 92; Issue 1. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. Julie Massayo Maeda Oda Bruna Karina Banin Hirata Roberta Losi Guembarovski Maria Angelica Ehara Watanabe. Review Article Volume 92 Issue 1 ...

  15. Genetic variation and population structure of interleukin genes ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 86; Issue 3. Genetic variation and population structure of interleukin genes among seven ethnic populations from Karnataka, India. Srilakshmi M. Raj Diddahally R. Govindaraju Ranajit Chakraborty. Research Article Volume 86 Issue 3 December 2007 pp 189-194 ...

  16. Genetic variation and population structure of interleukin genes ...

    Indian Academy of Sciences (India)

    these factors may have important clinical consequences and thus, impact on community genetics (Bittles 2001, 2002). A number of complex genetic disorders such as, coronary heart disease, cancer, psychiatric disorders and asthma, have been. Keywords. population structure; interleukin genes; ethnic variation; Karnataka.

  17. Genetics of wide compatible gene and variability studies in rice ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Genetics; Volume 95; Issue 2. Genetics of wide compatible gene and variability studies in rice (Oryza sativa L.) S. REVATHI K. SAKTHIVEL S. MANONMANI M. UMADEVI R. USHAKUMARI S. ROBIN. RESEARCH NOTE Volume 95 Issue 2 June ...

  18. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 95; Issue 3. Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations. YUAN SU DIYAN LI UMA GAUR YAN WANG NAN WU BINLONG CHEN HONGXIAN XU HUADONG YIN YAODONG HU QING ZHU. RESEARCH ARTICLE ...

  19. Genetic anaylsis of a disease resistance gene from loblolly pine

    Science.gov (United States)

    Yinghua Huang; Nili Jin; Alex Diner; Chuck Tauer; Yan Zhang; John Damicone

    2003-01-01

    Rapid advances in molecular genetics provide great opportunities for studies of host defense mechanisms. Examination of plant responses to disease at the cellular and molecular level permits both discovery of changes in gene expression in the tissues attacked by pathogens, and identification of genetic components involved in the interaction between host and pathogens....

  20. Genetic architecture of gene expression in ovine skeletal muscle.

    Science.gov (United States)

    Kogelman, Lisette J A; Byrne, Keren; Vuocolo, Tony; Watson-Haigh, Nathan S; Kadarmideen, Haja N; Kijas, James W; Oddy, Hutton V; Gardner, Graham E; Gondro, Cedric; Tellam, Ross L

    2011-12-15

    In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle. The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial function and transcriptional regulation. This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between

  1. GeneEd—A Genetics Educational Resource | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Genetics 101 GeneEd — A Genetics Educational Resource Past Issues / Summer 2013 Table of ... GeneEd website as part of her lessons on genetics. A recently developed educational website about genetics— GeneEd. ...

  2. The genetics of reading disabilities: from phenotypes to candidate genes.

    Science.gov (United States)

    Raskind, Wendy H; Peter, Beate; Richards, Todd; Eckert, Mark M; Berninger, Virginia W

    2012-01-01

    This article provides an overview of (a) issues in definition and diagnosis of specific reading disabilities at the behavioral level that may occur in different constellations of developmental and phenotypic profiles (patterns); (b) rapidly expanding research on genetic heterogeneity and gene candidates for dyslexia and other reading disabilities; (c) emerging research on gene-brain relationships; and (d) current understanding of epigenetic mechanisms whereby environmental events may alter behavioral expression of genetic variations. A glossary of genetic terms (denoted by bold font) is provided for readers not familiar with the technical terms.

  3. GeneNetwork: A Toolbox for Systems Genetics.

    Science.gov (United States)

    Mulligan, Megan K; Mozhui, Khyobeni; Prins, Pjotr; Williams, Robert W

    2017-01-01

    The goal of systems genetics is to understand the impact of genetic variation across all levels of biological organization, from mRNAs, proteins, and metabolites, to higher-order physiological and behavioral traits. This approach requires the accumulation and integration of many types of data, and also requires the use of many types of statistical tools to extract relevant patterns of covariation and causal relations as a function of genetics, environment, stage, and treatment. In this protocol we explain how to use the GeneNetwork web service, a powerful and free online resource for systems genetics. We provide workflows and methods to navigate massive multiscalar data sets and we explain how to use an extensive systems genetics toolkit for analysis and synthesis. Finally, we provide two detailed case studies that take advantage of human and mouse cohorts to evaluate linkage between gene variants, addiction, and aging.

  4. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  5. Genetic gain and gene diversity of seed orchard crops

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyu-Suk [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Genetics and Plant Physiology

    2001-07-01

    Seed orchards are the major tool for deploying the improvement generated by breeding programs and assuring the consistent supply of genetically improved seed. Attainment of genetic gain and monitoring of gene diversity through selection and breeding were studied considering the factors: selection intensity; genetic value; coancestry; fertility variation; and pollen contamination. The optimum goal of a seed orchard is achieved when the orchard population is under an idealized situation, i.e., panmixis, equal gamete contributions from all parental genotypes, non-relatedness and no pollen contamination. In practice, however, due to relatedness among parents, variation in clonal fertility and ramet number, and gene migration from outside, the realized genetic gain and gene diversity deviate from the expectation. In the present study, the genetic value of seed orchard crops (genetic gain, G) could be increased by selective harvest, genetic thinning and/or both. Status number (N{sub S}) was used to monitor the loss of gene diversity in the process of forest tree domestication, and calculated to be reasonably high in most seed orchards. Fertility of parents was estimated based on the assessment of flowering or seed production, which was shown to be under strong genetic control. Variation in fertility among orchard parents was a general feature and reduced the predicted gene diversity of the orchard crop. Fertility variation among parents could be described by the sibling coefficient ({psi}). {psi} was estimated to be 2 (CV = 100% for fertility). In calculating {psi}, it was possible to consider, besides fertility variation, the phenotypic correlation between maternal and parental fertilities, and pollen contamination. Status number was increased by controlling parental fertility, e.g., equal seed harvest, mixing seed in equal proportions and balancing parental contribution. By equalizing female fertility among over-represented parents, it was possible to effect a

  6. COGENT (COlorectal cancer GENeTics) revisited

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, L. A.; Brenner, H.; Buch, S.; Campbell, H.; Carracedo, A.; Carvajal-Carmona, L.; Castells, A.; Castellví-Bel, S.; Cheadle, J. P.; Devilee, P.; Dunlop, M.; Echeverry, M.; Gallinger, S.; Galvan, A.; Hampe, J.; Hemminki, K.; Ho, J. W. C.; Hofstra, R. M. W.; Hudson, T. J.; Kirac, I.; Lerch, M. M.; Li, L.; Lindblom, A.; Lipton, L.; Matsuda, K.; Maughan, T. S.; Moreno, V.; Morreau, H.; Naccarati, Alessio; Nakamura, Y.; Peterlongo, P.; Pharoah, P. D.; Sieber, O.; Radice, P.; Ruiz-Ponte, C.; Schafmayer, C.; Schmidt, C. A.; von Schönfels, W.; Schreiber, S.; Scott, R.; Sham, P.; Souček, P.; Tenesa, A.; Tomplinson, P. M.; Velez, A.; Villanueva, C. M.; Vodička, Pavel; Völzke, H.; van Wezel, T.; Wijnen, J.T.; Zanke, B.

    2012-01-01

    Roč. 27, č. 2 (2012), s. 143-151 ISSN 0267-8357 Institutional research plan: CEZ:AV0Z50390703 Keywords : identification of low-risk variants * disease causing variants * susceptibility alleles Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.500, year: 2012

  7. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    Science.gov (United States)

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A network of genes, genetic disorders, and brain areas.

    Directory of Open Access Journals (Sweden)

    Satoru Hayasaka

    Full Text Available The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  9. A network of genes, genetic disorders, and brain areas.

    Science.gov (United States)

    Hayasaka, Satoru; Hugenschmidt, Christina E; Laurienti, Paul J

    2011-01-01

    The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  10. Curing genetic disease with gene therapy.

    Science.gov (United States)

    Williams, David A

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile.

  11. Genetic nanomedicine: gene delivery by targeted lipoplexes.

    Science.gov (United States)

    Düzgüneş, Nejat; de Ilarduya, Conchita Tros

    2012-01-01

    Cationic liposome-DNA complexes (lipoplexes) are used for the delivery of plasmid DNA to cultured cells and various tissues in vivo. In this chapter, we describe the preparation and evaluation of plain and targeted lipoplexes, using targeting ligands, including epidermal growth factor and transferrin. Ligand-associated lipoplexes may be used to target DNA or other nucleic acid drugs to specific cells, particularly cancer cells that overexpress the receptors for the ligands. We provide examples of the enhancement of gene expression mediated by epidermal growth factor in murine and human oral squamous cell carcinoma cells, and human hepatoblastoma and rat colon adenocarcinoma cells. We also summarize the studies on the use of transferrin-lipoplexes for enhancing gene delivery to cervical carcinoma, murine colon carcinoma, and African green monkey kidney cells. We outline two animal models in which transferrin-lipoplexes have been used for antitumor therapy by delivering either the gene encoding interleukin-12 or a suicide gene: a CT26 murine colon carcinoma, and a syngeneic, orthotopic murine oral squamous cell carcinoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Genetic polymorphism in FOXP3 gene

    Indian Academy of Sciences (India)

    The FOXP3 gene encodes a transcription factor thought to be important for the development and function of regulatory T cells (Treg cells). These cells are involved in the regulation of T cell activation and therefore are essential for normal immune homeostasis. Signals from microenvironment have a profound influence on ...

  13. Genetic variation in genes affecting milk composition and quality

    DEFF Research Database (Denmark)

    Bertelsen, Henriette Pasgaard

    associated with complex traits. In the present PDH projekt the main emphasis has been on investigating the complex trait of milk coagulation. Utilising a next generation wequencing approach on polled samples resulted in the detection of novel SNPs and possible condidate genes affection milk coagulation....... In addition, exploring genetic variation related to the major milk proteins of bovine milk indntified genetic variations with possitive effects on milk coagulation...

  14. JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms

    Science.gov (United States)

    Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve

    2000-01-01

    A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.

  15. Genetic correction using engineered nucleases for gene therapy applications.

    Science.gov (United States)

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  16. Genetic variability of the equine casein genes.

    Science.gov (United States)

    Brinkmann, J; Jagannathan, V; Drögemüller, C; Rieder, S; Leeb, T; Thaller, G; Tetens, J

    2016-07-01

    The casein genes are known to be highly variable in typical dairy species, such as cattle and goat, but the knowledge about equine casein genes is limited. Nevertheless, mare milk production and consumption is gaining importance because of its high nutritive value, use in naturopathy, and hypoallergenic properties with respect to cow milk protein allergies. In the current study, the open reading frames of the 4 casein genes CSN1S1 (αS1-casein), CSN2 (β-casein), CSN1S2 (αS2-casein), and CSN3 (κ-casein) were resequenced in 253 horses of 14 breeds. The analysis revealed 21 nonsynonymous nucleotide exchanges, as well as 11 synonymous nucleotide exchanges, leading to a total of 31 putative protein isoforms predicted at the DNA level, 26 of which considered novel. Although the majority of the alleles need to be confirmed at the transcript and protein level, a preliminary nomenclature was established for the equine casein alleles. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.

    Science.gov (United States)

    Koo, Ching Lee; Liew, Mei Jing; Mohamad, Mohd Saberi; Salleh, Abdul Hakim Mohamed

    2013-01-01

    Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs), support vector machine (SVM), and random forests (RFs) in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  18. The Tourette International Collaborative Genetics (TIC Genetics) study, finding the genes causing Tourette syndrome

    DEFF Research Database (Denmark)

    Dietrich, Andrea; Fernandez, Thomas V; King, Robert A

    2015-01-01

    discovery effort, focusing both on familial genetic variants with large effects within multiply affected pedigrees and on de novo mutations ascertained through the analysis of apparently simplex parent-child trios with non-familial tics. The clinical data and biomaterials (DNA, transformed cell lines, RNA......, it is clear that large patient cohorts and open-access repositories will be essential to further advance the field. To that end, the large multicenter Tourette International Collaborative Genetics (TIC Genetics) study was established. The goal of the TIC Genetics study is to undertake a comprehensive gene...... of TS and related disorders and the development of novel therapies. Here, we describe the objectives and methods of the TIC Genetics study as a reference for future studies from our group and to facilitate collaboration between genetics consortia in the field of TS....

  19. 'Smoking genes': a genetic association study.

    Directory of Open Access Journals (Sweden)

    Zoraida Verde

    Full Text Available Some controversy exists on the specific genetic variants that are associated with nicotine dependence and smoking-related phenotypes. The purpose of this study was to analyse the association of smoking status and smoking-related phenotypes (included nicotine dependence with 17 candidate genetic variants: CYP2A6*1×2, CYP2A6*2 (1799T>A [rs1801272], CYP2A6*9 (-48T>G [rs28399433], CYP2A6*12, CYP2A13*2 (3375C>T [rs8192789], CYP2A13*3 (7520C>G, CYP2A13*4 (579G>A, CYP2A13*7 (578C>T [rs72552266], CYP2B6*4 (785A>G, CYP2B6*9 (516G>T, CHRNA3 546C>T [rs578776], CHRNA5 1192G>A [rs16969968], CNR1 3764C>G [rs6928499], DRD2-ANKK1 2137G>A (Taq1A [rs1800497], 5HTT LPR, HTR2A -1438A>G [rs6311] and OPRM1 118A>G [rs1799971]. We studied the genotypes of the aforementioned polymorphisms in a cohort of Spanish smokers (cases, N = 126 and ethnically matched never smokers (controls, N = 80. The results showed significant between-group differences for CYP2A6*2 and CYP2A6*12 (both PA (Taq1A polymorphisms was 3.60 (95%CI: 1.75, 7.44 and 2.63 (95%CI: 1.41, 4.89 respectively. Compared with the wild-type genotype, the OR for being a non-smoker in carriers of the minor CYP2A6*2 allele was 1.80 (95%CI: 1.24, 2.65. We found a significant genotype effect (all P≤0.017 for the following smoking-related phenotypes: (i cigarettes smoked per day and CYP2A13*3; (ii pack years smoked and CYP2A6*2, CYP2A6*1×2, CYP2A13*7, CYP2B6*4 and DRD2-ANKK1 2137G>A (Taq1A; (iii nicotine dependence (assessed with the Fagestrom test and CYP2A6*9. Overall, our results suggest that genetic variants potentially involved in nicotine metabolization (mainly, CYP2A6 polymorphisms are those showing the strongest association with smoking-related phenotypes, as opposed to genetic variants influencing the brain effects of nicotine, e.g., through nicotinic acetylcholine (CHRNA5, serotoninergic (HTR2A, opioid (OPRM1 or cannabinoid receptors (CNR1.

  20. The detection of K88, K99 fimbrial antigen and enterotoxin genes of Escherichia coli isolated from piglets and calves with diarrhoea in Indonesia

    Directory of Open Access Journals (Sweden)

    Supar

    1996-03-01

    Full Text Available Enterotoxigenic Escherichia coli (ETEC strains cause diarrhoeal disease in piglets and calves in Indonesia. These strains possess two virulence factors namely attachment and enterotoxin antigens . These factors could be detected phenotypically and genetically. Haemolytic Escherichia coli (E coli isolates possessing K88 fimbrial antigen associated with 0-group 108 and 149. They were positive for K88 gene and demonstrated their ability to produce heat labile enterotoxin (LT and genetically were all positive for LT gene . Seventeen isolates ofE coli K88 which associated with 0-group 149 were positive forSTb gene, other O-serotypes were negative . Ten isolates of Ecoli K88 which associated with 0-group 108 possessed K88, K99, LT and STa genes, but negative for STb gene . However, phenotypically the K99 antigen and STa toxin were not expressed under laboratory conditions, the reason was not well understood . E. coli K99 strains isolated from calves wit h diarrhoea were all associated with 0-group 9 and produced STa toxin when tested by suckling mousse bioassay. The E. coli K99 calf isolates were all hybridized with K99 and STa gene only . It is likely that K99 gene is associated with STa gene . The DNA hybridization technique is more convenience to be used for confirmation diagnosis of colibacillosis, however, not all veterinary laboratories could perform these tests .

  1. Phenotypic effects of genetic variability in human clock genes on ...

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... night's sleep deprivation than PER34 homozygotes (Groeger et al. 2008). There are no reports of any genetic variability in either one of the human CRY genes associating with circadian or sleep parameters, or indeed with any factors other than an increased cancer risk found to associate with a CRY2 poly-.

  2. Timing of gene expression from different genetic systems in shaping ...

    Indian Academy of Sciences (India)

    Timing of gene expression from different genetic systems in shaping leucine and isoleucine contents of rapeseed (Brassica napus L.) meal ... Department of Agronomy, Zhejiang University, Hangzhou, 310029, People's Republic of China; School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, 311300, ...

  3. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2014-08-11

    Aug 11, 2014 ... Keywords. blast; gene action; generation mean analysis; resistance; yield. Journal of Genetics, Vol. 93, No. .... Utilizing the variance of different generations, the variances of A, B, C and D scales were ...... Jia Y. 2003 Marker assisted selection for the control of rice blast disease. Pesticide Outlook 14 ...

  4. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Abstract. The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter ...

  5. Comparative and genetic analysis of the porcine glucocerebrosidase (GBA) gene

    Czech Academy of Sciences Publication Activity Database

    Stratil, Antonín; Wagenknecht, Daniel; Van Poucke, M.; Kubíčková, S.; Bartenschlager, H.; Musilová, P.; Rubeš, J.; Geldermann, H.; Peelman, L. J.

    2004-01-01

    Roč. 138, - (2004), s. 377-383 ISSN 1096-4959 R&D Projects: GA ČR GA523/00/0669 Institutional research plan: CEZ:AV0Z5045916 Keywords : acid beta-glucosidase * gene mapping * fluorescence in situ hybridization Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.393, year: 2004

  6. Genetic effects on gene expression across human tissues

    NARCIS (Netherlands)

    Battle, Alexis; Brown, Christopher D.; Engelhardt, Barbara E.; Montgomery, Stephen B.; Aguet, François; Ardlie, Kristin G.; Cummings, Beryl B.; Gelfand, Ellen T.; Getz, Gad; Hadley, Kane; Handsaker, Robert E.; Huang, Katherine H.; Kashin, Seva; Karczewski, Konrad J.; Lek, Monkol; Li, Xiao; MacArthur, Daniel G.; Nedzel, Jared L.; Nguyen, Duyen T.; Noble, Michael S.; Segrè, Ayellet V.; Trowbridge, Casandra A.; Tukiainen, Taru; Abell, Nathan S.; Balliu, Brunilda; Barshir, Ruth; Basha, Omer; Bogu, Gireesh K.; Brown, Andrew; Castel, Stephane E.; Chen, Lin S.; Chiang, Colby; Conrad, Donald F.; Cox, Nancy J.; Damani, Farhan N.; Davis, Joe R.; Delaneau, Olivier; Dermitzakis, Emmanouil T.; Eskin, Eleazar; Ferreira, Pedro G.; Frésard, Laure; Gamazon, Eric R.; Garrido-Martín, Diego; Gewirtz, Ariel D. H.; Gliner, Genna; Gloudemans, Michael J.; Guigo, Roderic; Hall, Ira M.; Han, Buhm; He, Yuan; Hormozdiari, Farhad; Howald, Cedric; Kyung Im, Hae; Jo, Brian; Yong Kang, Eun; Kim, Yungil; Kim-Hellmuth, Sarah; Lappalainen, Tuuli; Li, Gen; Li, Xin; Liu, Boxiang; Mangul, Serghei; McCarthy, Mark I.; McDowell, Ian C.; Mohammadi, Pejman; Monlong, Jean; Muñoz-Aguirre, Manuel; Ndungu, Anne W.; Nicolae, Dan L.; Nobel, Andrew B.; Oliva, Meritxell; Ongen, Halit; Palowitch, John J.; Panousis, Nikolaos; Papasaikas, Panagiotis; Park, Yoson; Parsana, Princy; Payne, Anthony J.; Peterson, Christine B.; Quan, Jie; Reverter, Ferran; Sabatti, Chiara; Saha, Ashis; Sammeth, Michael; Scott, Alexandra J.; Shabalin, Andrey A.; Sodaei, Reza; Stephens, Matthew; Stranger, Barbara E.; Strober, Benjamin J.; Sul, Jae Hoon; Tsang, Emily K.; Urbut, Sarah; van de Bunt, Martijn; Wang, Gao; Wen, Xiaoquan; Wright, Fred A.; Xi, Hualin S.; Yeger-Lotem, Esti; Zappala, Zachary; Zaugg, Judith B.; Zhou, Yi-Hui; Akey, Joshua M.; Bates, Daniel; Chan, Joanne; Claussnitzer, Melina; Demanelis, Kathryn; Diegel, Morgan; Doherty, Jennifer A.; Feinberg, Andrew P.; Fernando, Marian S.; Halow, Jessica; Hansen, Kasper D.; Haugen, Eric; Hickey, Peter F.; Hou, Lei; Jasmine, Farzana; Jian, Ruiqi; Jiang, Lihua; Johnson, Audra; Kaul, Rajinder; Kellis, Manolis; Kibriya, Muhammad G.; Lee, Kristen; Billy Li, Jin; Li, Qin; Lin, Jessica; Lin, Shin; Linder, Sandra; Linke, Caroline; Liu, Yaping; Maurano, Matthew T.; Molinie, Benoit; Nelson, Jemma; Neri, Fidencio J.; Park, Yongjin; Pierce, Brandon L.; Rinaldi, Nicola J.; Rizzardi, Lindsay F.; Sandstrom, Richard; Skol, Andrew; Smith, Kevin S.; Snyder, Michael P.; Stamatoyannopoulos, John; Tang, Hua; Wang, Li; Wang, Meng; van Wittenberghe, Nicholas; Wu, Fan; Zhang, Rui; Nierras, Concepcion R.; Branton, Philip A.; Carithers, Latarsha J.; Guan, Ping; Moore, Helen M.; Rao, Abhi; Vaught, Jimmie B.; Gould, Sarah E.; Lockart, Nicole C.; Martin, Casey; Struewing, Jeffery P.; Volpi, Simona; Addington, Anjene M.; Koester, Susan E.; Little, A. Roger; Brigham, Lori E.; Hasz, Richard; Hunter, Marcus; Johns, Christopher; Johnson, Mark; Kopen, Gene; Leinweber, William F.; Lonsdale, John T.; McDonald, Alisa; Mestichelli, Bernadette; Myer, Kevin; Roe, Brian; Salvatore, Michael; Shad, Saboor; Thomas, Jeffrey A.; Walters, Gary; Washington, Michael; Wheeler, Joseph; Bridge, Jason; Foster, Barbara A.; Gillard, Bryan M.; Karasik, Ellen; Kumar, Rachna; Miklos, Mark; Moser, Michael T.; Jewell, Scott D.; Montroy, Robert G.; Rohrer, Daniel C.; Valley, Dana R.; Davis, David A.; Mash, Deborah C.; Undale, Anita H.; Smith, Anna M.; Tabor, David E.; Roche, Nancy V.; McLean, Jeffrey A.; Vatanian, Negin; Robinson, Karna L.; Sobin, Leslie; Barcus, Mary E.; Valentino, Kimberly M.; Qi, Liqun; Hunter, Steven; Hariharan, Pushpa; Singh, Shilpi; Um, Ki Sung; Matose, Takunda; Tomaszewski, Maria M.; Barker, Laura K.; Mosavel, Maghboeba; Siminoff, Laura A.; Traino, Heather M.; Flicek, Paul; Juettemann, Thomas; Ruffier, Magali; Sheppard, Dan; Taylor, Kieron; Trevanion, Stephen J.; Zerbino, Daniel R.; Craft, Brian; Goldman, Mary; Haeussler, Maximilian; Kent, W. James; Lee, Christopher M.; Paten, Benedict; Rosenbloom, Kate R.; Vivian, John; Zhu, Jingchun; Brown, Andrew A.; Nguyen, Duyen Y.; Sullivan, Timothy J.; Addington, Anjene; Koester, Susan; Lockhart, Nicole C.; Roe, Bryan; Valley, Dana; He, Amy Z.; Kang, Eun Yong; Quon, Gerald; Ripke, Stephan; Shimko, Tyler C.; Teran, Nicole A.; Zhang, Hailei; Bustamante, Carlos D.; Guigó, Roderic

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression

  7. GeneNetwork: framework for web-based genetics

    NARCIS (Netherlands)

    Sloan, Zachary; Arends, Danny; Broman, Karl W.; Centeno, Arthur; Furlotte, Nicholas; Nijveen, H.; Yan, Lei; Zhou, Xiang; Williams, Robert W.; Prins, Pjotr

    2016-01-01

    GeneNetwork (GN) is a free and open source (FOSS) framework for web-based genetics that can be deployed anywhere. GN allows biologists to upload high-throughput experimental data, such as expression data from microarrays and RNA-seq, and also `classic' phenotypes, such as disease phenotypes. These

  8. Origins of gene, genetic code, protein and life

    Indian Academy of Sciences (India)

    We have investigated the origin of genes, the genetic code, proteins and life using six indices (hydropathy, -helix, -sheet and -turn formabilities, acidic amino acid content and basic amino acid content) necessary for appropriate three-dimensional structure formation of globular proteins. From the analysis of microbial ...

  9. Genetic analysis and location of a resistance gene to Puccinia ...

    Indian Academy of Sciences (India)

    Administrator

    Electrophoresis was carried out at 1400. V for 1.0 - 1.5 h. Gel staining and visualization was done as previously described (Chen et al. 1998). Polymorphic markers were used to genotype the F2 population. Genotype data were used to construct a genetic map and locate the resistance gene. Mapping and Data analysis.

  10. Novel genetic variants in the TPO gene cause congenital hypothyroidism.

    Science.gov (United States)

    Ma, Shao-Gang; Qiu, Ya-Li; Zhu, Hong; Liu, Hong; Li, Qing; Ji, Chun-Mei

    2015-01-01

    Mutations in the dual oxidase maturation factor 2 (DUOXA2) and thyroid peroxidase (TPO) genes have been reported to cause goitrous congenital hypothyroidism (GCH). The aim of this study was to determine the genetic basis of GCH in affected children. Thirty children with GCH were enrolled for molecular analysis of the DUOXA2 and TPO genes. All subjects underwent clinical examination and laboratory testing. Genomic DNA was extracted from peripheral blood leukocytes, and Sanger sequencing was used to screen for DUOXA2 and TPO gene mutations in the exon fragments amplified from the extracted DNA. Family members of those patients with mutations were also enrolled and evaluated. Analysis of the TPO gene revealed six genetic variants, including two novel heterozygous mutations, c.1970T> C (p.I657T) and c.2665G> T (p.G889X), and four mutations that have been reported previously (c.670_672del, c.2268dup, c.2266T> C and c.2647C> T). Three patients harbored the same mutation c.2268dup. The germline mutations from four unrelated families were consistent with an autosomal recessive inheritance pattern. Conversely, no mutations in the DUOXA2 gene were detected. Two novel inactivating mutations (c.1970T> C and c.2665G> T) in the TPO gene were identified. The c.2268dup mutation occurred frequently. No mutations in the DUOXA2 gene were detected in this study.

  11. Gene Pools and the Genetic Architecture of Domesticated Cowpea

    Directory of Open Access Journals (Sweden)

    Bao-Lam Huynh

    2013-11-01

    Full Text Available Cowpea [ (L. Walp.] is a major tropical legume crop grown in warm to hot areas throughout the world and especially important to the people of sub-Saharan Africa where the crop was domesticated. To date, relatively little is understood about its domestication origins and patterns of genetic variation. In this study, a worldwide collection of cowpea landraces and African ancestral wild cowpea was genotyped with more than 1200 single nucleotide polymorphism markers. Bayesian inference revealed the presence of two major gene pools in cultivated cowpea in Africa. Landraces from gene pool 1 are mostly distributed in western Africa while the majority of gene pool 2 are located in eastern Africa. Each gene pool is most closely related to wild cowpea in the same geographic region, indicating divergent domestication processes leading to the formation of two gene pools. The total genetic variation within landraces from countries outside Africa was slightly greater than within African landraces. Accessions from Asia and Europe were more related to those from western Africa while accessions from the Americas appeared more closely related to those from eastern Africa. This delineation of cowpea germplasm into groups of genetic relatedness will be valuable for guiding introgression efforts in breeding programs and for improving the efficiency of germplasm management.

  12. Mapping the genetic architecture of gene expression in human liver.

    Directory of Open Access Journals (Sweden)

    Eric E Schadt

    2008-05-01

    Full Text Available Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large

  13. Genetics of osteoporosis: searching for candidate genes for bone fragility.

    Science.gov (United States)

    Rocha-Braz, Manuela G M; Ferraz-de-Souza, Bruno

    2016-08-01

    The pathogenesis of osteoporosis, a common disease with great morbidity and mortality, comprises environmental and genetic factors. As with other complex disorders, the genetic basis of osteoporosis has been difficult to identify. Nevertheless, several approaches have been undertaken in the past decades in order to identify candidate genes for bone fragility, including the study of rare monogenic syndromes with striking bone phenotypes (e.g. osteogenesis imperfecta and osteopetroses), the analysis of individuals or families with extreme osteoporotic phenotypes (e.g. idiopathic juvenile and pregnancy-related osteoporosis), and, chiefly, genome-wide association studies (GWAS) in large populations. Altogether, these efforts have greatly increased the understanding of molecular mechanisms behind bone remodelling, which has rapidly translated into the development of novel therapeutic strategies, exemplified by the tales of cathepsin K (CTSK) and sclerostin (SOST). Additional biological evidence of involvement in bone physiology still lacks for several candidate genes arisen from GWAS, opening an opportunity for the discovery of new mechanisms regulating bone strength, particularly with the advent of high-throughput genomic technologies. In this review, candidate genes for bone fragility will be presented in comprehensive tables and discussed with regard to how their association with osteoporosis emerged, highlighting key players such as LRP5, WNT1 and PLS3. Current limitations in our understanding of the genetic contribution to osteoporosis, such as yet unidentified genetic modifiers, may be overcome in the near future with better genotypic and phenotypic characterisation of large populations and the detailed study of candidate genes in informative individuals with marked phenotype.

  14. Gene expression and genetic analysis during higher plants embryogenesis

    OpenAIRE

    Abid, Ghassen; Jaquemin, Jean-Marie; Sassi, Khaled; Muhovski, Yordan; Toussaint, André; Baudoin, Jean-Pierre

    2010-01-01

    This review describes and discusses recent attempts to analyze the embryogenesis process in higher plants, through combination of descriptive, experimental, and genetic approach. Analysis of gene expression profiles has permitted to build hypothesis concerning the induced mechanisms in early phases of embryogenesis in higher plants. Such mechanisms involve specific transcriptional and post-transcriptional regulatory pathways as well as diverse signal transduction processes at each stage of p...

  15. Population genetics of non-genetic traits: Evolutionary roles of stochasticity in gene expression

    KAUST Repository

    Mineta, Katsuhiko

    2015-05-01

    The role of stochasticity in evolutionary genetics has long been debated. To date, however, the potential roles of non-genetic traits in evolutionary processes have been largely neglected. In molecular biology, growing evidence suggests that stochasticity in gene expression (SGE) is common and that SGE has major impacts on phenotypes and fitness. Here, we provide a general overview of the potential effects of SGE on population genetic parameters, arguing that SGE can indeed have a profound effect on evolutionary processes. Our analyses suggest that SGE potentially alters the fate of mutations by influencing effective population size and fixation probability. In addition, a genetic control of SGE magnitude could evolve under certain conditions, if the fitness of the less-fit individual increases due to SGE and environmental fluctuation. Although empirical evidence for our arguments is yet to come, methodological developments for precisely measuring SGE in living organisms will further advance our understanding of SGE-driven evolution.

  16. Neuromuscular disorders: genes, genetic counseling and therapeutic trials

    Directory of Open Access Journals (Sweden)

    Mayana Zatz

    Full Text Available Abstract Neuromuscular disorders (NMD are a heterogeneous group of genetic conditions, with autosomal dominant, recessive, or X-linked inheritance. They are characterized by progressive muscle degeneration and weakness. Here, we are presenting our major contributions to the field during the past 30 years. We have mapped and identified several novel genes responsible for NMD. Genotype-phenotype correlations studies enhanced our comprehension on the effect of gene mutations on related proteins and their impact on clinical findings. The search for modifier factors allowed the identification of a novel "protective"; variant which may have important implication on therapeutic developments. Molecular diagnosis was introduced in the 1980s and new technologies have been incorporated since then. Next generation sequencing greatly improved our capacity to identify disease-causing mutations with important benefits for research and prevention through genetic counseling of patients' families. Stem cells researches, from and for patients, have been used as tools to study human genetic diseases mechanisms and for therapies development. The clinical effect of preclinical trials in mice and canine models for muscular dystrophies are under investigation. Finally, the integration of our researches and genetic services with our post-graduation program resulted in a significant output of new geneticists, spreading out this expertise to our large country.

  17. The "Mendelian Gene" and the "Molecular Gene": Two Relevant Concepts of Genetic Units.

    Science.gov (United States)

    Orgogozo, V; Peluffo, A E; Morizot, B

    2016-01-01

    We focus here on two prevalent meanings of the word gene in research articles. On one hand, the gene, named here "molecular gene," is a stretch of DNA that is transcribed and codes for an RNA or a polypeptide with a known or presumed function (as in "gene network"), whose exact spatial delimitation on the chromosome remains a matter of debate, especially in cases with alternative splicing, antisense transcripts, etc. On the other hand, the gene, called here "Mendelian gene," is a segregating genetic unit which is detected through phenotypic differences associated with different alleles at the same locus (as in "gene flow"). We show that the "Mendelian gene" concept is still extensively used today in biology research and is sometimes confused with the "molecular gene." We try here to clarify the distinction between both concepts. Efforts to delineate the beginning and the end of the DNA sequence corresponding to the "Mendelian gene" and the "molecular gene" reveal that both entities do not always match. We argue that both concepts are part of two relevant frameworks for explaining the biological world. © 2016 Elsevier Inc. All rights reserved.

  18. 47 CFR 73.1635 - Special temporary authorizations (STA).

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Special temporary authorizations (STA). 73.1635..., Visual modulation monitoring; § 73.1250, Broadcasting emergency information; § 73.1350, Transmission..., TV and Class A TV aural; § 73.1615, Operation during modification of facilities; § 73.1680, Emergency...

  19. 21. sajandi mammut / Martin Rästa ; intervjueerinud Tanel Veenre

    Index Scriptorium Estoniae

    Rästa, Martin, 1980-

    2010-01-01

    Kujundusgraafik Martin Rästaga (Mammut) tema tööst, loomingust, trendidest, graafilise disaini näituse eesmärkidest jm. Martin Rästa plakatite näitus "MMMT10" Tartu Y-galeriis 29. märtsist 10. aprillini 2010

  20. Genetic Distance and Genetic Identity between Hindu and Muslim populations of Barak Valley for ABO and Rh genes

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-09-01

    Full Text Available A genetic study was carried out in two endogamous populations namely Hindus and Muslims in the Barak Valley Zone of Assam in India. Nei�s genetic distance and genetic identity between two populations were calculated on the basis of estimated allele frequencies of ABO and Rh blood group genes. The genetic distance between Hindus and Muslims was 0.12% for ABO gene and 0.10% for Rh gene. The genetic identity between two populations was estimated as 99.88% for ABO gene and 99.90% for Rh gene suggesting very high genetic similarity between these two populations. Observed heterozygosity estimate was higher in Hindus (0.5598 for ABO gene and 0.2822 for Rh gene than Muslims (0.5346 for ABO gene and 0.2408 for Rh gene indicating lesser inbreeding in Hindus than Muslims. Fixation index was lower in Hindus (16.02% for ABO gene and 43.56% for Rh gene than Muslims (19.80% for ABO gene and 51.84% for Rh gene. Panmictic index was higher in Hindus than Muslims for both the genes. Fixation and panmictic indices revealed that during evolutionary process the Hindus maintained more outbreeding feature than the Muslims in the valley. In this study, the concepts of genetic load of a population and genotype fitness were extended to alleles to estimate the magnitude of allele genetic load (GL and allele fitness for 3 alleles in ABO gene and for 2 alleles in Rh gene in two populations. The genetic load for O, A and B alleles were lower in Hindus than Muslims. Similar results for genetic load were found for the alleles of Rh gene in the comparison of two populations. The fitness estimates of O, A and B alleles for ABO gene and D and d alleles for Rh gene were higher in Hindus than Muslims. A population with low allele genetic load (GL and high allele fitness (AF might have greater survival advantage in nature in the absence of heterozygote advantage and higher adaptive value of the allele with increased frequency.

  1. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review.

    Science.gov (United States)

    Modinos, Gemma; Iyegbe, Conrad; Prata, Diana; Rivera, Margarita; Kempton, Matthew J; Valmaggia, Lucia R; Sham, Pak C; van Os, Jim; McGuire, Philip

    2013-11-01

    The relatively high heritability of schizophrenia suggests that genetic factors play an important role in the etiology of the disorder. On the other hand, a number of environmental factors significantly influence its incidence. As few direct genetic effects have been demonstrated, and there is considerable inter-individual heterogeneity in the response to the known environmental factors, interactions between genetic and environmental factors may be important in determining whether an individual develops the disorder. To date, a considerable number of studies of gene-environment interactions (G×E) in schizophrenia have employed a hypothesis-based molecular genetic approach using candidate genes, which have led to a range of different findings. This systematic review aims to summarize the results from molecular genetic candidate studies and to review challenges and opportunities of this approach in psychosis research. Finally, we discuss the potential of future prospects, such as new studies that combine hypothesis-based molecular genetic candidate approaches with agnostic genome-wide association studies in determining schizophrenia risk. © 2013 Elsevier B.V. All rights reserved.

  2. A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

    Directory of Open Access Journals (Sweden)

    Ching Lee Koo

    2013-01-01

    Full Text Available Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs, support vector machine (SVM, and random forests (RFs in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  3. Combining classifiers generated by multi-gene genetic programming for protein fold recognition using genetic algorithm.

    Science.gov (United States)

    Bardsiri, Mahshid Khatibi; Eftekhari, Mahdi; Mousavi, Reza

    2015-01-01

    In this study the problem of protein fold recognition, that is a classification task, is solved via a hybrid of evolutionary algorithms namely multi-gene Genetic Programming (GP) and Genetic Algorithm (GA). Our proposed method consists of two main stages and is performed on three datasets taken from the literature. Each dataset contains different feature groups and classes. In the first step, multi-gene GP is used for producing binary classifiers based on various feature groups for each class. Then, different classifiers obtained for each class are combined via weighted voting so that the weights are determined through GA. At the end of the first step, there is a separate binary classifier for each class. In the second stage, the obtained binary classifiers are combined via GA weighting in order to generate the overall classifier. The final obtained classifier is superior to the previous works found in the literature in terms of classification accuracy.

  4. VSX1 gene and keratoconus: genetic analysis in Korean patients.

    Science.gov (United States)

    Jeoung, Jin Wook; Kim, Mee Kum; Park, Sung Sup; Kim, Sung Yeun; Ko, Hyun Soo; Wee, Won Ryang; Lee, Jin Hak

    2012-07-01

    The visual system homeobox 1 (VSX1) gene variants have recently been shown to be associated with keratoconus. To replicate this finding, we performed a genetic analysis of the VSX1 gene in a Korean case-control sample. Patients with keratoconus and healthy control subjects were recruited from Seoul National University Hospital. A diagnosis of keratoconus was made based on clinical examinations and the presence of characteristic topographic features. For all patients and controls, the whole coding region and the exon-intron junctions of the VSX1 gene were analyzed by direct sequencing. Fifty-three patients with keratoconus and 100 healthy volunteers were included. We observed 2 novel missense substitutions (Leu17Val and Val199Leu) and 1 previously reported substitution (Gly160Val) in 6 of the 53 affected probands. Because these substitutions have been identified in unaffected individuals, they were not considered to be pathogenic. No intragenic polymorphism was associated with a significantly increased risk of keratoconus. We cannot confirm the previously reported association of the VSX1 gene variants with keratoconus. Our results suggest that the VSX1 gene and its mutations with amino acid changes do not play a major role in the pathogenesis of keratoconus.

  5. The genetic alteration of retinoblastoma gene in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Il; Shim, Yung Mok; Kim, Chang Min [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    Retinoblastoma(RB) gene is the prototype of tumor suppressor gene and it`s alteration have been frequently observed in a large number of human tumors. To investigate the role of RB in esophageal cancer, we studied 36 esophageal cancer tissues with Southern blot analysis to detect gross LOH and PCR-SSCP method to find minute LOH and mutation, if any. In the cases with abnormalities, the nucleotide sequence analysis was performed. Allelic loss of chromosome 13q14 occurred in 20 out of 32 informative cases (62.5%) by Southern analysis. Furthermore, PCR-LOH added three positive cases. Mobility shift by PCR-SSCP was observed in one case at exon 22, which showed 1 bp deletion in codon 771 of RB gene resulting in frame shift mutation. Besides, nine PCR-band alteration in tumor tissue compared with normal tissue were observed in exon 14 and 22, but mutation was not found on sequencing analysis suggesting the epigenetic alteration in tumor tissue. Analysis of the clinical data did not show any difference depending upon RB alteration. However, the total incidence of RB gene may play an important role in the development of esophageal cancer. The main genetic alteration of RB gene was deletion detected by Southern blot and one bp deletion leading to frame shift was also observed. 8 figs, 5 tabs. (Author).

  6. Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene.

    Science.gov (United States)

    Chintalapudi, Sumana R; Jablonski, Monica M

    2017-01-01

    Loss of retinal ganglion cells (RGCs) is one of the hallmarks of retinal neurodegenerative diseases, glaucoma being one of the most common. Recently, γ-synuclein (SNCG) was shown to be highly expressed in the somas and axons of RGCs. In various mouse models of glaucoma, downregulation of Sncg gene expression correlates with RGC loss. To investigate the regulation of Sncg in RGCs, we used a systems genetics approach to identify a gene that modulates the expression of Sncg, followed by confirmatory studies in both healthy and diseased retinas. We found that chromosome 1 harbors an eQTL that modulates the expression of Sncg in the mouse retina and identified Pfdn2 as the candidate upstream modulator of Sncg expression. Downregulation of Pfdn2 in enriched RGCs causes a concomitant reduction in Sncg. In this chapter, we describe our strategy and methods for identifying and confirming a genetic modulation of a glaucoma-associated gene. A similar method can be applied to other genes expressed in other tissues.

  7. Identification of susceptibility genes and genetic modifiers of human diseases

    Science.gov (United States)

    Abel, Kenneth; Kammerer, Stefan; Hoyal, Carolyn; Reneland, Rikard; Marnellos, George; Nelson, Matthew R.; Braun, Andreas

    2005-03-01

    The completion of the human genome sequence enables the discovery of genes involved in common human disorders. The successful identification of these genes is dependent on the availability of informative sample sets, validated marker panels, a high-throughput scoring technology, and a strategy for combining these resources. We have developed a universal platform technology based on mass spectrometry (MassARRAY) for analyzing nucleic acids with high precision and accuracy. To fuel this technology, we generated more than 100,000 validated assays for single nucleotide polymorphisms (SNPs) covering virtually all known and predicted human genes. We also established a large DNA sample bank comprised of more than 50,000 consented healthy and diseased individuals. This combination of reagents and technology allows the execution of large-scale genome-wide association studies. Taking advantage of MassARRAY"s capability for quantitative analysis of nucleic acids, allele frequencies are estimated in sample pools containing large numbers of individual DNAs. To compare pools as a first-pass "filtering" step is a tremendous advantage in throughput and cost over individual genotyping. We employed this approach in numerous genome-wide, hypothesis-free searches to identify genes associated with common complex diseases, such as breast cancer, osteoporosis, and osteoarthritis, and genes involved in quantitative traits like high density lipoproteins cholesterol (HDL-c) levels and central fat. Access to additional well-characterized patient samples through collaborations allows us to conduct replication studies that validate true disease genes. These discoveries will expand our understanding of genetic disease predisposition, and our ability for early diagnosis and determination of specific disease subtype or progression stage.

  8. Global patterns of genetic diversity and signals of natural selection for human ADME genes.

    Science.gov (United States)

    Li, Jing; Zhang, Luyong; Zhou, Hang; Stoneking, Mark; Tang, Kun

    2011-02-01

    Genetic polymorphisms in many genes related to drug absorption, distribution, metabolism and excretion (ADME genes) contribute to the high heterogeneity of drug responses in humans. However, the extent to which genetic variation in ADME genes may contribute to differences among human populations in drug responses has not been studied. In this work, we investigate the global distribution of genetic diversity for 31 core and 252 extended ADME genes. We find that many important ADME genes are highly differentiated across continental regions. Additionally, we analyze the genetic differentiation associated with clinically relevant, functional polymorphism alleles, which is important for evaluating potential among-population heterogeneity in drug treatment effects. We find that ADME genes show significantly greater variation in levels of population differentiation, and we find numerous signals of recent positive selection on ADME genes. These results suggest that genetic differentiation at ADME genes could contribute to population heterogeneity in drug responses.

  9. MyGeneFriends: A Social Network Linking Genes, Genetic Diseases, and Researchers.

    Science.gov (United States)

    Allot, Alexis; Chennen, Kirsley; Nevers, Yannis; Poidevin, Laetitia; Kress, Arnaud; Ripp, Raymond; Thompson, Julie Dawn; Poch, Olivier; Lecompte, Odile

    2017-06-16

    The constant and massive increase of biological data offers unprecedented opportunities to decipher the function and evolution of genes and their roles in human diseases. However, the multiplicity of sources and flow of data mean that efficient access to useful information and knowledge production has become a major challenge. This challenge can be addressed by taking inspiration from Web 2.0 and particularly social networks, which are at the forefront of big data exploration and human-data interaction. MyGeneFriends is a Web platform inspired by social networks, devoted to genetic disease analysis, and organized around three types of proactive agents: genes, humans, and genetic diseases. The aim of this study was to improve exploration and exploitation of biological, postgenomic era big data. MyGeneFriends leverages conventions popularized by top social networks (Facebook, LinkedIn, etc), such as networks of friends, profile pages, friendship recommendations, affinity scores, news feeds, content recommendation, and data visualization. MyGeneFriends provides simple and intuitive interactions with data through evaluation and visualization of connections (friendships) between genes, humans, and diseases. The platform suggests new friends and publications and allows agents to follow the activity of their friends. It dynamically personalizes information depending on the user's specific interests and provides an efficient way to share information with collaborators. Furthermore, the user's behavior itself generates new information that constitutes an added value integrated in the network, which can be used to discover new connections between biological agents. We have developed MyGeneFriends, a Web platform leveraging conventions from popular social networks to redefine the relationship between humans and biological big data and improve human processing of biomedical data. MyGeneFriends is available at lbgi.fr/mygenefriends. ©Alexis Allot, Kirsley Chennen, Yannis

  10. MuStaR and other software for locus-specific mutation databases.

    Science.gov (United States)

    Brown, A F; McKie, M A

    2000-01-01

    As the human genome sequencing project nears completion, there has been a vast increase in the rate at which disease and nondisease associated variant sequences are being sought and detected. This has heightened the need for software with which to accumulate allelic variant (mutation) data, and with which to make the data accessible to the scientific community. Many ad hoc solutions have been developed by those interested in specific genes and diseases, and the creation of central databases which hold data for all genes has provided an alternative repository for some of the locus data. Despite this, few specialised software tools exist for researchers to create their own locus-specific allelic variant databases. This article describes methods available to potential curators, including software systems developed with the sole purpose of generating locus-specific mutation databases. In particular, the authors' own software, MuStaRtrade mark, is described. MuStaRtrade mark allows curators to maintain a database on a laptop computer if desired, while being able to export the data to an automatically generated Website which will run on any cgi compliant Web server. Searching the database and the submission of new mutations are made possible through fill-in Web forms. A number of other software tools which may be of use to curators are also described. Copyright 2000 Wiley-Liss, Inc.

  11. Trans gene regulation in adaptive evolution: a genetic algorithm model.

    Science.gov (United States)

    Behera, N; Nanjundiah, V

    1997-09-21

    This is a continuation of earlier studies on the evolution of infinite populations of haploid genotypes within a genetic algorithm framework. We had previously explored the evolutionary consequences of the existence of indeterminate-"plastic"-loci, where a plastic locus had a finite probability in each generation of functioning (being switched "on") or not functioning (being switched "off"). The relative probabilities of the two outcomes were assigned on a stochastic basis. The present paper examines what happens when the transition probabilities are biased by the presence of regulatory genes. We find that under certain conditions regulatory genes can improve the adaptation of the population and speed up the rate of evolution (on occasion at the cost of lowering the degree of adaptation). Also, the existence of regulatory loci potentiates selection in favour of plasticity. There is a synergistic effect of regulatory genes on plastic alleles: the frequency of such alleles increases when regulatory loci are present. Thus, phenotypic selection alone can be a potentiating factor in a favour of better adaptation. Copyright 1997 Academic Press Limited.

  12. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  13. Genetic Variation in the HSD3B2 Gene and Prostate Cancer

    National Research Council Canada - National Science Library

    Reichardt, Jeurgen

    2002-01-01

    .... We propose to investigate genetic variants of genes involved in the regulation of prostatic growth and particularly in androgen metabolism, particularly the HSD3B2 gene which encodes the type II b...

  14. Genetic Variation in the HSD3B2 Gene and Prostate Cancer

    National Research Council Canada - National Science Library

    Reichardt, Juergen

    2004-01-01

    .... We propose to investigate genetic variants of genes involved in the regulation of prostatic growth and particularly in androgen metabolism, particularly the HSD3B2 gene which encodes the type II b...

  15. Gene regulation and genetics in neurochemistry, past to future.

    Science.gov (United States)

    Barger, Steven W

    2016-10-01

    Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression. But, expanding these considerations to non-peptide neurotransmitters illustrates how gene regulatory events impact neurochemistry in a much broader sense, extending beyond the neurochemicals that translate electrical signals into chemical ones in the synapse, to also include every aspect of neural development, structure, function, and pathology. From the beginning, the mutability - yet relative stability - of genes and their expression patterns were recognized as potential substrates for some of the most intriguing phenomena in neurobiology - those instances of plasticity required for learning and memory. Near-heretical speculation was offered in the idea that perhaps the very sequence of the genome was altered to encode memories. A fascinating component of the intervening progress includes evidence that the central dogma is not nearly as rigid and consistent as we once thought. And this mutability extends to the potential to manipulate that code for both experimental and clinical purposes. Astonishing progress has been made in the molecular biology of neurochemistry during the 60 years since this journal debuted. Many of the gains in conceptual understanding have been driven by methodological

  16. A genetic map of Blumeria graminis based on functional genes, avirulence genes, and molecular markers.

    Science.gov (United States)

    Pedersen, Carsten; Rasmussen, Søren W; Giese, Henriette

    2002-04-01

    A genetic map of the powdery mildew fungus, Blumeria graminis f. sp. hordei, an obligate biotrophic pathogen of barley, is presented. The linkage analysis was conducted on 81 segregating haploid progeny isolates from a cross between 2 isolates differing in seven avirulence genes. A total of 359 loci were mapped, comprising 182 amplified fragment length polymorphism markers, 168 restriction fragment length polymorphism markers including 42 LTR-retrotransposon loci and 99 expressed sequence tags (ESTs), all the seven avirulence genes, and a marker closely linked to the mating type gene. The markers are distributed over 34 linkage groups covering a total of 2114 cM. Five avirulence genes were found to be linked and mapped in clusters of three and two, and two were unlinked. The Avr(a6) gene was found to be closely linked to markers suitable for a map-based cloning approach. A linkage between ESTs allowed us to demonstrate examples of synteny between genes in B. graminis and Neurospora crassa.

  17. Gene diversity and genetic variation in lung flukes (genus Paragonimus).

    Science.gov (United States)

    Blair, David; Nawa, Yukifumi; Mitreva, Makedonka; Doanh, Pham Ngoc

    2016-01-01

    Paragonimiasis caused by lung flukes (genus Paragonimus) is a neglected disease occurring in Asia, Africa and the Americas. The genus is species-rich, ancient and widespread. Genetic diversity is likely to be considerable, but investigation of this remains confined to a few populations of a few species. In recent years, studies of genetic diversity have moved from isoenzyme analysis to molecular phylogenetic analysis based on selected DNA sequences. The former offered better resolution of questions relating to allelic diversity and gene flow, whereas the latter is more suitable for questions relating to molecular taxonomy and phylogeny. A picture is emerging of a highly diverse taxon of parasites, with the greatest diversity found in eastern and southern Asia where ongoing speciation might be indicated by the presence of several species complexes. Diversity of lung flukes in Africa and the Americas is very poorly sampled. Functional molecules that might be of value for immunodiagnosis, or as targets for medical intervention, are of great interest. Characterisation of these from Paragonimus species has been ongoing for a number of years. However, the imminent release of genomic and transcriptomic data for several species of Paragonimus will dramatically increase the rate of discovery of such molecules, and illuminate their diversity within and between species. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Molecular genetic analysis of tumor suppressor genes in ovarian cancer

    International Nuclear Information System (INIS)

    Lee, Je Ho; Park, Sang Yun

    1992-04-01

    To examine the loci of putative tumor suppressor genes in ovarian cancers, we performed the molecular genetic analysis with fresh human ovarian cancers and observed the following data. Frequent allelic losses were observed on chromosomes 4p(42%), 6p(50%), 7p(43%), 8q(31%), 12p(38%), 12q(33%), 16p(33%), 16q(37%), and 19p(34%) in addition to the previously reported 6q, 11p, and 17p in ovarian caroinomas. we have used an additional probe, TCP10 to narrow down the deleted region on chromosome 6q. TCP10 was reported to be mapped to 6q 25-27. Allelic loss was found to be 40% in epithelial ovarian caroinomas. This finding suggests that chromosome 6q 24-27 is one of putative region haboring the tumor suppressor gene of epithelial ovarian cancer (particularly serous type). To examine the association between FAL(Fractional Allelic Loss) and histopathological features, the FAL value on each phenotypically different tumor was calculated as the ratio of the number of allelic losses versus the number of cases informative in each chromosomal arm. The average FALs for each phenotypically different tumor were: serous cystoadenocarcinomas. FAL=0.31 : mucinous 0.12 : and clear cell carcinoma. FAL=0.20. (Author)

  19. Optimal Design of Genetic Studies of Gene Expression With Two-Color Microarrays in Outbred Crosses

    NARCIS (Netherlands)

    Lam, Alex C.; Fu, Jingyuan; Jansen, Ritsert C.; Haley, Chris S.; de Koning, Dirk-Jan

    2008-01-01

    Combining global gene-expression profiling and genetic analysis of natural allelic variation (genetical genomics) has great potential in dissecting the genetic pathways underlying complex phenotypes. Efficient use of microarrays is paramount in experimental design as the cost. of conducting this

  20. [Progress on biosafety assessment of marker genes in genetically modified foods].

    Science.gov (United States)

    Yang, Lichen; Yang, Xiaoguang

    2003-05-01

    Marker genes are useful in facilitating the detection of genetically modified organisms(GMO). These genes play an important role during the early identification stage of GMO development, but they exist in the mature genetically modified crops. So the safety assessment of these genes could not be neglected. In this paper, all the study on the biosafety assessment of marker genes were reviewed, their possible hazards and risks were appraised, and the marker genes proved safe were list too. GMO Labeling the is one important regulations for the development of genetically modified foods in the market. The accurate detecting techniques for GMO are the basis for setting up labeling regulation. In addition, some methods used to remove marker genes in genetically modified foods were introduced in the paper, which can eliminate their biosafety concern thoroughly.

  1. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans.

    Science.gov (United States)

    Onaka, Hiroyasu; Taniguchi, Shin-ichi; Igarashi, Yasuhiro; Furumai, Tamotsu

    2002-12-01

    Staurosporine is a representative member of indolocarbazole antibiotics. The entire staurosporine biosynthetic and regulatory gene cluster spanning 20-kb was cloned from Streptomyces sp. TP-A0274 and sequenced. The gene cluster consists of 14 ORFs and the amino acid sequence homology search revealed that it contains three genes, staO, staD, and staP, coding for the enzymes involved in the indolocarbazole aglycone biosynthesis, two genes, staG and staN, for the bond formation between the aglycone and deoxysugar, eight genes, staA, staB, staE, staJ, staI, staK, staMA, and staMB, for the deoxysugar biosynthesis and one gene, staR is a transcriptional regulator. Heterologous gene expression of a 38-kb fragment containing a complete set of the biosynthetic genes for staurosporine cloned into pTOYAMAcos confirmed its role in staurosporine biosynthesis. Moreover, the distribution of the gene for chromopyrrolic acid synthase, the key enzyme for the biosynthesis of indolocarbazole aglycone, in actinomycetes was investigated, and rebD homologs were shown to exist only in the strains producing indolocarbazole antibiotics.

  2. GENETIC SUSCEPTIBILITY TO RESPIRATORY SYNCYTIAL VIRUS BRONCHIOLITIS IN PRETERM CHILDREN IS ASSOCIATED WITH AIRWAY REMODELING GENES AND INNATE IMMUNE GENES

    NARCIS (Netherlands)

    Siezen, Christine L. E.; Bont, Louis; Hodemaekers, Hennie M.; Ermers, Marieke J.; Doornbos, Gerda; van't Slot, Ruben; Wijmenga, Ciska; van Hottwelingen, Hans C.; Kimpen, Jan L. L.; Kimman, Tjeerd G.; Hoebee, Barbara; Janssen, Riny

    Prematurity is a risk factor for severe respiratory syncytial virus bronchiolitis. We show that genetic factors in innate immune genes (IFNA13, IFNAR2, STAT2. IL27, NFKBIA, C3, IL1RN, TLR5), in innate and adaptive immunity (IFNG), and in airway remodeling genes (ADAM33 and TGFBR1), affect disease

  3. Clipboard The Indian genetic landscape and disease-related genes

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    A recent publication by The Indian Genome Variation Consortium (IGVC) provides the most thorough investigation to date of the genetic diversity of the Indian people (IGVC; Journal of Genetics, April. 2008). The authors' broad conclusion is the genetic diversity of India correlates mainly with ethnicity and language.

  4. Genetic variation at Exon2 of TLR4 gene and its association with ...

    African Journals Online (AJOL)

    This study was conducted to analyze the polymorphisms of chicken Toll-like receptors 4(TLR4) gene and aimed to provide a theoretical foundation for a further research on correlation between chicken TLR4 gene and disease resistance. Genetic variations at exon 2 of TLR4 gene in 14 chicken breeds and the red jungle ...

  5. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Naveen S. Khanzada

    2017-02-01

    Full Text Available Bipolar disorder (BPD and schizophrenia (SCH show similar neuropsychiatric behavioral disturbances, including impaired social interaction and communication, seen in autism spectrum disorder (ASD with multiple overlapping genetic and environmental influences implicated in risk and course of illness. GeneAnalytics software was used for pathway analysis and genetic profiling to characterize common susceptibility genes obtained from published lists for ASD (792 genes, BPD (290 genes and SCH (560 genes. Rank scores were derived from the number and nature of overlapping genes, gene-disease association, tissue specificity and gene functions subdivided into categories (e.g., diseases, tissues or functional pathways. Twenty-three genes were common to all three disorders and mapped to nine biological Superpathways including Circadian entrainment (10 genes, score = 37.0, Amphetamine addiction (five genes, score = 24.2, and Sudden infant death syndrome (six genes, score = 24.1. Brain tissues included the medulla oblongata (11 genes, score = 2.1, thalamus (10 genes, score = 2.0 and hypothalamus (nine genes, score = 2.0 with six common genes (BDNF, DRD2, CHRNA7, HTR2A, SLC6A3, and TPH2. Overlapping genes impacted dopamine and serotonin homeostasis and signal transduction pathways, impacting mood, behavior and physical activity level. Converging effects on pathways governing circadian rhythms support a core etiological relationship between neuropsychiatric illnesses and sleep disruption with hypoxia and central brain stem dysfunction.

  6. The genetics of music accomplishment: evidence for gene-environment correlation and interaction.

    Science.gov (United States)

    Hambrick, David Z; Tucker-Drob, Elliot M

    2015-02-01

    Theories of skilled performance that emphasize training history, such as K. Anders Ericsson and colleagues' deliberate-practice theory, have received a great deal of recent attention in both the scientific literature and the popular press. Twin studies, however, have demonstrated evidence for moderate-to-strong genetic influences on skilled performance. Focusing on musical accomplishment in a sample of over 800 pairs of twins, we found evidence for gene-environment correlation, in the form of a genetic effect on music practice. However, only about one quarter of the genetic effect on music accomplishment was explained by this genetic effect on music practice, suggesting that genetically influenced factors other than practice contribute to individual differences in music accomplishment. We also found evidence for gene-environment interaction, such that genetic effects on music accomplishment were most pronounced among those engaging in music practice, suggesting that genetic potentials for skilled performance are most fully expressed and fostered by practice.

  7. Hemodynamic evaluation before and after the STA-MCA anastomosis

    International Nuclear Information System (INIS)

    Touho, Hajime; Karasawa, Jun; Shishido, Hisashi; Yamada, Keisuke; Shibamoto, Keiji

    1990-01-01

    Twenty-seven patients with minor completed and major stroke in the chronic stage underwent superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis. The regional cerebral blood flow (rCBF), using inhalation of stable xenon and computed tomographic scanning (Xe s CT-CBF study), and the mode of transit time (MTT) in the MCA territory using intra-arterial digital aortography were measured. Activated rCBF and MTT was measured 20 minutes after the administration of acetazolamide (10 mg/kg) in 14 patients. Nineteen of the 23 patients with minor stroke (Group 1) showed immediate improvement in their neurological state within a few days of the operation, while four patients with minor stroke (Group 2) and four patients with major stroke (Group 3) showed no improvement. Based on the rCBF obtained with the Xe s CT-CBF study, affected side rCBF/unaffected side rCBF and %f [(peak DSA number/affected side MTT)/(peak DSA number/unaffected side MTT)] were compared. There was a significant positive correlation. Affected side MTT in Group 1 was 6.41±1.16 sec, preoperatively, and significantly decreased to 5.13±0.91 sec after the operation. On the other hand, preoperative MTT in Group 2 was 4.40±0.81 sec and 4.76±0.89 sec, postoperatively. Preoperative %f in Group 1 was 0.514±0.143 and significantly increased to 0.739±0.154, postoperatively. Group 2 showed no change. Vasodilatory capacity with acetazolamide showed a marked improvement in Group 1, postoperativery. Our study indicated that if MTT is moderately lengthened, %f is moderately decreased, and vasodilatory capacity is impaired, in patients with minor ischemic stroke will benefit from STA-MCA anastomosis. (author)

  8. Gene-based SNP discovery and genetic mapping in pea.

    Science.gov (United States)

    Sindhu, Anoop; Ramsay, Larissa; Sanderson, Lacey-Anne; Stonehouse, Robert; Li, Rong; Condie, Janet; Shunmugam, Arun S K; Liu, Yong; Jha, Ambuj B; Diapari, Marwan; Burstin, Judith; Aubert, Gregoire; Tar'an, Bunyamin; Bett, Kirstin E; Warkentin, Thomas D; Sharpe, Andrew G

    2014-10-01

    Gene-based SNPs were identified and mapped in pea using five recombinant inbred line populations segregating for traits of agronomic importance. Pea (Pisum sativum L.) is one of the world's oldest domesticated crops and has been a model system in plant biology and genetics since the work of Gregor Mendel. Pea is the second most widely grown pulse crop in the world following common bean. The importance of pea as a food crop is growing due to its combination of moderate protein concentration, slowly digestible starch, high dietary fiber concentration, and its richness in micronutrients; however, pea has lagged behind other major crops in harnessing recent advances in molecular biology, genomics and bioinformatics, partly due to its large genome size with a large proportion of repetitive sequence, and to the relatively limited investment in research in this crop globally. The objective of this research was the development of a genome-wide transcriptome-based pea single-nucleotide polymorphism (SNP) marker platform using next-generation sequencing technology. A total of 1,536 polymorphic SNP loci selected from over 20,000 non-redundant SNPs identified using deep transcriptome sequencing of eight diverse Pisum accessions were used for genotyping in five RIL populations using an Illumina GoldenGate assay. The first high-density pea SNP map defining all seven linkage groups was generated by integrating with previously published anchor markers. Syntenic relationships of this map with the model legume Medicago truncatula and lentil (Lens culinaris Medik.) maps were established. The genic SNP map establishes a foundation for future molecular breeding efforts by enabling both the identification and tracking of introgression of genomic regions harbouring QTLs related to agronomic and seed quality traits.

  9. Using Genetically Engineered Animal Models in the Postgenomic Era to Understand Gene Function in Alcoholism

    Science.gov (United States)

    Reilly, Matthew T.; Harris, R. Adron; Noronha, Antonio

    2012-01-01

    Over the last 50 years, researchers have made substantial progress in identifying genetic variations that underlie the complex phenotype of alcoholism. Not much is known, however, about how this genetic variation translates into altered biological function. Genetic animal models recapitulating specific characteristics of the human condition have helped elucidate gene function and the genetic basis of disease. In particular, major advances have come from the ability to manipulate genes through a variety of genetic technologies that provide an unprecedented capacity to determine gene function in the living organism and in alcohol-related behaviors. Even newer genetic-engineering technologies have given researchers the ability to control when and where a specific gene or mutation is activated or deleted, allowing investigators to narrow the role of the gene’s function to circumscribed neural pathways and across development. These technologies are important for all areas of neuroscience, and several public and private initiatives are making a new generation of genetic-engineering tools available to the scientific community at large. Finally, high-throughput “next-generation sequencing” technologies are set to rapidly increase knowledge of the genome, epigenome, and transcriptome, which, combined with genetically engineered mouse mutants, will enhance insight into biological function. All of these resources will provide deeper insight into the genetic basis of alcoholism. PMID:23134044

  10. From Genetic Stock to Genome Editing: Gene Exploitation in Wheat.

    Science.gov (United States)

    Wang, Meng; Wang, Shubin; Liang, Zhen; Shi, Weiming; Gao, Caixia; Xia, Guangmin

    2018-02-01

    Bread wheat (Triticum aestivum) ranks as one of our most important staple crops. However, its hexaploid nature has complicated our understanding of the genetic bases underlying many of its traits. Historically, functional genetic studies in wheat have focused on identifying natural variations and have contributed to assembling and enriching its genetic stock. Recently, mold-breaking advances in whole genome sequencing, exome-capture based mutant libraries, and genome editing have revolutionized strategies for genetic research in wheat. We review new trends in wheat functional genetic studies along with germplasm conservation and innovation, including the relevance of genetic stocks, and the application of sequencing-based mutagenesis and genome editing. We also highlight the potential of multiplex genome editing toolkits in addressing species-specific challenges in wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genetic architecture of gene transcription in two Atlantic salmon (Salmo salar) populations.

    Science.gov (United States)

    He, X; Houde, A L S; Pitcher, T E; Heath, D D

    2017-08-01

    Gene expression regulation has an important role in short-term acclimation and long-term adaptation to changing environments. However, the genetic architecture of gene expression has received much less attention than that of traditional phenotypic traits. In this study, we used a 5 × 5 full-factorial breeding design within each of two Atlantic salmon (Salmo salar) populations to characterize the genetic architecture of gene transcription. The two populations (LaHave and Sebago) are being used for reintroduction efforts into Lake Ontario, Canada. We used high-throughput quantitative real-time PCR to measure gene transcription levels for 22 genes in muscle tissue of Atlantic salmon fry. We tested for population differences in gene transcription and partitioned the transcription variance into additive genetic, non-additive genetic and maternal effects within each population. Interestingly, average additive genetic effects for gene transcription were smaller than those reported for traditional phenotypic traits in salmonids, suggesting that the evolutionary potential of gene transcription is lower than that of traditional traits. Contrary to expectations for early life stage traits, maternal effects were small. In general, the LaHave population had higher additive genetic effects for gene transcription than the Sebago population had, indicating that the LaHave fish have a higher adaptive potential to respond to the novel selection pressures associated with reintroduction into a novel environment. This study highlights not only the profound variation in gene transcription possible among salmonid populations but also the among-population variation in the underlying genetic architecture of such traits.

  12. Genetic variation of major histocompatibility complex genes in the endangered red-crowned crane.

    Science.gov (United States)

    Akiyama, Takuya; Kohyama, Tetsuo I; Nishida, Chizuko; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi

    2017-07-01

    Populations that have drastically decreased in the past often have low genetic variation, which may increase the risk of extinction. The genes of major histocompatibility complex (MHC) play an important role in the adaptive immune response of jawed vertebrates. Maintenance of adaptive genetic diversity such as that of MHC genes is important for wildlife conservation. Here, we determined genotypes of exon 3 of MHC class IA genes (MHCIA) and exon 2 of MHC class IIB genes (MHCIIB) to evaluate genetic variation of the endangered red-crowned crane population on Hokkaido Island, Japan, which experienced severe population decline in the past. We identified 16 and 6 alleles of MHCIA and MHCIIB, respectively, from 152 individuals. We found evidence of a positive selection at the antigen-binding sites in MHCIA exon 3 and MHCIIB exon 2. The phylogenetic analyses indicated evidence of trans-species polymorphism among the crane MHC genes. The genetic variability in both classes of MHC genes at the population level was low. No geographic structure was found based on the genetic diversity of microsatellite and MHC genes. Our study provides useful data for the optimal management of the red-crowned crane population in Hokkaido and can contribute to future studies on MHC genes of the continental populations of the red-crowned crane and other crane species.

  13. Genetic variation at Exon2 of TLR4 gene and its association with ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    . The genetic difference in these receptor genes can cause difference in the resistance to various pathogens (Werling and Jungi, 2003; Machida et al., 2006; Akira and Takeda, 2004). Recognition ability of. TLR4 to LPS among ...

  14. RESEARCH ARTICLE The genetic effect ofMyf5 gene inrabbit meat ...

    Indian Academy of Sciences (India)

    Navya

    2017-01-31

    Songjia Lai, College of Animal Science and Technology, Sichuan Agricultural University,. Huimin road, 611130 Chengdu, China. Email: 408458501@qq.com. Running title: The genetic diversity and haplotype of Myf5 gene.

  15. Genetic control of flowering using the FWA gene

    NARCIS (Netherlands)

    Soppe, W.J.J.; Peeters, A.J.M.; Koornneef, M.

    1999-01-01

    This invention relates to the determination, cloning and expression of the flowering time gene FWA and the use of this gene to delay or accelerate flowering in a large variety of plant species. Specifically the gene that was determined is that of Arabidopsis thaliana. Naturally the invention extends

  16. Awareness On Genetic 'Erosion\\' Of Some Economic Genes In ...

    African Journals Online (AJOL)

    of the dominant genes were significantly different to the expected mendelian frequency. It is clearly demonstrated that these major genes are at the brink of extinction considering their frequency of occurrence in the study area. Conclusively, there is a need for preservation and awareness on the contribution of these genes to ...

  17. Population Genetic Structure and Gene Flow Among Nigerian Goats ...

    African Journals Online (AJOL)

    Population Genetic structure in 200 indigenous goats sampled across four states from the South-Western and South Southern region of Nigeria was assessed using 7 microsatellite DNA markers. Observed Analysis of molecular genetic variation (AMOVA) was higher within populations (3.47) than among populations (1.84) ...

  18. Specific genetic modifications of domestic animals by gene targeting and animal cloning.

    Science.gov (United States)

    Wang, Bin; Zhou, Jiangfeng

    2003-11-13

    The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.

  19. Music genetics research: Association with musicality of a polymorphism in the AVPR1A gene

    OpenAIRE

    Mariath, Luiza Monteavaro; Silva, Alexandre Mauat da; Kowalski, Thayne Woycinck; Gattino, Gustavo Schulz; Araujo, Gustavo Andrade de; Figueiredo, Felipe Grahl; Tagliani-Ribeiro, Alice; Roman, Tatiana; Vianna, Fernanda Sales Luiz; Schuler-Faccini, Lavínia; Schuch, Jaqueline Bohrer

    2017-01-01

    Abstract Musicality is defined as a natural tendency, sensibility, knowledge, or talent to create, perceive, and play music. Musical abilities involve a great range of social and cognitive behaviors, which are influenced by both environmental and genetic factors. Although a number of studies have yielded insights into music genetics research, genes and biological pathways related to these traits are not fully understood. Our hypothesis in the current study is that genes associated with differ...

  20. Measuring the genetic influence on human life span: gene-environment interaction and sex-specific genetic effects

    DEFF Research Database (Denmark)

    Tan, Qihua; De Benedictis, G; Yashin, Annatoli

    2001-01-01

    New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic and demographicinf...

  1. Recessive Cancer Genes Engage in Negative Genetic Interactions with Their Functional Paralogs

    Directory of Open Access Journals (Sweden)

    Matteo D’Antonio

    2013-12-01

    Full Text Available Cancer genetic heterogeneity offers a wide repertoire of molecular determinants to be screened as therapeutic targets. Here, we identify potential anticancer targets by exploiting negative genetic interactions between genes with driver loss-of-function mutations (recessive cancer genes and their functionally redundant paralogs. We identify recessive genes with additional copies and experimentally test our predictions on three paralogous pairs. We confirm digenic negative interactions between two cancer genes (SMARCA4 and CDH1 and their corresponding paralogs (SMARCA2 and CDH3. Furthermore, we identify a trigenic negative interaction between the cancer gene DNMT3A, its functional paralog DNMT3B, and a third gene, DNMT1, which encodes the only other human DNA-methylase domain. Although our study does not exclude other causes of synthetic lethality, it suggests that functionally redundant paralogs of cancer genes could be targets in anticancer therapy.

  2. Functional complementation studies identify candidate genes and common genetic variants associated with ovarian cancer survival

    DEFF Research Database (Denmark)

    Quaye, Lydia; Dafou, Dimitra; Ramus, Susan J

    2009-01-01

    Common germline genetic variation and/or somatic alterations in tumours may be associated with survival in women diagnosed with ovarian cancer. The successful identification of genetic associations relies on a suitable strategy for identifying and testing candidate genes. We used microcell-mediat...

  3. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 2. Genetics and mapping of a new leaf rust resistance gene in Triticum aestivum L. × Triticum timopheevii Zhuk. derivative 'Selection G12'. AMIT KUMAR SINGH JAI BHAGWAN SHARMA VINOD PRADEEP KUMAR SINGH ANUPAM SINGH NIHARIKA MALLICK.

  4. Molecular genetic techniques for gene manipulation in Candida albicans

    Science.gov (United States)

    Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

    2014-01-01

    Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains. PMID:24759671

  5. Genetic engineering in insects: Cloning and transformation of genes conferring resistance to insecticides

    International Nuclear Information System (INIS)

    Mouches, C.

    1988-01-01

    Genetic engineering and transformation offer the possibility of modifying the genetic material of insects. These techniques will make it possible, for example, to transfer genes conferring resistance to insecticides into the genome of beneficial species, or to develop new methods of combating insect pests and disease carrying insects. We cloned two genes which contain the code for proteins that detoxify insecticides. The first, esterase B1 from Culex quinquefasciatus, is amplified approximately 250 times in Californian mosquitoes resistant to organic phosphate insecticides. A second esterase gene was cloned from bacteria which break down various organic phosphates. Experiments are in progress to transfer these genes to Drosophila and beneficial insects. These same genes could also serve as selection markers for the purpose of developing transformation techniques for different insects whose genome one wishes to modify using genetic engineering techniques. (author). 5 refs

  6. Generation of a gene cassette for genetically engineered Salmonella Enteritidis in the specific region of the sipC gene

    Directory of Open Access Journals (Sweden)

    M Ghasemi

    2017-05-01

    Full Text Available Introduction: Salmonellosis is an infection caused by eating contaminated food with Salmonella, and it can occur in humans and other animals. Salmonella has acquired the ability to create the infection due to the presence of several virulence genes. One of the virulence genes of salmonella is sipC gene that coding the SipC protein. The aim of this study was creating the gene cassette to genetically engineered Salmonella enteritidis in the specific region of the sipC gene. Methods: In this study, after DNA extraction from Salmonella, the upstream and downstream regions of the sipC gene was amplified based on PCR method. The PCR products were cloned with T/A cloning method and they were inserted into the pGEM vector. In order to generate the final gene cassette, each of the upstream and downstream regions of the sipC gene was subcloned into the pET32 vector, and cloning accuracy was assessed by PCR and enzyme digestion methods. Results: Amplification of the 320 bp upstream and 206 bp downstream of sipC gene was successful by PCR method. T/A cloning of these fragments were caused the formation of two pGEM-up and pGEM-down recombinant vectors. Results that were confirmed the sub-cloning accuracy indicate the formation of the final pET32-up-down gene cassette. Conclusion: The generated gene cassette in this study was considered as a multi-purpose cassette that is able to specific gene manipulation of Salmonella sipC gene by homologous recombination matched. This gene cassette has the necessary potential for sipC gene deletion or insertion of any useful gene instead of sipC gene.

  7. GENETICALLY MODIFIED ATHLETES: BIOMEDICAL ETHICS, GENE DOPING AND SPORT

    OpenAIRE

    Andy Miah

    2004-01-01

    The author discusses the extremely important issue of modifying athletes genetically in order to develop elite sportsmen. He sheds light on various aspects of bioethics and their implications for the practices and management of sport in general.

  8. GENETICALLY MODIFIED ATHLETES: BIOMEDICAL ETHICS, GENE DOPING AND SPORT

    Directory of Open Access Journals (Sweden)

    Andy Miah

    2004-09-01

    Full Text Available The author discusses the extremely important issue of modifying athletes genetically in order to develop elite sportsmen. He sheds light on various aspects of bioethics and their implications for the practices and management of sport in general.

  9. Bacterial gene transfer by natural genetic transformation in the environment.

    OpenAIRE

    Lorenz, M G; Wackernagel, W

    1994-01-01

    Natural genetic transformation is the active uptake of free DNA by bacterial cells and the heritable incorporation of its genetic information. Since the famous discovery of transformation in Streptococcus pneumoniae by Griffith in 1928 and the demonstration of DNA as the transforming principle by Avery and coworkers in 1944, cellular processes involved in transformation have been studied extensively by in vitro experimentation with a few transformable species. Only more recently has it been c...

  10. Social science genetics and fertility : Essays on the Interplay Between Genes, Social Environment and Human Fertility

    NARCIS (Netherlands)

    Tropf, Felix

    2016-01-01

    To what extent do genes influence the age at which you have your first child and the number of children that you have? Does the social environment influence genetic effects on fertility? Do genes lead to spurious associations between life outcomes such as education and age at first birth? The social

  11. Genetic analysis and location of gene for resistance to stripe rust in ...

    Indian Academy of Sciences (India)

    Bulked segregant analysis (BSA) and F2 segregation analysis were used for detecting polymorphic primers to locate the gene. The resistance of the NIL Taichung 29*6/Strubes Dickkopf to CYR26 was controlled by a single dominant gene, named YrSD. The primer pair Xbarc59 on 5B was linked to YrSD and the genetic ...

  12. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    AMIT KUMAR SINGH

    Selection G12 showed resistance at both seedling and adult plant stages. Genetic analysis in F1, F2 and F2:3 families at the seedling stage revealed that leaf rust resistance in Selection G12 is conditioned by a single incompletely dominant gene. The leaf rust resistance gene was mapped to chromosome 3BL with SSR ...

  13. Genetic markers, translocations and sexing genes on chromosome 2 of Ceratitis capitata

    International Nuclear Information System (INIS)

    Cladera, J.L.

    1997-01-01

    A review is presented of results obtained in a search for genetic markers, translocations and selectable genes obtained at the Instituto de Genetica, Castelar, Argentina, with special reference to chromosome 2 linked mutations and genes useful for developing self-sexing strains in Ceratitis capitata. (author)

  14. A systematic analysis of genetic dilated cardiomyopathy reveals numerous ubiquitously expressed and muscle-specific genes

    NARCIS (Netherlands)

    Harakalova, Magdalena; Kummeling, Gijs; Sammani, Arjan; Linschoten, Marijke; Baas, Annette F.; van der Smagt, Jasper; Doevendans, Pieter A.; van Tintelen, J. Peter; Dooijes, Dennis; Mokry, Michal; Asselbergs, Folkert W.

    2015-01-01

    Despite considerable progress being made in genetic diagnostics for dilated cardiomyopathy (DCM) using panels of the most prevalent genes, the cause remains unsolved in a substantial percentage of patients. We hypothesize that several previously described DCM genes with low or unknown prevalence

  15. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    DEFF Research Database (Denmark)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovari...

  16. The impact of founder effects, gene flow, and European admixture on native American genetic diversity.

    Science.gov (United States)

    Hunley, Keith; Healy, Meghan

    2011-12-01

    Recent studies have concluded that the global pattern of neutral genetic diversity in humans reflects a series of founder effects and population movements associated with our recent expansion out of Africa. In contrast, regional studies tend to emphasize the significance of more complex patterns of colonization, gene flow, and secondary population movements in shaping patterns of diversity. Our objective in this study is to examine how founder effects, gene flow, and European admixture have molded patterns of neutral genetic diversity in the Americas. Our strategy is to test the fit of a serial founder effects process to the pattern of neutral autosomal genetic variation and to examine the contribution of gene flow and European admixture to departures from fit. The genetic data consist of 678 autosomal microsatellite loci assayed by Wang and colleagues in 530 individuals in 29 widely distributed Native American populations. We find that previous evidence for serial founder effects in the Americas may be driven in part by high levels of European admixture in northern North America, intermediate levels in Central America, and low levels in eastern South America. Geographically patterned admixture may also account for previously reported genetic differences between Andean and Amazonian groups. Though admixture has obscured the precise details of precontact evolutionary processes, we find that genetic diversity is still largely hierarchically structured and that gene flow between neighboring groups has had surprisingly little impact on macrogeographic patterns of genetic diversity in the Americas. 2011 Wiley Periodicals, Inc.

  17. Candidate genes detected in transcriptome studies are strongly dependent on genetic background.

    Directory of Open Access Journals (Sweden)

    Pernille Sarup

    2011-01-01

    Full Text Available Whole genome transcriptomic studies can point to potential candidate genes for organismal traits. However, the importance of potential candidates is rarely followed up through functional studies and/or by comparing results across independent studies. We have analysed the overlap of candidate genes identified from studies of gene expression in Drosophila melanogaster using similar technical platforms. We found little overlap across studies between putative candidate genes for the same traits in the same sex. Instead there was a high degree of overlap between different traits and sexes within the same genetic backgrounds. Putative candidates found using transcriptomics therefore appear very sensitive to genetic background and this can mask or override effects of treatments. The functional importance of putative candidate genes emerging from transcriptome studies needs to be validated through additional experiments and in future studies we suggest a focus on the genes, networks and pathways affecting traits in a consistent manner across backgrounds.

  18. Genetic analysis of fertility restoration genes for WAtype cytoplasmic ...

    African Journals Online (AJOL)

    Pollen staining test with 1% I2KI solution showed segregation ratio of 15:1 (fertile: sterile), representing two nuclear independent dominant genes controlling the trait carried by fertile parent DN-33-18. Segregation for spikelet fertility in F2 confirmed the results of pollen fertility test. Molecular tagging of fertility restorer genes ...

  19. Genetic polymorphism of five genes associated with growth traits in ...

    African Journals Online (AJOL)

    While IGF-1gene revealed three fragments after digestion with Haelll with genotype AA, AB and BB and the frequencies of allele A varied from 0.432 to 0.731. Furthermore, PCR-RFLP of POUIF1 gene showed two fragments after digestion by Pst1 endonuclease with genotype TT and CC and the frequencies of allele T ...

  20. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2016-08-26

    Oryza sativa L.) ... four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. ... Please take note of this change.

  1. Chicken egg yolk immunoglobulin (IgY) developed against fusion protein LTB-STa-STb neutralizes the toxicity of Escherichia coli heat-stable enterotoxins.

    Science.gov (United States)

    You, J; Xu, Y; Li, H; Wang, L; Wu, F; Xu, F; Jin, L; Li, S; Li, X

    2014-08-01

    To obtain a recombinant enterotoxigenic Escherichia coli (ETEC) fusion enterotoxin protein LTB-STa-STb (Bab) that can express the immunogenicity of the haptens STa and STb and induce their corresponding neutralizing antibodies. The three important ETEC enterotoxin genes coding LTB, STa and STb were PCR-amplified, and the amplified products were fused to construct the trivalent enterotoxin expression vector pET30-Bab. SDS-PAGE and Western blot were used to verify the expression of the fusion protein Bab by E. coli BL21 carrying plasmid pET30-Bab. Laying hens immunized with Bab developed high egg yolk immunoglobulin (IgY) titres specific to LTB, STa and STb, and all were significantly higher than those in the control group (P protein containing three important ETEC enterotoxins may serve as an effective and convenient polyvalent toxoid that can be used to produce multiple antitoxin IgYs to prevent colibacillosis caused by ETEC with various fimbriae in young animals. © 2014 The Society for Applied Microbiology.

  2. Genetic investigation of 100 heart genes in sudden unexplained death victims in a forensic setting

    DEFF Research Database (Denmark)

    Christiansen, Sofie Lindgren; Hertz, Christin Løth; Ferrero, Laura

    2016-01-01

    %) individuals carried variants with a likely functional effect. Ten (40%) of these variants were located in genes associated with cardiomyopathies and 15 (60%) of the variants in genes associated with cardiac channelopathies. Nineteen individuals carried variants with unknown functional effect. Our findings...... indicate that broad genetic investigation of SUD victims increases the diagnostic outcome, and the investigation should comprise genes involved in both cardiomyopathies and cardiac channelopathies.European Journal of Human Genetics advance online publication, 21 September 2016; doi:10.1038/ejhg.2016.118....

  3. A genetic similarity algorithm for searching the Gene Ontology terms and annotating anonymous protein sequences.

    Science.gov (United States)

    Othman, Razib M; Deris, Safaai; Illias, Rosli M

    2008-02-01

    A genetic similarity algorithm is introduced in this study to find a group of semantically similar Gene Ontology terms. The genetic similarity algorithm combines semantic similarity measure algorithm with parallel genetic algorithm. The semantic similarity measure algorithm is used to compute the similitude strength between the Gene Ontology terms. Then, the parallel genetic algorithm is employed to perform batch retrieval and to accelerate the search in large search space of the Gene Ontology graph. The genetic similarity algorithm is implemented in the Gene Ontology browser named basic UTMGO to overcome the weaknesses of the existing Gene Ontology browsers which use a conventional approach based on keyword matching. To show the applicability of the basic UTMGO, we extend its structure to develop a Gene Ontology -based protein sequence annotation tool named extended UTMGO. The objective of developing the extended UTMGO is to provide a simple and practical tool that is capable of producing better results and requires a reasonable amount of running time with low computing cost specifically for offline usage. The computational results and comparison with other related tools are presented to show the effectiveness of the proposed algorithm and tools.

  4. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    Genetic analysis in F1, F2 and F2.3 families at the seedling stage revealed that leaf rust resistance in Selection G12 is conditioned by a single incompletely dominant gene. The leaf rust resistance gene was mapped to chromosome 3BL with SSR markers Xgwm114 and Xgwm547 flanking the gene at a distance of 28.3 cM ...

  5. Genetic Localization of Foraging (For): A Major Gene for Larval Behavior in Drosophila Melanogaster

    OpenAIRE

    de-Belle, J. S.; Hilliker, A. J.; Sokolowski, M. B.

    1989-01-01

    Localizing genes for quantitative traits by conventional recombination mapping is a formidable challenge because environmental variation, minor genes, and genetic markers have modifying effects on continuously varying phenotypes. We describe ``lethal tagging,'' a method used in conjunction with deficiency mapping for localizing major genes associated with quantitative traits. Rover/sitter is a naturally occurring larval foraging polymorphism in Drosophila melanogaster which has a polygenic pa...

  6. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  7. Genetic accommodation in the wild: evolution of gene expression plasticity during character displacement.

    Science.gov (United States)

    Levis, N A; Serrato-Capuchina, A; Pfennig, D W

    2017-09-01

    Ecological character displacement is considered crucial in promoting diversification, yet relatively little is known of its underlying mechanisms. We examined whether evolutionary shifts in gene expression plasticity ('genetic accommodation') mediate character displacement in spadefoot toads. Where Spea bombifrons and S. multiplicata occur separately in allopatry (the ancestral condition), each produces alternative, diet-induced, larval ecomorphs: omnivores, which eat detritus, and carnivores, which specialize on shrimp. By contrast, where these two species occur together in sympatry (the derived condition), selection to minimize competition for detritus has caused S. bombifrons to become nearly fixed for producing only carnivores, suggesting that character displacement might have arisen through an extreme form of genetic accommodation ('genetic assimilation') in which plasticity is lost. Here, we asked whether we could infer a signature of this process in regulatory changes of specific genes. In particular, we investigated whether genes that are normally expressed more highly in one morph ('biased' genes) have evolved reduced plasticity in expression levels among S. bombifrons from sympatry compared to S. bombifrons from allopatry. We reared individuals from sympatry vs. allopatry on detritus or shrimp and measured the reaction norms of nine biased genes. Although different genes displayed different patterns of gene regulatory evolution, the combined gene expression profiles revealed that sympatric individuals had indeed lost the diet-induced gene expression plasticity present in allopatric individuals. Our data therefore provide one of the few examples from natural populations in which genetic accommodation/assimilation can be traced to regulatory changes of specific genes. Such genetic accommodation might mediate character displacement in many systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For

  8. Disease-aging network reveals significant roles of aging genes in connecting genetic diseases.

    Science.gov (United States)

    Wang, Jiguang; Zhang, Shihua; Wang, Yong; Chen, Luonan; Zhang, Xiang-Sun

    2009-09-01

    One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases. Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions (PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging. Type I diseases have their genes significantly close to aging genes, while type II diseases do not. Furthermore, we examine the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the genes of type I diseases are in a central position of a PPI network while type II are not; (3) more importantly, we define an asymmetric closeness based on the PPI network to describe relationships between diseases, and find that aging genes make a significant contribution to associations among diseases, especially among type I diseases. In conclusion, the network-based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but also biological implications for prying into the nature of human diseases.

  9. Genetic differentiation of the mitochondrial cytochrome oxidase C subunit I gene in genus Paramecium (Protista, Ciliophora.

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    Full Text Available BACKGROUND: The mitochondrial cytochrome c oxidase subunit I (COI gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. CONCLUSIONS: Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp.

  10. Genetic differentiation of the mitochondrial cytochrome oxidase C subunit I gene in genus Paramecium (Protista, Ciliophora).

    Science.gov (United States)

    Zhao, Yan; Gentekaki, Eleni; Yi, Zhenzhen; Lin, Xiaofeng

    2013-01-01

    The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp.

  11. The impact of human gene patents on genetic testing in the United Kingdom.

    Science.gov (United States)

    Hawkins, Naomi

    2011-04-01

    This article reports the results of an empirical study examining the impact of human gene patents on the development and delivery of genetic tests in the public sector in the United Kingdom. Semi-structured qualitative interviews. The study found that, despite the potential for gene patents to have significant negative consequences for genetic testing, in fact, human gene patents have little or no impact on practice for those developing genetic tests in the public sector in the United Kingdom. This is not because patents are managed optimally; rather, gene patents are essentially ignored. This article reports the factors that motivate this behavior. At least insofar as there seems to be no apparent problem of lack of patient access, there is no significant public health problem. However, there is divergence between the legal and the practical situation. Complacency about the lack of impact of patents on access to diagnostics is risky, and concerns about patents should be addressed proactively, rather than reactively.

  12. The Impact of Human Gene Patents on Genetic Testing in the UK

    Science.gov (United States)

    Hawkins, Naomi

    2011-01-01

    This paper reports the results of an empirical study examining the impact of human gene patents on the development and delivery of genetic tests in the public sector in the UK. The study found that, despite the potential for gene patents to have significant negative consequences for genetic testing, in fact, human gene patents have little or no impact on practice for those developing genetic tests in the public sector in the UK. This is not because patents are managed optimally; rather, gene patents are essentially ignored. This paper reports the factors that motivate this behavior. At least insofar as there seems to be no apparent problem of lack of patient access, there is no significant public health problem. However, there is divergence between the legal and the practical situation. Complacency about the lack of impact of patents on access to diagnostics is risky, and concerns about patents should be addressed proactively, rather than reactively. PMID:21150786

  13. Genetic imaging consortium for addiction medicine: From neuroimaging to genes

    Science.gov (United States)

    Mackey, Scott; Kan, Kees-Jan; Chaarani, Bader; Alia-Klein, Nelly; Batalla, Albert; Brooks, Samantha; Cousijn, Janna; Dagher, Alain; de Ruiter, Michiel; Desrivieres, Sylvane; Feldstein Ewing, Sarah W.; Goldstein, Rita Z.; Goudriaan, Anna E.; Heitzeg, Mary M.; Hutchison, Kent; Li, Chiang-Shan R.; London, Edythe D.; Lorenzetti, Valentina; Luijten, Maartje; Martin-Santos, Rocio; Morales, Angelica M.; Paulus, Martin P.; Paus, Tomas; Pearlson, Godfrey; Schluter, Renée; Momenan, Reza; Schmaal, Lianne; Schumann, Gunter; Sinha, Rajita; Sjoerds, Zsuzsika; Stein, Dan J.; Stein, Elliot A.; Solowij, Nadia; Tapert, Susan; Uhlmann, Anne; Veltman, Dick; van Holst, Ruth; Walter, Henrik; Wright, Margaret J.; Yucel, Murat; Yurgelun-Todd, Deborah; Hibar, Derrek P.; Jahanshad, Neda; Thompson, Paul M.; Glahn, David C.; Garavan, Hugh; Conrod, Patricia

    2016-01-01

    Since the sample size of a typical neuroimaging study lacks sufficient statistical power to explore unknown genomic associations with brain phenotypes, several international genetic imaging consortia have been organized in recent years to pool data across sites. The challenges and achievements of these consortia are considered here with the goal of leveraging these resources to study addiction. The authors of this review have joined together to form an Addiction working group within the framework of the ENIGMA project, a meta-analytic approach to multisite genetic imaging data. Collectively, the Addiction working group possesses neuroimaging and genomic data obtained from over 10,000 subjects. The deadline for contributing data to the first round of analyses occurred at the beginning of May 2015. The studies performed on this data should significantly impact our understanding of the genetic and neurobiological basis of addiction. PMID:26822360

  14. From Biophysics to Evolutionary Genetics: Statistical Aspects of Gene Regulation

    Science.gov (United States)

    Lässig, Michael

    Genomic functions often cannot be understood at the level of single genes but require the study of gene networks. This systems biology credo is nearly commonplace by now. Evidence comes from the comparative analysis of entire genomes: current estimates put, for example, the number of human genes at around 22,000, hardly more than the 14,000 of the fruit fly, and not even an order of magnitude higher than the 6,000 of baker's yeast. The complexity and diversity of higher animals, therefore, cannot be explained in terms of their gene numbers. If, however, a biological function requires the concerted action of several genes, and conversely, a gene takes part in several functional contexts, an organism may be defined less by its individual genes but by their interactions. The emerging picture of the genome as a strongly interacting system with many degrees of freedom brings new challenges for experiment and theory, many of which are of a statistical nature. And indeed, this picture continues to make the subject attractive to a growing number of statistical physicists.

  15. Genetic variation of calsarcin-1 gene and association with carcass ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Fonseca et al., 2003). Meat tender- ness has been inconsistently correlated to muscle fibre frequency and size (Cross et al., 1972; Calkins et al., .... artificial selection had put little pressure on this gene locus. Hence, the artificial ...

  16. Selfish Gene Algorithm Vs Genetic Algorithm: A Review

    Science.gov (United States)

    Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed

    2016-11-01

    Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.

  17. Genetic variation and population structure of interleukin genes ...

    Indian Academy of Sciences (India)

    results of phylogenetic analysis based on genetic distances between populations agreed with known social and cultural data on these ethnic groups. .... relatively homogeneous culture, but to different caste clus- ters, priest (Brahmins: .... members of the South Asian diaspora in western societies. Thus, as pointed out by ...

  18. Phenotypic effects of genetic variability in human clock genes on ...

    Indian Academy of Sciences (India)

    Recent findings have shown that the variable number tandem polymorphism in PER3, previously linked to diurnal preference, has profound effects on sleep homeostasis and cognitive performance following sleep loss, confirming the close association between the processes of circadian rhythms and sleep at the genetic ...

  19. Genetic variations in androgen metabolism genes and associations ...

    African Journals Online (AJOL)

    Background. In South Africa white men have the highest incidence of prostate cancer (PCa), coloured (mixed ancestry) men have an intermediate incidence, and low incidences are reported for black and Asian men. It has been suggested that ethnic differences in incidence and mortality of PCa are related to genetic ...

  20. Clipboard The Indian genetic landscape and disease-related genes

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    This mixed ancestry is difficult to interpret; it can arise from recent admixture among many founder populations or it can be due to shared ancestry before the divergence of sub-populations. There is a global continuity in genetic diversity that follows a geographical pattern, but some places on earth acted as barriers, limiting ...

  1. Role of common sarcomeric gene polymorphisms in genetic ...

    Indian Academy of Sciences (India)

    Department of Genetics,Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226 014, India; Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow 226 014, India; Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi ...

  2. Impact of genetic polymorphisms of four cytokine genes on treatment ...

    African Journals Online (AJOL)

    Manar Obada

    2016-04-25

    Apr 25, 2016 ... TGF-b. Abstract Background: Many factors contribute for viral clearance and response to antiviral therapy. Genetic polymorphisms of cytokines, ... (HCC) [2]. Interferon had been the cornerstone of HCV ther- apy for almost two decades [3]. Direct-acting anti-viral (DAA) drugs active against different targets of ...

  3. Impact of genetic polymorphisms of four cytokine genes on treatment ...

    African Journals Online (AJOL)

    Background: Many factors contribute for viral clearance and response to antiviral therapy. Genetic polymorphisms of cytokines, chemokines, and their receptors can alter the immune response against Hepatitis C virus (HCV). Aim of the study: The aim of the current study is to assess single nucleotide polymorphism (SNP) in ...

  4. Population genetic structure and gene flow of Forsythia suspensa ...

    African Journals Online (AJOL)

    Forsythia suspensa (Thunb.) Vahl, is a climbing plant belonging to Oleaceae, which is widely distributed in China, North and South Korea and Japan. In this study, the genetic diversity of F. suspensa was analyzed using two noncoding chloroplast DNA regions (trnL-F and psbA-trnH) and nuclear ribosomal internal ...

  5. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Science.gov (United States)

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  6. HIERARCHICAL GENETIC STRUCTURE AND GENE FLOW IN MACROGEOGRAPHIC POPULATIONS OF THE EASTERN TENT CATERPILLAR (MALACOSOMA AMERICANUM).

    Science.gov (United States)

    Costa, James T; Ross, Kenneth G

    1994-08-01

    Genetic structure and inferred rates of gene flow in macrogeographic populations of the eastern tent caterpillar Malacosoma americanum were analyzed at two hierarchical scales: local demes and regional subpopulations. Wright's F-statistics were used to estimate population genetic structure using multilocus genotypic data generated electrophoretically. Estimated values of F ST and the distribution of private alleles were then used to obtain indirect estimates of gene flow. We found modest, though significant, genetic structure at both spatial scales, a pattern consistent with high rates of gene flow over the large distances involved. Modest values obtained for Nei's genetic distance also suggested high levels of gene flow across the range of this species, although some gene-flow restriction resulting from isolation by distance was suggested by a positive regression of genetic distance on geographic distance. The observed homogeneity at enzyme loci across the range of M. americanum parallels the reported uniformity in morphology, suggesting a general absence of local genetic differentiation in this widely distributed species. The genetic homogeneity observed in this wide-ranging insect is discussed in terms of organism-specific environmental experience at different spatial scales. Some organisms occupying apparently heterogeneous environments may ameliorate unsuitable local conditions through microhabitat selection or behavioral modification of their microenvironment. This may be accomplished in M. americanum through group shelter construction and behavioral thermoregulation, closely tying thermoregulation to social biology in this species. If in this way the tent helps produce an effectively homogeneous environment for this species across its extensive range, this system may provide a unique example of how social behavior can influence the distribution of genetic variation in a population. © 1994 The Society for the Study of Evolution.

  7. Hemoglobin genetics: recent contributions of GWAS and gene editing

    Science.gov (United States)

    Smith, Elenoe C.; Orkin, Stuart H.

    2016-01-01

    The β-hemoglobinopathies are inherited disorders resulting from altered coding potential or expression of the adult β-globin gene. Impaired expression of β-globin reduces adult hemoglobin (α2β2) production, the hallmark of β-thalassemia. A single-base mutation at codon 6 leads to formation of HbS (α2βS2) and sickle cell disease. While the basis of these diseases is known, therapy remains largely supportive. Bone marrow transplantation is the only curative therapy. Patients with elevated levels of fetal hemoglobin (HbF, α2γ2) as adults exhibit reduced symptoms and enhanced survival. The β-globin gene locus is a paradigm of cell- and developmental stage-specific regulation. Although the principal erythroid cell transcription factors are known, mechanisms responsible for silencing of the γ-globin gene were obscure until application of genome-wide association studies (GWAS). Here, we review findings in the field. GWAS identified BCL11A as a candidate negative regulator of γ-globin expression. Subsequent studies have established BCL11A as a quantitative repressor. GWAS-related single-nucleotide polymorphisms lie within an essential erythroid enhancer of the BCL11A gene. Disruption of a discrete region within the enhancer reduces BCL11A expression and induces HbF expression, providing the basis for gene therapy using gene editing tools. A recently identified, second silencing factor, leukemia/lymphoma-related factor/Pokemon, shares features with BCL11A, including interaction with the nucleosome remodeling deacetylase repressive complex. These findings suggest involvement of a common pathway for HbF silencing. In addition, we discuss other factors that may be involved in γ-globin gene silencing and their potential manipulation for therapeutic benefit in treating the β-hemoglobinopathies. PMID:27340226

  8. GENETIC STABILITY ANALYSIS OF RB GENE IN GENETICALLY MODIFIED POTATO LINES TOLERANT TO Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    Edy Listanto

    2016-02-01

    Full Text Available Development of potato cultivars with high levels of broad spectrum resistance is a key long-term management strategy against late blight disease caused by Phytophthora infestans. Six progeny lines of hybridization between transgenic potato Katahdin SP951 with non-transgenic Granola and Atlantic were selected based on agronomical characteristics and resistance to late blight disease. The study aimed to analyze the number of insertions and stability of inserted RB gene in the transgenic potato lines. The research was carried out through plant DNA extraction, southern blot analysis and polymerase chain reaction (PCR. Southern blot analysis was used to detect the number of inserts integrated into potato genome, while PCR analysis was used to detect stability of RB gene from generation to generation. The results showed that the progenies obtained from hybridization between Atlantic and transgenic Katahdin SP951 (lines No. 20 and 27 and between Granola and transgenic Katahdin SP951 (line No. 69 contained one copy number of RB gene, according to the probing of nptII. The result is similar to that of inserted RB gene found in the parental transgenic Katahdin SP951. The presence of RB gene in four different generations (G0, G1, G2 and G3 showed stable integration of the gene into the plant genome. The single copy number of RB gene will repress the occurrence of silencing gene expression. The stability analysis of RB gene can determine that the gene is still present in plant genome after several generations.

  9. Multiple genetic interaction experiments provide complementary information useful for gene function prediction.

    Directory of Open Access Journals (Sweden)

    Magali Michaut

    Full Text Available Genetic interactions help map biological processes and their functional relationships. A genetic interaction is defined as a deviation from the expected phenotype when combining multiple genetic mutations. In Saccharomyces cerevisiae, most genetic interactions are measured under a single phenotype - growth rate in standard laboratory conditions. Recently genetic interactions have been collected under different phenotypic readouts and experimental conditions. How different are these networks and what can we learn from their differences? We conducted a systematic analysis of quantitative genetic interaction networks in yeast performed under different experimental conditions. We find that networks obtained using different phenotypic readouts, in different conditions and from different laboratories overlap less than expected and provide significant unique information. To exploit this information, we develop a novel method to combine individual genetic interaction data sets and show that the resulting network improves gene function prediction performance, demonstrating that individual networks provide complementary information. Our results support the notion that using diverse phenotypic readouts and experimental conditions will substantially increase the amount of gene function information produced by genetic interaction screens.

  10. Genetic variation in adipokine genes and risk of colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Pechlivanis, S.; Bermejo, J. L.; Pardini, Barbara; Naccarati, Alessio; Vodičková, Ludmila; Novotný, J.; Hemminki, K.; Vodička, Pavel; Försti, A.

    2009-01-01

    Roč. 160, č. 6 (2009), s. 933-940 ISSN 0804-4643 R&D Projects: GA ČR GA310/07/1430; GA MZd NR8563 Grant - others:EU(SE) LSHC-CT-2004-503465 Institutional research plan: CEZ:AV0Z50390512 Keywords : colorectal cancer * diabetes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.539, year: 2009

  11. Genetic differentiation and gene flow between the Tunisian ovine ...

    African Journals Online (AJOL)

    Haifa

    of selling the fat of the tail that represents up to 15% of the carcass weight in the B breed. Certainly crossbreeding allows genetic progress but could lead to a dilution of .... their first cross with the D'Man. Anim. Res. 50:373-381. Lassoued N, Rekik M, Mahouachi M, Ben Hamouda M (2004). The effect of nutrition prior to and ...

  12. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh

    2012-01-01

    gene coexpression and protein-protein interaction networks that were strongly associated with islet insulin secretion and HbA(1c). We integrated our data to form a rank list of putative T2D genes, of which CHL1, LRFN2, RASGRP1, and PPM1K were validated in INS-1 cells to influence insulin secretion......, whereas GPR120 affected apoptosis in islets. Expression variation of the top 20 genes explained 24% of the variance in HbA(1c) with no claim of the direction. The data present a global map of genes associated with islet dysfunction and demonstrate the value of systems genetics for the identification...

  13. Genetic variants in hormone-related genes and risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Tess Clendenen

    Full Text Available Sex hormones play a key role in the development of breast cancer. Certain polymorphic variants (SNPs and repeat polymorphisms in hormone-related genes are associated with sex hormone levels. However, the relationship observed between these genetic variants and breast cancer risk has been inconsistent. We conducted a case-control study nested within two prospective cohorts to assess the relationship between specific genetic variants in hormone-related genes and breast cancer risk. In total, 1164 cases and 2111 individually-matched controls were included in the study. We did not observe an association between potential functional genetic polymorphisms in the estrogen pathway, SHBG rs6259, ESR1 rs2234693, CYP19 rs10046 and rs4775936, and UGT1A1 rs8175347, or the progesterone pathway, PGR rs1042838, with the risk of breast cancer. Our results suggest that these genetic variants do not have a strong effect on breast cancer risk.

  14. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Directory of Open Access Journals (Sweden)

    Paula Moran

    2016-01-01

    Full Text Available The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  15. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models.

    Science.gov (United States)

    Moran, Paula; Stokes, Jennifer; Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John; O'Tuathaigh, Colm

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  16. Genetic transformation of cry1EC gene into cotton (Gossypium ...

    African Journals Online (AJOL)

    welcome

    2013-04-10

    Apr 10, 2013 ... cry1EC gene (Figure 4). No amplified product was detected from non transformed plant and the transformation efficiency measured as % of confirmed transgenic plant out of total number of plants raised and it was found to be 80% in T0 generation. Transgenic plant showing highest larval mortality rate has.

  17. Genetic diversity and gene flow revealed by microsatellite DNA ...

    African Journals Online (AJOL)

    Dacryodes edulis is a multipurpose tree integrated in the cropping system of Central African region still dominated by subsistence agriculture. Some populations grown are wild which can provide information on the domestication process, and could also represent a potential source of gene flow. Leaves samples for DNA ...

  18. Association of genetic polymorphism in GH gene with milk ...

    Indian Academy of Sciences (India)

    Associations were analysed between polymorphisms of the growth hormone gene (GH-MspI) (localized in intron 3) and milk production traits of Beijing Holstein cows (a total of 543 cows). Polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method was used for identification of various ...

  19. Phenotypic effects of genetic variability in human clock genes on ...

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... where redundance between the initial duplication products allowed for ..... dominant fashion, very similarly to the mutation in the gene encoding its .... Trends Neurosci. 31, 27–36. Hogenesch J. B., Gu Y. Z., Moran S. M., Shimomura K., Radcliffe. L. A., Takahashi J. S. and Bradfield C. A. 2000 The basic helix-.

  20. Daf-2, Daf-16 and Daf-23: Genetically Interacting Genes Controlling Dauer Formation in Caenorhabditis Elegans

    OpenAIRE

    Gottlieb, S.; Ruvkun, G.

    1994-01-01

    Under conditions of high population density and low food, Caenorhabditis elegans forms an alternative third larval stage, called the dauer stage, which is resistant to desiccation and harsh environments. Genetic analysis of some dauer constitutive (Daf-c) and dauer defective (Daf-d) mutants has revealed a complex pathway that is likely to function in particular neurons and/or responding tissues. Here we analyze the genetic interactions between three genes which comprise a branch of the dauer ...

  1. Network statistics of genetically-driven gene co-expression modules in mouse crosses

    Directory of Open Access Journals (Sweden)

    Marie-Pier eScott-Boyer

    2013-12-01

    Full Text Available In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS. For six out of the 7 networks, we found that linkage to module QTLs (mQTLs could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as genetically-driven had network statistic properties (density, centralization and heterogeneity that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

  2. Genetic Influences on Adolescent Sexual Behavior: Why Genes Matter for Environmentally-Oriented Researchers

    Science.gov (United States)

    Harden, K. Paige

    2013-01-01

    There are dramatic individual differences among adolescents in how and when they become sexually active adults, and “early” sexual activity is frequently cited as a cause of concern for scientists, policymakers, and the general public. Understanding the causes and developmental impact of adolescent sexual activity can be furthered by considering genes as a source of individual differences. Quantitative behavioral genetics (i.e., twin and family studies) and candidate gene association studies now provide clear evidence for the genetic underpinnings of individual differences in adolescent sexual behavior and related phenotypes. Genetic influences on sexual behavior may operate through a variety of direct and indirect mechanisms, including pubertal development, testosterone levels, and dopaminergic systems. Genetic differences may be systematically associated with exposure to environments that are commonly treated as causes of sexual behavior (gene-environment correlation). Possible gene-environment correlations pose a serious challenge for interpreting the results of much behavioral research. Multivariate, genetically-informed research on adolescent sexual behavior compares twins and family members as a form of “quasi-experiment”: How do twins who differ in their sexual experiences differ in their later development? The small but growing body of genetically-informed research has already challenged dominant assumptions regarding the etiology and sequelae of adolescent sexual behavior, with some studies indicating possible positive effects of teenage sexuality. Studies of gene × environment interaction may further elucidate the mechanisms by which genes and environments combine to shape the development of sexual behavior and its psychosocial consequences. Overall, the existence of heritable variation in adolescent sexual behavior has profound implications for environmentally-oriented theory and research. PMID:23855958

  3. Prokofiev: The Fiery Angel.Gösta Ohlin Vocal Ensemble / David J. Fanning

    Index Scriptorium Estoniae

    Fanning, David J.

    1991-01-01

    Uuest heliplaadist "Prokofiev: The Fiery Angel.Gösta Ohlin Vocal Ensemble, Gothenburg Pro Musica Chamber Choir and Symphony Orchestra, Neeme Järvi" DG CD 431 669-2 GH2 (two discs, nas:118 minutes:DDD)

  4. [Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches].

    Science.gov (United States)

    Lu, Cai-rui; Zou, Chang-song; Song, Guo-li

    2015-08-01

    Traditional gene mapping using forward genetic approaches is conducted primarily through construction of a genetic linkage map, the process of which is tedious and time-consuming, and often results in low accuracy of mapping and large mapping intervals. With the rapid development of high-throughput sequencing technology and decreasing cost of sequencing, a variety of simple and quick methods of gene mapping through sequencing have been developed, including direct sequencing of the mutant genome, sequencing of selective mutant DNA pooling, genetic map construction through sequencing of individuals in population, as well as sequencing of transcriptome and partial genome. These methods can be used to identify mutations at the nucleotide level and has been applied in complex genetic background. Recent reports have shown that sequencing mapping could be even done without the reference of genome sequence, hybridization, and genetic linkage information, which made it possible to perform forward genetic study in many non-model species. In this review, we summarized these new technologies and their application in gene mapping.

  5. [Gene geography of Chile: regional distribution of American, European and African genetic contributions].

    Science.gov (United States)

    Fuentes, Macarena; Pulgar, Iván; Gallo, Carla; Bortolini, María-Cátira; Canizales-Quinteros, Samuel; Bedoya, Gabriel; González-José, Rolando; Ruiz-Linares, Andrés; Rothhammer, Francisco

    2014-03-01

    The geographical distribution of genes plays a key role in genetic epidemiology. The Chilean population has three major stem groups (Native American, European and African). To estimate the regional rate of American, European and African admixture of the Chilean population. Forty single nucleotide polymorphisms (SNP´s) which exhibit substantially different frequencies between Amerindian populations (ancestry-informative markers or AIM´s), were genotyped in a sample of 923 Chilean participants to estimate individual genetic ancestry. The American, European and African individual average admixture estimates for the 15 Chilean Regions were relatively homogeneous and not statistically different. However, higher American components were found in northern and southern Chile and higher European components were found in central Chile. A negative correlation between African admixture and latitude was observed. On the average, American and European genetic contributions were similar and significantly higher than the African contribution. Weighted mean American, European and African genetic contributions of 44.34% ± 3 9%, 51.85% ± 5.44% and 3.81% ± 0.45%, were estimated. Fifty two percent of subjects harbor African genes. Individuals with Aymara and Mapuche surnames have an American admixture of 58.64% and 68.33%, respectively. Half of the Chilean population harbors African genes. Participants with Aymara and Mapuche surnames had a higher American genetic contribution than the general Chilean population. These results confirm the usefulness of surnames as a first approximation to determine genetic ancestry.

  6. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    Science.gov (United States)

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  7. Information Technology Convergence, Secure and Trust Computing, and Data Management ITCS 2012 & STA 2012

    CERN Document Server

    Kim, Jongsung; Zou, Deqing; Lee, Yang

    2012-01-01

    ITCS 2012 and STA 2012 address the various theories and practical applications of information technology convergence, secure and trust computing, and data management in future environments. It will present important results of significant value to solve the application services and various problems within the scope of ITCS 2012 & STA 2012. In addition, we expect it will trigger further related research and technology developments which will improve our lives in the future.

  8. Genetic diversity and natural selection footprints of the glycine amidinotransferase gene in various human populations.

    Science.gov (United States)

    Khan, Asifullah; Tian, Lei; Zhang, Chao; Yuan, Kai; Xu, Shuhua

    2016-01-05

    The glycine amidinotransferase gene (GATM) plays a vital role in energy metabolism in muscle tissues and is associated with multiple clinically important phenotypes. However, the genetic diversity of the GATM gene remains poorly understood within and between human populations. Here we analyzed the 1,000 Genomes Project data through population genetics approaches and observed significant genetic diversity across the GATM gene among various continental human populations. We observed considerable variations in GATM allele frequencies and haplotype composition among different populations. Substantial genetic differences were observed between East Asian and European populations (FST = 0.56). In addition, the frequency of a distinct major GATM haplotype in these groups was congruent with population-wide diversity at this locus. Furthermore, we identified GATM as the top differentiated gene compared to the other statin drug response-associated genes. Composite multiple analyses identified signatures of positive selection at the GATM locus, which was estimated to have occurred around 850 generations ago in European populations. As GATM catalyzes the key step of creatine biosynthesis involved in energy metabolism, we speculate that the European prehistorical demographic transition from hunter-gatherer to farming cultures was the driving force of selection that fulfilled creatine-based metabolic requirement of the populations.

  9. [Wolfram syndrome: clinical features, molecular genetics of WFS1 gene].

    Science.gov (United States)

    Tanabe, Katsuya; Matsunaga, Kimie; Hatanaka, Masayuki; Akiyama, Masaru; Tanizawa, Yukio

    2015-02-01

    Wolfram syndrome(WFS: OMIM 222300) is a rare recessive neuro-endocrine degenerative disorder, known as DIDMOAD(Diabetes Insipidus, early-onset Diabetes Mellitus, Optic Atrophy and Deafness) syndrome. Most affected individuals carry recessive mutations in the Wolfram syndrome 1 gene(WFS1). The WFS1 protein is an endoplasmic reticulum(ER) embedded protein, which functions in ER calcium homeostasis and unfolded protein responses. Dysregulation of these cellular processes results in the development of ER stress, leading to apoptosis. In addition, abundantly present WFS1 protein in insulin secretory granules plays a role in the intra-granular acidification. However, the phenotypic pleiomorphism and molecular complexity of this disease limit the understanding of WFS. Here we review clinical features, molecular mechanisms and mutations of WFS1 gene that relate to this syndrome.

  10. Gene interactions and genetics of blast resistance and yield

    Indian Academy of Sciences (India)

    Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 ...

  11. OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations.

    Science.gov (United States)

    Diaz-Uriarte, Ramon

    2017-06-15

    OncoSimulR implements forward-time genetic simulations of biallelic loci in asexual populations with special focus on cancer progression. Fitness can be defined as an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, restrictions in the order of accumulation of mutations, and order effects. Mutation rates can differ among genes, and can be affected by (anti)mutator genes. Also available are sampling from simulations (including single-cell sampling), plotting the genealogical relationships of clones and generating and plotting fitness landscapes. Implemented in R and C ++, freely available from BioConductor for Linux, Mac and Windows under the GNU GPL license. Version 2.5.9 or higher available from: http://www.bioconductor.org/packages/devel/bioc/html/OncoSimulR.html . GitHub repository at: https://github.com/rdiaz02/OncoSimul. ramon.diaz@iib.uam.es. Supplementary data are available at Bioinformatics online.

  12. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions

    NARCIS (Netherlands)

    Sameith, Katrin; Amini, Saman; Groot Koerkamp, Marian J A; van Leenen, Dik; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip; van Hooff, Sander R; Benschop, Joris J; Lenstra, Tineke L; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P; Kemmeren, Patrick

    2015-01-01

    BACKGROUND: Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering

  13. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions

    NARCIS (Netherlands)

    Sameith, Katrin; Amini, Saman|info:eu-repo/dai/nl/41358657X; Groot Koerkamp, Marian J A; van Leenen, Dik|info:eu-repo/dai/nl/304817236; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip|info:eu-repo/dai/nl/311462197; van Hooff, Sander R; Benschop, Joris J.; Lenstra, Tineke L.; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P|info:eu-repo/dai/nl/149308035; Kemmeren, Patrick|info:eu-repo/dai/nl/304817228

    2015-01-01

    Background: Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering

  14. Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Tofalo, Rosanna; Perpetuini, Giorgia; Di Gianvito, Paola; Schirone, Maria; Corsetti, Aldo; Suzzi, Giovanna

    2014-11-17

    Twenty-eight flocculent wine strains were tested for adhesion and flocculation phenotypic variability. Moreover, the expression patterns of the main genes involved in flocculation (FLO1, FLO5 and FLO8) were studied both in synthetic medium and in presence of ethanol stress. Molecular identification and typing were achieved by PCR-RFLP of the 5.8S ITS rRNA region and microsatellite PCR fingerprinting, respectively. All isolates belong to Saccharomyces cerevisiae species. The analysis of microsatellites highlighted the intraspecific genetic diversity of flocculent wine S. cerevisiae strains allowing obtaining strain-specific profiles. Moreover, strains were characterized on the basis of adhesive properties. A wide biodiversity was observed even if none of the tested strains were able to form biofilms (or 'mats'), or to adhere to polystyrene. Moreover, genetic diversity of FLO1 and FLO5 flocculating genes was determined by PCR. Genetic diversity was detected for both genes, but a relationship with the flocculation degree was not found. So, the expression patterns of FLO1, FLO5 and FLO8 genes was investigated in a synthetic medium and a relationship between the expression of FLO5 gene and the flocculation capacity was established. To study the expression of FLO1, FLO5 and FLO8 genes in floc formation and ethanol stress resistance qRT-PCR was carried out and also in this case strains with flocculent capacity showed higher levels of FLO5 gene expression. This study confirmed the diversity of flocculation phenotype and genotype in wine yeasts. Moreover, the importance of FLO5 gene in development of high flocculent characteristic of wine yeasts was highlighted. The obtained collection of S. cerevisiae flocculent wine strains could be useful to study the relationship between the genetic variation and flocculation phenotype in wine yeasts. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case.

    Science.gov (United States)

    Seligmann, Hervé

    2012-12-01

    Mitochondrial genes code for additional proteins after +2 frameshifts by reassigning stops to code for amino acids, which defines overlapping genetic codes for overlapping genes. Turtles recode stops UAR → Trp and AGR → Lys (AGR → Gly in the marine Olive Ridley turtle, Lepidochelys olivacea). In Lepidochelys the +2 frameshifted mitochondrial Cytb gene lacks stops, open reading frames from other genes code for unknown proteins, and for regular mitochondrial proteins after frameshifts according to the overlapping genetic code. Lepidochelys' inversion between proteins coded by regular and overlapping genetic codes substantiates the existence of overlap coding. ND4 differs among Lepidochelys mitochondrial genomes: it is regular in DQ486893; in NC_011516, the open reading frame codes for another protein, the regular ND4 protein is coded by the frameshifted sequence reassigning stops as in other turtles. These systematic patterns are incompatible with Genbank/sequencing errors and DNA decay. Random mixing of synonymous codons, conserving main frame coding properties, shows optimization of natural sequences for overlap coding; Ka/Ks analyses show high positive (directional) selection on overlapping genes. Tests based on circular genetic codes confirm programmed frameshifts in ND3 and ND4l genes, and predicted frameshift sites for overlap coding in Lepidochelys. Chelonian mitochondria adapt for overlapping gene expression: cloverleaf formation by antisense tRNAs with predicted anticodons matching stops coevolves with overlap coding; antisense tRNAs with predicted expanded anticodons (frameshift suppressor tRNAs) associate with frameshift-coding in ND3 and ND4l, a potential regulation of frameshifted overlap coding. Anaeroby perhaps switched between regular and overlap coding genes in Lepidochelys. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics

    OpenAIRE

    Kubota, Takeo; Miyake, Kunio; Hirasawa, Takae

    2012-01-01

    Abstract Epigenetics is a mechanism that regulates gene expression independently of the underlying DNA sequence, relying instead on the chemical modification of DNA and histone proteins. Although environmental and genetic factors were thought to be independently associated with disorders, several recent lines of evidence suggest that epigenetics bridges these two factors. Epigenetic gene regulation is essential for normal development, thus defects in epigenetics cause various rare congenital ...

  17. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge

    OpenAIRE

    Zhang, T; Zhang, XX; Ye, L

    2011-01-01

    The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In thi...

  18. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    Directory of Open Access Journals (Sweden)

    Zhou Jiangfeng

    2003-11-01

    Full Text Available Abstract The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.

  19. A New Method Of Gene Coding For A Genetic Algorithm Designed For Parametric Optimization

    Directory of Open Access Journals (Sweden)

    Radu BELEA

    2003-12-01

    Full Text Available In a parametric optimization problem the genes code the real parameters of the fitness function. There are two coding techniques known under the names of: binary coded genes and real coded genes. The comparison between these two is a controversial subject since the first papers about parametric optimization have appeared. An objective analysis regarding the advantages and disadvantages of the two coding techniques is difficult to be done while different format information is compared. The present paper suggests a gene coding technique that uses the same format for both binary coded genes and for the real coded genes. After unifying the real parameters representation, the next criterion is going to be applied: the differences between the two techniques are statistically measured by the effect of the genetic operators over some random generated fellows.

  20. The hopes and fears of in utero gene therapy for genetic disease--a review.

    Science.gov (United States)

    Coutelle, C; Themis, M; Waddington, S; Gregory, L; Nivsarkar, M; Buckley, S; Cook, T; Rodeck, C; Peebles, D; David, A

    2003-10-01

    Somatic gene delivery in utero is a novel approach to gene therapy for genetic disease. It is based on the concept that application of gene therapy vectors to the fetus in utero may prevent the development of early disease related tissue damage, may allow targeting of otherwise inaccessible organs, tissues and still expanding stem cell populations and may also provide postnatal tolerance against the therapeutic transgenic protein. This review outlines the hypothesis and scientific background of in utero gene therapy and addresses some of the frequently expressed concerns raised by this still experimental, potentially preventive gene therapy approach. We describe and discuss the choice of vectors, of animal models and routes of administration to the fetus. We address potential risk factors of prenatal gene therapy such as vector toxicity, inadvertent germ line modification, developmental aberration and oncogenesis as well as specific risks of this procedure for the fetus and mother and discuss their ethical implications.

  1. The Genetic Variation of Bali Cattle (Bos javanicus Based on Sex Related Y Chromosome Gene

    Directory of Open Access Journals (Sweden)

    A Winaya

    2011-09-01

    Full Text Available Bali cattle is very popular Indonesian local beef related to their status in community living process of farmers in Indonesia, especially as providers of meat and exotic animal. Bali cattle were able to adapt the limited environment and becoming local livestock that existed until recently.  In our early study by microsatellites showed that Bali cattle have specific allele. In this study we analyzed the variance of partly sex related Y (SRY gene sequence in Bali cattle bull as a source of cement for Artificial Insemination (AI.  Blood from 17 two location of AI center, Singosari, Malang and Baturiti, Bali was collected and then extracted to get the DNA genome.  PCR reaction was done to amplify partially of SRY gene segment and followed by sequencing PCR products to get the DNA sequence of SRY gene. The SRY gene sequence was used to determine the genetic variation and phylogenetic relationship.  We found that Bali cattle bull from Singosari has relatively closed genetic relationship with Baturiti. It is also supported that in early data some Bali bulls of Singosari were came from Baturiti. It has been known that Baturiti is the one source of Bali cattle bull with promising genetic potential. While, in general that Bali bull where came from two areas were not different on reproductive performances. It is important to understand about the genetic variation of Bali cattle in molecular level related to conservation effort and maintaining the genetic characters of the local cattle. So, it will not become extinct or even decreased the genetic quality of Indonesian indigenous cattle.   Key Words : Bali cattle, SRY gene, artificial insemination, phylogenetic, allele   Animal Production 13(3:150-155 (2011

  2. Genetic variation of the brca1 and brca2 genes in macedonian patients.

    Science.gov (United States)

    Maleva, I; Madjunkova, S; Bozhinovski, G; Smickova, E; Kondov, G; Spiroski, Z; Arsovski, A; Plaseska-Karanfilska, D

    2012-12-01

    The most significant and well characterized genetic risk factors for breast and/or ovarian cancer are germline mutations in the BRCA1 and BRCA2 genes. The BRCA1 and BRCA2 gene mutations strikingly increase breast cancer risk, suggesting that polymorphisms in these genes are logical candidates in seeking to identify low penetrance susceptibility alleles. The aim of this study was to initiate a screen for BRCA1/2 gene mutations in order to identify the genetic variants in the Republic of Macedonia, and to evaluate the association of several single nucleotide polymorphisms (SNPs) in these genes with breast cancer risk. In this study, we included 100 patients with invasive breast cancer from the Republic of Macedonia, classified according to their family history and 100 controls. The methodology included direct sequencing, single nucleotide primer extension method and multiplex ligation probe amplification (MLPA) analysis, all followed by capillary electrophoresis (CE) on an ABI PRISM™ 3130 Genetic Analyzer. We identified a total of seven carriers of mutations in the BRCA1/2 genes. None of the tested polymorphisms was associated with sporadic breast cancer risk, however, polymorphism rs8176267 in BRCA1 and N372H in BRCA2 showed an association with breast cancer risk in patients with at least one family member with breast cancer.

  3. Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Annika eSpies

    2012-01-01

    Full Text Available Race-nonspecific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL and therefore difficult to handle in practice. Knowing the genes that underlie race-nonspecific resistance would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worlwide collection of spring barley accessions for candidate genes of race-nonspecific resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh and combined data with results from QTL-mapping- as well as functional-genomics approaches. This led to the idenfication of 11 associated genes with converging evidence for an important role in race-nonspecific resistance in the presence of the Mlo-gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches accelerates the discovery of genes underlying race-nonspecific resistance in barley and other crop plants.

  4. Impact of gene patents and licensing practices on access to genetic testing for hearing loss.

    Science.gov (United States)

    Chandrasekharan, Subhashini; Fiffer, Melissa

    2010-04-01

    Genetic testing for heritable hearing loss involves a mix of patented and unpatented genes, mutations and testing methods. More than half of all hearing loss is linked to inherited mutations, and five genes are most commonly tested for in the United States. There are no patents on three of these genes, but Athena Diagnostics holds exclusive licenses to test for a common mutation in the GJB2 gene associated with about 50% of all cases as well as mutations in the MTRNR1 gene. This fragmented intellectual property landscape made hearing loss a useful case study to assess whether patent rights in genetic testing can proliferate or overlap, and whether it is possible to gather the rights necessary to perform testing. Testing for hearing loss is widely available, primarily from academic medical centers. Based on literature reviews and interviews with researchers, research on the genetics of hearing loss has generally not been impeded by patents. There is no consistent evidence of a premium in testing prices attributable to patent status. Athena Diagnostics has, however, used its intellectual property to discourage other providers from offering some tests. There is no definitive answer about the suitability of current patenting and licensing of commonly tested genes because of continuing legal uncertainty about the extent of enforcement of patent rights. Clinicians have also expressed concerns that multiplex tests will be difficult to develop because of overlapping intellectual property and conflict with Athena's sole provider business model.

  5. Genetic Architecture of MAPT Gene Region in Parkinson Disease Subtypes.

    Directory of Open Access Journals (Sweden)

    Esterina ePascale

    2016-04-01

    Full Text Available The microtubule-associated protein tau (MAPT region has been conceptualized as a model of the interaction between genetics and functional disease outcomes in neurodegenerative disorders, such as Parkinson disease. Indeed, haplotype-specific differences in expression and alternative splicing of MAPT transcripts affect cellular functions at different levels, increasing susceptibility to a range of neurodegenerative processes. In order to evaluate a possible link between MAPT variants, PD risk and PD motor phenotype, we analyzed the genetic architecture of MAPT in a cohort of PD patients. We observed a statistically significant association between the H1 haplotype and PD risk (79.5 vs 69.5%; 2 =9.9; OR,1.7; 95% CI, 1.2-2.4; p=0.002. The effect was more evident in non tremor dominant PD subjects (NTD-PD (82 vs 69.5%; 2 =13.6; OR, 2.03; 95% CI, 1.4-3; p=0.0003, while no difference emerged between PD subgroup of tremor dominant patients (TD-PD and control subjects. Examination of specific intra-H1 variations showed that the H1h subhaplotype was overrepresented in NTD-PD patients compared with controls (p=0.007, OR 2.9; 95%CI 1.3-6.3. Although we cannot exclude that MAPT variation may be associated with ethnicity, our results may support the hypothesis that MAPT H1 clade and a specific H1 subhaplotype influence the risk of PD and modulate the clinical expression of the disease, including motor phenotype.

  6. A Forward Genetic Screening for Prostate Cancer Progression Genes

    Science.gov (United States)

    2012-10-01

    manifestation of phenotype, it is not desirable to sacrifice valuable experimental animals during the course of the screen. It would be ideal to have a...transposon (Figure 1A, PB[mut]) to induce ectopic gene expression in multiple genomic contexts. The CMV early enhancer/ chicken b-actin promoter was cloned...PBase plasmid. Two copies of the chicken b-globin HS4 core enhancer from the plasmid pNI-CD were also cloned upstream of the Actin promoter. PBaseER was

  7. Gene therapy for carcinoma of the breast: Genetic ablation strategies

    International Nuclear Information System (INIS)

    Curiel, David T

    2000-01-01

    The gene therapy strategy of mutation compensation is designed to rectify the molecular lesions that are etiologic for neoplastic transformation. For dominant oncogenes, such approaches involve the functional knockout of the dysregulated cellular control pathways provoked by the overexpressed oncoprotein. On this basis, molecular interventions may be targeted to the transcriptional level of expression, via antisense or ribozymes, or post-transcriptionally, via intracellular single chain antibodies (intrabodies). For carcinoma of the breast, these approaches have been applied in the context of the disease linked oncogenes erbB-2 and cyclin D 1 , as well as the estrogen receptor. Neoplastic revision accomplished in modal systems has rationalized human trials on this basis

  8. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  9. Multifactor dimensionality reduction: An analysis strategy for modelling and detecting gene - gene interactions in human genetics and pharmacogenomics studies

    Directory of Open Access Journals (Sweden)

    Motsinger Alison A

    2006-03-01

    Full Text Available Abstract The detection of gene - gene and gene - environment interactions associated with complex human disease or pharmacogenomic endpoints is a difficult challenge for human geneticists. Unlike rare, Mendelian diseases that are associated with a single gene, most common diseases are caused by the non-linear interaction of numerous genetic and environmental variables. The dimensionality involved in the evaluation of combinations of many such variables quickly diminishes the usefulness of traditional, parametric statistical methods. Multifactor dimensionality reduction (MDR is a novel and powerful statistical tool for detecting and modelling epistasis. MDR is a non-parametric and model-free approach that has been shown to have reasonable power to detect epistasis in both theoretical and empirical studies. MDR has detected interactions in diseases such as sporadic breast cancer, multiple sclerosis and essential hypertension. As this method is more frequently applied, and was gained acceptance in the study of human disease and pharmacogenomics, it is becoming increasingly important that the implementation of the MDR approach is properly understood. As with all statistical methods, MDR is only powerful and useful when implemented correctly. Concerns regarding dataset structure, configuration parameters and the proper execution of permutation testing in reference to a particular dataset and configuration are essential to the method's effectiveness. The detection, characterisation and interpretation of gene - gene and gene - environment interactions are expected to improve the diagnosis, prevention and treatment of common human diseases. MDR can be a powerful tool in reaching these goals when used appropriately.

  10. Multifactor dimensionality reduction: An analysis strategy for modelling and detecting gene - gene interactions in human genetics and pharmacogenomics studies

    Science.gov (United States)

    2006-01-01

    The detection of gene - gene and gene - environment interactions associated with complex human disease or pharmacogenomic endpoints is a difficult challenge for human geneticists. Unlike rare, Mendelian diseases that are associated with a single gene, most common diseases are caused by the non-linear interaction of numerous genetic and environmental variables. The dimensionality involved in the evaluation of combinations of many such variables quickly diminishes the usefulness of traditional, parametric statistical methods. Multifactor dimensionality reduction (MDR) is a novel and powerful statistical tool for detecting and modelling epistasis. MDR is a non-parametric and model-free approach that has been shown to have reasonable power to detect epistasis in both theoretical and empirical studies. MDR has detected interactions in diseases such as sporadic breast cancer, multiple sclerosis and essential hypertension. As this method is more frequently applied, and was gained acceptance in the study of human disease and pharmacogenomics, it is becoming increasingly important that the implementation of the MDR approach is properly understood. As with all statistical methods, MDR is only powerful and useful when implemented correctly. Concerns regarding dataset structure, configuration parameters and the proper execution of permutation testing in reference to a particular dataset and configuration are essential to the method's effectiveness. The detection, characterisation and interpretation of gene - gene and gene - environment interactions are expected to improve the diagnosis, prevention and treatment of common human diseases. MDR can be a powerful tool in reaching these goals when used appropriately. PMID:16595076

  11. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies.

    Science.gov (United States)

    Motsinger, Alison A; Ritchie, Marylyn D

    2006-03-01

    The detection of gene-gene and gene-environment interactions associated with complex human disease or pharmacogenomic endpoints is a difficult challenge for human geneticists. Unlike rare, Mendelian diseases that are associated with a single gene, most common diseases are caused by the non-linear interaction of numerous genetic and environmental variables. The dimensionality involved in the evaluation of combinations of many such variables quickly diminishes the usefulness of traditional, parametric statistical methods. Multifactor dimensionality reduction (MDR) is a novel and powerful statistical tool for detecting and modelling epistasis. MDR is a non-parametric and model-free approach that has been shown to have reasonable power to detect epistasis in both theoretical and empirical studies. MDR has detected interactions in diseases such as sporadic breast cancer, multiple sclerosis and essential hypertension. As this method is more frequently applied, and was gained acceptance in the study of human disease and pharmacogenomics, it is becoming increasingly important that the implementation of the MDR approach is properly understood. As with all statistical methods, MDR is only powerful and useful when implemented correctly. Concerns regarding dataset structure, configuration parameters and the proper execution of permutation testing in reference to a particular dataset and configuration are essential to the method's effectiveness. The detection, characterisation and interpretation of gene-gene and gene-environment interactions are expected to improve the diagnosis, prevention and treatment of common human diseases. MDR can be a powerful tool in reaching these goals when used appropriately.

  12. Genetic characterisation of CSN2 gene in Girgentana goat breed

    Directory of Open Access Journals (Sweden)

    Lina Tortorici

    2014-12-01

    Full Text Available Among calcium sensitive caseins, β-casein is the most abundant in goat milk, representing up to 50% of total casein content. The goat β-casein locus has been widely investigated and at least ten alleles have been identified in different goat breeds. The aim of this work was to investigate the polymorphisms of β-casein gene in Girgentana dairy goat breed in order to assess the genotype distribution and evaluate how frequencies have changed during the last 10 years, as genotype is known to influence technological and nutritional milk properties. Sequencing analysis and alignment of the obtained sequences of β-casein exon 7, showed the presence of C, C1, and A strong alleles, and 0' null allele, with frequencies of 0.597, 0.326, 0.023, and 0.054, respectively. Seven genotypic classes were found in Girgentana goat breed and the most frequent genotype was CC1 (0.423 followed by CC (0.326, C1C1 (0.110, and C0' (0.096. No AA nor 0'0' homozygous individuals were found. The presence of strong alleles at CSN2 gene in Girgentana goat breed could be useful for the production of milk with high protein content and good cheese-making properties. Moreover, food business operators should consider the possibility of reviving interest in Girgentana goat milk using weak and null genotypes at CSN2 locus to make peculiar food products, such as drinking milk.

  13. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    Full Text Available Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain across a highly diverse family of 27 isogenic mouse strains (BXD panel before and after treatment with ethanol.Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol

  14. [Subcloning of human neurotrophin-3 gene and construction of its genetically engineered cell model].

    Science.gov (United States)

    Chang, Hong; Guo, Meng-he; Guo, Kun-yuan; Li, Yong-he

    2004-07-01

    To subclone human neurotrophin-3 gene (NT3) and transfer this gene into human bone marrow mesenchymal stem cells (BM-MSCs) to construct genetically engineered cells that produce NT3 in vitro. Human BM-MSCs were cultured in low-glucose DMEM supplemented with 10% fetal bovine serum and 10 ng/ml epidermal growth factor. Flow cytometry (FCM) was used to examine the phenotypes of the cells. The eukaryotic expression vector pcDNA3.1(+)/NT3 was constructed and transferred into human BM-MSCs in vitro via liposomes. The genetically engineered BM-MSCs were selected several times with G418 and the clones were obtained and then amplified, followed by extraction of the RNA for detection of NT3 gene expression by reverse transcriptional (RT) PCR. The biological activity of the genetically engineered cells was examined by the collecting the supernatant of the culture medium for incubation of guinea pig cochlea hair cells. The cultured cells expressed CD13, CD29 and CD59, but no7 CD11, CD14, CD31, CD34, CD45, CD80, CD86, CD117 or HLA-DR. The BM-MSCs genetically modified with pcDNA3.1(+)/NT3 not only expressed and produced NT3, but also promoted the survival of the guinea pig cochlea hair cells in vitro. It is possible to construct the genetically engineered BM-MSCs that excrete NT3 in vitro.

  15. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  16. Genetic analysis and location of gene for resistance to stripe rust in ...

    Indian Academy of Sciences (India)

    2013-08-06

    Aug 6, 2013 ... anchor qualitative characteristics, so the gene can be directly located on the wheat genetic map. Also, the sequences of. SSR primers are open for easy genome research applica- tion and have become second-generation molecular markers. (Gupta et al. 2002), and play an important role in the wheat.

  17. Genetic Background Modulates Gene Expression Profile Induced by Skin Irradiation in Ptch1 Mice

    International Nuclear Information System (INIS)

    Galvan, Antonella; Noci, Sara; Mancuso, Mariateresa; Pazzaglia, Simonetta; Saran, Anna; Dragani, Tommaso A.

    2008-01-01

    Purpose: Ptch1 germ-line mutations in mice predispose to radiation-induced basal cell carcinoma of the skin, with tumor incidence modulated by the genetic background. Here, we examined the possible mechanisms underlying skin response to radiation in F1 progeny of Ptch1 neo67/+ mice crossed with either skin tumor-susceptible (Car-S) or -resistant (Car-R) mice and X-irradiated (3 Gy) at 2 days of age or left untreated. Methods and Materials: We conducted a gene expression profile analysis in mRNA samples extracted from the skin of irradiated or control mice, using Affymetrix whole mouse genome expression array. Confirmation of the results was done using real-time reverse-transcriptase polymerase chain reaction. Results: Analysis of the gene expression profile of normal skin of F1 mice at 4 weeks of age revealed a similar basal profile in the nonirradiated mice, but alterations in levels of 71 transcripts in irradiated Ptch1 neo67/+ mice of the Car-R cross and modulation of only eight genes in irradiated Ptch1 neo67/+ mice of the Car-S cross. Conclusions: These results indicate that neonatal irradiation causes a persistent change in the gene expression profile of the skin. The tendency of mice genetically resistant to skin tumorigenesis to show a more complex pattern of transcriptional response to radiation than do genetically susceptible mice suggests a role for this response in genetic resistance to basal cell tumorigenesis

  18. A matter of genes? Possible consequences of genetic introgression from domestic forms in two problematic species

    DEFF Research Database (Denmark)

    Scandura, Massimo; Canu, Antonio; Bassi, Elena

    has been historically important and is likely to have shaped the present-day genetic make-up of both forms. Although intensive farming has reduced the chance of hybridization in nature, gene flow between wild and domestic S. scrofa still takes place either spontaneously in areas where open-air pig...

  19. Genetic variation of Pit -1 gene in Chinese indigenous and Western ...

    African Journals Online (AJOL)

    Genetic variation of Pit-1 gene in Chinese indigenous and Western goose populations. J Cheng, N Qiao, W Zhao, Q Xu, H Zhang, X Duan, W Ji, G Chen. Abstract. Pituitary-specific transcription factor (Pit-1, or GHF1, or POU1F1) is expressed in the pituitary gland; it regulates pituitary development and expression of the ...

  20. Norway spruce (Picea abies) genetic transformation with modified Cry3A gene of Bacillus thuringiensis

    Czech Academy of Sciences Publication Activity Database

    Bříza, Jindřich; Pavingerová, Daniela; Vlasák, Josef; Niedermeierová, Hana

    2013-01-01

    Roč. 60, č. 3 (2013), s. 395-400 ISSN 0001-527X R&D Projects: GA MZe QH71290; GA ČR(CZ) GAP502/11/1471 Institutional support: RVO:60077344 Keywords : Cry3A gene modification * Picea abies * Agrobacterium tumefaciens Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.389, year: 2013

  1. DNA repair in human cells: from genetic complementation to isolation of genes.

    NARCIS (Netherlands)

    D. Bootsma (Dirk); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe genetic disease xeroderma pigmentosum (XP) demonstrates the association between defective repair of DNA lesions and cancer. Complementation analysis performed on XP cell strains and on repair deficient rodent cell lines has revealed that at least nine and possibly more than 13 genes

  2. Effects of genetic variants of the bovine WNT8A gene on nine ...

    Indian Academy of Sciences (India)

    However, similar research on the effects of genetic variations of Wnt8A gene on growth traits is lacking. Therefore, in this study, polymorphisms of Wnt8A were detectedin 396 animals from Chinese Qinchuan cattle using DNA pool sequencing and PCR-RFLP methods. Four novel single-nucleotide polymorphisms (SNPs) of ...

  3. Sonic Hedgehog: A Good Gene Gone Bad? Detection and Treatment of Genetic Abnormalities.

    Science.gov (United States)

    Yaich, Lauren E.

    2001-01-01

    Presents a case of a baby born with the genetic condition holoprosencephaly in which students explore the "Sonic hedgehog" gene, signal transduction, and the ethics of body and tissue donation. Presents a two-part assignment that features students writing an informed consent document that explains the science behind this congenital abnormality,…

  4. Gene flow maintains a large genetic difference in clutch size at a small spatial scale

    NARCIS (Netherlands)

    Postma, E.; Van Noordwijk, A.J.

    2005-01-01

    Understanding the capacity of natural populations to adapt to their local environment is a central topic in evolutionary biology. Phenotypic differences between populations may have a genetic basis, but showing that they reflect different adaptive optima requires the quantification of both gene flow

  5. Nature of gene action and genetic parameters for yield and its ...

    African Journals Online (AJOL)

    To determine the gene action and genetic parameters of agro-morphological traits in chickpea, five genotypes of chickpea as a half diallel crossed with each other in 2008, five parents and 10 progenies were planted as randomized complete block design with three replications and some traits including days to flowering ...

  6. Genetic control of lithium sensitivity and regulation of inositol biosynthetic genes.

    Directory of Open Access Journals (Sweden)

    Jason King

    2010-06-01

    Full Text Available Lithium (Li(+ is a common treatment for bipolar mood disorder, a major psychiatric illness with a lifetime prevalence of more than 1%. Risk of bipolar disorder is heavily influenced by genetic predisposition, but is a complex genetic trait and, to date, genetic studies have provided little insight into its molecular origins. An alternative approach is to investigate the genetics of Li(+ sensitivity. Using the social amoeba Dictyostelium, we previously identified prolyl oligopeptidase (PO as a modulator of Li(+ sensitivity. In a link to the clinic, PO enzyme activity is altered in bipolar disorder patients. Further studies demonstrated that PO is a negative regulator of inositol(1,4,5trisphosphate (IP(3 synthesis, a Li(+ sensitive intracellular signal. However, it was unclear how PO could influence either Li(+ sensitivity or risk of bipolar disorder. Here we show that in both Dictyostelium and cultured human cells PO acts via Multiple Inositol Polyphosphate Phosphatase (Mipp1 to control gene expression. This reveals a novel, gene regulatory network that modulates inositol metabolism and Li(+ sensitivity. Among its targets is the inositol monophosphatase gene IMPA2, which has also been associated with risk of bipolar disorder in some family studies, and our observations offer a cellular signalling pathway in which PO activity and IMPA2 gene expression converge.

  7. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    AMIT KUMAR SINGH

    RESEARCH ARTICLE. Genetics and mapping of a new leaf rust resistance gene in Triticum aestivum L. × Triticum timopheevii Zhuk. derivative 'Selection G12'. AMIT KUMAR SINGH1,2∗, JAI BHAGWAN SHARMA1, VINOD1, PRADEEP KUMAR SINGH1,. ANUPAM SINGH1 and NIHARIKA MALLICK1. 1Indian Agricultural ...

  8. Hybrid Deterministic Views about Genes in Biology Textbooks: A Key Problem in Genetics Teaching

    Science.gov (United States)

    dos Santos, Vanessa Carvalho; Joaquim, Leyla Mariane; El-Hani, Charbel Nino

    2012-01-01

    A major source of difficulties in promoting students' understanding of genetics lies in the presentation of gene concepts and models in an inconsistent and largely ahistorical manner, merely amalgamated in hybrid views, as if they constituted linear developments, instead of being built for different purposes and employed in specific contexts. In…

  9. Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis--a review.

    NARCIS (Netherlands)

    Lowik, M.M.; Groenen, P.J.T.A.; Levtchenko, E.N.; Monnens, L.A.H.; Heuvel, L.P.W.J. van den

    2009-01-01

    This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of

  10. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    NARCIS (Netherlands)

    Kogelman, Lisette J. A.; Zhernakova, Daria V.; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N.

    2015-01-01

    Background: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the

  11. Genetics of cortisol secretion and depressive symptoms: A candidate gene and genome wide association approach

    NARCIS (Netherlands)

    F.P. Velders (Fleur); M. Kuningas (Maris); M. Kumari (Meena); M.J.H.J. Dekker (Marieke); A.G. Uitterlinden (André); C. Kirschbaum (Clemens); K. Hek (Karin); A. Hofman (Albert); F.C. Verhulst (Frank); M. Kivimaki (Mika); C.M. van Duijn (Cornelia); B.R. Walker (Brian); H.W. Tiemeier (Henning)

    2011-01-01

    textabstractBackground: Depressive patients often have altered cortisol secretion, but few studies have investigated genetic variants in relation to both cortisol secretion and depression. To identify genes related to both these conditions, we: (1) tested the association of single nucleotide

  12. Inbreeding and gene flow : the population genetics of plant species in fragmented landscapes

    NARCIS (Netherlands)

    Mix, Carolin

    2006-01-01

    Habitat fragmentation has been recognized as one of the major threats to plant population persistence. Fragmented small and isolated populations are expected to be seriously affected by inbreeding and genetic drift. Gene flow through seed and pollen dispersal may counterbalance the negative

  13. Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge

    NARCIS (Netherlands)

    Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan

    2018-01-01

    Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because

  14. Molecular population genetics of the β-esterase gene cluster of ...

    Indian Academy of Sciences (India)

    We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in the -esterase gene cluster. However there are some 'footprints' of directional and balancing selection shaping specific distribution of nucleotide ...

  15. Molecular population genetics of the β-esterase gene cluster of ...

    Indian Academy of Sciences (India)

    Unknown

    neutrality with recombination are significant for the β−esterase gene cluster in the non-African samples but not signi- ficant in the African one. We suggest ...... I. Viability studies. Genetics 102,. 467–483. Selva E. M., New L., Crouse G. F. and Lahue R. S. 1995 Mis- match correction acts as a barrier to homologous recombina-.

  16. Genetic screens to identify pathogenic gene variants in the common cancer predisposition Lynch syndrome

    DEFF Research Database (Denmark)

    Drost, Mark; Lützen, Anne; van Hees, Sandrine

    2013-01-01

    In many individuals suspected of the common cancer predisposition Lynch syndrome, variants of unclear significance (VUS), rather than an obviously pathogenic mutations, are identified in one of the DNA mismatch repair (MMR) genes. The uncertainty of whether such VUS inactivate MMR, and therefore...... are pathogenic, precludes targeted healthcare for both carriers and their relatives. To facilitate the identification of pathogenic VUS, we have developed an in cellulo genetic screen-based procedure for the large-scale mutagenization, identification, and cataloging of residues of MMR genes critical for MMR gene...

  17. Identifying the genetic variation of gene expression using gene sets: application of novel gene Set eQTL approach to PharmGKB and KEGG.

    Directory of Open Access Journals (Sweden)

    Ryan Abo

    Full Text Available Genetic variation underlying the regulation of mRNA gene expression in humans may provide key insights into the molecular mechanisms of human traits and complex diseases. Current statistical methods to map genetic variation associated with mRNA gene expression have typically applied standard linkage and/or association methods; however, when genome-wide SNP and mRNA expression data are available performing all pair wise comparisons is computationally burdensome and may not provide optimal power to detect associations. Consideration of different approaches to account for the high dimensionality and multiple testing issues may provide increased efficiency and statistical power. Here we present a novel approach to model and test the association between genetic variation and mRNA gene expression levels in the context of gene sets (GSs and pathways, referred to as gene set - expression quantitative trait loci analysis (GS-eQTL. The method uses GSs to initially group SNPs and mRNA expression, followed by the application of principal components analysis (PCA to collapse the variation and reduce the dimensionality within the GSs. We applied GS-eQTL to assess the association between SNP and mRNA expression level data collected from a cell-based model system using PharmGKB and KEGG defined GSs. We observed a large number of significant GS-eQTL associations, in which the most significant associations arose between genetic variation and mRNA expression from the same GS. However, a number of associations involving genetic variation and mRNA expression from different GSs were also identified. Our proposed GS-eQTL method effectively addresses the multiple testing limitations in eQTL studies and provides biological context for SNP-expression associations.

  18. Population genetic variation in gene expression is associated withphenotypic variation in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Justin C.; McCullough, Heather L.; Sniegowski, Paul D.; Eisen, Michael B.

    2004-02-25

    The relationship between genetic variation in gene expression and phenotypic variation observable in nature is not well understood. Identifying how many phenotypes are associated with differences in gene expression and how many gene-expression differences are associated with a phenotype is important to understanding the molecular basis and evolution of complex traits. Results: We compared levels of gene expression among nine natural isolates of Saccharomyces cerevisiae grown either in the presence or absence of copper sulfate. Of the nine strains, two show a reduced growth rate and two others are rust colored in the presence of copper sulfate. We identified 633 genes that show significant differences in expression among strains. Of these genes,20 were correlated with resistance to copper sulfate and 24 were correlated with rust coloration. The function of these genes in combination with their expression pattern suggests the presence of both correlative and causative expression differences. But the majority of differentially expressed genes were not correlated with either phenotype and showed the same expression pattern both in the presence and absence of copper sulfate. To determine whether these expression differences may contribute to phenotypic variation under other environmental conditions, we examined one phenotype, freeze tolerance, predicted by the differential expression of the aquaporin gene AQY2. We found freeze tolerance is associated with the expression of AQY2. Conclusions: Gene expression differences provide substantial insight into the molecular basis of naturally occurring traits and can be used to predict environment dependent phenotypic variation.

  19. Gene therapy for carcinoma of the breast: Therapeutic genetic correction strategies

    International Nuclear Information System (INIS)

    Obermiller, Patrice S; Tait, David L; Holt, Jeffrey T

    2000-01-01

    Gene therapy is a therapeutic approach that is designed to correct specific molecular defects that contribute to the cause or progression of cancer. Genes that are mutated or deleted in cancers include the cancer susceptibility genes p53 and BRCA1. Because mutational inactivation of gene function is specific to tumor cells in these settings, cancer gene correction strategies may provide an opportunity for selective targeting without significant toxicity for normal nontumor cells. Both p53 and BRCA1 appear to inhibit cancer cells that lack mutations in these genes, suggesting that the so-called gene correction strategies may have broader potential than initially believed. Increasing knowledge of cancer genetics has identified these and other genes as potential targets for gene replacement therapy. Initial patient trials of p53 and BRCA1 gene therapy have provided some indications of potential efficacy, but have also identified areas of basic and clinical research that are needed before these approaches may be widely used in patient care

  20. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  1. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow.

    Science.gov (United States)

    O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A

    2013-12-01

    Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing.

  2. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    Science.gov (United States)

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  3. Genetic polymorphisms and possible gene-gene interactions in metabolic and DNA repair genes: Effects on DNA damage

    Czech Academy of Sciences Publication Activity Database

    Naccarati, Alessio; Souček, P.; Štětina, R.; Haufroid, V.; Kumar, R.; Vodičková, Ludmila; Trtková, K.; Dušinská, M.; Hemminki, K.; Vodička, Pavel

    2006-01-01

    Roč. 593, 1-2 (2006), s. 22-31 ISSN 0027-5107 R&D Projects: GA ČR GA310/03/0437 Institutional research plan: CEZ:AV0Z5039906 Keywords : Single-strand breaks * Genetic polymorphisms * Metabolism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.111, year: 2006

  4. [Research progress on the cloning of Mendel's gene in pea (Pisum sativum L.) and its application in genetics teaching].

    Science.gov (United States)

    He, Feng-Hua; Zhu, Bi-Yan; Gao, Feng; Li, Shao-Shan; Li, Niang-Hui

    2013-07-01

    One hundred and fifty years ago, Gregor Mendel investigated the segregation of seven traits in pea (Pisum sativum) and established the law of segregation and the law of independent assortment in genetics. After the two laws of genetics were rediscovered in 1900, the seven traits have been extensively investigated in the fields of plant physiology and biochemistry as well as in the cell and molecular levels. Recently, with the development of molecular technology in genetics, four genes for seed shape (R), stem length (Le), cotyledon colour (I), and flower colour (A) have been cloned and sequenced; and another three genes for immature pod colour (Gp), fasciation (Fa) and pod form (V) have been located in the linkage groups, respectively. The identification and cloning of the four Mendel's genes will help deeply understand the basic concept of gene in many respects: like the diversity of gene function, the different origins for gene mutation in molecular level, and the molecular nature of a dominant gene or a recessive gene. In teaching of genetics, the introduction of most recent research advancements of cloning of Mendel's genes to the students and the interpretation of the Mendel's laws in molecular level will help students promote their learning interests in genetics and help students grasp the whole content from classical genetics to molecular genetics and the developmental direction of this subject.

  5. Commentary: Gene-Environment Interplay in the Context of Genetics, Epigenetics, and Gene Expression.

    Science.gov (United States)

    Kramer, Douglas A.

    2005-01-01

    Objective: To comment on the article in this issue of the Journal by Professor Michael Rutter, "Environmentally Mediated Risks for Psychopathology: Research Strategies and Findings," in the context of current research findings on gene-environment interaction, epigenetics, and gene expression. Method: Animal and human studies are reviewed that…

  6. Significant impact of miRNA-target gene networks on genetics of human complex traits.

    Science.gov (United States)

    Okada, Yukinori; Muramatsu, Tomoki; Suita, Naomasa; Kanai, Masahiro; Kawakami, Eiryo; Iotchkova, Valentina; Soranzo, Nicole; Inazawa, Johji; Tanaka, Toshihiro

    2016-03-01

    The impact of microRNA (miRNA) on the genetics of human complex traits, especially in the context of miRNA-target gene networks, has not been fully assessed. Here, we developed a novel analytical method, MIGWAS, to comprehensively evaluate enrichment of genome-wide association study (GWAS) signals in miRNA-target gene networks. We applied the method to the GWAS results of the 18 human complex traits from >1.75 million subjects, and identified significant enrichment in rheumatoid arthritis (RA), kidney function, and adult height (P impact of miRNA-target gene networks on the genetics of human complex traits, and provided resources which should contribute to drug discovery and nucleic acid medicine.

  7. Genetic Analysis and Gene Mapping of Multi-tiller and Dwarf Mutant d63 in Rice

    Directory of Open Access Journals (Sweden)

    Jing-jing XUE

    2013-05-01

    Full Text Available A spontaneous mutation, tentatively named d63, was derived from the twin-seedling progenies of rice crossed by diploid SARIII and Minghui 63. Compared with wild-type plants, the d63 mutant showed multiple abnormal phenotypes, such as dwarfism, more tillers, smaller flag leaf and reduced seed-setting rate and 1000-grain weight. In this study, two F2 populations were developed by crossing between d63 and Nipponbare, d63 and 93-11. Genetic analysis indicated that d63 was controlled by a single recessive gene, which was located on the short arm of chromosome 8, within the genetic distance of 0.40 cM from RM22195. Hence, D63 might be a new gene as there are no dwarf genes reported on the short arm of chromosome 8.

  8. Gene flow from North Africa contributes to differential human genetic diversity in southern Europe

    Science.gov (United States)

    Botigué, Laura R.; Henn, Brenna M.; Gravel, Simon; Maples, Brian K.; Gignoux, Christopher R.; Corona, Erik; Atzmon, Gil; Burns, Edward; Ostrer, Harry; Flores, Carlos; Bertranpetit, Jaume; Comas, David; Bustamante, Carlos D.

    2013-01-01

    Human genetic diversity in southern Europe is higher than in other regions of the continent. This difference has been attributed to postglacial expansions, the demic diffusion of agriculture from the Near East, and gene flow from Africa. Using SNP data from 2,099 individuals in 43 populations, we show that estimates of recent shared ancestry between Europe and Africa are substantially increased when gene flow from North Africans, rather than Sub-Saharan Africans, is considered. The gradient of North African ancestry accounts for previous observations of low levels of sharing with Sub-Saharan Africa and is independent of recent gene flow from the Near East. The source of genetic diversity in southern Europe has important biomedical implications; we find that most disease risk alleles from genome-wide association studies follow expected patterns of divergence between Europe and North Africa, with the principal exception of multiple sclerosis. PMID:23733930

  9. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease.

    Science.gov (United States)

    Hoban, Megan D; Orkin, Stuart H; Bauer, Daniel E

    2016-02-18

    Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development. © 2016 by The American Society of Hematology.

  10. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores

    Directory of Open Access Journals (Sweden)

    Wang Kai

    2011-05-01

    Full Text Available Abstract Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs have multiple cores, whereas Graphics Processing Units (GPUs also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1 the interaction of SNPs within it in parallel, and 2 the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  11. Genetic similarity between cancers and comorbid Mendelian diseases identifies candidate driver genes.

    Science.gov (United States)

    Melamed, Rachel D; Emmett, Kevin J; Madubata, Chioma; Rzhetsky, Andrey; Rabadan, Raul

    2015-04-30

    Despite large-scale cancer genomics studies, key somatic mutations driving cancer, and their functional roles, remain elusive. Here, we propose that analysis of comorbidities of Mendelian diseases with cancers provides a novel, systematic way to discover new cancer genes. If germline genetic variation in Mendelian loci predisposes bearers to common cancers, the same loci may harbour cancer-associated somatic variation. Compilations of clinical records spanning over 100 million patients provide an unprecedented opportunity to assess clinical associations between Mendelian diseases and cancers. We systematically compare these comorbidities against recurrent somatic mutations from more than 5,000 patients across many cancers. Using multiple measures of genetic similarity, we show that a Mendelian disease and comorbid cancer indeed have genetic alterations of significant functional similarity. This result provides a basis to identify candidate drivers in cancers including melanoma and glioblastoma. Some Mendelian diseases demonstrate 'pan-cancer' comorbidity and shared genetics across cancers.

  12. Spatial genetic structure and asymmetrical gene flow within the Pacific walrus

    Science.gov (United States)

    Sonsthagen, Sarah A.; Jay, Chadwick V.; Fischbach, Anthony S.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Pacific walruses (Odobenus rosmarus divergens) occupying shelf waters of Pacific Arctic seas migrate during spring and summer from 3 breeding areas in the Bering Sea to form sexually segregated nonbreeding aggregations. We assessed genetic relationships among 2 putative breeding populations and 6 nonbreeding aggregations. Analyses of mitochondrial DNA (mtDNA) control region sequence data suggest that males are distinct among breeding populations (ΦST=0.051), and between the eastern Chukchi and other nonbreeding aggregations (ΦST=0.336–0.449). Nonbreeding female aggregations were genetically distinct across marker types (microsatellite FST=0.019; mtDNA ΦST=0.313), as was eastern Chukchi and all other nonbreeding aggregations (microsatellite FST=0.019–0.035; mtDNA ΦST=0.386–0.389). Gene flow estimates are asymmetrical from St. Lawrence Island into the southeastern Bering breeding population for both sexes. Partitioning of haplotype frequencies among breeding populations suggests that individuals exhibit some degree of philopatry, although weak. High levels of genetic differentiation among eastern Chukchi and all other nonbreeding aggregations, but considerably lower genetic differentiation between breeding populations, suggest that at least 1 genetically distinct breeding population remained unsampled. Limited genetic structure at microsatellite loci between assayed breeding areas can emerge from several processes, including male-mediated gene flow, or population admixture following a decrease in census size (i.e., due to commercial harvest during 1880–1950s) and subsequent recovery. Nevertheless, high levels of genetic diversity in the Pacific walrus, which withstood prolonged decreases in census numbers with little impact on neutral genetic diversity, may reflect resiliency in the face of past environmental challenges.

  13. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Anthony R Torres

    2016-10-01

    Full Text Available The common variant - common disease hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased versus matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the common variant—common disease hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics.Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14bp-indel frequencies are significantly increased by more than 5% over control populations (Table2. The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2. Three activating KIR genes: 3DS1, 2DS1 and 2DS2 have increased frequencies of 15%, 22% and 14% in autism populations, respectively. There is a 6% increase in total activating KIR

  14. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder.

    Science.gov (United States)

    Torres, Anthony R; Sweeten, Thayne L; Johnson, Randall C; Odell, Dennis; Westover, Jonna B; Bray-Ward, Patricia; Ward, David C; Davies, Christopher J; Thomas, Aaron J; Croen, Lisa A; Benson, Michael

    2016-01-01

    The "common variant-common disease" hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the "common variant-common disease" hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations ( Table 2 ). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations ( Table 2 ). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in autism

  15. Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Michael S M Brouwer

    Full Text Available Clostridium difficile is the leading cause of hospital-associated diarrhoea in the US and Europe. Recently the incidence of C. difficile-associated disease has risen dramatically and concomitantly with the emergence of 'hypervirulent' strains associated with more severe disease and increased mortality. C. difficile contains numerous mobile genetic elements, resulting in the potential for a highly plastic genome. In the first sequenced strain, 630, there is one proven conjugative transposon (CTn, Tn5397, and six putative CTns (CTn1, CTn2 and CTn4-7, of which, CTn4 and CTn5 were capable of excision. In the second sequenced strain, R20291, two further CTns were described.CTn1, CTn2 CTn4, CTn5 and CTn7 were shown to excise from the genome of strain 630 and transfer to strain CD37. A putative CTn from R20291, misleadingly termed a phage island previously, was shown to excise and to contain three putative mobilisable transposons, one of which was capable of excision. In silico probing of C. difficile genome sequences with recombinase gene fragments identified new putative conjugative and mobilisable transposons related to the elements in strains 630 and R20291. CTn5-like elements were described occupying different insertion sites in different strains, CTn1-like elements that have lost the ability to excise in some ribotype 027 strains were described and one strain was shown to contain CTn5-like and CTn7-like elements arranged in tandem. Additionally, using bioinformatics, we updated previous gene annotations and predicted novel functions for the accessory gene products on these new elements.The genomes of the C. difficile strains examined contain highly related CTns suggesting recent horizontal gene transfer. Several elements were capable of excision and conjugative transfer. The presence of antibiotic resistance genes and genes predicted to promote adaptation to the intestinal environment suggests that CTns play a role in the interaction of C

  16. The Genetic Correlation between Height and IQ: Shared Genes or Assortative Mating?

    Science.gov (United States)

    Keller, Matthew C.; Garver-Apgar, Christine E.; Wright, Margaret J.; Martin, Nicholas G.; Corley, Robin P.; Stallings, Michael C.; Hewitt, John K.; Zietsch, Brendan P.

    2013-01-01

    Traits that are attractive to the opposite sex are often positively correlated when scaled such that scores increase with attractiveness, and this correlation typically has a genetic component. Such traits can be genetically correlated due to genes that affect both traits (“pleiotropy”) and/or because assortative mating causes statistical correlations to develop between selected alleles across the traits (“gametic phase disequilibrium”). In this study, we modeled the covariation between monozygotic and dizygotic twins, their siblings, and their parents (total N = 7,905) to elucidate the nature of the correlation between two potentially sexually selected traits in humans: height and IQ. Unlike previous designs used to investigate the nature of the height–IQ correlation, the present design accounts for the effects of assortative mating and provides much less biased estimates of additive genetic, non-additive genetic, and shared environmental influences. Both traits were highly heritable, although there was greater evidence for non-additive genetic effects in males. After accounting for assortative mating, the correlation between height and IQ was found to be almost entirely genetic in nature. Model fits indicate that both pleiotropy and assortative mating contribute significantly and about equally to this genetic correlation. PMID:23593038

  17. EFFECTIVE UTILIZATION OF PLANT GENETIC RESOURCES IN CLIMATE CHANGE (SUMMARIZING THE RESULTS OF THE EUROPEAN PLANT GENETIC RESOURCES CONFERENCE «PRERBREEDING – FISHING IN THE GENE POOL»)

    OpenAIRE

    T. P. Suprunova

    2013-01-01

    The  EUCARPIA European Plant Genetic Resources Conference «Pre6breeding – fishing in the gene pool» was held at the campus of the Swedish University of Agricultural Science  (SLU) in Alnarp from 10 to 13 June  2013. This meeting gathered various members of the gene bank community of practice as well as users of the genetic resources  from all around the World.

  18. EFFECTIVE UTILIZATION OF PLANT GENETIC RESOURCES IN CLIMATE CHANGE (SUMMARIZING THE RESULTS OF THE EUROPEAN PLANT GENETIC RESOURCES CONFERENCE «PRERBREEDING – FISHING IN THE GENE POOL»

    Directory of Open Access Journals (Sweden)

    T. P. Suprunova

    2013-01-01

    Full Text Available The  EUCARPIA European Plant Genetic Resources Conference «Pre6breeding – fishing in the gene pool» was held at the campus of the Swedish University of Agricultural Science  (SLU in Alnarp from 10 to 13 June  2013. This meeting gathered various members of the gene bank community of practice as well as users of the genetic resources  from all around the World.

  19. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species

    Directory of Open Access Journals (Sweden)

    AB Choupina

    Full Text Available Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia, are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal, there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates, as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as “glochidia” hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  20. Genetic polymorphism of the OPG gene associated with breast cancer

    International Nuclear Information System (INIS)

    Ney, Jasmin Teresa; Juhasz-Boess, Ingolf; Gruenhage, Frank; Graeber, Stefan; Bohle, Rainer Maria; Pfreundschuh, Michael; Solomayer, Erich Franz; Assmann, Gunter

    2013-01-01

    The receptor activator of NF-κB (RANK), its ligand (RANKL) and osteoprotegerin (OPG) have been reported to play a role in the pathophysiological bone turnover and in the pathogenesis of breast cancer. Based on this we investigated the role of single nucleotide polymorphisms (SNPs) within RANK, RANKL and OPG and their possible association to breast cancer risk. Genomic DNA was obtained from Caucasian participants consisting of 307 female breast cancer patients and 396 gender-matched healthy controls. We studied seven SNPs in the genes of OPG (rs3102735, rs2073618), RANK (rs1805034, rs35211496) and RANKL (rs9533156, rs2277438, rs1054016) using TaqMan genotyping assays. Statistical analyses were performed using the χ 2 -tests for 2 x 2 and 2 x 3 tables. The allelic frequencies (OR: 1.508 CI: 1.127-2.018, p=0.006) and the genotype distribution (p=0.019) of the OPG SNP rs3102735 differed significantly between breast cancer patients and healthy controls. The minor allele C and the corresponding homo- and heterozygous genotypes are more common in breast cancer patients (minor allele C: 18.4% vs. 13.0%; genotype CC: 3.3% vs. 1.3%; genotype CT: 30.3% vs. 23.5%). No significantly changed risk was detected in the other investigated SNPs. Additional analysis showed significant differences when comparing patients with invasive vs. non-invasive tumors (OPG rs2073618) as well as in terms of tumor localization (RANK rs35211496) and body mass index (RANKL rs9533156 and rs1054016). This is the first study reporting a significant association of the SNP rs3102735 (OPG) with the susceptibility to develop breast cancer in the Caucasian population

  1. A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes

    Directory of Open Access Journals (Sweden)

    Tanurdzic Milos

    2004-04-01

    Full Text Available Abstract Background Ceratopteris richardii is a useful experimental system for studying gametophyte development and sexual reproduction in plants. However, few tools for cloning mutant genes or disrupting gene function exist for this species. The feasibility of systemic gene silencing as a reverse genetics tool was examined in this study. Results Several DNA constructs targeting a Ceratopteris protoporphyrin IX magnesium chelatase (CrChlI gene that is required for chlorophyll biosynthesis were each introduced into young gametophytes by biolistic delivery. Their transient expression in individual cells resulted in a colorless cell phenotype that affected most cells of the mature gametophyte, including the meristem and gametangia. The colorless phenotype was associated with a 7-fold decrease in the abundance of the endogenous transcript. While a construct designed to promote the transient expression of a CrChlI double stranded, potentially hairpin-forming RNA was found to be the most efficient in systemically silencing the endogenous gene, a plasmid containing the CrChlI cDNA insert alone was sufficient to induce silencing. Bombarded, colorless hermaphroditic gametophytes produced colorless embryos following self-fertilization, demonstrating that the silencing signal could be transmitted through gametogenesis and fertilization. Bombardment of young gametophytes with constructs targeting the Ceratopteris filamentous temperature sensitive (CrFtsZ and uroporphyrin dehydrogenase (CrUrod genes also produced the expected mutant phenotypes. Conclusion A method that induces the systemic silencing of target genes in the Ceratopteris gametophyte is described. It provides a simple, inexpensive and rapid means to test the functions of genes involved in gametophyte development, especially those involved in cellular processes common to all plants.

  2. Molecular genetic and genetic correlations in sodium channelopathies: Lack of founder effect and evidence for a second gene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Zhou, J.; Feero, W.G.; Conwit, R.; Galloway, G.; Hoffman, E.P. (Univ. of Pittsburgh, PA (United States)); Wessel, H.B. (Children' s Hospital, Pittsburgh, PA (United States) Univ. of Pittsburgh, PA (United States)); Todorovic, S.M. (Univ. of Belgrade (Yugoslavia)); Barany, F. (Cornell Univ., New York, NY (United States)); Hausmanowa-Petrusewicz, I.; Fidzianska, A. (Polish Academy of Sciences, Warsaw (Poland)); Arahata, K. (National Inst. of Neuroscience, Tokyo (Japan)); Sillen, A. (University Hospital, Uppsala (Sweden)); Marks, H.G. (A. I. duPont Inst., Wilmington, DE (United States)); Hartlage, P. (Medical College of Georgia, Augusta (United States)); Ricker, K. (Univ. of Wuerzburg (Germany)); Lehmann-Horn, F. (Univ. of Ulm (Germany)); Hayakawa, H. (Hitachi General Hospital (Japan))

    1993-06-01

    The authors present a correlation of molecular genetic data (mutations) and genetic data (dinucleotide-repeat polymorphisms) for a cohort of seven hyperkalemic periodic paralysis (HyperPP) and two paramyotonia congenita (PC) families from diverse ethnic backgrounds. They found that each of three previously identified point mutations of the adult skeletal muscle sodium-channel gene occurred on two different dinucleotide-repeat haplotypes. These results indicate that dinucleotide-repeat haplotypes are not predictive of allelic heterogeneity in sodium channelopathies, contrary to previous suggestions. In addition, they identified a HyperPP pedigree in which the dominant disorder was not linked to the sodium-channel gene. Thus, a second locus can give rise to a similar clinical phenotype. Some individuals in this pedigree exhibited a base change causing the nonconservative substitution of an evolutionarily conserved amino acid. Because this change was not present in 240 normal chromosomes and was near another HyperPP mutation, it fulfilled the most commonly used criteria for being a mutation rather than a polymorphism. However, linkage studies using single-strand conformation polymorphism-derived and sequence-derived haplotypes excluded this base change as a causative mutation: these data serve as a cautionary example of potential pitfalls in the delineation of change-of-function point mutations. 35 refs., 5 figs., 1 tab.

  3. Pollen Sterility—A Promising Approach to Gene Confinement and Breeding for Genetically Modified Bioenergy Crops

    Directory of Open Access Journals (Sweden)

    Albert P. Kausch

    2012-10-01

    Full Text Available Advanced genetic and biotechnology tools will be required to realize the full potential of food and bioenergy crops. Given current regulatory concerns, many transgenic traits might never be deregulated for commercial release without a robust gene confinement strategy in place. The potential for transgene flow from genetically modified (GM crops is widely known. Pollen-mediated transfer is a major component of gene flow in flowering plants and therefore a potential avenue for the escape of transgenes from GM crops. One approach for preventing and/or mitigating transgene flow is the production of trait linked pollen sterility. To evaluate the feasibility of generating pollen sterility lines for gene confinement and breeding purposes we tested the utility of a promoter (Zm13Pro from a maize pollen-specific gene (Zm13 for driving expression of the reporter gene GUS and the cytotoxic gene barnase in transgenic rice (Oryza sativa ssp. Japonica cv. Nipponbare as a monocot proxy for bioenergy grasses. This study demonstrates that the Zm13 promoter can drive pollen-specific expression in stably transformed rice and may be useful for gametophytic transgene confinement and breeding strategies by pollen sterility in food and bioenergy crops.

  4. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes.

    Science.gov (United States)

    Amberger, Joanna S; Hamosh, Ada

    2017-06-27

    Online Mendelian Inheritance in Man (OMIM) at OMIM.org is the primary repository of comprehensive, curated information on genes and genetic phenotypes and the relationships between them. This unit provides an overview of the types of information in OMIM and optimal strategies for searching and retrieving the information. OMIM.org has links to many related and complementary databases, providing easy access to more information on a topic. The relationship between genes and genetic disorders is highlighted in this unit. The basic protocol explains searching OMIM both from a gene perspective and a clinical features perspective. Two alternate protocols provide strategies for viewing gene-phenotype relationships: a gene map table and Quick View or Side-by-Side format for clinical features. OMIM.org is updated nightly, and the MIMmatch service, described in the support protocol, provides a convenient way to follow updates to entries, gene-phenotype relationships, and collaborate with other researchers. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. Association study of functional genetic variants of innate immunity related genes in celiac disease

    Directory of Open Access Journals (Sweden)

    Martín J

    2005-08-01

    Full Text Available Abstract Background Recent evidence suggest that the innate immune system is implicated in the early events of celiac disease (CD pathogenesis. In this work for the first time we have assessed the relevance of different proinflammatory mediators typically related to innate immunity in CD predisposition. Methods We performed a familial study in which 105 celiac families characterized by the presence of an affected child with CD were genotyped for functional polymorphisms located at regulatory regions of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes. Familial data was analysed with a transmission disequilibrium test (TDT that revealed no statistically significant differences in the transmission pattern of the different genetic markers considered. Results The TDT analysis for IL-1α, IL-1β, IL-1RN, IL-18, and MCP-1 genes genetic variants did not reveal biased transmission to the affected offspring. Only a borderline association of RANTES promoter genetic variants with CD predisposition was observed. Conclusion Our results suggest that the analysed polymorphisms of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes do not seem to play a major role in CD genetic predisposition in our population.

  6. Developmental and genetic modulation of arsenic biotransformation: A gene by environment interaction?

    International Nuclear Information System (INIS)

    Meza, Mercedes; Gandolfi, A. Jay; Klimecki, Walter T.

    2007-01-01

    The complexity of arsenic toxicology has confounded the identification of specific pathways of disease causation. One focal point of arsenic research is aimed at fully characterizing arsenic biotransformation in humans, a process that appears to be quite variable, producing a mixture of several arsenic species with greatly differing toxic potencies. In an effort to characterize genetic determinants of variability in arsenic biotransformation, a genetic association study of 135 subjects in western Sonora, Mexico was performed by testing 23 polymorphic sites in three arsenic biotransformation candidate genes. One gene, arsenic 3 methyltransferase (AS3MT), was strongly associated with the ratio of urinary dimethylarsinic acid to monomethylarsonic acid (D/M) in children (7-11 years) but not in adults (18-79 years). Subsequent analyses revealed that the high D/M values associated with variant AS3MT alleles were primarily due to lower levels of monomethylarsonic acid as percent of total urinary arsenic (%MMA5). In light of several reports of arsenic-induced disease being associated with relatively high %MMA5 levels, these findings raise the possibility that variant AS3MT individuals may suffer less risk from arsenic exposure than non-variant individuals. These analyses also provide evidence that, in this population, regardless of AS3MT variant status, children tend to have lower %MMA5 values than adults, suggesting that the global developmental regulation of arsenic biotransformation may interact with genetic variants in metabolic genes to result in novel genetic effects such as those in this report

  7. Reduced genetic diversity and alteration of gene flow in a fiddler crab due to mangrove degradation

    Science.gov (United States)

    Kochzius, Marc

    2017-01-01

    The fiddler crab Austruca occidentalis is a dominant species in mangrove forests along the East African coast. It enhances soil aeration and, through its engineering activities, makes otherwise-inaccessible food available for other marine organisms. Despite its importance, the habitat of A. occidentalis is threatened by human activities. Clearing the mangroves for salt farming and selective logging of mangroves trees continue to jeopardise mangrove ecosystems in the Western Indian Ocean. This study aims to use partial mitochondrial COI gene sequences and nuclear microsatellites to determine whether salt farming activities in mangroves have a negative impact on the genetic diversity and gene flow of A. occidentalis collected along the Tanzania coast. The level of genetic diversity for both mitochondrial DNA and nuclear microsatellites are relatively lower in samples from salt ponds compared to natural mangrove sites. Analysis of molecular variance (AMOVA) among all populations showed low but significant differentiation (COI: Fst = 0.022, P mangroves sites (COI: Fct = 0.033, P < 0.05; microsatellites: Fct = 0.018, P = < 0.01). These results indicate that salt farming has a significant negative impact on the genetic diversity of A. occidentalis. Since higher genetic diversity contributes to a stable population, restoring the cleared habitats might be the most effective measures for the conservation of genetic diversity and hence adaptive potential to environmental change in this species. PMID:28837577

  8. Genetic diversity and population structure of Lantana camara in India indicates multiple introductions and gene flow.

    Science.gov (United States)

    Ray, A; Quader, S

    2014-05-01

    Lantana camara is a highly invasive plant, which has spread over 60 countries and island groups of Asia, Africa and Australia. In India, it was introduced in the early nineteenth century, since when it has expanded and gradually established itself in almost every available ecosystem. We investigated the genetic diversity and population structure of this plant in India in order to understand its introduction, subsequent range expansion and gene flow. A total of 179 individuals were sequenced at three chloroplast loci and 218 individuals were genotyped for six nuclear microsatellites. Both chloroplasts (nine haplotypes) and microsatellites (83 alleles) showed high genetic diversity. Besides, each type of marker confirmed the presence of private polymorphism. We uncovered low to medium population structure in both markers, and found a faint signal of isolation by distance with microsatellites. Bayesian clustering analyses revealed multiple divergent genetic clusters. Taken together, these findings (i.e. high genetic diversity with private alleles and multiple genetic clusters) suggest that Lantana was introduced multiple times and gradually underwent spatial expansion with recurrent gene flow. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. High resolution genetic map of the adenomatous polyposis coli gene (APC) region

    Energy Technology Data Exchange (ETDEWEB)

    Olschwang, S.; Laurent-Puig, P.; Melot, T. [Institut Curie, Paris (France)

    1995-05-08

    Familial adenomatous polyposis coli (APC) is a dominantly inherited colorectal cancer susceptibility disease caused by mutation in a gene called APC located on chromosome 5q21. Presymptomatic diagnosis of this condition is recommended because it enables restriction of the efficient but demanding prevention program to those relatives that are genetically affected. The large size of the APC gene makes the direct search for the casual alteration difficult to implement in routine diagnostic laboratories. Because APC appears to be genetically homogeneous with alteration in a single locus causing the disease, cosegregation analysis may represent an alternative efficient method for presymptomatic diagnosis. However, the reliability of the risk estimation by linkage analysis in APC families is hampered by the lack of a short range genetic map of the APC locus. A combined approach including genotyping of 65 APC families, analysis of the CEPH database, and complementary typing of both APC and CEPH families has made it possible to derive the following genetic map: Centromere-[D5S82-D5S49]-0.02-D5S122-0.01-D5S136-0.01-D5S135-0.02-[APC-D5S346-MCC]-0.04-[D5S81-D5S64]-Telomere. This order, which differs from previously proposed genetic maps, is fully compatible with recent physical mapping data. These data should contribute to increase the reliability of the presymptomatic test for APC. 42 refs., 1 fig., 3 tabs.

  10. Genetic diversity and gene flow decline with elevation in montane mayflies.

    Science.gov (United States)

    Polato, N R; Gray, M M; Gill, B A; Becker, C G; Casner, K L; Flecker, A S; Kondratieff, B C; Encalada, A C; Poff, N L; Funk, W C; Zamudio, K R

    2017-08-01

    Montane environments around the globe are biodiversity 'hotspots' and important reservoirs of genetic diversity. Montane species are also typically more vulnerable to environmental change than their low-elevation counterparts due to restricted ranges and dispersal limitations. Here we focus on two abundant congeneric mayflies (Baetis bicaudatus and B. tricaudatus) from montane streams over an elevation gradient spanning 1400 m. Using single-nucleotide polymorphism genotypes, we measured population diversity and vulnerability in these two species by: (i) describing genetic diversity and population structure across elevation gradients to identify mechanisms underlying diversification; (ii) performing spatially explicit landscape analyses to identify environmental drivers of differentiation; and (iii) identifying outlier loci hypothesized to underlie adaptive divergence. Differences in the extent of population structure in these species were evident depending upon their position along the elevation gradient. Heterozygosity, effective population sizes and gene flow all declined with increasing elevation, resulting in substantial population structure in the higher elevation species (B. bicaudatus). At lower elevations, populations of both species are more genetically similar, indicating ongoing gene flow. Isolation by distance was detected at lower elevations only, whereas landscape barriers better predicted genetic distance at higher elevations. At higher elevations, dispersal was restricted due to landscape effects, resulting in greater population isolation. Our results demonstrate differentiation over small spatial scales along an elevation gradient, and highlight the importance of preserving genetic diversity in more isolated high-elevation populations.

  11. Genetic clusters and sex-biased gene flow in a unicolonial Formica ant

    Directory of Open Access Journals (Sweden)

    Chapuisat Michel

    2009-03-01

    Full Text Available Abstract Background Animal societies are diverse, ranging from small family-based groups to extraordinarily large social networks in which many unrelated individuals interact. At the extreme of this continuum, some ant species form unicolonial populations in which workers and queens can move among multiple interconnected nests without eliciting aggression. Although unicoloniality has been mostly studied in invasive ants, it also occurs in some native non-invasive species. Unicoloniality is commonly associated with very high queen number, which may result in levels of relatedness among nestmates being so low as to raise the question of the maintenance of altruism by kin selection in such systems. However, the actual relatedness among cooperating individuals critically depends on effective dispersal and the ensuing pattern of genetic structuring. In order to better understand the evolution of unicoloniality in native non-invasive ants, we investigated the fine-scale population genetic structure and gene flow in three unicolonial populations of the wood ant F. paralugubris. Results The analysis of geo-referenced microsatellite genotypes and mitochondrial haplotypes revealed the presence of cryptic clusters of genetically-differentiated nests in the three populations of F. paralugubris. Because of this spatial genetic heterogeneity, members of the same clusters were moderately but significantly related. The comparison of nuclear (microsatellite and mitochondrial differentiation indicated that effective gene flow was male-biased in all populations. Conclusion The three unicolonial populations exhibited male-biased and mostly local gene flow. The high number of queens per nest, exchanges among neighbouring nests and restricted long-distance gene flow resulted in large clusters of genetically similar nests. The positive relatedness among clustermates suggests that kin selection may still contribute to the maintenance of altruism in unicolonial

  12. Consequences of population topology for studying gene flow using link-based landscape genetic methods.

    Science.gov (United States)

    van Strien, Maarten J

    2017-07-01

    Many landscape genetic studies aim to determine the effect of landscape on gene flow between populations. These studies frequently employ link-based methods that relate pairwise measures of historical gene flow to measures of the landscape and the geographical distance between populations. However, apart from landscape and distance, there is a third important factor that can influence historical gene flow, that is, population topology (i.e., the arrangement of populations throughout a landscape). As the population topology is determined in part by the landscape configuration, I argue that it should play a more prominent role in landscape genetics. Making use of existing literature and theoretical examples, I discuss how population topology can influence results in landscape genetic studies and how it can be taken into account to improve the accuracy of these results. In support of my arguments, I have performed a literature review of landscape genetic studies published during the first half of 2015 as well as several computer simulations of gene flow between populations. First, I argue why one should carefully consider which population pairs should be included in link-based analyses. Second, I discuss several ways in which the population topology can be incorporated in response and explanatory variables. Third, I outline why it is important to sample populations in such a way that a good representation of the population topology is obtained. Fourth, I discuss how statistical testing for link-based approaches could be influenced by the population topology. I conclude the article with six recommendations geared toward better incorporating population topology in link-based landscape genetic studies.

  13. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar.

    Science.gov (United States)

    Zhang, Jiqing; Xia, Changjian; Wang, Xiaoming; Duan, Canxing; Sun, Suli; Wu, Xiaofei; Zhu, Zhendong

    2013-06-01

    Phytophthora root rot (PRR), caused by Phytophthora sojae Kaufmann & Gerdemann, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.]. Deployment of resistance genes is the most economical and effective way of controlling the disease. The soybean cultivar 'Yudou 29' is resistant to many P. sojae isolates in China. The genetic basis of the resistance in 'Yudou 29' was elucidated through an inheritance study and molecular mapping. In response to 25 P. sojae isolates, 'Yudou 29' displayed a new resistance reaction pattern distinct from those of differentials carrying known Rps genes. A population of 214 F2:3 families from a cross between 'Jikedou 2' (PRR susceptible) and 'Yudou 29' was used for Rps gene mapping. The segregation fit a ratio of 1:2:1 for resistance:segregation:susceptibility within this population, indicating that resistance in 'Yudou 29' is controlled by a single dominant gene. This gene was temporarily named RpsYD29 and mapped on soybean chromosome 03 (molecular linkage group N; MLG N) flanked by SSR markers SattWM82-50 and Satt1k4b at a genetic distance of 0.5 and 0.2 cM, respectively. Two nucleotide binding site-leucine rich repeat (NBS-LRR) type genes were detected in the 204.8 kb region between SattWM82-50 and Satt1k4b. These two genes showed high similarity to Rps1k in amino acid sequence and could be candidate genes for PRR resistance. Based on the phenotype reactions and the physical position on soybean chromosome 03, RpsYD29 might be a novel allele at, or a novel gene tightly linked to, the Rps1 locus.

  14. Genetic Predictors of Adverse Radiotherapy Effects: The Gene-PARE project

    International Nuclear Information System (INIS)

    Ho, Alice Y.; Atencio, David P.; Peters, Sheila; Stock, Richard G.; Formenti, Silvia C.; Cesaretti, Jamie A.; Green, Sheryl; Haffty, Bruce; Drumea, Karen; Leitzin, Larisa M.D.; Kuten, Abraham; Azria, David; Ozsahin, Mahmut; Overgaard, Jens; Andreassen, Christian N.; Trop, Cynthia S.; Park, Janelle; Rosenstein, Barry S.

    2006-01-01

    Purpose: The development of adverse effects resulting from the radiotherapy of cancer limits the use of this treatment modality. The validation of a test capable of predicting which patients would be most likely to develop adverse responses to radiation treatment, based on the possession of specific genetic variants, would therefore be of value. The purpose of the Genetic Predictors of Adverse Radiotherapy Effects (Gene-PARE) project is to help achieve this goal. Methods and Materials: A continuously expanding biorepository has been created consisting of frozen lymphocytes and DNA isolated from patients treated with radiotherapy. In conjunction with this biorepository, a database is maintained with detailed clinical information pertaining to diagnosis, treatment, and outcome. The DNA samples are screened using denaturing high performance liquid chromatography (DHPLC) and the Surveyor nuclease assay for variants in ATM, TGFB1, XRCC1, XRCC3, SOD2, and hHR21. It is anticipated that additional genes that control the biologic response to radiation will be screened in future work. Results: Evidence has been obtained that possession of variants in genes, the products of which play a role in radiation response, is predictive for the development of adverse effects after radiotherapy. Conclusions: It is anticipated that the Gene-PARE project will yield information that will allow radiation oncologists to use genetic data to optimize treatment on an individual basis

  15. Music genetics research: Association with musicality of a polymorphism in the AVPR1A gene.

    Science.gov (United States)

    Mariath, Luiza Monteavaro; Silva, Alexandre Mauat da; Kowalski, Thayne Woycinck; Gattino, Gustavo Schulz; Araujo, Gustavo Andrade de; Figueiredo, Felipe Grahl; Tagliani-Ribeiro, Alice; Roman, Tatiana; Vianna, Fernanda Sales Luiz; Schuler-Faccini, Lavínia; Schuch, Jaqueline Bohrer

    2017-01-01

    Musicality is defined as a natural tendency, sensibility, knowledge, or talent to create, perceive, and play music. Musical abilities involve a great range of social and cognitive behaviors, which are influenced by both environmental and genetic factors. Although a number of studies have yielded insights into music genetics research, genes and biological pathways related to these traits are not fully understood. Our hypothesis in the current study is that genes associated with different behaviors could also influence the musical phenotype. Our aim was to investigate whether polymorphisms in six genes (AVPR1A, SLC6A4, ITGB3, COMT, DRD2 and DRD4) related to social and cognitive traits are associated with musicality in a sample of children. Musicality was assessed through an individualized music therapy assessment profile (IMTAP) which has been validated in Brazil to measure musical ability. We show here that the RS1 microsatellite of the AVPR1A gene is nominally associated with musicality, corroborating previous results linking AVPR1A with musical activity. This study is one of the first to investigate musicality in a comprehensive way, and it contributes to better understand the genetic basis underlying musical ability.

  16. Music genetics research: Association with musicality of a polymorphism in the AVPR1A gene

    Directory of Open Access Journals (Sweden)

    Luiza Monteavaro Mariath

    2017-05-01

    Full Text Available Abstract Musicality is defined as a natural tendency, sensibility, knowledge, or talent to create, perceive, and play music. Musical abilities involve a great range of social and cognitive behaviors, which are influenced by both environmental and genetic factors. Although a number of studies have yielded insights into music genetics research, genes and biological pathways related to these traits are not fully understood. Our hypothesis in the current study is that genes associated with different behaviors could also influence the musical phenotype. Our aim was to investigate whether polymorphisms in six genes (AVPR1A, SLC6A4, ITGB3, COMT, DRD2 and DRD4 related to social and cognitive traits are associated with musicality in a sample of children. Musicality was assessed through an individualized music therapy assessment profile (IMTAP which has been validated in Brazil to measure musical ability. We show here that the RS1 microsatellite of the AVPR1A gene is nominally associated with musicality, corroborating previous results linking AVPR1A with musical activity. This study is one of the first to investigate musicality in a comprehensive way, and it contributes to better understand the genetic basis underlying musical ability.

  17. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs.

    Science.gov (United States)

    Lan, DaoLiang; Xiong, XianRong; Ji, WenHui; Li, Jian; Mipam, Tserang-Donko; Ai, Yi; Chai, ZhiXin

    2018-04-01

    The yak (Bos grunniens), which is a unique bovine breed that is distributed mainly in the Qinghai-Tibetan Plateau, is considered a good model for studying plateau adaptability in mammals. The lungs are important functional organs that enable animals to adapt to their external environment. However, the genetic mechanism underlying the adaptability of yak lungs to harsh plateau environments remains unknown. To explore the unique evolutionary process and genetic mechanism of yak adaptation to plateau environments, we performed transcriptome sequencing of yak and cattle (Bos taurus) lungs using RNA-Seq technology and a subsequent comparison analysis to identify the positively selected genes in the yak. After deep sequencing, a normal transcriptome profile of yak lung that containing a total of 16,815 expressed genes was obtained, and the characteristics of yak lungs transcriptome was described by functional analysis. Furthermore, Ka/Ks comparison statistics result showed that 39 strong positively selected genes are identified from yak lungs. Further GO and KEGG analysis was conducted for the functional annotation of these genes. The results of this study provide valuable data for further explorations of the unique evolutionary process of high-altitude hypoxia adaptation in yaks in the Tibetan Plateau and the genetic mechanism at the molecular level.

  18. Genetic diversity of selected genes that are potentially economically important in feral sheep of New Zealand

    Directory of Open Access Journals (Sweden)

    Sedcole J Richard

    2010-12-01

    Full Text Available Abstract Background Feral sheep are considered to be a source of genetic variation that has been lost from their domestic counterparts through selection. Methods This study investigates variation in the genes KRTAP1-1, KRT33, ADRB3 and DQA2 in Merino-like feral sheep populations from New Zealand and its offshore islands. These genes have previously been shown to influence wool, lamb survival and animal health. Results All the genes were polymorphic, but no new allele was identified in the feral populations. In some of these populations, allele frequencies differed from those observed in commercial Merino sheep and other breeds found in New Zealand. Heterozygosity levels were comparable to those observed in other studies on feral sheep. Our results suggest that some of the feral populations may have been either inbred or outbred over the duration of their apparent isolation. Conclusion The variation described here allows us to draw some conclusions about the likely genetic origin of the populations and selective pressures that may have acted upon them, but they do not appear to be a source of new genetic material, at least for these four genes.

  19. Genetic Profiling of the Isoprenoid and Sterol Biosynthesis Pathway Genes of Trypanosoma cruzi

    Science.gov (United States)

    Cosentino, Raúl O.; Agüero, Fernán

    2014-01-01

    In Trypanosoma cruzi the isoprenoid and sterol biosynthesis pathways are validated targets for chemotherapeutic intervention. In this work we present a study of the genetic diversity observed in genes from these pathways. Using a number of bioinformatic strategies, we first identified genes that were missing and/or were truncated in the T. cruzi genome. Based on this analysis we obtained the complete sequence of the ortholog of the yeast ERG26 gene and identified a non-orthologous homolog of the yeast ERG25 gene (sterol methyl oxidase, SMO), and we propose that the orthologs of ERG25 have been lost in trypanosomes (but not in Leishmanias). Next, starting from a set of 16 T. cruzi strains representative of all extant evolutionary lineages, we amplified and sequenced ∼24 Kbp from 22 genes, identifying a total of 975 SNPs or fixed differences, of which 28% represent non-synonymous changes. We observed genes with a density of substitutions ranging from those close to the average (∼2.5/100 bp) to some showing a high number of changes (11.4/100 bp, for the putative lathosterol oxidase gene). All the genes of the pathway are under apparent purifying selection, but genes coding for the sterol C14-demethylase, the HMG-CoA synthase, and the HMG-CoA reductase have the lowest density of missense SNPs in the panel. Other genes (TcPMK, TcSMO-like) have a relatively high density of non-synonymous SNPs (2.5 and 1.9 every 100 bp, respectively). However, none of the non-synonymous changes identified affect a catalytic or ligand binding site residue. A comparative analysis of the corresponding genes from African trypanosomes and Leishmania shows similar levels of apparent selection for each gene. This information will be essential for future drug development studies focused on this pathway. PMID:24828104

  20. Genetic variability of Myzus persicae nicotianae densovirus based on partial NS and VP gene sequences.

    Science.gov (United States)

    Song, X R; Tang, S H; Tang, Z Q; Yang, X M; Wang, X W; Wang, X F; Xu, P J; Ren, G W

    2016-11-21

    We previously described a novel densovirus [Myzus persicae nicotianae densovirus (MpnDV)] infecting M. persicae nicotianae (Hemiptera: Aphididae) with 34% prevalence. This single-stranded DNA virus has a 5480-nucleotide ambisense genome and belongs to the Densovirinae subfamily within the family Parvoviridae. In the present study, we estimated the genetic diversity of MpnDV using partial nonstructural protein (NS) and capsid protein (VP) gene sequences from 10 locations in China. First, we identified MpnDV-positive samples by amplifying a 445-bp fragment with primers MpDVF/MpDVR. Subsequently, we amplified and sequenced COI genes with primers MpCOIF/ MpCOIR, and partial NS and VP sequences with primers MpnDVF1/MpnDVR1. The respective 655-, 1461-, and 423-bp COI, NS, and VP fragments were used to analyze the genetic diversity of MpnDV using MEGA 6.0 and DnaSP 5.0. The high level of identity shared by all COI sequences (>99%) suggested that the aphids sampled were of the same species, and indicated population homogeneity across the 10 locations investigated. The nucleotide diversity of MpnDV sequences (0.0020 ± 0.0025) was significantly higher than that of the COI genes (0.0002 ± 0.0005). The pairwise fixation index for MpnDV was 0.832, and the total gene flow was 0.05. Phylogenetic analysis revealed that the MpnDV haplotypes clustered according to geographical location, except for those from the Liaoning and Shanxi provinces. In conclusion, MpnDV demonstrated a low level of gene flow and high genetic diversity, suggesting that it is vertically transmitted, and implying that endosymbiotic viruses could be used as markers in studies of insect population genetics.

  1. Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors.

    Science.gov (United States)

    Brunetti-Pierri, N; Ng, P

    2008-04-01

    Preclinical studies in small and large animal models using helper-dependent adenoviral vectors (HDAds) have generated promising results for the treatment of genetic diseases. However, clinical translation is complicated by the dose-dependent, capsid-mediated acute toxic response following systemic vector injection. With the advancements in vectorology, a better understanding of vector-mediated toxicity, and improved delivery methods, HDAds may emerge as an important vector for gene therapy of genetic diseases and this report highlights recent progress and prospects in this field.

  2. Genetic evaluation with major genes and polygenic inheritance when some animals are not genotyped using gene content multiple-trait BLUP.

    Science.gov (United States)

    Legarra, Andrés; Vitezica, Zulma G

    2015-11-17

    In pedigreed populations with a major gene segregating for a quantitative trait, it is not clear how to use pedigree, genotype and phenotype information when some individuals are not genotyped. We propose to consider gene content at the major gene as a second trait correlated to the quantitative trait, in a gene content multiple-trait best linear unbiased prediction (GCMTBLUP) method. The genetic covariance between the trait and gene content at the major gene is a function of the substitution effect of the gene. This genetic covariance can be written in a multiple-trait form that accommodates any pattern of missing values for either genotype or phenotype data. Effects of major gene alleles and the genetic covariance between genotype at the major gene and the phenotype can be estimated using standard EM-REML or Gibbs sampling. Prediction of breeding values with genotypes at the major gene can use multiple-trait BLUP software. Major genes with more than two alleles can be considered by including negative covariances between gene contents at each different allele. We simulated two scenarios: a selected and an unselected trait with heritabilities of 0.05 and 0.5, respectively. In both cases, the major gene explained half the genetic variation. Competing methods used imputed gene contents derived by the method of Gengler et al. or by iterative peeling. Imputed gene contents, in contrast to GCMTBLUP, do not consider information on the quantitative trait for genotype prediction. GCMTBLUP gave unbiased estimates of the gene effect, in contrast to the other methods, with less bias and better or equal accuracy of prediction. GCMTBLUP improved estimation of genotypes in non-genotyped individuals, in particular if these individuals had own phenotype records and the trait had a high heritability. Ignoring the major gene in genetic evaluation led to serious biases and decreased prediction accuracy. CGMTBLUP is the best linear predictor of additive genetic merit including

  3. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS

    Directory of Open Access Journals (Sweden)

    Kim Nora

    2012-07-01

    Full Text Available Abstract Background It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO. Results We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs. Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, ‘Regulation of Cellular Component Organization and Biogenesis’, a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, ‘Actin Cytoskeleton’, a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Conclusions Pathway

  4. Genetic organisation of the capsule transport gene region from Haemophilus paragallinarum

    Directory of Open Access Journals (Sweden)

    O. De Smidt

    2004-11-01

    Full Text Available The region involved in export of the capsule polysaccharides to the cell surface of Haemophilus paragallinarum was cloned and the genetic organisation determined. Degenerate primers designed from sequence alignment of the capsule transport genes of Haemophilus influenzae, Pasteurella multocida and Actinobacillus pleuropneumoniae were used to amplify a 2.6 kb fragment containing a segment of the H. paragallinarum capsule transport gene locus. This fragment was used as a digoxigenin labelled probe to isolate the complete H. paragallinarum capsule transport gene locus from genomic DNA. The sequence of the cloned DNA was determined and analysis revealed the presence of four genes, each showing high homology with known capsule transport genes. The four genes were designated hctA, B, C and D (for H. paragallinarum capsule transport genes and the predicted products of these genes likely encode an ATP-dependent export system responsible for transport of the capsule polysaccharides to the cell surface, possibly a member of a super family designated ABC (ATP-binding cassette transporters.

  5. Identification of Genetic Susceptibility to Childhood Cancer through Analysis of Genes in Parallel

    Science.gov (United States)

    Plon, Sharon E.; Wheeler, David A.; Strong, Louise C.; Tomlinson, Gail E.; Pirics, Michael; Meng, Qingchang; Cheung, Hannah C.; Begin, Phyllis R.; Muzny, Donna M.; Lewis, Lora; Biegel, Jaclyn A.; Gibbs, Richard A.

    2011-01-01

    Clinical cancer genetic susceptibility analysis typically proceeds sequentially beginning with the most likely causative gene. The process is time consuming and the yield is low particularly for families with unusual patterns of cancer. We determined the results of in parallel mutation analysis of a large cancer-associated gene panel. We performed deletion analysis and sequenced the coding regions of 45 genes (8 oncogenes and 37 tumor suppressor or DNA repair genes) in 48 childhood cancer patients who also (1) were diagnosed with a second malignancy under age 30, (2) have a sibling diagnosed with cancer under age 30 and/or (3) have a major congenital anomaly or developmental delay. Deleterious mutations were identified in 6 of 48 (13%) families, 4 of which met the sibling criteria. Mutations were identified in genes previously implicated in both dominant and recessive childhood syndromes including SMARCB1, PMS2, and TP53. No pathogenic deletions were identified. This approach has provided efficient identification of childhood cancer susceptibility mutations and will have greater utility as additional cancer susceptibility genes are identified. Integrating parallel analysis of large gene panels into clinical testing will speed results and increase diagnostic yield. The failure to detect mutations in 87% of families highlights that a number of childhood cancer susceptibility genes remain to be discovered. PMID:21356188

  6. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  7. Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila.

    Science.gov (United States)

    Dolezal, Tomas; Gazi, Michal; Zurovec, Michal; Bryant, Peter J

    2003-10-01

    Many Drosophila genes exist as members of multigene families and within each family the members can be functionally redundant, making it difficult to identify them by classical mutagenesis techniques based on phenotypic screening. We have addressed this problem in a genetic analysis of a novel family of six adenosine deaminase-related growth factors (ADGFs). We used ends-in targeting to introduce mutations into five of the six ADGF genes, taking advantage of the fact that five of the family members are encoded by a three-gene cluster and a two-gene cluster. We used two targeting constructs to introduce loss-of-function mutations into all five genes, as well as to isolate different combinations of multiple mutations, independent of phenotypic consequences. The results show that (1) it is possible to use ends-in targeting to disrupt gene clusters; (2) gene conversion, which is usually considered a complication in gene targeting, can be used to help recover different mutant combinations in a single screening procedure; (3) the reduction of duplication to a single copy by induction of a double-strand break is better explained by the single-strand annealing mechanism than by simple crossing over between repeats; and (4) loss of function of the most abundantly expressed family member (ADGF-A) leads to disintegration of the fat body and the development of melanotic tumors in mutant larvae.

  8. A Single Gene Cluster for Chalcomycins and Aldgamycins: Genetic Basis for Bifurcation of Their Biosynthesis.

    Science.gov (United States)

    Tang, Xiao-Long; Dai, Ping; Gao, Hao; Wang, Chuan-Xi; Chen, Guo-Dong; Hong, Kui; Hu, Dan; Yao, Xin-Sheng

    2016-07-01

    Aldgamycins are 16-membered macrolide antibiotics with a rare branched-chain sugar d-aldgarose or decarboxylated d-aldgarose at C-5. In our efforts to clone the gene cluster for aldgamycins from a marine-derived Streptomyces sp. HK-2006-1 capable of producing both aldgamycins and chalcomycins, we found that both are biosynthesized from a single gene cluster. Whole-genome sequencing combined with gene disruption established the entire gene cluster of aldgamycins: nine new genes are incorporated with the previously identified chalcomycin gene cluster. Functional analysis of these genes revealed that almDI/almDII, (encoding α/β subunits of pyruvate dehydrogenase) triggers the biosynthesis of aldgamycins, whereas almCI (encoding an oxidoreductase) initiates chalcomycins biosynthesis. This is the first report that aldgamycins and chalcomycins are derived from a single gene cluster and of the genetic basis for bifurcation in their biosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Lei, Jieping; Rudolph, Anja; Moysich, Kirsten B

    2016-01-01

    Immunosuppression plays a pivotal role in assisting tumors to evade immune destruction and promoting tumor development. We hypothesized that genetic variation in the immunosuppression pathway genes may be implicated in breast cancer tumorigenesis. We included 42,510 female breast cancer cases...... and 40,577 controls of European ancestry from 37 studies in the Breast Cancer Association Consortium (2015) with available genotype data for 3595 single nucleotide polymorphisms (SNPs) in 133 candidate genes. Associations between genotyped SNPs and overall breast cancer risk, and secondarily according...... to estrogen receptor (ER) status, were assessed using multiple logistic regression models. Gene-level associations were assessed based on principal component analysis. Gene expression analyses were conducted using RNA sequencing level 3 data from The Cancer Genome Atlas for 989 breast tumor samples and 113...

  10. [Clinical and genetic analysis of a patient with Treacher Collins syndrome in TCOF1 gene].

    Science.gov (United States)

    Li, Hongbo; Zhang, Xu; Li, Zhenyue; Chen, Jing; Lu, Yu; Jia, Jingjie; Yuan, Huijun; Han, Dongyi

    2012-05-01

    To analyze the clinical and genetic features of a patient with Treacher Collins syndrome (TCS), and identify the mutation in TCOF1 gene. The medical history was taken, and general physical examinations and otological examinations were conducted in this patient. Genomic DNA was extracted from this patient and his parents and complete TCOF1 gene coding exons were amplified by specific PCR primers. Direct sequencing was carried out to identify the mutations. The raw data was analyzed with GeneTool software and molecular biological website. We detected a heterozygous c. 1639 delAG mutation in exon 11 of TCOF1, which resulted in a truncated protein lacking normal function. This mutation is a novel mutation and the second case identified in exon 11 of in TCS. TCS patient reported in this study has unique clinical phenotype. TCOF1 gene mutation is the specific risk factor.

  11. The Function of Herpes Simplex Virus Genes: A Primer for Genetic Engineering of Novel Vectors

    Science.gov (United States)

    Roizman, Bernard

    1996-10-01

    Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.

  12. A new web-based data mining tool for the identification of candidate genes for human genetic disorders

    NARCIS (Netherlands)

    Driel, van M.A.; Cuelenaere, K.; Kemmeren, P.P.C.W.; Leunissen, J.A.M.; Brunner, H.G.

    2003-01-01

    To identify the gene underlying a human genetic disorder can be difficult and time-consuming. Typically, positional data delimit a chromosomal region that contains between 20 and 200 genes. The choice then lies between sequencing large numbers of genes, or setting priorities by combining positional

  13. Identification of Host Genes Involved in Geminivirus Infection Using a Reverse Genetics Approach

    Science.gov (United States)

    Luna, Ana P.; Bejarano, Eduardo R.

    2011-01-01

    Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies. PMID:21818318

  14. Expression of highly toxic genes in E. coli: special strategies and genetic tools.

    Science.gov (United States)

    Saïda, F; Uzan, M; Odaert, B; Bontems, F

    2006-02-01

    Escherichia coli (E. coli) remains the most efficient widely-used host for recombinant protein production. Well-known genetics, high transformation efficiency, cultivation simplicity, rapidity and inexpensiveness are the main factors that contribute to the selection of this host. With the advent of the post-genomic era has come the need to express in this bacterium a growing number of genes originating from different organisms. Unfortunately, many of these genes severely interfere with the survival of E. coli cells. They lead to bacteria death or cause significant defects in bacteria growth that dramatically decrease expression capabilities. In this paper, we review special strategies and genetics tools successfully used to express, in E. coli, highly toxic genes. Suppression of basal expression from leaky inducible promoters, suppression of read-through transcription from cryptic promoters, tight control of plasmids copy numbers and proteins production as inactive (but reversible) forms are among the solutions presented and discussed. Special expression vectors and modified E. coli strains are listed and their effectiveness illustrated with key examples, some of which are related to our study of the highly toxic phage T4 restriction endoribonuclease RegB. We mainly selected those strategies and tools that permit E. coli normal growth until the very moment of highly toxic gene induction. Expression then occurs efficiently before cells die. Because they do not target a particular toxic effect, these strategies and tools can be used to express a wide variety of highly toxic genes.

  15. Genetic differentiation of the malaria vector Anopheles gambiae across Nigeria suggests that selection limits gene flow.

    Science.gov (United States)

    Onyabe, D Y; Conn, J E

    2001-12-01

    Gene flow was investigated in Anopheles gambiae from eight localities that span the ecological zones of Nigeria (arid savanna zones in the north gradually turn into humid forest zones in the south). Genetic differentiation was measured over 10 microsatellite loci and, to determine any effects of selection, five loci were located within chromosome inversions and the other five were outside inversions. Over all loci, the largest estimates of differentiation were in comparisons between localities in the savanna vs. forest zones (range FST 0.024-0.087, Nm 2.6-10.1; RST 0.014-0.100, Nm 2.2-16.4). However, three loci located within inversions on chromosome II, whose frequencies varied clinically from north to south, were responsible for virtually all of the differentiation. When the three loci were removed, genetic distances across the remaining seven loci were markedly reduced even between localities in the forest and savanna zones (range FST 0.001-0.019, Nm 12.7-226.1) or no longer significant (P > 0.05) in the case of RST. Although tests of isolation by distance gave seemingly equivocal results, geographical distance does not appear to limit gene flow. These observations suggest that gene flow is extensive across the country but that selection on genes located within some inversions on chromosome II counters the homogenizing effects of gene flow.

  16. Stochastic gene expression in single cells: exploring the importance of noise in genetic networks

    Science.gov (United States)

    van Oudenaarden, Alexander

    2003-03-01

    Cells are intrinsically noisy biochemical reactors. This leads to random cell to cell variation (noise) in gene expression levels. First, I will address the source of this noise at the level of transcription and translation of a single gene. Our experimental results demonstrate that the intrinsic noise of a single gene is predominantly controlled at the translational level, and that increased translational efficiency leads to increased noise strength. This observation is consistent with a theoretical model in which proteins are randomly produced in sharp bursts followed by periods of slow decay. Second, I will explore the importance of genetic noise for a naturally occuring network: the lac operon. The classic lactose utilization network of E. coli has been under investigation for several decades and, in its simplest form the network may be modeled as a single positive feedback module. However, this simplicity is deceptive, as even this basic network is capable of complex metabolic behavior, including adaptation, amplification, and graded-to-binary response conversion. I will present single cell measurements on the expression of key genes in lactose uptake network and explore the importance of genetic noise on the regulation of these genes.

  17. Genetic influence of radiation measured by the effect on the mutation rate of human minisatellite genes

    Energy Technology Data Exchange (ETDEWEB)

    Kodaira, Mieko [Radiation Effects Research Foundation, Hiroshima (Japan)

    2002-09-01

    Human minisatellite genes are composed from 0.1-30 kb with a high frequency of polymorphism. The genes exist in mammalian genomes and mice's ones are well studied after irradiation of their gonad cells by X-ray and {gamma}-ray. Following five reports concerning the significant and/or insignificant increases of the mutation rate of the genes post A-bomb exposure, Chernobyl accident and nuclear weapons test in Semipalatinsk are reviewed and discussed on the subject number, exposed dose, problems of the control group, regions examined of loci and exposure conditions. Genetic influences of radiation examined by the author's facility are not recognized in the mutation rate (3.21% vs 4.94% in the control) of minisatellite genes in children of A-bomb survivors and their parents. The mutation rates are 4.27 vs 2.52% (positive influence) and 4.2-6.01% vs 3.5-6.34% in Chernobyl, and 4.3 (parents) and 3.8% (F{sub 1}) vs 2.5% (positive). Mutation of human minisatellite genes can be an important measure of genetic influences at the medical level. (K.H.)

  18. Systems Genetics Implicates Cytoskeletal Genes in Oocyte Control of Cloned Embryo Quality

    Science.gov (United States)

    Cheng, Yong; Gaughan, John; Midic, Uros; Han, Zhiming; Liang, Cheng-Guang; Patel, Bela G.; Latham, Keith E.

    2013-01-01

    Cloning by somatic cell nuclear transfer is an important technology, but remains limited due to poor rates of success. Identifying genes supporting clone development would enhance our understanding of basic embryology, improve applications of the technology, support greater understanding of establishing pluripotent stem cells, and provide new insight into clinically important determinants of oocyte quality. For the first time, a systems genetics approach was taken to discover genes contributing to the ability of an oocyte to support early cloned embryo development. This identified a primary locus on mouse chromosome 17 and potential loci on chromosomes 1 and 4. A combination of oocyte transcriptome profiling data, expression correlation analysis, and functional and network analyses yielded a short list of likely candidate genes in two categories. The major category—including two genes with the strongest genetic associations with the traits (Epb4.1l3 and Dlgap1)—encodes proteins associated with the subcortical cytoskeleton and other cytoskeletal elements such as the spindle. The second category encodes chromatin and transcription regulators (Runx1t1, Smchd1, and Chd7). Smchd1 promotes X chromosome inactivation, whereas Chd7 regulates expression of pluripotency genes. Runx1t1 has not been associated with these processes, but acts as a transcriptional repressor. The finding that cytoskeleton-associated proteins may be key determinants of early clone development highlights potential roles for cytoplasmic components of the oocyte in supporting nuclear reprogramming. The transcriptional regulators identified may contribute to the overall process as downstream effectors. PMID:23307892

  19. Genetic variability of the 45W gene family between Chinese and Mexican Taenia solium.

    Science.gov (United States)

    Zheng, Yadong; Cai, Xuepeng; Luo, Xuenong; Zhang, Dongfeng; Jing, Zhizhong

    2008-06-01

    Taenia solium 45W proteins are good candidates for development of anti-cysticercosis vaccines. However, the genetic characteristics of the 45 gene family are still unclear between different isolates. We investigated the polymorphism of the 45 gene family between Chinese and Mexican T. solium. Alignment showed that TSO45-4B and TSO45-1C antigens were conserved absolutely, whereas other TSO45 proteins varied between these two isolates. It is informative to guide using of recombinant 45W vaccines to control porcine cysticercosis caused by Asiatic or African/Latin American T. solium.

  20. Effects of common germ-line genetic variation in cell cycle genes on ovarian cancer survival

    DEFF Research Database (Denmark)

    Song, H.; Hogdall, E.; Ramus, S.J.

    2008-01-01

    PURPOSE: Somatic alterations have been shown to correlate with ovarian cancer prognosis and survival, but less is known about the effects on survival of common inherited genetic variation. Of particular interest are genes involved in cell cycle pathways, which regulate cell division and could...... plausibly influence clinical characteristics of multiple tumors types. EXPERIMENTAL DESIGN: We examined associations between common germ-line genetic variation in 14 genes involved in cell cycle pathway (CCND1, CCND2, CCND3, CCNE1, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CDKN2D, CDK2, CDK4, CDK6, and RB1....... CONCLUSION: It is unlikely that common variants in cell cycle pathways examined above associated with moderate effect in survival after diagnosis of ovarian cancer. Much larger studies will be needed to exclude common variants with small effects Udgivelsesdato: 2008/2/15...

  1. Convergence of Human Genetics and Animal Studies: Gene Therapy for X-Linked Retinoschisis

    Science.gov (United States)

    Bush, Ronald A.; Wei, Lisa L.; Sieving, Paul A.

    2015-01-01

    Retinoschisis is an X-linked recessive genetic disease that leads to vision loss in males. X-linked retinoschisis (XLRS) typically affects young males; however, progressive vision loss continues throughout life. Although discovered in 1898 by Haas in two brothers, the underlying biology leading to blindness has become apparent only in the last 15 years with the advancement of human genetic analyses, generation of XLRS animal models, and the development of ocular monitoring methods such as the electroretinogram and optical coherence tomography. It is now recognized that retinoschisis results from cyst formations within the retinal layers that interrupt normal visual neurosignaling and compromise structural integrity. Mutations in the human retinoschisin gene have been correlated with disease severity of the human XLRS phenotype. Introduction of a normal human retinoschisin cDNA into retinoschisin knockout mice restores retinal structure and improves neural function, providing proof-of-concept that gene replacement therapy is a plausible treatment for XLRS. PMID:26101206

  2. Genetic landscape of the people of India: a canvas for disease gene exploration.

    Science.gov (United States)

    2008-04-01

    Analyses of frequency profiles of markers on disease or drug-response related genes in diverse populations are important for the dissection of common diseases. We report the results of analyses of data on 405 SNPs from 75 such genes and a 5.2 Mb chromosome, 22 genomic region in 1871 individuals from diverse 55 endogamous Indian populations. These include 32 large (>10 million individuals) and 23 isolated populations, representing a large fraction of the people of India. We observe high levels of genetic divergence between groups of populations that cluster largely on the basis of ethnicity and language. Indian populations not only overlap with the diversity of HapMap populations, but also contain population groups that are genetically distinct. These data and results are useful for addressing stratification and study design issues in complex traits especially for heterogeneous populations.

  3. Mutations in the PAH gene: A Tool for population genetics study

    Directory of Open Access Journals (Sweden)

    Stojiljković Maja

    2007-01-01

    Full Text Available Phenylketonuria (PKU, an inborn error of metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH gene. In the Serbian population, 19 different PAH mutations have been identified. We used PAH mutations as molecular markers for population genetics study. The low homozygosity value of the PAH gene (0.10 indicates that PKU in Serbia is heterogeneous, reflecting numerous migrations throughout Southeast Europe. The strategy for molecular diagnostics of PKU was designed accordingly. To elucidate the origin of the most common (L48S PKU mutation in Serbia, we performed haplotype analysis by PCR-RFLP. Our results suggest that the L48S mutation was imported into Serbia from populations with different genetic backgrounds.

  4. Improved Genetic Algorithm with Gene Recombination for Bus Crew-Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Cuiying Song

    2015-01-01

    Full Text Available This paper presents an improved genetic algorithm (GA with gene recombination for bus crew-scheduling problem in bus company. Unlike existing methods that rely on designing a fixed potential shift set by software, our new method does not need such a potential shift set information. In our method, satisfied shifts are generated through gene recombination in genetic algorithm. We conduct extensive studies based on real-life instances from Beijing Bus Group. Compared with results generated by the current manual method, ant colony algorithm, and CPLEX, computational results show that our algorithms demonstrated very good computational performances. In our tests, the number of the maximum reducing shifts can be beyond 30, especially when trip number is very large. The high relative percentage deviation demonstrated the effectiveness of the algorithm proposed.

  5. [Genetic transformation of Pinellia ternata with Agrobacterium tumefaciens-mediated sHSP genes].

    Science.gov (United States)

    Guo, Zhao-Yang; Cui, Ting-Ting; Xue, Jian-Ping; Zhu, Yan-Fang; Zhang, Ai-Min; Sheng, Wei; Teng, Jing-Tong

    2012-12-01

    To establish an efficient genetic transformation system of Pinellia ternata. With petioles from test-tube seedlings of P. ternata as explants, Agrobacterium tumefaciens mediation method was adopted to explore the effect of phenolic substances, A. tumefaciens's concentration, infection time, pre-incubation time and co-cultivation time on genetic transformation efficiency of P. ternata. The genetic transformation efficiency could be effectively enhanced by infecting in A. tumefaciens culture containing AS 40 mg x L(-1) for 15 min for three days. The petioles were put into the differentiation medium containing 150 mg x L(-1) Kan and 350 mg x L(-1) Carb to screening and cultivation. After around 30 days, microtubers could be observed at both sides of the petioles. Gus staining and PCR verification on the regenerated plants showed that the exogenous gene sHSP had been integrated into genome of P. ternata.

  6. Identifying genetic loci affecting antidepressant drug response in depression using drug–gene interaction models

    Science.gov (United States)

    Noordam, Raymond; Avery, Christy L; Visser, Loes E; Stricker, Bruno H

    2016-01-01

    Antidepressants are often only moderately successful in decreasing the severity of depressive symptoms. In part, antidepressant treatment response in patients with depression is genetically determined. However, although a large number of studies have been conducted aiming to identify genetic variants associated with antidepressant drug response in depression, only a few variants have been repeatedly identified. Within the present review, we will discuss the methodological challenges and limitations of the studies that have been conducted on this topic to date (e.g., ‘treated-only design’, statistical power) and we will discuss how specifically drug–gene interaction models can be used to be better able to identify genetic variants associated with antidepressant drug response in depression. PMID:27248517

  7. Genetic Variants in the FADS Gene: Implications for Dietary Recommendations for Fatty Acid Intake.

    Science.gov (United States)

    Mathias, Rasika A; Pani, Vrindarani; Chilton, Floyd H

    2014-06-01

    Unequivocally, genetic variants within the fatty acid desaturase ( FADS ) cluster are determinants of long chain polyunsaturated fatty acid (LC-PUFA) levels in circulation, cells and tissues. A recent series of papers have addressed these associations in the context of ancestry; evidence clearly supports that the associations are robust to ethnicity. However ∼80% of African Americans carry two copies of the alleles associated with increased levels of arachidonic acid, compared to only ∼45% of European Americans raising important questions of whether gene-PUFA interactions induced by a modern western diet are differentially driving the risk of diseases of inflammation in diverse populations, and are these interactions leading to health disparities. We highlight an important aspect thus far missing in the debate regarding dietary recommendations; we content that current evidence from genetics strongly suggest that an individual's, or at the very least the population from which an individual is sampled, genetic architecture must be factored into dietary recommendations currently in place.

  8. Genetic Structure and Gene Flows within Horses: A Genealogical Study at the French Population Scale

    OpenAIRE

    Pirault, Pauline; Danvy, Sophy; Verrier, Etienne; Leroy, Gr?goire

    2013-01-01

    Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%...

  9. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  10. Genes and genetic variations involved in the development of hypertension: focusing on a Greek patient cohort.

    Science.gov (United States)

    Kouremenos, Nikolaos; Zacharopoulou, Ioanna V; Triantafyllidi, Helen; Zacharopoulos, Georgios V; Mornos, Cristian; Filippatos, Gerasimos; Lekakis, John; Kremastinos, Dimitrios; Manolis, Athanasios I; Gavras, Haralambos

    2014-01-01

    Essential hypertension (HTN) is a multifactorial disease involving environmental, genetic and other factors. Over the past years, genetic studies of essential HTN have increased dramatically but the molecular mechanisms involved are still unknown. As part of a research program coordinated by Boston university (USA), we studied the role of various genes and single nucleotide polymorphisms (SNPs) in the inheritance or the onset of HTN in African-American, Caucasian-American and Greek families. Among 128 Greek families with a history of HTN, we studied 1474 people. Of the total examined, 273 men and 286 women were hypertensive. Based on 410 DNA samples from the hypertensive subjects, different SNPs were examined. An overall meta-analysis of the results from the Greek families, as well as a comparison with the 2 other groups (African-Americans and Caucasian-Americans), was performed. We report SNPs that are associated with the inheritance of HTN and are located either at the promoters of N-methyltransferase and catalase genes, or within the coding region of NEDD4L ubiquitin ligase gene, or SNPs in mitochondrial DNA of hypertensive probands. Furthermore, we clarified the role of hereditary predisposition in the development of HTN, showing that the presence of maternal HTN was significantly higher in African-Americans and Greeks compared to Caucasian-Americans (81.7%, 84.8%, and 65%), while the paternal HTN showed no such difference (50%, 48.3% and 44.9%), respectively. Although genetic factors that were correlated with HTN were identified, it was not possible to identify a single gene that should be targeted for the treatment of HTN. Nevertheless, the important role of the maternal hereditary predisposition to HTN in the Greek patients and the responsible genetic factors involved should be further examined.

  11. The use of genetic transformation in the study of ovarian-specific gene expression

    International Nuclear Information System (INIS)

    Manzi, A.; Andone, S.; Rotoli, D.; Capua, M.R.; Gargiulo, G.; Graziani, F.; Malva, C.

    1998-01-01

    We are using genetic and molecular approaches to understand the mechanisms controlling the establishment of the cellular specificity of expression during oogenesis. Female-sterile mutations have been isolated and the molecular analysis is revealing interesting cell-cell interaction systems that work not only during oogenesis but also at other developmental stages. We will review in this paper our most recent studies on genes involved in ovarian development. (author)

  12. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects

    Czech Academy of Sciences Publication Activity Database

    Havelková, Helena; Badalová, Jana; Svobodová, M.; Vojtíšková, Jarmila; Kurey, Irina; Vladimirov, Vladimir; Demant, P.; Lipoldová, Marie

    2006-01-01

    Roč. 7, č. 3 (2006), s. 220-233 ISSN 1466-4879 R&D Projects: GA ČR(CZ) GA310/03/1381; GA ČR(CZ) GD310/03/H147 Grant - others:HHMI(US) 55000323 Institutional research plan: CEZ:AV0Z50520514 Keywords : leishmaniasis * host response * gene effect Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.533, year: 2006

  13. Your Genes, Your Choices: Exploring the Issues Raised by Genetic Research

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.

    1999-05-31

    Your Genes, Your Choices provides accurate information about the ethical, legal, and social implications of the Human Genome Project and genetic research in an easy-to-read style and format. Each chapter in the book begins with a brief vignette, which introduces an issue within a human story, and raises a question for the reader to think about as the basic science and information are presented in the rest of the chapter.

  14. Metagenomic Profiling of Antibiotic Resistance Genes and Mobile Genetic Elements in a Tannery Wastewater Treatment Plant

    OpenAIRE

    Wang, Zhu; Zhang, Xu-Xiang; Huang, Kailong; Miao, Yu; Shi, Peng; Liu, Bo; Long, Chao; Li, Aimin

    2013-01-01

    Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Pr...

  15. Passive antibodies derived from intramuscularly immunized toxoid fusion 3xSTaN12S-dmLT protect against STa+ enterotoxigenic Escherichia coli (ETEC) diarrhea in a pig model.

    Science.gov (United States)

    Nandre, Rahul M; Duan, Qiangde; Wang, Yin; Zhang, Weiping

    2017-01-23

    Enterotoxigenic Escherichia coli (ETEC) strains are among the most common causes of children's diarrhea and travelers' diarrhea. Developing effective vaccines against ETEC associated diarrhea becomes a top priority. ETEC heat-labile toxin (LT) and heat-stable toxin (STa) toxoid fusion 3xSTa N12S -dmLT was demonstrated recently to induce neutralizing antitoxin antibodies in intraperitoneally or subcutaneously immunized mice. However, whether antibodies derived from this toxoid fusion are protective against ETEC diarrhea has not been examined. In this study, we intramuscularly immunized pregnant gilts with toxoid fusion 3xSTa N12S -dmLT, challenged suckling piglets with a STa-positive ETEC strain, and assessed protective efficacy of passive acquire antitoxin antibodies against ETEC diarrhea. Data showed all three immunized gilts developed anti-STa IgG and IgA antibodies, and piglets born to the immunized dams acquired anti-STa and anti-LT antibodies. When challenged with a STa+ ETEC strain, none of the piglets born to the immunized dams developed watery diarrhea, with 20 piglets remained normal and the other 8 piglets developed mild diarrhea indicated with stained butt. In contrast, the control dams and born piglets had no anti-STa or anti-LT antibodies detected, and 26 out 32 piglets developed watery diarrhea after challenge of the STa+ ETEC strain. These results indicated that passive acquired anti-STa antibodies are protective against ETEC diarrhea, and suggested potential application of toxoid fusion 3xSTa N12S -dmLT in ETEC vaccine development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    Science.gov (United States)

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A. A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-12-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool.

  17. Gene targeting using homologous recombination in embryonic stem cells: The future for behavior genetics?

    Directory of Open Access Journals (Sweden)

    Robert eGerlai

    2016-04-01

    Full Text Available Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  18. Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression.

    Directory of Open Access Journals (Sweden)

    Sher L Hendrickson

    2010-09-01

    Full Text Available The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression.Here we explore whether single nucleotide polymorphisms (SNPs within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4 on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI on chromosome 6.Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.

  19. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs and mobile genetic elements (MGEs in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP. Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  20. [Genetic diagnosis for a family without exonic deletions and duplications of dystrophin gene].

    Science.gov (United States)

    Li, Tao; Hou, Qiaofang; Wu, Dong; Wang, Hongdan; Liu, Hongyan; Yang, Yangli; Zhang, Chaoyang; Ding, Xuebing; Liao, Shixiu

    2015-02-01

    To conduct genetic diagnosis for a family in which no exonic deletions and duplications of the dystrophin gene were detected. Potential exonic deletions and duplications of the dystrophin gene were initially analyzed with using multiplex ligation-dependent probe amplification (MLPA). Subsequently, all of the 79 exons of the dystrophin gene of the proband and a pregnant woman from the family were analyzed with PCR amplification and DNA sequencing. Following identification of the causative mutation, prenatal diagnosis was provided. MLPA analysis had detected no exonic deletions and duplications of the dystrophin gene. Sequence analysis has identified a C>T mutation on the 22nd nucleotide position of the 70th exon of the dystrophin gene (c.10108 C>T), which has replaced the codon CGA to a stop codon (TGA). The patient's mother and sister were both heterozygous for the same mutation. Upon prenatal diagnosis, the fetus was found to be positive for the Y chromosome sex-determining gene (SRY) and has carried above mutation. The result of short tandem repeat linkage analysis also confirmed that the fetus has inherited the mutant X chromosome. The causative mutation of the dystrophin gene has been discovered in an affected family, which has enabled prenatal diagnosis of the disease.

  1. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Science.gov (United States)

    Wang, Zhu; Zhang, Xu-Xiang; Huang, Kailong; Miao, Yu; Shi, Peng; Liu, Bo; Long, Chao; Li, Aimin

    2013-01-01

    Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet) were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  2. Common genetic variants in Wnt signaling pathway genes as potential prognostic biomarkers for colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Wen-Chien Ting

    Full Text Available Compelling evidence has implicated the Wnt signaling pathway in the pathogenesis of colorectal cancer. We assessed the use of tag single nucleotide polymorphisms (tSNPs in adenomatous polyposis coli (APC/β-catenin (CTNNB1 genes to predict outcomes in patients with colorectal cancer. We selected and genotyped 10 tSNP to predict common variants across entire APC and CTNNB1 genes in 282 colorectal cancer patients. The associations of these tSNPs with distant metastasis-free survival and overall survival were evaluated by Kaplan-Meier analysis, Cox regression model, and survival tree analysis. The 5-year overall survival rate was 68.3%. Survival tree analysis identified a higher-order genetic interaction profile consisting of the APC rs565453, CTNNB1 2293303, and APC rs1816769 that was significantly associated with overall survival. The 5-year survival overall rates were 89.2%, 66.1%, and 58.8% for the low-, medium-, and high-risk genetic profiles, respectively (log-rank P = 0.001. After adjusting for possible confounders, including age, gender, carcinoembryonic antigen levels, tumor differentiation, stage, lymphovascular invasion, perineural invasion, and lymph node involvement, the genetic interaction profile remained significant. None of the studied SNPs were individually associated with distant metastasis-free survival and overall survival. Our results suggest that the genetic interaction profile among Wnt pathway SNPs might potentially increase the prognostic value in outcome prediction for colorectal cancer.

  3. Population genetic structure and gene flow in a gleaning bat, Plecotus auritus

    Science.gov (United States)

    Burland, T. M.; Barratt, E. M.; Beaumont, M. A.; Racey, P. A.

    1999-01-01

    During summer the brown long-eared bat Plecotus auritus (Vespertilionidae) forms stable colonies, comprised of both adult females and males and young of the year. A long-term ringing study conducted in north-east Scotland has established that little movement occurs among colonies and that both sexes are recruited into their natal colony. The aim of the present study was to investigate, using microsatellite DNA markers, if genetic structure within the population reflects the spatial structure indicated by ringing. Inter-colony FST estimates obtained for all colony members, and for females and males separately, were low (0.019, 0.026 and 0.011, respectively), but all values differed significantly from zero. These data indicate high gene flow between colonies, although some coancestry among colony members is evident in both sexes. On combining the ringing and genetic data, it is concluded that gene flow occurs via extra-colony copulation, rather than natal dispersal, and that each colony behaves as a distinct subpopulation. Microgeographical genetic isolation by distance was demonstrated for, to our knowledge, the first time in a bat species, and found to be apparent both across the entire study area and along one river valley. The results suggest that extensive macrogeographical population genetic structure may be evident across the species' range.

  4. Functional genomics complements quantitative genetics in identifying disease-gene associations.

    Directory of Open Access Journals (Sweden)

    Yuanfang Guan

    2010-11-01

    Full Text Available An ultimate goal of genetic research is to understand the connection between genotype and phenotype in order to improve the diagnosis and treatment of diseases. The quantitative genetics field has developed a suite of statistical methods to associate genetic loci with diseases and phenotypes, including quantitative trait loci (QTL linkage mapping and genome-wide association studies (GWAS. However, each of these approaches have technical and biological shortcomings. For example, the amount of heritable variation explained by GWAS is often surprisingly small and the resolution of many QTL linkage mapping studies is poor. The predictive power and interpretation of QTL and GWAS results are consequently limited. In this study, we propose a complementary approach to quantitative genetics by interrogating the vast amount of high-throughput genomic data in model organisms to functionally associate genes with phenotypes and diseases. Our algorithm combines the genome-wide functional relationship network for the laboratory mouse and a state-of-the-art machine learning method. We demonstrate the superior accuracy of this algorithm through predicting genes associated with each of 1157 diverse phenotype ontology terms. Comparison between our prediction results and a meta-analysis of quantitative genetic studies reveals both overlapping candidates and distinct, accurate predictions uniquely identified by our approach. Focusing on bone mineral density (BMD, a phenotype related to osteoporotic fracture, we experimentally validated two of our novel predictions (not observed in any previous GWAS/QTL studies and found significant bone density defects for both Timp2 and Abcg8 deficient mice. Our results suggest that the integration of functional genomics data into networks, which itself is informative of protein function and interactions, can successfully be utilized as a complementary approach to quantitative genetics to predict disease risks. All supplementary

  5. Reduced genetic diversity and alteration of gene flow in a fiddler crab due to mangrove degradation.

    Directory of Open Access Journals (Sweden)

    Alex Nehemia

    Full Text Available The fiddler crab Austruca occidentalis is a dominant species in mangrove forests along the East African coast. It enhances soil aeration and, through its engineering activities, makes otherwise-inaccessible food available for other marine organisms. Despite its importance, the habitat of A. occidentalis is threatened by human activities. Clearing the mangroves for salt farming and selective logging of mangroves trees continue to jeopardise mangrove ecosystems in the Western Indian Ocean. This study aims to use partial mitochondrial COI gene sequences and nuclear microsatellites to determine whether salt farming activities in mangroves have a negative impact on the genetic diversity and gene flow of A. occidentalis collected along the Tanzania coast. The level of genetic diversity for both mitochondrial DNA and nuclear microsatellites are relatively lower in samples from salt ponds compared to natural mangrove sites. Analysis of molecular variance (AMOVA among all populations showed low but significant differentiation (COI: Fst = 0.022, P < 0.05; microsatellites: Fst = 0.022, P < 0.001. A hierarchical AMOVA indicates lower but significant genetic differentiation among populations from salt ponds and natural mangroves sites (COI: Fct = 0.033, P < 0.05; microsatellites: Fct = 0.018, P = < 0.01. These results indicate that salt farming has a significant negative impact on the genetic diversity of A. occidentalis. Since higher genetic diversity contributes to a stable population, restoring the cleared habitats might be the most effective measures for the conservation of genetic diversity and hence adaptive potential to environmental change in this species.

  6. Genetic Analysis of Mismatch Repair Genes Alterations in Extramammary Paget Disease.

    Science.gov (United States)

    Kang, Zhihua; Xu, Feng; Zhu, Yingfeng; Fu, Pan; Zhang, Qiao-An; Hu, Tingting; Li, Xiangyu; Zhang, Qunfeng; Wu, Zhiyuan; Zhang, Xinju; Wang, Hua; Xu, Jinhua; Fang, Zujun; Guan, Ming

    2016-11-01

    Extramammary Paget disease (EMPD) is a rare cutaneous malignant neoplasm. The familial occurrence of EMPD and the high risk of concomitant secondary tumors in EMPD patients have gained much attention. These findings highlight the importance of genetic alterations in the tumorigenesis of this skin cancer. Genetic tests and functional analysis of mismatch repair (MMR) genes were performed in EMPD. The results showed that 8 of 20 cases with germline MMR genes mutations and 5 of them exhibited microsatellite instability (MSI). Immunohistochemical staining showed that the tumor tissues from 20 patients had the normal expression of MLH1 but 5 cases had the reduced expression of MSH2. There is a nearly significant correlation between MSI and germline mutations. In 172 cases, rates of germline and somatic mutations were 34.3% and 13.4%, respectively. The mutations of MLH1 V384D (15.7%), R217C (4.1%), and I219V (5.2%) were common in this cancer. In addition, the yeast 2-hybrid and immunoprecipitation assays exhibited reduced interaction between MLH1 and PMS2 in MLH1 V384D and R217C but not I219V. Moreover, MLH1 V384D and R217C had impaired MMR activity compared with the wild-type and I219V mutation by an in vitro MMR assay. The germline mutations in MMR genes are involved in the pathogenesis of EMPD and partially explain the genetic abnormalities for this disease.

  7. Genetic structure and gene flows within horses: a genealogical study at the french population scale.

    Directory of Open Access Journals (Sweden)

    Pauline Pirault

    Full Text Available Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average [Formula: see text] of -0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges.

  8. Genetic structure and gene flows within horses: a genealogical study at the french population scale.

    Science.gov (United States)

    Pirault, Pauline; Danvy, Sophy; Verrier, Etienne; Leroy, Grégoire

    2013-01-01

    Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average [Formula: see text] of -0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges.

  9. Impact of gene patents and licensing practices on access to genetic testing for long QT syndrome.

    Science.gov (United States)

    Angrist, Misha; Chandrasekharan, Subhashini; Heaney, Christopher; Cook-Deegan, Robert

    2010-04-01

    Genetic testing for long QT syndrome exemplifies patenting and exclusive licensing with different outcomes at different times. Exclusive licensing from the University of Utah changed the business model from sole provider to two US providers of long QT syndrome testing. Long QT syndrome is associated with mutations in many genes, 12 of which are now tested by two competing firms in the United States, PGxHealth and GeneDx. Until 2009, PGxHealth was the sole provider, based largely on exclusive rights to patents from the University of Utah and elsewhere. University of Utah patents were initially licensed to DNA Sciences, whose patent rights were acquired by Genaissance, and then by Clinical Data, Inc., which owns PGxHealth. In 2002, DNA Sciences, Inc., "cleared the market" by sending cease-and-desist patent enforcement letters to university and reference laboratories offering long QT syndrome genetic testing. There was no test on the market for a 1- to 2-year period. From 2005-2008, most long QT syndrome-related patents were controlled by Clinical Data, Inc., and its subsidiary PGxHealth. Bio-Reference Laboratories, Inc., secured countervailing exclusive patent rights starting in 2006, also from the University of Utah, and broke the PGxHealth monopoly in early 2009, creating a duopoly for genetic testing in the United States and expanding the number of genes for which commercial testing is available from 5 to 12.

  10. Genetic Architecture and Candidate Genes Identified for Follicle Number in Chicken.

    Science.gov (United States)

    Shen, Manman; Sun, Hongyan; Qu, Liang; Ma, Meng; Dou, Taocun; Lu, Jian; Guo, Jun; Hu, Yuping; Wang, Xingguo; Li, Yongfeng; Wang, Kehua; Yang, Ning

    2017-11-27

    Follicular development has a major impact on reproductive performance. Most previous researchers focused on molecular mechanisms of follicular development. The genetic architecture underlying the number of follicle, however, has yet not to be thoroughly defined in chicken. Here we report a genome-wide association study for the genetic architecture determining the numbers of follicles in a large F 2 resource population. The results showed heritability were low to moderate (0.05-0.28) for number of pre-ovulatory follicles (POF), small yellow follicles (SYF) and atresia follicles (AF). The highly significant SNPs associated with SYF were mainly located on GGA17 and GGA28. Only four significant SNPs were identified for POF on GGA1. The variance partitioned across chromosomes and chromosome lengths had a linear relationship for SYF (R 2  = 0.58). The enriched genes created by the closest correspondent significant SNPs were found to be involved in biological pathways related to cell proliferation, cell cycle and cell survival. Two promising candidate genes, AMH and RGS3, were suggested to be prognostic biomarkers for SYF. In conclusion, this study offers the first evidence of genetic variance and positional candidate genes which influence the number of SYF in chicken. These identified informative SNPs may facilitate selection for an improved reproductive performance of laying hens.

  11. Exploiting Gene-Expression Deconvolution to Probe the Genetics of the Immune System.

    Directory of Open Access Journals (Sweden)

    Yael Steuerman

    2016-04-01

    Full Text Available Sequence variation can affect the physiological state of the immune system. Major experimental efforts targeted at understanding the genetic control of the abundance of immune cell subpopulations. However, these studies are typically focused on a limited number of immune cell types, mainly due to the use of relatively low throughput cell-sorting technologies. Here we present an algorithm that can reveal the genetic basis of inter-individual variation in the abundance of immune cell types using only gene expression and genotyping measurements as input. Our algorithm predicts the abundance of immune cell subpopulations based on the RNA levels of informative marker genes within a complex tissue, and then provides the genetic control on these predicted immune traits as output. A key feature of the approach is the integration of predictions from various sets of marker genes and refinement of these sets to avoid spurious signals. Our evaluation of both synthetic and real biological data shows the significant benefits of the new approach. Our method, VoCAL, is implemented in the freely available R package ComICS.

  12. Calcium and magnesium levels in primary tooth enamel and genetic variation in enamel formation genes.

    Science.gov (United States)

    Halusic, Alina M; Sepich, Victoria R; Shirley, Daniel C; Granjeiro, José M; Costa, Marcelo C; Küchler, Erika C; Vieira, Alexandre R

    2014-01-01

    Evidence exists that a genetic component in caries susceptibility is related to variation in enamel formation genes. The purpose of this study was to explore the trends of demineralization and remineralization of teeth from individuals whose genotypes for selected genes (ENAM, MMP20, TUFT, TFIP, and AMBN) are known. In this study, primary baseline teeth (20) were exposed to an artificial caries solution, followed by a remineralizing solution. Biopsies of each tooth category (baseline, carious, and fluoridated) were completed via an acid wash solution. Concentrations of magnesium and calcium were measured using an optical emission spectrometer instrument. Allele and genotype frequencies for calcium and magnesium levels were compared between each tooth category. To help interpret the results, we also calculated odds ratios. Calcium levels exceeded magnesium levels in each sample. In addition, mineral concentration varied among samples. Associations could be seen between genetic variation in ENAM (P=.0003 baseline values for calcium, P<.001 baseline values for magnesium, P<.04 artificial caries values for magnesium) and AMBN (P<.02 artificial caries values for calcium) with mineral concentration. Our results suggest that genetic variation of enamel formation genes may influence calcium and magnesium concentrations of teeth and impact the development of caries.

  13. Association between pepsinogen C gene polymorphism and genetic predisposition to gastric cancer

    Science.gov (United States)

    Liu, Hui-Jie; Guo, Xiao-Lin; Dong, Ming; Wang, Lan; Yuan, Yuan

    2003-01-01

    AIM: To identify a molecular marker for gastric cancer, and to investigate the relationship between the polymorphism of pepsinogen C (PGC) gene and the genetic predisposition to gastric cancer. METHODS: A total of 289 cases were involved in this study. 115 cases came from Shenyang area, a low risk area of gastric cancer, including 42 unrelated controls and 73 patients with gastric cancer. 174 cases came from Zhuanghe area, a high-risk area of gastric cancer, including 113 unrelated controls, and 61 cases from gastric cancer kindred families. The polymorphism of PGC gene was detected by polymerase chain reaction (PCR) and the relation between the genetic polymorphism of PGC and gastric cancer was examined. RESULTS: Four alleles, 310 bp (allele 1), 400 bp (allele 2), 450 bp (allele 3), and 480 bp (allele 4) were detected by PCR. The frequency of allele 1 was higher in patients with gastric cancer than that in controls. Genotypes containing homogenous allele 1 were significantly more frequent in patients with gastric cancer than that in controls (0.33, 0.14, χ2 = 3.86, P genetic predisposition to gastric cancer. The distribution of pepsinogen C gene polymorphism in Zhuanghe, a high-risk area of gastric cancer, is different from that in Shenyang, a low risk area of gastric cancer. PMID:12508350

  14. Molecular Genetics of Charcot-Marie-Tooth Disease: From Genes to Genomes

    Science.gov (United States)

    Azzedine, H.; Senderek, J.; Rivolta, C.; Chrast, R.

    2012-01-01

    Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders of the peripheral nervous system, mainly characterized by distal muscle weakness and atrophy leading to motor handicap. With an estimated prevalence of 1 in 2,500, this condition is one of the most commonly inherited neurological disorders. Mutations in more than 30 genes affecting glial and/or neuronal functions have been associated with different forms of CMT leading to a substantial improvement in diagnostics of the disease and in the understanding of implicated pathophysiological mechanisms. However, recent data from systematic genetic screening performed in large cohorts of CMT patients indicated that molecular diagnosis could be established only in ∼50–70% of them, suggesting that additional genes are involved in this disease. In addition to providing an overview of genetic and functional data concerning various CMT forms, this review focuses on recent data generated through the use of highly parallel genetic technologies (SNP chips, sequence capture and next-generation DNA sequencing) in CMT families, and the current and future impact of these technologies on gene discovery and diagnostics of CMTs. PMID:23293578

  15. Comparison of 16S and COX1 genes mitochondrial regions and their usefulness for genetic analysis of ticks (Acari: Ixodidae).

    Science.gov (United States)

    Paternina, Luis Enrique; Verbel-Vergara, Daniel; Bejarano, Eduar Elías

    2016-06-03

    In recent decades the analysis of mitochondrial genes has been used for population and phylogenetic studies of ticks allowing many advances in their systematics. Mitochondrial ribosomal 16S (16S) subunit is one of the most frequently used among those genes available for tick analysis, whereas cytochrome oxidase gene 1 (COX1) has recently been used and proposed as an alternative to the traditional 16S gene marker.  To evaluate the usefulness of 16S and COX1 in genetic studies of ticks by analyzing sequences of three species commonly found in the Caribbean region of Colombia.  The analysis of both genes sequences allowed us to identify the three species with high levels of confidence and interspecific genetic divergence (19-22%), although only COX1 allowed us to detect intraspecific genetic variability (up to ~0.8%). A substitution saturation analysis indicated that the 16S gene was not saturated with transitions while the COX1 gene showed saturation distances starting at ~17%.  Our results indicated that the 16S gene seems to have better features for interspecific phylogenetic analyses because of its high level of genetic divergence and low saturation pattern, while the COX1 gene appears to be more useful for intraspecific genetic variability studies. However, as our study was conducted at a local scale, future studies at different biogeographical scales would help to establish its usefulness in wider and more complex scenarios.

  16. Genetic variant rs17225178 in the ARNT2 gene is associated with Asperger Syndrome.

    Science.gov (United States)

    Di Napoli, Agnese; Warrier, Varun; Baron-Cohen, Simon; Chakrabarti, Bhismadev

    2015-01-01

    Autism Spectrum Conditions (ASC) are neurodevelopmental conditions characterized by difficulties in communication and social interaction, alongside unusually repetitive behaviours and narrow interests. Asperger Syndrome (AS) is one subgroup of ASC and differs from classic autism in that in AS there is no language or general cognitive delay. Genetic, epigenetic and environmental factors are implicated in ASC and genes involved in neural connectivity and neurodevelopment are good candidates for studying the susceptibility to ASC. The aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) gene encodes a transcription factor involved in neurodevelopmental processes, neuronal connectivity and cellular responses to hypoxia. A mutation in this gene has been identified in individuals with ASC and single nucleotide polymorphisms (SNPs) have been nominally associated with AS and autistic traits in previous studies. In this study, we tested 34 SNPs in ARNT2 for association with AS in 118 cases and 412 controls of Caucasian origin. P values were adjusted for multiple comparisons, and linkage disequilibrium (LD) among the SNPs analysed was calculated in our sample. Finally, SNP annotation allowed functional and structural analyses of the genetic variants in ARNT2. We tested the replicability of our result using the genome-wide association studies (GWAS) database of the Psychiatric Genomics Consortium (PGC). We report statistically significant association of rs17225178 with AS. This SNP modifies transcription factor binding sites and regions that regulate the chromatin state in neural cell lines. It is also included in a LD block in our sample, alongside other genetic variants that alter chromatin regulatory regions in neural cells. These findings demonstrate that rs17225178 in the ARNT2 gene is associated with AS and support previous studies that pointed out an involvement of this gene in the predisposition to ASC.

  17. Functional characterization of genetic polymorphisms identified in the promoter region of the bovine PEPS gene.

    Science.gov (United States)

    Ju, Zhihua; Zheng, Xue; Huang, Jinming; Qi, Chao; Zhang, Yan; Li, Jianbin; Zhong, Jifeng; Wang, Changfa

    2012-06-01

    Peptidase S (PEPS) is a metallopeptidase that cleaves N-terminal residues from proteins and peptides. PEPS is used as a cell maintenance enzyme with critical roles in peptide turnover. The promoter region located upstream of the initiation site plays an important role in regulating gene expression. Polymorphism in the promoter region can alter gene expression and lead to biological changes. In the current study, polymorphisms in the promoter region of the PEPS gene were investigated. Polymerase chain reaction (PCR)-restriction fragment length polymorphism and DNA sequencing methods were used to screen sequence variations in the promoter region of DNA samples from 743 Chinese Holstein cattle. Two polymorphisms (g. -534 T>C and g. -2545 G>A) were identified and eight haplotypes were classified by haplotype analysis. The two genetic polymorphisms and haplotypes were associated with fat percentage and somatic cell score in Chinese Holstein cattle. The results of real-time PCR showed that cow kidneys exhibit the highest PEPS expression level. Moreover, bioinformatics analysis predicted that the single-nucleotide polymorphism g. -534 T>C is located in the core promoter region and in the transcription factor binding sites. The promoter activities of the polymorphism of -543 T>C were measured by luciferase assay in the human kidney epithelial cell line 293T. Transcriptional activity is significantly lower in cell lines transfected with the reporter construct containing 2.5 kb upstream fragments with -543 C than in those with wild-type -543 T. The results indicated that genetic variation at locus -543 influences PEPS promoter activity. The genetic variation in the promoter region of PEPS gene may regulate PEPS gene transcription and might have consequences at a regulatory level.

  18. Search for major genes with progeny test data to accelerate the development of genetically superior loblolly pine

    Energy Technology Data Exchange (ETDEWEB)

    NCSU

    2003-12-30

    This research project is to develop a novel approach that fully utilized the current breeding materials and genetic test information available from the NCSU-Industry Cooperative Tree Improvement Program to identify major genes that are segregating for growth and disease resistance in loblolly pine. If major genes can be identified in the existing breeding population, they can be utilized directly in the conventional loblolly pine breeding program. With the putative genotypes of parents identified, tree breeders can make effective decisions on management of breeding populations and operational deployment of genetically superior trees. Forest productivity will be significantly enhanced if genetically superior genotypes with major genes for economically important traits could be deployed in an operational plantation program. The overall objective of the project is to develop genetic model and analytical methods for major gene detection with progeny test data and accelerate the development of genetically superior loblolly pine. Specifically, there are three main tasks: (1) Develop genetic models for major gene detection and implement statistical methods and develop computer software for screening progeny test data; (2) Confirm major gene segregation with molecular markers; and (3) Develop strategies for using major genes for tree breeding.

  19. Genes: Interactions with Language on Three Levels—Inter-Individual Variation, Historical Correlations and Genetic Biasing

    Science.gov (United States)

    Dediu, Dan

    The complex inter-relationships between genetics and linguistics encompass all four scales highlighted by the contributions to this book and, together with cultural transmission, the genetics of language holds the promise to offer a unitary understanding of this fascinating phenomenon. There are inter-individual differences in genetic makeup which contribute to the obvious fact that we are not identical in the way we understand and use language and, by studying them, we will be able to both better treat and enhance ourselves. There are correlations between the genetic configuration of human groups and their languages, reflecting the historical processes shaping them, and there also seem to exist genes which can influence some characteristics of language, biasing it towards or against certain states by altering the way language is transmitted across generations. Besides the joys of pure knowledge, the understanding of these three aspects of genetics relevant to language will potentially trigger advances in medicine, linguistics, psychology or the understanding of our own past and, last but not least, a profound change in the way we regard one of the emblems of being human: our capacity for language.

  20. GENES - a software package for analysis in experimental statistics and quantitative genetics

    Directory of Open Access Journals (Sweden)

    Cosme Damião Cruz

    2013-06-01

    Full Text Available GENES is a software package used for data analysis and processing with different biometricmodels and is essential in genetic studies applied to plant and animal breeding. It allows parameterestimation to analyze biologicalphenomena and is fundamental for the decision-making process andpredictions of success and viability of selection strategies. The program can be downloaded from theInternet (http://www.ufv.br/dbg/genes/genes.htm orhttp://www.ufv.br/dbg/biodata.htm and is available inPortuguese, English and Spanish. Specific literature (http://www.livraria.ufv.br/ and a set of sample filesare also provided, making GENES easy to use. The software is integrated into the programs MS Word, MSExcel and Paint, ensuring simplicity and effectiveness indata import and export ofresults, figures and data.It is also compatible with the free software R and Matlab, through the supply of useful scripts available forcomplementary analyses in different areas, including genome wide selection, prediction of breeding valuesand use of neural networks in genetic improvement.

  1. Candidate gene molecular markers as tools for analyzing genetic susceptibility to morbillivirus infection in stranded Cetaceans.

    Science.gov (United States)

    Stejskalova, K; Bayerova, Z; Futas, J; Hrazdilova, K; Klumplerova, M; Oppelt, J; Splichalova, P; Di Guardo, G; Mazzariol, S; Di Francesco, C E; Di Francesco, G; Terracciano, G; Paiu, R-M; Ursache, T D; Modry, D; Horin, P

    2017-12-01

    Morbilliviruses, such as Cetacean morbillivirus (CeMV) or Phocine distemper virus (PDV), represent a growing threat for marine mammals on both hemispheres. Because free-ranging animal populations strongly rely on natural resistance mechanisms, innate immunity-related genes and virus cell entry receptor genes may represent key factors involved in susceptibility to CeMV in Cetaceans. Using the next generation sequencing technology, we have sequenced 11 candidate genes in two model species, Stenella coeruleoalba and Phocoena phocoena. Suitable single nucleotide polymorphism markers of potential functional importance, located in genes coding for basigin (BSG, CD147), the signaling lymphocyte activating molecule (SLAMF1), the poliovirus-related receptor-4 (NECTIN4, PVRL4), toll-like receptors 3, 7, 8 (TLR3, TLR7, TLR8), natural resistance-associated macrophage protein (SLC11A1) and natural cytotoxicity triggering receptor 1 (NCR1), were identified in each model species, along with MHC-DQB haplotypes unique for each species. This set of molecular markers represents a potentially useful tool for studying host genetic variation and susceptibility to morbillivirus infection in Cetaceans as well as for studying functionally important genetic diversity of selected Cetacean populations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Replacement of the essential Dictyostelium Arp2 gene by its Entamoeba homologue using parasexual genetics

    Directory of Open Access Journals (Sweden)

    Fütterer Klaus

    2007-06-01

    Full Text Available Abstract Background Cell motility is an essential feature of the pathogenesis and morbidity of amoebiasis caused by Entamoeba histolytica. As motility depends on cytoskeletal organisation and regulation, a study of the molecular components involved is key to a better understanding of amoebic pathogenesis. However, little is known about the physiological roles, interactions and regulation of the proteins of the Entamoeba cytoskeleton. Results We have established a genetic strategy that uses parasexual genetics to allow essential Dictyostelium discoideum genes to be manipulated and replaced with modified or tagged homologues. Our results show that actin related protein 2 (Arp2 is essential for survival, but that the Dictyostelium protein can be complemented by E. histolytica Arp2, despite the presence of an insertion of 16 amino acids in an otherwise highly conserved protein. Replacement of endogenous Arp2 with myc-tagged Entamoeba or Dictyostelium Arp2 has no obvious effects on growth and the protein incorporates effectively into the Arp2/3 complex. Conclusion We have established an effective two-step method for replacing genes that are required for survival. Our protocol will allow such genes to be studied far more easily, and also allows an unambiguous demonstration that particular genes are truly essential. In addition, cells in which the Dictyostelium Arp2 has been replaced by the Entamoeba protein are potential targets for drug screens.

  3. Virulence genes and genetic diversity of Streptococcus suis serotype 2 isolates from Thailand.

    Science.gov (United States)

    Maneerat, K; Yongkiettrakul, S; Kramomtong, I; Tongtawe, P; Tapchaisri, P; Luangsuk, P; Chaicumpa, W; Gottschalk, M; Srimanote, P

    2013-11-01

    Isolates of Streptococcus suis from different Western countries as well as those from China and Vietnam have been previously well characterized. So far, the genetic characteristics and relationship between S. suis strains isolated from both humans and pigs in Thailand are unknown. In this study, a total of 245 S. suis isolates were collected from both human cases (epidemic and sporadic) and pigs (diseased and asymptomatic) in Thailand. Bacterial strains were identified by biochemical tests and PCR targeting both, the 16S rRNA and gdh genes. Thirty-six isolates were identified as serotype 2 based on serotyping and the cps2-PCR. These isolates were tested for the presence of six virulence-associated genes: an arginine deiminase (arcA), a 38-kDa protein and protective antigen (bay046), an extracellular factor (epf), an hyaluronidase (hyl), a muramidase-released protein (mrp) and a suilysin (sly). In addition, the genetic diversities of these isolates were studied by RAPD PCR and multilocus sequence typing (MLST) analysis. Four virulence-associated gene patterns (VAGP 1 to 4) were obtained, and the majority of isolates (32/36) carried all genes tested (VAGP1). Each of the three OPB primers used provided 4 patterns designated RAPD-A to RAPD-D. Furthermore, MLST analysis could also distinguish the 36 isolates into four sequence types (STs): ST1 (n = 32), ST104 (n = 2), ST233 (n = 1) and a newly identified ST, ST336 (n = 1). Dendrogram constructions based on RAPD patterns indicated that S. suis serotype 2 isolates from Thailand could be divided into four groups and that the characteristics of the individual groups were in complete agreement with the virulence gene profiles and STs. The majority (32/36) of isolates recovered from diseased pigs, slaughterhouse pigs or human patients could be classified into a single group (VAGP1, RAPD-A and ST1). This genetic information strongly suggests the transmission of S. suis isolates from pigs to humans in Thailand. Our findings are

  4. Demographic history, genetic structure and gene flow in a steppe-associated raptor species

    Science.gov (United States)

    2011-01-01

    Background Environmental preferences and past climatic changes may determine the length of time during which a species range has contracted or expanded from refugia, thereby influencing levels of genetic diversification. Connectivity among populations of steppe-associated taxa might have been maximal during the long glacial periods, and interrupted only during the shorter interglacial phases, potentially resulting in low levels of genetic differentiation among populations. We investigated this hypothesis by exploring patterns of genetic diversity, past demography and gene flow in a raptor species characteristic of steppes, the Montagu's harrier (Circus pygargus), using mitochondrial DNA data from 13 breeding populations and two wintering populations. Results Consistent with our hypothesis, Montagu's harrier has relatively low genetic variation at the mitochondrial DNA. The highest levels of genetic diversity were found in coastal Spain, France and central Asia. These areas, which were open landscapes during the Holocene, may have acted as refugia when most of the European continent was covered by forests. We found significant genetic differentiation between two population groups, at the SW and NE parts of the species' range. Two events of past population growth were detected, and occurred ca. 7500-5500 and ca. 3500-1000 years BP in the SW and NE part of the range respectively. These events were likely associated with vegetation shifts caused by climate and human-induced changes during the Holocene. Conclusions The relative genetic homogeneity observed across populations of this steppe raptor may be explained by a short isolation time, relatively recent population expansions and a relaxed philopatry. We highlight the importance of considering the consequence of isolation and colonization processes in order to better understand the evolutionary history of steppe species. PMID:22093489

  5. Demographic history, genetic structure and gene flow in a steppe-associated raptor species

    Directory of Open Access Journals (Sweden)

    Garcia Jesus T

    2011-11-01

    Full Text Available Abstract Background Environmental preferences and past climatic changes may determine the length of time during which a species range has contracted or expanded from refugia, thereby influencing levels of genetic diversification. Connectivity among populations of steppe-associated taxa might have been maximal during the long glacial periods, and interrupted only during the shorter interglacial phases, potentially resulting in low levels of genetic differentiation among populations. We investigated this hypothesis by exploring patterns of genetic diversity, past demography and gene flow in a raptor species characteristic of steppes, the Montagu's harrier (Circus pygargus, using mitochondrial DNA data from 13 breeding populations and two wintering populations. Results Consistent with our hypothesis, Montagu's harrier has relatively low genetic variation at the mitochondrial DNA. The highest levels of genetic diversity were found in coastal Spain, France and central Asia. These areas, which were open landscapes during the Holocene, may have acted as refugia when most of the European continent was covered by forests. We found significant genetic differentiation between two population groups, at the SW and NE parts of the species' range. Two events of past population growth were detected, and occurred ca. 7500-5500 and ca. 3500-1000 years BP in the SW and NE part of the range respectively. These events were likely associated with vegetation shifts caused by climate and human-induced changes during the Holocene. Conclusions The relative genetic homogeneity observed across populations of this steppe raptor may be explained by a short isolation time, relatively recent population expansions and a relaxed philopatry. We highlight the importance of considering the consequence of isolation and colonization processes in order to better understand the evolutionary history of steppe species.

  6. Demographic history, genetic structure and gene flow in a steppe-associated raptor species.

    Science.gov (United States)

    Garcia, Jesus T; Alda, Fernando; Terraube, Julien; Mougeot, François; Sternalski, Audrey; Bretagnolle, Vincent; Arroyo, Beatriz

    2011-11-17

    Environmental preferences and past climatic changes may determine the length of time during which a species range has contracted or expanded from refugia, thereby influencing levels of genetic diversification. Connectivity among populations of steppe-associated taxa might have been maximal during the long glacial periods, and interrupted only during the shorter interglacial phases, potentially resulting in low levels of genetic differentiation among populations. We investigated this hypothesis by exploring patterns of genetic diversity, past demography and gene flow in a raptor species characteristic of steppes, the Montagu's harrier (Circus pygargus), using mitochondrial DNA data from 13 breeding populations and two wintering populations. Consistent with our hypothesis, Montagu's harrier has relatively low genetic variation at the mitochondrial DNA. The highest levels of genetic diversity were found in coastal Spain, France and central Asia. These areas, which were open landscapes during the Holocene, may have acted as refugia when most of the European continent was covered by forests. We found significant genetic differentiation between two population groups, at the SW and NE parts of the species' range. Two events of past population growth were detected, and occurred ca. 7500-5500 and ca. 3500-1000 years BP in the SW and NE part of the range respectively. These events were likely associated with vegetation shifts caused by climate and human-induced changes during the Holocene. The relative genetic homogeneity observed across populations of this steppe raptor may be explained by a short isolation time, relatively recent population expansions and a relaxed philopatry. We highlight the importance of considering the consequence of isolation and colonization processes in order to better understand the evolutionary history of steppe species.

  7. DataStaR: Using the Semantic Web approach for Data Curation

    Directory of Open Access Journals (Sweden)

    Huda Khan

    2011-10-01

    Full Text Available In disciplines as varied as medicine, social sciences, and economics, data and their analyses are essential parts of researchers’ contributions to their respective fields. While sharing research data for review and analysis presents new opportunities for furthering research, capturing these data in digital forms and providing the digital infrastructure for sharing data and metadata pose several challenges. This paper reviews the motivations behind and design of the Data Staging Repository (DataStaR platform that targets specific portions of the research data curation lifecycle: data and metadata capture and sharing prior to publication, and publication to permanent archival repositories. The goal of DataStaR is to support both the sharing and publishing of data while at the same time enabling metadata creation without imposing additional overheads for researchers and librarians. Furthermore, DataStaR is intended to provide cross-disciplinary support by being able to integrate different domain-specific metadata schemas according to researchers’ needs. DataStaR’s strategy of a usable interface coupled with metadata flexibility allows for a more scaleable solution for data sharing, publication, and metadata reuse.

  8. JaSTA-2: Second version of the Java Superposition T-matrix Application

    Science.gov (United States)

    Halder, Prithish; Das, Himadri Sekhar

    2017-12-01

    In this article, we announce the development of a new version of the Java Superposition T-matrix App (JaSTA-2), to study the light scattering properties of porous aggregate particles. It has been developed using Netbeans 7.1.2, which is a java integrated development environment (IDE). The JaSTA uses double precision superposition T-matrix codes for multi-sphere clusters in random orientation, developed by Mackowski and Mischenko (1996). The new version consists of two options as part of the input parameters: (i) single wavelength and (ii) multiple wavelengths. The first option (which retains the applicability of older version of JaSTA) calculates the light scattering properties of aggregates of spheres for a single wavelength at a given instant of time whereas the second option can execute the code for a multiple numbers of wavelengths in a single run. JaSTA-2 provides convenient and quicker data analysis which can be used in diverse fields like Planetary Science, Atmospheric Physics, Nanoscience, etc. This version of the software is developed for Linux platform only, and it can be operated over all the cores of a processor using the multi-threading option.

  9. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions.

    Science.gov (United States)

    Sameith, Katrin; Amini, Saman; Groot Koerkamp, Marian J A; van Leenen, Dik; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip; van Hooff, Sander R; Benschop, Joris J; Lenstra, Tineke L; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P; Kemmeren, Patrick

    2015-12-23

    Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.

  10. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes.

    Science.gov (United States)

    Astuti, Galuh D N; van den Born, L Ingeborgh; Khan, M Imran; Hamel, Christian P; Bocquet, Béatrice; Manes, Gaël; Quinodoz, Mathieu; Ali, Manir; Toomes, Carmel; McKibbin, Martin; El-Asrag, Mohammed E; Haer-Wigman, Lonneke; Inglehearn, Chris F; Black, Graeme C M; Hoyng, Carel B; Cremers, Frans P M; Roosing, Susanne

    2018-01-10

    Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 ( SNRNP200 ) and Zinc Finger Protein 513 ( ZNF513 ), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 ( DHX32 ) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

  11. Systematic evaluation of genes and genetic variants associated with type 1 diabetes susceptibility

    DEFF Research Database (Denmark)

    Ram, Ramesh; Mehta, Munish; Nguyen, Tri Quang

    2016-01-01

    levels of genes in four different cell types: EBV-transformed B cell lines (resting and 6 h PMA stimulated) and purified CD4+ and CD8+ T cells. We mapped cis-acting expression quantitative trait loci and found 24 non-HLA loci that affected the expression of 31 transcripts significantly in at least one......Genome-wide association studies have found >60 loci that confer genetic susceptibility to type 1 diabetes (T1D). Many of these are defined only by anonymous single nucleotide polymorphisms: the underlying causative genes, as well as the molecular bases by which they mediate susceptibility......, are not known. Identification of how these variants affect the complex mechanisms contributing to the loss of tolerance is a challenge. In this study, we performed systematic analyses to characterize these variants. First, all known genes in strong linkage disequilibrium (r2 > 0.8) with the reported single...

  12. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Zhernakova, Daria V.; Westra, Harm-Jan

    2015-01-01

    . The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide...... the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from...... a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. METHODS: Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential...

  13. Genetic variability in the sable (Martes zibellina L.) with respect to genes encoding blood proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kashtanov, S.N. [Vavilov Institute of General Genetics, Moscow (Russian Federation); Kazakova, T.I. [Afanas`ev Scientific Research Institute for Breeding of Fur-Bearing Animals, Moscow (Russian Federation)

    1995-02-01

    Electrophoresis of blood proteins was used to determine, for the first time, the level of genetic variability of certain loci in the sable (Martes zibellina L., Mustelidae). Variation of 23 blood proteins encoded by 25 genes was analyzed. Polymorphism was revealed in six genes. The level of heterozygosity was estimated at 0.069; the proportion of polymorphic loci was 24%. Data on the history of the sable population maintained at the farm, on geographical distribution of natural sable populations, and on the number of animals selected for reproduction in captivity is presented. The great number of animals studies and the extensive range of natural sable populations, on the basis of which the population maintained in captivity was obtained, suggest that the results of this work can be used for estimating the variability of the gene pool of sable as a species. 9 refs., 2 figs., 1 tab.

  14. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity.

    Science.gov (United States)

    Ritchie, Marylyn D; Hahn, Lance W; Moore, Jason H

    2003-02-01

    The identification and characterization of genes that influence the risk of common, complex multifactorial diseases, primarily through interactions with other genes and other environmental factors, remains a statistical and computational challenge in genetic epidemiology. This challenge is partly due to the limitations of parametric statistical methods for detecting genetic effects that are dependent solely or partially on interactions with other genes and environmental exposures. We previously introduced multifactor dimensionality reduction (MDR) as a method for reducing the dimensionality of multilocus genotype information to improve the identification of polymorphism combinations associated with disease risk. The MDR approach is nonparametric (i.e., no hypothesis about the value of a statistical parameter is made), is model-free (i.e., assumes no particular inheritance model), and is directly applicable to case-control and discordant sib-pair study designs. Both empirical and theoretical studies suggest that MDR has excellent power for identifying high-order gene-gene interactions. However, the power of MDR for identifying gene-gene interactions in the presence of common sources of noise is not currently known. The goal of this study was to evaluate the power of MDR for identifying gene-gene interactions in the presence of noise due to genotyping error, missing data, phenocopy, and genetic or locus heterogeneity. Using simulated data, we show that MDR has high power to identify gene-gene interactions in the presence of 5% genotyping error, 5% missing data, or a combination of both. However, MDR has reduced power for some models in the presence of 50% phenocopy, and very limited power in the presence of 50% genetic heterogeneity. Extending MDR to address genetic heterogeneity should be a priority for the continued methodological development of this new approach. Copyright 2003 Wiley-Liss, Inc.

  15. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    Science.gov (United States)

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Comparison of information-theoretic to statistical methods for gene-gene interactions in the presence of genetic heterogeneity

    Directory of Open Access Journals (Sweden)

    Sucheston Lara

    2010-09-01

    Full Text Available Abstract Background Multifactorial diseases such as cancer and cardiovascular diseases are caused by the complex interplay between genes and environment. The detection of these interactions remains challenging due to computational limitations. Information theoretic approaches use computationally efficient directed search strategies and thus provide a feasible solution to this problem. However, the power of information theoretic methods for interaction analysis has not been systematically evaluated. In this work, we compare power and Type I error of an information-theoretic approach to existing interaction analysis methods. Methods The k-way interaction information (KWII metric for identifying variable combinations involved in gene-gene interactions (GGI was assessed using several simulated data sets under models of genetic heterogeneity driven by susceptibility increasing loci with varying allele frequency, penetrance values and heritability. The power and proportion of false positives of the KWII was compared to multifactor dimensionality reduction (MDR, restricted partitioning method (RPM and logistic regression. Results The power of the KWII was considerably greater than MDR on all six simulation models examined. For a given disease prevalence at high values of heritability, the power of both RPM and KWII was greater than 95%. For models with low heritability and/or genetic heterogeneity, the power of the KWII was consistently greater than RPM; the improvements in power for the KWII over RPM ranged from 4.7% to 14.2% at for α = 0.001 in the three models at the lowest heritability values examined. KWII performed similar to logistic regression. Conclusions Information theoretic models are flexible and have excellent power to detect GGI under a variety of conditions that characterize complex diseases.

  17. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    Science.gov (United States)

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  18. Genetic Fingerprinting of Wheat and Its Progenitors by Mitochondrial Gene orf256

    Directory of Open Access Journals (Sweden)

    Mona M. Elseehy

    2012-04-01

    Full Text Available orf256 is a wheat mitochondrial gene associated with cytoplasmic male sterility (CMS that has different organization in various species. This study exploited the orf256 gene as a mitochondrial DNA marker to study the genetic fingerprint of Triticum and Aegilops species. PCR followed by sequencing of common parts of the orf256 gene were employed to determine the fingerprint and molecular evolution of Triticum and Aegilops species. Although many primer pairs were used, two pairs of orf256 specific primers (5:-94/C: 482, 5:253/C: 482, amplified DNA fragments of 576 bp and 230 bp respectively in all species were tested. A common 500 bp of nine species of Triticum and Aegilops were aligned and showed consistent results with that obtained from other similar chloroplast or nuclear genes. Base alignment showed that there were various numbers of base substitutions in all species compared to S. cereal (Sc (the outgroup species. Phylogenetic relationship revealed similar locations and proximity on phylogenetic trees established using plastid and nuclear genes. The results of this study open a good route to use unknown function genes of mitochondria in studying the molecular relationships and evolution of wheat and complex plant genomes.

  19. Gene therapy in large animal models of human cardiovascular genetic disease.

    Science.gov (United States)

    Sleeper, Meg M; Bish, Lawrence T; Sweeney, H Lee

    2009-01-01

    Several naturally occurring animal models for human genetic heart diseases offer an excellent opportunity to evaluate potential novel therapies, including gene therapy. Some of these diseases--especially those that result in a structural defect during development (e.g., patent ductus arteriosus, pulmonic stenosis)--would likely be difficult to treat with a therapeutic gene transfer approach. However, the ability to transduce a significant proportion of the myocardial cells should make the various forms of inherited cardiomyopathy amenable to a therapeutic gene transfer approach. Adeno-associated virus may be the ideal vector for cardiac gene therapy since its low immunogenicity allows for stable transgene expression, a crucial factor when considering treatment of a chronic disease. Cardiomyopathies are a major cause of morbidity and mortality in both children and adults, and large animal models are available for the major forms of inherited cardiomyopathy (dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy). One of these animal models, juvenile dilated cardiomyopathy of Portuguese water dogs, offers an effective means to assess the efficacy of therapeutic gene transfer to alter the course of cardiomyopathy and heart failure. Correction of the abnormal metabolic processes that occur with heart failure (e.g., calcium metabolism, apoptosis) could normalize diseased myocardial function. Gene therapy may offer a promising new approach for the treatment of cardiac disease in both veterinary and human clinical settings.

  20. Genetic recombination within the human T-cell receptor α-chain gene complex

    International Nuclear Information System (INIS)

    Robinson, M.A.; Kindt, T.J.

    1987-01-01

    Genetic analyses of the human T-cell receptor (TCR) α-chain genes indicate that recombination events may occur frequently within this gene complex. Examination of the inheritance of restriction fragment length polymorphisms (RFLP) detected by using probes for constant or variable region gene segments made it possible to assign TCRα haplotypes to the 16 parents and 43 offspring of eight families studied. A total of six RFLP, three for the constant region and three for variable region segments, were examined in the present studies. Most enzyme and probe combinations tested revealed no polymorphism and those finally selected for the study showed limited polymorphism in that only two or, in one case, three allelic forms of the gene were seen. In spite of limited variability at this level, extensive heterogeneity was observed for the combinations of markers present in haplotypes, suggesting that frequent recombination events have occurred. Most strikingly, multiple combinations of RFLP occurring in close proximity of the TCRα constant region gene were observed in this study. A high recombination frequency for the TCRα gene complex is further supported by the observation that two children, one in each of two families, inherited recombinant TCRα haplotypes

  1. Investigation of the Lobular Carcinoma in Situ, Using Molecular Genetic Techniques, for the Involvement of Novel Genes

    National Research Council Canada - National Science Library

    Mastracci, Teresa L; Andrulis, Irene L

    2005-01-01

    .... Our study proposes to investigate LN lesions, lacking any adjacent invasive carcinoma, for alterations in and expression of known and novel genes/proteins with the goal of characterizing a molecular genetic profile...

  2. Search for major genes with progeny test data to accelerate the development of genetically superior loblolly pine. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-15

    This report details the progress of the three tasks of this project. The tasks are: (1) develop genetic models and analytical methods; (2) molecular confirmation of major gene segregation; and (3) develop strategies for marker-assisted breeding.

  3. Genetic Mapping of SrTm4, a Recessive Stem Rust Resistance Gene from Diploid Wheat Effective to Ug99

    Science.gov (United States)

    Briggs, Jordan; Chen, Shisheng; Zhang, Wenjun; Nelson, Sarah; Dubcovsky, Jorge; Rouse, Matthew N.

    2016-01-01

    Briggs, J., Chen, S., Zhang, W., Nelson, S., Dubcovsky, J., Rouse, M. N. 2015. Genetic Mapping of SrTm4, a Recessive Stem Rust Resistance Gene from Diploid Wheat Effective to Ug99. Phytopathology. PMID:25844826

  4. Genetic identity and differential gene expression between Trichomonas vaginalis and Trichomonas tenax

    Directory of Open Access Journals (Sweden)

    Mundodi Vasanthakrishna

    2009-03-01

    Full Text Available Abstract Background Trichomonas vaginalis is a human urogenital pathogen responsible for trichomonosis, the number-one, non-viral sexually transmitted disease (STD worldwide, while T. tenax is a commensal of the human oral cavity, found particularly in patients with poor oral hygiene and advanced periodontal disease. The extent of genetic identity between T. vaginalis and its oral commensal counterpart is unknown. Results Genes that were differentially expressed in T. vaginalis were identified by screening three independent subtraction cDNA libraries enriched for T. vaginalis genes. The same thirty randomly selected cDNA clones encoding for proteins with specific functions associated with colonization were identified from each of the subtraction cDNA libraries. In addition, a T. vaginalis cDNA expression library was screened with patient sera that was first pre-adsorbed with an extract of T. tenax antigens, and seven specific cDNA clones were identified from this cDNA library. Interestingly, some of the clones identified by the subtraction cDNA screening were also obtained from the cDNA expression library with the pre-adsorbed sera. Moreover and noteworthy, clones identified by both the procedures were found to be up-regulated in expression in T. vaginalis upon contact with vaginal epithelial cells, suggesting a role for these gene products in host colonization. Semi-quantitative RT-PCR analysis of select clones showed that the genes were not unique to T. vaginalis and that these genes were also present in T. tenax, albeit at very low levels of expression. Conclusion These results suggest that T. vaginalis and T. tenax have remarkable genetic identity and that T. vaginalis has higher levels of gene expression when compared to that of T. tenax. The data may suggest that T. tenax could be a variant of T. vaginalis.

  5. Comparison of Genetic Variants in Cancer-Related Genes between Chinese Hui and Han Populations.

    Science.gov (United States)

    Tian, Chaoyong; Chen, Zhiqiang; Ma, Xixian; Yang, Ming; Wang, Zhizhong; Dong, Ying; Yang, Ting; Yang, Wenjun

    2015-01-01

    The Chinese Hui population, as the second largest minority ethnic group in China, may have a different genetic background from Han people because of its unique demographic history. In this study, we aimed to identify genetic differences between Han and Hui Chinese from the Ningxia region of China by comparing eighteen single nucleotide polymorphisms in cancer-related genes. DNA samples were collected from 99 Hui and 145 Han people from the Ningxia Hui Autonomous Region in China, and SNPs were detected using an improved multiplex ligase detection reaction method. Genotyping data from six 1000 Genomes Project population samples (99 Utah residents with northern and western European ancestry (CEU), 107 Toscani in Italy (TSI), 108 Yoruba in Ibadan (YRI), 61 of African ancestry in the southwestern US (ASW), 103 Han Chinese in Beijing (CHB), and 104 Japanese in Tokyo (JPT)) were also included in this study. Differences in the distribution of alleles among the populations were assessed using χ2 tests, and FST was used to measure the degree of population differentiation. We found that the genetic diversity of many SNPs in cancer-related genes in the Hui Chinese in Ningxia was different from that in the Han Chinese in Ningxia. For example, the allele frequencies of four SNPs (rs13361707, rs2274223, rs465498, and rs753955) showed different genetic distributions (pHui. Five SNPs (rs730506, rs13361707, rs2274223, rs465498 and rs753955) had different FST values (FST>0.000) between the Hui and Han populations. These results suggest that some SNPs associated with cancer-related genes vary among different Chinese ethnic groups. We suggest that population differences should be carefully considered in evaluating cancer risk and prognosis as well as the efficacy of cancer therapy.

  6. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    Science.gov (United States)

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  7. Genetic diversity and virulence genes in Streptococcus uberis strains isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Rafael Ambrósio Loures

    2017-08-01

    Full Text Available Mastitis is one of the most common and costly infectious diseases in dairy cattle worldwide. This is a multifactorial illness caused by different microorganisms, including virus, yeasts, algae, parasites, and several species of bacteria. Among these bacteria, Streptococcus uberis is an important environmental pathogen that is responsible for a large range of clinical and subclinical mammary infections, especially in intensively managed herds. Despite the increasing importance of this pathogen in the etiology of bovine mastitis, data on its virulence and diversity in Brazilian dairy herds are scarce. The aims of the present study were to investigate the virulence characteristics of S. uberis isolated from bovine mastitis and to assess the molecular epidemiology of the Brazilian isolates using pulsed-field gel electrophoresis (PFGE. In this work, 46 strains of S. uberis isolated from bovine mastitis from 26 Brazilian dairy herds were evaluated regarding their genetic diversity by PFGE using with the SmaI enzyme. Additionally, the presence of the virulence genes skc and pauA, which encode plasminogen activators, and the gene sua, which encodes an adhesion molecule in mammary epithelial cells, were assessed by PCR. Our results showed a high genetic diversity in the population, displaying many different patterns in the PFGE analysis. A high proportion of strains was positive for virulence genes in the sampled population (sua [100%], pauA [91%], and skc [91%]. The high frequency of skc, pauA, and sua genes among the studied strains suggests the importance of these virulence factors, possibly helping S. uberis in the colonization of the bovine mammary gland. Surveys of the genetic and molecular characteristics of this pathogen can improve our knowledge of bacterial activity and identify molecules that have roles in the establishment of the infection. This might help in the development of more effective measures to control and prevent bovine mastitis.

  8. PAV markers in Sorghum bicolour: genome pattern, affected genes and pathways, and genetic linkage map construction.

    Science.gov (United States)

    Shen, Xin; Liu, Zhi-Quan; Mocoeur, Anne; Xia, Yan; Jing, Hai-Chun

    2015-04-01

    5,511 genic small-size PAVs in sorghum were identified and examined, including the pattern and the function enrichment of PAV genes. 325 PAV markers were developed to construct a genetic map. Presence/absence variants (PAVs) correlate closely to the phenotypic variation, by impacting plant genome sizes and the adaption to the environment. To shed more light on their genome-wide patterns, functions and the possibility of using them as molecular markers, we generated next generation genome sequencing data for four sorghum inbred lines and used associated bioinformatic pipelines to identify small-size PAVs (40-10 kb). Five thousand five hundreds and eleven genic PAVs (40-10 kb) were identified and found to affect 3,238 genes. These PAVs were mainly distributed on the sub-telomeric regions, but the highest proportions occurred in the vicinity of the centromeric regions. One of the prominent features of the PAVs is the high occurrence of long terminal repeats retrotransposons and DNA transposons. PAVs caused various alterations to gene structure, primarily including the coding sequence variants, intron variants, transcript ablation, and initiator codon changes. The genes affected by PAVs were significantly enriched in those involved in stress responses and protein modification. We used 325 PAVs polymorphic between two sorghum inbred lines Ji2731 and E-Tian, together with 49 SSR markers, and constructed a genetic map, which consisted of 10 linkage groups corresponding to the 10 chromosomes of sorghum and spanned 1,430.3 cM in length covering 97% of the physical genome. The resources reported here should be useful for genetic study and breeding of sorghum and related species.

  9. Experimental drug STA-8666 causes complete tumor regression in animal models of pediatric sarcomas | Center for Cancer Research

    Science.gov (United States)

    New studies from scientists in the NCI Center for Cancer Research’s (CCR) Pediatric Oncology Branch suggest that an experimental drug called STA-8666 could be an effective treatment for the childhood cancers Ewing sarcoma and rhabdomyosarcoma. In mouse models of these diseases, STA-8666 eliminated tumors and prolonged survival beyond that of animals treated with a related drug, irinotecan. Read more…

  10. Genetic variation and risks of introgression in the wild Coffea arabica gene pool in south-western Ethiopian montane rainforests.

    Science.gov (United States)

    Aerts, Raf; Berecha, Gezahegn; Gijbels, Pieter; Hundera, Kitessa; Glabeke, Sabine; Vandepitte, Katrien; Muys, Bart; Roldán-Ruiz, Isabel; Honnay, Olivier

    2013-02-01

    The montane rainforests of SW Ethiopia are the primary centre of diversity of Coffea arabica and the origin of all Arabica coffee cultivated worldwide. This wild gene pool is potentially threatened by forest fragmentation and degradation, and by introgressive hybridization with locally improved coffee varieties. We genotyped 703 coffee shrubs from unmanaged and managed coffee populations, using 24 microsatellite loci. Additionally, we genotyped 90 individuals representing 23 Ethiopian cultivars resistant to coffee berry disease (CBD). We determined population genetic diversity, genetic structure, and admixture of cultivar alleles in the in situ gene pool. We found strong genetic differentiation between managed and unmanaged coffee populations, but without significant differences in within-population genetic diversity. The widespread planting of coffee seedlings including CBD-resistant cultivars most likely offsets losses of genetic variation attributable to genetic drift and inbreeding. Mixing cultivars with original coffee genotypes, however, leaves ample opportunity for hybridization and replacement of the original coffee gene pool, which already shows signs of admixture. In situ conservation of the wild gene pool of C. arabica must therefore focus on limiting coffee production in the remaining wild populations, as intensification threatens the genetic integrity of the gene pool by exposing wild genotypes to cultivars.

  11. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): current status of major genes.

    Science.gov (United States)

    Hsam, Sai L K; Mohler, Volker; Zeller, Friedrich J

    2014-05-01

    The genetics of resistance to powdery mildew caused by Blumeria graminis f. sp. avenae of four cultivated oats was studied using monosomic analysis. Cultivar 'Bruno' carries a gene (Pm6) that shows a recessive mode of inheritance and is located on chromosome 10D. Cultivar 'Jumbo' possesses a dominant resistance gene (Pm1) on chromosome 1C. In cultivar 'Rollo', in addition to the gene Pm3 on chromosome 17A, a second dominant resistance gene (Pm8) was identified and assigned to chromosome 4C. In breeding line APR 122, resistance was conditioned by a dominant resistance gene (Pm7) that was allocated to chromosome 13A. Genetic maps established for resistance genes Pm1, Pm6 and Pm7 employing amplified fragment length polymorphism (AFLP) markers indicated that these genes are independent of each other, supporting the results from monosomic analysis.

  12. Genetic locus on rat chromosome 20 regulates diet-induced adipocyte hypertrophy: a microarray gene expression study

    Czech Academy of Sciences Publication Activity Database

    Bourdon, C.; Hojná, S.; Jordan, M.; Berube, J.; Křen, V.; Pravenec, Michal; Liu, P.; Arab, S.; Pausová, Z.

    2009-01-01

    Roč. 38, č. 1 (2009), s. 63-72 ISSN 1094-8341 Institutional research plan: CEZ:AV0Z50110509 Keywords : obesity * genetic s * gene expression profiles Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 3.931, year: 2009

  13. Molecular population genetics of elicitor-induced resistance genes in European aspen (Populus tremula L., Salicaceae.

    Directory of Open Access Journals (Sweden)

    Carolina Bernhardsson

    Full Text Available Owing to their long life span and ecological dominance in many communities, forest trees are subject to attack from a diverse array of herbivores throughout their range, and have therefore developed a large number of both constitutive and inducible defenses. We used molecular population genetics methods to examine the evolution of eight genes in European aspen, Populus tremula, that are all associated with defensive responses against pests and/or pathogens, and have earlier been shown to become strongly up-regulated in poplars as a response to wounding and insect herbivory. Our results show that the majority of these defense genes show patterns of intraspecific polymorphism and site-frequency spectra that are consistent with a neutral model of evolution. However, two of the genes, both belonging to a small gene family of polyphenol oxidases, show multiple deviations from the neutral model. The gene PPO1 has a 600 bp region with a highly elevated K(A/K(S ratio and reduced synonymous diversity. PPO1 also shows a skew toward intermediate frequency variants in the SFS, and a pronounced fixation of non-synonymous mutations, all pointing to the fact that PPO1 has been subjected to recurrent selective sweeps. The gene PPO2 shows a marked excess of high frequency, derived variants and shows many of the same trends as PPO1 does, even though the pattern is less pronounced, suggesting that PPO2 might have been the target of a recent selective sweep. Our results supports data from both Populus and other species which have found that the the majority of defense-associated genes show few signs of selection but that a number of genes involved in mediating defense against herbivores show signs of adaptive evolution.

  14. Molecular genetic analysis of consanguineous families with primary microcephaly identified pathogenic variants in the ASPM gene.

    Science.gov (United States)

    Khan, Muzammil Ahmad; Windpassinger, Christian; Ali, Muhammad Zeeshan; Zubair, Muhammad; Gul, Hadia; Abbas, Safdar; Khan, Saadullah; Badar, Muhammad; Mohammad, Ramzi M; Nawaz, Zafar

    2017-06-01

    Autosomal recessive primary microcephaly is a rare genetic disorder that is characterized by reduced head circumference and a varying degree of intellectual disability. Genetic studies on consanguineous families with primary microcephaly have identified 15 (MCPH) causative genes that include MCPH1, WDR62, CDK5RAP2, CASC5, ASPM, CENPJ, STIL, CEP135, CEP152, ZNF335, PHC1, CDK6, CENPE, SASS6 MFSD2A ANKLE2 and CIT (Khan et al. 2014; Yamamoto et al. 2014; Alakbarzade et al. 2015;Morris-Rosendahl and Kaindl 2015; Basit et al. 2016). Physiologically, most of these MCPH proteins are involved in cell cycle and its regulation. In the present clinical genetic study, we have present two consanguineous Pakistani families segregating primary microcephaly and intellectual disability. These families were ascertained from the Saraiki ethnic part of Khyber-Pakhtunkhwa province in Pakistan. Whole exome sequencing in one family revealed a novel 1-bp deletion NM_018136.4: c.10013delA (p.Asp3338Valfs*2), while the other family showed a previously reported nonsense mutation NM_018136.4: c.9730C>T (rs199422195 (p.Arg3244*)) in ASPM gene. The novel frame-shift mutation (p.Asp3338Valfs*2) in ASPM presumably truncates the protein synthesis that results in loss of armadillo-type fold domain.

  15. The coevolution of genes and genetic codes: Crick's frozen accident revisited.

    Science.gov (United States)

    Sella, Guy; Ardell, David H

    2006-09-01

    The standard genetic code is the nearly universal system for the translation of genes into proteins. The code exhibits two salient structural characteristics: it possesses a distinct organization that makes it extremely robust to errors in replication and translation, and it is highly redundant. The origin of these properties has intrigued researchers since the code was first discovered. One suggestion, which is the subject of this review, is that the code's organization is the outcome of the coevolution of genes and genetic codes. In 1968, Francis Crick explored the possible implications of coevolution at different stages of code evolution. Although he argues that coevolution was likely to influence the evolution of the code, he concludes that it falls short of explaining the organization of the code we see today. The recent application of mathematical modeling to study the effects of errors on the course of coevolution, suggests a different conclusion. It shows that coevolution readily generates genetic codes that are highly redundant and similar in their error-correcting organization to the standard code. We review this recent work and suggest that further affirmation of the role of coevolution can be attained by investigating the extent to which the outcome of coevolution is robust to other influences that were present during the evolution of the code.

  16. Biofilm formation and genetic variability of BCR1 gene in the Candida parapsilosis complex.

    Science.gov (United States)

    Treviño-Rangel, Rogelio de J; Rodríguez-Sánchez, Irám P; Rosas-Taraco, Adrián G; Hernández-Bello, Romel; González, José G; González, Gloria M

    2015-01-01

    Candida parapsilosis sensu stricto, Candida orthopsilosis, and Candida metapsilosis are cryptic species that belong to the C. parapsilosis complex, which has been increasingly associated to fungemia in various geographic regions, principally due to the capability of these yeasts to form biofilms on indwelling medical devices. BCR1 is one of the most studied genes related to Candida spp. biofilms. To evaluate the biofilm forming capability of a subset of 65 clinical isolates of the C. parapsilosis complex using two conventional approaches, and to look for an association between the biofilm forming phenotype and genetic variants of a fragment of BCR1. The biofilm determination was carried out by crystal violet staining and tetrazolium reduction assay. On the other hand, a segment of BCR1 gene was sequenced by Sanger methodology. C. parapsilosis sensu stricto was statistically associated with a low biofilm production phenotype, while C. orthopsilosis was significantly associated with both phenotypes (high and low biofilm producers). According to the BCR1 sequence analysis, genetic variability was detected in C. orthopsilosis and C. metapsilosis without a particular biofilm formation phenotype association. Under the adopted experimental design, C. parapsilosis sensu stricto was associated with the low biofilm phenotype and C. orthopsilosis with both phenotypes (high and low biofilm producers). On the other hand, an association between a biofilm forming phenotype and a particular genetic variant of the analyzed BCR1 fragment was not found. Copyright © 2014 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  17. Three-generation reproduction toxicity study of genetically modified rice with insect resistant genes.

    Science.gov (United States)

    Hu, Yichun; Zhuo, Qin; Gong, Zhaolong; Piao, Jianhua; Yang, Xiaoguang

    2017-01-01

    In the present work, we evaluated the three generation reproductive toxicity of the genetically modified rice with insectresistant cry1Ac and sck genes. 120 Sprague-Dawley (SD) rats were divided into three groups which were fed with genetically modified rice diet (GM group), parental control rice diet (PR group) and AIN-93 control diet (both used as negative control) respectively. Bodyweight, food consumption, reproductive data, hematological parameters, serum chemistry, relative organ weights and histopathology for each generation were examined respectively. All the hematology and serum chemistry parameters, organ/body weight indicators were within the normal range or no change to the adverse direction was observed, although several differences in hematology and serum chemistry parameters (WBC, BUN, LDH of male rat, PLT, PCT, MPV of female rats), reproductive data (rate of morphologically abnormal sperm) were observed between GM rice group and two control groups. No macroscopic or histological adverse effects were found or considered as treatment-related, either. Overall, the three generation study of genetically modified rice with cry1Ac and sck genes at a high level showed no unintended adverse effects on rats's reproductive system. Copyright © 2016. Published by Elsevier Ltd.

  18. Genetic interactions between the Drosophila tumor suppressor gene ept and the stat92E transcription factor.

    Directory of Open Access Journals (Sweden)

    M Melissa Gilbert

    2009-09-01

    Full Text Available Tumor Susceptibility Gene-101 (TSG101 promotes the endocytic degradation of transmembrane proteins and is implicated as a mutational target in cancer, yet the effect of TSG101 loss on cell proliferation in vertebrates is uncertain. By contrast, Drosophila epithelial tissues lacking the TSG101 ortholog erupted (ept develop as enlarged undifferentiated tumors, indicating that the gene can have anti-growth properties in a simple metazoan. A full understanding of pathways deregulated by loss of Drosophila ept will aid in understanding potential links between mammalian TSG101 and growth control.We have taken a genetic approach to the identification of pathways required for excess growth of Drosophila eye-antennal imaginal discs lacking ept. We find that this phenotype is very sensitive to the genetic dose of stat92E, the transcriptional effector of the Jak-Stat signaling pathway, and that this pathway undergoes strong activation in ept mutant cells. Genetic evidence indicates that stat92E contributes to cell cycle deregulation and excess cell size phenotypes that are observed among ept mutant cells. In addition, autonomous Stat92E hyper-activation is associated with altered tissue architecture in ept tumors and an effect on expression of the apical polarity determinant crumbs.These findings identify ept as a cell-autonomous inhibitor of the Jak-Stat pathway and suggest that excess Jak-Stat signaling makes a significant contribution to proliferative and tissue architectural phenotypes that occur in ept mutant tissues.

  19. Gene interaction at seed-awning loci in the genetic background of wild rice.

    Science.gov (United States)

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  20. HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer.

    Directory of Open Access Journals (Sweden)

    Angeline S Andrew

    Full Text Available Bladder cancer is the 4(th most common cancer among men in the U.S. We analyzed variant genotypes hypothesized to modify major biological processes involved in bladder carcinogenesis, including hormone regulation, apoptosis, DNA repair, immune surveillance, metabolism, proliferation, and telomere maintenance. Logistic regression was used to assess the relationship between genetic variation affecting these processes and susceptibility in 563 genotyped urothelial cell carcinoma cases and 863 controls enrolled in a case-control study of incident bladder cancer conducted in New Hampshire, U.S. We evaluated gene-gene interactions using Multifactor Dimensionality Reduction (MDR and Statistical Epistasis Network analysis. The 3'UTR flanking variant form of the hormone regulation gene HSD3B2 was associated with increased bladder cancer risk in the New Hampshire population (adjusted OR 1.85 95%CI 1.31-2.62. This finding was successfully replicated in the Texas Bladder Cancer Study with 957 controls, 497 cases (adjusted OR 3.66 95%CI 1.06-12.63. The effect of this prevalent SNP was stronger among males (OR 2.13 95%CI 1.40-3.25 than females (OR 1.56 95%CI 0.83-2.95, (SNP-gender interaction P = 0.048. We also identified a SNP-SNP interaction between T-cell activation related genes GATA3 and CD81 (interaction P = 0.0003. The fact that bladder cancer incidence is 3-4 times higher in males suggests the involvement of hormone levels. This biologic process-based analysis suggests candidate susceptibility markers and supports the theory that disrupted hormone regulation plays a role in bladder carcinogenesis.

  1. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    Science.gov (United States)

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Genetic characterization of complete open reading frame of glycoprotein C gene of bovine herpesvirus 1

    Directory of Open Access Journals (Sweden)

    Saurabh Majumder

    2013-10-01

    Full Text Available Aim: To characterize one of the major glycoprotein genes viz., glycoprotein C (gC; UL44, unique long region 44 of bovineherpesvirus 1(BoHV1 of Indian origin at genetic and phylogenetic level.Materials and Methods: A bovine herpesvirus 1 isolate viz., (BoHV1/IBR 216 II/ 1976/ India maintained at Division ofVirology, IVRI, Mukteswar was used for the current study. The DNA was extracted using commercial kit and the completeORF of gC gene was amplified, cloned, and sequenced by conventional Sanger sequencing method. The sequence wasgenetically and phylogenetically analysed using various bioinformatic tools. The sequence was submitted in the Genbankwith accession number Kc756965.Results: The complete ORF of gC gene was amplified and sequenced. It showed 100% sequence homology with referencecooper strain of BoHV1 and divergence varied from 0% to 2.7% with other isolates of BoHV1. The isolate under study haddivergence of 9.2%, 13%, 26.6%, and 9.2% with BoHV5 (Bovine herpesvirus 5, CvHV1 (Cervid herpesvirus 1, CpHV1(Caprine herpesvirus 1, and BuHV1 (Bubaline herpesvirus 1, respectively.Conclusion: This is the first genetic characterization of complete open reading frame (ORF of glycoprotein C gene (UL44 ofIndian isolate of BoHV1. The gC gene of BoHV1 is highly conserved among all BoHV1 isolates and it can be used as a targetfor designing diagnostic primers for the specific detection of BoHV1.

  3. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners

    Directory of Open Access Journals (Sweden)

    A.C. Carvalho

    2016-03-01

    Full Text Available Abstract Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n = 134, their owners (n = 134, and humans who claim to have no contact with dogs (n = 44, control, searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3% fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1% control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5% isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains.

  4. Genetic Analysis and Mapping of TWH Gene in Rice Twisted Hull Mutant

    Directory of Open Access Journals (Sweden)

    Jin-bo LI

    2009-03-01

    Full Text Available A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.. The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TWH. To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.

  5. Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance.

    Science.gov (United States)

    Brotman, Y.; Silberstein, L.; Kovalski, I.; Perin, C.; Dogimont, C.; Pitrat, M.; Klingler, J.; Thompson, A.; Perl-Treves, R.

    2002-05-01

    Genomic and cDNA fragments with homology to known disease resistance genes (RGH fragments) were cloned from Cucumis melo using degenerate-primer PCR. Fifteen homologues of the NBS-LRR gene family have been isolated. The NBS-LRR homologues show high divergence and, based on the partial NBS-fragment sequences, appear to include members of the two major subfamilies that have been described in dicot plants, one that possesses a TIR-protein element and one that lacks such a domain. Genomic organization of these sequences was explored by DNA gel-blot analysis, and conservation among other Cucurbitaceae was assessed. Two mapping populations that segregate for several disease and pest resistance loci were used to map the RGH probes onto the melon genetic map. Several NBS-LRR related sequences mapped to the vicinity of genetic loci that control resistance to papaya ringspot virus, Fusarium oxysporum race 1, F. oxysporum race 2 and to the insect pest Aphis gossypii. The utility of such markers for breeding resistant melon cultivars and for cloning the respective R-genes is discussed.

  6. Genetic Influence of Candidate Osteoporosis Genes in Saudi Arabian Population: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Mir Sadat-Ali

    2012-01-01

    Full Text Available Background and Objectives. The purpose of the present study is to find the genes and SNP that influence BMD and postmenopausal Saudi women. Material and Methods. Two-hundred ethnic Saudi Arabian women with a diagnosis of postmenopausal osteoporosis were the subjects of this study. Baseline blood hematology, biochemistry, and bone panel were done. Blood was collected, and three TaqMan-MGB probes were used to analyze SNP variants in ALOX15 (rs7220870, LRP5 (C 25752205 10, and TNFRSF11B (C 11869235 10. Results. The variant of ALOX15 17p13 showed that the BMD of the spine was lower in the AA allele (P value <0.002 and fractures were highest at 50% compared to CC allele. In the TNFRSF11B gene, BMD of the hip and spine was significantly higher in the GG allele and the history of fractures was significantly higher in GG group. With regard to the LRP5 (C 25752205 10 gene, there was no significant difference between allele groups. Conclusion(s. This study shows that the genetic influence of osteoporosis in the Caucasian and Saudi Arabians population is similar. We believe that the same genetic markers that influence osteoporosis in the Caucasian race could be used for further studies in the Saudi Arabian population.

  7. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody E.

    2016-02-29

    Background Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. Results To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. Conclusions This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development.

  8. Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome.

    Science.gov (United States)

    Di Napoli, Agnese; Warrier, Varun; Baron-Cohen, Simon; Chakrabarti, Bhismadev

    2014-01-01

    Autism Spectrum Conditions (ASC) are a group of neurodevelopmental conditions characterized by impairments in communication and social interaction, alongside unusually repetitive behaviors and narrow interests. ASC are highly heritable and have complex patterns of inheritance where multiple genes are involved, alongside environmental and epigenetic factors. Asperger Syndrome (AS) is a subgroup of these conditions, where there is no history of language or cognitive delay. Animal models suggest a role for oxytocin (OXT) and oxytocin receptor (OXTR) genes in social-emotional behaviors, and several studies indicate that the oxytocin/oxytocin receptor system is altered in individuals with ASC. Previous studies have reported associations between genetic variations in the OXTR gene and ASC. The present study tested for an association between nine single nucleotide polymorphisms (SNPs) in the OXTR gene and AS in 530 individuals of Caucasian origin, using SNP association test and haplotype analysis. There was a significant association between rs2268493 in OXTR and AS. Multiple haplotypes that include this SNP (rs2268493-rs2254298, rs2268490-rs2268493-rs2254298, rs2268493-rs2254298-rs53576, rs237885-rs2268490-rs2268493-rs2254298, rs2268490-rs2268493-rs2254298-rs53576) were also associated with AS. rs2268493 has been previously associated with ASC and putatively alters several transcription factor-binding sites and regulates chromatin states, either directly or through other variants in linkage disequilibrium (LD). This study reports a significant association of the sequence variant rs2268493 in the OXTR gene and associated haplotypes with AS.

  9. Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant.

    Science.gov (United States)

    Lebeau, A; Gouy, M; Daunay, M C; Wicker, E; Chiroleu, F; Prior, P; Frary, A; Dintinger, J

    2013-01-01

    Resistance of eggplant against Ralstonia solanacearum phylotype I strains was assessed in a F(6) population of recombinant inbred lines (RILs) derived from a intra-specific cross between S. melongena MM738 (susceptible) and AG91-25 (resistant). Resistance traits were determined as disease score, percentage of wilted plants, and stem-based bacterial colonization index, as assessed in greenhouse experiments conducted in Réunion Island, France. The AG91-25 resistance was highly efficient toward strains CMR134, PSS366 and GMI1000, but only partial toward the highly virulent strain PSS4. The partial resistance found against PSS4 was overcome under high inoculation pressure, with heritability estimates from 0.28 to 0.53, depending on the traits and season. A genetic map was built with 119 AFLP, SSR and SRAP markers positioned on 18 linkage groups (LG), for a total length of 884 cM, and used for quantitative trait loci (QTL) analysis. A major dominant gene, named ERs1, controlled the resistance to strains CMR134, PSS366, and GMI1000. Against strain PSS4, this gene was not detected, but a significant QTL involved in delay of disease progress was detected on another LG. The possible use of the major resistance gene ERs1 in marker-assisted selection and the prospects offered for academic studies of a possible gene for gene system controlling resistance to bacterial wilt in solanaceous plants are discussed.

  10. Genetic analysis of the CHD7 gene in Korean patients with CHARGE syndrome.

    Science.gov (United States)

    Cho, Hyun-Ju; Song, Mee Hyun; Choi, Soo-Young; Kim, Jeongho; Lee, Jinwook; Kim, Un-Kyung; Bok, Jinwoong; Choi, Jae Young

    2013-04-01

    CHARGE syndrome is an autosomal dominant congenital disorder known to be caused by the haploinsufficiency of the CHD7 gene. Heterozygous mutations in the CHD7 gene have been identified in approximately 60-70% of patients clinically diagnosed with CHARGE syndrome. Although there have been many reports on the mutational spectrum of the CHD7 gene in patients with CHARGE syndrome worldwide, little is known about this syndrome in the Korean population. In this study, three Korean patients with CHARGE syndrome including one patient with Patau syndrome were evaluated for genetic analysis of the CHD7 gene using direct sequencing of all 38 exons and the flanking intronic regions. One nonsense and two novel missense mutations were identified in the CHD7 gene. Clinical symptoms caused by the missense mutations were much milder compared to the nonsense mutation, confirming the previously determined genotype-phenotype correlation in CHARGE syndrome. Our study demonstrates the importance of mutational screening of CHD7 in patients who have been diagnosed with other syndromes but display clinical features of CHARGE syndrome. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Genetic variability in mitochondrial and nuclear genes of Larus dominicanus (Charadriiformes, Laridae from the Brazilian coast

    Directory of Open Access Journals (Sweden)

    Gisele Pires de Mendonça Dantas

    2012-01-01

    Full Text Available Several phylogeographic studies of seabirds have documented low genetic diversity that has been attributed to bottleneck events or individual capacity for dispersal. Few studies have been done in seabirds on the Brazilian coast and all have shown low genetic differentiation on a wide geographic scale. The Kelp Gull is a common species with a wide distribution in the Southern Hemisphere. In this study, we used mitochondrial and nuclear markers to examine the genetic variability of Kelp Gull populations on the Brazilian coast and compared this variability with that of sub-Antarctic island populations of this species. Kelp Gulls showed extremely low genetic variability for mitochondrial markers (cytb and ATPase and high diversity for a nuclear locus (intron 7 of the β-fibrinogen. The intraspecific evolutionary history of Kelp Gulls showed that the variability found in intron 7 of the β-fibrinogen gene was compatible with the variability expected under neutral evolution but suggested an increase in population size during the last 10,000 years. However, none of the markers revealed evidence of a bottleneck population. These findings indicate that the recent origin of Kelp Gulls is the main explanation for their nuclear diversity, although selective pressure on the mtDNA of this species cannot be discarded.

  12. Genes and/or jeans?: Genetic and socio-cultural contributions to risk for eating disorders.

    Science.gov (United States)

    Becker, Anne E; Keel, Pamela; Anderson-Fye, Eileen P; Thomas, Jennifer J

    2004-01-01

    Eating disorders are prevalent among young adult females and pose serious psychological and medical risks. Notwithstanding important advances, efforts to develop effective means of preventing and treating eating disorders have been limited by an incomplete understanding of their multifactorial etiology. Whereas epidemiologic data strongly suggest the influence of socio-cultural context in moderating risk, many hypotheses about how these effects are exerted have remained empirically unevaluated. Specifically, experimental and observational data suggest that social transition (e.g., transnational migration, urbanization, modernization), Western media exposure, and certain peer environments (involving social comparison and teasing) may all contribute to risk. With respect to genetic influences on etiology, family and twin studies have supported a genetic diathesis to eating disorders. Whereas, molecular genetic studies have generated interesting leads- with the most promising findings emerging for genes related to the function of serotonin-they have yet to identify well-replicated susceptibility loci. This paper reviews the data supporting both socio-cultural and genetic contributions for eating disorders and suggests productive future strategies for continuing to unravel their likely multiple and complex interactions.

  13. Environmental noise, genetic diversity and the evolution of evolvability and robustness in model gene networks.

    Directory of Open Access Journals (Sweden)

    Christopher F Steiner

    Full Text Available The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or "evolvability" can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise compared to populations in stable or randomly varying (white noise environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions.

  14. Genetic variability in mitochondrial and nuclear genes of Larus dominicanus (Charadriiformes, Laridae) from the Brazilian coast

    Science.gov (United States)

    de Mendonça Dantas, Gisele Pires; Meyer, Diogo; Godinho, Raquel; Ferrand, Nuno; Morgante, João Stenghel

    2012-01-01

    Several phylogeographic studies of seabirds have documented low genetic diversity that has been attributed to bottleneck events or individual capacity for dispersal. Few studies have been done in seabirds on the Brazilian coast and all have shown low genetic differentiation on a wide geographic scale. The Kelp Gull is a common species with a wide distribution in the Southern Hemisphere. In this study, we used mitochondrial and nuclear markers to examine the genetic variability of Kelp Gull populations on the Brazilian coast and compared this variability with that of sub-Antarctic island populations of this species. Kelp Gulls showed extremely low genetic variability for mitochondrial markers (cytb and ATPase) and high diversity for a nuclear locus (intron 7 of the β-fibrinogen). The intraspecific evolutionary history of Kelp Gulls showed that the variability found in intron 7 of the β-fibrinogen gene was compatible with the variability expected under neutral evolution but suggested an increase in population size during the last 10,000 years. However, none of the markers revealed evidence of a bottleneck population. These findings indicate that the recent origin of Kelp Gulls is the main explanation for their nuclear diversity, although selective pressure on the mtDNA of this species cannot be discarded. PMID:23271950

  15. Genetic variability of Echinococcus granulosus based on the mitochondrial 16S ribosomal RNA gene.

    Science.gov (United States)

    Wang, Ning; Wang, Jiahai; Hu, Dandan; Zhong, Xiuqin; Jiang, Zhongrong; Yang, Aiguo; Deng, Shijin; Guo, Li; Tsering, Dawa; Wang, Shuxian; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2015-06-01

    Echinococcus granulosus is the etiological agent of cystic echinococcosis, a major zoonotic disease of both humans and animals. In this study, we assessed genetic variability and genetic structure of E. granulosus in the Tibet plateau, using the complete mitochondrial 16 S ribosomal RNA gene for the first time. We collected and sequenced 62 isolates of E. granulosus from 3 populations in the Tibet plateau. A BLAST analysis indicated that 61 isolates belonged to E. granulosus sensu stricto (genotypes G1-G3), while one isolate belonged to E. canadensis (genotype G6). We detected 16 haplotypes with a haplotype network revealing a star-like expansion, with the most common haplotype occupying the center of the network. Haplotype diversity and nucleotide diversity were low, while negative values were observed for Tajima's D and Fu's Fs. AMOVA results and Fst values revealed that the three geographic populations were not genetically differentiated. Our results suggest that a population bottleneck or population expansion has occurred in the past, and that this explains the low genetic variability of E. granulosus in the Tibet Plateau.

  16. Genetic testing of the FBN1 gene in Chinese patients with Marfan/Marfan-like syndrome.

    Science.gov (United States)

    Yang, Hang; Luo, Mingyao; Chen, Qianlong; Fu, Yuanyuan; Zhang, Jing; Qian, Xiangyang; Sun, Xiaogang; Fan, Yuxin; Zhou, Zhou; Chang, Qian

    2016-08-01

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder typically involving the ocular, skeletal and cardiovascular systems, and aortic aneurysms/dissection mainly contributes to its mortality. Here, we performed genetic testing of the FBN1 gene in 39 Chinese probands with Marfan/Marfan-like syndrome and their related family members by Sanger sequencing. In total, 29 pathogenic/likely pathogenic FBN1 mutations, including 17 novel ones, were identified. In addition, most MFS patients with aortic disease (62%) had a truncating or splicing mutation. These results expand the FBN1 mutation spectrum and enrich our knowledge of genotype-phenotype correlations. Genetic testing for MFS and its related aortic diseases is increasingly important for early intervention and treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Genetic transformation with the gfp gene of Colletotrichum gloeosporioides isolates from coffee with blister spot

    Directory of Open Access Journals (Sweden)

    Cecilia Armesto

    2012-09-01

    Full Text Available Blister spot (Colletotrichum gloeosporioides is now widespread in most coffee producing states of Brazil, becoming a limiting factor for production. The lack of data relating to the reproduction of typical symptoms (light green, oily patches leaves a gap within the pathosystem, forcing the search for new methodologies for monitoring the disease. Monitoring of genetically modified organisms has proven to be an effective tool in understanding the host x pathogen interactions. Thus, the present study was carried out to evaluate the effectiveness of two systems of genetic transformation in obtaining mutants using the gfp reporter gene. Using the two transformation systems (PEG and electroporation revealed the efficiency of both, confirmed by fluorescence microscopy and resistance to the antibiotic hygromycin-B, when incorporated into the culture medium. The fungus maintained its cultural and morphological characteristics when compared to wild strains. When inoculated on coffee seedlings, it was found that the pathogenicity of the processed isolates had not changed.

  18. Genetic mapping of the regulator gene determining enterotoxin synthesis in Vibrio cholerae

    International Nuclear Information System (INIS)

    Smirnova, N.I.; Livanova, L.F.; Shaginyan, I.A.; Motin, V.L.

    1986-01-01

    Data on the genetic mapping of mutation tox-7 (the mutation affecting the synthesis of the cholera toxin) were obtained by conjugation crosses between the atoxigenic donor strain Vibrio cholerae Eltor and the toxigenic recipient strain V. cholera classica. The molecular and genetic analysis of the Tox - recombinants indicated that, when the synthesis of the cholera toxin is disrupted in these strains, the tox-7 mutation (which impairs the regulator gene tox) is gained. Close linkage between the tox-7 and pur-63 mutations was established (during the selection procedure there was 81.1% combined transfer with respect to marker pur-63 situated in the donor strain chromosome more proximal than mutation tox-7). The markers were localized in the following order in the region under investigation: asp-cys-nal-pur-61-trp-his-pur-63-tox-7-ile

  19. Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis genes of Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Burke-Agueero, Donald H. [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    Rhodobacter capsulatus, purple bacterium capable of either aerobic or photosynthetic growth, has proven to be very useful in genetic studies of photosynthesis. Forty-four genes clustered together within a 46 kilobase region are required to establish photosynthetic ability in R. capsulatus. Approximately twenty of these genes are involved in bacteriochlorophyll synthesis of which eight ``bch`` genes are the subject of this thesis. Six of these genes were found to code for the two ring reductases. The first converts protochlorophyllide (PChlide) into a chlorin, the immediate precursor to chlorophyll a, and then into a bacteriochlorin. Each reductase is shown to be made up of three subunits. PChlide reductase is coded by the genes bchN, bchB, and bchL. Proteins with amino acid sequences markedly similar to those of bchN and bchL have been shown in other organisms to be required for chlorophyll synthesis; hence, their designation as chlN and chlB. A third chloroplast-encoded gene of heretofore unknown function shares amino acid identities with bchB and is probably the third subunit of the plant PChlide reductase. The bchA locus, which encodes the chlorin reductase, is found to be made up of three separate, translationally coupled genes, referred to as bchX, bchY, and bchZ. Amino acid similarities between bchX, bchL, and the nitrogenase reductase protein nifH suggest that all three classes of proteins share certain three-dimensional structural features, including elements that are central to the enzymatic mechanism of nifH. PChlide reductase and chlorin reductase are clearly derived from a common ancestor. Several lines of analysis suggests the ancestor of both enzyme systems reduced PChlide twice to produce bacteriochlorophyll supporting the concept bacteriochlorophyll as the ancestral reaction center pigment.

  20. Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis genes of Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Burke-Agueero, D.H.

    1992-08-01

    Rhodobacter capsulatus, purple bacterium capable of either aerobic or photosynthetic growth, has proven to be very useful in genetic studies of photosynthesis. Forty-four genes clustered together within a 46 kilobase region are required to establish photosynthetic ability in R. capsulatus. Approximately twenty of these genes are involved in bacteriochlorophyll synthesis of which eight bch'' genes are the subject of this thesis. Six of these genes were found to code for the two ring reductases. The first converts protochlorophyllide (PChlide) into a chlorin, the immediate precursor to chlorophyll a, and then into a bacteriochlorin. Each reductase is shown to be made up of three subunits. PChlide reductase is coded by the genes bchN, bchB, and bchL. Proteins with amino acid sequences markedly similar to those of bchN and bchL have been shown in other organisms to be required for chlorophyll synthesis; hence, their designation as chlN and chlB. A third chloroplast-encoded gene of heretofore unknown function shares amino acid identities with bchB and is probably the third subunit of the plant PChlide reductase. The bchA locus, which encodes the chlorin reductase, is found to be made up of three separate, translationally coupled genes, referred to as bchX, bchY, and bchZ. Amino acid similarities between bchX, bchL, and the nitrogenase reductase protein nifH suggest that all three classes of proteins share certain three-dimensional structural features, including elements that are central to the enzymatic mechanism of nifH. PChlide reductase and chlorin reductase are clearly derived from a common ancestor. Several lines of analysis suggests the ancestor of both enzyme systems reduced PChlide twice to produce bacteriochlorophyll supporting the concept bacteriochlorophyll as the ancestral reaction center pigment.

  1. A New Baltic Population-Specific Human Genetic Marker in the PMCA4 Gene.

    Science.gov (United States)

    Stavusis, Janis; Inashkina, Inna; Lace, Baiba; Pelnena, Dita; Limborska, Svetlana; Khrunin, Andrey; Kucinskas, Vaidutis; Krumina, Astrida; Piekuse, Linda; Zorn, Branko; Fodina, Violeta; Punab, Margus; Erenpreiss, Juris

    2016-01-01

    The PMCA gene family consists of 4 genes and at least 21 splice variants; among these, the Ca2+ ATPase 4 (PMCA4) gene encodes a plasma membrane protein abundantly expressed in several tissues, including the kidney, heart, and sperm. Knockout of PMCA4 causes infertility due to immotile sperm in mouse models. We therefore investigated variants in this gene for potential association with infertility in groups of Estonian (n = 191) and Latvian (n = 92) men with reduced sperm motility. All exons, exon-intron boundaries, 5' and 3' untranslated regions, and the promoter region of the PMCA4 gene were analysed by direct sequencing for a group of Estonian infertile men. Genotyping of guanine and adenine alleles of rs147729934 was performed, using a custom-designed TaqMan® probe for a group of Latvian infertile men as well as additional groups from Latvia and several groups of people with proven ethnicity from the Baltic region. Although we did not identify any significant associations between variants in the gene and infertility, our results indicated that in all studied Latvian and Estonian groups the adenine allele of the variant rs147729934 was present at a higher frequency than expected. Analysis of additional samples indicated that the adenine allele of rs147729934 likely originated once in the modern-day Baltic or western Russia area, as the frequency of the minor adenine allele observed in this region is remarkably higher than that in the general European population. Our results revealed no significant difference in frequencies of genetic variants in PMCA4 gene between men with normal and those with reduced sperm motility. The adenine allele of the variant rs147729934 is potentially an informative tool for future population studies concerning ancient Baltic and Finno-Ugric history. © 2017 S. Karger AG, Basel.

  2. Phylogenetic features of hemagglutin gene in canine distemper virus strains from different genetic lineages.

    Science.gov (United States)

    Liao, Peng; Guo, Li; Wen, Yongjun; Yang, Yangling; Cheng, Shipeng

    2015-01-01

    In the present study, the genotype of two Canine distemper virus (CDV) strains, namely, ZJJ-SD and ZJJ-LN, were investigated, based on the whole hemagglutinin (HA) gene. The CDV strains were obtained from two foxes in Shandong Province and Liaoning Province in 2011. Phylogenetic analyses were carried out for 260 CDV strains worldwide, and a statistical analysis was performed in the amino acid substitutions at positions 530 and 549 of the HA protein. Phylogenetic analyses revealed that the two strains, ZJJ-SD and ZJJ-LN, belonged to the CDV Asia I lineage. Site 530 of HA protein was found to be relatively conserved within CDV lineages in different host species by combining the genetic sequence data with the published data from 260 CDV strains worldwide. The data analysis showed a bias toward the predicted substitution Y549H for the non-dog strains in Asia I and Europe lineages. The ratio of site 549 genetic drift in the HA gene were significantly different between dogs and non-dogs in the two lineages. The strain ZJJ-SD, from wild canid, has an Y549H substitution. It is one of three Y549H substitution for wild canids in Asia I lineages. Site 530 of HA protein was not immediately relative to CDV genetic drift from dogs to non-dogs. Statistical analysis indicated that non-dog strains have a high probability to contain Y549H than dog strains in Asia I and Europe lineages. Thus, site 549 is considered important in genetic drift from dogs to non-dogs, at least in Asia I and Europe lineages.

  3. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits

    NARCIS (Netherlands)

    Carbone, F.; Preuss, A.; Vos, de C.H.; Amico, d' E.; Perrotta, G.; Bovy, A.G.; Martens, S.; Rosati, C.

    2009-01-01

    The influence of internal (genetic and developmental) and external (environmental) factors on levels of flavonoid gene transcripts, enzyme activity and metabolites was studied in fruit of six cultivated strawberry (Fragaria × ananassa Duch.) genotypes grown at two Italian locations. Gene expression

  4. Genetic basis of prune belly syndrome: screening for HNF1β gene.

    Science.gov (United States)

    Granberg, Candace F; Harrison, Steven M; Dajusta, Daniel; Zhang, Shaohua; Hajarnis, Sachin; Igarashi, Peter; Baker, Linda A

    2012-01-01

    Although the cause of prune belly syndrome is unknown, familial evidence suggests a genetic component. Recently 2 nonfamilial cases of prune belly syndrome with chromosome 17q12 deletions encompassing the HNF1β gene have made this a candidate gene for prune belly syndrome. To date, there has been no large-scale screening of patients with prune belly syndrome for HNF1β mutations. We assessed the role of HNF1β in prune belly syndrome by screening for genomic mutations with functional characterization of any detected mutations. We studied patients with prune belly syndrome who were prospectively enrolled in our Pediatric Genitourinary DNA Repository since 2001. DNA from patient samples was amplified by polymerase chain reaction, sequenced for coding and splice regions of the HNF1β gene, and compared to control databases. We performed functional assay testing of the ability of mutant HNF1β to activate a luciferase construct with an HNF1β DNA binding site. From 32 prune belly syndrome probands (30 males, 2 females) HNF1β sequencing detected a missense mutation (V61G) in 1 child with prune belly syndrome. Absent in control databases, V61G was previously reported in 2 patients without prune belly syndrome who had congenital genitourinary anomalies. Functional testing showed similar luciferase activity compared to wild-type HNF1β, suggesting the V61G substitution does not disturb HNF1β function. One genomic HNF1β mutation was detected in 3% of patients with prune belly syndrome but found to be functionally normal. Thus, functionally significant HNF1β mutations are uncommon in prune belly syndrome, despite case reports of HNF1β deletions. Further genetic study is necessary, as identification of the genetic basis of prune belly syndrome may ultimately lead to prevention and improved treatments for this rare but severe syndrome. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Science.gov (United States)

    Malenfant, René M; Davis, Corey S; Cullingham, Catherine I; Coltman, David W

    2016-01-01

    Recently, an extensive study of 2,748 polar bears (Ursus maritimus) from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1) highly unbalanced sample sizes and large amounts of systematically missing data; (2) incorrect calculation of FST and of significance levels; (3) misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  6. Genetic diversity of the flagellin genes of Clostridium botulinum groups I and II.

    Science.gov (United States)

    Woudstra, Cedric; Lambert, Dominic; Anniballi, Fabrizio; De Medici, Dario; Austin, John; Fach, Patrick

    2013-07-01

    Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum.

  7. Circumpolar Genetic Structure and Recent Gene Flow of Polar Bears: A Reanalysis.

    Directory of Open Access Journals (Sweden)

    René M Malenfant

    Full Text Available Recently, an extensive study of 2,748 polar bears (Ursus maritimus from across their circumpolar range was published in PLOS ONE, which used microsatellites and mitochondrial haplotypes to apparently show altered population structure and a dramatic change in directional gene flow towards the Canadian Archipelago-an area believed to be a future refugium for polar bears as their southernmost habitats decline under climate change. Although this study represents a major international collaborative effort and promised to be a baseline for future genetics work, methodological shortcomings and errors of interpretation undermine some of the study's main conclusions. Here, we present a reanalysis of this data in which we address some of these issues, including: (1 highly unbalanced sample sizes and large amounts of systematically missing data; (2 incorrect calculation of FST and of significance levels; (3 misleading estimates of recent gene flow resulting from non-convergence of the program BayesAss. In contrast to the original findings, in our reanalysis we find six genetic clusters of polar bears worldwide: the Hudson Bay Complex, the Western and Eastern Canadian Arctic Archipelago, the Western and Eastern Polar Basin, and-importantly-we reconfirm the presence of a unique and possibly endangered cluster of bears in Norwegian Bay near Canada's expected last sea-ice refugium. Although polar bears' abundance, distribution, and population structure will certainly be negatively affected by ongoing-and increasingly rapid-loss of Arctic sea ice, these genetic data provide no evidence of strong directional gene flow in response to recent climate change.

  8. Expanding the Spectrum of Genes Involved in Huntington Disease Using a Combined Clinical and Genetic Approach.

    Science.gov (United States)

    Mariani, Louise-Laure; Tesson, Christelle; Charles, Perrine; Cazeneuve, Cécile; Hahn, Valérie; Youssov, Katia; Freeman, Leorah; Grabli, David; Roze, Emmanuel; Noël, Sandrine; Peuvion, Jean-Noel; Bachoud-Levi, Anne-Catherine; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra

    2016-09-01

    Huntington disease (HD), a prototypic monogenic disease, is caused by an expanded CAG repeat in the HTT gene exceeding 35 units. However, not all patients with an HD phenotype carry the pathological expansion in HTT, and the positive diagnosis rate is poor. To examine patients with HD phenotypes to determine the frequency of HD phenocopies with typical features of HD but without pathological CAG repeat expansions in HTT in an attempt to improve the positive diagnosis rate. Between January 1, 2004, and April 18, 2011, a total of 226 consecutive index patients with an HD phenotype were referred to specialized clinics of the French National Huntington Disease Reference Centre for Rare Diseases. They underwent detailed clinical examination and follow-up, as well as neuropsychological, biological, imaging, and genetic examinations. Nucleotide expansions in JPH3, ATN1, TBP, and C9ORF72 and mutations in PRNP, as well as acquired conditions commonly causing HD phenocopies, were first screened. The diagnostic rate of HD phenocopies and frequency of other etiologies using deep clinical phenotyping and next generation sequencing. Our goal was to improve the genetic diagnosis of HD phenocopies and to identify new HD related genes. One hundred ninety-eight patients carried a pathological CAG repeat expansion in HTT, whereas 28 patients (12 women and 16 men) did not. Huntington disease phenocopies accounted for 12.4%, and their mean (SD) age at onset was similar to those of the HD-HTT group (47.3 [12.7] years vs 50.3 [16.4] years, P = .29). We first identified 3 patients with abnormal CTG expansions in JPH3, a fourth patient with an antiphospholipid syndrome, and a fifth patient with B12 avitaminosis. A custom-made 63-gene panel was generated based on clinical evolution and exome sequencing. It contained genes responsible for HD phenocopies and other neurodegenerative conditions, as well as candidate genes from exome sequencing in 3 index cases with imaging features of brain

  9. Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ockinger, J; Stridh, P; Beyeen, A D

    2010-01-01

    Multiple sclerosis (MS) is a complex disorder of the central nervous system, causing inflammation, demyelination and axonal damage. A limited number of genetic risk factors for MS have been identified, but the etiology of the disease remains largely unknown. For the identification of genes...... regulating neuroinflammation we used a rat model of MS, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), and carried out a linkage analysis in an advanced intercross line (AIL). We thereby redefine the Eae18b locus to a 0.88 Mb region, including a cluster...

  10. Evolutionary dynamics and genetic diversity from three genes of Anguillid rhabdovirus

    DEFF Research Database (Denmark)

    Bellec, Laure; Cabon, Joelle; Bergmann, Sven

    2014-01-01

    Wild freshwater eel populations have dramatically declined in recent past decades in Europe and America, partially through the impact of several factors including the wide spread of infectious diseases. The anguillid rhabdoviruses eel virus European X (EVEX) and eel virus American (EVA) potentially...... play a role in this decline, even if their real contribution is still unclear. In this study, we investigate the evolutionary dynamics and genetic diversity of anguiillid rhabdoviruses by analysing sequences from the glycoprotein, nucleoprotein and phosphoprotein (P) genes of 57 viral strains collected...

  11. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops.

    Science.gov (United States)

    Anderson, Jennifer A; Staley, Jamie; Challender, Mary; Heuton, Jamie

    2018-02-01

    Genetically modified crops undergo extensive evaluation to characterize their food, feed and environmental safety prior to commercial introduction, using a well-established, science-based assessment framework. One component of the safety assessment includes an evaluation of each introduced trait, including its source organism, for potential adverse pathogenic, toxic and allergenic effects. Several Pseudomonas species have a history of safe use in agriculture and certain species represent a source of genes with insecticidal properties. The ipd072Aa gene from P. chlororaphis encodes the IPD072Aa protein, which confers protection against certain coleopteran pests when expressed in maize plants. P. chlororaphis is ubiquitous in the environment, lacks known toxic or allergenic properties, and has a history of safe use in agriculture and in food and feed crops. This information supports, in part, the safety assessment of potential traits, such as IPD072Aa, that are derived from this source organism.

  12. Computational processes of evolution and the gene expression messy genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kargupta, H. [Los Alamos National Lab., NM (United States). Computational Science Methods Div.

    1996-05-01

    This paper makes an effort to project the theoretical lessons of the SEARCH (Search Envisioned As Relation and Class Hierarchizing) framework introduced elsewhere (Kargupta, 1995b) in the context of natural evolution and introduce the gene expression messy genetic algorithm (GEMGA) -- a new generation of messy GAs that directly search for relations among the members of the search space. The GEMGA is an O({vert_bar}{Lambda}{vert_bar}{sup k}({ell} + k)) sample complexity algorithm for the class of order-k delineable problems (Kargupta, 1995a) (problems that can be solved by considering no higher than order-k relations) in sequence representation of length {ell} and alphabet set {Lambda}. Unlike the traditional evolutionary search algorithms, the GEMGA emphasizes the computational role of gene expression and uses a transcription operator to detect appropriate relations. Theoretical conclusions are also substantiated by experimental results for large multimodal problems with bounded inappropriateness of representation.

  13. The Functional Genetics of Handedness and Language Lateralization: Insights from Gene Ontology, Pathway and Disease Association Analyses

    Directory of Open Access Journals (Sweden)

    Judith Schmitz

    2017-07-01

    Full Text Available Handedness and language lateralization are partially determined by genetic influences. It has been estimated that at least 40 (and potentially more possibly interacting genes may influence the ontogenesis of hemispheric asymmetries. Recently, it has been suggested that analyzing the genetics of hemispheric asymmetries on the level of gene ontology sets, rather than at the level of individual genes, might be more informative for understanding the underlying functional cascades. Here, we performed gene ontology, pathway and disease association analyses on genes that have previously been associated with handedness and language lateralization. Significant gene ontology sets for handedness were anatomical structure development, pattern specification (especially asymmetry formation and biological regulation. Pathway analysis highlighted the importance of the TGF-beta signaling pathway for handedness ontogenesis. Significant gene ontology sets for language lateralization were responses to different stimuli, nervous system development, transport, signaling, and biological regulation. Despite the fact that some authors assume that handedness and language lateralization share a common ontogenetic basis, gene ontology sets barely overlap between phenotypes. Compared to genes involved in handedness, which mostly contribute to structural development, genes involved in language lateralization rather contribute to activity-dependent cognitive processes. Disease association analysis revealed associations of genes involved in handedness with diseases affecting the whole body, while genes involved in language lateralization were specifically engaged in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes.

  14. The Functional Genetics of Handedness and Language Lateralization: Insights from Gene Ontology, Pathway and Disease Association Analyses.

    Science.gov (United States)

    Schmitz, Judith; Lor, Stephanie; Klose, Rena; Güntürkün, Onur; Ocklenburg, Sebastian

    2017-01-01

    Handedness and language lateralization are partially determined by genetic influences. It has been estimated that at least 40 (and potentially more) possibly interacting genes may influence the ontogenesis of hemispheric asymmetries. Recently, it has been suggested that analyzing the genetics of hemispheric asymmetries on the level of gene ontology sets, rather than at the level of individual genes, might be more informative for understanding the underlying functional cascades. Here, we performed gene ontology, pathway and disease association analyses on genes that have previously been associated with handedness and language lateralization. Significant gene ontology sets for handedness were anatomical structure development, pattern specification (especially asymmetry formation) and biological regulation. Pathway analysis highlighted the importance of the TGF-beta signaling pathway for handedness ontogenesis. Significant gene ontology sets for language lateralization were responses to different stimuli, nervous system development, transport, signaling, and biological regulation. Despite the fact that some authors assume that handedness and language lateralization share a common ontogenetic basis, gene ontology sets barely overlap between phenotypes. Compared to genes involved in handedness, which mostly contribute to structural development, genes involved in language lateralization rather contribute to activity-dependent cognitive processes. Disease association analysis revealed associations of genes involved in handedness with diseases affecting the whole body, while genes involved in language lateralization were specifically engaged in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes.

  15. Industrial melanism in the peppered moth is not associated with genetic variation in canonical melanisation gene candidates.

    Directory of Open Access Journals (Sweden)

    Arjen E van't Hof

    2010-05-01

    Full Text Available Industrial melanism in the peppered moth (Biston betularia is an iconic case study of ecological genetics but the molecular identity of the gene determining the difference between the typical and melanic (carbonaria morphs is entirely unknown. We applied the candidate gene approach to look for associations between genetic polymorphisms within sixteen a priori melanisation gene candidates and the carbonaria morph. The genes were isolated and sequence characterised in B. betularia using degenerate PCR and from whole-transcriptome sequence. The list of candidates contains all the genes previously implicated in melanisation pattern differences in other insects, including aaNAT, DOPA-decarboxylase, ebony, tan, tyrosine hydroxylase, yellow and yellow2 (yellow-fa. Co-segregation of candidate gene alleles and carbonaria morph was tested in 73 offspring of a carbonaria male-typical female backcross. Surprisingly, none of the sixteen candidate genes was in close linkage with the locus controlling the carbonaria-typical polymorphism. Our study demonstrates that the 'carbonaria gene' is not a structural variant of a canonical melanisation pathway gene, neither is it a cis-regulatory element of these enzyme-coding genes. The implication is either that we have failed to characterize an unknown enzyme-coding gene in the melanisation pathway, or more likely, that the 'carbonaria gene' is a higher level trans-acting factor which regulates the spatial expression of one or more of the melanisation candidates in this study to alter the pattern of melanin production.

  16. Impact of non-linear smoking effects on the identification of gene-by-smoking interactions in COPD genetics studies

    DEFF Research Database (Denmark)

    Castaldi, P J; Demeo, D L; Hersh, C P

    2010-01-01

    with COPD. Using data from the Alpha-1 Antitrypsin Genetic Modifiers Study, the accuracy and power of two different approaches to model smoking were compared by performing a simulation study of a genetic variant with a range of gene-by-smoking interaction effects. Results Non-linear relationships between......Background The identification of gene-by-environment interactions is important for understanding the genetic basis of chronic obstructive pulmonary disease (COPD). Many COPD genetic association analyses assume a linear relationship between pack-years of smoking exposure and forced expiratory volume...... in 1 s (FEV(1)); however, this assumption has not been evaluated empirically in cohorts with a wide spectrum of COPD severity. Methods The relationship between FEV(1) and pack-years of smoking exposure was examined in four large cohorts assembled for the purpose of identifying genetic associations...

  17. Genetic structure and gene flow of the flea Xenopsylla cheopis in Madagascar and Mayotte.

    Science.gov (United States)

    Harimalala, Mireille; Telfer, Sandra; Delatte, Hélène; Watts, Phillip C; Miarinjara, Adélaïde; Ramihangihajason, Tojo Rindra; Rahelinirina, Soanandrasana; Rajerison, Minoarisoa; Boyer, Sébastien

    2017-07-20

    The flea Xenopsylla cheopis (Siphonaptera: Pulicidae) is a vector of plague. Despite this insect's medical importance, especially in Madagascar where plague is endemic, little is known about the organization of its natural populations. We undertook population genetic analyses (i) to determine the spatial genetic structure of X. cheopis in Madagascar and (ii) to determine the potential risk of plague introduction in the neighboring island of Mayotte. We genotyped 205 fleas from 12 sites using nine microsatellite markers. Madagascan populations of X. cheopis differed, with the mean number of alleles per locus per population ranging from 1.78 to 4.44 and with moderate to high levels of genetic differentiation between populations. Three distinct genetic clusters were identified, with different geographical distributions but with some apparent gene flow between both islands and within Malagasy regions. The approximate Bayesian computation (ABC) used to test the predominant direction of flea dispersal implied a recent population introduction from Mayotte to Madagascar, which was estimated to have occurred between 1993 and 2012. The impact of this flea introduction in terms of plague transmission in Madagascar is unclear, but the low level of flea exchange between the two islands seems to keep Mayotte free of plague for now. This study highlights the occurrence of genetic structure among populations of the flea vector of plague, X. cheopis, in Madagascar and suggests that a flea population from Mayotte has been introduced to Madagascar recently. As plague has not been reported in Mayotte, this introduction is unlikely to present a major concern for plague transmission. Nonetheless, evidence of connectivity among flea populations in the two islands indicates a possibility for dispersal by fleas in the opposite direction and thus a risk of plague introduction to Mayotte.

  18. Genetic analysis of inherited leukodystrophies: genotype-phenotype correlations in the CSF1R gene.

    Science.gov (United States)

    Guerreiro, Rita; Kara, Eleanna; Le Ber, Isabelle; Bras, Jose; Rohrer, Jonathan D; Taipa, Ricardo; Lashley, Tammaryn; Dupuits, Céline; Gurunlian, Nicole; Mochel, Fanny; Warren, Jason D; Hannequin, Didier; Sedel, Frédéric; Depienne, Christel; Camuzat, Agnès; Golfier, Véronique; Du Boisguéheneuc, Foucaud; Schottlaender, Lucia; Fox, Nick C; Beck, Jonathan; Mead, Simon; Rossor, Martin N; Hardy, John; Revesz, Tamas; Brice, Alexis; Houlden, Henry

    2013-07-01

    The leukodystrophies comprise a clinically and genetically heterogeneous group of progressive hereditary neurological disorders mainly affecting the myelin in the central nervous system. Their onset is variable from childhood to adulthood and presentation can be with a variety of clinical features that include mainly for adult-onset cases cognitive decline, seizures, parkinsonism, muscle weakness, neuropathy, spastic paraplegia, personality/behavioral problems, and dystonia. Recently, Rademakers and colleagues identified mutations in the CSF1R gene as the cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), offering the possibility for an in-life diagnosis. The detection of mutations in this gene in cases diagnosed with different clinical entities further demonstrated the difficulties in the clinical diagnosis of HDLS. To better understand the genetic role of mutations in this gene, we sequenced a large cohort of adult-onset leukodystrophy cases. Whole-exome sequencing and follow up-screening by Sanger sequencing. Collaborative study between the Institute of Neurology, University College London and the Inserm, Paris, France. A total of 114 probands, mostly European patients, with a diagnosis of adult-onset leukodystrophy or atypical cases that could fit within a picture of leukodystrophy. These included 3 extended families within the spectrum of leukodystrophy phenotype. Whole-exome sequencing in a family and Sanger sequencing of CSF1R. Mutations in CSF1R. We identified 12 probands with mutations in CSF1R. The clinical diagnoses given to these patients included dementia with spastic paraplegia, corticobasal degeneration syndrome, and stroke disorders. Our study shows that CSF1R mutations are responsible for a significant proportion of clinically and pathologically proven HDLS. These results give an indication of the frequency of CSF1R mutations in a European leukodystrophy series and expand the phenotypic spectrum of disorders that should be

  19. Genetic subdivision and candidate genes under selection in North American grey wolves.

    Science.gov (United States)

    Schweizer, Rena M; vonHoldt, Bridgett M; Harrigan, Ryan; Knowles, James C; Musiani, Marco; Coltman, David; Novembre, John; Wayne, Robert K

    2016-01-01

    Previous genetic studies of the highly mobile grey wolf (Canis lupus) found population structure that coincides with habitat and phenotype differences. We hypothesized that these ecologically distinct populations (ecotypes) should exhibit signatures of selection in genes related to morphology, coat colour and metabolism. To test these predictions, we quantified population structure related to habitat using a genotyping array to assess variation in 42 036 single-nucleotide polymorphisms (SNPs) in 111 North American grey wolves. Using these SNP data and individual-level measurements of 12 environmental variables, we identified six ecotypes: West Forest, Boreal Forest, Arctic, High Arctic, British Columbia and Atlantic Forest. Next, we explored signals of selection across these wolf ecotypes through the use of three complementary methods to detect selection: FST /haplotype homozygosity bivariate percentilae, bayescan, and environmentally correlated directional selection with bayenv. Across all methods, we found consistent signals of selection on genes related to morphology, coat coloration, metabolism, as predicted, as well as vision and hearing. In several high-ranking candidate genes, including LEPR, TYR and SLC14A2, we found variation in allele frequencies that follow environmental changes in temperature and precipitation, a result that is consistent with local adaptation rather than genetic drift. Our findings show that local adaptation can occur despite gene flow in a highly mobile species and can be detected through a moderately dense genomic scan. These patterns of local adaptation revealed by SNP genotyping likely reflect high fidelity to natal habitats of dispersing wolves, strong ecological divergence among habitats, and moderate levels of linkage in the wolf genome. © 2015 John Wiley & Sons Ltd.

  20. Changes in gene expression foreshadow diet-induced obesity in genetically identical mice.

    Directory of Open Access Journals (Sweden)

    Robert A Koza

    2006-05-01

    Full Text Available High phenotypic variation in diet-induced obesity in male C57BL/6J inbred mice suggests a molecular model to investigate non-genetic mechanisms of obesity. Feeding mice a high-fat diet beginning at 8 wk of age resulted in a 4-fold difference in adiposity. The phenotypes of mice characteristic of high or low gainers were evident by 6 wk of age, when mice were still on a low-fat diet; they were amplified after being switched to the high-fat diet and persisted even after the obesogenic protocol was interrupted with a calorically restricted, low-fat chow diet. Accordingly, susceptibility to diet-induced obesity in genetically identical mice is a stable phenotype that can be detected in mice shortly after weaning. Chronologically, differences in adiposity preceded those of feeding efficiency and food intake, suggesting that observed difference in leptin secretion is a factor in determining phenotypes related to food intake. Gene expression analyses of adipose tissue and hypothalamus from mice with low and high weight gain, by microarray and qRT-PCR, showed major changes in the expression of genes of Wnt signaling and tissue re-modeling in adipose tissue. In particular, elevated expression of SFRP5, an inhibitor of Wnt signaling, the imprinted gene MEST and BMP3 may be causally linked to fat mass expansion, since differences in gene expression observed in biopsies of epididymal fat at 7 wk of age (before the high-fat diet correlated with adiposity after 8 wk on a high-fat diet. We propose that C57BL/6J mice have the phenotypic characteristics suitable for a model to investigate epigenetic mechanisms within adipose tissue that underlie diet-induced obesity.

  1. An interaction map of circulating metabolites, immune gene networks, and their genetic regulation.

    Science.gov (United States)

    Nath, Artika P; Ritchie, Scott C; Byars, Sean G; Fearnley, Liam G; Havulinna, Aki S; Joensuu, Anni; Kangas, Antti J; Soininen, Pasi; Wennerström, Annika; Milani, Lili; Metspalu, Andres; Männistö, Satu; Würtz, Peter; Kettunen, Johannes; Raitoharju, Emma; Kähönen, Mika; Juonala, Markus; Palotie, Aarno; Ala-Korpela, Mika; Ripatti, Samuli; Lehtimäki, Terho; Abraham, Gad; Raitakari, Olli; Salomaa, Veikko; Perola, Markus; Inouye, Michael

    2017-08-01

    Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.

  2. Genetic variations and haplotype diversity of the UGT1 gene cluster in the Chinese population.

    Directory of Open Access Journals (Sweden)

    Jing Yang

    Full Text Available Vertebrates require tremendous molecular diversity to defend against numerous small hydrophobic chemicals. UDP-glucuronosyltransferases (UGTs are a large family of detoxification enzymes that glucuronidate xenobiotics and endobiotics, facilitating their excretion from the body. The UGT1 gene cluster contains a tandem array of variable first exons, each preceded by a specific promoter, and a common set of downstream constant exons, similar to the genomic organization of the protocadherin (Pcdh, immunoglobulin, and T-cell receptor gene clusters. To assist pharmacogenomics studies in Chinese, we sequenced nine first exons, promoter and intronic regions, and five common exons of the UGT1 gene cluster in a population sample of 253 unrelated Chinese individuals. We identified 101 polymorphisms and found 15 novel SNPs. We then computed allele frequencies for each polymorphism and reconstructed their linkage disequilibrium (LD map. The UGT1 cluster can be divided into five linkage blocks: Block 9 (UGT1A9, Block 9/7/6 (UGT1A9, UGT1A7, and UGT1A6, Block 5 (UGT1A5, Block 4/3 (UGT1A4 and UGT1A3, and Block 3' UTR. Furthermore, we inferred haplotypes and selected their tagSNPs. Finally, comparing our data with those of three other populations of the HapMap project revealed ethnic specificity of the UGT1 genetic diversity in Chinese. These findings have important implications for future molecular genetic studies of the UGT1 gene cluster as well as for personalized medical therapies in Chinese.

  3. On theoretical models of gene expression evolution with random genetic drift and natural selection.

    Science.gov (United States)

    Ogasawara, Osamu; Okubo, Kousaku

    2009-11-20

    The relative contributions of natural selection and random genetic drift are a major source of debate in the study of gene expression evolution, which is hypothesized to serve as a bridge from molecular to phenotypic evolution. It has been suggested that the conflict between views is caused by the lack of a definite model of the neutral hypothesis, which can describe the long-run behavior of evolutionary change in mRNA abundance. Therefore previous studies have used inadequate analogies with the neutral prediction of other phenomena, such as amino acid or nucleotide sequence evolution, as the null hypothesis of their statistical inference. In this study, we introduced two novel theoretical models, one based on neutral drift and the other assuming natural selection, by focusing on a common property of the distribution of mRNA abundance among a variety of eukaryotic cells, which reflects the result of long-term evolution. Our results demonstrated that (1) our models can reproduce two independently found phenomena simultaneously: the time development of gene expression divergence and Zipf's law of the transcriptome; (2) cytological constraints can be explicitly formulated to describe long-term evolution; (3) the model assuming that natural selection optimized relative mRNA abundance was more consistent with previously published observations than the model of optimized absolute mRNA abundances. The models introduced in this study give a formulation of evolutionary change in the mRNA abundance of each gene as a stochastic process, on the basis of previously published observations. This model provides a foundation for interpreting observed data in studies of gene expression evolution, including identifying an adequate time scale for discriminating the effect of natural selection from that of random genetic drift of selectively neutral variations.

  4. Computing Effect Size Measures with ViSta-The Visual Statistics System

    Directory of Open Access Journals (Sweden)

    Nuria Cortada de Kohan

    2009-03-01

    Full Text Available Effect size measures are recognized as a necessary complement to statistical hypothesis testing because they provide important information that such tests alone cannot offer. In this paper we: a briefly review the importance of effect size measures, b describe some calculation algorithms for the case of the difference between two means, and c provide a new and easy-to-use computer program to perform these calculations within ViSta “The Visual Statistics System”. A worked example is also provided to illustrate some practical issues concerning the interpretation and limits of effect size computation. The audience for this paper includes novice researchers as well as ViSta’s user interested on applying effect size measures.

  5. The genetic mapping and gene structure of mouse paraoxonase/arylesterase

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, R.C.; Primo-Parmo, S.L.; La Du, B.N. [Univ of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1995-12-10

    The physiological role of mammalian paraoxonase/arylesterase is unknown. However paraoxonase is an HDL-associated protein, and recent studies indicate that it may have anti-atherogenic functions. We describe the chromosomal localization and structure of the mouse paraoxonase gene (Pon1) to establish Pon1 as a candidate gene for genetically determined traits or pathological states in the mouse. The coding portion of Pon1 extends over approximately 25-26 kb and consists of nine exons and eight introns. We also present nucleotide sequences from the 5{prime}-flanking region of Pon1 containing numerous consensus sequences for DNA binding proteins. Haplotype analysis of 94 N2 progeny from an interspecific cross indicates that Pon1 is localized on proximal mouse chromosome 6 near D6Mit86. This assignment excludes Pon1 as a candidate for the atherosclerosis susceptibility genes Ath1, Ath2, and Ath3. However, Pon1 is a promising candidate for the remaining unmapped Ath genes. 29 refs., 3 figs., 2 tabs.

  6. Antibiotic and antiseptic resistance genes are linked on a novel mobile genetic element: Tn6087

    Science.gov (United States)

    Ciric, Lena; Mullany, Peter; Roberts, Adam P.

    2011-01-01

    Objectives Tn916-like elements are one of the most common types of integrative and conjugative element (ICE). In this study we aimed to determine whether novel accessory genes, i.e. genes whose products are not involved in mobility or regulation, were present on a Tn916-like element (Tn6087) isolated from Streptococcus oralis from the human oral cavity. Methods A minocycline-resistant isolate was analysed using restriction fragment length polymorphism (RFLP) analysis on amplicons derived from Tn916 and DNA sequencing to determine whether there were genetic differences in Tn6087 compared with Tn916. Mutational analysis was used to determine whether the novel accessory gene found was responsible for an observed extra phenotype. Results A novel Tn916-like element, Tn6087, is described that encodes both antibiotic and antiseptic resistance. The antiseptic resistance protein is encoded by a novel small multidrug resistance gene, designated qrg, that was shown to encode resistance to cetyltrimethylammonium bromide (CTAB), also known as cetrimide bromide. Conclusions This is the first Tn916-like element described that confers both antibiotic and antiseptic resistance, suggesting that selection of either antibiotic or antiseptic resistance will also select for the other and further highlights the need for prudent use of both types of compound. PMID:21816764

  7. Genetic evidence for a recent divergence and subsequent gene flow between Spanish and Eastern imperial eagles.

    Science.gov (United States)

    Martínez-Cruz, Begoña; Godoy, José Antonio

    2007-09-24

    Dating of population divergence is critical in understanding speciation and in evaluating the evolutionary significance of genetic lineages, upon which identification of conservation and management units should be based. In this study we used a multilocus approach and the Isolation-Migration model based on coalescence theory to estimate the time of divergence of the Spanish and Eastern imperial eagle sister species. This model enables estimation of population sizes at split, and inference of gene flow after divergence. Our results indicate that divergence may have occurred during the Holocene or the late Pleistocene, much more recently than previously suspected. They also suggest a large population reduction at split, with an estimated effective population size several times smaller for the western population than for the eastern population. Asymmetrical gene flow after divergence, from the Eastern imperial eagle to the Spanish imperial eagle, was detected for the nuclear genome but not the mitochondrial genome. Male-mediated gene flow after divergence may explain this result, and the previously reported lower mitochondrial diversity but similar nuclear diversity in Spanish imperial eagles compared to the Eastern species. Spanish and Eastern imperial eagles split from a common ancestor much more recently than previously thought, and asymmetrical gene flow occurred after divergence. Revision of the phylogenetic proximity of both species is warranted, with implications for conservation.

  8. Genetic diversity of ORF3 and spike genes of porcine epidemic diarrhea virus in Thailand.

    Science.gov (United States)

    Temeeyasen, Gun; Srijangwad, Anchalee; Tripipat, Thitima; Tipsombatboon, Pavita; Piriyapongsa, Jittima; Phoolcharoen, Waranyoo; Chuanasa, Taksina; Tantituvanont, Angkana; Nilubol, Dachrit

    2014-01-01

    Porcine epidemic diarrhea virus (PEDV) has become endemic in the Thai swine industry, causing economic losses and repeated outbreaks since its first emergence in 2007. In the present study, 69 Thai PEDV isolates were obtained from 50 swine herds across Thailand during the period 2008-2012. Both partial and complete nucleotide sequences of the spike (S) glycoprotein and the nucleotide sequences of ORF3 genes were determined to investigate the genetic diversity and molecular epidemiology of Thai PEDV. Based on the analysis of the partial S glycoprotein genes, the Thai PEDV isolates were clustered into 2 groups related to Korean and Chinese field isolates. The results for the complete spike genes, however, demonstrated that both groups were grouped in the same cluster. Interestingly, both groups of Thai PEDV isolates had a 4-aa (GENQ) insertion between positions 55 and 56, a 1-aa insertion between positions 135 and 136, and a 2-aa deletion between positions 155 and 156, making them identical to the Korean KNU series and isolates responsible for outbreaks in China in recent years. In addition to the complete S sequences, the ORF3 gene analyses suggested that the isolates responsible for outbreaks in Thailand are not vaccine related. The results of this study suggest that the PEDV isolates responsible for outbreaks in Thailand since its emergence represent a variant of PEDV that was previously reported in China and Korea. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-01-01

    Full Text Available The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS and trehalose-6-phosphate phosphatase (TPP pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects.

  10. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications

    Science.gov (United States)

    Tang, Bin; Wang, Su; Wang, Shi-Gui; Wang, Hui-Juan; Zhang, Jia-Yong; Cui, Shuai-Ying

    2018-01-01

    The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects. PMID:29445344

  11. Stašek´s Cross-Section of a Plant. Another daguerreotype photomicrograph

    Czech Academy of Sciences Publication Activity Database

    Trnková, Petra

    2015-01-01

    Roč. 2, č. 2 (2015), s. 38-47 ISSN N R&D Projects: GA ČR(CZ) GPP409/11/P834 Institutional support: RVO:68378033 Keywords : Florus I. Stašek * And reas Ettingshausen * Carl Schuh * daguerreotype photomicrograph * Hydro-Oxygen-Gas-Microscope * Drummond´s light * science Subject RIV: AL - Art, Architecture, Cultural Heritage http://issuu.com/daguerreobase/docs/daguerreotype_journal_n._2_spring_i/47?e=11855314/12479299

  12. [A case of dural AVM detected after STA-MCA anastomosis].

    Science.gov (United States)

    Igase, K; Oka, Y; Kumon, Y; Zenke, K; Iwata, S; Sakaki, S

    1996-01-01

    A case of dural arteriovenous malformation (AVM) in the posterior cranial fossa detected after STA-MCA anastomosis surgery. A 52-year-old male consulted a neighbourhood hospital for sudden headache and vomiting. He was diagnosed as having intraventricular hemorrhage on CT scan. Though the obstruction of the right internal carotid artery was revealed angiographically, his symptoms improved after conservative therapy. Two weeks after onset, his consciousness deteriorated and he developed left hemiparesis. Thereafter, he was transferred to our hospital. After thorough examination, right STA-MCA anastomosis surgery was performed. Approximately 2 months after surgery, right tinnitus developed and gradually exacerbated. Since it was thought to be due to increased blood flow in the right superficial temporal artery, it was kept under observation. On angiogram, 8 months after surgery, good blood flow supplied from the right superficial temporal artery to the territory of the right middle cerebral artery was shown, and a dural AVM fed by the right occipital artery was found. Fourteen months after the surgery, an enlarged dural AVM with backflow to the superficial cerebral veins fed by the enlarged right occipital artery and right ascending pharyngeal artery was revealed. Embolization therapy to the right occipital and ascending pharyngeal artery was performed using coils and ivalon, and irradiation of 30 Gy was added. After this treatment, right tinnitus improved. On angiography 2 years later, transverse sinus was slightly visible via the right occipital artery and ascending pharyngeal artery, but the dural AVM was significantly reduced. The origin of dural AVMs remains controversial. In our case, dural AVM was not found before the STA-MCA anastomosis surgery, and sinus thrombosis was not found throughout the course of observation. It is thought that the occult dural AVM was disclosed and enlarged by the increased blood flow through the external carotid artery via the STA

  13. Evaluation of the coagulometer STA R Max® (Stago) for routine coagulation parameters.

    Science.gov (United States)

    Brulé, Justine; Sinegre, Thomas; Pereira, Bruno; Berger, Marc G; Serre-Sapin, Anne-Françoise; Lebreton, Aurélien

    2018-04-01

    The STA R Max ® is a fully automated multiparameter coagulometer using clotting (viscosity-based detection system), chromogenic and immunologic assays. STA R Max ® is equipped with an innovative software (STA Coag Expert ® ) designed to assist laboratory in accreditation. The aim of this study was to evaluate its performances for the certification according to ISO 15189 quality standard in the haemostasis unit of our university hospital. The following tests were evaluated: prothrombin time (PT), activated partial thromboplastin time (aPTT), kaolin cephalin clotting time (KCCT), fibrinogen, anti-Xa assay and D-dimers. In normal and pathological range, the intra-assay coefficients of variation (CV) for PT, aPTT, KCCT and fibrinogen were below 4.0%. Intra-assay CV was of 4.0% for the anti-Xa assay and intra-assay CV was of 7.9% for D-dimers. Inter-assay CV were below 5.0% for PT, aPPT, KCCT and fibrinogen, 14.9% for anti-Xa assay and 8.6% for D-dimers. The interlaboratory comparisons were below 8.7% for PT, aPPT and KCCT, 5.0% for fibrinogen and 15.5% for anti-Xa assay. All results were acceptable according to suitable CV established by GFHT and the provider. The concordance between all coagulometers was excellent, with correlation coefficient close to 1 (0.99 for all parameters except for aPPT which was 0.98) calculated thanks to an intra-class correlation study. In conclusion, the STA R Max ® analyser is suitable for haemostasis laboratories and facilitates certification of a laboratory.

  14. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.

    Science.gov (United States)

    Hüls, Anke; Krämer, Ursula; Carlsten, Christopher; Schikowski, Tamara; Ickstadt, Katja; Schwender, Holger

    2017-12-16

    Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign weights, the gold standard is to use external weights from an independent study. However, appropriate external weights are not always available. In such situations and in the presence of predominant marginal genetic effects, we have shown in a previous study that GRS with internal weights from marginal genetic effects ("GRS-marginal-internal") are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However, this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect stronger than the marginal genetic effect. In this paper, we present a weighting approach for such predominant interactions ("GRS-interaction-training") in which parts of the data are used to estimate the weights from the interaction terms and the remaining data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to the GRS-marginal-internal approach and to GRS with external weights. Our simulation study showed that in the absence of external weights and with predominant interaction effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations). When appropriate external weights are unavailable, we

  15. A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes.

    Science.gov (United States)

    Starkenburg, Shawn R; Kwon, Kyungyoon J; Jha, Ramesh K; McKay, Cedar; Jacobs, Michael; Chertkov, Olga; Twary, Scott; Rocap, Gabrielle; Cattolico, Rose Ann

    2014-03-19

    Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina.

  16. Genetic predisposition to ischaemic stroke byRAGEandHMGB1gene variants in Chinese Han population.

    Science.gov (United States)

    Li, You; Zhu, Jing; Chen, Linfa; Hu, Weidong; Wang, Mengxu; Li, Shengnan; Gu, Xuefeng; Tao, Hua; Zhao, Bin; Ma, Guoda; Li, Keshen

    2017-11-21

    Emerging evidence suggests that the multiligand receptor for advanced glycation end products (RAGE) and its ligand high mobility group box 1 protein (HMGB1) contribute to the pathophysiology of ischaemic stroke (IS). The present study aimed to investigate the association of RAGE and HMGB1 variants with the risk of IS. A total of 1,034 patients and 1,015 age- and sex-matched healthy controls were genotyped to detect five genetic variants of the RAGE gene and four genetic variants of the HMGB1 gene using the Multiplex SNaPshot assay. We found that the rs2070600 variant of RAGE was associated with an increased risk of IS (OR = 1.19, 95% CI: 1.02-1.38, P = 0.043), whereas the rs2249825 variant of HMGB1 was associated with a decreased risk of IS (OR = 0.83, 95% CI: 0.71-0.98, P = 0.041). Further stratification by IS subtypes revealed that the presence of the TT genotype of the RAGE rs2070600 variant confers a higher risk of the large artery atherosclerosis subtype of IS (P = 0.036). Moreover, patients with the variant T allele of the RAGE rs2070600 variant presented with reduced serum soluble RAGE production. Patients carrying the variant G allele of the HMGB1 rs2249825 variant exhibited significantly lower infarct volumes than those with the major CC genotype. These clues may help in the development of optimal personalized therapeutic approaches for IS patients.

  17. Role of genetic mutations in folate-related enzyme genes on Male Infertility

    Science.gov (United States)

    Liu, Kang; Zhao, Ruizhe; Shen, Min; Ye, Jiaxin; Li, Xiao; Huang, Yuan; Hua, Lixin; Wang, Zengjun; Li, Jie

    2015-01-01

    Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility. PMID:26549413

  18. Finding the joker among the maize endogenous reference genes for genetically modified organism (GMO) detection.

    Science.gov (United States)

    Paternò, Annalisa; Marchesi, Ugo; Gatto, Francesco; Verginelli, Daniela; Quarchioni, Cinzia; Fusco, Cristiana; Zepparoni, Alessia; Amaddeo, Demetrio; Ciabatti, Ilaria

    2009-12-09

    The comparison of five real-time polymerase chain reaction (PCR) methods targeted at maize ( Zea mays ) endogenous sequences is reported. PCR targets were the alcohol dehydrogenase (adh) gene for three methods and high-mobility group (hmg) gene for the other two. The five real-time PCR methods have been checked under repeatability conditions at several dilution levels on both pooled DNA template from several genetically modified (GM) maize certified reference materials (CRMs) and single CRM DNA extracts. Slopes and R(2) coefficients of all of the curves obtained from the adopted regression model were compared within the same method and among all of the five methods, and the limit of detection and limit of quantitation were analyzed for each PCR system. Furthermore, method equivalency was evaluated on the basis of the ability to estimate the target haploid genome copy number at each concentration level. Results indicated that, among the five methods tested, one of the hmg-targeted PCR systems can be considered equivalent to the others but shows the best regression parameters and a higher repeteability along the dilution range. Thereby, it is proposed as a valid module to be coupled to different event-specific real-time PCR for maize genetically modified organism (GMO) quantitation. The resulting practicability improvement on the analytical control of GMOs is discussed.

  19. Genetic variations of BRCA1 and BRCA2 genes in dogs with mammary tumours.

    Science.gov (United States)

    Enginler, S O; Akış, I; Toydemir, T S F; Oztabak, K; Haktanir, D; Gündüz, M C; Kırşan, I; Fırat, I

    2014-03-01

    Mammary tumours are the most common tumour type in female dogs. The formation of the mammary tumours is multifactorial but the high incidence of tumour disease in certain canine breeds suggests a strong genetic component. BRCA1 and BRCA2 are the most important genes significantly associated with mammary tumours. The aim of this study was to determine the association between the variations of these two genes and canine mammary tumours. 5′-untranslated region, intron 8 and exon 9 of BRCA1 and exons 12, 24, 27 of BRCA2 were sequenced in order to detect the genetic variations. In addition to six previously identified polymorphisms, six novel single nucleotide polymorphisms (SNPs) were detected. Five of the coding SNPs were synonymous and three of them were non-synonymous. The comparison of the sequences from 25 mammary tumour bearing and 10 tumour free dogs suggested that the two SNPs in intron 8 and exon 9 of BRCA1 and two SNPs in exon 24 and exon 27 of BRCA2, which are firstly identified in this study, might be associated with mammary tumour development in dogs. Especially one SNP in exon 9 of BRCA1 and one SNP in exon 24 of BRCA2 were found to be significantly associated with canine mammary tumours.

  20. First genetic characterization of Fasciola hepatica in Argentina by nuclear and mitochondrial gene markers.

    Science.gov (United States)

    Carnevale, Silvana; Malandrini, Jorge Bruno; Pantano, María Laura; Soria, Claudia Cecilia; Rodrigues-Silva, Rosângela; Machado-Silva, José Roberto; Velásquez, Jorge Néstor; Kamenetzky, Laura

    2017-10-15

    Fasciola hepatica is a trematode showing genetic variation among isolates from different regions of the world. The objective of this work was to characterize for the first time F. hepatica isolates circulating in different regions of Argentina. Twenty-two adult flukes were collected from naturally infected bovine livers in different areas from Argentina and used for DNA extraction. We carried out PCR amplification and sequence analysis of the ribosomal internal transcribed spacer 1 (ITS1), mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunits 4 and 5 (nad4 and nad5) and mitochondrial cytochrome c oxidase subunit I (cox1) genes as genetic markers. Phylogenies were reconstructed using maximum parsimony algorithm. A total of 6 haplotypes were found for cox1, 4 haplotypes for nad4 and 3 haplotypes for nad5. The sequenced ITS1 fragment was identical in all samples. The analyzed cox1 gene fragment is the most variable marker and is recommended for future analyses. No geographic association was found in the Argentinean samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Genetic influence of candidate osteoporosis genes in saudi arabian population: a pilot study.

    Science.gov (United States)

    Sadat-Ali, Mir; Al-Turki, Haifa A

    2012-01-01

    Background and Objectives. The purpose of the present study is to find the genes and SNP that influence BMD and postmenopausal Saudi women. Material and Methods. Two-hundred ethnic Saudi Arabian women with a diagnosis of postmenopausal osteoporosis were the subjects of this study. Baseline blood hematology, biochemistry, and bone panel were done. Blood was collected, and three TaqMan-MGB probes were used to analyze SNP variants in ALOX15 (rs7220870), LRP5 (C 25752205 10), and TNFRSF11B (C 11869235 10). Results. The variant of ALOX15 17p13 showed that the BMD of the spine was lower in the AA allele (P value LRP5 (C 25752205 10) gene, there was no significant difference between allele groups. Conclusion(s). This study shows that the genetic influence of osteoporosis in the Caucasian and Saudi Arabians population is similar. We believe that the same genetic markers that influence osteoporosis in the Caucasian race could be used for further studies in the Saudi Arabian population.

  2. Convergence of Human Genetics and Animal Studies: Gene Therapy for X-Linked Retinoschisis.

    Science.gov (United States)

    Bush, Ronald A; Wei, Lisa L; Sieving, Paul A

    2015-06-22

    Retinoschisis is an X-linked recessive genetic disease that leads to vision loss in males. X-linked retinoschisis (XLRS) typically affects young males; however, progressive vision loss continues throughout life. Although discovered in 1898 by Haas in two brothers, the underlying biology leading to blindness has become apparent only in the last 15 years with the advancement of human genetic analyses, generation of XLRS animal models, and the development of ocular monitoring methods such as the electroretinogram and optical coherence tomography. It is now recognized that retinoschisis results from cyst formations within the retinal layers that interrupt normal visual neurosignaling and compromise structural integrity. Mutations in the human retinoschisin gene have been correlated with disease severity of the human XLRS phenotype. Introduction of a normal human retinoschisin cDNA into retinoschisin knockout mice restores retinal structure and improves neural function, providing proof-of-concept that gene replacement therapy is a plausible treatment for XLRS. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. [Genetic variation analysis of canine parvovirus VP2 gene in China].

    Science.gov (United States)

    Yi, Li; Cheng, Shi-Peng; Yan, Xi-Jun; Wang, Jian-Ke; Luo, Bin

    2009-11-01

    To recognize the molecular biology character, phylogenetic relationship and the state quo prevalent of Canine parvovirus (CPV), Faecal samnples from pet dogs with acute enteritis in the cities of Beijing, Wuhan, and Nanjing were collected and tested for CPV by PCR and other assay between 2006 and 2008. There was no CPV to FPV (MEV) variation by PCR-RFLP analysis in all samples. The complete ORFs of VP2 genes were obtained by PCR from 15 clinical CPVs and 2 CPV vaccine strains. All amplicons were cloned and sequenced. Analysis of the VP2 sequences showed that clinical CPVs both belong to CPV-2a subtype, and could be classified into a new cluster by amino acids contrasting which contains Tyr-->Ile (324) mutation. Besides the 2 CPV vaccine strains belong to CPV-2 subtype, and both of them have scattered variation in amino acids residues of VP2 protein. Construction of the phylogenetic tree based on CPV VP2 sequence showed these 15 CPV clinical strains were in close relationship with Korea strain K001 than CPV-2a isolates in other countries at early time, It is indicated that the canine parvovirus genetic variation was associated with location and time in some degree. The survey of CPV capsid protein VP2 gene provided the useful information for the identification of CPV types and understanding of their genetic relationship.

  4. Genetic diversity and natural selection of Plasmodium knowlesi merozoite surface protein 1 paralog gene in Malaysia.

    Science.gov (United States)

    Ahmed, Md Atique; Fauzi, Muh; Han, Eun-Taek

    2018-03-14

    Human infections due to the monkey malaria parasite Plasmodium knowlesi is on the rise in most Southeast Asian countries specifically Malaysia. The C-terminal 19 kDa domain of PvMSP1P is a potential vaccine candidate, however, no study has been conducted in the orthologous gene of P. knowlesi. This study investigates level of polymorphisms, haplotypes and natural selection of full-length pkmsp1p in clinical samples from Malaysia. A total of 36 full-length pkmsp1p sequences along with the reference H-strain and 40 C-terminal pkmsp1p sequences from clinical isolates of Malaysia were downloaded from published genomes. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 and MEGA 5.0 software. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (F ST ) and population structure of parasite was determined using Arlequin v3.5 and STRUCTURE v2.3.4 software. Comparison of 36 full-length pkmsp1p sequences along with the H-strain identified 339 SNPs (175 non-synonymous and 164 synonymous substitutions). The nucleotide diversity across the full-length gene was low compared to its ortholog pvmsp1p. The nucleotide diversity was higher toward the N-terminal domains (pkmsp1p-83 and 30) compared to the C-terminal domains (pkmsp1p-38, 33 and 19). Phylogenetic analysis of full-length genes identified 2 distinct clusters of P. knowlesi from Malaysian Borneo. The 40 pkmsp1p-19 sequences showed low polymorphisms with 16 polymorphisms leading to 18 haplotypes. In total there were 10 synonymous and 6 non-synonymous substitutions and 12 cysteine residues were intact within the two EGF domains. Evidence of strong purifying selection was observed within the full-length sequences as well in all the domains. Shared haplotypes of 40 pkmsp1p-19 were identified within Malaysian Borneo haplotypes. This study is the first to report on the genetic diversity and natural

  5. Gene flow and genetic diversity in cultivated and wild cacao (Theobroma cacao) in Bolivia.

    Science.gov (United States)

    Chumacero de Schawe, Claudia; Durka, Walter; Tscharntke, Teja; Hensen, Isabell; Kessler, Michael

    2013-11-01

    The role of pollen flow within and between cultivated and wild tropical crop species is little known. To study the pollen flow of cacao, we estimated the degree of self-pollination and pollen dispersal distances as well as gene flow between wild and cultivated cacao (Theobroma cacao L.). We studied pollen flow and genetic diversity of cultivated and wild cacao populations by genotyping 143 wild and 86 cultivated mature plants and 374 seedlings raised from 19 wild and 25 cultivated trees at nine microsatellite loci. A principal component analysis distinguished wild and cultivated cacao trees, supporting the notion that Bolivia harbors truly wild cacao populations. Cultivated cacao had a higher level of genetic diversity than wild cacao, presumably reflecting the varied origin of cultivated plants. Both cacao types had high outcrossing rates, but the paternity analysis revealed 7-14% self-pollination in wild and cultivated cacao. Despite the tiny size of the pollinators, pollen was transported distances up to 3 km; wild cacao showed longer distances (mean = 922 m) than cultivated cacao (826 m). Our data revealed that 16-20% of pollination events occurred between cultivated and wild populations. We found evidence of self-pollination in both wild and cultivated cacao. Pollination distances are larger than those typically reported in tropical understory tree species. The relatively high pollen exchange from cultivated to wild cacao compromises genetic identity of wild populations, calling for the protection of extensive natural forest tracts to protect wild cacao in Bolivia.

  6. Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer.

    Directory of Open Access Journals (Sweden)

    Carlos Capela

    2016-04-01

    Full Text Available Buruli ulcer (BU is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection.Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form.Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype and 300 healthy endemic controls.The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR, 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02.Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes.

  7. Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy.

    Directory of Open Access Journals (Sweden)

    Ammar Al-Chalabi

    Full Text Available BACKGROUND: Multiple system atrophy (MSA is a progressive neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and autonomic dysfunction. Pathogenic mechanisms remain obscure but the neuropathological hallmark is the presence of alpha-synuclein-immunoreactive glial cytoplasmic inclusions. Genetic variants of the alpha-synuclein gene, SNCA, are thus strong candidates for genetic association with MSA. One follow-up to a genome-wide association of Parkinson's disease has identified association of a SNP in SNCA with MSA. METHODOLOGY/FINDINGS: We evaluated 32 SNPs in the SNCA gene in a European population of 239 cases and 617 controls recruited as part of the Neuroprotection and Natural History in Parkinson Plus Syndromes (NNIPPS study. We used 161 independently collected samples for replication. Two SNCA SNPs showed association with MSA: rs3822086 (P = 0.0044, and rs3775444 (P = 0.012, although only the first survived correction for multiple testing. In the MSA-C subgroup the association strengthened despite more than halving the number of cases: rs3822086 P = 0.0024, OR 2.153, (95% CI 1.3-3.6; rs3775444 P = 0.0017, OR 4.386 (95% CI 1.6-11.7. A 7-SNP haplotype incorporating three SNPs either side of rs3822086 strengthened the association with MSA-C further (best haplotype, P = 8.7 x 10(-4. The association with rs3822086 was replicated in the independent samples (P = 0.035. CONCLUSIONS/SIGNIFICANCE: We report a genetic association between MSA and alpha-synuclein which has replicated in independent samples. The strongest association is with the cerebellar subtype of MSA. TRIAL REGISTRATION: ClinicalTrials.gov NCT00211224.

  8. Genetic analysis of human traits in vitro: drug response and gene expression in lymphoblastoid cell lines.

    Directory of Open Access Journals (Sweden)

    Edwin Choy

    2008-11-01

    Full Text Available Lymphoblastoid cell lines (LCLs, originally collected as renewable sources of DNA, are now being used as a model system to study genotype-phenotype relationships in human cells, including searches for QTLs influencing levels of individual mRNAs and responses to drugs and radiation. In the course of attempting to map genes for drug response using 269 LCLs from the International HapMap Project, we evaluated the extent to which biological noise and non-genetic confounders contribute to trait variability in LCLs. While drug responses could be technically well measured on a given day, we observed significant day-to-day variability and substantial correlation to non-genetic confounders, such as baseline growth rates and metabolic state in culture. After correcting for these confounders, we were unable to detect any QTLs with genome-wide significance for drug response. A much higher proportion of variance in mRNA levels may be attributed to non-genetic factors (intra-individual variance--i.e., biological noise, levels of the EBV virus used to transform the cells, ATP levels than to detectable eQTLs. Finally, in an attempt to improve power, we focused analysis on those genes that had both detectable eQTLs and correlation to drug response; we were unable to detect evidence that eQTL SNPs are convincingly associated with drug response in the model. While LCLs are a promising model for pharmacogenetic experiments, biological noise and in vitro artifacts may reduce power and have the potential to create spurious association due to confounding.

  9. Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Klaus Stark

    2010-10-01

    Full Text Available Dilated cardiomyopathy (DCM is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39% and idiopathic DCM (p = 1.06 × 10⁻⁶, OR  = 0.67 [95% CI 0.57-0.79] for the minor allele T. Three more SNPs showed p < 2.21 × 10⁻⁵. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n =564, n = 981 controls, p = 2.07 × 10⁻³, OR = 0.79 [95% CI 0.67-0.92], France 1 (n = 433 cases, n = 395 controls, p =3.73 × 10⁻³, OR  = 0.74 [95% CI 0.60-0.91], and France 2 (n = 249 cases, n = 380 controls, p = 2.26 × 10⁻⁴, OR  = 0.63 [95% CI 0.50-0.81]. The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28 × 10⁻¹³, OR= 0.72 [95% CI 0.65-0.78]. None of the other three SNPs showed significant results in the replication stage.This finding of the HSPB7 gene from a genetic search for idiopathic DCM using

  10. Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival

    Directory of Open Access Journals (Sweden)

    Sung Hyuna

    2012-05-01

    Full Text Available Abstract Background Although the role of microRNA’s (miRNA’s biogenesis pathway genes in cancer development and progression has been well established, the association between genetic variants of this pathway genes and breast cancer survival is still unknown. Methods We used genotype data available from a previously conducted case–control study to investigate association between common genetic variations in miRNA biogenesis pathway genes and breast cancer survival. We investigated the possible associations between 41 germ-line single-nucleotide polymorphisms (SNPs and both disease free survival (DFS and overall survival (OS among 488 breast cancer patients. During the median follow-up of 6.24 years, 90 cases developed disease progression and 48 cases died. Results Seven SNPs were significantly associated with breast cancer survival. Two SNPs in AGO2 (rs11786030 and rs2292779 and DICER1 rs1057035 were associated with both DFS and OS. Two SNPs in HIWI (rs4759659 and rs11060845 and DGCR8 rs9606250 were associated with DFS, while DROSHA rs874332 and GEMIN4 rs4968104 were associated with only OS. The most significant association was observed in variant allele of AGO2 rs11786030 with 2.62-fold increased risk of disease progression (95% confidence interval (CI, 1.41-4.88 and in minor allele homozygote of AGO2 rs2292779 with 2.94-fold increased risk of death (95% CI, 1.52-5.69. We also found cumulative effects of SNPs on DFS and OS. Compared to the subjects carrying 0 to 2 high-risk genotypes, those carrying 3 or 4–6 high-risk genotypes had an increased risk of disease progression with a hazard ratio of 2.16 (95% CI, 1.18- 3.93 and 4.47 (95% CI, 2.45- 8.14, respectively (P for trend, 6.11E-07. Conclusions Our results suggest that genetic variants in miRNA biogenesis pathway genes may be associated with breast cancer survival. Further studies in larger sample size and functional characterizations are warranted to validate these results.

  11. Genetic Association Study Identifies HSPB7 as a Risk Gene for Idiopathic Dilated Cardiomyopathy

    Science.gov (United States)

    Stark, Klaus; Esslinger, Ulrike B.; Reinhard, Wibke; Petrov, George; Winkler, Thomas; Komajda, Michel; Isnard, Richard; Charron, Philippe; Villard, Eric; Cambien, François; Tiret, Laurence; Aumont, Marie-Claude; Dubourg, Olivier; Trochu, Jean-Noël; Fauchier, Laurent; DeGroote, Pascal; Richter, Anette; Maisch, Bernhard; Wichter, Thomas; Zollbrecht, Christa; Grassl, Martina; Schunkert, Heribert; Linsel-Nitschke, Patrick; Erdmann, Jeanette; Baumert, Jens; Illig, Thomas; Klopp, Norman; Wichmann, H.-Erich; Meisinger, Christa; Koenig, Wolfgang; Lichtner, Peter; Meitinger, Thomas; Schillert, Arne; König, Inke R.; Hetzer, Roland; Heid, Iris M.; Regitz-Zagrosek, Vera; Hengstenberg, Christian

    2010-01-01

    Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (p = 1.06×10−6, OR = 0.67 [95% CI 0.57–0.79] for the minor allele T). Three more SNPs showed p < 2.21×10−5. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n = 564, n = 981 controls, p = 2.07×10−3, OR = 0.79 [95% CI 0.67–0.92]), France 1 (n = 433 cases, n = 395 controls, p = 3.73×10−3, OR = 0.74 [95% CI 0.60–0.91]), and France 2 (n = 249 cases, n = 380 controls, p = 2.26×10−4, OR = 0.63 [95% CI 0.50–0.81]). The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28×10−13, OR = 0.72 [95% CI 0.65–0.78]). None of the other three SNPs showed significant results in the replication stage. This finding of the HSPB7 gene from a

  12. Population genetic analysis reveals barriers and corridors for gene flow within and among riparian populations of a rare plant.

    Science.gov (United States)

    Hevroy, Tanya H; Moody, Michael L; Krauss, Siegfried L

    2018-02-01

    Landscape features and life-history traits affect gene flow, migration and drift to impact on spatial genetic structure of species. Understanding this is important for managing genetic diversity of threatened species. This study assessed the spatial genetic structure of the rare riparian Grevillea sp. Cooljarloo (Proteaceae), which is restricted to a 20 km 2 region impacted by mining in the northern sandplains of the Southwest Australian Floristic Region, an international biodiversity hotspot. Within creek lines and floodplains, the distribution is largely continuous. Models of dispersal within riparian systems were assessed by spatial genetic analyses including population level partitioning of genetic variation and individual Bayesian clustering. High levels of genetic variation and weak isolation by distance within creek line and floodplain populations suggest large effective population sizes and strong connectivity, with little evidence for unidirectional gene flow as might be expected from hydrochory. Regional clustering of creek line populations and strong divergence among creek line populations suggest substantially lower levels of gene flow among creek lines than within creek lines. There was however a surprising amount of genetic admixture in floodplain populations, which could be explained by irregular flooding and/or movements by highly mobile nectar-feeding bird pollinators. Our results highlight that for conservation of rare riparian species, avoiding an impact to hydrodynamic processes, such as water tables and flooding dynamics, may be just as critical as avoiding direct impacts on the number of plants.

  13. CYTOKINE GENES AS GENETIC MARKERS OF CONTROLLED AND UNCONTROLLED ATOPIC BRONCHIAL ASTHMA

    Directory of Open Access Journals (Sweden)

    M. V. Smolnikova

    2017-01-01

    Full Text Available Atopic bronchial asthma (ABA is a multifactorial disease; its development is dependent on many environmental and genetic factors. Genetic risk factors can affect the clinical phenotype of ABA and the level of therapeutic control over the disease. Cytokine genes are crucially important in pathogenesis of ABA as they encode proteins participating in immune response and development of inflammation in bronchi. It was suggested that the therapeutic control of the disease is genetically mediated and depends on the presence of one or another allele in genes of mediators, participating in ABA pathogenesis. The knowledge about genetic markers will allow to predict clinical course of ABA in children. We carried out the analysis of association between genes of pro- and anti-inflammatory cytokines with the level of therapeutic control of ABA. In children with controlled and uncontrolled ABA (CABA and UABA, respectively; n = 110, and in general a population sample (n = 138, we analysed 11 polymorphisms: IL2 (rs2069762, IL4 (rs2070874 и rs2243250, IL5 (rs2069812, IL10 (rs1800872 and rs1800896, IL12B (rs3212227, TNFA (rs1800629 and rs1800630, TGFB1 (rs1800469, and IFNG (rs2069705, encoding cytokines actively participating at the development of allergic inflammation. According to results of present study, the prevalence of alleles and genotypes of the analysed loci in the East Siberia Caucasians is consistent with the data in other world Caucasian populations. We have found statistically significant differences between UABA and control groups for the prevalence of IL2 (rs2069762 polymorphism: GG genotype was more common in control group (14.1% compared to 5.9%, р = 0.03. It was shown that the IL2*T allele and ТТ genotype of the rs2069762 are associated with the increased risk of uncontrolled ABA. A comparison of the haplotypes of IL4 (rs2070874 and rs2243250 gene with correction for sex and age within an additive model revealed that the most common

  14. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses.

    Science.gov (United States)

    Luo, Jie; Xu, Pei; Cao, Peijian; Wan, Hongjian; Lv, Xiaonan; Xu, Shengchun; Wang, Gangjun; Cook, Melloni N; Jones, Byron C; Lu, Lu; Wang, Xusheng

    2018-01-01

    Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE) but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1), down-regulation in NOE but rescue in RSE (pattern 2), up-regulation in both restraint stress followed by a saline injection (RSS) and NOE, and further amplification in RSE (pattern 3), and up-regulation in RSS but reduction in both NOE and RSE (pattern 4). We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs) to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA) signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  15. Integrating Genetic and Gene Co-expression Analysis Identifies Gene Networks Involved in Alcohol and Stress Responses

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-04-01

    Full Text Available Although the link between stress and alcohol is well recognized, the underlying mechanisms of how they interplay at the molecular level remain unclear. The purpose of this study is to identify molecular networks underlying the effects of alcohol and stress responses, as well as their interaction on anxiety behaviors in the hippocampus of mice using a systems genetics approach. Here, we applied a gene co-expression network approach to transcriptomes of 41 BXD mouse strains under four conditions: stress, alcohol, stress-induced alcohol and control. The co-expression analysis identified 14 modules and characterized four expression patterns across the four conditions. The four expression patterns include up-regulation in no restraint stress and given an ethanol injection (NOE but restoration in restraint stress followed by an ethanol injection (RSE; pattern 1, down-regulation in NOE but rescue in RSE (pattern 2, up-regulation in both restraint stress followed by a saline injection (RSS and NOE, and further amplification in RSE (pattern 3, and up-regulation in RSS but reduction in both NOE and RSE (pattern 4. We further identified four functional subnetworks by superimposing protein-protein interactions (PPIs to the 14 co-expression modules, including γ-aminobutyric acid receptor (GABA signaling, glutamate signaling, neuropeptide signaling, cAMP-dependent signaling. We further performed module specificity analysis to identify modules that are specific to stress, alcohol, or stress-induced alcohol responses. Finally, we conducted causality analysis to link genetic variation to these identified modules, and anxiety behaviors after stress and alcohol treatments. This study underscores the importance of integrative analysis and offers new insights into the molecular networks underlying stress and alcohol responses.

  16. Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation.

    Directory of Open Access Journals (Sweden)

    Erum Dilshad

    Full Text Available The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.01-0.8% DW. There is therefore an urgent need to design new strategies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: artemisinin (8μg/g, artesunate (2.24μg/g, dihydroartemisinin (13.6μg/g and artemether (12.8μg/g. Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin content in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS, cytochrome P450 (CYP71AV1, and aldehyde dehydrogenase 1 (ALDH1, with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1 showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism.

  17. Genetic variants alter T-bet binding and gene expression in mucosal inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Katrina Soderquest

    2017-02-01

    Full Text Available The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21 specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn's disease, ulcerative colitis (UC and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner.

  18. GenClust: A genetic algorithm for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Raimondi Alessandra

    2005-12-01

    Full Text Available Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a a novel coding of the search space that is simple, compact and easy to update; (b it can be used naturally in conjunction with data driven internal validation methods. We have experimented with the FOM methodology, specifically conceived for validating clusters of gene expression data. The validity of GenClust has been assessed experimentally on real data sets, both with the use of validation measures and in comparison with other algorithms, i.e., Average Link, Cast, Click and K-means. Conclusion Experiments show that none of the algorithms we have used is markedly superior to the others across data sets and validation measures; i.e., in many cases the observed differences between the worst and best performing algorithm may be statistically insignificant and they could be considered equivalent. However, there are cases in which an algorithm may be better than others and therefore worthwhile. In particular, experiments for GenClust show that, although simple in its data representation, it converges very rapidly to a local optimum and that its ability to identify meaningful clusters is comparable, and sometimes superior, to that of more sophisticated algorithms. In addition, it is well suited for use in conjunction with data driven internal validation measures and, in particular, the FOM methodology.

  19. A Genetic Variant in the Distal Enhancer Region of the Human Renin Gene Affects Renin Expression.

    Directory of Open Access Journals (Sweden)

    Yasukazu Makino

    Full Text Available The high heritability of plasma renin activity was confirmed in recent investigations. A variation located near the strong enhancer of the human renin gene (REN, C-5312T, has been shown to have different transcription activity levels depending on its allele: the 5312T allele shows transcription levels that are 45% greater than those of the 5312C allele. The purpose of this study was to confirm the hypothesis that variations in the enhancer region of the REN gene are involved in regulating renal expression of renin.Sixty-four subjects with biopsy-proven renal diseases were included in this study (male/female: 35/29, age 41.9 ± 20.9 years, SBP/DBP 123.1 ± 23.7/73.4 ± 14.8 mmHg, s-Cr 0.93 ± 0.63 mg/dl. A genetic variant of REN, C-5312T, was assayed by PCR-RFLP and the TaqMan method. Total RNAs from a small part of the renal cortex were reverse-transcribed and amplified for REN and GAPDH with a real-time PCR system.Logarithmically transformed expression values of the relative ratio of REN to GAPDH (10-3 were as follows (mean ± SE: CC (26 cases, 0.016 ± 0.005; CT (33 cases, 0.047 ± 0.021 (p = 0.41 vs. CC; TT (5 cases, 0.198 ± 0.194 (p = 0.011 vs. CC, p < 0.031 vs. CT. Thus, significant differences in REN expression were observed among the genetic variants.The results suggest that variants in the enhancer region of the human renin gene have an effect on the expression levels of renin in renal tissue; this observation is in good accordance with the results of the transcriptional assay.

  20. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners.

    Science.gov (United States)

    Carvalho, A C; Barbosa, A V; Arais, L R; Ribeiro, P F; Carneiro, V C; Cerqueira, A M F

    2016-01-01

    Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n=134), their owners (n=134), and humans who claim to have no contact with dogs (n=44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. A Genetic Mosaic Screen Reveals Ecdysone-Responsive Genes Regulating Drosophila Oogenesis.

    Science.gov (United States)

    Ables, Elizabeth T; Hwang, Grace H; Finger, Danielle S; Hinnant, Taylor D; Drummond-Barbosa, Daniela

    2016-08-09

    Multiple aspects of Drosophila oogenesis, including germline stem cell activity, germ cell differentiation, and follicle survival, are regulated by the steroid hormone ecdysone. While the transcriptional targets of ecdysone signaling during development have been studied extensively, targets in the ovary remain largely unknown. Early studies of salivary gland polytene chromosomes led to a model in which ecdysone stimulates a hierarchical transcriptional cascade, wherein a core group of ecdysone-sensitive transcription factors induce tissue-specific responses by activating secondary branches of transcriptional targets. More recently, genome-wide approaches have identified hundreds of putative ecdysone-responsive targets. Determining whether these putative targets represent bona fide targets in vivo, however, requires that they be tested via traditional mutant analysis in a cell-type specific fashion. To investigate the molecular mechanisms whereby ecdysone signaling regulates oogenesis, we used genetic mosaic analysis to screen putative ecdysone-responsive genes for novel roles in the control of the earliest steps of oogenesis. We identified a cohort of genes required for stem cell maintenance, stem and progenitor cell proliferation, and follicle encapsulation, growth, and survival. These genes encode transcription factors, chromatin modulators, and factors required for RNA transport, stability, and ribosome biogenesis, suggesting that ecdysone might control a wide range of molecular processes during oogenesis. Our results suggest that, although ecdysone target genes are known to have cell type-specific roles, many ecdysone response genes that control larval or pupal cell types at developmental transitions are used reiteratively in the adult ovary. These results provide novel insights into the molecular mechanisms by which ecdysone signaling controls oogenesis, laying new ground for future studies. Copyright © 2016 Ables et al.

  2. Genetic Variant of Kalirin Gene Is Associated with Ischemic Stroke in a Chinese Han Population

    Directory of Open Access Journals (Sweden)

    Hong Li

    2017-01-01

    Full Text Available Introduction. Ischemic stroke is a complex disorder resulting from the interplay of genetic and environmental factors. Previous studies showed that kalirin gene variations were associated with cardiovascular disease. However, the association between this gene and ischemic stroke was unknown. We performed this study to confirm if kalirin gene variation was associated with ischemic stroke. Methods. We enrolled 385 ischemic stroke patients and 362 controls from China. Three SNPs of kalirin gene were genotyped by means of ligase detection reaction-PCR method. Data was processed with SPSS and SHEsis platform. Results. SNP rs7620580 (dominant model: OR = 1.590, p = 0.002 and adjusted OR = 1.662, p = 0.014; additive model: OR = 1.490, p = 0.002 and adjusted OR = 1.636, p = 0.005; recessive model: OR = 2.686, p = 0.039 and SNP rs1708303 (dominant model: OR = 1.523, p = 0.007 and adjusted OR = 1.604, p = 0.028; additive model: OR = 1.438, p = 0.01 and adjusted OR = 1.476, p = 0.039 were associated with ischemic stroke. The GG genotype and G allele of SNP rs7620580 were associated with a risk for ischemic stroke with an adjusted OR of 3.195 and an OR of 1.446, respectively. Haplotype analysis revealed that A–T–G,G-T-A, and A-T-A haplotypes were associated with ischemic stroke. Conclusions. Our results provide evidence that kalirin gene variations were associated with ischemic stroke in the Chinese Han population.

  3. Genetic susceptibility to chronic otitis media with effusion: candidate gene single nucleotide polymorphisms.

    Science.gov (United States)

    MacArthur, Carol J; Wilmot, Beth; Wang, Linda; Schuller, Michael; Lighthall, Jessyka; Trune, Dennis

    2014-05-01

    The genetic factors leading to a predisposition to otitis media are not well understood. The objective of the current study was to develop a tag-single nucleotide polymorphism (SNP) panel to determine if there is an association between candidate gene polymorphisms and the development of chronic otitis media with effusion. A 1:1 case/control design of 100 cases and 100 controls was used. The study was limited to the chronic otitis media with effusion phenotype to increase the population homogeneity. A panel of 192 tag-SNPs was selected. Saliva for DNA extraction was collected from 100 chronic otitis media with effusion cases and 100 controls. After quality control, 100 case and 79 control samples were available for hybridization. Genomic DNA from each subject was hybridized to the SNP probes, and genotypes were generated. Quality control across all samples and SNPs reduced the final SNPs used for analysis to 170. Each SNP was then analyzed for statistical association with chronic otitis media with effusion. Eight SNPs from four genes had an unadjusted P value of otitis media with effusion phenotype (TLR4, MUC5B, SMAD2, SMAD4); five of these polymorphisms were in the TLR4 gene. Even though these results need to be replicated in a novel population, the presence of five SNPs in the TLR4 gene having association with chronic otitis media with effusion in our study population lends evidence for the possible role of this gene in the susceptibility to otitis media. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    Science.gov (United States)

    Jim, Heather S.L.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Vierkant, Robert A.; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Schernhammer, Eva; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M.; Kelemen, Linda E.; Ramus, Susan J.; Monteiro, Alvaro N.A.; Goode, Ellen L.; Narod, Steven A.; Gayther, Simon A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68–0.90, p = 5.59 × 10−4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways. PMID:26807442

  5. Genetics of cortisol secretion and depressive symptoms: A candidate gene and genome wide association approach

    Science.gov (United States)

    Velders, Fleur P.; Kuningas, Maris; Kumari, Meena; Dekker, Marieke J.; Uitterlinden, Andre G.; Kirschbaum, Clemens; Hek, Karin; Hofman, Albert; Verhulst, Frank C.; Kivimaki, Mika; Van Duijn, Cornelia M.; Walker, Brian R; Tiemeier, Henning

    2014-01-01

    Summary Background Depressive patients often have altered cortisol secretion, but few studies have investigated genetic variants in relation to both cortisol secretion and depression. To identify genes related to both these conditions, we (1) tested the association of single nucleotide polymorphisms (SNPs) in hypothalamic-pituitary-adrenal-axis (HPA-axis) candidate genes with a summary measure of total cortisol secretion during the day (cortisolAUC) (2) performed a genome wide association study (GWAS) of cortisolAUC; and (3) tested the association of identified cortisol-related SNPs with depressive symptoms. Methods We analyzed data on candidate SNPs for the HPA-axis, genome-wide scans, cortisol secretion (n=1711) and depressive symptoms (the Centre for Epidemiology Studies Depression Scale, CES-D) (n=2928) in elderly persons of the Rotterdam Study. We used data from the Whitehall II study (n=2836) to replicate the GWAS findings. Results Of the 1456 SNPs in 33 candidate genes, minor alleles of 4 SNPs (rs9470080, rs9394309, rs7748266 and rs1360780) in the FKBP5 gene were associated with a decreased cortisolAUC (p<1 × 10(−4) after correction for multiple testing using permutations). These SNPs were also associated with an increased risk of depressive symptoms (rs9470080: OR 1.19 (95%CI 1.0; 1.4). The GWAS for cortisol yielded 2 SNPs with p-values of 1×10(−06) (rs8062512, rs2252459), but these associations could not be replicated. Conclusions These results suggest that variation in the FKBP5 gene is associated with both cortisolAUC and the likelihood of depressive symptoms. PMID:21316860

  6. CRISPR/Cas9-loxP-Mediated Gene Editing as a Novel Site-Specific Genetic Manipulation Tool.

    Science.gov (United States)

    Yang, Fayu; Liu, Changbao; Chen, Ding; Tu, Mengjun; Xie, Haihua; Sun, Huihui; Ge, Xianglian; Tang, Lianchao; Li, Jin; Zheng, Jiayong; Song, Zongming; Qu, Jia; Gu, Feng

    2017-06-16

    Cre-loxP, as one of the site-specific genetic manipulation tools, offers a method to study the spatial and temporal regulation of gene expression/inactivation in order to decipher gene function. CRISPR/Cas9-mediated targeted genome engineering technologies are sparking a new revolution in biological research. Whether the traditional site-specific genetic manipulation tool and CRISPR/Cas9 could be combined to create a novel genetic tool for highly specific gene editing is not clear. Here, we successfully generated a CRISPR/Cas9-loxP system to perform gene editing in human cells, providing the proof of principle that these two technologies can be used together for the first time. We also showed that distinct non-homologous end-joining (NHEJ) patterns from CRISPR/Cas9-mediated gene editing of the targeting sequence locates at the level of plasmids (episomal) and chromosomes. Specially, the CRISPR/Cas9-mediated NHEJ pattern in the nuclear genome favors deletions (64%-68% at the human AAVS1 locus versus 4%-28% plasmid DNA). CRISPR/Cas9-loxP, a novel site-specific genetic manipulation tool, offers a platform for the dissection of gene function and molecular insights into DNA-repair pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. From a genetic predisposition to an interactive predisposition: rethinking the ethical implications of screening for gene-environment interactions.

    Science.gov (United States)

    Tabery, James

    2009-02-01

    In a widely acclaimed study from 2002, researchers found a case of gene-environment interaction for a gene controlling neuroenzymatic activity (low vs. high), exposure to childhood maltreatment, and antisocial personality disorder (ASPD). Cases of gene-environment interaction are generally characterized as evincing a genetic predisposition; for example, individuals with low neuroenzymatic activity are generally characterized as having a genetic predisposition to ASPD. I first argue that the concept of a genetic predisposition fundamentally misconstrues these cases of gene-environment interaction. This misconstrual will be diagnosed, and then a new concept--interactive predisposition--will be introduced. I then show how this conceptual shift reconfigures old questions and raises new questions for genetic screening. Attempts to screen embryos or fetuses for the gene associated with low neuroenzymatic activity with an eye toward selecting against the low-activity variant fall prey to the myth of pre-environmental prediction; attempts to screen newborns for the gene associated with low neuroenzymatic activity with an eye toward early intervention will have to face the interventionist's dilemma.

  8. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    LENUS (Irish Health Repository)

    Pangilinan, Faith

    2012-08-02

    AbstractBackgroundNeural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate\\/B12 pathway genes contribute to NTD risk.MethodsA tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate\\/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.ResultsNearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.ConclusionsTo our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  9. Genetic testing including targeted gene panel in a diverse clinical population of children with autism spectrum disorder: Findings and implications.

    Science.gov (United States)

    Kalsner, Louisa; Twachtman-Bassett, Jennifer; Tokarski, Kristin; Stanley, Christine; Dumont-Mathieu, Thyde; Cotney, Justin; Chamberlain, Stormy

    2017-12-21

    Genetic testing of children with autism spectrum disorder (ASD) is now standard in the clinical setting, with American College of Medical Genetics and Genomics (ACMGG) guidelines recommending microarray for all children, fragile X testing for boys and additional gene sequencing, including PTEN and MECP2, in appropriate patients. Increasingly, testing utilizing high throughput sequencing, including gene panels and whole exome sequencing, are offered as well. We performed genetic testing including microarray, fragile X testing and targeted gene panel, consistently sequencing 161 genes associated with ASD risk, in a clinical population of 100 well characterized children with ASD. Frequency of rare variants identified in individual genes was compared with that reported in the Exome Aggregation Consortium (ExAC) database. We did not diagnose any conditions with complete penetrance for ASD; however, copy number variants believed to contribute to ASD risk were identified in 12%. Eleven children were found to have likely pathogenic variants on gene panel, yet, after careful analysis, none was considered likely causative of disease. KIRREL3 variants were identified in 6.7% of children compared to 2% in ExAC, suggesting a potential role for KIRREL3 variants in ASD risk. Children with KIRREL3 variants more often had minor facial dysmorphism and intellectual disability. We also observed an increase in rare variants in TSC2. However, analysis of variant data from the Simons Simplex Collection indicated that rare variants in TSC2 occur more commonly in specific racial/ethnic groups, which are more prevalent in our population than in the ExAC database. The yield of genetic testing including microarray, fragile X (boys) and targeted gene panel was 12%. Gene panel did not increase diagnostic yield; however, we found an increase in rare variants in KIRREL3. Our findings reinforce the need for racial/ethnic diversity in large-scale genomic databases used to identify variants that

  10. Genetic architecture of HIV-1 genes circulating in north India & their functional implications.

    Science.gov (United States)

    Neogi, Ujjwal; Sood, Vikas; Ronsard, Larence; Singh, Jyotsna; Lata, Sneh; Ramachandran, V G; Das, S; Wanchu, Ajay; Banerjea, Akhil C

    2011-12-01

    This review presents data on genetic and functional analysis of some of the HIV-1 genes derived from HIV-1 infected individuals from north India (Delhi, Punjab and Chandigarh). We found evidence of novel B/C recombinants in HIV-1 LTR region showing relatedness to China/Myanmar with 3 copies of Nfκb sites; B/C/D mosaic genomes for HIV-1 Vpr and novel B/C Tat. We reported appearance of a complex recombinant form CRF_02AG of HIV-1 envelope sequences which is predominantly found in Central/Western Africa. Also one Indian HIV-1 envelope subtype C sequence suggested exclusive CXCR4 co-receptor usage. This extensive recombination, which is observed in about 10 per cent HIV-1 infected individuals in the Vpr genes, resulted in remarkably altered functions when compared with prototype subtype B Vpr. The Vpu C was found to be more potent in causing apoptosis when compared with Vpu B when analyzed for subG1 DNA content. The functional implications of these changes as well as in other genes of HIV-1 are discussed in detail with possible implications for subtype-specific pathogenesis highlighted.

  11. Genetic analysis of GRIA2 and GRIA4 genes in migraine.

    Science.gov (United States)

    Gasparini, Claudia F; Sutherland, Heidi G; Haupt, Larisa M; Griffiths, Lyn R

    2014-02-01

    Migraine is a brain disorder affecting ∼12% of the Caucasian population. Genes involved in neurological, vascular, and hormonal pathways have all been implicated in predisposing individuals to developing migraine. The migraineur presents with disabling head pain and varying symptoms of nausea, emesis, photophobia, phonophobia, and occasionally visual sensory disturbances. Biochemical and genetic studies have demonstrated dysfunction of neurotransmitters: serotonin, dopamine, and glutamate in migraine susceptibility. Glutamate mediates the transmission of excitatory signals in the mammalian central nervous system that affect normal brain function including cognition, memory and learning. The aim of this study was to investigate polymorphisms in the GRIA2 and GRIA4 genes, which encode subunits of the ionotropic AMPA receptor for association in an Australian Caucasian population. Genotypes for each polymorphism were determined using high resolution melt analysis and the RFLP method. Statistical analysis showed no association between migraine and the GRIA2 and GRIA4 polymorphisms investigated. Although the results of this study showed no significant association between the tested GRIA gene variants and migraine in our Australian Caucasian population further investigation of other components of the glutamatergic system may help to elucidate if there is a relationship between glutamatergic dysfunction and migraine. © 2013 American Headache Society.

  12. Molecular genetic approach to human meningioma: loss of genes on chromosome 22

    International Nuclear Information System (INIS)

    Seizinger, B.R.; De La Monte, S.; Atkins, L.; Gusella, J.F.; Martuza, R.L.

    1987-01-01

    A molecular genetic approach employing polymorphic DNA markers has been used to investigate the role of chromosomal aberrations in meningioma, one of the most common tumors of the human nervous system. Comparison of the alleles detected by DNA markers in tumor DNA versus DNA from normal tissue revealed chromosomal alterations present in primary surgical specimens. In agreement with cytogenetic studies of cultured meningiomas, the most frequent alteration detected was loss of heterozygosity on chromosome 22. Forty of 51 patients were constitutionally heterozygous for at least one chromosome 22 DNA marker. Seventeen of the 40 constitutionally heterozygotic patients (43%) displayed hemizygosity for the corresponding marker in their meningioma tumor tissues. Loss of heterozygosity was also detected at a significantly lower frequency for markers on several other autosomes. In view of the striking association between acoustic neuroma and meningioma in bilateral acoustic neurofibromatosis and the discovery that acoustic neuromas display specific loss of genes on chromosome 22, the authors propose that a common mechanism involving chromosome 22 is operative in the development of both tumor types. Fine-structure mapping to reveal partial deletions in meningiomas may provide the means to clone and characterize a gene (or genes) of importance for tumorigenesis in this and possibly other clinically associated tumors of the human nervous system

  13. Genetic variation and epigenetic modification of the prodynorphin gene in peripheral blood cells in alcoholism.

    Science.gov (United States)

    D'Addario, Claudio; Shchetynsky, Klementy; Pucci, Mariangela; Cifani, Carlo; Gunnar, Agneta; Vukojević, Vladana; Padyukov, Leonid; Terenius, Lars

    2017-06-02

    Dynorphins are critically involved in the development, maintenance and relapse of alcoholism. Alcohol-induced changes in the prodynorphin gene expression may be influenced by both gene polymorphisms and epigenetic modifications. The present study of human alcoholics aims to evaluate DNA methylation patterns in the prodynorphin gene (PDYN) promoter and to identify single nucleotide polymorphisms (SNPs) associated with alcohol dependence and with altered DNA methylation. Genomic DNA was isolated from peripheral blood cells of alcoholics and healthy controls, and DNA methylation was studied in the PDYN promoter by bisulfite pyrosequencing. In alcoholics, DNA methylation increased in three of the seven CpG sites investigated, as well as in the average of the seven CpG sites. Data stratification showed lower increase in DNA methylation levels in individuals reporting craving and with higher levels of alcohol consumption. Association with alcoholism was observed for rs2235751 and the presence of the minor allele G was associated with reduced DNA methylation at PDYN promoter in females and younger subjects. Genetic and epigenetic factors within PDYN are related to risk for alcoholism, providing further evidence of its involvement on ethanol effects. These results might be of relevance for developing new biomarkers to predict disease trajectories and therapeutic outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Association between genetic variants of the clock gene and obesity and sleep duration.

    Science.gov (United States)

    Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe

    2015-12-01

    Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.

  15. Spectroscopic detection of fluorescent protein marker gene activity in genetically modified plants

    Science.gov (United States)

    Liew, O. W.; Chong, Jenny P. C.; Asundi, Anand K.

    2005-04-01

    This work focuses on developing a portable fibre optic fluorescence analyser for rapid identification of genetically modified plants tagged with a fluorescent marker gene. Independent transgenic tobacco plant lines expressing the enhanced green fluorescence protein (EGFP) gene were regenerated following Agrobacterium-mediated gene transfer. Molecular characterisation of these plant lines was carried out at the DNA level by PCR screening to confirm their transgenic status. Conventional transgene expression analysis was then carried out at the RNA level by RT-PCR and at the protein level by Western blotting using anti-GFP rabbit antiserum. The amount of plant-expressed EGFP on a Western blot was quantified against known amounts of purified EGFP by scanning densitometry. The expression level of EGFP in transformed plants was found to range from 0.1 - 0.6% of total extractable protein. A comparison between conventional western analysis of transformants and direct spectroscopic quantification using the fibre optic fluorescence analyser was made. The results showed that spectroscopic measurements of fluorescence emission from strong EGFP expressors correlated positively with Western blot data. However, the fluorescence analyser was also able to identify weakly expressing plant transformants below the detection limit of colorimetric Western blotting.

  16. Associating disease-related genetic variants in intergenic regions to the genes they impact

    Directory of Open Access Journals (Sweden)

    Geoff Macintyre

    2014-10-01

    Full Text Available We present a method to assist in interpretation of the functional impact of intergenic disease-associated SNPs that is not limited to search strategies proximal to the SNP. The method builds on two sources of external knowledge: the growing understanding of three-dimensional spatial relationships in the genome, and the substantial repository of information about relationships among genetic variants, genes, and diseases captured in the published biomedical literature. We integrate chromatin conformation capture data (HiC with literature support to rank putative target genes of intergenic disease-associated SNPs. We demonstrate that this hybrid method outperforms a genomic distance baseline on a small test set of expression quantitative trait loci, as well as either method individually. In addition, we show the potential for this method to uncover relationships between intergenic SNPs and target genes across chromosomes. With more extensive chromatin conformation capture data becoming readily available, this method provides a way forward towards functional interpretation of SNPs in the context of the three dimensional structure of the genome in the nucleus.

  17. Impact of non-linear smoking effects on the identification of gene-by-smoking interactions in COPD genetics studies

    DEFF Research Database (Denmark)

    Castaldi, P J; Demeo, D L; Hersh, C P

    2010-01-01

    with COPD. Using data from the Alpha-1 Antitrypsin Genetic Modifiers Study, the accuracy and power of two different approaches to model smoking were compared by performing a simulation study of a genetic variant with a range of gene-by-smoking interaction effects. Results Non-linear relationships between...... range of COPD severity, a non-linear relationship between pack-years of smoking and FEV(1) is likely. In this setting, approaches that account for this non-linearity can be more powerful and less biased than the more common approach of using total pack-years to model the smoking effect.......Background The identification of gene-by-environment interactions is important for understanding the genetic basis of chronic obstructive pulmonary disease (COPD). Many COPD genetic association analyses assume a linear relationship between pack-years of smoking exposure and forced expiratory volume...

  18. From the genome to the phenome and back: linking genes with human brain function and structure using genetically informed neuroimaging

    DEFF Research Database (Denmark)

    Siebner, H R; Callicott, J H; Sommer, T

    2009-01-01

    In recent years, an array of brain mapping techniques has been successfully employed to link individual differences in circuit function or structure in the living human brain with individual variations in the human genome. Several proof-of-principle studies provided converging evidence that brain...... imaging can establish important links between genes and behaviour. The overarching goal is to use genetically informed brain imaging to pinpoint neurobiological mechanisms that contribute to behavioural intermediate phenotypes or disease states. This special issue on "Linking Genes to Brain Function...... in Health and Disease" provides an overview over how the "imaging genetics" approach is currently applied in the various fields of systems neuroscience to reveal the genetic underpinnings of complex behaviours and brain diseases. While the rapidly emerging field of imaging genetics holds great promise...

  19. Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks

    Science.gov (United States)

    García-Calvo, Raúl; Guisado, JL; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco

    2018-01-01

    Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent

  20. Graphics Processing Unit-Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks.

    Science.gov (United States)

    García-Calvo, Raúl; Guisado, J L; Diaz-Del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco

    2018-01-01

    Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent

  1. The role of genetic sex in affect regulation and expression of GABA-related genes across species

    Directory of Open Access Journals (Sweden)

    Marianne eSeney

    2013-09-01

    Full Text Available Although circulating hormones and inhibitory gamma-amino butyric acid (GABA-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N = 51 MDD subjects, 50 controls, we show that the previously-reported down-regulation in MDD of somatostatin (SST, a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N = 214; 2 frontal cortex regions and expression quantitative trait loci mapping (N = 170 subjects, we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67 and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model (Four Core Genotypes (FCG mice, in which genetic and gonadal sex are artificially dissociated (N ≥ 12/group, we show that genetic sex (i.e. X/Y chromosome influences both gene expression (lower Sst, Gad67, Gad65 in XY mice and anxiety-like behaviors (higher in XY mice. This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males < gonadal females. Collectively, these combined human and mouse studies provide mechanistic insight into sexual dimorphism in mood disorders, and specifically demonstrate an unexpected role for XY genetic sex on GABA-related genes and anxiety

  2. Degradation of endogenous and exogenous genes of genetically modified rice with Cry1Ab during food processing.

    Science.gov (United States)

    Zhang, Wei; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Yang

    2014-05-01

    In order to assess the degradation of endogenous and exogenous genes during food processing, genetically modified rice with Cry1Ab was used as raw material to produce 4 processed foods: steamed rice, rice noodles, rice crackers, and sweet rice wine. The results showed various processing procedures caused different degrees of degradation of both endogenous and exogenous genes. During the processing of steamed rice and rice noodles, the procedures were so mild that only genes larger than 1500 bp were degraded, and no degradation of NOS terminator and Hpt gene was detected. For rice crackers, frying was the most severe procedure, followed by microwaving, baking, boiling, 1st drying, and 2nd drying. For sweet rice wine, fermentation had more impact on degradation of genes than the other processing procedures. All procedures in this study did not lead to degradation of genes to below 200 bp, except for NOS terminator. In the case of stability of the genes studied during processing of rice crackers and sweet rice wine, SPS gene was the most, followed by the Cry1Ab gene, Hpt gene, Pubi promoter, and NOS terminator. In our study, we gained some information about the degradation of endogenous and exogenous genes during 4 foods processing, compared the different stabilities between endogenous and exogenous genes, and analyzed different effects of procedure on degradation of genes. In addition, the fragments of endogenous and exogenous genes about 200 bp could be detected in final products, except NOS terminator. As a result, we provided some base information about risk assessment of genetically modified (GM) food and appropriate length of fragment to detect GM component in processed foods. © 2014 Institute of Food Technologists®

  3. The genetics of rheumatoid arthritis and the need for animal models to find and understand the underlying genes

    OpenAIRE

    Jirholt, Johan; Lindqvist, Anna-Karin B; Holmdahl, Rikard

    2000-01-01

    The causes of rheumatoid arthritis (RA) are largely unknown. However, RA is most probably a multifactorial disease with contributions from genetic and environmental factors. Searches for genes that influence RA have been conducted in both human and experimental model materials. Both types of study have confirmed the polygenic inheritance of the disease. It has become clear that the features of RA complicate the human genetic studies. Animal models are therefore valuable tools for identifying ...

  4. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius.

    Science.gov (United States)

    Chaffanel, Fanny; Charron-Bourgoin, Florence; Libante, Virginie; Leblond-Bourget, Nathalie; Payot, Sophie

    2015-06-15

    The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-abaxial Polarity Establishment in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Jianli eLiang

    2016-02-01

    Full Text Available Alterations in leaf adaxial–abaxial (ad-ab polarity are one of the main factors that are responsible for leaf curvature. In Chinese cabbage, to form a leafy head, leaf incurvature is an essential prerequisite. Identifying ad-ab patterning genes and investigating its genetic variations will facilitate in elucidating the mechanism underlying leaf incurvature during head formation. In the present study we conducted comparative genomic analysis of the identification of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs in Arabidopsis thaliana, indicating that these genes underwent expansion and were retained after whole genome triplication (WGT. We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima’s D indices and nucleotide diversity reduction in heading accessions compared to that in non-heading accessions, indicating that these underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature that is associated in the formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.

  6. Genetic Disorders

    Science.gov (United States)

    ... This can cause a medical condition called a genetic disorder. You can inherit a gene mutation from ... during your lifetime. There are three types of genetic disorders: Single-gene disorders, where a mutation affects ...

  7. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  8. [Effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering].

    Science.gov (United States)

    Ding, Jun-Ying; Meng, Qing-Ling; Guo, Min-Zhuo; Yi, Yao; Su, Qiu-Dong; Lu, Xue-Xin; Qiu, Feng; Bi, Sheng-Li

    2012-10-01

    To study the effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering. Based on the colon preference of E. coli, the HDV small antigen original gene from GenBank was optimized. Both the original gene and the optimized gene expressed in prokaryotic cells, SDS-PAGE was made to analyze the protein expression yield and to decide which protein expression style was more proportion than the other. Furthermore, two antigens were purified by chromatography in order to compare the purity by SDS-PAGE and Image Lab software. SDS-PAGE indicated that the molecular weight of target proteins from two groups were the same as we expected. Gene optimization resulted in the higher yield and it could make the product more soluble. After chromatography, the purity of target protein from optimized gene was up to 96.3%, obviously purer than that from original gene. Gene optimization could increase the protein expression yield and solubility of genetic engineering HDV small antigen. In addition, the product from the optimized gene group was easier to be purified for diagnosis usage.

  9. Multilocus analysis of extracellular putative virulence proteins made by group A Streptococcus: population genetics, human serologic response, and gene transcription.

    Science.gov (United States)

    Reid, S D; Green, N M; Buss, J K; Lei, B; Musser, J M

    2001-06-19

    Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase-PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

  10. The genetics of rheumatoid arthritis and the need for animal models to find and understand the underlying genes.

    Science.gov (United States)

    Jirholt, J; Lindqvist, A B; Holmdahl, R

    2001-01-01

    The causes of rheumatoid arthritis (RA) are largely unknown. However, RA is most probably a multifactorial disease with contributions from genetic and environmental factors. Searches for genes that influence RA have been conducted in both human and experimental model materials. Both types of study have confirmed the polygenic inheritance of the disease. It has become clear that the features of RA complicate the human genetic studies. Animal models are therefore valuable tools for identifying genes and determining their pathogenic role in the disease. This is probably the fastest route towards unravelling the pathogenesisis of RA and developing new therapies.

  11. Phase I evaluation of STA-1474, a prodrug of the novel HSP90 inhibitor ganetespib, in dogs with spontaneous cancer.

    Directory of Open Access Journals (Sweden)

    Cheryl A London

    Full Text Available The novel water soluble compound STA-1474 is metabolized to ganetespib (formerly STA-9090, a potent HSP90 inhibitor previously shown to kill canine tumor cell lines in vitro and inhibit tumor growth in the setting of murine xenografts. The purpose of the following study was to extend these observations and investigate the safety and efficacy of STA-1474 in dogs with spontaneous tumors.This was a Phase 1 trial in which dogs with spontaneous tumors received STA-1474 under one of three different dosing schemes. Pharmacokinetics, toxicities, biomarker changes, and tumor responses were assessed. Twenty-five dogs with a variety of cancers were enrolled. Toxicities were primarily gastrointestinal in nature consisting of diarrhea, vomiting, inappetence and lethargy. Upregulation of HSP70 protein expression was noted in both tumor specimens and PBMCs within 7 hours following drug administration. Measurable objective responses were observed in dogs with malignant mast cell disease (n = 3, osteosarcoma (n = 1, melanoma (n = 1 and thyroid carcinoma (n = 1, for a response rate of 24% (6/25. Stable disease (>10 weeks was seen in 3 dogs, for a resultant overall biological activity of 36% (9/25.This study provides evidence that STA-1474 exhibits biologic activity in a relevant large animal model of cancer. Given the similarities of canine and human cancers with respect to tumor biology and HSP90 activation, it is likely that STA-1474 and ganetespib will demonstrate comparable anti-cancer activity in human patients.

  12. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    Directory of Open Access Journals (Sweden)

    Pangilinan Faith

    2012-08-01

    Full Text Available Abstract Background Neural tube defects (NTDs are common birth defects (~1 in 1000 pregnancies in the US and Europe that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T and MTHFD1 rs2236225 (R653Q have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents, including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury and included the known NTD risk factor MTHFD1 R653Q (rs2236225. The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele. Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive

  13. Deleterious genetic variants in ciliopathy genes increase risk of ritodrine-induced cardiac and pulmonary side effects.

    Science.gov (United States)

    Seo, Heewon; Kwon, Eun Jin; You, Young-Ah; Park, Yoomi; Min, Byung Joo; Yoo, Kyunghun; Hwang, Han-Sung; Kim, Ju Han; Kim, Young Ju

    2018-01-24

    Ritodrine is a commonly used tocolytic to prevent preterm labour. However, it can cause unexpected serious adverse reactions, such as pulmonary oedema, pulmonary congestion, and tachycardia. It is unknown whether such adverse reactions are associated with pharmacogenomic variants in patients. Whole-exome sequencing of 13 subjects with serious ritodrine-induced cardiac and pulmonary side-effects was performed to identify causal genes and variants. The deleterious impact of nonsynonymous substitutions for all genes was computed and compared between cases (n = 13) and controls (n = 30). The significant genes were annotated with Gene Ontology (GO), and the associated disease terms were categorised into four functional classes for functional enrichment tests. To assess the impact of distributed rare variants in cases with side effects, we carried out rare variant association tests with a minor allele frequency ≤ 1% using the burden test, the sequence Kernel association test (SKAT), and optimised SKAT. We identified 28 genes that showed significantly lower gene-wise deleteriousness scores in cases than in controls. Three of the identified genes-CYP1A1, CYP8B1, and SERPINA7-are pharmacokinetic genes. The significantly identified genes were categorized into four functional classes: ion binding, ATP binding, Ca 2+ -related, and ciliopathies-related. These four classes were significantly enriched with ciliary genes according to SYSCILIA Gold Standard genes (P side effects may be associated with deleterious genetic variants in ciliary and pharmacokinetic genes.

  14. Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

    International Nuclear Information System (INIS)

    Nan, Hongmei; Qureshi, Abrar A; Hunter, David J; Han, Jiali

    2009-01-01

    The human fibroblast growth factor (FGF) and its receptor (FGFR) play an important role in tumorigenesis. Deregulation of the FGFR2 gene has been identified in a number of cancer sites. Overexpression of the FGFR4 protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the FGFR2 and FGFR4 genes and development of various cancers. We evaluated the associations of four genetic variants in the FGFR2 gene highly related to breast cancer risk and the three common tag-SNPs in the FGFR4 gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study (NHS) among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 controls. We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer. Given the power of this study, we did not detect any contribution of genetic variants in the FGFR2 or FGFR4 genes to inherited predisposition to skin cancer among Caucasian women

  15. Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

    Directory of Open Access Journals (Sweden)

    Qureshi Abrar A

    2009-06-01

    Full Text Available Abstract Background The human fibroblast growth factor (FGF and its receptor (FGFR play an important role in tumorigenesis. Deregulation of the FGFR2 gene has been identified in a number of cancer sites. Overexpression of the FGFR4 protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the FGFR2 and FGFR4 genes and development of various cancers. Methods We evaluated the associations of four genetic variants in the FGFR2 gene highly related to breast cancer risk and the three common tag-SNPs in the FGFR4 gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study (NHS among 218 melanoma cases, 285 squamous cell carcinoma (SCC cases, 300 basal cell carcinoma (BCC cases, and 870 controls. Results We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer. Conclusion Given the power of this study, we did not detect any contribution of genetic variants in the FGFR2 or FGFR4 genes to inherited predisposition to skin cancer among Caucasian women.

  16. Accuracy of preimplantation genetic diagnosis (PGD) of single gene and chromosomal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Verlinsky, Y.; Strom, C.; Rechitsky, S. [Reproductive Genetics Institute, Chicage, IL (United States)] [and others

    1994-09-01

    We have developed a polar body inferred approach for preconception diagnosis of single gene and chromosomal disorders. Preconception PCR or FISH analysis was performed in a total of 310 first polar bodies for the following genetic conditions: cystic fibrosis, hemophilia A, alpha-1-antitrypsin deficiency, Tay Sachs disease, retinitis pigmentosa and common chromosomal trisomies. An important advantage of this approach is the avoidance of sperm (DNA) contamination, which is the major problem of PGD. We are currently applying FISH analysis of biopsied blastomeres, in combination with PCR or separately, and have demonstrated a significant improvement of the accuracy of PGD of X-lin