WorldWideScience

Sample records for spray chamber ssc

  1. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    Directory of Open Access Journals (Sweden)

    Hongzhan Xie

    2015-06-01

    Full Text Available The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100, such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa using a common rail system equipped with a constant volume chamber. The characteristic data was extracted from spray images grabbed by a high speed visualization system. The results showed that the ambient pressure and injection pressure had significant effects on the spray characteristics. As the ambient pressure increased, the spray angle increased, while the spray tip penetration and the peak of average tip velocity decreased. As the injection pressure increased, the spray tip penetration, spray angle, spray area and spray volume increased. The increasing blend ratio of biodiesel brought about a shorter spray tip penetration and a smaller spray angle compared with those of diesel. This is due to the comparatively higher viscosity and surface tension of biodiesel, which enhanced the friction effect between fuel and the injector nozzle surface and inhibited the breakup of the liquid jet.

  2. One Dimensional Analysis Model of a Condensing Spray Chamber Including Rocket Exhaust Using SINDA/FLUINT and CEA

    Science.gov (United States)

    Sakowski, Barbara; Edwards, Daryl; Dickens, Kevin

    2014-01-01

    Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation [Ref 1]. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet

  3. A new HF-resistant tandem spray chamber for improved determination of trace elements and Pb isotopes using inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Krachler, Michael; Rausch, Nicole; Feuerbacher, Helmut; Klemens, Patrick

    2005-01-01

    The use of a new HF-resistant tandem spray chamber arrangement consisting of a cyclonic spray chamber and a Scott-type spray chamber made from PFA and PEEK provides a straightforward approach for improving the performance of inductively coupled-mass spectrometry (ICP-MS). The characteristics of the tandem spray chamber were critically evaluated against a PEEK cyclonic and a PFA Scott-type spray chamber, respectively. Sensitivity across the entire mass range was increased by about three times compared to the conventional setup utilizing only one spray chamber. Precision of the results, especially at low signal intensities, improved by 160% and 31% compared to the cyclonic and Scott-type spray chamber, respectively. Using the tandem spray chamber, the oxide formation rate was lowered by about 50%. Signals as low as 30 counts could be determined under routine measurement conditions with a RSD of 2.4% thus allowing to precisely quantify small concentration differences at the ng l -1 concentration level. The excellent precision (0.02-0.07%) of 206 Pb / 207 Pb and 206 Pb / 208 Pb ratios determined in pore water samples was rather limited by the instrumental capabilities of the single collector ICP-MS instrument than by the performance of the tandem spray chamber

  4. Radiation effects at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Gilchriese, M.G.D. [ed.] [Superconducting Super Collider Lab., Dallas, TX (United States)

    1988-06-01

    This report contains a preliminary study of the effects of the radiation levels expected at the SSC on potential detector components and a subset of materials to be used in the SSC accelerators. The report does not contain a discussion of radiation damage to electronics components that may be used at the SSC. We have investigated many of the effects of radiation on silicon detectors, on wire chambers, on scintillating materials and the associated readout, on optical fibers for data transmission and on structural or other materials to be used in detector or accelerator components. In the SSC accelerator complex, in particular the storage rings, radiation damage will not present significant problems different than those now faced by existing high energy accelerators. We find that the effects of radiation damage on SSC detector components will be significant at the design luminosity of the ssc and will limit, or determine, many of the options for different detector components. In this regard the reader should keep in mind that, in the absence of a specific detector design, it is not possible to form definitive conclusions regarding the viability of the detector components. Since the radiation levels in experiments at the SSC will depend on the geometry and composition of the apparatus, simple yes /no generalizations about the feasibility of a detector component are not possible.

  5. Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Liu, Yu; Li, Jun; Jin, Chao

    2015-01-01

    Highlights: • A sudden drop is observed in spray penetration for B10S10D80 fuel at 800 and 900 K. • With increasing of temperature, auto-ignition timings of fuels become unperceivable. • Low n-butanol addition has little effect on autoignition timings from 800 to 1200 K. • n-Butanol additive can reduce soot emissions at the near-wall regions. • Larger soot reduction is seen at higher ambient temperatures for n-butanol addition. - Abstract: The processes of spray penetrations, flame propagation and soot formation and oxidation fueling n-butanol/biodiesel/diesel blends were experimentally investigated in a constant volume combustion chamber with an optical access. B0S20D80 (0% n-butanol, 20% soybean biodiesel, and 80% diesel in volume) was prepared as the base fuel. n-Butanol was added into the base fuel by volumetric percent of 5% and 10%, denoted as B5S15D80 (5% n-butanol/15% soybean biodiesel/80% diesel) and B10S10D80 (10% n-butanol/10% soybean biodiesel/80% diesel). The ambient temperatures at the time of fuel injection were set to 800 K, 900 K, 1000 K, and 1200 K. Results indicate that the penetration length reduces with the increase of n-butanol volumes in blending fuels and ambient temperatures. The spray penetration presents a sudden drop as fueling B10S10D80 at 800 K and 900 K, which might be caused by micro-explosion. A larger premixed combustion process is observed at low ambient temperatures, while the heat release rate of high ambient temperatures presents mixing controlled diffusion combustion. With a lower ambient temperature, the auto-ignition delay becomes longer with increasing of n-butanol volume in blends. However, with increasing of ambient temperatures, the auto-ignition timing between three fuels becomes unperceivable. Generally, low n-butanol addition has a limited or no effect on the auto-ignition timing in the current conditions. Compared with the base fuel of B0S20D80, n-butanol additive with 5% or 10% in volume can reduce soot

  6. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  7. Narrow band flame emission from dieseline and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Wu, Zengyang

    2016-08-18

    In this paper, spray combustion of diesel (No. 2) and diesel-gasoline blend (dieseline: 80% diesel and 20% gasoline by volume) were investigated in an optically accessible constant volume combustion chamber. Effects of ambient conditions on flame emissions were studied. Ambient oxygen concentration was varied from 12% to 21% and three ambient temperatures were selected: 800 K, 1000 K and 1200 K. An intensified CCD camera coupled with bandpass filters was employed to capture the quasi-steady state flame emissions at 430 nm and 470 nm bands. Under non-sooting conditions, the narrow-band flame emissions at 430 nm and 470 nm can be used as indicators of CH∗ (methylidyne) and HCHO∗ (formaldehyde), respectively. The lift-off length was measured by imaging the OH∗ chemiluminescence at 310 nm. Flame emission structure and intensity distribution were compared between dieseline and diesel at wavelength bands. Flame emission images show that both narrow band emissions become shorter, thinner and stronger with higher oxygen concentration and higher ambient temperature for both fuels. Areas of weak intensity are observed at the flame periphery and the upstream for both fuels under all ambient conditions. Average flame emission intensity and area were calculated for 430 nm and 470 nm narrow-band emissions. At a lower ambient temperature the average intensity increases with increasing ambient oxygen concentration. However, at the 1200 K ambient temperature condition, the average intensity is not increasing monotonically for both fuels. For most of the conditions, diesel has a stronger average flame emission intensity than dieseline for the 430 nm band, and similar phenomena can be observed for the 470 nm band with 800 K and 1200 K ambient temperatures. However, for the 1000 K ambient temperature cases, dieseline has stronger average flame emission intensities than diesel for all oxygen concentrations at 470 nm band. Flame emissions for the two bands have a

  8. SSC RESTful Web Services API

    Data.gov (United States)

    National Aeronautics and Space Administration — The Satellite Situation Center (SSC) web services allow a software developer to use portions of the SSC software in their own applications. SSC is a system to cast...

  9. Checking technical measurements on climatic data during sand blasting and spraying work in the condensation chamber of the boiling water reactor Gundremmingen

    International Nuclear Information System (INIS)

    Rausch, D.; Unte, U.

    1986-01-01

    During sand blasting and spraying work in the condensation chambers of boiling water reactors prescribed climatic data must be adhered to. For this purpose temporary air conditioners are used. The technical measurement examination here should provide information as to whether the air conditioners used were to fulfill the parameter curve specifications. (orig.) [de

  10. SUPERCOLLIDER: SDC for SSC

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    On a scale to match the 87-kilometre Superconducting Supercollider (SSC) planned for Ellis County, Texas, the Solenoidal Detector Collaboration (SDC) is designing a large general purpose detector to pursue a broad range of physics goals

  11. SSC project and detector R and D

    International Nuclear Information System (INIS)

    Sugimoto, Shojiro

    1990-01-01

    To study 'TeV region physics', several new colliders, including LHC/SSC (high energy p-p collider with high luminosity) and JLC/CLIC/TLC (high energy e + e - linear collider), have been proposed. Among others, the Superconducting Super Collider (SSC) project was the first to have been approved and initiated. The report first describes major features of some detectors proposed so far, and the radiation level and damages are then discussed. Research and development of these detectors is outlined focusing on tracking detectors (plastic scintillating fiber tracker, silicon strip and pixel tracker, drift chamber (straw) tracker), and calorimeters (scintillation/Cherenkov calorimeters, sampling calorimeters). A collider ring with a circumference of 87 km kilometers will be constructed around Waxahachie, Texas. Head-on collisions of proton beams whirling through the tunnel in the opposite directions are expected to produce 1.7 interactions every 16 ns at its maximum luminosity of 10 33 cm -2 s -1 . The SSC complex consists of five accelerators: LINAC, low energy booster, medium energy booster, high energy booster, and the 20TeV-20TeV SSC collider. According to the schedule for the SSC construction, the first beam collisions are expected at the beginning of 1999. (N.K.)

  12. SSC accelerator availability allocation

    International Nuclear Information System (INIS)

    Dixon, K.T.; Franciscovich, J.

    1991-03-01

    Superconducting Super Collider (SSC) operational availability is an area of major concern, judged by the Central Design Group to present such risk that use of modern engineering tools would be essential to program success. Experience has shown that as accelerator beam availability falls below about 80%, efficiency of physics experiments degrades rapidly due to inability to maintain adequate coincident accelerator and detector operation. For this reason, the SSC availability goal has been set at 80%, even though the Fermi National Accelerator Laboratory accelerator, with a fraction of the SSC's complexity, has only recently approached that level. This paper describes the allocation of the top-level goal to part-level reliability and maintainability requirements, and it gives the results of parameter sensitivity studies designed to help identify the best approach to achieve the needed system availability within funding and schedule constraints. 1 ref., 12 figs., 4 tabs

  13. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  14. Calorimetry at the SSC

    International Nuclear Information System (INIS)

    Wigmans, R.

    1988-01-01

    The state of the art, and the present understanding of the basic limitations in hadron calorimetry, are briefly described. The various options for SSC calorimeters are discussed, and the R ampersand D needed for the ones that look most promising is outlined. The most promising candidates are (1) lead/scintillating fibers and (2) lead (or uranium)/TMS (or other warm liquids)

  15. Calorimetry at the SSC

    International Nuclear Information System (INIS)

    Wigmans, R.

    1987-09-01

    The state of the art, and our present understanding of the basic limitations in hadron calorimetry, are briefly described. The various options for SSC calorimeters are discussed, and the R and D needed for the ones that look most promising is outlined. 13 refs.; 8 figs

  16. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji

    2013-07-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm and 650. nm, 10. nm FWHM). After calibration, statistical analysis shows that the uncertainty of the two-color temperature is less than 5%, while it is about 50% for the KL factor. This technique is then applied to the spray combustion of biodiesel and diesel fuels under an ambient oxygen concentration of 21% and ambient temperatures of 800, 1000 and 1200. K. The heat release result shows higher energy utilization efficiency for biodiesel compared to diesel under all conditions; meanwhile, diesel shows a higher pressure increase due to its higher heating value. Biodiesel yields a lower temperature inside the flame area, a longer soot lift-off length, and a smaller soot area compared to diesel. Both the KL factor and the total soot with biodiesel are lower than with diesel throughout the entire combustion process, and this difference becomes larger as the ambient temperature decreases. Biodiesel shows approximately 50-100. K lower temperatures than diesel at the quasi-steady stage for 1000 and 1200. K ambient temperature, while diesel shows a lower temperature than biodiesel at 800. K ambient. This result may raise the question of how important the flame temperature is in explaining the higher NO. x emissions often observed during biodiesel combustion. Other factors may also play an important role in controlling NO. x emissions. Both biodiesel and diesel temperature measurements show a monotonic dependence on the ambient temperature. However, the ambient temperature appears to have a more significant effect on the soot formation and oxidation in diesel combustion, while biodiesel combustion soot characteristics shows relative insensitivity to the ambient temperature. © 2013 Elsevier Ltd.

  17. SSC kicker impedances

    International Nuclear Information System (INIS)

    Colton, E.P.; Wang, T.F.

    1985-01-01

    The longitudinal and transverse complex impedances Z/sub l//n and Z/sub t/, respectively, have been calculated for both the SSC injection and abort kickers. The calculations assumed that no attempt was made to shield the beam from the kickers. We took the injection and abort kickers to be as specified. The injection kickers were ferrite with a single-turn design, and the abort kickers were of a ''window-frame design'' with tape wound cores

  18. SSC Cryogenic System

    International Nuclear Information System (INIS)

    Brown, D.P.; Louttit, R.I.; Rode, C.; VanderArend, P.C.

    1985-01-01

    The design of the 4.5 K primary cooling system and higher temperature shield cooling systems for the SSC are described. Typical flow diagrams for the magnet piping systems are presented. Estimated heat loads are given. The systems have been designed to accomodate the great distances, 90 km and up, over which the load will be distributed. Provision has been made for cooldown, warmup, quench recovery and magnet replacement, as well as for steady-state operation

  19. Effect of expansion chamber geometry on atomization and spray dispersion characters of a flashing mixture containing inerts. Part I. Numerical predictions and dual laser measurements.

    Science.gov (United States)

    Ju, Dehao; Shrimpton, John; Bowdrey, Moira; Hearn, Alex

    2012-08-01

    A cigarette alternative is designed to deliver a dose of medicinal nicotine within a timeframe comparable to that of a cigarette, and gives much of what smokers expect from a cigarette without the risks of smoking tobacco. The design concept is the same as a pressurized metered dose inhaler (pMDI), but is a breath actuated device (Oxette(®)). This work predicts the residual mass median diameter (MMD) of the spray issuing from early stage Oxette(®) prototypes by using an evaporation model of multi-component liquid droplets with the help of a numerical multi-component two-phase actuation model (developed by the authors) to quantify the sprays. Two different formulations with 95% and 98% mass fraction of HFA 134a, and two prototypes of cigarette alternatives with different expansion chamber volumes have been analyzed by the numerical model and compared with laser based measurements. The later designed device provides a larger expansion chamber volume to enhance the propellant evaporation, recirculation, bubble generation and growth inside the chamber, and it makes a significant improvement to produce finer sprays than the earlier design. The mass fraction of the formulation does not affect significantly on the initial MMD of the droplets near the discharge orifice. However, it influences the residual MMD at x=100mm from the discharge orifice, where the ratio of the predicted residual MMDs of the droplets generated by the formulations with 98% and 95% of HFA 134a is 0.73. Although the formulation with 98% of HFA 134a can generate smaller droplets, the formulation with 95% of HFA 134a produces more steady puffs with relatively low mass flow rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Calorimetry for the SSC

    International Nuclear Information System (INIS)

    Gordon, H.A.; Grannis, P.D.

    1984-01-01

    The activities related to calorimetry at Snowmass took place in three main areas. These were: (1) The performance criteria for SSC calorimetry, including the requirements on hermeticity, shower containment, segmentation and time resolution. The use of calorimetric means of particle identification was studied. (2) The study of triggering methods using calorimeter energy, angle and timing information. (3) A review of a wide variety of calorimeter materials for absorber and sampling, as well as several means of obtaining the readout of the energy deposits. 48 references, 10 figures, 1 table

  1. Calorimetry for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, H.A.; Grannis, P.D.

    1984-01-01

    The activities related to calorimetry at Snowmass took place in three main areas. These were: (1) The performance criteria for SSC calorimetry, including the requirements on hermeticity, shower containment, segmentation and time resolution. The use of calorimetric means of particle identification was studied. (2) The study of triggering methods using calorimeter energy, angle and timing information. (3) A review of a wide variety of calorimeter materials for absorber and sampling, as well as several means of obtaining the readout of the energy deposits. 48 references, 10 figures, 1 table.

  2. The influence of substrate temperature and spraying distance on the properties of plasma sprayed tungsten and steel coatings deposited in a shrouding chamber

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Vilémová, Monika; Nevrlá, Barbara; Kocmanová, Lenka; Veverka, Jakub; Halasová, Martina; Hadraba, Hynek

    2017-01-01

    Roč. 318, May (2017), s. 217-223 ISSN 0257-8972. [International Meeting on Thermal Spraying (RIPT)/7./. Limoges, 09.12.2015-11.12.2015] R&D Projects: GA ČR GB14-36566G EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 ; RVO:68081723 Keywords : Tungsten * Steel * Atmospheric plasma spraying * Shrouding * Substrate temperature * Fusion reactor materials * Plasma facing components Subject RIV: JK - Corrosion ; Surface Treatment of Materials; JK - Corrosion ; Surface Treatment of Materials (UFM-A) OBOR OECD: Coating and films; Coating and films (UFM-A) Impact factor: 2.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0257897216310520

  3. Slow extraction at the SSC

    International Nuclear Information System (INIS)

    Colton, E.P.

    1985-01-01

    Resonant slow extraction at the SSC will permit fixed-target operation. Stochastic extraction appears to be a promising technique for achieving spill times of the order of 1000 s. However, systematic sextupole error fields in the SSC dipoles must be reduced a factor of twenty from the design values; otherwise the extraction process will be perturbed or suppressed. In addition, good regulation of the SSC power supplies is essential for smooth extraction over the spill period. 10 refs., 1 fig

  4. Chiral Lagrangians and the SSC

    International Nuclear Information System (INIS)

    Dawson, S.

    1991-09-01

    In the event that the SSC does not observe any resonances such as a Higgs boson or a techni-rho meson, we would like to know if the SSC can still discover something about the nature of the electroweak symmetry breaking. We will use chiral Lagrangian techniques to address this question and analyze their utility for studying events containing W and Z gauge bosons at the SSC. 20 refs., 4 figs

  5. Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: Sensitivity enhancement for selenium

    International Nuclear Information System (INIS)

    Kovacevic, Miroslav; Goessler, Walter

    2005-01-01

    The effect of signal enhancement of elements with ionization potentials in the range from 9 to 11 eV by carbon-containing compounds is a well-known phenomenon in inductively coupled plasma mass spectrometry (ICPMS). It has traditionally been exploited through the addition of organic solvents to the sample matrix or to the mobile phase to improve sensitivity. In the present work, aqueous solutions of volatile carbon compounds (acetone, methanol and acetic acid) were directly introduced into the thermostatted spray chamber rather than being added to the sample matrix. It is presumed that no aerosol is produced from these solutions and only vapors of organic compounds are swept into the plasma together with the sample aerosol. When a 0.40 mol l -1 aqueous solution of acetone was introduced directly into the spray chamber, the signals for arsenic and selenium were enhanced by a factor of 4.2. The usefulness of this approach was demonstrated through the achievement of lower instrumental detection limits for selenium at m/z 82 (0.1 ng ml -1 ) compared to the system without direct introduction of volatile carbon compounds (0.5 ng ml -1 ). The method was successfully applied in the determination of traces of selenium in natural water, urine and bovine liver reference material

  6. Aging effects in wire chambers operated at low pressure with TMAE and its effect on the use of BaF2-TMAE calorimetry at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Woody, C.L.

    1988-01-01

    This note summarizes the result of a study carried out on the aging effects in low pressure wire multiwire proportional chambers operated with gas mixtures containing TMAE. The purpose of the study was to investigate the effects of radiation damage in low pressure wire chambers used as a part of a BaF 2 -TMAE calorimeter operated at high rates for an extended period of time. 8 refs., 6 figs

  7. SSC muon detector group report

    International Nuclear Information System (INIS)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4π detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC

  8. Simulating supersymmetry at the SSC

    International Nuclear Information System (INIS)

    Barnett, R.M.; Haber, H.E.

    1984-08-01

    Careful study of supersymmetric signatures at the SSC is required in order to distinguish them from Standard Model physics backgrounds. To this end, we have created an efficient, accurate computer program which simulates supersymmetric particle production and decay (or other new particles). We have incorporated the full matrix elements, keeping track of the polarizations of all intermediate states. (At this time hadronization of final-state partons is ignored). Using Monte Carlo techniques this program can generate any desired final-state distribution or individual events for Lego plots. Examples of the results of our study of supersymmetry at SSC are provided

  9. Design of SSC collider structures

    International Nuclear Information System (INIS)

    Monsees, J.E.

    1994-01-01

    The authors would like to set the record straight. To date, underground construction contracts on the SSC main ring have been bid at a savings of $77 million dollars or 33 percent below the baseline cost estimate. The SSC is the largest single underground project ever built anywhere in the world. When completed it will have approximately 70 miles of tunnels, 60 shafts, two huge underground experiment halls -- each the size of a football stadium -- and numerous other structures, each of which would be considered a major facility on any other project

  10. Ep option at the SSC

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1984-05-01

    The possibilities for colliding electrons with the 20 TeV proton beams of the SSC are considered. Kinematics of ep colliding beams is reviewed. Energies that may be possible and interesting are suggested, and detector problems associated with the highly imbalanced collisions are briefly considered

  11. SSC Test Operations Contract Overview

    Science.gov (United States)

    Kleim, Kerry D.

    2010-01-01

    This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).

  12. Intrinsic Chevrolets at the SSC

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Collins, J.C.; Ellis, S.D.; Gunion, J.F.; Mueller, A.H.

    1984-01-01

    The possibility of the production at high energy of heavy quarks, supersymmetric particles and other large mass colored systems via the intrinsic twist-six components in the proton wave function is discussed. While the existing data do not rule out the possible relevance of intrinsic charm production at present energies, the extrapolation of such intrinsic contributions to very high masses and energies suggests that they will not play an important role at the SSC

  13. Interstrand resistance of SSC magnets

    International Nuclear Information System (INIS)

    Kovachev, V.T.; Neal, M.J.; Capone, D.W. II; Carr, W.J. Jr.; Swenson, C.

    1994-01-01

    In situ interstrand resistance measurements were conducted on selected section of the inner coil of a full size (15 m) and a short (1 m) model SSC magnets. A model for evaluating single contacts resistance between two strands was developed. Using this model analyses of adjacent and non-adjacent strand contacts were performed. The interstrand resistance distribution throughout the coil was found to correlate with the quench location data as well as with the multipoles decay characteristics of the magnet. An anisotropic continuum based model for evaluation of cable eddy current losses was developed and results were compared with the experimental data

  14. Cable degration of SSC strand

    International Nuclear Information System (INIS)

    Warnes, W.H.; Dai, W.; Seuntjens, J.; Capone, D.W. II

    1992-01-01

    Cable degradation of a SSC 40mm cable was studied by comparing the virgin strand and extracted strand measurements of critical current for all thirty strands. Typical degradation values of a few percent are observed in these materials. Image analysis performed on the strand cross sections found the filament deformation to be commensurate with the measured degradation in critical current. A simple model for current sharing in cables with edge damage reduction of Ic was developed and described below. Suggestions for measurements of cable critical current using extracted strands are also presented

  15. Brittle behavior of SSC yokes

    International Nuclear Information System (INIS)

    Rehak, M.L.; Turner, J.R.

    1991-01-01

    In liquid helium at 4 K ultra--low carbon steel is known to be brittle. Fracture toughness and ultimate strength measured by the National Institute of Standards and Technology (NIST) are used here to examine the brittle behavior of the SSC yokes. The fracture toughness K Ic of the material is used to estimate the maximum allowable length of pre--existing cracks. Tensile properties of the steel at 4 K are compared with maximum tensile stresses obtained from the ANSYS finite element analysis of the DSX201 cross--section. 5 refs., 3 figs., 4 tabs

  16. Overview of SSC accelerator requirements

    International Nuclear Information System (INIS)

    Dugan, G.

    1992-03-01

    This paper will present a general overview of the requirements of the Superconducting Super Collider (SSC) accelerators. Each accelerator in the injector chain will be discussed separately, followed by a discussion of the collider itself. In conclusion, the top level requirements of the overall accelerator system will be presented. For each accelerator, the primary operating parameters will be presented in tabular form. A brief narrative discussion of the principal technical features of each machine will be given. Finally, the principal technical design challenges for the machine will be noted, together with the currently planned solution to these challenges

  17. Interstrand resistance of SSC magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kovachev, V.T.; Neal, M.J.; Capone, D.W. II [Superconducting Super Collider Lab., Dallas, TX (United States); Carr, W.J. Jr.; Swenson, C. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1994-01-01

    In situ interstrand resistance measurements were conducted on selected section of the inner coil of a full size (15 m) and a short (1 m) model SSC magnets. A model for evaluating single contacts resistance between two strands was developed. Using this model analyses of adjacent and non-adjacent strand contacts were performed. The interstrand resistance distribution throughout the coil was found to correlate with the quench location data as well as with the multipoles decay characteristics of the magnet. An anisotropic continuum based model for evaluation of cable eddy current losses was developed and results were compared with the experimental data.

  18. Ship to Shore Connector Amphibious Craft (SSC)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-303 Ship to Shore Connector Amphibious Craft (SSC) As of FY 2017 President’s Budget Defense...28, 2015 Program Information Program Name Ship to Shore Connector Amphibious Craft (SSC) DoD Component Navy Responsible Office References SAR...5 Mission and Description Ship to Shore Connector (SSC) is the Landing Craft , Air Cushion (LCAC) replacement. It is an Air Cushion Vehicle with the

  19. Effects of ambient temperature and oxygen concentration on diesel spray combustion using a single-nozzle injector in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2013-09-02

    This work investigates the effects of ambient conditions on diesel spray combustion in an optically accessible, constant volume chamber using a single-nozzle fuel injector. The ambient O2 concentration was varied between five discrete values from 10% to 21% and three different ambient temperatures (800 K, 1000 K, and 1200 K). These conditions simulate different exhaust gas recirculation (EGR) levels and ambient temperatures in diesel engines. Both conventional diesel combustion and low temperature combustion (LTC) modes were observed under these conditions. A transient analysis and a quasi-steady state analysis are employed in this article. The transient analysis focuses on the flame development from beginning to the end, illustrating how the flame structure changes during this process; the quasi-steady state analysis focuses on the stable flame structure. The transient analysis was conducted using high-speed imaging of both OH* chemiluminescence and natural luminosity (NL). In addition, three different images were acquired using an ICCD camera, corresponding to OH* chemiluminescence, narrow-band flame emission at 430 nm (Band A) and at 470 nm (Band B), and were used to investigate the quasi-steady state combustion process. From the transient analysis, it was found that the NL signal becomes stronger and confined to narrow regions when the temperature and O2 concentration increase during the development of flame. The OH* intensity is much lower for the 10% ambient O2 and 800 K conditions compared to the higher temperatures and O2 levels. This implies the occurrence of LTC under these conditions. Results from the quasi-steady combustion stage indicate that high-temperature reactions effectively oxidize the soot in the downstream locations where only OH* signal is observed. In addition, an area was calculated for each spectral region, and results show that the area of Band A and Band B emissions in these images is larger than the area of OH* emissions at the lower O2

  20. Suppression chamber

    International Nuclear Information System (INIS)

    Goto, Hiroshi; Tsuji, Akio.

    1976-01-01

    Purpose: To miniaturize the storage tank of condensated water in BWR reactor. Constitution: A diaphragm is provided in a suppression chamber thereby to partition the same into an inner compartment and an outer compartment. In one of said compartments there is stored clean water to be used for feeding at the time of separating the reactor and for the core spray system, and in another compartment there is stored water necessary for accomplishing the depressurization effect at the time of coolant loss accident. To the compartment in which clean water is stored there is connected a water cleaning device for constantly maintaining water in clean state. As this cleaning device an already used fuel pool cleaning device can be utilized. Further, downcomers for accomplishing the depressurization function are provided in both inner compartment and outer compartment. The capacity of the storage tank can be reduced by the capacity of clean water within the suppression chamber. (Ikeda, J.)

  1. Commissioning plans for SSC linac

    International Nuclear Information System (INIS)

    Hurd, J.W.; Aprile, R.L.; Chang, C.R.; Crist, C.E.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Leifeste, G.T.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Swenson, D.A.; Tooker, J.; Yao, C.G.

    1992-01-01

    Presented are the general description of the SSC linac and the plans for commissioning. Sections of the linac are installed, tested, and beam commissioned in a serial approach. A specialized set of diagnostics is used to characterize the beam through each section. In addition to the standard diagnostic set, plans call for the use of a bunch shape monitor and x-ray spectrometer. Streak camera and digital imaging diagnostics will be developed. The commissioning plan is folded into the general linac project schedule to show the relation between delivery, staging, installation, conditioning, and actual commissioning with beam. These plans form the basis for coordination between the various organizations responsible for different elements of the linac including the technical components, infrastructure, and temporary staging and operation facilities. (Author) 2 figs., 17 refs

  2. Cultural connections of the SSC

    International Nuclear Information System (INIS)

    Kirk, T.B.W.

    1984-01-01

    This paper has as its purpose, to consider explicitly and in more than cursory detail, the cultural involvement of a major scientific facility, the SSC, with its public surroundings. At the moment of writing, it is uncertain whether the project will evolve under US-national or under international sponsorship. Since most of the paper's substantive content is invariant with respect to this question (but the means of implementation are not), the author proceeds as though the machine will be US sponsored. This assumption avoids the irritation of having to identify continually the particular methods for implementation of the ideas presented. If the international route is chosen, a second paper could be written to accommodate this outcome. By cultural involvement, the author is principally concerned with the following areas: i) accessibility of the facility to the general public; ii) educational potential at and away from the site; iii) architectural and aesthetic considerations; and iv) formal history of the project

  3. Closed orbit correction in the SSC

    International Nuclear Information System (INIS)

    Bourianoff, G.; Cole, B.; Ferede, H.; Pilat, F.

    1991-05-01

    A global correction scheme proposed for use in the SSC is described. Various features of the SSC lattice that impact the ability to correct the orbit are discussed. Typical results for the residual RMS closed orbit in the arc is calculated to be 0.65mm with peak values of 3mm. 3 refs., 1 fig., 2 tabs

  4. Detector problems at the SSC

    International Nuclear Information System (INIS)

    Wojcicki, S.G.

    1985-02-01

    During the last couple of years there has been considerable concern expressed among the US high energy community as to whether detector limitations would prevent one from being able to fully exploit a luminosity of 10 33 cm -2 sec -1 at a hadron-hadron high energy collider. As a result of these concerns, a considerable amount of work has been done recently in trying to understand the nature of potential difficulties and the required R and D that needs to be performed. A lot of this work has been summarized in the 1984 DPF Summer Study at Snowmass. This paper attempts to review some of these results. This work is limited to the discussion of detector problems associated with the study of high energy hadron-hadron collisions. We shall start with the discussion of the desirable features of the detectors and of the SSC environment in which they will have to work. After a brief discussion of the model 4π detectors, we shall discuss specific detector aspects: lepton identification, tracking, calorimetry and computing and triggering. We shall end with some remarks about possible future course of events. 15 refs., 10 figs

  5. Simulated Field Trials Using an Indoor Aerosol Test Chamber

    National Research Council Canada - National Science Library

    Semler, D. D; Roth, A. P; Semler, K. A; Nolan, P. M

    2004-01-01

    .... In this method, the aerosol chamber control software manipulates circulation fan speeds, chamber vacuum and agent spray times to produce a simulated dynamic cloud within the aerosol test chamber...

  6. Simulated Field Trials Using An Indoor Aerosol Test Chamber

    National Research Council Canada - National Science Library

    Semler, D. D; Roth, A. P; Semler, K. A; Nolan, P. M

    2004-01-01

    .... In this method, the aerosol chamber control software manipulates circulation fan speeds, chamber vacuum and agent spray times to produce a simulated dynamic cloud within the aerosol test chamber...

  7. Decoupling schemes for the SSC Collider

    International Nuclear Information System (INIS)

    Cai, Y.; Bourianoff, G.; Cole, B.; Meinke, R.; Peterson, J.; Pilat, F.; Stampke, S.; Syphers, M.; Talman, R.

    1993-05-01

    A decoupling system is designed for the SSC Collider. This system can accommodate three decoupling schemes by using 44 skew quadrupoles in the different configurations. Several decoupling schemes are studied and compared in this paper

  8. SSC-K code user's manual

    International Nuclear Information System (INIS)

    Kwon, Y. M.; Lee, Y. B.; Chang, W. P.; Hahn, D.

    2000-07-01

    The Supper System Code of KAERI (SSC-K) is a best-estimate system code for analyzing a variety of off-normal or accidents in the heat transport system of a pool type LMR design. It is being developed at Korea Atomic Energy Research Inititution (KAERI) on the basis of SSC-L, originally developed at BNL to analyze loop-type LMR transients. SSC-K can handle both designs of loop and pool type LMRs. SSC-K contains detailed mechanistic models of transient thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, coolant, fuel elements, and structures to accident conditions. This report provides an overview of recent model developmentsvfor the SSC-K computer code, focusing on phenomenological model descriptions for new thermal, hydraulic, neutronic, and mechnaical modules. A comprehensive description of the models for pool-type reactor is given in Chapters 2 and 3; the steady-state plant characterization, prior to the initiation of transient is described in Chapter 2 and their transient counterparts are discussed in Chapter 3. In Chapter 4, a discussion on the intermediate heat exchanger (IHX) is presented. The IHX model of SSC-K is similar to that used in the SSC-L, except for some changes required for the pool-type configuration of reactor vessel. In Chapter 5, an electromagnetic (EM) pump is modeled as a component. There are two pump choices available in SSC-K; a centrifugal pump which was originally imbedded into the SSC-L, and an EM pump which was introduced for the KALIMER design. In Chapter 6, a model of passive safety decay heat removal system(PSDRS) is discussed, which removes decay heat through the reactor and containment vessel walls to the ambient air heat sink. In Chapter 7, models for various reactivity feedback effects are discussed. Reactivity effects of importance in fast reactor include the Doppler effect, effects of sodium density changes, effects of dimensional changes in core geometry. Finally in Chapter 8

  9. Validation of SSC using the FFTF natural-circulation tests

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.; Kennett, R.J.

    1982-01-01

    As part of the Super System Code (SSC) validation program, the 100% power FFTF natural circulation test has been simulated using SSC. A detailed 19 channel, 2 loop model was used in SSC. Comparisons showed SSC calculations to be in good agreement with the Fast Flux Test Facility (FFTF), test data. Simulation of the test was obtained in real time

  10. Sensitive determination of Hg together with Mn, Fe, Cu by combined photochemical vapor generation and pneumatic nebulization in the programmable temperature spray chamber and inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Giersz, Jacek; Bartosiak, Magdalena; Jankowski, Krzysztof

    2017-05-15

    Continuous photo-induced generation of mercury cold vapor has been successfully coupled with conventional pneumatic nebulization in programmable temperature spray chamber (PCVG-PN-PTSC) allowing fast, sensitive and easy multi-element analysis. The applied technique enabled simultaneous determination of non-volatile forming elements (Fe, Cu, Mn) and volatile Hg, while 15% v/v formic acid is present in the sample. PTSC elevated temperature (40°C) causes partial conversion of sample matrix into vapor form, thus improving plasma robustness. The efficiency of Hg vapor generation and its transport to the plasma is close to 100%. Moreover, spray chamber temperature stabilization improved the precision of the measurements (Hg signal RSD below 0.5%). The achieved limit of detection for Hg (90pgmL -1 ) at 194.23nm with no monochromator purge is better by almost two orders of magnitude than that obtained by conventional PN-ICP-OES. On the other hand, LODs for non-vapor forming elements are comparable to those obtained with pneumatic nebulization. The linear dynamic ranges for all examined elements are at least three orders of magnitude up to 1000ngmL -1 . None mutual interference between examined analytes (Hg, Fe, Cu, Mn) has been observed. The method was validated by the analysis of two CRM materials of different matrix composition (waste water ERM CA713 and estuarine sediment ERM CC580) giving satisfactory results. As low as 2 ppb of Hg can he directly determined in waste water. The proposed procedure uses mild reagents and allows for fast multi-element analysis, and matches green chemistry requirements. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. SSC [Superconducting Super Collider] site evaluations

    International Nuclear Information System (INIS)

    1988-11-01

    With this report, the SSC Site Task Force forwards to the Director, Office of Energy Research, US Department of Energy (DOE), its evaluation of the technical criteria and life-cycle costs for the proposed SSC sites judged to be the best qualified. The criteria against which each site was evaluated are those set forth in the Invitation for Site Proposals for the Superconducting Super Collider (DOE/ER-0315) (Invitation) which was prepared by the Task Force and issued in April 1987. The methodology followed by the Task Force in this report and in all other phases of the proposal evaluation has been consistent with the SSC site selection process approved by DOE's Energy System Acquisition Advisory Board (ESAAB). The goal of the site selection process is to identify a site that will permit the highest level of research productivity and overall effectiveness of the SSC at a reasonable cost of construction and operation and with minimial impact on the environment. The Task Force acknowledges that all seven sites are, indeed, highly qualified locations for the construction and operation of the SSC on the basis of technical and cost considerations. In performing its evaluation, which is presented in this paper, the Task Force took an in-depth look at each site on the basis of site visits and extensive technical analyses. A consensus rating for each technical evaluation criterion and subcriterion was developed for each site

  12. Bipolar monolithic preamplifiers for SSC silicon calorimetry

    International Nuclear Information System (INIS)

    Britton, C.L. Jr.; Todd, R.A.; Bauer, M.L.; Kennedy, E.J.; Bugg, W.M.

    1990-01-01

    This paper describes preamplifiers designed specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). Eight different preamplifiers designed for detector capacitances ranging from 20 pF to 500 pF and operating temperatures from 25 degree C to -20 degree C are discussed. The preamplifiers were fabricated with two different high-frequency processes (one with the VTC, Inc. VJ900 process, seven with the Harris Semiconductor VHF Process). The different topologies and their features are discussed in addition to the design methodologies employed. The results for noise, power consumption, speed, and radiation damage effects as well as data for post-damage annealing are presented for the VTC process preamplifier. Simulations for the VHF Process circuits are presented. This work was funded through SSC Generic Detector funding, SSC Detector Subsystem funding, and the Oak Ridge National Laboratory (ORNL) Detector Center

  13. Fixed target facility at the SSC

    International Nuclear Information System (INIS)

    Loken, S.C.; Morfin, J.G.

    1985-01-01

    The question of whether a facility for fixed target physics should be provided at the SSC must be answered before the final technical design of the SSC can be completed, particularly if the eventual form of extraction would influence the magnet design. To this end, an enthusiastic group of experimentalists, theoreticians and accelerator specialists have studied this point. The accelerator physics issues were addressed by a group led by E. Colton whose report is contained in these proceedings. The physics addressable by fixed target was considered by many of the Physics area working groups and in particular by the Structure Function Group. This report is the summary of the working group which considered various SSC fixed target experiments and determined which types of beams and detectors would be required. 13 references, 5 figures

  14. Highlights of the SSC Site Development Plan

    International Nuclear Information System (INIS)

    Sanford, J.R.

    1991-10-01

    This paper summarizes highlights of the Site Development Plan for the Superconducting Super Collider Laboratory. The Plan, sometimes called a Master Plan, was prepared by the architectural and engineering firm for the Laboratory: Parsons Brinckerhoff/Morrison Knudsen (PB/MK) working in association with CRSS. Their task was to interpret the SSC project needs in the context of the Ellis County, Texas site. The team effort was under the direction of Lewis May from CRSS, guided by Robert Sims from the SSC Laboratory. Conceptual drawings are presented in this report

  15. Analysis and design of SSC underground structures

    International Nuclear Information System (INIS)

    Clark, G.T.

    1993-01-01

    This paper describes the analysis and design of underground structures for the Superconducting Super Collider (SSC) Project. A brief overview of the SSC Project and the types of underground structures are presented. Engineering properties and non-linear behavior of the geologic materials are reviewed. The three-dimensional sequential finite element rock-structure interaction analysis techniques developed by the author are presented and discussed. Several examples of how the method works, specific advantages, and constraints are presented. Finally, the structural designs that resulted from the sequential interaction analysis are presented

  16. A data acquisition architecture for the SSC

    International Nuclear Information System (INIS)

    Partridge, R.

    1990-01-01

    An SSC data acquisition architecture applicable to high-p T detectors is described. The architecture is based upon a small set of design principles that were chosen to simplify communication between data acquisition elements while providing the required level of flexibility and performance. The architecture features an integrated system for data collection, event building, and communication with a large processing farm. The interface to the front end electronics system is also discussed. A set of design parameters is given for a data acquisition system that should meet the needs of high-p T detectors at the SSC

  17. First beam extracted from the SSC

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    On the 25th July 1986 the first 2,8 μA 66 MeV proton beam was successfully extracted from the separated sector cyclotron (SSC) at the National Accelerator Centre at Faure, South Africa. The beam has now also been transported for the first time down the high-energy beamline up to the last Faraday cup in front of the neutron therapy vault. A brief description of the extraction system of the SSC, consisting of an electrostatic extraction channel and two septum magnets is given

  18. Analytical solutions to SSC coil end design

    International Nuclear Information System (INIS)

    Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Fulton, H.J.; Lee, G.C.; Cook, J.M.

    1989-03-01

    As part of the SCC magnet effort, Fermilab will build and test a series of one meter model SSC magnets. The coils in these magnets will be constructed with several different end configurations. These end designs must satisfy both mechanical and magnetic criteria. Only the mechanical problem will be addressed. Solutions will attempt to minimize stresses and provide internal support for the cable. Different end designs will be compared in an attempt to determine which is most appropriate for the SSC dipole. The mathematics required to create each end configuration will be described. The computer aided design, programming and machine technology needed to make the parts will be reviewed. 2 refs., 10 figs

  19. Nitrogen system for the SSC

    International Nuclear Information System (INIS)

    McAshan, M.; Thirumaleshwar, M.; Abramovich, S.; Ganni, V.

    1992-10-01

    The Superconducting Super Collider consists of two parallel magnet rings, each 87,120 m in circumference, constructed in a tunnel 25 m to 74 m below ground level. They are operated at a controlled low helium temperature in order to maintain the magnet windings in the superconducting state. To obtain this condition, the magnet cryostat is designed with a high-quality insulation obtained by a high vacuum chamber, multilayer insulation, and thermal shields at nominal temperatures of 84 K and 20 K. Thermal radiation and the conduction heat load through the supports are intercepted and absorbed by the 84-K shield. Liquid nitrogen provides the refrigeration for these loads. The 84-K shield is anchored to two 63.5-mm stainless-steel tubes. One of the tubes, the ''liquid line,'' serves as a conduit in the distribution system of liquid nitrogen. The other tube, the ''vapor line,'' is used to collect the nitrogen vapor generated in the cooling process and to supply this vapor to,the helium refrigerators for precooling. The vapor line may also be used as a continuous cooler by injecting controlled amounts of liquid nitrogen. The nitrogen system consists of nitrogen supplies; ten nitrogen dewars for the collider and two for the High Energy Booster located on the ground at the main shaft entrances; liquid and vapor transfer lines through the shaft to connect the surface and the tunnel systems; and transfer lines to bypass warm equipment sections of the collider. The nitrogen system is expected to operate at steady state condition except for cooldown, warmup, and system repair, for which transients are expected. During normal operation and standby modes of the collider, temperature, pressure, and mass flow are expected to be constant in all circuits of the nitrogen system. The conceptual design requirements for various flow schemes and the engineering considerations are presented in this report

  20. Thermal analysis simulation for a spin-motor used in the advanced main combustion chamber vacuum plasma spray project using the SINDA computer program

    Science.gov (United States)

    Mcdonald, Gary H.

    1990-01-01

    One of the many design challenges of this project is predicting the thermal effects due to the environment inside the vacuum chamber on the turntable and spin motor spindle assembly. The objective of the study is to model the spin motor using the computer program System Improved Numerical Differencing Analyzer (SINDA). By formulating the appropriate input information concerning the motor's geometry, coolant flow path, material composition, and bearing and motor winding characteristics, SINDA should predict temperatures at various predefined nodes. From these temperatures, hopefully, one can predict if the coolant flow rate is sufficient or if certain mechanical elements such as bearings, O ring seals, or motor windings will exceed maximum design temperatures.

  1. Compensation of coupling in the SSC complex

    International Nuclear Information System (INIS)

    Pilat, F.; Bourianoff, G.

    1991-10-01

    This paper will describe a study of the coupling effects and their compensation by means of local depending techniques for some of the accelerators in the SSC Complex. Results concerning corrections and decoupling for the Low Energy and Medium Energy Boosters will be compared to results obtained for the Collider Ring. Some preliminary experimental data about measurement of coupling quantities will also be presented

  2. Status of the SSC superconducting magnet program

    International Nuclear Information System (INIS)

    Peoples, J.

    1988-09-01

    The work that has been done on the SSC dipole over the past year is summarized in this paper, which is divided into four sections: cable development and production, cryostat design, cold mass design, and model magnet testing. 13 refs., 2 figs., 7 tabs

  3. Heavy particle production at the SSC

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Haber, H.E.; Gunion, J.F.

    1984-03-01

    Predictions for the production of heavy quarks, supersymmetric particles, and other colored systems at high energy due to intrinsic twist-six components in the proton wavefunction are given. We also suggest the possibility of using asymmetric collision energies (e.g., via intersecting rings at the SSC) in order to facilitate the study of forward and diffractive particle production processes. 9 references

  4. Dicty_cDB: SSC582 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available SM-cDNA Score E Sequences producing significant alignments: (bits) Value SSC582 (SSC582Q) /CSM/SS/SSC5-D/SSC582Q.Seq.d/ 1061 0.0 SSM2...90 (SSM290Q) /CSM/SS/SSM2-D/SSM290Q.Seq.d/ 1053 0.0 SSK841 (SSK841Q) /CSM/SS/SSK8-B

  5. An industrial cabling machine for the SSC

    International Nuclear Information System (INIS)

    Royet, J.; Armer, R.; Hannaford, R.; Scanlan, R.

    1989-02-01

    The SSC project will need the manufacturing of some 25,000 kilometers of keystoned flat cable. The technical specifications of the various cables to be produced are the result of five years of research and development work at LBL. An experimental cable machine was built and run in the laboratory; many improvements were implemented and tested. Semi-industrial production of the various cables was performed, and the resulting cables were used and tested in the one-meter model magnets and 17.5 meter dipole prototypes. From these experiments an industrial cabler specification was generated and used for an international RFQ. The winner of the contract is Dour Metal, a Belgium company that built the first industrial prototype which is now in a production line at New England Electric Wire Company. In this paper we describe the main characteristics of the machine and give the first industrial production results of superconducting keystoned cable for the SSC project. 4 refs

  6. System engineering in the SSC Linac

    International Nuclear Information System (INIS)

    Tooker, J.F.; Chang, C.R.; Cutler, R.I.; Funk, L.W.; Guy, F.W.; Hale, R.; Leifeste, G.T.; Nonte, J.; Prichard, B.; Raparia, D.; Saadatmand, K.; Sethi, R.C.; Yao, C.G.

    1992-01-01

    The design and construction of the SSC Linac involves various departments within the SSCL and many outside vendors. The adaptive incorporation of system engineering principles into the SSC Linac is described. This involves the development of specification trees with the breakdown and flow of functional and physical requirements from the top level system specifications to the lower level component specifications. Interfaces are defined, which specify and control the interconnections between the various components. Review cycles are presented during which the requirements, evolution of the design, and test plans are reviewed, monitored, and finalized. The Linac specification tree, interface definition, and reviews of the Linac are presented, including typical examples. (Author) 2 refs., 3 tabs

  7. Reactivity feedback models for SSC-K

    Energy Technology Data Exchange (ETDEWEB)

    Han, Do Hee; Kwon, Young Min; Kim, Kyung Du; Chang, Won Pyo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    Safety of KALIMER is assured by the inherent safety of the core and passive safety of the safety-related systems. For the safety analysis of a new reactor design such as KALIMER, analysis models, which are consistent with the design, have to be developed for a plant-wide transient and safety analysis code. Efforts for the development of reactivity feedback models for SSC-K, which is now being developed for the safety analysis of KALIMER, is described in this report. Models for Doppler, sodium density/void, fuel axial expansion, core radial expansion, and CRDL expansion have been developed. Test runs have been performed for the unprotected accident for the verification of the models. Use of KALIMER reactivity coefficients and future development of models for GEM and PSDRS would make it possible to analyze the response of KALIMER under TOP as well as LOF and LOHS accident conditions using SSC-K. (author). 5 refs., 64 figs., 2 tabs.

  8. Silicon calorimetry for the SSC[ Superconducting Supercollider

    International Nuclear Information System (INIS)

    Bertrand, C.; Borchi, E.; Brau, J.E.

    1989-01-01

    SSC experiments will rely heavily on their calorimeters. Silicon calorimetry, which has been introduced in recent years as a useful technology, has many attractive characteristics which may make it a viable option for consideration. The many attractive properties of silicon detectors are reviewed. The relevant present day applications of large areas of silicon detectors are summarize to illustrate the emerging use. The troublesome issue of radiation damage in a high luminosity environment like the SSC is considered with a summary of much of the recent new measurements which help clarify this situation. A discussion of the electronics and a possible mechanical configuration is presented, followed by a summary of the outstanding R and D issues. 31 refs., 11 figs., 3 tabs

  9. Compositeness and QCD at the SSC

    International Nuclear Information System (INIS)

    Barnes, V.; Blumenfeld, B.; Cahn, R.

    1987-01-01

    Compositeness may be signaled by an increase in the production of high transverse momentum hadronic jet pairs or lepton pairs. The hadronic jet signal competes with the QCD production of jets, a subject of interest in its own right. Tests of perturbative QCD at the SSC will be of special interest because the calculations are expected to be quite reliable. Studies show that compositeness up to a scale of 20 to 35 TeV would be detected in hadronic jets at the SSC. Leptonic evidence would be discovered for scales up to 10 to 20 TeV. The charge asymmetry for leptons would provide information on the nature of the compositeness interaction. Calorimetry will play a crucial role in the detection of compositeness in the hadronic jet signal. Deviations from an e/h response of 1 could mask the effect. The backgrounds for lepton pair production seem manageable. 30 refs., 19 figs., 10 tabs

  10. The SSC access shafts calculational study

    International Nuclear Information System (INIS)

    Baishev, I.S.; Mokhov, N.V.; Toohig, T.E.

    1991-06-01

    The SSC generic shaft requirements and access spacing are considered elsewhere. The shafts connecting the ground surface with the underground accelerator tunnel deliver to the surface some portion of the radiation created in the tunnel. The radiation safety problem of access shafts consists of two major questions: Does the dose equivalent at the ground surface exceed permissible limits? If it exceeds those limits, what additional shielding measures are required? A few works deal with this problem for high energy machines. This work is an attempt to answer these questions for the basic types of shafts specific to the SSC magnet delivery, utility and personnel shafts using full-scale Monte-Carlo calculations of the entire process from hadronic cascades in the lattice elements to particles scattered in the tunnel, niches, alcoves, shafts and surface bunkers and buildings. 9 refs., 16 figs., 1 tab

  11. New linac technology - for SSC, and beyond

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1983-01-01

    With recent agreement on the high priority of seeking funding for a Superconducting Super Collider (SSC), it is appropriate to consider the injector linac requirements for such a machine. In so doing, the status of established technique and advantages of near-term R and D with relatively clear payoff are established, giving a base line for some speculation about linac possibilities even further in the future

  12. Neural networks, D0, and the SSC

    International Nuclear Information System (INIS)

    Barter, C.; Cutts, D.; Hoftun, J.S.; Partridge, R.A.; Sornborger, A.T.; Johnson, C.T.; Zeller, R.T.

    1989-01-01

    We outline several exploratory studies involving neural network simulations applied to pattern recognition in high energy physics. We describe the D0 data acquisition system and a natual means by which algorithms derived from neural networks techniques may be incorporated into recently developed hardware associated with the D0 MicroVAX farm nodes. Such applications to the event filtering needed by SSC detectors look interesting. 10 refs., 11 figs

  13. Engineered design of SSC cooling ponds

    International Nuclear Information System (INIS)

    Bear, J.B.

    1993-05-01

    The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project's successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency

  14. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  15. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  16. Characteristics of intermittent fuel sprays

    Science.gov (United States)

    Jawad, B.; Gulari, E.; Henein, N. A.

    1992-03-01

    The spray-tip penetrations and the drop sizes of intermittent fuel sprays were measured by using a modified pulsed optical spray sizer. The average spray tip speeds were determined from simultaneously recorded needle lift signals and obscuration traces. The speeds of a sequence of fuel pulses injected at about 1000 Hz were analyzed to elucidate penetration mechanisms. A correlation that relates penetration distance to time, pressure drop across the nozzle, fuel density, and ambient gas density was obtained. The temporal variations of drop size in penetrating pulses of sprays were measured. The concentration of drops were calculated by combining drop size and obscuration data. The Sauter mean diameter of penetrating fuel drops increased with an increase of the chamber pressure and decreased with an increase of the injection pressure.

  17. Experimental Analysis of Spray Dryer Used in Hydroxyapatite Thermal Spray Powder

    Science.gov (United States)

    Murtaza, Q.; Stokes, J.; Ardhaoui, M.

    2012-09-01

    The spray drying process of hydroxyapatite (HA) powder used as a plasma spray powder on human hip implants was examined. The Niro-Minor mixed spray dryer was studied because it incorporates both co-current and counter-current air mixing systems. The process parameters of the spray drying were investigated: temperature, flow rate of the inlet hot air in the spray dryer, viscosity of feed/HA slurry, and responses (chamber and cyclone powder size, deposition of powder on the wall of spray dryer, and overall thermal efficiency). The statistical analysis (ANOVA test) showed that for the chamber particle size, viscosity was the most significant parameter, while for the cyclone particle size, the main effects were temperature, viscosity, and flow rate, but also their interaction effects were significant. The spray dried HA powder showed the two main shapes were a doughnut and solid sphere shape as a result of the different input.

  18. SSC education: Science to capture the imagination

    International Nuclear Information System (INIS)

    Gadsden, T.; Kivlighn, S.

    1992-01-01

    To the great majority of Americans, science is merely a collection of facts and theories that should (for unknown reasons) be memorized and perhaps even understood in order for one to function as a responsible citizen. Few see science as a way of thinking and questioning and as an approach to learning the secrets of our world. In addition, most children and many adults have a stereotypical view of scientists as studious men in lab coats who spend all their time working alone in dark and smelly chemical or biological laboratories. The Superconducting Super Collider (SSC) totally contradicts such a perception. This great instrument is being created by thousands of scientists, engineers, business people, technicians, administrators, and others, from dozens of nations, working together to realize a shared vision to seek answers to shared questions. The SSCL also provides an opportunity to change the mistaken impressions about science and scientists that have resulted in fewer students pursuing careers in fields related to science. In addition, it will serve as a catalyst to help people understand the roles that scientific thought and inquiry can play in bettering their lives and the lives of their offspring. Recognizing this problem in our society, the creators of the SSC Laboratory made a commitment to use the SSC to improve science education. Consequently, in addition to building the world's premier high-energy physics laboratory, the SSCL has a second goal: creation of a major national and international educational resource. To achieve the latter goal, the Education Office of the SSCL is charged with using the resources of the Laboratory, both during construction and during operation, to improve education in science and mathematics at all levels (prekindergarten through post-doctorate) and for all components of our society (including the general public), in the United States and around the world

  19. SSC lattice database and graphical interface

    International Nuclear Information System (INIS)

    Trahern, C.G.; Zhou, J.

    1991-11-01

    When completed the Superconducting Super Collider will be the world's largest accelerator complex. In order to build this system on schedule, the use of database technologies will be essential. In this paper we discuss one of the database efforts underway at the SSC, the lattice database. The SSC lattice database provides a centralized source for the design of each major component of the accelerator complex. This includes the two collider rings, the High Energy Booster, Medium Energy Booster, Low Energy Booster, and the LINAC as well as transfer and test beam lines. These designs have been created using a menagerie of programs such as SYNCH, DIMAD, MAD, TRANSPORT, MAGIC, TRACE3D AND TEAPOT. However, once a design has been completed, it is entered into a uniform database schema in the database system. In this paper we discuss the reasons for creating the lattice database and its implementation via the commercial database system SYBASE. Each lattice in the lattice database is composed of a set of tables whose data structure can describe any of the SSC accelerator lattices. In order to allow the user community access to the databases, a programmatic interface known as dbsf (for database to several formats) has been written. Dbsf creates ascii input files appropriate to the above mentioned accelerator design programs. In addition it has a binary dataset output using the Self Describing Standard data discipline provided with the Integrated Scientific Tool Kit software tools. Finally we discuss the graphical interfaces to the lattice database. The primary interface, known as OZ, is a simulation environment as well as a database browser

  20. SSC collider dipole magnet end mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M. (Fermi National Accelerator Lab., Batavia, IL (USA)); Leung, K.K. (Superconducting Super Collider Lab., Dallas, TX (USA))

    1991-05-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs.

  1. Measurements of ground motion and SSC dipole vibrations

    International Nuclear Information System (INIS)

    Parkhomchuk, V.V.; Shiltsev, V.D.; Weaver, H.J.

    1993-06-01

    The results of seismic ground measurements at the Superconducting Super Collider (SSC) site and investigations of vibrational properties of superconducting dipoles for the SSC are presented. Spectral analysis of the data obtained in the large frequency band from 0.05 Hz to 2000 Hz is done. Resonant behavior and the dipole-to-ground transform ratio are investigated. The influence of measured vibrations on SSC operations is considered

  2. Full length prototype SSC dipole test results

    International Nuclear Information System (INIS)

    Strait, J.; Brown, B.C.; Carson, J.

    1987-01-01

    Results are presented from tests of the first full length prototype SSC dipole magnet. The cryogenic behavior of the magnet during a slow cooldown to 4.5K and a slow warmup to room temperature has been measured. Magnetic field quality was measured at currents up to 2000 A. Averaged over the body field all harmonics with the exception of b 2 and b 8 are at or within the tolerances specified by the SSC Central Design Group. (The values of b 2 and b 8 result from known design and construction defects which will be be corrected in later magnets.) Using an NMR probe the average body field strength is measured to be 10.283 G/A with point to point variations on the order of one part in 1000. Data are presented on quench behavior of the magnet up to 3500 A (approximately 55% of full field) including longitudinal and transverse velocities for the first 250 msec of the quench

  3. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  4. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    1999-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  5. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  6. Single bunch instabilities in an SSC

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1984-01-01

    In this note coherent instability thresholds are estimated for the SSC and discuss some of the subsequent design restrictions. The various instabilities are set out in a block diagram with the essential features of each. The assumption is made that long wavelength coupled bunch effects can be cured effectively by a feedback system (both longitudinal and transverse) and that the impedance of the feedback system is such as to cancel that of the environment (at low frequency). Alternatively, the long wake field is assumed to be exactly canceled, on the average, by a feedback wake field. This leaves only single bunch effects. Thresholds for fast-blowup are discussed both in the longitudinal and transverse and the transverse mode coupling instability more familiar in electron/positron storage rings is covered. The impedances considered are a broadband impedance and the resistive wall impedance

  7. SSC physics signatures and trigger requirements

    International Nuclear Information System (INIS)

    1985-01-01

    Strategies are considered for triggering on new physics processes on the environment of the SSC, where interaction rates will be very high and most new physics processes quite rare. The quantities available for use in the trigger at various levels are related to the signatures of possible new physics. Two examples were investigated in some detail using the ISAJET Monte Carlo program: Higgs decays to W pairs and a missing energy trigger applied to gluino pair production. In both of the examples studied in detail, it was found that workable strategies for reducing the trigger rate were obtainable which also produced acceptable efficiency for the processes of interest. In future work, it will be necessary to carry out such a program for the full spectrum of suggested new physics

  8. Closed orbit correction in the SSC

    International Nuclear Information System (INIS)

    Bourianoff, G.; Cole, B.; Ferede, H.; Pilat, F.

    1991-01-01

    Most of the techniques associated with closed orbit correction are widely known. The present paper gives a brief description of one such method and discusses the results obtained when it is applied to the SSC collider lattice. The emphasis is on features of the lattice which effect closed orbit correction and it is likely that any of the 8 methods cataloged in a cited reference would yield similar results. The global scheme described here is very robust and easy to apply. The results of three separate studies are briefly described. Typical results for the residual RMS closed orbit in the arc is calculated to be 0.65 mm with peak values of 3 mm

  9. SSC [Superconducting Super Collider] magnet technology

    International Nuclear Information System (INIS)

    Taylor, C.

    1987-09-01

    To minimize cost of the SSC facility, small-bore high field dipole magnets have been developed;some of the new technology that has been developed at several U.S. national laboratories and in industry is summarized. Superconducting wire with high J/sub c/ and filaments as small as 5μm diameter is not produced iwht mechanical properties suitable for reliable cable production. A variety of collar designs of both aluminum and stainless steel have been used in model magnets. A low-heat leak post-type cryostat support system is used and a system for accurate alignment of coil-collar-yoke in the cryostat has been developed. Model magnets of 1-m, 1.8 m, 4.5 m, and 17 m lengths have been build during the past two years. 23 refs., 5 figs., 2 tabs

  10. GIS/FIS development for the SSC

    International Nuclear Information System (INIS)

    Oslin, A.; Butalla, M.

    1992-01-01

    Facility management for a project of the size and complexity of the SSCL is a challenging task. The Facility Information System/Geographic Information System (FIS/GIS) should provide an effective tool for the demanding work ahead. Both the FIS and GIS encompass information that many potential users across multiple disciplines will require for effective facility management. FIS will be integrated with the GIS for applications that involve duplicate needs of graphic and attribute data. In particular, infrastructure networks, environmental monitoring, emergency dispatching, and hazardous materials management have been identified as areas where the two systems will interface. In general, the GIS will manage graphic and attribute information outside the actual structure of the SSCL. The FIS will take over operation of components and networks within the SSCL facility. By providing a method for informed decision-making, implementation of the SSC FIS/GIS will facilitate the tasks involved in managing our Laboratory during all phases of its life

  11. Radiation levels in the SSC interaction regions

    Energy Technology Data Exchange (ETDEWEB)

    Groom, D.E. [ed.

    1988-06-10

    The radiation environment in a typical SSC detector has been evaluated using the best available particle production models coupled with Monte Carlo simulations of hadronic and electromagnetic cascades. The problems studied include direct charged particle dose, dose inside a calorimeter from the cascades produced by incident photons and hadrons, the flux of neutrons and photons backscattered from the calorimeter into a central cavity, and neutron flux in the calorimeter. The luminosity lifetime at the SSC is dominated by collision losses in the interaction regions, where the luminosity is equivalent to losing an entire full-energy proton beam into the apparatus every six days. The result of an average p-p collision can be described quite simply. The mean charged multiplicity is about 110, and the particles are distributed nearly uniformly in pseudorapidity ({eta}) over all the angles of interest. The transverse momentum distribution is independent of angle, and for our purposes may be written as p{perpendicular}exp(-p{perpendicular}/{beta}). The mean value of p{perpendicular} may be as high as 0.6 GeV/c. Most of the radiation is produced by the very abundant low-p{perpendicular} particles. The dose or neutron fluence produced by individual particles in this energy region are simulated over a wide variety of conditions, and several measurements serve to confirm the simulation results. In general, the response (a dose, fluence, the number of backscattered neutrons, etc.) for an incident particle of momentum p can be parameterized in the form Np{sup {alpha}}, where 0.5 < {alpha}< 1.0. The authors believe most of their results to be accurate to within a factor of two or three, sufficiently precise to serve as the basis for detailed designs.

  12. 40 CFR 35.6820 - Conclusion of the SSC.

    Science.gov (United States)

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Requirements for Administering A Superfund State Contract (ssc) § 35.6820 Conclusion of the SSC... (See § 35.6805(i)(4)). (b) After the administrative conclusion of the Superfund State Contract, EPA may...

  13. 40 CFR 35.6805 - Contents of an SSC.

    Science.gov (United States)

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Cooperative Agreements and Superfund State Contracts for Superfund Response Actions Requirements for Administering A Superfund State Contract (ssc) § 35.6805 Contents of an SSC. The... statutes and regulations (of each government entity that is a party to the contract) governing the contract...

  14. Variance component analysis of quantitative trait loci for pork carcass composition and meat quality on SSC4 and SSC11

    NARCIS (Netherlands)

    Wijk, van H.J.; Dibbits, B.W.; Liefers, S.C.; Buschbell, H.; Harlizius, B.; Heuven, H.C.M.; Knol, E.F.; Bovenhuis, H.; Groenen, M.A.M.

    2007-01-01

    In a previous study, QTL for carcass composition and meat quality were identified in a commercial finisher cross. The main objective of the current study was to confirm and fine map the QTL on SSC4 and SSC11 by genotyping an increased number of individuals and markers and to analyze the data using a

  15. Cabling for an SSC silicon tracking system

    International Nuclear Information System (INIS)

    Ziock, H.; Boissevain, J.; Cooke, B.; Miller, W.

    1990-01-01

    As part of the Superconducting Super Collider Laboratory (SSCL) funded silicon tracking subsystem R ampersand D program, we examine the problems associated with cabling such a system. Different options for the cabling plant are discussed. A silicon microstrip tracking detector for an SSC experiment is an extremely complex system. The system consists of approximately 10 7 detector channels, each of which requires a communication link with the outside world and connections to the detector bias voltage supply, to a DC power supply for the onboard electronics, and to an adjustable discrimination level. The large number of channels and the short time between beam interactions (16 nanoseconds) dictates the need for high speed and large bandwidth communication channels, and a power distribution system that can handle the high current draw of the electronics including the large AC component due to their switching. At the same time the constraints imposed by the physics measurements require that the cable plant have absolutely minimal mass and radiation length. 4 refs., 2 figs

  16. Prospects for polarization at RHIC and SSC

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1991-01-01

    In low to medium energy accelerators, betatron tune jumps and vertical orbit harmonic correction methods have been used to overcome the intrinsic and imperfection resonances. At high energy accelerators, snakes are needed to preserve polarization. We analyze the effects of snake resonances, snake imperfections overlapping resonances on the spin depolarization. We discuss also results of recent snake experiments at the IUCF Cooler Ring. The snake can overcome various kinds of spin depolarization resonances. These experiments pointed out further that partial snake can be used to cure the imperfection resonances in low to medium energy accelerators. We also examine various snake designs. A new generalized snake concept allows for two possible configurations. The compact configuration offers the advantages of shorter total snake length and smaller horizontal orbit displacement. The split snake configuration allows for dual functions of a snake and a 90 degree spin rotator at the mid-section of the snake, which provides helicity state collisions. The requirements for obtaining high luminosity polarized protons at high energy colliders, such as RHIC and SSC, are reviewed

  17. Techniques for finding supersymmetry at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, R.M.; Klopfenstein, C.; Wang, E.; Pauss, F.; Gunion, J.F.; Haber, H.E.; Baer, H.; Drees, M.; Tata, X.; Hagiwara, K.

    1987-10-01

    We examine the signatures at the SSC for supersymmetry for much of the (minimal) supersymmetric model parameter space. In particular, we survey the decay modes and signatures of gluinos and squarks. Gluinos (squarks) decay to two (one) jets and a chargino or neutralino (chi-tilde). This chi-tilde may be the (stable) lightest supersymmetric particle, LSP (and lead to missing energy). Or chi-tilde may have a two-body decay to another chi-tilde plus a W, Z or Higgs boson. Finally, it may have a three-body decay to the LSP plus q anti q, e nu, ..mu..nu, ee or ..mu mu... Only for very light gluinos and squarks is the decay mode containing the LSP dominant. In fact, for gluinos and squarks over 500 GeV, the decays to W and Z bosons dominate for much of parameter space. We estimate the backgrounds for the case in which both gluinos decay to Z bosons. The decays of gluinos and squarks which go directly to the LSP lead to very large missing energy. We report the initial results of a study of the backgrounds for this process. 22 refs., 11 figs., 3 tabs.

  18. Superconductor procurement and R and D for SSC

    International Nuclear Information System (INIS)

    Scanlan, R.; Royet, J.; Hannaford, R.; Horler, D.

    1985-06-01

    We describe the results of superconductor procurements for SSC dipole model magnets. Most results will pertain to LBL procurements for the LBL-BNL collaboration; however, where appropriate to complete the SSC data base, reference will be made to material purchased by FNAL and TAC. Also, most of the results to be presented will relate to the conventional SSC conductors, i.e., with filament sizes in the range of 15 to 25 μm. Some information on fine filament NbTi material, such as quantities and delivery schedules, will be presented here; fine filament NbTi R and D is described in another section

  19. Personal extrapolation of CDF test beam use to the SSC

    International Nuclear Information System (INIS)

    Nodulman, L.

    1986-01-01

    The author's personal experience in test beam usage at CDF is used to predict SSC needs at the point of turn-on. It is concluded that the test beam demand will reflect the scale of effort involved in SSC detectors rather than the total number of them. Provision for later expansion is recommended. It is also recommended that the test beam facilities, as well as detector electronics, should reflect the available dynamic range; particularly, a single high energy beam derived from the SSC could be shared by several groups

  20. Geotechnical characterization and construction methods for SSC tunnel excavation

    International Nuclear Information System (INIS)

    Nelson, P.P.; Lundin, T.K.

    1990-06-01

    The site for the Superconducting Super Collider (SSC) facility was selected in 1988 after a nationwide proposal competition. The selected site is located in Ellis County, Texas, surrounding the town of Waxahachie which is about 30 miles (48 km) south of the City of Dallas central business district. This paper will describe the geotechnical conditions anticipated for excavation at the SSC site. A general geologic and geomechanical description of the rock present will be followed by a summary of the site-specific conceptual design for the tunneled components of the SSC machine. The Supercollider project will include about 70 miles (113) km of tunnel excavation

  1. Cloud Chamber

    DEFF Research Database (Denmark)

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber...

  2. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  3. Orbit correction system for the SSC interaction regions

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Pilat, F.; Ritson, D.M.

    1994-01-01

    In this paper we review our design of the orbit correction system for the SSC interaction regions, and discuss the principles of the local orbit correction at the IP. copyright 1994 American Institute of Physics

  4. SSC-K code users manual (rev.1)

    International Nuclear Information System (INIS)

    Kwon, Y. M.; Lee, Y. B.; Chang, W. P.; Hahn, D.

    2002-01-01

    The Supper System Code of KAERI (SSC-K) is a best-estimate system code for analyzing a variety of off-normal or accidents in the heat transport system of a pool type LMR design. It is being developed at Korea Atomic Energy Research Institution (KAERI) on the basis of SSC-L, originally developed at BNL to analyze loop-type LMR transients. SSC-K can handle both designs of loop and pool type LMRs. SSC-K contains detailed mechanistic models of transient thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, coolant, fuel elements, and structures to accident conditions. This report provides a revised User's Manual (rev.1) of the SSC-K computer code, focusing on phenomenological model descriptions for new thermal, hydraulic, neutronic, and mechanical modules. A comprehensive description of the models for pool-type reactor is given in Chapters 2 and 3; the steady-state plant characterization, prior to the initiation of transient is described in Chapter 2 and their transient counterparts are discussed in Chapter 3. Discussions on the intermediate heat exchanger (IHX) and the electromagnetic (EM) pump are described in Chapter 4 and 5, respectively. A model of passive safety decay heat removal system (PSDRS) is discussed in Chapter 6, and models for various reactivity feedback effects are discussed in Chapter 7. In Chapter 8, constitutive laws and correlations required to execute the SSC-K are described. New models developed for SSC-K rev.1 are two dimensional hot pool model in Chapter 9, and long term cooling model in Chapter 10. Finally, a brief description of MINET code adopted to simulate BOP is presented in Chapter 11. Based on test runs for typical LMFBR accident analyses, it was found that the present version of SSC-K would be used for the safety analysis of KALIMER. However, the further validation of SSC-K is required for real applications. It is noted that the user's manual of SSC-K will be revised later with the

  5. SSC-K code user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y.M.; Lee, Y.B.; Chang, W.P.; Hahn, D

    2000-07-01

    The Supper System Code of KAERI (SSC-K) is a best-estimate system code for analyzing a variety of off-normal or accidents in the heat transport system of a pool type LMR design. It is being developed at Korea Atomic Energy Research Inititution (KAERI) on the basis of SSC-L, originally developed at BNL to analyze loop-type LMR transients. SSC-K can handle both designs of loop and pool type LMRs. SSC-K contains detailed mechanistic models of transient thermal, hydraulic, neutronic, and mechanical phenomena to describe the response of the reactor core, coolant, fuel elements, and structures to accident conditions. This report provides an overview of recent model developmentsvfor the SSC-K computer code, focusing on phenomenological model descriptions for new thermal, hydraulic, neutronic, and mechnaical modules. A comprehensive description of the models for pool-type reactor is given in Chapters 2 and 3; the steady-state plant characterization, prior to the initiation of transient is described in Chapter 2 and their transient counterparts are discussed in Chapter 3. In Chapter 4, a discussion on the intermediate heat exchanger (IHX) is presented. The IHX model of SSC-K is similar to that used in the SSC-L, except for some changes required for the pool-type configuration of reactor vessel. In Chapter 5, an electromagnetic (EM) pump is modeled as a component. There are two pump choices available in SSC-K; a centrifugal pump which was originally imbedded into the SSC-L, and an EM pump which was introduced for the KALIMER design. In Chapter 6, a model of passive safety decay heat removal system(PSDRS) is discussed, which removes decay heat through the reactor and containment vessel walls to the ambient air heat sink. In Chapter 7, models for various reactivity feedback effects are discussed. Reactivity effects of importance in fast reactor include the Doppler effect, effects of sodium density changes, effects of dimensional changes in core geometry. Finally in Chapter 8

  6. Searching for supersymmetry at the SSC

    International Nuclear Information System (INIS)

    Dawson, S.; Savoy-Navarro, A.; Alverson, G.

    1984-10-01

    Supersymmetric (SUSY) models have generated increasing amounts of attention in recent years as a means of understanding the roles of scalar particles in a field theory. Since supersymmetry connects fermions and bosons in a natural framework, theorists are hopeful that it will reduce the freedom surrounding fermions and scalars in the Weinberg-Salam model. No satisfactory model exists at this time, but the structure of the supersymmetric algebra is sufficiently attractive to warrant a serious study of its consequences. It is possible to make a great many predictions which are independent of the choice of a specific model. In this report we make a detailed attempt to study the experimental problems posed by supersymmetric theories and to analyze the capabilities of an SSC to find the many new particles predicted by these theories. The plan of this report is as follows. The present theoretical situation of supersymmetric phenomenology is discussed, and the results contained in the literature are briefly reviewed. The experimental signatures for the production of various SUSY particles are examined with varying assumptions about the SUSY masses and decay scenarios. The background from known physics to events containing the new SUSY particles is discussed. We pay particular attention to the two jet background. A discussion of the characteristics of events containing SUSY particles is given, including the E/sub t/ missing spectra and the average number of jets per event. Trigger requirements necessary to identify SUSY particles are considered. The results of two detector simulations are presented: one is a classical 4π detector for which we have used the CDF simulation package and the other is a simple 4π calorimeter. Finally, a Monte Carlo written by R.M. Barnett and H. Haber is discussed, and their results are compared with those obtained from ISAJET. 14 references, 30 figures

  7. Underground measurements of seismic vibrations at the SSC site

    International Nuclear Information System (INIS)

    Shiltsev, V.D.; Parkhomchuk, V.V.; Weaver, H.J.

    1995-01-01

    The results of underground measurements of seismic vibrations at the tunnel depth of the Superconducting Super Collider (SSC) site are presented. Spectral analysis of the data obtained in the frequency band from 0.05 Hz to 1500 Hz is performed. It is found that amplitudes of ambient ground motion are less than requirements for the Collider, but cultural vibrations are unacceptably large and will cause fast growth of transverse emittance of the SSC beams

  8. SSC superconducting dipole magnet cryostat model style B construction experience

    International Nuclear Information System (INIS)

    Engler, N.H.; Bossert, R.C.; Carson, J.A.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Niemann, R.C.; Sorensen, D.; Zink, R.

    1989-03-01

    A program to upgrade the full scale SSC dipole magnet cryostat model function and assembly methods has resulted in a series of dipole magnets designated as style B construction. New design features and assembly techniques have produced a magnet and cryostat assembly that is the basis for Phase 1 of the SSC dipole magnet industrialization program. Details of the assembly program, assembly experience, and comparison to previous assembly experiences are presented. Improvements in magnet assembly techniques are also evaluated. 6 refs., 5 figs

  9. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  11. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  12. CHARACTERIZATION OF DIESEL SPRAY IMAGES USING A SHAPE PROCESSING METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cecile Petit

    2011-05-01

    Full Text Available In Diesel engines, a key element in achieving a clean and efficient combustion process is a proper fuel-air mixing, which is a consequence of the fuel spray development and fuel-air interaction inside the engine combustion chamber. The spray structure and behavior are classically described by the length (penetration and width (angle of the spray plume but these parameters do not give any clue on the geometrical injection center and on the spray symmetry. The purpose of this paper is to find out original tools to characterize the Diesel spray: the virtual spray origin is the geometrical injection center, which may (or may not coincide with the injector axis. Another interesting point is the description of the Diesel spray in terms of symmetry: the spray plume internal and external symmetry characterize the spray and the injector performance. Our approach is first to find out the virtual spray origin: after the image segmentation, the spray is coded with the Freeman code and with an original shape coding from which the moments are derived. The symmetry axes are then computed and the spray plumes are discarded (or not for the virtual spray origin computation, which is derived from a Voronoi diagram. The last step is the internal and external spray plume symmetry characterization thanks to correlation and mathematical distances.

  13. Effects of Ambient Gas Pressure on the Breakup of Sprays in Like-Doublet and Swirl Coaxial Injectors

    National Research Council Canada - National Science Library

    Yoon, Youngbin; Jeung, In-Seuk

    2004-01-01

    .... Two regimes are found: outer mixing injection and emulsion injection. In the case of single inner oxidizer spray, the spray angle and breakup length decrease as the ambient chamber pressure increases...

  14. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. The Super Fixed Target beauty facility at the SSC

    International Nuclear Information System (INIS)

    Lau, Kwong

    1991-01-01

    The rationale for pursuing beauty physics at the SSC in a fixed target configuration is described. The increased beauty production cross section at the SSC, combined with high interaction rate capability of the proposed detector, results in 10 10-11 produced BB events per year. The long decay length of the B hadrons (≅ 10 cm) allows direct observation of B decays in the high resolution silicon microstrip vertex detector. To optimize the operation of the proposed beauty spectrometer and the SSC, parasitic extraction of attendant or artificially generated large amplitude protons using crystal channeling is proposed and explored. The large sample of fully reconstructed B events allows detailed studies of various CP violating decays with requisite statistics to confront the standard model. The CP physics potential of the proposed experiment is evaluated and compared with alternative approaches, such as symmetric e + e - B Factories and specialized hadron colliders

  19. An engineering design network for SSC detector development

    International Nuclear Information System (INIS)

    DiGiacomo, N.J.

    1990-01-01

    The detector systems that are being proposed to exploit the capabilities of the SSC are of a scale and scope that will make them among the most complex devices ever built. To successfully design and build these systems over the next decade, the authors must make use of integrated state of the art computer aided engineering and design (CAE/CAD) tools that have been developed and employed in industry. The challenge is to made these tools and associated engineering resources available to the spectrum of institutions - large and small universities, industries and national labs - involved in SSC detector development in such a way that each may contribute and participate in the most effective manner. The authors believe that powerful workstations running sophisticated modeling, analysis and simulation software, linked by high speed data networks and governed by modern configuration management methods offer the ideal means of arriving at the optimum detector configuration for physics at the SSC

  20. Preliminary design implications of SSC fixed-target operation

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1984-06-01

    This paper covers some of the accelerator physics issues relevant to a possible fixed-target operating mode for the Superconducting Super Collider (SSC). In the brief time available, no attempt has been made to design this capability into the SSC. Rather, I have tried to evaluate what the performance of such a machine might be, and to indicate the hardware implications and extraction considerations that would be part of an actual design study. Where appropriate, parameters and properties of the present LBL design for the SSC have been used; these should be taken as being representative of the general class of small-aperture, high-field colliders being considered by the accelerator physics community. Thus, the numerical examples given here must ultimately be reexamined in light of the actual parameters of the particular accelerator being considered

  1. Robert Chambers

    NARCIS (Netherlands)

    K. Biekart (Kees); D.R. Gasper (Des)

    2013-01-01

    textabstractProfessor Robert Chambers is a Research Associate at the Institute of Development Studies (IDS), University of Sussex (Brighton, UK), where he has been based for the last 40 years, including as Professorial Research Fellow. He became involved in the field of development management in the

  2. SSC Tenant Meeting: NASA Near Earth Network (NEN) Overview

    Science.gov (United States)

    Carter, David; Larsen, David; Baldwin, Philip; Wilson, Cristy; Ruley, LaMont

    2018-01-01

    The Near Earth Network (NEN) consists of globally distributed tracking stations that are strategically located throughout the world which provide Telemetry, Tracking, and Commanding (TTC) services support to a variety of orbital and suborbital flight missions, including Low Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO), highly elliptical, and lunar orbits. Swedish Space Corporation (SSC), which is one of the NEN Commercial Service Provider, has provided the NEN with TTC services support from its Alaska, Hawaii, Chile and Sweden. The presentation will give an overview of the NEN and its support from SSC.

  3. Comparison on Piston Bowl Shape Effect to Diesel Spray Development

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Nizam Mohammed, Akmal; Faisal Hushim, Mohd; Sadikin, Azmahani Binti; Norrizam Mohmad Ja'at, Md; Khalid, Amir

    2017-08-01

    Piston bowl geometry plays an important role on the combustion characteristics of diesel engine. There are various design of piston bowl in which each utilize the shape geometry to obtaining the specific required combustion characteristics. This objective of this study is to compare the effect of certain piston bowl shapes, namely Toroidal and Flat Bottom to diesel spray development. Simulation were done using ANSYS FLUENT 16.1 software Computing Fluid Dynamics (CFD). The simulation was performed on different injection pressure of 40 MPa and 100 MPa, with the ambient temperature in the combustion chamber that holding the piston is at 500K and 900K. Results showed that if the pressure and ambient temperature increases, the spray body expand outward from the spray center axis with wider spray cone angle. In addition, the geometry shape of the piston bowl influences the spray velocity distribution and the spray propagation path, indirectly effect the spray area and mass fraction distribution.

  4. Nicotine Nasal Spray

    Science.gov (United States)

    Nicotine nasal spray is used to help people stop smoking. Nicotine nasal spray should be used together with a ... support groups, counseling, or specific behavior change techniques. Nicotine nasal spray is in a class of medications ...

  5. Partial lifetime test of an SSC Collider dipole

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.; Ganetis, G.

    1993-01-01

    Over a period of ten months, a 15 m-long, 50 mm-aperture superconducting SSC Collider dipole was taken through a series of thermal and power cycles to check for changes in performance. One quench below operating current was experienced during this period. Small changes in the coil preload and certain harmonics were observed

  6. Calculation of injection and extraction orbits for the IPCR SSC

    International Nuclear Information System (INIS)

    Goto, A.; Yano, Y.; Kishida, N.; Nakanishi, N.; Wada, T.

    1982-01-01

    Calculations of beam trajectories in the injection and extraction systems for the IPCR SSC were done and the characteristics of those elements were determined. Beam centering for single turn extraction by use of first harmonic fields were also studied. The rather simple conditions at the injection point for a well-centered acceleration orbit are also discussed

  7. Searching for quark and lepton compositeness at the SSC

    International Nuclear Information System (INIS)

    Albright, C.H.; Bars, I.; Blumenfeld, B.

    1984-01-01

    We examine a variety of issues connected with searching for compositeness at the SSC. These include effects of resolution, alternative methods of looking for deviations from QCD predictions, advantages of polarized beams, and effects of compositeness on photon detection. We also consider how physics may look if the compositeness scale is as low as a few TeV. 17 refs

  8. A summary of SSC dipole magnet field quality measurements

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Willen, E.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.; Turner, J.; Yu, Y.; Zhao, Y.; Zheng, H.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Wake, M.; Royet, J.; Scanlan, R.; Taylor, C.

    1992-01-01

    This paper reports results of field quality measurements of the initial 15 m-long, 50 mm- aperture SSC Collider dipoles tested at Brookhaven National Laboratory and Fermi National Laboratory. These data include multipole coefficients and the dipole angle at room temperature and 4.35 K, 4.35 K integral field measurements, and time-dependent effects. Systematic uncertainties are also discussed

  9. Quality system design and development for SSC superconductor cable

    International Nuclear Information System (INIS)

    Fuse, M.; Saito, S.; Sashida, T.; Koganeya, M.; Ayai, N.; Takai, K.; Nagata, M.

    1992-01-01

    In order to develop a quality system for the SSC superconductor cable, Sumitomo Electric followed a very formal, systematic approach, comparable to those employed for such major projects as developing a new car model. This paper presents our approach, as well as the resulting computerized environment for quality assurance (QA)

  10. The SSC dipole: Its conceptual origin and early design history

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1990-06-01

    The magnet system for the Superconducting Super Collider will likely remain the most ambitious -- and challenging -- application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winner in an early technical showdown that occupied the fledgling SSC project. However, some of its gross features can be traced back to three path-breaking superconducting accelerator initiatives under way a decade earlier -- on the East Coast, on the West Coast, and in the Midwest. Other features have a still earlier legacy. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press and still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos θ) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet ''style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG

  11. The SSC dipole: Its conceptual origin and early design history

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1992-05-01

    The magnet system for the Superconducting Super Collider will likely remain the most ambitions-and challenging-application of superconducting technology for the foreseeable future. The centerpiece of the system is the behemoth collider dipole magnet. Its design, still evolving in its detailed features, dates from the mid-1980's when it emerged as the winter in an early technical showdown that occupied the fledgling SSC project. In the present report we chronicle the origins and chief milestones in the development of certain SSC dipole design concepts. Unfortunately, the chronicle must remain incomplete, with the design not yet frozen as we go to press and still subject to important modifications as the SSC Laboratory settles in near its future home in Ellis County, Texas, hard on the heels of a wide-ranging design review in the closing days of the SSC Central Design Group in (CDG) Berkeley. Be that as it may, in what follows we concentrate on the early years in an attempt to recapitulate the birth of the dipole, taking as our point of departure the SSC Reference Designs Study (RDS) of 1984. In Section 3 we touch on the background for the various RDS options, including ISABELLE/CBA and the Tevatron. In Section 4 the narrative focuses on the two final protagonists, a high-field cosine theta (cos θ) magnet and a low-field superferric magnet. Section 5 recounts the circumstances surrounding the selection of a particular magnet ''style'' for further development, and the ups and downs of the first model magnets. We conclude with a smattering of progress highlights in refining the design during the final push under the reign of the CDG. Beyond that, the ongoing chronicle must be left for others to amplify and complete

  12. Anti-proteinase 3 antibodies in diffuse systemic sclerosis (SSc with normotensive renal impairment: is it suggestive for an overlapping between SSc and idiopathic vasculitis?

    Directory of Open Access Journals (Sweden)

    V. Campanella

    2011-09-01

    Full Text Available Objective. To test the prevalence of anti-neutrophil cytoplasmic antibodies (ANCA in systemic sclerosis (SSc and to verify a possible association of ANCA with normotensive renal involvement in SSc. Patients and methods: 51 patients affected by SSc, 35 with diffuse scleroderma (dSSc and 16 with limited scleroderma (lSSc, were tested for ANCA by indirect immunofluorescence (IIF on human ethanol and formalin-acetone-fixed granulocytes (before and after DNase treatment, by conventional enzyme linked immuno-sorbent assay (ELISA and by capture-ELISA. Results. Six out of 51 selected SSc patients had ANCA by IIF (11.7% and five presented a perinuclear/nuclear atypical ANCA pattern. In all cases we only found anti-proteinase3 (aPR3 antibodies. All ANCA positive patients had diffuse form of SSc (17.1%, all were anti-Scl70 positive (aScl70, five patients had proteinuria, three had microscopic haematuria. All ANCA positive patients were normotensive with normal renin plasma levels, the mean erythrocyte sedimentation rate (ESR was higher in this group compared to the other SSc patients. Conclusions. Our study shows that aPR3 is not rare in dSSc. According to the clinical and serological findings and to the recent literature, we can hypothesise that when ANCA are found in SSc, an overlapping of scleroderma with systemic necrotizing vasculitis should be suspected.

  13. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  14. Electroweak and flavor physics: Implications for the SSC. Second annual SSCL spring conference

    International Nuclear Information System (INIS)

    1991-01-01

    This book is a collection of vugraphs for the papers given at the conference. The following topics are covered: neutrino physics and dark matter; solar neutrinos; kaon decays; future prospects in high energy physics (non SSC); bottom quark physics; status and physics aims of SSC; and SSC possibilities for B physics

  15. An automated coil winding machine for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Kamiya, S.; Iwase, T.; Inoue, I.; Fukui, I.; Ishida, K.; Kashiwagi, S.; Sato, Y.; Yoshihara, T.; Yamamoto, S.; Johnson, E.; Gibson, C.

    1990-01-01

    The authors have finished the preliminary design of a fully automated coil winding machine that can be used to manufacture the large number of SSC dipole magnets. The machine aims to perform all coil winding operations including coil parts inserting without human operators at a high productive rate. The machine is composed of five industrial robots. In order to verify the design, they built a small winding machine using an industrial robot and successfully wound a 1 meter long coil using SSC dipole magnet wire. The basic design for the full length coil and the robot winding technique are described in this paper. A fully automated coil winding machine using standard industrial components would be very useful if duplicate production lines are used. 5 figs., 1 tab

  16. Physics goals of the Superconducting SuperCollider (SSC)

    International Nuclear Information System (INIS)

    Kane, G.L.

    1993-01-01

    In the 1980s a strong concensus emerged that the physical goals of the Superconducting SuperCollider (SSC) were clear enough to justify making it the highest priority scientifically of the US particle physics community. That these goals could be achieved followed from the research of a number of people, and in turn was founded on the success of the Standard Model of particle physics. This article reviews these goals, including the impact of recent new data, ideas and calculations. At every stage, results from the Snowmass workshops (each three weeks long, with several hundred participants, in 1982, 1984, 1986, 1988 and 1990) have greatly clarified our understanding. Because of the validity of the Standard Model, we know that some fundamental new results will be obtained at the SSC even though we do not know what form those results will take. (Author)

  17. SSC dipole magnet measurement and alignment using laser technology

    International Nuclear Information System (INIS)

    Lipski, A.; Carson, J.A.; Robotham, W.F.

    1990-06-01

    Advancing into the prototype production stage of the SSC dipole magnets has introduced the need for a reliable, readily available, accurate alignment measuring system which gives results in real time. Components and subassemblies such as the cold mass and vacuum vessel are being measured for various geometric conditions such as straightness and twist. Variations from nominal dimensions are also being recorded so they can be compensated for during the final assembly process. Precision laser alignment takes specific advantages of the greatest accuracy. When combined with an optically produced perpendicular plane, this results in a system of geometric references of unparalleled accuracy. This paper describes the geometric requirements for SSC dipole magnet components, sub and final assemblies as well as the use of laser technology for surveying as part of the assembly process

  18. Gluino decays to W and Z bosons at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Baer, H.; Barnett, R.M.; Drees, M.; Gunion, J.F.; Haber, H.E.; Karatas, D.L.; Tata, X.R.

    1987-08-01

    It is shown that, for a wide range of parameters, the dominant decays of gluinos with mass greater than or equal to 500 GeV contain gauge bosons, W/sup + -/ and Z, among their decay products. The pair production of heavy gluinos at the SSC is thus characterized by events with 3-4 hard jets and pairs of gauge bosons. The cleanest signature comes from the case where both gluinos decay into Z followed by Z ..-->.. ll-bar which leads to -- 50-100 4-lepton + multijet events annually at the SSC. In addition, 1600 trilepton + multijet and about 6000 dilepton + multijet events may be expected from WZ and WW sources. The backgrounds to these signals are estimated to be small.

  19. Observations on LEP with a view to SSC

    International Nuclear Information System (INIS)

    Toohig, T.E.

    1984-01-01

    From 24-29 October 1984 a visit was made to the LEP project at CERN with a view to extracting from the LEP planning and experience what might be useful in planning an SSC. With a circumference of 26.7 km, in a reasonably densely-populated area outside the boundaries of the CERN site, LEP already faces most of the problems of environment, public relations, maintenance and operation that will be faced by an SSC project. Information is presented under the headings of: (1) radiation protection; (2) heating, ventilation, and airconditioning; (3) electrical power distribution; (4) LEP experiments/UA1, UA2; (5) civil; (6) infrastructure installation; (7) survey; (8) safety; and (9) LEP controls. Each report lists the CERN individuals who generously provided their insights and help

  20. Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF

    Energy Technology Data Exchange (ETDEWEB)

    Rembelski, D.; Viricelle, J.P.; Rieu, M. [ENSMSE, Centre SPIN, departement PRESSIC, 42023 Saint-Etienne (France); Combemale, L. [ICB, 21078 Dijon (France)

    2012-04-15

    Four cathode materials for single chamber solid oxide fuel cell (SC-SOFC) [La{sub 0.8}Sr{sub 0.2}MnO{sub 3-{delta}} (LSM), Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF), Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} (SSC), and La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF)] were investigated regarding their chemical stability, electrical conductivity, catalytic activity, and polarization resistance under air and methane/air atmosphere. Electrolyte-supported fuel cells, with Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}} (CGO) electrolyte and a Ni-CGO anode, were tested in several methane/air mixtures with each cathode materials between 625 and 725 C. These single cells were not optimized but only designed to compare the four studied cathodes. The decrease of methane-to-oxygen ratio from 2 to 0.67 strongly increased the performance of fuel cells for all cathode materials but the effect of temperature was not always significant. Cells with SSC, BSCF, and LSCF have shown a maximum power density about 20 mW cm{sup -2} while the cell with LSM has given only 5 mW cm{sup -2}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. SSC 40 mm cable results and 50 mm design discussions

    International Nuclear Information System (INIS)

    Christopherson, D.; Capone, D.; Hannaford, R.; Remsbottom, R.; Jayakumar, R.; Snitchler, G.; Scanlan, R.; Royet, J.

    1990-09-01

    A summary of the cable produced for the 1990 40 mm Dipole Program is presented. The cable design parameters for the 50 mm Dipole Program are discussed, as well as portions of the SSC specification draft. Considerations leading to the final cable configuration and the results of preliminary trials are included. The first iteration of a strand mapping program to automate cable strand maps is introduced. 7 refs., 2 figs., 1 tab

  2. A summary of SSC dipole magnet field quality measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wanderer, P.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Willen, E. [Brookhaven National Lab., Upton, NY (United States); Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.; Turner, J.; Yu, Y.; Zhao, Y.; Zheng, H. [Superconducting Super Collider Lab., Dallas, TX (United States); Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Wake, M. [Fermi National Accelerator Lab., Batavia, IL (United States); Royet, J.; Scanlan, R.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)

    1992-03-01

    This paper reports results of field quality measurements of the initial 15 m-long, 50 mm-aperture SSC Collider dipoles tested at Brookhaven National Laboratory and Fermi National Laboratory. These data include multipole coefficients and the dipole angle at room temperature and 4.35 K, 4.35 K integral field measurements, and time-dependent effects. Systematic uncertainties are also discussed.

  3. Irradiation of fiber optics in the SSC tunnel

    International Nuclear Information System (INIS)

    Dickey, C.E.

    1990-03-01

    The salient question is not whether optical fiber will survive in the Super Conducting Supercollider (SSC) tunnel, but rather how long will it survive. Current estimates indicate that single mode fiber under ideal conditions will have an expected lifetime of at least 25 years. Future development of optical fiber will lead to longer service lifetimes and increased radiation hardness. But conservatively speaking, current production optical fibers can probably not be depended upon for more than 25 years of service even under ideal conditions

  4. Wire scanner data analysis for the SSC Linac emittance measurement

    International Nuclear Information System (INIS)

    Yao, C.Y.; Hurd, J.W.; Sage, J.

    1993-07-01

    The wire scanners are designed in the SSC Linac for measurement of beam emittance at various locations. In order to obtain beam parameters from the scan signal, a data analysis program was developed that considers the problems of noise reduction, machine modeling, parameter fitting, and correction. This program is intended as a tool for Linac commissioning and also as part of the Linac control program. Some of the results from commissioning runs are presented

  5. Chamber transport

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2001-01-01

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system

  6. An update on passive correctors for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-05-01

    The concept of correction of the magnetization sextupole became a topic of discussion as soon as it was realized that superconductor magnetization could have a serious effect on the SSC beam during injection. Several methods of correction were proposed. These included (1) correction with active bore tube windings like those on the HERA machine which correct out magnetization sextupole and the sextupole due to iron saturation, (2) correction with persistent sextupole windings mounted on the bore tube (3) correction using passive superconductor (4) correction using ferromagnetic material, and (5) correction using oriented magnetized materials. This report deals with the use of passive superconductor to correct the magnetization sextupole. Two basic methods are explored in this report: (1) One can correct the magnetization sextupole by changing the diameter of the superconductor filaments in one or more blocks of the SSC dipole. (2) One can correct the magnetization sextupole and decapole by mounting passive superconducting wires on the inside of the SSC dipole coil bore. In addition, an assessment of the contribution of each conductor in the dipole to the magnetization sextupole and decapole is shown. 38 refs, 25 figs., 15 tabs

  7. Comparative study of macroscopic spray parameters and fuel atomization behaviour of SVO (Jatropha, its biodiesel and blends

    Directory of Open Access Journals (Sweden)

    Agarwal Avinash K.

    2013-01-01

    Full Text Available The combustion and emission characteristics of vegetable oils and derivatives are quite different from mineral diesel due to their relatively high viscosity, density and vaporisation characteristics. These properties affect the fuel spray and the interaction of the spray with air in the combustion chamber therefore it is important to analyze the spray characteristics e.g. spray tip penetration, spray cone angle, spray area and fuel atomization. Optical techniques for spray visualization and image processing are very efficient to analyse the comparative spray parameters for these fuels. Present research investigates the effect of chamber pressure on spray characteristics of Jatropha SVO (J100/ blends (J5, J20, and Jatropha biodiesel (JB100/ blends (JB5, JB20 vis-a-vis baseline data of mineral diesel. Experiments were performed for all these fuels/ blends injected in a constant volume spray visualisation chamber (cold chamber at four different chamber pressure (1, 4, 7 and 9 bar respectively. It was found that J100 and JB100 have the highest spray tip penetration, cone angle and the spray area followed by J20, J5, mineral diesel and JB20, JB5, mineral diesel respectively however J20, J5 and JB20, JB5 have better atomization characteristics as compared to J100 and JB100 respectively. Cone angle was higher for biodiesel blends as compared to SVO blends at atmospheric pressure however as the chamber pressure was increased to 9 bars, it became almost equal for both fuel types. Spray parameters are found to be excellent for mineral diesel followed by Jatropha biodiesel and Jatropha oil. It was found that atomization of fuel becomes superior with increasing chamber pressure.

  8. Advanced technology application for combustion chamber concepts

    Science.gov (United States)

    Tygielski, Kathy S.

    1992-01-01

    NASA-Marshall is engaged in the development of an Advanced Main Combustion Chamber under the aegis of the Earth-to-Orbit Propulsion Technology Program. AMCC is to be a robust and highly reliable combustion-chamber prototype costing one-third as much as current designs of comparable performance; it will be associated with a reduction of fabrication time by one-half. Attention is presently given to the three component-manufacturing processes used: single-piece investment casting for the structural jacket and manifolds; vacuum plasma spraying, for the combustion liner, and an alternative, platelet-compounded liner.

  9. Radiation damage testing at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Chinowsky, W.; Thun, R.

    1990-06-01

    A Task Force on Radiation Damage Testing met at the SSC Laboratory on March 5--6, 1990. This Task Force was asked to assess the availability of appropriate facilities for radiation damage tests of SSC detector materials and components. The Task Force was also instructed to review the techniques and standards for conducting such tests. Semiconductors were considered separately from other detector materials. Radiation damage test of electronic devices generally require exposures to both ionizing radiation and neutrons, whereas non-electric components such as plastic scintillating materials, adhesives, cable insulation, and other organic polymers are adequately tested with ionizing radiation only. Test standards are discussed with respect to irradiation techniques, environmental factors, dosimetry, and mechanisms whereby various materials are damaged. It is emphasized that radiation sources should be chosen to duplicate as much as possible the expected SSC environment and that the effects from ionizing particles and from neutrons be investigated separately. Radiation damage tests at reactors must be designed with particular care complex spectra of neutrons and gamma rays are produced at such facilities. It is also essential to investigate dose-rate effects since they are known to be important in many cases. The required irradiations may last several months and are most easily carried out with dedicated radioactive sources. Environmental factors such as the presence of oxygen when testing plastic scintillators, or temperature when measuring semiconductor annealing effects, must also be taken into account. The importance of reliable dosimetry is stressed and suitable references cited. Finally, it is noted that an understanding of the mechanisms for radiation damage in semiconductor and other materials is important in planning irradiations and evaluating results

  10. A detector for bottom physics at the SSC

    International Nuclear Information System (INIS)

    Skubic, P.

    1990-01-01

    A detector concept optimized to study B-physics at the SSC will be described. An overview of the detector design, including Monte Carlo simulations, and designs for individual detector sub-systems will be presented. The status and future plans of detector R ampersand D programs associated with the sub-systems will be described including: a solid state microvertex detector using pixel and double-sided silicon microstrip detectors; a straw tube tracking system with fast TDC; VLSI readout electronics and data acquisition system. Areas where there is close collaboration with industry will be emphasized. 11 refs., 7 figs

  11. Design features of the SSC [Superconducting Super Collider] dipole magnet

    International Nuclear Information System (INIS)

    Willen, E.; Cottingham, J.; Ganetis, G.

    1989-01-01

    The main ring dipole for the SSC is specified as a high performance magnet that is required to provide a uniform, 6.6 T field in a 4 cm aperture at minimum cost. These design requirements have been addressed in an R ampersand D program in which the coil design, coil mechanical support, yoke and shell structure, trim coil and beam tube design, and a variety of new instrumentation, have been developed. The design of the magnet resulting from this intensive R ampersand D program, including various measurements from both 1.8 m and 17 m long models, is reviewed. 7 refs., 3 figs

  12. SSC [Superconducting Super Collider] dipole coil production tooling

    International Nuclear Information System (INIS)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs

  13. SSC (Superconducting Super Collider) dipole coil production tooling

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs.

  14. Long term prediction and the SSC (Superconducting Super Collider)

    Energy Technology Data Exchange (ETDEWEB)

    Talman, R.

    1990-09-01

    Successful operation of the Superconducting Supercollider (SSC) will depend on the stable circulation of particles for tens of millions of turns around the rings, in the presence of small nonlinear deflecting fields. One design challenge is to set specifications for the maximum allowable field imperfections of this sort, consistent with the required. stability. Another challenge is to plan for the inclusion of field compensating elements that will ameliorate the effects of errors. The tools'' available for projecting the long term stability are theoretical, both analytic and numerical, and experimental. These aspects are reviewed. 19 refs.

  15. Initial results from 50mm short SSC dipoles at Fermilab

    International Nuclear Information System (INIS)

    Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Coulter, K.; Delchamps, S.; Ewald, K.D.; Fulton, H.; Gonczy, I.; Gourlay, S.A.; Jaffery, T.S.; Kinney, W.; Koska, W.; Lamm, M.J.; Strait, J.B.; Wake, M.; Gordon, M.; Hassan, N.; Sims, R.; Winters, M.

    1991-03-01

    Several short model SSC 50 mm bore dipoles are being built and tested at Fermilab. Mechanical design of these magnets has been determined from experience involved in the construction and testing of 40 mm dipoles. Construction experience includes coil winding, curing and measuring, coil end part design and fabrication, ground insulation, instrumentation, collaring and yoke assembly. Fabrication techniques are explained and construction problems are discussed. Similarities and differences from the 40 mm dipole tooling and management components are outlined. Test results from the first models are presented. 19 refs., 12 figs

  16. Data processing at the SSC with structured neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, K.S.; Sandberg, V.D.; Sharp, D.H.

    1990-01-01

    SSC detectors will place extreme demands on data processing systems. One must reduce the data flux to manageable proportions at the earliest possible stage. This observations has led us to emphasize low-level data processing and track reconstruction. We report progress in three areas: A network compiler has been designed which generates programmable and trainable tree-structured nets; algorithms for track reconstruction have been designed and implemented in such nets; exploratory studies have been made on the use of such nets to carry out low-level processing on hardware components of a central detector. 6 refs., 1 fig.

  17. Debunching and Capture in the LEB for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Mahale, N.; Furman, M.

    1991-05-01

    The authors present the details of the capture process in the Low Energy Booster (LEB) for the SSC. They consider only the longitudinal dynamics. Space charge forces are computed quasistatically. The beam pipe is considered to be perfectly conducting. With respect to maximizing the capture efficiency and minimizing the space charge tune spread, initial few milliseconds are very important. They present only the first few milliseconds of the cycle, during which space charge effects are significant. For the numerical simulation they use the code ESME.

  18. A super fixed target beauty experiment at the SSC

    International Nuclear Information System (INIS)

    Spiegel, L.; Murphy, C.T.; Cox, B.; Arenton, M.; Conetti, S.; Corti, G.; Dukes, C.; Golovatyuk, V.; Lawry, T.; McManus, A.

    1993-01-01

    The observation and precision measurement of CP violation asymmetries and the phase of the CKM matrix is a major objective of B experiments at the SSC. The yields of reconstructed and tagged B decays and the various factors which minimize the dilution factors make measurements of CP asymmetries in the fixed target option known as the SFT more than competitive with much more expensive hadron collider experiments and significantly better than asymmetric e + e - B factories. Moreover, the superior time resolution possible in the SFT configuration allows a precision in the measurement of the CKM matrix element phases possible with the SFT option for various B decay modes

  19. High P/sub T/ detectors for the SSC

    International Nuclear Information System (INIS)

    Trilling, G.H.

    1987-11-01

    Summarized in this report is some of the work done at the recent Workshop on Experiments, Detectors, and Experimental Areas for the Supercollider held at Berkeley. The major goal was to develop an understanding of what complement of detectors would provide the capability for a well-balanced physics program at the SSC. Unlike earlier studies which had emphasized individual components such as tracking, calorimetry, etc., the intention was to focus on complete detectors. The particular detectors discussed in this paper are: the large solenoid detectors, the compact solenoid detectors, the non-magnetic detectors, the dipole detectors and muon detectors. 10 refs., 6 figs., 2 tabs

  20. Tracking requirements for the SSC and silicon strip development

    International Nuclear Information System (INIS)

    DeWitt, J.; Dorfan, D.; Litke, A.; Sadrozinski, H.; Seiden, A.; Weinstein, A.

    1988-11-01

    We quantify the design parameters for a central tracking system capable of good momentum measurements and high reconstruction efficiency for charged particles within 1 TeV jets. We express our results as a set of scaling rules. Based on these rules we outline a silicon strip tracking system which is well matched to the SSC high luminosity environment. Special challenges for the construction of this tracker are in the area of electronics readout. We present initial work we have done in this area. 11 refs., 16 figs., 1 tab

  1. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  2. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  3. Oxymetazoline Nasal Spray

    Science.gov (United States)

    Oxymetazoline nasal spray is used to relieve nasal discomfort caused by colds, allergies, and hay fever. It ... also used to relieve sinus congestion and pressure. Oxymetazoline nasal spray should not be used to treat ...

  4. Production of Energetic Nanomaterials by Spray Flash Evaporation

    OpenAIRE

    Martin Klaumünzer; Jakob Hübner; Denis Spitzer

    2016-01-01

    Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. ...

  5. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  6. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A multi-chambered ionisation detector enables the amount of radiation entering each chamber from a single radioactive, eg β, source to be varied by altering the proportion of the source protruding into each chamber. Electrodes define chambers and an extended radioactive source is movable to alter the source length in each chamber. Alternatively, the source is fixed relative to outer electrodes but the central electrode may be adjusted by an attached support altering the chamber dimensions and hence the length of source in each. Also disclosed are a centrally mounted source tiltable towards one or other chamber and a central electrode tiltable to alter chamber dimensions. (U.K.)

  7. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  8. About the mechanics of SSC dipole magnet prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Spigo, G.; Thompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H. (Magnet Systems Division, Superconducting Super Collider Laboratory, 2550 Beckleymede Ave., Dallas, TX (United States)); Ogitsu, T. (Superconducting Super Collider Laboratory and KEK, National Laboratory for High Energy Physics, 1-1 Oho, Tsukuba-shi, Ibaraki-ken (Japan)); Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E. (Brookhaven National Laboratory, Upton, NY (United States)); Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J. (Fermi National Accelerator Laboratory, Batavia, IL (United States)); Royet, J.; Scanlan, R.; Taylor, C.

    1992-03-11

    During the last two years, nine 4-cm aperture, 17-m-long dipole magnet prototypes were produced by Brookhaven National Laboratory (BNL) under contact with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R D program, carried out in collaboration with Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main-ring dipole magnets. They also lay the groundwork for the 5-cm-aperture dipole magnet program now underway. After reviewing the design features of the BNL 4-cm-aperture, 17-m-long dipole magnets, we describe in detail the various steps of their fabrication. For each step, we discuss the paramaters that need to be mastered, and we compare the values that were achieved for the nine most recent prototypes. The data appear coherent and reproducible, demonstrating that the assembly process is under control. We then analyze the mechanical behavior of these magnets during cooldown and excitation, and we attempt to relate this behavior to the magnet features. The data reveal that the mechanical behavior is sensitive to the collar-yoke interference and that the magnets exhibit somewhat erratic changes in coil end-loading during cooldown.

  9. About the mechanics of SSC dipole magnet prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Spigo, G.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H. (Superconducting Super Collider Lab., Dallas, TX (United States)); Ogitsu, T. (Superconducting Super Collider Lab., Dallas, TX (United States) National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)); Anerella,

    1991-11-01

    During the last two years, nine 4-cm-aperature, 17-m-long dipole magnet prototypes were produced by Brookhaven National Laboratory (BNL) under contract with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R D program, carried out in collaboration the Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main-ring dipole magnets. They also lay the groundwork for the 5-cm-aperture dipole magnet program now underway. After reviewing the design features of the BNL 4-cm-aperature, 17-m-long dipole magnets, we describe in detail the various steps of their fabrication. For each step, we discuss the parameters that need to be mastered, and we compare the values that were achieved for the nine most recent prototypes. The data appear coherent and reproducible, demonstrating that the assembly process is under control. We then analyze the mechanical behavior of these magnets during cooldown and excitation, and we attempt to relate this behavior to the magnet features. The data reveal that the mechanical behavior is sensitive to the collar-yoke interference and that the magnets exhibit somewhat erratic changes in coil end-loading during cooldown.

  10. About the mechanics of SSC dipole magnet prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Spigo, G.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H. [Superconducting Super Collider Lab., Dallas, TX (United States); Ogitsu, T. [Superconducting Super Collider Lab., Dallas, TX (United States)]|[National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E. [Brookhaven National Lab., Upton, NY (United States); Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J. [Fermi National Accelerator Lab., Batavia, IL (United States); Royet, J.; Scanlan, R.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)

    1991-11-01

    During the last two years, nine 4-cm-aperature, 17-m-long dipole magnet prototypes were produced by Brookhaven National Laboratory (BNL) under contract with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R&D program, carried out in collaboration the Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main-ring dipole magnets. They also lay the groundwork for the 5-cm-aperture dipole magnet program now underway. After reviewing the design features of the BNL 4-cm-aperature, 17-m-long dipole magnets, we describe in detail the various steps of their fabrication. For each step, we discuss the parameters that need to be mastered, and we compare the values that were achieved for the nine most recent prototypes. The data appear coherent and reproducible, demonstrating that the assembly process is under control. We then analyze the mechanical behavior of these magnets during cooldown and excitation, and we attempt to relate this behavior to the magnet features. The data reveal that the mechanical behavior is sensitive to the collar-yoke interference and that the magnets exhibit somewhat erratic changes in coil end-loading during cooldown.

  11. About the mechanics of SSC dipole magnet prototypes

    International Nuclear Information System (INIS)

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Spigo, G.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H.; Ogitsu, T.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.

    1991-11-01

    During the last two years, nine 4-cm-aperature, 17-m-long dipole magnet prototypes were produced by Brookhaven National Laboratory (BNL) under contract with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R ampersand D program, carried out in collaboration the Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main-ring dipole magnets. They also lay the groundwork for the 5-cm-aperture dipole magnet program now underway. After reviewing the design features of the BNL 4-cm-aperature, 17-m-long dipole magnets, we describe in detail the various steps of their fabrication. For each step, we discuss the parameters that need to be mastered, and we compare the values that were achieved for the nine most recent prototypes. The data appear coherent and reproducible, demonstrating that the assembly process is under control. We then analyze the mechanical behavior of these magnets during cooldown and excitation, and we attempt to relate this behavior to the magnet features. The data reveal that the mechanical behavior is sensitive to the collar-yoke interference and that the magnets exhibit somewhat erratic changes in coil end-loading during cooldown

  12. About the mechanics of SSC dipole magnet prototypes

    International Nuclear Information System (INIS)

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Spigo, G.; Thompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H.; Ogitsu, T.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.

    1992-01-01

    During the last two years, nine 4-cm aperture, 17-m-long dipole magnet prototypes were produced by Brookhaven National Laboratory (BNL) under contact with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R ampersand D program, carried out in collaboration with Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main-ring dipole magnets. They also lay the groundwork for the 5-cm-aperture dipole magnet program now underway. After reviewing the design features of the BNL 4-cm-aperture, 17-m-long dipole magnets, we describe in detail the various steps of their fabrication. For each step, we discuss the paramaters that need to be mastered, and we compare the values that were achieved for the nine most recent prototypes. The data appear coherent and reproducible, demonstrating that the assembly process is under control. We then analyze the mechanical behavior of these magnets during cooldown and excitation, and we attempt to relate this behavior to the magnet features. The data reveal that the mechanical behavior is sensitive to the collar-yoke interference and that the magnets exhibit somewhat erratic changes in coil end-loading during cooldown

  13. Experimental Study on Diesel Spray Characteristics and Autoignition Process

    OpenAIRE

    Taşkiran, Özgür Oğuz; Ergeneman, Metin

    2011-01-01

    The main goal of this study is to get the temporal and spatial spray evolution under diesel-like conditions and to investigate autoignition process of sprays which are injected from different nozzle geometries. A constant volume combustion chamber was manufactured and heated internally up to 825 K at 3.5 MPa for experiments. Macroscopic properties of diesel spray were recorded via a high-speed CCD camera by using shadowgraphy technique, and the images were analyzed by using a digital image pr...

  14. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  15. Vacuum plasma spray applications on liquid fuel rocket engines

    Science.gov (United States)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-07-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  16. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1994-01-01

    A consortium organized by the Texas National Research Laboratory Commission under a Department of Energy grant proposes to build and operate a Regional Medical Technology Center to function as a combined medical radioisotope production complex and proton cancer therapy facility using the Linear Accelerator (Linac) assets of the Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications for linear accelerator technology

  17. A medical facility proposal to use the SSC linac

    International Nuclear Information System (INIS)

    Funk, L.W.

    1995-01-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology. (orig.)

  18. A medical facility proposal to use the SSC linac

    Science.gov (United States)

    Warren Funk, L.

    1995-05-01

    A consortium organized by the Texas National Research Laboratory Commission (TNRLC) under a Department of Energy (DOE) grant proposes to build and operate a Regional Medical Technology Center (RMTC) to function as a combined medical radioisotope production complex and proton cancer therapy facility using the linear accelerator (linac) assets of the cancelled Superconducting Super Collider (SSC). The radioisotope production complex will serve as a domestic source of radioisotopes critically needed by the U.S. pharmaceutical industry and nuclear medicine facilities throughout North America. Presently, more than 70 percent of radioisotopes used in U.S. nuclear medicine procedures are produced outside the country. The Center's state-of-the-art proton cancer therapy facility will serve the Central United States, providing advanced capabilities and augmenting facilities in California and Massachusetts. Long-term, it is anticipated that the RMTC also will stimulate nuclear medicine research, advance medical diagnostic technologies, and generate new industrial applications of linear accelerator technology.

  19. 6.4 Tesla dipole magnet for the SSC

    International Nuclear Information System (INIS)

    Taylor, C.E.; Caspi, S.; Gilbert, W.

    1985-05-01

    A design is presented for a dipole magnet suitable for the proposed SSC facility. Test results are given for model magnets of this design 1 m long and 4.5 m long. Flattened wedge-shaped cables (''keystoned'') are used in a graded, two-layer ''cos theta'' configuration with three wedges to provide sufficient field uniformity and mechanical rigidity. Stainless steel collars 15 mm wide, fastened with rectangular keys, provide structural support, and there is a ''cold'' iron flux return. The outer-layer cable has 30 strands of 0.0255 in. dia NbTi multifilamentary wire with Cu/S.C. = 1.8, and the inner has 23 strands of .0318 in. dia wire with Cu/S.C. = 1.3. Performance data is given including training behavior, winding stresses, collar deformation, and field uniformity

  20. 6.4 tesla dipole magnet for the SSC. Revision

    International Nuclear Information System (INIS)

    Taylor, C.E.; Caspi, S.; Gilbert, W.

    1985-08-01

    A design is presented for a dipole magnet suitable for the proposed SSC facility. Test results are given for model magnets of this design 1 m long and 4.5 m long. Flattened wedge-shaped cables (''keystoned'') are used in a graded, two-layer ''cos theta'' configuration with three wedges to provide sufficient field uniformity and mechanical rigidity. Stainless steel collars 15 mm in radial depth, fastened with rectangular keys, provide structural support, and there is a ''cold'' iron flux return. The outer-layer cable has 30 strands of 0.648 mm diameter NbTi multifilamentary wire with Cu/S.C. = 1.8, and the inner has 23 strands of 0.808 mm diameter wire with Cu/S.C. = 1.3. Performance data are given, including training behavior, winding stresses, collar deformation, and field uniformity. 10 refs., 11 figs

  1. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1989-01-01

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  2. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1994-01-01

    Several years of experience have been acquired on the operation of probes (open-quotes molesclose quotes) constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device - the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. The authors describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the beam tube of the magnet is also described

  3. Overview and status of RF systems for the SSC Linac

    International Nuclear Information System (INIS)

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-μs, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented

  4. SSC detector muon sub-system beam tests

    International Nuclear Information System (INIS)

    Downing, R.; Errede, S.; Gauthier, A.; Haney, M.; Karliner, I.; Liss, T.; O'Halloran, T.; Sheldon, P.; Simiatis, V.; Thaler, J.; Wiss, J.; Kunori, S.; Skuja, A.; Davisson, R.; Liang, G.; Lubatti, H.; Wilkes, R.; Zhao, T.; Carlsmith, D.

    1993-01-01

    We propose to start a test-beam experiment at Fermilab studying the problems associated with tracking extremely high energy muons through absorbers. We anticipate that in this energy range the observation of the muons will be complicated by associated electromagnetic radiation Monte Carlo simulations of this background need to be tuned by direct observations. These beam tests are essential to determine important design parameters of a SSC muon detector, such as the choice of the tracking, geometry, hardware triggering schemes, the number of measuring stations, the amount of iron between measuring stations, etc. We intend to begin the first phase of this program in November of 1990 utilizing the Tevatron muon beam. We plan to measure the multiplicity, direction, and separation of secondary particles associated with the primary muon track as it emerges from an absorber. The second phase of beam test in 1992 or later will be a full scale test for the final design chosen in our muon subsystem proposal

  5. Winding mandrel design for the wide cable SSC dipole

    International Nuclear Information System (INIS)

    Morgan, G.H.; Greene, A.; Jochen, G.; Morgillo, A.

    1990-01-01

    The 50 mm coil i.d. SSC dipole magnets use wider cables to give a greater operational margin between quench field and operating field. The cable used for the inner coil has 30 strands of the same size (0.808 mm) instead of 23 and the outer has 36 strands of the same size (0.648 mm) instead of 30 and the cable widths are increased in proportion. Although the coil inner diameter has been increased from 40 mm, the coil ends are noticeably harder to wind. This report describes the computational and experimental effort to design winding mandrels or center posts for the constant-perimeter ends. 1 ref., 2 figs., 2 tabs

  6. New technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns has heretofore been confined exclusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  7. A new technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns, has heretofore been confined excusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  8. Glove box chamber

    International Nuclear Information System (INIS)

    Cox, M.E.; Cox, M.E.

    1975-01-01

    An environmental chamber is described which enables an operator's hands to have direct access within the chamber without compromising a special atmosphere within such chamber. A pair of sleeves of a flexible material are sealed to the chamber around associated access apertures and project outwardly from such chamber. Each aperture is closed by a door which is openable from within the sleeve associated therewith so that upon an operator inserting his hand and arm through the sleeve, the operator can open the door to have access to the interior of the chamber. A container which is selectively separable from the remainder of the chamber is also provided to allow objects to be transferred from the chamber without such objects having to pass through the ambient atmosphere. An antechamber permitting objects to be passed directly into the chamber from the ambient atmosphere is included. (auth)

  9. Plasma Processes: Plasma sprayed alumina coatings for radiation ...

    Indian Academy of Sciences (India)

    Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our Research ...

  10. Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Abstract. Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our ...

  11. Genome Wide Association Studies (GWAS Identify QTL on SSC2 and SSC17 Affecting Loin Peak Shear Force in Crossbred Commercial Pigs.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Of all the meat quality traits, tenderness is considered the most important with regard to eating quality and market value. In this study we have utilised genome wide association studies (GWAS for peak shear force (PSF of loin muscle as a measure of tenderness for 1,976 crossbred commercial pigs, genotyped for 42,721 informative SNPs using the Illumina PorcineSNP60 Beadchip. Four 1 Mb genomic regions, three on SSC2 (at 4 Mb, 5 Mb and 109 Mb and one on SSC17 (at 20 Mb, were detected which collectively explained about 15.30% and 3.07% of the total genetic and phenotypic variance for PSF respectively. Markers ASGA0008566, ASGA0008695, DRGA0003285 and ASGA0075615 in the four regions were strongly associated with the effects. Analysis of the reference genome sequence in the region with the most important SNPs for SSC2_5 identified FRMD8, SLC25A45 and LTBP3 as potential candidate genes for meat tenderness on the basis of functional annotation of these genes. The region SSC2_109 was close to a previously reported candidate gene CAST; however, the very weak LD between DRGA0003285 (the best marker representing region SSC2_109 and CAST indicated the potential for additional genes which are distinct from, or interact with, CAST to affect meat tenderness. Limited information of known genes in regions SSC2_109 and SSC17_20 restricts further analysis. Re-sequencing of these regions for informative animals may help to resolve the molecular architecture and identify new candidate genes and causative mutations affecting this trait. These findings contribute significantly to our knowledge of the genomic regions affecting pork shear force and will potentially lead to new insights into the molecular mechanisms regulating meat tenderness.

  12. bubble chamber lens

    CERN Multimedia

    Before the days of electronic detectors, visual techniques were used to detect particles, using detectors such as spark chambers and bubble chambers. This plexiglass lens was used to focus the image of tracks so they could be photographed.

  13. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO 2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m 3 . • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO 2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m 3 . The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  14. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  15. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  16. An experimental study on atomizing formation process of diesel spray

    International Nuclear Information System (INIS)

    Kim, Ki Bong

    2000-02-01

    In this study, the experiment has, been conducted to investigate the spray characteristics under the parameter of an ambient pressure with a single hole nozzle having aspect ratio(L/D) of 5 and diameter of 0.45mm. Under the condition of the injection pressure of 14Mpa, the initial disintegrating process of a diesel spray is investigated and analysized according to change of the ambient pressures, 0.1, 1, 2 and 3Mpa. The double flash method has been employed to visualize the process of the diesel sprays. The results obtained in this study are as follows: 1) After spray starts, the spray is shown as non-disturbance liquid column within about 1∼2mm from the nozzle tip, whose diameter is similar to that of a nozzle. For the same injection pressure, the increase of the ambient pressure makes the length of the non-disturbance liquid column become short. 2) Due to the surface wave, ligaments of the shape thread appear at the boundary of liquid column right after spray. The more developed wave together the progress of spray transforms ligaments into droplets that have generally the uniformed size. 3) In case spraying into chambers having different ambient pressures, 1, 2, and 3Mpa, the spray tip velocities reach up to 1.5, 1.2, and 0.6ms, respectively, and decrease with lapse of time. The spray angle keeps increasing for 0.6, 1.2, and 1.4ms after spray under the various ambient pressures, 3, 2, and 1Mpa, respectively, and begins to decrease and maintains the constant value. Therefore, the transition points appear near the point where the velocity decreases and the spray angle increases, simultaneously. The higher ambient pressure leads to fast appearance of transition under the same spray pressure. 4) The disintegrating mechanism of the liquid spray is two combined effects: a) friction forces between the surface waves generated at the surface of the liquid column and the ambient gas, b) the collisions of liquid droplets and ligaments by spray were overtaking

  17. Application of Constrained Linear MPC to a Spray Dryer

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    . The main challenge of spray drying is to meet the residual moisture specification and prevent powder from sticking to the chamber walls. By simulation we compare the performance of the MPC against the conventional PID control strategy. During an industrially recorded disturbance scenario, the MPC increases......In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against...... experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Spray drying is a cost-effective method to evaporate water from liquid foods and produces a free flowing powder...

  18. SSC collider quadrupole cold mass design and development

    International Nuclear Information System (INIS)

    Farrell, R.A.; Murray, F.S.; Jonas, P.A.; Mischler, W.R.; Blecher, L.

    1992-01-01

    Approximately 1,664 focussing and defocussing superconducting quadrupoles are required for the two SSC collider rings. Collider quadruple magnets (CQMS) must satisfy stringent performance, reliability, life and low cost criteria. Performance requirements include field uniformity, training, quench, tracking, thermal cycling and alignment. The CQM cold mass design presented incorporates lessons IGC and Alsthom Intermagnetics S.A. (AISA), our joint venture with GEC-Alsthom, learned in the design, development and manufacture of 500 MRI, 160 high-field custom and 126 HERA quadruple superconducting magnets. This baseline design reflects careful quantitative assessment of coil winding placement and collar material, evaluation of field uniformity and mechanical performance of the magnet coil ends using 3-D modeling and analysis, and considers tolerance and process variability. Selected CQM cold mass design highlights and a proposed prototype development program that allows incorporation of test feedback into the design to minimize risk are detailed in this paper. This information may be helpful to SSCL in the design and development of prototype CQM'S

  19. A liquid nitrogen temperature SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    McAshan, M.S.; VanderArend, P.

    1987-04-01

    Under the assumption that new developments in the science of superconductivity will lead to dipole magnets suitable for the SSC that have the same properties with regard to field, field quality, size and cost as those in the present conception of the collider, but operating at 77 K rather than 4.35 K; the initial cost of the collider facility is found to be less by $213 M out of the $2,000 M actual construction cost for the collider technical systems and the conventional facilities estimated in the Conceptual Design Report. EDI and contingency is not included in these figures. Operation at the higher temperature is not, however, an unequivocal advantage. The beam line vacuum system in the 77 K case presents problems that will require a larger magnet aperture for satisfactory solution. The costs of this together with the cost of the development and construction of the new vacuum system required is estimated to be $156 M. The net capital cost saving associated with the higher temperature operation is thus found to be $57 M or about 3% of the estimated cost. In addition it is estimated that the operating cost of the facility will under conditions be less by $27.5 M per year in the steady-state including an allowance for the greater availability of the simpler cryogenic system. 14 refs., 1 fig., 4 tabs

  20. A room-temperature liquid calorimeter prototype for the SSC

    International Nuclear Information System (INIS)

    Brandenburg, G.W.; Geer, S.H.; Oliver, J.; Sadowski, E.; Theriot, D.

    1990-01-01

    Calorimeters will be an extremely important part of SSC detectors as they have been in existing collider detectors. The main issues that need to be addressed are: (1) energy resolution of jets and electrons, (2) segmentation, (3) hermiticity, (4) response time, and (5) radiation resistance. An attractive possibility on all these counts is the use of room-temperature liquids together with uranium, as pioneered by UA1. The authors are planning a prototype calorimeter which consists of a sealed vessel containing both the radiator plates and the readout pads. This geometry has been appropriately named the swimming pool design. The general mechanical starting point is similar to the SLD liquid argon calorimeters. The points they wish to address are the following: (1) Simple and reliable modular construction techniques, (2) Satisfactory electrical connections with minimal geometric impact, (3) The necessity of isolating radiator plates and liquid to maintain purity, (4) What materials can be immersed without compromising the liquid purity. The design and construction of the swimming pool electromagnetic calorimeter prototype is being carried out at the Harvard High Energy Physics Laboratory. This is one of the first attempts to build a full-scale prototype of such a design

  1. Automatic beam centering at the SSC interaction regions

    International Nuclear Information System (INIS)

    Joestlein, H.

    1984-01-01

    In the SSC interaction regions, the two colliding beams, each only a few microns in size, will have to be centered and maintained in good alignment over many hours, in order to provide the maximum possible luminosity and to minimize off-center beam-beam focussing effects. It is unlikely that sufficiently good alignment can be achieved without some kind of active feedback system, based on the beam-beam interaction rate. This memo describes such a system. In the proposed scheme, one of the beams is moved continuously and in a circular fashion about its mean transverse position. The radius of this motion is approximately 0.01 of the rms beam size at the interaction point. The motion is achieved with two sets of crossed high frequency dipole magnets, one on each side of the interaction region, suitably phased. As a consequence of this motion, the beam-beam interaction rate is modulated in synchronism with the beam motion when the beams are not centered on one another. The amplitude and phase of this modulation yields information on the magnitude and direction of the misalignment between the beams, allowing continuous display and automatic correction of any misalignment

  2. Magnetic field measurements of model SSC [Superconducting Super Collider] dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Gilbert, W.S.; Green, M.I.; Barale, P.J.

    1986-10-01

    To qualify for use in the Superconducting Super Collider, the 8000 or so 16 m long dipole magnets must pass a series of tests. One of these will be a set of warm measurements of field quality, which must be precise to about 0.001% of the 100 G field produced by 10 A, the maximum current the coils are allowed to carry for an extended period at room temperature. Field measurements of better than this accuracy have already been carried out on 1 m long model dipoles. These measurements have included determinations of the dipole fields and the higher harmonics in the central or two dimensional region and in the total magnet. In addition, axial scans of the dipole and higher harmonic magnetic fields have been made to determine the local variations, which might reflect fabrication and assembly tolerances. This paper describes the equipment developed for these measurements, the results of a representative set of measurements of the central and integral fields and axial scans, and a comparison between warm and cold measurements. Reproducibility, accuracy and precision will be described for some of the measurements. The significance of the warm measurements as a part of the certification process for the SSC dipoles will be discussed

  3. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  4. Best practices: Strategic stigma change (SSC): five principles for social marketing campaigns to reduce stigma.

    Science.gov (United States)

    Corrigan, Patrick W

    2011-08-01

    This column describes strategic stigma change (SSC), which comprises five principles and corresponding practices developed as a best practice to erase prejudice and discrimination associated with mental illness and promote affirming behaviors and social inclusion. SSC principles represent more than ten years of insights from the National Consortium on Stigma and Empowerment. The principles, which are centered on consumer contact that is targeted, local, credible, and continuous, were developed to inform the growth of large-scale social marketing campaigns supported by governments and nongovernmental organizations. Future social marketing efforts to address stigma and the need for evidence to determine SSC's penetration and impact are also discussed.

  5. Application of pulse combustion technology in spray drying process

    Directory of Open Access Journals (Sweden)

    I. Zbicinski

    2000-12-01

    Full Text Available The paper presents development of valved pulse combustor designed for application in drying process and drying tests performed in a specially built installation. Laser technique was applied to investigate the flow field and structure of dispersed phase during pulse combustion spray drying process. PDA technique was used to determine initial atomization parameters as well as particle size distribution, velocity of the particles, mass concentration of liquid phase in the cross section of spray stream, etc., in the drying chamber during drying tests. Water was used to estimate the level of evaporation and 5 and 10% solutions of sodium chloride to carry out drying tests. The Computational Fluid Dynamics technique was used to perform theoretical predictions of time-dependent velocity, temperature distribution and particle trajectories in the drying chamber. Satisfactory agreement between calculations and experimental results was found in certain regions of the drying chamber.

  6. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  7. Analysis of spatial dispersion characteristics of improved conical sprays; Kairyo kasajo funmu no kukan bunsansei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Long, W.; Murakami, A.; Hama, J. [Mechanical Engineering Lab., Tokyo (Japan); Obokata, T. [Gunma University, Gunma (Japan)

    1997-10-01

    The macro-characteristics of conical and improved conical sprays were analyzed using laser sheet and high speed camera. The injection pressure was 14.7, 24.5 or 34.3 MPa and the chamber pressure was 0.098, 0.98 or 1.96 MPa, where the amount of injected fuel was 28.5 mg per cycle, and the injection frequency was 8.3 Hz. As a result, at atmospheric pressure, both of the conical spray and improved conical spray have a conical pattern, but at high chamber pressure, the sprays become three dimensional. The penetration of the improved conical spray was about 25% stronger than that of the conical spray. 10 refs., 11 figs.

  8. Propulsion System and Second Stage Structural Loads Interaction Test Platform at SSC E3-C2

    Data.gov (United States)

    National Aeronautics and Space Administration — Relativity has a collaborative partnership with NASA’s STMD and SSC to further the development of our innovative orbital launch vehicle additive manufacturing...

  9. Qualification of technical personnel for employment during construction and operation of the SSC

    International Nuclear Information System (INIS)

    Johnson, C.D.; Wolf, L.J.

    1991-01-01

    In the early stages of the SSC design it became apparent that construction will have a significant impact on post-secondary technical/vocational education in Texas. Present estimates are that from 2,000 to 3,000 employees will be needed in the traditional fields of civil, mechanical, electrical technology, computers as well as exotic technologies such as cryogenics and high vacuum. In this paper an on-going project is described which is directed toward assuring that graduates of Texas post-secondary technical and vocational education programs will be competitive for employment in these jobs. The project involves development of SSC pedagogical material at a level appropriate to the students, education of teachers about the SSC and development of delivery systems for education about the SSC

  10. Proceedings of the international workshop on solenoidal detectors for the SSC

    International Nuclear Information System (INIS)

    Abe, Fumio; Hasegawa, Katsuo

    1990-07-01

    This issue is the collection of the papers presented at the International Workshop on solenoidal detectors for the Superconducting Super Collider (SSC). The 48 of the presented papers are indexed individually. (J.P.N.)

  11. A full-acceptance detector for SSC physics at low and intermediate mass scales

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1992-01-01

    The author of this paper is interested in seeing the proposed detector and physics measurements done at the SSC. It should be clear that the author views this subject as important enough to warrant the effort going into producing this tome. It should also be clear that nothing will happen unless members of the experimental community come forward and do real work to see whether the ideas contained herein are sound and that the physics is indeed worth a dedicated effort at the SSC. Therefore this paper is directed more toward the experimental community than the SSC Laboratory. However, since initial encouragement (or discouragement) by the laboratory is evidently very important, this paper also contains specific requests addressed to the SSC Laboratory

  12. Increasing NASA SSC Range Safety by Developing the Framework to Monitor Airspace and Enforce Restrictions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Engine testing at NASA SSC poses a significant risk to general aviation due to potential smoke and excessive turbulence. The airspace over Stennis has been...

  13. Increasing NASA SSC Range Safety by Developing the Framework to Monitor Airspace and Enforce Restrictions

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA John C. Stennis Space Center (SSC) Office of Safety and Mission Assurance (SMA) has a safety concern associated with unauthorized aircraft entering...

  14. Front-end electronics development for the SSC

    International Nuclear Information System (INIS)

    Levi, M.

    1990-12-01

    This is a status report on electronics development undertaken by the Front-End Electronics Collaboration. The overall goal of the collaboration remains the development by 1992 of complete, architecturally compatible, front end electronic systems for calorimeter, wire drift chamber, and silicon strip readout. We report here a few highlights to give a brief overview of the work underway. Performance requirements and capabilities, selected architectures, circuit designs and test results are presented. 13 refs., 21 figs., 1 tab

  15. New particle signals at the SSC and at an upgraded Tevatron collider

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, R.M.; Hollebeek, R.J.; White, A.P.; Yoh, J.; Baer, H.A.; Barnett, B.A.; Eichten, E.; Freeman, J.E.; Gamberini, G.; Grifols, J.A.

    1988-01-01

    We have studied the production and detection of several types of new particles at the Superconducting Super Collider (SSC) and at three possible upgrades of the Fermilab Tevatron Collider. We compare the physics potential of the SSC with that of an upgraded collider, and we discuss in depth the relative capabilities of the three Tevatron Collider upgrades. From a physics standpoint, we suggest that one of the proposed upgrades has several advantages. 34 refs., 21 figs., 5 tabs.

  16. SSC superconducting dipole magnet cryostat magnet cryostat model style B construction experience

    International Nuclear Information System (INIS)

    Engler, N.H.; Bossert, R.C.; Carson, J.A.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Niemann, R.C.; Sorenson, D.; Zink, R.

    1989-01-01

    A program to upgrade the full scale SSC dipole magnet cryostat model function and assembly methods has resulted in a series of dipole magnets designated as style B construction. New design features and assembly techniques have produced a magnet and cryostat assembly that is the basis for Phase I of the SSC dipole magnet industrialization program. Details of the assembly program, assembly experience, and comparison to previous assembly experiences are presented. Improvements in magnet assembly techniques are also evaluated. 6 refs., 5 figs

  17. Magnetic field measurements of full length 50 mm aperture SSC dipole magnets at Fermilab

    International Nuclear Information System (INIS)

    Strait, J.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Ozelis, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.; Ogitsu, T.

    1992-09-01

    Thirteen 16 m long, 50 mm aperture SSC dipole magnets, designed jointly by Fermilab, Brookhaven National Laboratory, Lawrence Berkeley Laboratory and the SSC Laboratory, have been built at Fermilab. The first nine magnets have been fully tested to date. The allowed harmonics are systematically shifted from zero by amounts larger than the specification. The unallowed harmonics, with the exception of the skew sextupole, are consistent with zero. The magnet-to-magnet RMS variation of all harmonics is much smaller than the specification

  18. Fentanyl Nasal Spray

    Science.gov (United States)

    Fentanyl nasal spray is used to treat breakthrough pain (sudden episodes of pain that occur despite round ... effects of the medication) to narcotic pain medications. Fentanyl is in a class of medications called narcotic ( ...

  19. Fentanyl Sublingual Spray

    Science.gov (United States)

    Fentanyl sublingual spray is used to treat breakthrough pain (sudden episodes of pain that occur despite round ... effects of the medication) to narcotic pain medications. Fentanyl is in a class of medications called narcotic ( ...

  20. Dynamics of flare sprays

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Hansen, R.T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable pass-band filters, multi-slit spectroscopy and extended angular field coronographs). From combined analysis of 13 well-observed sprays which occured between 1969-1974 we conclude that (i) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (ii) the spray material is confined within a steadily expanding, loop-shaped (presumably magnetically controlled) envelope with part of the material draining back down along one or both legs of the loop. (orig.)

  1. Butorphanol Nasal Spray

    Science.gov (United States)

    ... Butorphanol is in a class of medications called opioid agonist-antagonists. It works by changing the way ... stop using butorphanol nasal spray, you may experience withdrawal symptoms such as nervousness, agitation, shakiness, diarrhea, chills, ...

  2. Prototype multiwire proportional chamber

    CERN Multimedia

    1975-01-01

    Chambers of this type were initially developed within the Alpha project (finally not approved). They were designed such to minimize the radiation length with a view to a mass spectrometer of high resolution meant to replace the Omega detector. The chambers were clearly forerunners for the (drift) chambers later built for R606 with the novel technique of crimping the wires. See also photo 7510039X.

  3. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  4. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  5. DORIOT CLIMATIC CHAMBERS

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers reproduce environmental conditions occurring anywhere around the world. They provide an invaluable service by significantly reducing the...

  6. Refrigeration Test Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The enclosed and environmentally controlled chamber is able to test four units (single-phase) simultaneously at conditions ranging from tundra to desert temperatures...

  7. Early Endothelial Progenitor Cells (eEPCs) in systemic sclerosis (SSc) - dynamics of cellular regeneration and mesenchymal transdifferentiation.

    Science.gov (United States)

    Patschan, S; Tampe, D; Müller, C; Seitz, C; Herink, C; Müller, G A; Zeisberg, E; Zeisberg, M; Henze, E; Patschan, D

    2016-08-12

    Patients with systemic sclerosis (SSc) are endagered by tissue fibrosis and by microvasculopathy, with the latter caused by endothelial cell expansion/proliferation. SSc-associated fibrosis potentially results from mesenchymal transdifferentiation of endothelial cells. Early Endothelial Progenitor Cells (eEPCs) act proangiogenic under diverse conditions. Aim of the study was to analyze eEPC regeneration and mesenchymal transdifferentiation in patients with limited and diffuse SSs (lSSc and dSSc). Patients with both, lSSc and dSSc were included into the study. The following parameters were evaluated: eEPC numbers and regeneration, concentrations of vasomodulatory mediators, mesenchymal properties of blood-derived eEPC. Serum samples of healthy subjects and SS patients were used for stimulation of cultured human eEPC, subsequently followed by analysis of mesenchymal cell characteristics and mobility. Twenty-nine patients were included into the study. Regenerative activity of blood-derived eEPCs did not differ between Controls and patients. Circulating eEPC were significantly lower in all patients with SSc, and in limited and diffuse SSc (lSSc/dSSc). Serum concentrations of promesenchymal TGF-b was elevated in all patients with SSc. Cultured mononuclear cells from SS patients displayed higher abundances of CD31 and of CD31 and aSMA combined. Finally, serum from SSc patients inhibited migration of cultured eEPCs and the cells showed lower sensitivity towards the endothelin antagonist Bosentan. The eEPC system, which represents an essential element of the endogenous vascular repair machinery is affected in SSc. The increased appearance of mesenchymal properties in eEPC may indicate that alterations of the cells potentially contribute to the accumulation of connective tissue and to vascular malfunction.

  8. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  9. bubble chamber lens

    CERN Multimedia

    Was used in a PS experiment. Before the days of electronic detectors, visual techniques were used to detect particles, using detectors such as spark chambers and bubble chambers. This plexiglass lens was used to focus the image of tracks so they could be photographed.

  10. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  11. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  12. DELPHI time projection chamber

    CERN Document Server

    1989-01-01

    The time projection chamber is inserted inside the central detector of the DELPHI experiment. Gas is ionised in the chamber as a charged particle passes through, producing an electric signal from which the path of the particle can be found. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  13. Study of ethanol and gasoline fuel sprays using mie-scatter and schlieren imaging

    Science.gov (United States)

    Bouchard, Lauren; Bittle, Joshua; Puzinauskas, Paul

    2016-11-01

    Many cars today are capable of running on both gasoline and ethanol, however it is not clear how well optimized the engines are for the multiple fuels. This experiment looks specifically at the fuel spray in a direct injection system. The length and angle of direct injection sprays were characterized and a comparison between ethanol and gasoline sprays was made. Fuels were tested using a modified diesel injector in a test chamber at variable ambient pressures and temperatures in order to simulate both high and low load combustion chamber conditions. Rainbow schlieren and mie-scatter imaging were both used to investigate the liquid and vapor portions of the sprays. The sprays behaved as expected with temperature and pressure changes. There was no noticeable fuel effect on the liquid portion of the spray (mie-scatter), though the gasoline vapor spray angles were wider than ethanol spray angles (possible a result of the distillation curves of the two fuels). Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  14. In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Som, Sibendu; Shukla, Pravesh Chandra; Goyal, Harsh; Longman, Douglas

    2015-01-01

    Highlights: • In-nozzle flow characterization for biodiesel sprays. • Comparison of experimental spray parameters and nozzle hole simulations. • Effect of Karanja and Jatropha biodiesel on in-nozzle cavitation. • Cavitation formation investigation with diesel and biodiesels. • Nozzle hole outlet fuel velocity profile determination for test fuels. - Abstract: Superior spray behavior of fuels in internal combustion engines lead to improved combustion and emission characteristics therefore it is necessary to investigate fuel spray behavior of new alternative fuels. This study discusses the evolution of the in-nozzle orifice parameters of a numerical simulation and the evolution of spray parameters of fuel spray in a constant-volume spray chamber during an experiment. This study compares mineral diesel, biodiesels (Karanja-and Jatropha-based), and their blends with mineral diesel. The results show that mineral diesel provides superior atomization and evaporation behavior compared to the biodiesel test fuels. Karanja biodiesel provides superior atomization and evaporation characteristics compared to Jatropha biodiesel. The qualitative comparison of simulation and experimental results in tandem shows that nozzle-hole design is a critical parameter for obtaining optimum spray behavior in the engine combustion chamber

  15. Development and implementation of bottom ash crushing system in Submerged Scrapper Conveyor (SSC for Coal-fired Power Plant

    Directory of Open Access Journals (Sweden)

    Basim Ismail Firas

    2017-01-01

    Full Text Available The existence of Submerged Scrapper Conveyor (SSC in coal-fired power plant is to handle the by-product of bottom ash. However, soot-blowing will be performed sometimes, in order to remove slag formed at the boiler furnace wall. Thence, this lead to a sudden loading of large amount of slags and bottom ash at SSC after soot-blowing, causing SSC conveying system to jam and conveying chain breakage. In this paper, a new SSC design with additional crushing system is proposed. By implementing the new design proposed, it is expected to improve the overall current performances, and to reduce the trip issue of SSC in coal-fired power plant. The new 3D model of SSC is designed, and stress-strain simulation of the model is analysed by using software of PTC Creo Parametric. Final cost and safety factor analysis of model is made to prove its validation.

  16. Computational and Experimental Study of Sprays from the Breakup of Water Sheets

    DEFF Research Database (Denmark)

    Madsen, Jesper

    of droplet breakup and droplet-droplet collisions. The model is applied to calculate local values of droplet sizes and velocities produced by diesel-type, Y-jet, and hollow-cone sprays. The droplet velocity results for the diesel-type spray are well predicted. The droplet size and velocity results for the Y...... chamber. The CFD results compare favorably with experimental data of tangential and axial velocity distributions in the swirl chamber and static wall pressure. Experiments are carried out in order to obtain local quantities in water sprays from production-scale pressure-swirl and Y-jet atomizers. A two......-component phase Doppler anemometry (PDA) system is used for obtaining local values of droplet velocities and sizes. Experimental studies are conducted in sprays produced by nine different single-hole Y-jet atomizers with different operating conditions. Experiments concerned with the effects of atomizer geometry...

  17. Sawtooth-wave prebuncher with dual-gaps in Linac injector for HIRFL-SSC

    Science.gov (United States)

    Zhang, Xiaohu; Yuan, Youjin; Xia, Jiawen; Yin, Xuejun; Jin, Peng; Xu, Zhe; Du, Heng; Li, Zhongshan; Qiao, Jian; Wang, Kedong

    2018-01-01

    An RFQ structure is normally composed of radial matcher, shaper, gentle buncher and accelerator section with changing cell geometry. Bunching is started in the shaper, and adiabatic bunching is done in gentle buncher section. The beam preforms from DC beam to bunch beam through the RFQ and the longitudinal emittance for the ions linacs is defined initially in the RFQ, in which the beam bunch has been shaped. In the present SSC-Linac injector, an RFQ has been designed to accelerate the continuous beam from 3.728 keV/u to 143 keV/u. The heavy ions beam is injected into the SSC (Separated Sector Cyclotron) with the kinetic energy of 1.025 MeV/u after four IH DTLs. The rf frequency of the SSC is 13.417 MHz, and the frequency of the heavy ions RFQ is set to four times of the rf frequency of the SSC. In order to increase the longitudinal capture efficiency of the SSC and suppress the longitudinal emittance at the exit of RFQ, an external MHB (Multi-Harmonics Buncher) is proposed in front of the RFQ. The fundamental frequency of the MHB is the same as the rf frequency of the cyclotron. The scheme of dual-gaps prebuncher with the sawtooth waveform is firstly carried out through multi-harmonics synthetic technology. The multi-particle beam dynamic simulations of the MHB have been done by the BEAMPATH code.

  18. Theoretical methods for creep and stress relaxation studies of SSC coil

    International Nuclear Information System (INIS)

    McAdams, J.; Markley, F.

    1992-04-01

    Extrapolation of laboratory measurements of SSC coil properties to the actual construction of SSC magnets requires mathematical models of the experimental data. A variety of models were used to approximate the data collected from creep and stress relaxation experiments performed on Kapton film and SSC coil samples. The coefficients for these mathematical models were found by performing a least-squares fit via the program MINUIT. Once the semiempirical expressions for the creep data were found, they were converted to expressions for stress relaxation using an approximate I pn of the Laplace integral relating the two processes. The data sets from creep experiments were also converted directly to stress relaxation data by numeric integration. Both of these methods allow comparison of data from two different methods of measuring viscoelastic properties. Three companion papers presented at this conference will present: Stress relaxation in SSC 50mm dipole coil. Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures. Temperature dependence of the viscoelastic properties of SSC coil insulation (Kapton)

  19. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    entrainment may account for the large discrepancy in energy input for the two systems. In the third study, the temperature dependence of sea spray aerosol production is probed with the use of a highly stable temperature controlled plunging jet. Similar to previous studies, particle production increases...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  20. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  1. OPAL Jet Chamber Prototype

    CERN Multimedia

    OPAL was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. OPAL's central tracking system consists of (in order of increasing radius) a silicon microvertex detector, a vertex detector, a jet chamber, and z-chambers. All the tracking detectors work by observing the ionization of atoms by charged particles passing by: when the atoms are ionized, electrons are knocked out of their atomic orbitals, and are then able to move freely in the detector. These ionization electrons are detected in the dirfferent parts of the tracking system. This piece is a prototype of the jet chambers

  2. PS wire chamber

    CERN Document Server

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  4. Spray structure of a pressure-swirl atomizer for combustion applications

    OpenAIRE

    Jicha Miroslav; Jedelsky Jan; Durdina Lukas

    2012-01-01

    In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV) and Phase-Doppler Par...

  5. Test results from recent 1.8-m SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Wanderer, P.; Cottingham, J.G.; Dahl, P.

    1988-01-01

    We report results from four 1.8 m-long dipoles built as part of the Superconducting Super Collider (SSC) RandD program. Except for length, these models have the features of the SSC design, which is based on a two-layer cosine theta coil with 4 cm aperture. As compared to the 17 m design length SSC dipoles, these 1.8 m magnets are a faster and more economical way of testing design changes in field shape, conductor support in the coil straight-section and ends, etc. The four magnets reported here all reach fields in excess of 7.5T with little training and have excellent field shape. 10 refs., 2 figs., 3 tabs

  6. Coherent production of {epsilon}{sup +} particles in crystal using proton beam from SSC

    Energy Technology Data Exchange (ETDEWEB)

    Okorokov, V.V.; Dubin, A.Yu. [ITER, Moscow, (Russian Federation)

    1995-05-01

    The unique possibilities of the SSC can be ideally used for a new generation of coherent generation experiments with relativistic protons which require 20 Tev energy of the incident beam. The availability of 20 Tev proton beam at SSC allows new experiments on coherent production of {var_epsilon}{sup +} particle by relativistic proton in crystal. Experiment carried out at low energies can now be extended with protons in very narrow energy region (resonance energy, which easy can be calculated) using the new accelerator facilities at SSC. We propose to study coherent production via the Coulomb field of the cristal atoms to excite the transition p + {gamma}{implies} {var_epsilon} {sup +} (1189).

  7. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  8. Optical spark chamber

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    An optical spark chamber developed for use in the Omega spectrometer. On the left the supporting frame is exceptionally thin to allow low momentum particles to escape and be detected outside the magnetic field.

  9. ALICE Time Projection Chamber

    CERN Multimedia

    Lippmann, C

    2013-01-01

    The Time Projection Chamber (TPC) is the main device in the ALICE 'central barrel' for the tracking and identification (PID) of charged particles. It has to cope with unprecedented densities of charges particles.

  10. Vacuum chamber 'bicone'

    CERN Multimedia

    1977-01-01

    This chamber is now in the National Museum of History and Technology, Smithsonian Institution, Washington, DC, USA, where it was exposed in an exhibit on the History of High Energy Accelerators (1977).

  11. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    Manero Amoros, F.

    1962-01-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs

  12. Bubble chamber: antiproton annihilation

    CERN Multimedia

    1971-01-01

    These images show real particle tracks from the annihilation of an antiproton in the 80 cm Saclay liquid hydrogen bubble chamber. A negative kaon and a neutral kaon are produced in this process, as well as a positive pion. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real tracks left by particles to be seen and photographed by expanding liquid that had been heated to boiling point.

  13. Modelling formation of new radiation belts and response to ULF oscillations following March 24, 1991 SSC

    International Nuclear Information System (INIS)

    Hudson, M.K.; Kotelnikov, A.D.; Li, X.; Lyon, J.G.; Roth, I.; Temerin, M.; Wygant, J.R.; Blake, J.B.; Gussenhoven, M.S.; Yumoto, K.; Shiokawa, K.

    1996-01-01

    The rapid formation of a new proton radiation belt at L≅2.5 following the March 24, 1991 Storm Sudden Commencement (SSC) observed at the CRRES satellite is modelled using a relativistic guiding center test particle code. The new radiation belt formed on a time scale shorter than the drift period of eg. 20 MeV protons. The SSC is modelled by a bipolar electric field and associated compression and relaxation in the magnetic field, superimposed on a background dipole magnetic field. The source population consists of solar protons that populated the outer magnetosphere during the solar proton event that preceeded the SSC and trapped inner zone protons. The simulations show that both populations contribute to drift echoes in the 20 endash 80 MeV range measured by the Aerospace instrument and in lower energy channels of the Protel instrument on CRRES, while primary contribution to the newly trapped population is from solar protons. Proton acceleration by the SSC differs from electron acceleration in two notable ways: different source populations contribute and nonrelativistic conservation of the first adiabatic invariant leads to greater energization of protons for a given decrease in L than for relativistic electrons. Model drift echoes, energy spectra and flux distribution in L at the time of injection compare well with CRRES observations. On the outbound pass, ∼2 hours after the SSC, the broad spectral peak of the new radiation belt extends to higher energies (20 endash 40 MeV) than immediately after formation. Electron flux oscillations observed at this later time are attributed to post-SSC impulses evident in ground magnetograms, while two minute period ULF oscillations also evident in CRRES field data appear to be cavity modes in the inner magnetosphere. copyright 1996 American Institute of Physics

  14. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  15. From mobile ADCP to high-resolution SSC: a cross-section calibration tool

    Science.gov (United States)

    Boldt, Justin A.

    2015-01-01

    Sediment is a major cause of stream impairment, and improved sediment monitoring is a crucial need. Point samples of suspended-sediment concentration (SSC) are often not enough to provide an understanding to answer critical questions in a changing environment. As technology has improved, there now exists the opportunity to obtain discrete measurements of SSC and flux while providing a spatial scale unmatched by any other device. Acoustic instruments are ubiquitous in the U.S. Geological Survey (USGS) for making streamflow measurements but when calibrated with physical sediment samples, they may be used for sediment measurements as well. The acoustic backscatter measured by an acoustic Doppler current profiler (ADCP) has long been known to correlate well with suspended sediment, but until recently, it has mainly been qualitative in nature. This new method using acoustic surrogates has great potential to leverage the routine data collection to provide calibrated, quantitative measures of SSC which hold promise to be more accurate, complete, and cost efficient than other methods. This extended abstract presents a method for the measurement of high spatial and temporal resolution SSC using a down-looking, mobile ADCP from discrete cross-sections. The high-resolution scales of sediment data are a primary advantage and a vast improvement over other discrete methods for measuring SSC. Although acoustic surrogate technology using continuous, fixed-deployment ADCPs (side-looking) is proven, the same methods cannot be used with down-looking ADCPs due to the fact that the SSC and particle-size distribution variation in the vertical profile violates theory and complicates assumptions. A software tool was developed to assist in using acoustic backscatter from a down-looking, mobile ADCP as a surrogate for SSC. This tool has a simple graphical user interface that loads the data, assists in the calibration procedure, and provides data visualization and output options. This tool

  16. Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures

    International Nuclear Information System (INIS)

    Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.

    2008-01-01

    SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure

  17. Correction of magnetization sextupole and decapole in a 5 centimeter bore SSC dipole using passive superconductor

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-05-01

    Higher multipoles due to magnetization of the superconductor in four and five centimeter bore Superconducting Super Collider (SSC) superconducting dipole magnets have been observed. The use of passive superconductor to correct out the magnetization sextupole has been demonstrated on two dipoles built by the Lawrence Berkeley Laboratory (LBL). This reports shows how passive correction can be applied to the five centimeter SSC dipoles to remove sextupole and decapole caused by magnetization of the dipole superconductor. Two passive superconductor corrector options will be presented. The change in magnetization sextupole and decapole due to flux creep decay of the superconductor during injection can be partially compensated for using the passive superconductor. 9 refs; 5 figs

  18. Head-on and long-range beam-beam tune shift spread in the SSC

    International Nuclear Information System (INIS)

    Lopez, G.

    1993-01-01

    The head-on and long-range incoherent tune shifts for the Superconducting Super Collider (SSC) are estimated using the numerical integration of the analytical expression coming from the first order in the perturbation strength. The variation of the tune shift as a function of the displacements of the charged particle in the vertical and horizontal planes is studied with the nominal parameters for the SSC. A scaling expression is obtained for the parameters involved in the beam-beam tune shifts, which allows the author to predict the effect in the incoherent tune shift spread under changes in these parameters

  19. Tracking considerations for fixed target B experiments at SSC and LHC

    International Nuclear Information System (INIS)

    McManus, A.P.; Conetti, S.; Corti, G.; Cox, B.; Dukes, E.C.; Lawry, T.; Nelson, K.; Tzamouranis, I.

    1993-01-01

    Fixed target beauty (B) experiments proposed at the SSC or LHC come in two basic types. Extracted beam experiments use a bent crystal of silicon or some other method to extract a beam of protons parasitically from the circulating beam as the collider experiments are taking data. The two chief extracted beam experiments are the LHB collaboration at the LHC and the SFT collaboration at the SSC. The second type of fixed target experiment places the detector around the circulating beam using a gas jet or thin wire(s) as a target. The (GAJET) experiment proposed at CERN for LHC and the Hera-B experiment at DESY are of this type

  20. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we investigate an economically optimizing Nonlinear Model Predictive Control (E-NMPC) for a spray drying process. By simulation we evaluate the economic potential of this E-NMPC compared to a conventional PID based control strategy. Spray drying is the preferred process to reduce...... the water content for many liquid foodstuffs and produces a free flowing powder. The main challenge in controlling the spray drying process is to meet the residual moisture specifications and avoid that the powder sticks to the chamber walls of the spray dryer. We present a model for a spray dryer that has...... been validated on experimental data from a pilot plant. We use this model for simulation as well as for prediction in the E-NMPC. The E-NMPC is designed with hard input constraints and soft output constraints. The open-loop optimal control problem in the E-NMPC is solved using the single...

  1. Development of single chamber solid oxide fuel cells (SCFC)

    Energy Technology Data Exchange (ETDEWEB)

    Viricelle, J.-P.; Udroiu, S.; Gadacz, G.; Pijolat, M.; Pijolat, C. [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SPIN, LPMG-UMR CNRS 5148, 158 cours Fauriel, 42023 Saint-Etienne Cedex 02 (France)

    2010-08-15

    Single Chamber Solid Oxide Fuel Cells (SCFC) have been prepared using an electrolyte as support (Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} named GDC). Anode (Ni-GDC) and different cathodes (Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} (SSC), Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (BSCF) and La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM)) were placed on the same side of the electrolyte. All the electrodes were deposited using screen-printing technology. A gold collector was also deposited on the cathode to decrease the over-potential. The different materials and fuel cell devices were tested under propane/air mixture, after a preliminary treatment under hydrogen to reduce the as-deposited nickel oxide anode. The results show that SSC and BSCF cathodes are not stable in these conditions, leading to a very low open circuit voltage (OCV) of 150 mV. Although LSM material is not the more adequate cathode regarding its high catalytic activity towards hydrocarbon conversion, it has a better chemical stability than SSC and BSCF. Ni-GDC-LSM SCFC devices were elaborated and tested; an OCV of nearly 750 mV could be obtained with maximum power densities around 20 mW cm{sup -2} at 620 C, under air-propane mixture with C{sub 3}H{sub 8}/O{sub 2} ratio equal to 0.53. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  3. Chamber for Aerosol Deposition of Bioparticles

    Science.gov (United States)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    accumulation of electric charge on them, they are spray-coated with an anti-static material. During use, the base plate and the sides and top of the chamber are grounded as a further measure to minimize the buildup of electric charge.

  4. Implementation and Testing of the JANUS Standard with SSC Pacific’s Software-Defined Acoustic Modem

    Science.gov (United States)

    2017-10-01

    the Mission Systems Engineering Branch (Code 56170), the Littoral Engineering Branch (Code 56430), the Unmanned Systems Science and Technology... Systems Center Pacific (SSC Pacific), San Diego, CA. Further support was provided by the 55340 Enterprise Communications and Networks Branch (Code 55340...Division iii EXECUTIVE SUMMARY This report presents SPAWAR Systems Center Pacific’s (SSC Pacific) preliminary efforts to implement and test the

  5. Target Chamber Manipulator

    Science.gov (United States)

    Tantillo, Anthony; Watson, Matthew

    2015-11-01

    A system has been developed to allow remote actuation of sensors in a high vacuum target chamber used with a particle accelerator. Typically, sensors of various types are placed into the target chamber at specific radial and angular positions relative to the beam line and target. The chamber is then evacuated and the experiments are performed for those sensor positions. Then, the chamber is opened, the sensors are repositioned to new angles or radii, and the process is repeated, with a separate pump-down cycle for each set of sensor positions. The new sensor positioning system allows scientists to pre-set the radii of up to a dozen sensors, and then remotely actuate their angular positions without breaking the vacuum of the target chamber. This reduces the time required to reposition sensors from 6 hours to 1 minute. The sensors are placed into one of two tracks that are separately actuated using vacuum-grade stepping motors. The positions of the sensors are verified using absolute optical rotary encoders, and the positions are accurate to 0.5 degrees. The positions of the sensors are electronically recorded and time-stamped after every change. User control is through a GUI using LabVIEW.

  6. An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Le; Torelli, Roberto; Zhu, Xiucheng; Scarcelli, Riccardo; Som, Sibendu; Schmidt, Henry; Naber, Jeffrey; Lee, Seong-Young

    2017-03-14

    Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGE framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation. A set of turbulence and spray break-up model constants was identified to properly match the aforementioned measurements of liquid penetration within their experimental confidence intervals. An accuracy study on varying the minimum mesh size was also performed to ensure the grid convergence of the numerical results. Experimentally validated computational fluid dynamics (CFD) simulations were then used to investigate the local spray characteristics in the vicinity of the wall with a particular focus on Sauter Mean Diameter (SMD) and Reynolds and Weber numbers. The analysis was performed by considering before- and after-impingement conditions in order to take in account the influence of the impinged wall on the spray morphology.

  7. Experimental Study on Diesel Spray Characteristics and Autoignition Process

    Directory of Open Access Journals (Sweden)

    Özgür Oğuz Taşkiran

    2011-01-01

    Full Text Available The main goal of this study is to get the temporal and spatial spray evolution under diesel-like conditions and to investigate autoignition process of sprays which are injected from different nozzle geometries. A constant volume combustion chamber was manufactured and heated internally up to 825 K at 3.5 MPa for experiments. Macroscopic properties of diesel spray were recorded via a high-speed CCD camera by using shadowgraphy technique, and the images were analyzed by using a digital image processing program. To investigate the influence of nozzle geometry, 4 different types of divergent, straight, straight-rounded, convergent-rounded nozzles, were manufactured and used in both spray evolution and autoignition experiments. The internal geometry of the injector nozzles were obtained by using silicone mold method. The macroscopic properties of the nozzles are presented in the study. Ignition behaviour of different nozzle types was observed in terms of ignition delay time and ignition location. A commercial Diesel fuel, n-heptane, and a mixture of hexadecane-heptamethylnonane (CN65—cetane number 65 were used as fuels at ignition experiments. The similar macroscopic properties of different nozzles were searched for observing ignition time and ignition location differences. Though spray and ignition characteristics revealed very similar results, the dissimilarities are presented in the study.

  8. Hollow-Cone Spray Modeling for Outwardly Opening Piezoelectric Injector

    KAUST Repository

    Sim, Jaeheon

    2016-01-04

    Linear instability sheet atomization (LISA) breakup model has been widely used for modeling hollow-cone spray. However, the model was originally developed for inwardlyopening pressure-swirl injectors by assuming toroidal ligament breakups. Therefore, LISA model is not suitable for simulating outwardly opening injectors having string-like structures at wide spray angles. Furthermore, the varying area and shape of the annular nozzle exit makes the modeling difficult. In this study, a new spray modeling was proposed for outwardly opening hollow-cone injector. The injection velocities are computed from the given mas flow rate and injection pressure regardless of ambiguous nozzle exit geometries. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like liquid film spray. Liquid spray injection was modeled using Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the detailed model was implemented by user defined functions. It was found that the new model predicted the liquid penetration length and local SMD accurately for various fuels and chamber conditions.

  9. Improved Orifice Plate for Spray Gun

    Science.gov (United States)

    Cunningham, W.

    1986-01-01

    Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.

  10. Construction experience with Fermilab-built full length 50mm SSC dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Blessing, M.J.; Hoffman, D.E.; Packer, M.D. (General Dynamics Corp., San Diego, CA (United States). Space Systems Div.); Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Delchamps, S.; Ewald, K.D.; Fulton, H.J.; Haggard, J.E.; Jensen, R.H.; Koska, W.; Rihel, R.K.; Robotham, W.F.; Smith, B.E.; Smith, D.J.; Strait, J.B.; Tassotto, G.; Tinsley, D.A.; Wake, M.; Winters, M.; Zimmerman, W.F. (Fermi National Accelerator Lab., Ba

    1992-03-01

    Fourteen full length SSC dipole magnets are being built and tested at Fermilab. Their purpose is to verify the magnet design as well as transfer the construction technology to industry. Magnet design is summarized. Construction problems and their solutions are discussed. Topics include coil winding, curing and measuring, collaring, instrumentation, end clamp installation, yoking and electrical and mechanical interconnection.

  11. Test results of BNL built 40-mm aperture, 17-m-long SSC collider dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminski, J.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.C.; Wolf, Z.; Yu, Y.; Zheng, H. (Superconducting Super Collider Lab., Dallas, TX (United States)); Ogitsu, T. (Superconducting Super Collider Lab., Dallas, TX (United States) National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)); Anerella, M.; Cottingham, J.

    1991-06-01

    Eleven 17 m long, 40 mm aperture SSC R D superconducting collider dipole magnets, built at BNL, have been extensively tested at BNL and Fermilab during 1990--91. Quench performance of these magnets and details of their mechanical behavior are presented. 7 refs., 5 figs.

  12. Review of the abort dump shown in the SSC [superconducting super collider] conceptual design report

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    This report details the design of the abort dump for the Superconducting Super-Collider (SSC). The dump is made from graphite and designed to absorb the maximum beam energy of 400 MJ. The report considers long time activation effects of the dump components. The report concludes that the basic design of the abort dump is well defined

  13. Computing and data handling requirements for SSC [Superconducting Super Collider] and LHC [Large Hadron Collider] experiments

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs

  14. Probing electroweak symmetry breaking at the SSC [Superconducting Super Collider]: A no-lose corollary

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1987-01-01

    Low energy theorems are derived for scattering of longitudinally polarized W and Z's, providing the basis for an estimate of the observable signal at the SSC if electroweak symmetry breaking is due to new physics at the TeV scale

  15. Construction experience with Fermilab-built full length 50mm SSC dipoles

    International Nuclear Information System (INIS)

    Blessing, M.J.; Hoffman, D.E.; Packer, M.D.; Gordon, M.; Higinbotham, W.; Sims, R.

    1992-03-01

    Fourteen full length SSC dipole magnets are being built and tested at Fermilab. Their purpose is to verify the magnet design as well as transfer the construction technology to industry. Magnet design is summarized. Construction problems and their solutions are discussed. Topics include coil winding, curing and measuring, collaring, instrumentation, end clamp installation, yoking and electrical and mechanical interconnection

  16. The Disappearing Fourth Wall: John Marburger, Science Policy, and the SSC

    Science.gov (United States)

    Crease, Robert

    2015-04-01

    John H. Marburger (1941-2011) was a skilled science administrator who had a fresh and unique approach to science policy and science leadership. His posthumously published book Science Policy up Close contains recollections of key science policy episodes in which he participated or observed closely. One was the administration of the Superconducting Supercollider (SSC); Marburger was Chairman of the Universities Research Association, the group charged with managing the SSC, from 1988-1994. Many accounts of the SSC saga attribute its demise to a combination of transitory factors: poor management, rising cost estimates, the collapse of the Soviet Union and thus of the Cold War threat, complaints by ``small science'' that the SSC's ``big science'' was consuming their budget, Congress's desire to cut spending, unwarranted contract regulations imposed by the Department of Energy (DOE) in response to environmental lapses at nuclear weapons laboratories, and so forth. Marburger tells a subtler story whose implications for science policy are more significant and far-reaching. The story involves changes in the attitude of the government towards large scientific projects that reach back to management reforms introduced by the administration of Presidents Johnson, Nixon, and Carter in the 1960s and 1970s. This experience impressed Marburger with the inevitability of public oversight of large scientific projects, and with the need for planners of such projects to establish and make public a cost and schedule tracking system that would model the project's progress and expenditures.

  17. New insight into the SSC8 genetic determination of fatty acid composition in pigs

    NARCIS (Netherlands)

    Revilla, M.; Ramayo-Caldas, Y.; Castello, A.; Corominas, J.; Puig-Oliveras, A.; Ibanez-Escriche, N.; Munoz, M.; Ballester, M.; Folch, J.M.

    2014-01-01

    BACKGROUND: Fat content and fatty acid composition in swine are becoming increasingly studied because of their effect on sensory and nutritional quality of meat. A QTL (quantitative trait locus) for fatty acid composition in backfat was previously detected on porcine chromosome 8 (SSC8) in an

  18. Need to plan for a full-scale lns-physics program at the SSC

    International Nuclear Information System (INIS)

    White, A.R.

    1984-03-01

    Arguments for a full lns physics program at the SSC are enumerated and elaborated on. They are: first - the inadequacy of data from a minimal program, second - the potential fundamental significance of a high-energy soft physics collective phenomenon and third - the possible diffractive production of much of the interesting new physics that will be searched for

  19. A high-resolution comparative RH map of porcine chromosome (SSC) 2.

    NARCIS (Netherlands)

    Rattink, A.P.; Faivre, M.; Jungerius, B.J.; Groenen, M.A.M.; Harlizius, B.

    2001-01-01

    A high-resolution comparative map was constructed for porcine Chromosome (SSC) 2, where a QTL for back fat thickness (BFT) is located. A radiation hybrid (RH) map containing 33 genes and 25 microsatellite markers was constructed for this chromosome with a 3000-rad porcine RH panel. In total, 16

  20. Tests of 1.5 meter model 50mm SSC collider dipoles at Fermilab

    International Nuclear Information System (INIS)

    Wake, M.; Bossert, R.; Carson, J.; Coulter, K.; Delchamps, S.; Gourlay, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Lamm, M.J.; Strait, J.; Sims, R.; Winters, M.

    1991-05-01

    A series of 50mm diameter 1.5m model magnets have been constructed. The test of these magnets gave convincing results concerning the design of the 50mm cross section of the SSC collider dipoles. 9 refs., 6 figs

  1. Test results of BNL built 40-mm aperture, 17-m-long SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Kuzminski, J.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.

    1992-01-01

    Eleven 17 m long, 40 mm aperture SSC R and D superconducting collider dipole magnets, built at BNL, have been extensively tested at BNL and Fermilab during 1990-91. In this paper quench performance of these magnets and details of their mechanical behavior are presented

  2. Test results of BNL built 40-mm aperture, 17-m-long SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Kuzminski, J.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.C.; Wolf, Z.; Yu, Y.; Zheng, H.; Ogitsu, T.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Gosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.

    1991-06-01

    Eleven 17 m long, 40 mm aperture SSC R ampersand D superconducting collider dipole magnets, built at BNL, have been extensively tested at BNL and Fermilab during 1990--91. Quench performance of these magnets and details of their mechanical behavior are presented. 7 refs., 5 figs

  3. Quench performance of 50-mm aperture, 15-m-long SSC dipole magnets built at Fermilab

    International Nuclear Information System (INIS)

    Kuzminski, J.; Bush, T.; Coombes, R.

    1992-07-01

    The quench performance, ramp rate dependence, and mechanical behavior of ten full-length, 50-mm-aperture, SSC dipole magnets built at Fermilab are discussed. Cold testing of these magnets shows that the quench plateau established at 4.35 K exceeds the design value by more than 10%, virtually without training

  4. Delta-function Approximation SSC Model in 3C 273 S. J. Kang1 ...

    Indian Academy of Sciences (India)

    Abstract. We obtain an approximate analytical solution using δ approximate calculation on the traditional one-zone synchrotron self-. Compton (SSC) model. In this model, we describe the electron energy distribution by a broken power-law function with a sharp cut-off, and non- thermal photons are produced by both ...

  5. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  6. The KLOE drift chamber

    CERN Document Server

    Adinolfi, M; Ambrosino, F; Andryakov, A; Antonelli, A; Antonelli, M; Anulli, F; Bacci, C; Bankamp, A; Barbiellini, G; Bellini, F; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Bulychjov, S A; Cabibbo, G; Calcaterra, A; Caloi, R; Campana, P; Capon, G; Carboni, G; Cardini, A; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Cevenini, F; Chiefari, G; Ciambrone, P; Conetti, S; Conticelli, S; Lucia, E D; Robertis, G D; Sangro, R D; Simone, P D; Zorzi, G D; Dell'Agnello, S; Denig, A; Domenico, A D; Donato, C D; Falco, S D; Doria, A; Drago, E; Elia, V; Erriquez, O; Farilla, A; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giovannella, S; Golovatyuk, V; Gorini, E; Grancagnolo, F; Grandegger, W; Graziani, E; Guarnaccia, P; Von Hagel, U; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Jang, Y Y; Kim, W; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Lomtadze, F; Luisi, C; Mao Chen Sheng; Martemyanov, M; Matsyuk, M; Mei, W; Merola, L; Messi, R; Miscetti, S; Moalem, A; Moccia, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nedosekin, A; Panareo, M; Pacciani, L; Pagès, P; Palutan, M; Paoluzi, L; Pasqualucci, E; Passalacqua, L; Passaseo, M; Passeri, A; Patera, V; Petrolo, E; Petrucci, Guido; Picca, D; Pirozzi, G; Pistillo, C; Pollack, M; Pontecorvo, L; Primavera, M; Ruggieri, F; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Schwick, C; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Shan, J; Silano, P; Spadaro, T; Spagnolo, S; Spiriti, E; Stanescu, C; Tong, G L; Tortora, L; Valente, E; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Wu, Y; Xie, Y G; Zhao, P P; Zhou, Y

    2001-01-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K sub L produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm sup 2 in size in the 12 innermost layers and 3x3 cm sup 2 in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented.

  7. The KLOE drift chamber

    International Nuclear Information System (INIS)

    Adinolfi, M.; Aloisio, A.; Ambrosino, F.; Andryakov, A.; Antonelli, A.; Antonelli, M.; Anulli, F.; Bacci, C.; Bankamp, A.; Barbiellini, G.; Bellini, F.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Bulychjov, S.A.; Cabibbo, G.; Calcaterra, A.; Caloi, R.; Campana, P.; Capon, G.; Carboni, G.; Cardini, A.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Cevenini, F.; Chiefari, G.; Ciambrone, P.; Conetti, S.; Conticelli, S.; Lucia, E. De; Robertis, G. De; Sangro, R. De; Simone, P. De; Zorzi, G. De; Dell'Agnello, S.; Denig, A.; Domenico, A. Di; Donato, C. Di; Falco, S. Di; Doria, A.; Drago, E.; Elia, V.; Erriquez, O.; Farilla, A.; Felici, G.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giovannella, S.; Golovatyuk, V.; Gorini, E.; Grancagnolo, F.; Grandegger, W.; Graziani, E.; Guarnaccia, P.; Hagel, U.V.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Jang, Y.Y.; Kim, W.; Kluge, W.; Kulikov, V.; Lacava, F.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, F.; Luisi, C.; Mao, C.S.; Martemianov, M.; Matsyuk, M.; Mei, W.; Merola, L.; Messi, R.; Miscetti, S.; Moalem, A.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Napolitano, M.; Nedosekin, A.; Panareo, M.; Pacciani, L.; Pages, P.; Palutan, M.; Paoluzi, L.; Pasqualucci, E.; Passalacqua, L.; Passaseo, M.; Passeri, A.; Patera, V.; Petrolo, E.; Petrucci, G.; Picca, D.; Pirozzi, G.; Pistillo, C.; Pollack, M.; Pontecorvo, L.; Primavera, M.; Ruggieri, F.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Schwick, C.; Sciascia, B.; Sciubba, A.; Scuri, F.; Sfiligoi, I.; Shan, J.; Silano, P.; Spadaro, T.; Spagnolo, S.; Spiriti, E.; Stanescu, C.; Tong, G.L.; Tortora, L.; Valente, E.; Valente, P.; Valeriani, B.; Venanzoni, G.; Veneziano, S.; Wu, Y.; Xie, Y.G.; Zhao, P.P.; Zhou, Y.

    2001-01-01

    The tracking detector of the KLOE experiment is 4 m diameter, 3.3 m length drift chamber, designed to contain a large fraction of the decays of low-energy K L produced at the Frascati DAPHINE phi-factory. The chamber is made by a thin carbon fiber structure and operated with a helium-based gas mixture in order to minimise conversion of low-energy photons and multiple scattering inside the sensitive volume. The tracking information is provided by 58 layers of stereo wires defing 12,582 cells, 2x2 cm 2 in size in the 12 innermost layers and 3x3 cm 2 in the outer ones. Details of the chamber design, calibration procedure and tracking performances are presented

  8. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  9. micro strip gas chamber

    CERN Multimedia

    1998-01-01

    About 16 000 Micro Strip Gas Chambers like this one will be used in the CMS tracking detector. They will measure the tracks of charged particles to a hundredth of a millimetre precision in the region near the collision point where the density of particles is very high. Each chamber is filled with a gas mixture of argon and dimethyl ether. Charged particles passing through ionise the gas, knocking out electrons which are collected on the aluminium strips visible under the microscope. Such detectors are being used in radiography. They give higher resolution imaging and reduce the required dose of radiation.

  10. Charpak hemispherical wire chamber

    CERN Document Server

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  11. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  12. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  13. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI

    2017-08-01

    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  14. Kelvin spray ionization.

    Science.gov (United States)

    Özdemir, Abdil; Lin, Jung-Lee; Gillig, Kent J; Chen, Chung-Hsuan

    2013-11-21

    A novel self-powered dual spray ionization source has been developed for applications in mass spectrometry. This new source does not use any power supply and produces both positive and negative ions simultaneously. The idea behind this ionization source comes from the Kelvin water dropper. The source employs one or two syringes, two pneumatic sprays operated over a range of flow rates (0.15-15 μL min(-1)) and gas pressures (0-150 psi), and two double layered metal screens for ion formation. A variable electrostatic potential from 0 to 4 kV can be produced depending on solvent and gas flow rates that allow gentle ionization of compounds. There are several parameters that affect the performance during ionization of molecules including the flow rate of solvent, gas pressure, solvent acidity, position of spray and metal screens with respect to each other and distance between metal screens and the counter electrode. This ionization method has been successfully applied to solutions of peptides, proteins and non-covalent complexes. In comparison with ESI, the charge number of the most populated state is lower than that from ESI. It indicates that this is a softer ionization technique and it produces more protein ions with folded structures. The unique features of Kelvin spray ionization (KeSI) are that the method is self-powered and ionization occurs at very low potentials by providing very low internal energy to the ions. This advantage can be used for the ionization of very fragile molecules and investigation of non-covalent interactions.

  15. Large planar drift chambers

    CERN Document Server

    Marel, Gérard; Bréhin, S; Devaux, B; Diamant-Berger, Alain M; Leschevin, C; Maillard, J; Malbequi, Y; Martin, H; Patoux, A; Pelle, J; Plancoulaine, J; Tarte, Gérard; Turlay, René

    1977-01-01

    The authors describe 14 m/sup 2/ hexagonal planar drift chambers designed for the neutrino experiment of the CERN-Dortmund-Heidelberg- Saclay Collaboration. Details on mechanical construction, electronic read-out, results on efficiency and accuracy are presented. (6 refs).

  16. Improvements in ionization chambers

    International Nuclear Information System (INIS)

    Whetten, N.R.; Zubal, C.

    1980-01-01

    A method of reducing mechanical vibrations transmitted to the parallel plate electrodes of ionization chamber x-ray detectors, commonly used in computerized x-ray axial tomography systems, is described. The metal plate cathodes and anodes are mounted in the ionizable gas on dielectric sheet insulators consisting of a composite of silicone resin and glass fibres. (UK)

  17. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  18. Review of straw chambers

    International Nuclear Information System (INIS)

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e + e - experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed

  19. Heavy liquid bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The CERN Heavy liquid bubble chamber being installed in the north experimental hall at the PS. On the left, the 1180 litre body; in the centre the magnet, which can produce a field of 26 800 gauss; on the right the expansion mechanism.

  20. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  1. MISSING: BUBBLE CHAMBER LENS

    CERN Multimedia

    2001-01-01

    Would the person who borrowed the large bubble chamber lens from the Microcosm workshops on the ISR please return it. This is a much used piece from our object archives. If anybody has any information about the whereabouts of this object, please contact Emma.Sanders@cern.ch Thank you

  2. Scanning bubble chamber pictures

    CERN Multimedia

    1974-01-01

    These were taken at the 2 m hydrogen bubble chamber. The photo shows an early Shiva system where the pre-measurements needed to qualify the event were done manually (cf photo 7408136X). The scanning tables were located in bld. 12. Gilberte Saulmier sits on foreground, Inge Arents at centre.

  3. Chamber Profile Measurement System.

    Science.gov (United States)

    1980-10-01

    travel with the proper electronics. Other features of tihe gage assembly are: 1. Micrometer controlled down chamber positioning of the master template to...pressure sensitive "stiff stick" for infinitely varying the rate of travel from zero to maximum. A manual vernier control is incorporated to permit fine

  4. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  5. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  6. The KLOE drift chamber

    International Nuclear Information System (INIS)

    Ferrari, A.

    2002-01-01

    The design and construction of the large drift chamber of the KLOE experiment is presented. The track reconstruction is described, together with the calibration method and the monitoring systems. The stability of operation and the performance are studied with samples of e + e - , K S K L and K + K - events

  7. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  8. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  9. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    Science.gov (United States)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  10. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application.

    Science.gov (United States)

    Kesterson, Melissa A; Luck, Joe D; Sama, Michael P

    2015-12-17

    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.

  11. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application

    Directory of Open Access Journals (Sweden)

    Melissa A. Kesterson

    2015-12-01

    Full Text Available An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.

  12. HLA Class I and II Blocks Are Associated to Susceptibility, Clinical Subtypes and Autoantibodies in Mexican Systemic Sclerosis (SSc Patients.

    Directory of Open Access Journals (Sweden)

    Tatiana S Rodriguez-Reyna

    Full Text Available Human leukocyte antigen (HLA polymorphism studies in Systemic Sclerosis (SSc have yielded variable results. These studies need to consider the genetic admixture of the studied population. Here we used our previously reported definition of genetic admixture of Mexicans using HLA class I and II DNA blocks to map genetic susceptibility to develop SSc and its complications.We included 159 patients from a cohort of Mexican Mestizo SSc patients. We performed clinical evaluation, obtained SSc-associated antibodies, and determined HLA class I and class II alleles using sequence-based, high-resolution techniques to evaluate the contribution of these genes to SSc susceptibility, their correlation with the clinical and autoantibody profile and the prevalence of Amerindian, Caucasian and African alleles, blocks and haplotypes in this population.Our study revealed that class I block HLA-C*12:03-B*18:01 was important to map susceptibility to diffuse cutaneous (dc SSc, HLA-C*07:01-B*08:01 block to map the susceptibility role of HLA-B*08:01 to develop SSc, and the C*07:02-B*39:05 and C*07:02-B*39:06 blocks to map the protective role of C*07:02 in SSc. We also confirmed previous associations of HLA-DRB1*11:04 and -DRB1*01 to susceptibility to develop SSc. Importantly, we mapped the protective role of DQB1*03:01 using three Amerindian blocks. We also found a significant association for the presence of anti-Topoisomerase I antibody with HLA-DQB1*04:02, present in an Amerindian block (DRB1*08:02-DQB1*04:02, and we found several alleles associated to internal organ damage. The admixture estimations revealed a lower proportion of the Amerindian genetic component among SSc patients.This is the first report of the diversity of HLA class I and II alleles and haplotypes Mexican patients with SSc. Our findings suggest that HLA class I and class II genes contribute to the protection and susceptibility to develop SSc and its different clinical presentations as well as

  13. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  14. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  15. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  16. Double chambered right ventricle

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Yu, Yun Jeong; Yeon, Kyung Mo; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1983-12-15

    Fourteen cases of double chambered right ventricle were diagnosed angiographically and of these nine cases were confirmed after operation and autopsy at Seoul National University Hospital in recent four years since 1979. The clinical and radiological findings with the emphasis on the cinecardiographic findings were analysed. The summaries of the analysis are as follows: 1. Among 14 cases, 6 cases were male and 8 cases were female. Age distribution was from 4 years to 36 years. 2. In chest x-ray findings, pulmonary vascularity was increased in 8 cases, decreased in 4 cases, and normal in 2 cases. Cardiomegaly was observed in 8 cases and other showed normal heart size. 3. In cinecardiography, 11 cases had interventricular septal defect. Among these 11 cases, VSD located in proximal high pressure chamber was in 2 cases and located in distal low pressure chamber was in 9 cases. 4. The location of aberrant muscle bundle in sinus portion of right ventricle was in 8 cases. In the rest 6 cases, the aberrant muscle bundle was located below the infundibulum of right ventricle. 5. For accurate diagnosis and differential diagnosis with other congenital cardiac anomalies such as Tetralogy of Fallot or isolated pulmonic stenosis, biplane cineangiography and catheterization is an essential procedure.

  17. Double chambered right ventricle

    International Nuclear Information System (INIS)

    Cho, Chul Koo; Yu, Yun Jeong; Yeon, Kyung Mo; Han, Man Chung

    1983-01-01

    Fourteen cases of double chambered right ventricle were diagnosed angiographically and of these nine cases were confirmed after operation and autopsy at Seoul National University Hospital in recent four years since 1979. The clinical and radiological findings with the emphasis on the cinecardiographic findings were analysed. The summaries of the analysis are as follows: 1. Among 14 cases, 6 cases were male and 8 cases were female. Age distribution was from 4 years to 36 years. 2. In chest x-ray findings, pulmonary vascularity was increased in 8 cases, decreased in 4 cases, and normal in 2 cases. Cardiomegaly was observed in 8 cases and other showed normal heart size. 3. In cinecardiography, 11 cases had interventricular septal defect. Among these 11 cases, VSD located in proximal high pressure chamber was in 2 cases and located in distal low pressure chamber was in 9 cases. 4. The location of aberrant muscle bundle in sinus portion of right ventricle was in 8 cases. In the rest 6 cases, the aberrant muscle bundle was located below the infundibulum of right ventricle. 5. For accurate diagnosis and differential diagnosis with other congenital cardiac anomalies such as Tetralogy of Fallot or isolated pulmonic stenosis, biplane cineangiography and catheterization is an essential procedure

  18. Argus target chamber

    International Nuclear Information System (INIS)

    Rienecker, F. Jr.; Glaros, S.S.; Kobierecki, M.

    1975-01-01

    A target chamber for application in the laser fusion program must satisfy some very basic requirements. (1) Provide a vacuum on the order of 10 -6 torr. (2) Support a microscopically small target in a fixed point in space and verify its location within 5 micrometers. (3) Contain an adjustable beam focusing system capable of delivering a number of laser beams onto the target simultaneously, both in time and space. (4) Provide access for diagnostics to evaluate the results of target irradiation. (5) Have flexibility to allow changes in targets, focusing optics and number of beams. The ARGUS laser which is now under construction at LLL will have a target chamber which meets these requirements in a simple economic manner. The chamber and auxiliary equipment are described, with reference to two double beam focusing systems; namely, lenses and ellipsoidal mirrors. Provision is made for future operation with four beams, using ellipsoidal mirrors for two-sided illumination and lens systems for tetragonal and tetrahedral irradiation

  19. A high gradient quadrupole magnet for the SSC (Superconducting Super Collider)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.; Caspi, S.; Helm, M.; Mirk, K.; Peters, C.; Wandesforde, A.

    1987-03-01

    A quadrupole magnet for the SSC has been designed with a gradient of 234 T/m at 6500 A. Coil ID is 40 mm. The two-layer windings have 9 inner turns and 13 outer turns per pole with a wedge-shaped spacer in each layer. The 30-strand cable is identical to that used in the outer layer of the SSC dipole magnet. Interlocking aluminum alloy collars are compressed around the coils using a four-way press and are locked with four keys. The collared coil is supported and centered in a cold split iron yoke. A one-meter model was constructed and tested. Design details including quench behavior are presented.

  20. An experimental study of the SSC [Superconducting Super Collider] magnet aperture criterion

    International Nuclear Information System (INIS)

    Merminga, N.; Edwards, D.; Finley, D.

    1988-01-01

    A beam dynamics experiment, performed in the Fermilab Tevatron, that was mainly motivated by planning for the Superconducting Super Collider (SSC) is described. Nonlinearities are introduced in the Tevatron by special sextupoles in order to stimulate the SSC environment. ''Smear'' is one of the parameters used to characterize the deviation from linear behavior. Smear is extracted from experimental data and compared with calculation over a wide range of conditions. The agreement is excellent. The closed orbit at injection trajectory reveal no deterioration even at the highest sextupole excitations. Measurements of the dynamic aperture are in general agreement with prediction. Particles captured on nonlinear resonance islands are directly observed and measurements are performed for the first time. The stability of the islands under tune modulation is investigated. 4 refs., 8 figs

  1. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  2. Production and detection at SSC of Higgs bosons in left-right symmetric theories

    International Nuclear Information System (INIS)

    Gunion, J.; Kayser, B.; Mohapatra, R.N.; Deshpande, N.G.; Grifols, J.; Mendez, A.; Olness, F.; Pal, P.B.

    1986-12-01

    We discuss the production and detection at SSC of charged and neutral Higgs bosons of the left-right symmetric theories. The H + , which is largely a member of a left-right ''bidoublet,'' should be detectable. The H 2 0 , a more unusual Higgs particle which, apart from mixing, is in a right-handed triplet and does not couple to quarks, may be detectable too

  3. A bipolar monolithic preamplifier for high-capacitance SSC [Superconducting Super Collider] silicon calorimetry

    International Nuclear Information System (INIS)

    Britton, C.L. Jr.; Kennedy, E.J.; Bugg, W.M.

    1990-01-01

    This paper describes a preamplifier designed and fabricated specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). The topology and its features are discussed in addition to the design methodology employed. The simulated and measured results for noise, power consumption, and speed are presented. Simulated an measured data for radiation damage effects as well as data for post-damage annealing are also presented. 8 refs., 7 figs., 2 tabs

  4. Test results of a 90 MHz integrated circuit sixteen channel analog pipeline for SSC detector calorimetry

    International Nuclear Information System (INIS)

    Kleinfelder, S.; Levi, M.; Milgrome, O.

    1990-01-01

    A sixteen channel analog transient recorder with 128 cells per channel has been fabricated as an integrated circuit and tested at speeds of up to 90 MHz. The circuit uses a switched capacitor array technology to achieve a simultaneous read and write capability and twelve bit dynamic range. The high performance of this part should satisfy the demanding electronics requirements of calorimeter detectors at the SSC. The circuit parameters and test results are presented

  5. Test of two 1.8 M SSC model magnets with iterated design

    International Nuclear Information System (INIS)

    Wanderer, P.; Cottingham, J.G.; Dahl, P.

    1989-01-01

    We report results from two 1.8 m-long dipoles built as part of the Superconducting Super Collider (SSC) RandD program. These magnets contain design changes made on both the 1.8 m and the full-length 17 m dipoles to improve quench performance, magnetic field uniformity, and manufacturability. The magnets reach 8 T with little training. 10 refs., 5 figs., 1 tab

  6. Mechanical behavior of Fermilab-built 1.5 m model SSC collider dipoles

    International Nuclear Information System (INIS)

    Strait, J.; Bossert, R.; Carson, J.; Coulter, K.J.; Delchamps, S.; Jaffery, T.S.; Kinney, W.; Koska, W.; Gourlay, S.; Lamm, M.J.; Wake, M.; Sims, R.; Winters, M.

    1991-09-01

    Several model SSC collider dipole magnets (50 mm aperture, 1.5 m magnetic length) have been built and tested at Fermilab. These magnets are instrumented with strain gauges to measure stresses in the coil, the cold mass shell, and the coil end clamp assembly. Measurements are made of these quantities during assembly, cooldown, excitation, and warmup. Additional mechanical measurements are made on magnet sub-assemblies during manufacturing. Data from these measurements are presented and compared with expectations from the design calculations

  7. FAD: A full-acceptance detector for physics at the SSC

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1992-09-01

    For high energy pp collisions, the concepts ''4π'' and ''full acceptance'' are distinct. At the SSC, the appropriate variables for describing phase space are the lego variables: pseudorapidity η and azimuthal angle φ. While most of 4π is covered by pseudorapidities less than 3 or 4 in magnitude, at the SSC there is very interesting physics out to η's of 9 to 12. For over a year I have been attempting to encourage an initiative at the SSC to provide a detector which could cover the missing acceptance of the two big detectors, which in particular have no appreciable charged particle tracking with good momentum resolution beyond rapidities of 2.5 or so. The nonnegotiable criteria for an FAD are for me the following: 1. All charged particles are seen and their momenta measured well, provided pt is not too large. 2. All photons are seen and their momenta are measured well. 3. The physics of rapidity-gaps is not compromised. This means angular coverage from 90 degrees down to tens of microradians. The above criteria cannot be met on day one of SSC commissioning with the amount of funds available. But I believe a staged approach is feasible, with a lot of interesting physics available along the way. The basic philosophy underlying the FAD idea is that it should first and most be a survey instrument, sensitive to almost everything, but optimized for almost nothing. Its strength is in the perception of complex patterns individual events, used as a signature of new and/or interesting physics. Examples of such patterns will be given later

  8. Novel models of controller parts for the SSC-L code

    International Nuclear Information System (INIS)

    Schubert, B.; Moench, D.

    1986-01-01

    The simulation of system control of LMFBRs is quite essential for design and licensing of such facilities. This report presents the numerical models for the simulation of controller parts, which have been tested in conjunction with the SSC-L code for the experimental breeder KNK II. The good agreement between calculation and measurement proves the principal usability of the proposed models for the required task. (orig.) [de

  9. A turtle-like swimming robot using a smart soft composite (SSC) structure

    International Nuclear Information System (INIS)

    Kim, Hyung-Jung; Song, Sung-Hyuk; Ahn, Sung-Hoon

    2013-01-01

    This paper describes the development of a biomimetic swimming robot based on the locomotion of a marine turtle. To realize the smooth, soft flapping motions of this type of turtle, a novel actuator was also developed, using a smart soft composite (SSC) structure that can generate bending and twisting motions in a simple, lightweight structure. The SSC structure is a composite consisting of an active component to generate the actuation force, a passive component to determine the twisting angle of the structure, and a matrix to combine the components. The motion of such a structure can be designed by specifying the angle between a filament of the scaffold structure and a shape-memory alloy (SMA) wire. The bending and twisting motion of the SSC structure is explained in terms of classical laminate theory, and cross-ply and angled-ply structures were fabricated to evaluate its motion. Finally, the turtle-like motion of a swimming robot was realized by employing a specially designed SSC structure. To mimic the posterior positive twisting angle of a turtle’s flipper during the upstroke, the SMA wire on the upper side was offset, and a positive ply-angled scaffold was used. Likewise, for the anterior negative twisting angle of the flipper during the downstroke, an offset SMA wire on the lower side and a positive ply-angled scaffold were also required. The fabricated flipper’s length is 64.3 mm and it realizes 55 mm bending and 24° twisting. The resulting robot achieved a swimming speed of 22.5 mm s −1 . (paper)

  10. Criteria for controlled atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    The criteria for design, construction, and operation of controlled atmosphere chambers intended for service at ORNL are presented. Classification of chambers, materials for construction, design criteria, design, controlled atmosphere chamber systems, and operating procedures are presented. ORNL Safety Manual Procedure 2.1; ORNL Health Physics Procedure Manual Appendix A-7; and Design of Viewing Windows are included in 3 appendices

  11. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    Energy Technology Data Exchange (ETDEWEB)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle

    2012-01-31

    This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic

  12. Quench performance of Fermilab/General Dynamics built full length SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Strait, J.; Orris, D.; Mazur, P.O.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Ozelis, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.

    1992-01-01

    In this paper we present results of quench testing of full length SSC dipole magnets at Fermilab. The data are from the first six of a series of thirteen 15 m long, 50 mm aperture SSC dipole magnets which are being built and tested at Fermilab. These magnets were designed jointly by Fermilab, Brookhaven Laboratory, Lawrence Berkeley Laboratory and the SSC Laboratory. Among the major goals for this series of magnets are to transfer magnet production technology to the lead vendor for the Collider Dipole Magnet, the General Dynamics Corporation, and to demonstrate industrial production by the vendor. The first magnet in the series, DCA311, was built by Fermilab technicians to establish assembly procedures. The second magnet, DCA312, was the technology transfer magnet and was built jointly by Fermilab and General Dynamics technicians. The next seven, DCA313-319 are being built by General Dynamics personnel using Fermilab facilities and procedures. However, Fermilab personnel still operate the major tooling, provide the welders, perform assembly of items that would not be part of production magnets (e.g. voltage taps), and oversee the QA program. Five of these 7 GD-built magnets will be used in the Accelerator Systems String Test (ASST) to be carried out in Dallas later this year. The last four magnets, DCA320-323, are being built by Fermilab alone

  13. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities

    International Nuclear Information System (INIS)

    Coppersmith, Kevin J.; Salomone, Lawrence A.; Fuller, Chris W.; Glaser, Laura L.; Hanson, Kathryn L.; Hartleb, Ross D.; Lettis, William R.; Lindvall, Scott C.; McDuffie, Stephen M.; McGuire, Robin K.; Stirewalt, Gerry L.; Toro, Gabriel R.; Youngs, Robert R.; Slayter, David L.; Bozkurt, Serkan B.; Cumbest, Randolph J.; Falero, Valentina Montaldo; Perman, Roseanne C.; Shumway, Allison M.; Syms, Frank H.; Tuttle, Martitia P.

    2012-01-01

    This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic

  14. PERFORMANCE OF MUF RESINS FOR PARTICLEBOARDS BEFORE AND AFTER SPRAY-DRYING

    Directory of Open Access Journals (Sweden)

    Antonio PIZZI

    2012-12-01

    Full Text Available Melamine-urea-formaldehyde (MUF resins can be spray dried to obtain resins in powder form and indefinite shelf-life. Application as particleboard adhesives of such resins after redissolving them in water does yield resins of excellent performance as particleboard adhesives if the natural advancement caused by the heat in the spray-drier chamber is taken into account. CP MAS 13C NMR analysis of the spray-dried resin in powder form and thermomechanical analysis has shown some difference in behaviour in relation to MUF resins of the same level of water tolerance which have not been spray-dried. These small but significant differences can be ascribed to differences in resin structure.

  15. Drop formation of black liquor spraying; Mustalipeaen pisaroituminen

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Kankkunen, A.; Nieminen, K.; Laine, J.; Miikkulainen, P. [Helsinki Univ. of Technology, Otaniemi (Finland): Lab. of Energy Technology and Environmental Protection

    1997-10-01

    Black liquor is a spent liquor of the pulp and paper industry. It is burned in kraft recovery boilers for chemical and energy recovery. The high dry solids content and viscosity of black liquor require a high spraying temperature. This affects the performance of the boiler. Kraft recovery boiler deposit formation, emissions and chemical recovery are strongly affected by the drop size and the velocity of the black liquor spray formed by a splashplate nozzle. The sheet breakup mechanism is studied with a system based on a video and image-analysis. The drop size of mill-scale nozzles was measured also with an image-analysis-system. Measurements were carried out in a spray test chamber. The sheet breakup mechanism and drop size tests were carried out both below and over the boiling point of black liquor. Special attention was paid to the effect of flashing on drop formation. Temperature increase normally decreases drop size. In the temperature where the wavy-sheet disintegration changes to perforated-sheet disintegration the drop size increases. Spray velocity rises when the temperature is increased above the boiling point. (orig.)

  16. Report of the third meeting of the SSDL Scientific Committee (SSC). Vienna, 19-23 September 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The SSDL Scientific Committee (SSC) was appointed in 1985 by the Director General of the IAEA, in consultation with and the concurrence of the Director General of the WHO. As indicated in its Terms of Reference, the main objective of the SSC is to advise the Directors General of the IAEA and WHO regarding the programme of work of the IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs). The first meeting of the SSC was held in May 1986 and the recommendations were reported in IAEA SSDL Newsletter No. 25, October 1986. The second meeting of the SSC was held in June 1987 and the recommendations were reported in the SSDL Newsletter No. 26, October 1987. Discussions and recommendations of this meeting are covered in this report

  17. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  18. Space plasma simulation chamber

    International Nuclear Information System (INIS)

    1986-01-01

    Scientific results of experiments and tests of instruments performed with the Space Plasma Simulation Chamber and its facility are reviewed in the following six categories. 1. Tests of instruments on board rockets, satellites and balloons. 2. Plasma wave experiments. 3. Measurements of plasma particles. 4. Optical measurements. 5. Plasma production. 6. Space plasms simulations. This facility has been managed under Laboratory Space Plasma Comittee since 1969 and used by scientists in cooperative programs with universities and institutes all over country. A list of publications is attached. (author)

  19. Stability of Streamer Chamber

    Science.gov (United States)

    Wada, Toshiaki; Ogawa, Masato; Takahashi, Kaoru; Sugiyama, Tsunetoshi; Kobayashi, Shigeharu; Kohno, Hirobumi

    1982-08-01

    The quality of tracks obtained from a streamer chamber is studied through the measurement of the streamer brightness. The stability of streamer tracks depends on the value of the high voltage applied and its shape. By using a single conical-type spark gap as the pulse shaper, stable brightness of the streamer tracks is attained. The data on the streamer brightness are compared with the result by Bulos et al. and it is found that the brightness is more strongly affected by field parameters than in their result.

  20. Stability of streamer chamber

    International Nuclear Information System (INIS)

    Wada, Toshiaki; Ogawa, Masato; Takahashi, Kaoru; Sugiyama, Tsunetoshi; Kobayashi, Shigeharu; Kohno, Hirobumi.

    1982-01-01

    The quality of tracks obtained from a streamer chamber is studied through the measurement of the streamer brightness. The stability of streamer tracks depends on the value of the high voltage applied and its shape. By using a single conical-type spark gap as the pulse shaper, stable brightness of the streamer tracks is attained. The data on the streamer brightness are compared with the result by Bulos et al. and it is found that the brightness is more strongly affected by field parameters than in their result. (author)

  1. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  2. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    Science.gov (United States)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  3. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States); Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2016-11-04

    systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.

  4. Council Chamber exhibition

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    To complete the revamp of CERN’s Council Chamber, a new exhibition is being installed just in time for the June Council meetings.   Panels will showcase highlights of CERN’s history, using some of the content prepared for the exhibitions marking 50 years of the PS, which were displayed in the main building last November. The previous photo exhibition in the Council Chamber stopped at the 1970s. To avoid the new panels becoming quickly out of date, photos are grouped together around specific infrastructures, rather than following a classic time-line. “We have put the focus on the accelerators – the world-class facilities that CERN has been offering researchers over the years, from the well-known large colliders to the lesser-known smaller facilities,” says Emma Sanders, who worked on the content. The new exhibition will be featured in a future issue of the Bulletin with photos and an interview with Fabienne Marcastel, designer of the exhibit...

  5. Time projection chamber

    International Nuclear Information System (INIS)

    Kamae, Tsuneyoshi

    1984-01-01

    A time projection chamber (TPC) was developed at Lawrence Berkeley Laboratory to compensate the shortcoming of drift chambers. The characteristics of the TPC are the improvement of the distortion of the trace of particles in long drift, the improvement of particle identification by taking out the analog signal proportional to the number of electrons, and the improvement of the method to analyze the three-dimensional analog signal. Two large TPC's are designed and manufactured in Japan. The details of these TPC's are explained in this paper. The results of test experiment are as follows. The accuracy of the measurement of particle position was about 100 micrometer in the r-theta plane and about 340 micrometer in the Z-direction. The accuracy of the measurement of ionization loss (dE/dx) was less than 4.0 percent. The reconstruction of quark pair production can be made. At present, the identification of K-mesons in jet phenomena is possible, and the cross-sections of inclusive processes are easily obtained. (Kato, T.)

  6. Developing a dispersant spraying capability

    Energy Technology Data Exchange (ETDEWEB)

    Gill, S.D.

    1979-01-01

    In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant application program to include the CCG fleet of helicopters.

  7. Michigan ATLAS MDT Chamber Mass Production

    CERN Document Server

    Diehl, E; Levin, D; McKee, S; Neal, H; Schick, H; Tarle, G; Thun, R; Weaverdyck, C; Xu, Q; Zhao, Z; Zhou, B

    2001-01-01

    This paper describes the ATLAS MDT precision muon chamber construction at the University of Michigan. The chamber assembly facilities, the jigging set up, alignment procedures, and other measurements necessary for chamber assembly are described. The chamber quality assurance monitoring procedures and data for the first year mass production are presented. The chamber gas system assembly facilities, and the chamber leak test procedure together with data also reported. The chamber production database, which monitors chamber production, is also discussed.

  8. Development of gas micro-strip chambers for high rate radiation detection and tracking

    CERN Document Server

    Bouclier, Roger; Gaudaen, J; Florent, J J; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Groshev, V R; Minakov, G D; Onuchin, A P; Pestov, Yu N; Shekhtman, L I; Sidorov, V A; Dixit, M S; Oakham, G K; Møller, S; Sørensen, G; Uggerhøj, Erik; Brons, S; Brückner, W; Godbersen, M; Heidrich, M; Paul, S; Trombini, A; Werding, R; Armitage, J A; Karlen, D A; Stewart, G; Barasch, E F; McIntyre, P; Pang, Y; Trost, H J; Salomon, M; Breskin, Amos; Chechik, R; Pansky, A; CERN. Geneva. Detector Research and Development Committee

    1992-01-01

    Gas Micro-Strip Chambers (GMSC) are a promising high-rate, high resolution position detector suited for use in high luminosity hadron collider experiments, as general purpose tracker or to improve the performances of pre-shower counters, transition radiation and inner muon detectors. Large GMSC arrays have been included in proposed LHC and SSC experimental setups. The operating characteristics of GMSC make their use very attractive also for detectors at tau/charm/beauty factories, as well as for synchrotron radiation facilities and for medical applications. At the present state of the art, some problems limiting the usefulness of microstrip chambers are the observed gain changes due to charging up of the support, possible long-term degradation due to ageing, limited sizes imposed by fabrication technologies and unavailability of dedicated high-speed, high-density readout electronics. Limited experience exists of operation of GMSC in real experimental conditions, and little if anything is known about performan...

  9. Development of Gas Micro-Strip Chambers for Radiation Detection and Tracking at High Rates

    CERN Multimedia

    2002-01-01

    % RD28 \\\\ \\\\ Micro-Strip Gas Chambers (GMSC) are a promising high rate, high resolution position detector suited for use in high luminosity hadron collider experiments, as general purpose tracker or to improve the performances of preshower counters, transition radiation and inner muon detectors. Large GMSC arrays have been included in proposed LHC and SSC experimental setups. The operating characteristics of GMSC make their use very attractive also for detectors at tau/beauty/charm factories, as well as for synchrotron radiation facilities and medical applications. At the present state of the art, some problems limiting the usefulness of microstrip chambers are the observed gain changes due to charging up of the support, possible long-term degradation due to ageing, limited sizes imposed by fabrication technologies and unavailability of dedicated high-speed, high-density readout electronics. Limited experience exists of operation of GMSC in real experimental conditions, and little if anything is known about p...

  10. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  11. Diogene pictorial drift chamber

    International Nuclear Information System (INIS)

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive)

  12. Underground facility for geoenvironmental and geotechnical research at the SSC Site in Texas

    International Nuclear Information System (INIS)

    Wang, H.F.; Myer, L.R.

    1994-01-01

    The subsurface environment is an important national resource that is utilized for construction, waste disposal and groundwater supply. Conflicting and unwise use has led to problems of groundwater contamination. Cleanup is often difficult and expensive, and perhaps not even possible in many cases. Construction projects often encounter unanticipated difficulties that increase expenses. Many of the difficulties of predicting mechanical behavior and fluid flow and transport behavior stem from problems in characterizing what cannot be seen. An underground research laboratory, such as can be developed in the nearly 14 miles of tunnel at the Superconducting Super Collider (SSC) site, will provide a unique opportunity to advance scientific investigations of fluid flow, chemical transport, and mechanical behavior in situ in weak and fractured, porous rock on a scale relevant to civil and environmental engineering applications involving the subsurface down to a depth of 100 m. The unique element provided by underground studies at the SSC site is three-dimensional access to a range of fracture conditions in two rock types, chalk and shale. Detailed experimentation can be carried out in small sections of the SSC tunnel where different types of fractures and faults occur and where different rock types or contacts are exposed. The entire length of the tunnel can serve as an observatory for large scale mechanical and fluid flow testing. The most exciting opportunity is to mine back a volume of rock to conduct a post-experiment audit following injection of a number of reactive and conservative tracers. Flow paths and tracer distributions can be examined directly. The scientific goal is to test conceptual models and numerical predictions. In addition, mechanical and hydrological data may be of significant value in developing safe and effective methods for closing the tunnel itself

  13. Underground facility for geoenvironmental and geotechnical research at the SSC Site in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.F. [Univ. of Wisconsin, Madison, WI (United States); Myer, L.R. [Lawrence Berkeley Lab., CA (United States)

    1994-10-31

    The subsurface environment is an important national resource that is utilized for construction, waste disposal and groundwater supply. Conflicting and unwise use has led to problems of groundwater contamination. Cleanup is often difficult and expensive, and perhaps not even possible in many cases. Construction projects often encounter unanticipated difficulties that increase expenses. Many of the difficulties of predicting mechanical behavior and fluid flow and transport behavior stem from problems in characterizing what cannot be seen. An underground research laboratory, such as can be developed in the nearly 14 miles of tunnel at the Superconducting Super Collider (SSC) site, will provide a unique opportunity to advance scientific investigations of fluid flow, chemical transport, and mechanical behavior in situ in weak and fractured, porous rock on a scale relevant to civil and environmental engineering applications involving the subsurface down to a depth of 100 m. The unique element provided by underground studies at the SSC site is three-dimensional access to a range of fracture conditions in two rock types, chalk and shale. Detailed experimentation can be carried out in small sections of the SSC tunnel where different types of fractures and faults occur and where different rock types or contacts are exposed. The entire length of the tunnel can serve as an observatory for large scale mechanical and fluid flow testing. The most exciting opportunity is to mine back a volume of rock to conduct a post-experiment audit following injection of a number of reactive and conservative tracers. Flow paths and tracer distributions can be examined directly. The scientific goal is to test conceptual models and numerical predictions. In addition, mechanical and hydrological data may be of significant value in developing safe and effective methods for closing the tunnel itself.

  14. A fast-freezing device with a retractable environmental chamber, suitable for kinetic cryo-electron microscopy studies.

    Science.gov (United States)

    Trachtenberg, S

    1998-09-01

    The design and construction of a fast-freezing device are described. A polycarbonate chamber, in which the humidity and temperature are controlled by microprocessors, slides on a robust chassis guided by ball or Teflon bushings. In its freezing position, the chamber rests on top of the cryogen vessel. The specimen is therefore frozen directly from the experimental conditions within the chamber without exposure to the external environment. After freezing, the chamber, but not the specimen, rises automatically, vacating space for handling the specimen. The chamber, the shutter, and the specimen are all driven pneumatically at an adjustable speed of up to approximately 10 m s-1 and coordinated by either pneumatic or electronic logical gates. Provisions are made for automatic blotting, spraying, and flashing. The chamber is compatible with a liquid nitrogen-cooled copper block assembly for impact (slam) freezing for freeze-substitution and freeze-fracture. Copyright 1998 Academic Press.

  15. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    Science.gov (United States)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  16. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  17. Multiple coil pulsed magnetic resonance method for measuring cold SSC dipole magnet field quality

    International Nuclear Information System (INIS)

    Clark, W.G.; Moore, J.M.; Wong, W.H.

    1990-01-01

    The operating principles and system architecture for a method to measure the magnetic field multipole expansion coefficients are described in the context of the needs of SSC dipole magnets. The operation of an 8-coil prototype system is discussed. Several of the most important technological issues that influence the design are identified and the basis of their resolution is explained. The new features of a 32-coil system presently under construction are described, along with estimates of its requirements for measurement time and data storage capacity

  18. Development of the SSC [Superconducting Super Collider] trim coil beam tube assembly

    International Nuclear Information System (INIS)

    Skaritka, J.; Kelly, E.; Schneider, W.

    1987-01-01

    The Superconducting Super Collider uses ≅9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development

  19. A unified approach to building accelerator simulation software for the SSC

    International Nuclear Information System (INIS)

    Paxson, V.; Aragon, C.; Peggs, S.; Saltmarsh, C.; Schachinger, L.

    1989-03-01

    To adequately simulate the physics and control of a complex accelerator requires a substantial number of programs which must present a uniform interface to both the user and the internal representation of the accelerator. If these programs are to be truly modular, so that their use can be orchestrated as needed, the specification of both their graphical and data interfaces must be carefully designed. We describe the state of such SSC simulation software, with emphasis on addressing these uniform interface needs by using a standardized data set format and object-oriented approaches to graphics and modeling. 12 refs

  20. A finite element analysis of an SSC dipole magnet (NC-9 cross-section)

    International Nuclear Information System (INIS)

    Chapman, M.S.

    1989-08-01

    Finite element methods are used to calculate the mechanical behavior of an SSC superconducting dipole magnet under different loading conditions. A two-dimensional model of the NC-9 design (aluminum collars) has been developed and used to calculate the transverse deflections and stresses in the dipole after assembly of the magnet, cooldown to 4.2 K, and energization to 6.6 T. Verification of the results with experimental measurements and observations, and limitations of the analysis, are also discussed. 6 refs., 6 figs., 2 tabs

  1. Effect of prestress on performance of a 1.8 m SSC R ampersand D dipole

    International Nuclear Information System (INIS)

    Wanderer, P.; Anerella, M.; Cottingham, G.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.; Sampson, W.; Shutt, R.; Thompson, P.; Willen, E.; Goodzeit, C.

    1991-01-01

    A series of 1.8 SSC dipoles is being built and tested as part of the R ampersand D program. One of the 40 mm - aperture magnets was tested with a standard assembly and then reassembled and retested in a special configuration which had significantly less azimuthal prestress than the initial assembly. We report quench, coil stress, end force, and harmonics data for each of the assemblies. Quench performance was not degraded for the low-prestress assembly. 4 refs., 5 figs., 5 tabs

  2. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  3. A.C. losses in the SSC high energy booster dipole magnets

    International Nuclear Information System (INIS)

    Jayakumar, R.; Kovachev, V.; Orrell, D.; Snitchler, G.

    1992-01-01

    This paper reports on the baseline design for the SSC High Energy Booster (HEB) which has dipole bending magnets with a 50 mm aperture. An analysis of the cryogenic heat load due to A.C. losses generated in the HEB ramp cycle are reported for this magnet. Included in this analysis are losses from superconductor hysteresis, yoke hysteresis, strand eddy currents, and cable eddy currents. The A.C. loss impact of 2.5 μm vs. 6 μm filament conductor is presented. A 60 mm aperture design is also investigated

  4. Motivation for an SSC detector with ultra-high resolution photon detection

    International Nuclear Information System (INIS)

    Gunion, J.F.; Kane, G.

    1992-01-01

    It is well known that incorporating ultra-high resolution photon detection into a general purpose detector for the SSC will be extremely difficult. The authors will argue that the physics signals that could be missed without such resolution are of such importance that a special purpose detector designed specifically for photon final state modes should be constructed, if sufficient resolution cannot be achieved with general purpose detectors. The potentially great value of these signals as a probe of extremely high mass scales is stressed

  5. Magnetic field measurements of Fermilab/General Dynamics built full scale SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Delchamps, S.; Bleadon, M.; Bossert, R.; Carson, J.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Strait, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Ogitsu, T.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.

    1992-01-01

    This paper presents preliminary results of magnetic field measurements made on a series of 50 mm aperture 15 m long SSC collider dipole magnets designed and manufactured at Fermi National Accelerator Laboratory (Fermilab) for use in the Superconducting Super Collider Laboratory (SSCL) Accelerator System String Test. The magnets were assembled by Fermilab and General Dynamics personnel, and were tested at the Magnet Test Facility (MTF) at Fermilab. Measurements of the dipole field angle, dipole field strength, and field shape parameters at various stages in magnet construction and testing are described

  6. SSC-EKE: Semi-Supervised Classification with Extensive Knowledge Exploitation.

    Science.gov (United States)

    Qian, Pengjiang; Xi, Chen; Xu, Min; Jiang, Yizhang; Su, Kuan-Hao; Wang, Shitong; Muzic, Raymond F

    2018-01-01

    We introduce a new, semi-supervised classification method that extensively exploits knowledge. The method has three steps. First, the manifold regularization mechanism, adapted from the Laplacian support vector machine (LapSVM), is adopted to mine the manifold structure embedded in all training data, especially in numerous label-unknown data. Meanwhile, by converting the labels into pairwise constraints, the pairwise constraint regularization formula (PCRF) is designed to compensate for the few but valuable labelled data. Second, by further combining the PCRF with the manifold regularization, the precise manifold and pairwise constraint jointly regularized formula (MPCJRF) is achieved. Third, by incorporating the MPCJRF into the framework of the conventional SVM, our approach, referred to as semi-supervised classification with extensive knowledge exploitation (SSC-EKE), is developed. The significance of our research is fourfold: 1) The MPCJRF is an underlying adjustment, with respect to the pairwise constraints, to the graph Laplacian enlisted for approximating the potential data manifold. This type of adjustment plays the correction role, as an unbiased estimation of the data manifold is difficult to obtain, whereas the pairwise constraints, converted from the given labels, have an overall high confidence level. 2) By transforming the values of the two terms in the MPCJRF such that they have the same range, with a trade-off factor varying within the invariant interval [0, 1), the appropriate impact of the pairwise constraints to the graph Laplacian can be self-adaptively determined. 3) The implication regarding extensive knowledge exploitation is embodied in SSC-EKE. That is, the labelled examples are used not only to control the empirical risk but also to constitute the MPCJRF. Moreover, all data, both labelled and unlabelled, are recruited for the model smoothness and manifold regularization. 4) The complete framework of SSC-EKE organically incorporates multiple

  7. Peltier-based cloud chamber

    Science.gov (United States)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  8. Recombination chambers for BNCT dosimetry

    International Nuclear Information System (INIS)

    Tulik, Piotr

    2006-01-01

    Parallel plate recombination ionization chambers are known as the detectors which can be used for determination of gamma and high-LET dose components and for characterization of radiation quality of mixed radiation fields. Specially designed chambers can operate correctly even at dose rates of therapeutic beams. In this work the investigations were extended to a set of cylindrical chambers including a TE chamber and three graphite chambers filled with different gases - CO 2 , N 2 and 10 BF 3 , in order to determine the thermal neutrons, 14 N capture, gamma, and fast neutron dose components. The separation of the dose components is based on differences of the shape of the saturation curve, in dependence on LET spectrum of the investigated radiation. The measurements using all the chambers and a parallel plate recombination chamber were performed in a reactor beam of NRI Rez (Czech Republic). The gamma component was determined with accuracy of about 5%, while the variations of its value could be monitored with accuracy of about 0.5%. Relative changes of the beam components could be detected with accuracy of about 5% using the parallel plate chamber. The use of the chambers filled with different gases considerably improved the resolution of the method. (author)

  9. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    Science.gov (United States)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  10. Teaching English Idioms through Mnemonic Devices at SSC Level in Pakistan

    Directory of Open Access Journals (Sweden)

    Sidra Mahmood

    2014-03-01

    Full Text Available This research dealt with teaching English idioms through mnemonic devices at SSC level in a school in pakistan. As the students in Pakistan, especially at SSC level, have a habit to learn idioms by rote and face many problems due the technique, the problem was selected for the investigation. Needs Analysis Questionnaire was used to determine the needs and problems faced by the students and their expectations for solution to the problem. Understanding the problems faced by the students in English idioms, an alternative methodology was selected in the form of mnemonic devices and the selected students were taught using the methodology to test its effectiveness in not only teaching English idioms but also making learning motivating, interesting and learner-involving. A post-test was given to understand the effect (if any of the selected alternative method of mnemonics and it was observed that teaching English idioms through mnemonic devices not only helped the learners but also helped in sharpening their memory.

  11. Test of Fermilab built, post-ASST, 50-mm-aperture, full length SSC dipole magnets

    International Nuclear Information System (INIS)

    Kuzminski, J.; Akhmetov, A.; Bossert, R.

    1993-05-01

    During 1992 at Fermilab, a series of nine 50-mm-aperture, 15-m-long, SSC superconducting dipole magnets, designed jointly by Fermilab, Brookhaven National Laboratory, and the SSC Laboratory, have been built and successfully cold tested. Seven of these dipole magnets, designate for the Accelerator System String Test (ASST) carried out at SSCL in Dallas, were assembled Fermilab by General Dynamics personnel, and have achieved the nominal operating current level without significant training. In addition, a series of four R ampersand D magnets (DCA320 323) we manufactured at Fermilab to test an alternative insulation schemes. In this paper we present th quench performance of these four R ampersand D magnets, which were cold tested at the Fermilab Magnet Test Facility at nominal temperatures of 4.35 K, 3.85 K, and 3.50 K. An extended characterization test was performed on one of these magnets (DCA322). During this test the magnet was successfully cooled down to superfluid He temperature (1.8 K) and reached a field B ≥ 9.5 T

  12. Collarless, close-in, shaped iron aperture designs for the SSC [Superconducting Super Collider] dipole

    International Nuclear Information System (INIS)

    Gupta, R.C.; Morgan, G.H.

    1989-01-01

    The nominal-design SSC (Superconducting Super Collider) dipole encloses the coil in an iron yoke having a circular aperture. The radial gap between the coil and the iron is about 15 mm to provide space for a strong annular collar around the coil, and also to reduce the effects of iron saturation on central field harmonics. The 15 mm gap also reduces the desirable dipole field contributed by the iron. The present paper gives a coil and aperture configuration in which the gap is reduced to 5 mm at the midplane, in which the aperture is shaped to reduce the unwanted effects of iron saturation. The transfer function is increased about 5% at 6.6 Tesla and the unwanted harmonics are within SSC tolerances at all field levels. These designs would require that the yoke and containment vessel absorb the stresses due to assembly and magnetic forces. A short magnet is being built with a close-in shaped iron aperture and existing coil geometry to assess the benefits of this concept. 7 refs., 3 figs., 6 tabs

  13. The quality assurance of superconducting wire and cable for SSC magnets

    International Nuclear Information System (INIS)

    Pollock, D.; Baggett, P.; Capone, D.

    1991-03-01

    The success of the SSC depends on the consistency and uniformity of the superconducting magnets used in the main collider rings and the high energy booster. To a great extent the success of the magnets depends upon the quality of the superconductor wire and cable used in coil windings. As the SSC project has begun its transition from Research to Development, a new laboratory organization has been established to carry the design requirements from concept to reality. The SSCL Magnet Systems Division Quality Assurance Group has been working on the development of a quality management and analysis system for insuring superconductor uniformity through the understanding and control of manufacturing variation. Key areas of the QA activity include: the design and development of a computer database and analysis system for the collection and statistical analysis of superconductor materials data (containing: source physical and chemical properties, billet process history, and final product performance data); and the development of wire and cable product specifications which focus on the control of variation. As a result of this work several new concepts have been developed which will affect the traditional approach to superconductor wire and cable production. 18 refs., 5 figs., 1 tab

  14. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab

  15. Fixed-target particle fluxes and radiation levels at SSC energies

    International Nuclear Information System (INIS)

    Dukes, E.C.

    1993-01-01

    The author calculates the charged particle fluxes and radiation doses from minimum ionizing particles (MIP), electromagnetic showers, and hadronic showers, in a fixed-target experiment at the SSC. This work follows the work of Groom, essentially boosting his results into the laboratory frame. The radiation in dense matter, such as a calorimeter, is produced by several sources: electromagnetic showers, hadronic showers, and minimum ionizing particles. The author does not consider other sources of radiation such as beam halo, a dependent effects, and low energy neutrons from secondary sources. Nor does he consider the effects of magnetic fields. Low energy neutrons have been shown to be an important source of radiation for collider experiments at the SSC. In fixed-target experiments, where the spectrometer is more open and where most detector elements are far away from secondary particle dumps, these sources are not as important. They are also very much detector and experimental hall dependent. Hence the results presented here are only a lower limit of the estimated radiation dose

  16. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  17. An experimental setup for the study of the steady air flow in a diesel engine chamber

    Directory of Open Access Journals (Sweden)

    Montanero José María

    2012-04-01

    Full Text Available We present an experimental setup for studying the steady air flow in a diesel engine chamber. An engine block containing the inlet manifold was placed on a test bench. A steady air stream crossed the inlet manifold and entered a glass chamber driven by a fan. A PIV system was set up around the bench to measure the in-chamber flow. An air spray gun was used as seed generator to producing sub-millimeter droplets, easily dragged by the air stream. Images of the in-flow chamber were acquired in the course of the experiments, and processed to measure the velocity field. The pressure drop driven the air current and the mass flow rate were also measured.

  18. The CLEO III drift chamber

    CERN Document Server

    Peterson, D; Briere, R A; Chen, G; Cronin-Hennessy, D; Csorna, S; Dickson, M; Dombrowski, S V; Ecklund, K M; Lyon, A; Marka, S; Meyer, T O; Patterson, J R; Sadoff, A; Thies, P; Thorndike, E H; Urner, D

    2002-01-01

    The CLEO group at the Cornell Electron Storage Ring has constructed and commissioned a new central drift chamber. With 9796 cells arranged in 47 layers ranging in radius from 13.2 to 79 cm, the new drift chamber has a smaller outer radius and fewer wires than the drift chamber it replaces, but allows the CLEO tracking system to have improved momentum resolution. Reduced scattering material in the chamber gas and in the inner skin separating the drift chamber from the silicon vertex detector provides a reduction of the multiple scattering component of the momentum resolution and an extension of the usable measurement length into the silicon. Momentum resolution is further improved through quality control in wire positioning and symmetry of the electric fields in the drift cells which have provided a reduction in the spatial resolution to 88 mu m (averaged over the full drift range).

  19. Assessment of differences between products obtained in conventional and vacuum spray dryer

    Directory of Open Access Journals (Sweden)

    Fernanda de Melo RAMOS

    Full Text Available Abstract In this work, an experimental unit of a vacuum spray dryer was built. This prototype attempted to combine the advantages of freeze-drying (drying at low temperatures due to vacuum and spray drying (increase of surface area aiming the improvement of heat transfer efficiency. Maltodextrin solutions were dried in the vacuum operated equipment and in conventional spray dryer. The vacuum spray dryer system allowed obtaining powder at low temperatures due to the lowering of pressure conditions (2-5 kPa inside the drying chamber. The products obtained in the two systems were characterized and compared for particle size distribution, moisture content, water activity, bulk density and solubility in water. The processes yields were also evaluated and compared. The vacuum spray dryer system allowed the production of larger, more soluble and less dense particles than those obtained in the conventional configuration of the equipment, resulting in drier and, therefore, with lower water activity particles. Thus, the use of the vacuum spray dryer as a drying technique may be an alternative for the production of powder rich in thermosensitive compounds.

  20. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    Science.gov (United States)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  1. Spray structure of a pressure-swirl atomizer for combustion applications

    Science.gov (United States)

    Durdina, Lukas; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV) and Phase-Doppler Particle Analyzer (P/DPA). The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  2. Spray structure of a pressure-swirl atomizer for combustion applications

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV and Phase-Doppler Particle Analyzer (P/DPA. The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  3. SPRAY CALCINATION REACTOR

    Science.gov (United States)

    Johnson, B.M.

    1963-08-20

    A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and

  4. Miniature paint-spray gun for recessed areas

    Science.gov (United States)

    Vanasse, M. A.

    1968-01-01

    Miniature spray gun regulates paints and other liquids to spray at close range, facilitating spraying of remote or recessed areas. Individual valves for regulating air pressure and paint maximizes atomization for low pressure spraying.

  5. The high momentum spectrometer drift chambers

    Science.gov (United States)

    Abbott, D.; Baker, O. K.; Beaufait, J.; Bennett, C.; Bryant, E.; Carlini, R.; Kross, B.; McCauley, A.; Naing, W.; Shin, T.; Vulcan, W.

    1992-12-01

    The High Momentum Spectrometer in Hall C will use planar drift chambers for charged particle track reconstruction. The chambers are constructed using well understood technology and a conventional gas mixture. Two (plus one spare) drift chambers will be constructed for this spectrometers. Each chamber will contain 6 planes of readout channels. This paper describes the chamber design and gas handling system used.

  6. Spray coated nanosilver functional layers

    Science.gov (United States)

    Krzemiński, J.; Szałapak, J.; Dybowska-Sarapuk, L.; Jakubowska, M.

    2016-09-01

    Silver coatings are highly conductive functional layers. There are many different ways to product the silver coating but most of them need vacuum or high temperature. Spray coating is a technique that is free of this disadvantages - it doesn't need a cleanroom or high temperature. What's more the layer thickness is about 10 μm. In this article the spray coating process of silver nanolayer is described. Four different inks were tested and measured. The layer resistance was measured and show as a graph. After the layer resistance was measured the adhesion test was performed. The pull-off test was performed on testing machine with special self made module. To conclude the article include the test and measurements of spray coated nanosilver functional layers. The layers was examined for the current conductivity and adhesion force.

  7. Nasal Sprays: How to Use Them Correctly

    Science.gov (United States)

    ... sprays the correct way can take some practice. Path to improved health Prescription nasal sprays come in ... thumb at the bottom and your index and middle fingers on top. Insert the canister tip in ...

  8. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  9. Spray casting project final report

    International Nuclear Information System (INIS)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  10. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  11. Neutron detection via bubble chambers.

    Science.gov (United States)

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography.

  12. Neutron detection via bubble chambers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D.V. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States)]. E-mail: david.jordan@pnl.gov; Ely, J.H. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States); Peurrung, A.J. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States); Bond, L.J. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States); Collar, J.I. [Department of Physics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., LASR 214, Chicago, IL 60637 (United States); Flake, M. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States); Knopf, M.A. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States); Pitts, W.K. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States); Shaver, M. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States); Sonnenschein, A. [Department of Physics and Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Ave., LASR 214, Chicago, IL 60637 (United States); Smart, J.E. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States); Todd, L.C. [Pacific Northwest National Laboratory, MS P8-20, P.O. Box 999, Richland, WA 99352 (United States)

    2005-12-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a {sup 137}Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography.

  13. Pelletron general purpose scattering chamber

    International Nuclear Information System (INIS)

    Chatterjee, A.; Kailas, S.; Kerekette, S.S.; Navin, A.; Kumar, Suresh

    1993-01-01

    A medium sized stainless steel scattering chamber has been constructed for nuclear scattering and reaction experiments at the 14UD pelletron accelerator facility. It has been so designed that several types of detectors, varying from small sized silicon surface barrier detectors to medium sized gas detectors and NaI detectors can be conveniently positioned inside the chamber for detection of charged particles. The chamber has been planned to perform the following types of experiments : angular distributions of elastically scattered particles, fission fragments and other charged particles, angular correlations for charged particles e.g. protons, alphas and fission fragments. (author). 2 figs

  14. Measurement of thermal characteristics of spray-dried milk and juice blend.

    Science.gov (United States)

    Afifi, Hanan S; Abu Shelaibi, A A; Laleye, L C; Ismail, I A

    2009-01-01

    Blended concentrated grape/peach (G/P) juice 60% total soluble solids (TSS) with condensed whole cow milk 40% TSS (1.5:8.5) was spray dried using a pilot-scale spray drier FT 80 at feeding pressure 7,000 Pa, at chamber temperature 180 degrees C and at chamber pressure -110 Pa. The glass transition state of blended G/P juice-milk powder, three pure sugars (glucose, sucrose and lactose) and casein were studied using differential scanning calorimetry. The calorimetry showed that G/P juice-milk powder is a glassy material. The glass transition temperature of blended G/P juice-milk powder at 0.248 water activity was 42 degrees C, compared with commercial full milk powder (control) of 29 degrees C at 0.334 at water activity (a(w)).

  15. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    International Nuclear Information System (INIS)

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-01-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits

  16. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  17. "Teaching" an Industrial Robot To Spray

    Science.gov (United States)

    Evans, A. R.; Sweet, G. K.

    1982-01-01

    Teaching device, consisting of spacer rod or tube with three-pointed tip and line level, is used during pattern "teach-in" to make sure that robot manipulator holds spray gun perpendicular to surface to be sprayed and at right distance from it. For slanted surfaces angle adapter is added between spacer rod and line-level indicator. Angle is determined by slope of surface to be sprayed, thus allowing a perpendicular spray pattern against even slanted surfaces.

  18. Improvement of the inlet system for the spray-jet technique for use in spectroscopic studies and molecular deposition

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Mashiko, Shinro

    2006-01-01

    We previously developed a molecular beam apparatus with a spray-jet technique in order to produce a molecular beam of non-volatile molecules in vacuum from the sprayed mist of a sample solution. The apparatus is for use in spectroscopic studies or a means of molecular deposition. The spray-jet inlet system consisted of an ultrasonic nebulizer, an inlet chamber and a pulsed nozzle. In the present paper, further improvements to the spray-jet inlet system are reported. The main improvement is the introduction of a pneumatic nebulizer to replace the previous ultrasonic nebulizer. The efficiency of molecular beam generation was evaluated on the basis of the signal intensity of the resonantly enhanced multiphoton ionization time-of-flight mass (REMPI-TOFMS) spectra for a Rhodamine B/methanol solution and the amount of sample consumed. The introduction of the pneumatic nebulizer increased the efficiency by a factor of 20

  19. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating

    DEFF Research Database (Denmark)

    Koivisto, Antti J.; Jensen, Alexander C. Ø.; Kling, Kirsten I.

    2017-01-01

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m3 test chamber while measuring concentrations of 5.6nm...... particlesconsisted of mainly TiO2, TiO2 mixed with Cl and/or Ag, TiO2particles coated with carbon, and Ag particles with size ranging from 60 nm to ca. 5 μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization....

  20. Forensic aspects of the weathering and ageing of spray paints.

    Science.gov (United States)

    Jost, Cédric; Muehlethaler, Cyril; Massonnet, Geneviève

    2016-01-01

    This paper presents a preliminary study on the degradation of spray paint samples, illustrated by Optical, FTIR and Raman measurements. As opposed to automotive paints which are specifically designed for improved outdoor exposure and protected using hindered amine light absorbers (HALS) and ultra-violet absorbers (UVA), the spray paints on their side are much simpler in composition and very likely to suffer more from joint effects of solar radiation, temperature and humidity. Six different spray paint were exposed to outdoor UV-radiation for a total period of three months and both FTIR and Raman measurements were taken systematically during this time. These results were later compared to an artificial degradation using a climate chamber. For infrared spectroscopy, degradation curves were plotted using the photo-oxidation index (POI), and could be successfully approximated with a logarithmic fitting (R(2)>0.8). The degradation can appear after the first few days of exposure and be important until 2 months, where it stabilizes and follow a more linear trend afterwards. One advantage is that the degradation products appeared almost exclusively at the far end (∼3000cm(-1)) of mid-infrared spectra, and that the fingerprint region of the spectra remained stable over the studied period of time. Raman results suggest that the pigments on the other side, are much more stable and have not shown any sign of degradation over the time of this study. Considering the forensic implications of this environmental degradation, care should be taken when comparing samples if weathering is an option (e.g. an exposed graffiti compared to the paint from a fresh spray paint can). Degradation issues should be kept in mind as they may induce significant differences between paint samples of common origin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Influence of the spray velocity on arc-sprayed coating structures

    Science.gov (United States)

    Steffens, H.-D.; Nassenstein, K.

    1999-09-01

    Thermal spray processes such as plasma spraying and HVOF have gained markets due to a steady process of development of materials and equipment. One disadvantage of thermal spray processes is that costs must be competitive compared to techniques such as PTA and electroplating. In order to reduce costs, the more economical spray processes like conventional wire flame spraying, as well as arc spraying, are becoming more popular. There are modern arc spray gun designs on the market that meet the requirements of modern coating properties, for example aviation overhaul applications as well as the processing of cored wires. Nevertheless, the physical basis of arc spraying is well known. The aim of the present investigation is to show how the influence of spray velocity (not particle velocity) affects coating structure with respect to arc spray parameters.

  2. 14 CFR 23.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision of...

  3. 14 CFR 29.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 29.239 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  4. 14 CFR 27.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 27.239 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  5. Albendazole Microparticles Prepared by Spray Drying Technique ...

    African Journals Online (AJOL)

    Purpose: To enhance the dissolution of albendazole (ABZ) using spray-drying technique. Method: ABZ binary mixtures with Kollicoat IR® (KL) and polyvinyl pyrrolidone (PVP) in various drug to polymer ratios (1: 1, 1: 2 and 1; 4) were prepared by spray-drying. The spray-dried particles were characterized for particle shape, ...

  6. Analyzing Classroom Strategy: Evaluating the Concept Mapping Technique at SSC Level in Pakistan

    Directory of Open Access Journals (Sweden)

    Sidra Mahmood

    2015-08-01

    Full Text Available This study documents the usage of Concept Mapping in the teaching-learning situation of English at SSC Level. The study is descriptive and analytical in nature and tries to investigate the effects which Concept Mapping renders in the academic environment in the context of ESL classroom setting. The research offers strategies for adopting certain techniques and up gradation of the content taught at the mentioned level by the inculcation of such techniques. Overall, the study produced a range of implementable outcomes by a pervasive discussion of Concept Mapping, the role of the textbooks, the importance of adding the technique to the contents of ESL classroom setting. For data collection and data analysis, two classes were selected. Both were taught the same content under controlled conditions. The concept mapping technique in the class guided the learners towards the improved way of learning the text of second language.

  7. Dynamic aperture and performance of the SSC low energy booster lattice

    International Nuclear Information System (INIS)

    Pilat, F.; Bourianoff, G.; Cole, B.; Talman, R.; York, R.

    1991-05-01

    A systematic study of lattice designs proposed for the SSC Low Energy Booster has been performed, where the dynamic behavior of high transition gamma lattices is compared with that of a simpler FODO- like machine. After optimization of the transverse tunes, the dynamic aperture is determined by tracking the chromaticity corrected, ''ideal'' lattices, where the only sources on nonlinearity are the chromaticity sextupoles. The robustness of the lattices against misalignment, systematic and random errors is then evaluated and error compensation schemes worked out. The computational speed of the TEAPOT code has been greatly enhanced by porting and running its tracking core on the Intel iPSC/860 parallel computer. 7 refs., 5 figs., 3 tabs

  8. Development of superconducting wire and cable for the SSC project in Sumitomo Electric Industries

    International Nuclear Information System (INIS)

    Sashida, T.; Saito, S.; Oku, G.; Kurimoto, K.; Yamada, Y.; Yokota, M.; Ohmatsu, K.; Nagata, M.

    1991-01-01

    As a large production volume of NbTi superconducting wire and cable is required for the SSC project, a production process has been developed at Sumitomo Electric to optimize critical variables of wire properties. To achieve high electrical properties and a high overall yield of NbTi alloy in the fabrication process, the authors have employed carefully designed large size multifilament billets weighing more than 350kg to decrease the number of billets in large production scale. The collider dipole magnet consists of inner and outer cables, and the cable should be as uniform as possible to ensure the performance of the magnets. The authors studied two aspects to obtain such uniformity of superconducting wire; one is the selection of unit weight and the other is the property of critical current density of a strand

  9. Development of a customized SSC pixel detector readout for vertex tracking

    International Nuclear Information System (INIS)

    Barkan, O.; Atlas, E.L.; Marking, W.L.; Worley, S.; Yacoub, G.Y.; Kramer, G.; Arens, J.F.; Jernigan, J.G.; Shapiro, S.L.; Nygren, D.; Spieler, H.; Wright, M.

    1990-01-01

    The authors describe the readout architecture and progress to date in the development of hybrid PIN diode arrays for use as vertex detectors in the SSC environment. The architecture supports a self-timed mechanism for time stamping hit pixels, storing their xy coordinates and later selectively reading out only those pixels containing interesting data along with their coordinates. The peripheral logic resolves ambiguous pixel ghost locations and controls pixel neighbor readout to achieve high spatial resolution. A test lot containing 64 x 32 pixel arrays has been processed and is currently being tested. Each pixel contains 23 transistors and six capacitors consuming an area of 50μm by 150μm and dissipating about 20μW of power

  10. Development of a customized SSC pixel detector readout for vertex tracking

    International Nuclear Information System (INIS)

    Barkan, O.; Atlas, E.L.; Marking, W.L.; Worley, S.; Yacoub, G.Y.; Kramer, G.; Arens, J.F.; Jernigan, J.G.; Nygren, D.; Spieler, H.; Wright, M.

    1990-10-01

    We describe the readout architecture and progress to date in the development of hybrid PIN diode arrays for use as vertex detectors in the SSC environment. The architecture supports a self-timed mechanism for time stamping hit pixels, storing their xy coordinates and later selectively reading out only those pixels containing interesting data along with their coordinates. The peripheral logic resolves ambiguous pixel ghost locations and controls pixel neighbor readout to achieve high spatial resolution. A test lot containing 64 x 32 pixel arrays has been processed and is currently being tested. Each pixel contains 23 transistors and six capacitors consuming an area of 50 μm by 150 μm and dissipating about 20μW of power. 6 refs., 2 figs

  11. 1.8K conditioning (non-quench training) of a model SSC dipole

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Hassenzahl, W.V.

    1986-09-01

    The accepted hypothesis is that training quenches are caused by heat generation when conductors move under Lorentz force. Afterwards no conductor motion will occur until a higher field and greater Lorentz force acts. If superior heat transfer and/or greater temperature margin is provided by operating at lower bath temperature, one might expect that the heat generated by conductor motion will not cause a runaway temperature increase, or quench. To test this hypothesis, the central dipole field in SSC model magnets was ramped at 1.8 K to 7.1 tesla without the magnets' quenching. The bath was then raised to 4.4 K and the magnets quenched at their short sample limits of 6.6 tesla or higher. Comparison with similar magnets trained in He I at 4.4 K is made and the significance of the non-quench training on system operation is discussed

  12. Overview of data filtering/acquisition for a 4π detector at the SSC

    International Nuclear Information System (INIS)

    Lankford, A.J.; Dubois, G.P.

    1986-01-01

    The task of the Data Filtering/Acquisition Working Group was to examine the feasibility of acquiring data at the Superconducting Super Collider (SSC) event rates from a 4-π detector with approximately three-quarters of a million electronic channels. An overview of the work on data filtering and acquisition is provided. The assumptions made about the detector, event rates, and event sizes are reviewed, and the overall picture of data flow through the data acqisition system is outlined. The problems of and the general approach to handling of the data during the analog and higher level trigger decision periods are described. The flow of the data to the online processor farm is sketched. Comments are made on software trigger strategies. Some aspects of the overall picture of a generic data acquisition system are sketched. Major issues and some needed develoments are summarized. 12 refs., 3 figs

  13. Procedures for setting RF phase and amplitude in SSC drift-tube-linac tanks

    International Nuclear Information System (INIS)

    Guy, F.W.; Hurd, J.W.

    1992-01-01

    A procedure to accurately set RF power phase and amplitude in each tank is required for commissioning and operating the multi-tank SSC DTL (drift-tube linac). In this paper we describe and compare the δt and the least-squares methods of determining correct phase and amplitude. Simulation results and probable advantages and problems with each method are presented and discussed. The δt tune-up procedure is used for other linacs (at LAMPF, for example), but the least-squares procedure has not yet been tried except in simulation; it could provide a complementary or alternate technique to δt. (Author) 8 refs., 2 figs

  14. Cryogenic instrumentation of an SSC (superconducting super collider) magnet test stand

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K.; Strait, J.; Kuchnir, M.; McInturff, A.

    1987-09-01

    This paper describes the system used to acquire cryogenic data for the testing of SSC magnets at the Fermilab Magnet Test Facility. An array of pressure transducers, resistance thermometers, vapor pressure thermometers, and signal conditioning circuits are used. Readings with time resolution appropriate for quench recording are obtained with a waveform digitizer and steady-state measurements are obtained with higher accuracy using a digital voltmeter. The waveform digitizer is clocked at a 400 Hz sampling rate and these readings are stored in local ring buffers. The system is modular and can be expanded to add more channels. The software for the acquisition, control, logging, and display of cryogenic data consist of two programs which run as separate tasks. These programs (as well as a third program which acquires quench and magnetic data) communicate and pass data using shared global resources. The acquired data are available for analysis via a nationwide DECnet network.

  15. Design of a model dipole magnet for the SSC high energy booster

    International Nuclear Information System (INIS)

    Hassan, N.; Couzens, K.; Dwyer, S.; Jaisle, A.; Jayakumar, R.; Krishnamurthy, S.; Mihelic, R.; Phillips, S.; Puri, R.K.; Sarna, K.

    1994-01-01

    A superconducting model dipole magnet has been designed to serve as a vehicle in an R ampersand D program to develop a dipole magnet for potential use in the SSC High Energy Booster. The objective has been to use the Brookhaven National Laboratory (BNL) and Fermi National Accelerator Laboratory (FNAL) 50 mm aperture dipole designs to the maximum possible extent for design of a dipole magnet with the same size aperture and a field intensity of 6.67 T. Objectives of this program have also included an evaluation of magnet cross section designs which provides increased margin and includes a field quality iteration on BNL and FNAL dipole designs. The salient parameters of this magnet are listed. In this paper the 2D magnetic and mechanical design of the cold mass in conceptual and detailed form is presented

  16. Lamination and end pack design studies of SSC low energy booster magnet prototypes

    International Nuclear Information System (INIS)

    Li, N.

    1993-05-01

    The SSC Laboratory plans to deploy two ''large'' detectors for the essential high-energy physics experiments at the initial startup of the collider. The GEM detector is optimized to emphasize precise measurement of photons and electrons, as well as precise tracking of high-energy muons. An essential part of the GEM detector is the magnet subsystem, which provides the magnetic field necessary for identification and high-resolution tracking of charged particles. This large superconducting magnet system, with ferromagnetic field-shapers, presents a variety of engineering challenges in superconductor technology, in magnet-winding technology, fabrication, assembly and installation of large and heavy components, and in ensuring the required high operating availability

  17. 34CrMo4 steel resistance against the SSC after controlled cooling process

    Directory of Open Access Journals (Sweden)

    Pavel Kučera

    2014-04-01

    Full Text Available The sulphide stress cracking corrosion resistance of 34CrMo4 steel after the accelerated cooling process under the Ar3 temperature was investigated. Two modes of heat treatment were applied to achieve homogeneous microstructure and at least partially eliminated segregation banding. First mode was based on the cooling up to the 420 °C on the air and subsequent cooling in the quenching bath. Second mode was similar except the temperature of cooling on the air, which was set up to the 460 °C. Afterward in both cases, the stress relief annealing was applied. Both modes of heat treatment resulted in the significantly banded microstructure based on the pearlite, ferrite and modified lower portion of accicular ferrite. The differences in mechanical properties of both cases of heat treatment were minimal. The SSC loading times to failure of both sets did not lead to important differences.

  18. Tests of 40 mm SSC dipole model magnets with vertically split yokes

    International Nuclear Information System (INIS)

    Koska, W.; Bossert, R.; Coulter, K.J.; Delchamps, S.; Gourlay, S.; Kinney, W.; Jaffery, T.S.; Lamm, M.J.; Strait, J.; Wake, M.

    1991-05-01

    Several 1 meter long, 40 mm aperture model SSC dipole magnets with vertically split yokes have been built and tested at Fermilab. In addition to the yoke design, these magnets were used to evaluate several variants of the collet clamps which apply prestress to the magnet ends. The magnets were instrumented with voltage taps for quench localization and strain gage based devices for measuring stresses, forces and deflections resulting from cooldown and excitation. Test were carried out in a vertical dewar at temperatures from 3.8 degree K to 4.4 degree K. The quench and mechanical behavior of these magnets will be presented and magnetic field measurements will be shown. A comparison with an earlier series of magnets with horizontally split yokes will be made. 7 refs., 4 figs., 1 tab

  19. A front-end system for industrial type controls at the SSC

    International Nuclear Information System (INIS)

    Haenni, D.R.

    1992-01-01

    The SSC control system is tasked with coordinating the operation of many different accelerator subsystems, a number of which use industrial type process controls. The design of a high-performance control system front end is presented which serves both as a data concentrator and a distributed process controller. In addition it provides strong support for a centralized control system architecture, allows for regional control systems, and simplifies the construction of inter-subsystem controls. An implementation of this design will be discussed which uses STD-Bus for accelerator hardware interfacing, a time domain multiplexing (TDM) communications transport system, and a modified reflective memory interface to the rest of the control system. (author)

  20. Beam-beam interaction and pacman effects in the SSC with momentum oscillation

    International Nuclear Information System (INIS)

    Mahale, N.K.; Ohnuma, S.

    1989-01-01

    In order to find the combined effects of beam-beam interaction (head-on and long-range) and random nonlinear multipoles in dipole magnets, the transverse oscillations of ''regular'' as well as ''pacman'' particles are traced for 256 synchrotron oscillation periods (corresponding to 135K revolutions) in the proposed SSC. Results obtained in this study do not show any obvious reduction of dynamic or linear apertures for pacman particles when compared with regular particles for (Δp/p) = 0. There are some indications of possible sudden or gradual increases in the oscillation amplitude, for pacman as well as regular particles, when the amplitude of momentum oscillation is as large as 3σ. 4 refs., 7 figs

  1. 1. 8K conditioning (non-quench training) of a model SSC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.S.; Hassenzahl, W.V.

    1986-09-01

    The accepted hypothesis is that training quenches are caused by heat generation when conductors move under Lorentz force. Afterwards no conductor motion will occur until a higher field and greater Lorentz force acts. If superior heat transfer and/or greater temperature margin is provided by operating at lower bath temperature, one might expect that the heat generated by conductor motion will not cause a runaway temperature increase, or quench. To test this hypothesis, the central dipole field in SSC model magnets was ramped at 1.8 K to 7.1 tesla without the magnets' quenching. The bath was then raised to 4.4 K and the magnets quenched at their short sample limits of 6.6 tesla or higher. Comparison with similar magnets trained in He I at 4.4 K is made and the significance of the non-quench training on system operation is discussed.

  2. Lamination and end plate design studies of SSC Low Energy Booster magnet prototypes

    International Nuclear Information System (INIS)

    Li, N.

    1993-01-01

    The LEB machine includes six kinds of laminated magnets and 4 kinds of laminations. The main quadrupole magnet and low field and high field corrector quadrupoles use the same lamination shape. The chromaticity sextupole, corrector dipole, and main dipole have different lamination designs. To test the physical design and production procedure for the magnets, it is necessary to build 2 or 3 prototypes for each kind of magnet. The ZVI plant in Moscow, manufactured all 4 kinds of lamination punching dies for the LEB magnets. Each die takes 3 to 5 months to fabricate. SSCL manufactured laser cut laminated magnet prototypes in the SSC shop at the same time. Since the LEB cycles at 10 Hz, the high frequency current and laminated end plate design causes a delamination problem on the magnet end. This problem is of concern and will be addressed

  3. The multigap resistive plate chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zeballos, E. Cerron [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Crotty, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hatzifotiadou, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Valverde, J. Lamas [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Univ. Louis Pasteur, Strasbourg (France); Neupane, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); World Lab., Lausanne (Switzerland); Williams, M. C. S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Zichichi, A. [Univ. of Bologna, Bologna (Italy)

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  4. The Pharmacokinetics and Efficacy of a Low-dose, Aqueous, Intranasal Scopolamine Spray

    Science.gov (United States)

    2017-09-27

    prevent timely absorption (18, 20). Transdermal scopolamine (TDS), while bypassing first-pass metabolism, requires 6 to 8 hours after placement to reach...improved absorption , and reduced time to maximum plasma concentration (Cmax). A pilot Phase II clinical trial of the aqueous spray was conducted at the...chair contained within a cylindrical sound - and light-proof chamber (Figure 1). The method employed to evoke MS consisted of seated yaw axis

  5. What the quality philosophy brings to a research and development environment like the SSC

    International Nuclear Information System (INIS)

    Davis, S.; Wentz, J.

    1993-04-01

    In achieving major schedule and performance milestones with a project as technologically advanced as the Superconducting Super Collider, many activities must be coordinated simultaneously without the luxury of a conventional design review process. Because the design may change several times prior to the delivery of a one-of-a-kind or prototype component or subsystem, close verification and monitoring of design, manufacturing and test processes are needed on a real-time basis. This verification and monitoring is performed on two levels by Quality Assurance at the SSC Laboratory; Division and General Management. The Division level is involved in day-today activities at the Laboratory and the Suppliers; the General Management level performs the independent oversight function for all the Laboratory quality processes. In the divisions, continuous monitoring of design, procurement, manufacturing, installation, and testing activities is performed. At the General Management level, quality program development and implementation is evaluated within each division. Critical suppliers involved in system design, manufacturing, and testing are evaluated against contract and program requirements to assure systems safely perform their intended functions. Responsibilities for quality are extended by the participation of the SSCL Quality Assurance Office in Accelerator Readiness Reviews (ARR) previously known as Operational Readiness Reviews (ORR) for each major machine developed and designed at the Laboratory. Quality Assurance promoted continuous awareness of DOE contract requirements, SSC Laboratory Quality Assurance requirements and the Safety Analysis Report requirements which is not an easy task in the scientific community. A result has been a new cooperative attitude in which physicists, scientists, engineers, safety and quality professionals can work together towards a common goal

  6. An assessment of the SSC impact on the training and employment needs of North Central Texas

    International Nuclear Information System (INIS)

    Orsak, C.G.; McGlohen, P.; Jenkens, L.

    1992-01-01

    The Texas Higher Education Coordinating Board has funded the Navarro College/Dallas County Community College Districe SSC Technical Training Project to determine the direct and inderect manpower needs in the eighteen-county North Cenbtral Texas area surrounding the Superconducting Super Collider Laboratory (SSCL) and to identify training programs to be developed by local community colleges. The tasks of this project were specifically designed to maximize the use of existing informatiion resources of various organizations and agencies concerned with lobor force development issues to provide custom databases focusied upon the SSCL. The labor market informataion (LMI) resources developed in this project provide a strong foundation for examining the impacts of the SSCL on the training and employment needs of the North Central Texas region. The direct and indirect effects of the SSCL are analyzed to the smallest level of occupational detail feasible. Regional labor demand estimates and forecasts were updated and expanded, county level demand data was developed, statewide vocational education programs were inventoried and lists of affected regional employers were extracted. All of the data developed in this project is available in standard Dbase disk files, formatted to be compatible with other LMI resources such as INTERLINK's LMIS. Further, a custom version of INTERLINK's PC-based LMIS software was developed for the SSC Technical Training Project to provide the greatest access to and linkage between the labor demand and supply data developed in this study. Future efforts to develop additional information resources relevant to the event of the SSCL must focus upon comparative analyses of similar projects, such as Fermilab and others, to provide more detail to the products developed in this project

  7. Light diffusing fiber optic chamber

    Science.gov (United States)

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  8. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  9. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  10. BEBC Big European Bubble Chamber

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    A view of the dismantling of the magnet of BEBC, the 3.7 m European Bubble Chamber : iron magnetic shielding ; lower and upper parts of the vacuum enclosure of the magnet; turbo-molecular vacuum pumps for the "fish-eye" windows; the two superconducting coils; a handling platform; the two cryostats suspended from the bar of the travelling crane which has a 170 ton carrying capacity. The chamber proper, not dismantled, is inside the shielding.

  11. Spray solidification of nuclear waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-08-01

    The spray calciner is a relatively simple machine. Operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of high-level and mixed high- and intermediate-level liquid wastes has been demonstrated. Waste concentrations of from near infinite dilution to less than 225 liters per tonne of fuel are calcinable. Wastes have been calcined containing over 2M sodium. Feed concentration, composition, and flowrate can vary rapidly by over a factor of two without requiring operator action. Wastes containing mainly sodium cations can be spray calcined by addition of finely divided silica to the feedstock. A remotely replaceable atomizing nozzle has been developed for use in plant-scale equipment. Calciner capacity of over 75 l/h has been demonstrated in pilot-scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. The volume of recycle required from the effluent treatment system is very small. Vibrator action maintains the calcine holdup in the calciner at less than 1 kg. Successful remote operation and maintenance of a heated-wall spray calciner have been demonstrated while processing high-level waste. Radionuclide volatilization was acceptably low

  12. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    and adverse effects and maximum efficacy as well as patients' compliance [1]. Transdermal dosage forms are .... learning and memory in healthy postmenopausal women stabilized on estrogen, over 26 weeks. When the ... forearm instead until the areolae were the same color again and then applied 1 spray to each forearm ...

  13. Theoretical study of the errors in the magnetic structure in the SSC's at GANIL. Determination of tolerances

    International Nuclear Information System (INIS)

    Chabert, A.; Gendreau, G.

    A study was made of the magnetic field tolerances allowable in the separated sector cyclotrons (Cyclotron a Secteurs Separees or CSS) at GANIL (Grand Accelerateur National a Ions Lourdes). The presentation includes: a theoretical review; SSC characteristics; and a study of errors in the topography of the field for the accelerated orbit

  14. Summary of construction details and test performance of recent series of 1.8 meter SSC dipoles at BNL

    International Nuclear Information System (INIS)

    Goodzeit, C.; Wanderer, P.

    1990-01-01

    Certain design features of the SSC dipole magnets are evaluated with 1.8-meter models built and tested at BNL. We report the results of recent tests of such magnets relating quench performance and field quality measurements to mechanical design and assembly features such as collar material, collared coil dimensions and fit with the yoke and coil prestress level. 9 figs., 5 tabs

  15. Testing the viability of the E/sub T//sup miss/ signature in gluino production at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, R.M.; Freeman, J.; Raja, R.; Gunion, J.F.; Haber, H.E.; Hollebeek, R.; Paige, F.E.; White, A.P.

    1988-01-01

    We report on a preliminary study at SSC energies of signatures and backgrounds for heavy gluinos in the minimal supersymmetric extension of the Standard Model. Unlike previous studies we account for the small branching ratio of gluinos to the lightest supersymmetric particle. We find that an E/sub T//sup miss/ signature is observable over the Standard Model background.

  16. The SseC translocon component in Salmonella enterica serovar Typhimurium is chaperoned by SscA.

    Science.gov (United States)

    Cooper, Colin A; Mulder, David T; Allison, Sarah E; Pilar, Ana Victoria C; Coombes, Brian K

    2013-10-04

    Salmonella enterica is a causative agent of foodborne gastroenteritis and the systemic disease known as typhoid fever. This bacterium uses two type three secretion systems (T3SSs) to translocate protein effectors into host cells to manipulate cellular function. Salmonella pathogenicity island (SPI)-2 encodes a T3SS required for intracellular survival of the pathogen. Genes in SPI-2 include apparatus components, secreted effectors and chaperones that bind to secreted cargo to coordinate their release from the bacterial cell. Although the effector repertoire secreted by the SPI-2 T3SS is large, only three virulence-associated chaperones have been characterized. Here we report that SscA is the chaperone for the SseC translocon component. We show that SscA and SseC interact in bacterial cells and that deletion of sscA results in a loss of SseC secretion, which compromises intracellular replication and leads to a loss of competitive fitness in mice. This work completes the characterization of the chaperone complement within SPI-2 and identifies SscA as the chaperone for the SseC translocon.

  17. Advanced Research in Diesel Fuel Sprays Using X-rays From The Advanced Photon Source

    International Nuclear Information System (INIS)

    Powell, C.

    2003-01-01

    The fuel distribution and degree of atomization in the combustion chamber is a primary factor in the formation of emissions in diesel engines. A number of diagnostics to study sprays have been developed over the last twenty years; these are primarily based on visible light measurement techniques. However, visible light scatters strongly from fuel droplets surrounding the spray, which prevents penetration of the light. This has made quantitative measurements of the spray core very difficult, particularly in the relatively dense near- nozzle region [1-3]. For this reason we developed the x-ray technique to study the properties of fuel sprays in a quantitative way [4]. The x-ray technique is not limited by scattering, which allows it to be used to make quantitative measurements of the fuel distribution. These measurements are particularly effective in the region near the nozzle where other techniques fail. This technique has led to a number of new insights into the structure of fuel sprays, including the discovery and quantitative measurement of shock waves generated under some conditions by high-pressure diesel sprays [5]. We also performed the first-ever quantitative measurements of the time-resolved mass distribution in the near-nozzle region, which demonstrated that the spray is atomized only a few nozzle diameters from the orifice [6]. Our recent work has focused on efforts to make measurements under pressurized ambient conditions. We have recently completed a series of measurements at pressures up to 5 bar and are looking at the effect of ambient pressure on the structure of the spray. The enclosed figure shows the mass distributions measured for 1,2, and 5 bar ambient pressures. As expected, the penetration decreases as the pressure increases. This leads to changes in the measured mass distribution, including an increase in the density at the leading edge of the spray. We have also observed a narrowing in the cone angle of the spray core as the pressure

  18. The scavenger receptor SSc5D physically interacts with bacteria through the SRCR-containing N-terminal domain

    Directory of Open Access Journals (Sweden)

    Catarina Bessa-Pereira

    2016-10-01

    Full Text Available The scavenger receptor cysteine-rich (SRCR family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP of bacteria, fungi or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion which contains five SRCR modules, and a large C-terminal mucin-like domain. Towards establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSC5D (N-SSc5D, thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein-bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to E. coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively, and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time and label-free surface plasmon resonance (SPR-based assay, and examined the capacity of N-SSc5D, Spα, sCD5 and sCD6 to bind to different bacteria. We demonstrated that the N-SSc5D compares with Spα in the capacity to bind to E. coli and L. monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3. Our work thus advocates the

  19. Macroscopic Properties of Hollow Cone Spray Using an Outwardly Opening Piezoelectric Injector in GCI Engine

    KAUST Repository

    Cheng, Penghui

    2016-07-01

    Fuel mixture formation and spray characteristics are crucial for the advancement of Gasoline Compression Ignition (GCI) engine. For investigations of spray characteristics, a high-pressure high-temperature spray chamber with constant volume has been designed, tested and commissioned at CCRC, KAUST. Back light illumination technique has been applied to investigate the macroscopic spray properties of an outwardly opening piezoelec- tric injector. Three parameters including injection pressure, ambient pressure, and ambient temperature have been involved. A total of 18 combinations of experimental conditions were tested under non-reactive conditions. Through qualitative analysis of spray morphology under different operating conditions, an apparent distinction of spray morphology has been noticed. Spray morphology and propagation have shown strong dependencies on ambient pressure and ambient tempera- ture while injection pressure has a negligible effect on spray shape. Increasingly compact and bushier spray patterns were observed in the cases of high ambient pressure due to in- creasing aerodynamic drag force on spray boundary. It should also be noted that ambient temperature plays a fairly important role in fuel evaporation rate. At 200 °C, oscillating and considerably short spray shape was produced. Also, circumferential ring-like vortices and distinctive string-like structures have been identified for the fuel spray exiting this hollow cone injector. It has been observed that high ambient pressure conditions (Pamb = 4 bar and 10.5 bar) are favorable to the vortices generation, which has also been reported in previous literature. The quantitative description of macroscopic spray properties reveals that ambient pres- sure and ambient temperature are found to be the most influential parameters on liquid penetration length. The rise of ambient pressure results in considerably shorter liquid pen- etration length. Ambient temperature also appears to be a very effective

  20. The nano spray dryer B-90.

    Science.gov (United States)

    Heng, Desmond; Lee, Sie Huey; Ng, Wai Kiong; Tan, Reginald B H

    2011-07-01

    Spray drying is an extremely well-established technology for the production of micro-particulate powders suited for a variety of drug delivery applications. In recent years, the rise in nanomedicine has placed increased pressure on the existing systems to produce nanoparticles in good yield and with a narrow size distribution. However, the separation and collection of nanoparticles with conventional spray dryer set ups is extremely challenging due to their typical low collection efficiency for fine particles spray drying technology is provided in this review with particular emphasis on the novel Buchi® Nano Spray Dryer B-90. Readers will appreciate the limitations of conventional spray drying technology, understand the mechanisms of the Buchi® Nano Spray Dryer B-90, and also learn about the strengths and shortcomings of the system. The Buchi® Nano Spray Dryer B-90 offers a new, simple and alternative approach for the production of nanoparticles suited for a variety of drug delivery applications.

  1. Directional muon jet chamber for a muon collider (Groovy Chamber)

    International Nuclear Information System (INIS)

    Atac, M.

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-ψ coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas

  2. Fission product aerosol removal test by containment spray under accident management conditions (3)

    International Nuclear Information System (INIS)

    Watanabe, Atsushi; Nagasaka, Hideo; Yokobori, Seiichi; Akinaga, Makoto

    2000-01-01

    In order to demonstrate the effective FP aerosol removal by containment spray under Japanese AM conditions, two system integral tests and two separate effect tests were carried out using a full-height simulation test facility. In case of PWR LOCA, aerosol concentration in the upper containment vessel decreased even under low spray flow rate. In case of BWR LOCA with water injection into RPV, the aerosol concentration in the entire vessel also decreased rapidly after aerosol supply stopping. In both cases, the removal rate estimated from the NUREG-1465 was coincided with test results. The aerosol washing effect by spray was confirmed to be predominant by conducting suppression chamber isolation test. It turned out that the effect of aerosol solubility and density on aerosol removal by spray was quite small by conducting insoluble aerosol injection test. After the modification of aerosol removal model by the spray and hygroscopic aerosol model in original MELCOR 1.8.4, calculated aerosol concentration transient in the containment vessel agreed well with the test data. (author)

  3. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    International Nuclear Information System (INIS)

    Ramadhani, Muhammad F.; Pasaribu, Maruli A. H.; Yuliarto, Brian; Nugraha

    2014-01-01

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure

  4. Controlling in situ crystallization of pharmaceutical particles within the spray dryer.

    Science.gov (United States)

    Woo, Meng Wai; Lee, May Ginn; Shakiba, Soroush; Mansouri, Shahnaz

    2017-11-01

    Simultaneous solidification and in situ crystallization (or partial crystallization) of droplets within the drying chamber are commonly encountered in the spray drying of pharmaceuticals. The crystallinity developed will determine the functionality of the powder and its stability during storage. This review discusses strategies that can be used to control the in situ crystallization process. Areas covered: The premise of the strategies discussed focuses on the manipulation of the droplet drying rate relative to the timescale of crystallization. This can be undertaken by the control of the spray drying operation, by the use of volatile materials and by the inclusion of additives. Several predictive approaches for in situ crystallization control and new spray dryer configuration strategies are further discussed. Expert opinion: Most reports, hitherto, have focused on the crystallinity of the spray dried material or the development of crystallinity during storage. More mechanistic understanding of the in situ crystallization process during spray drying is required to guide product formulation trials. The key challenge will be in adapting the mechanistic approach to the myriad possible formulations in the pharmaceutical industry.

  5. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  6. Neutron Detection via Bubble Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  7. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    Science.gov (United States)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  8. Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part II).

    Science.gov (United States)

    Aguilar, Guillermo; Franco, Walfre; Liu, Jie; Svaasand, Lars O; Nelson, J Stuart

    2005-02-01

    Clinical results have demonstrated that dark purple port wine stain (PWS) birthmarks respond favorably to laser induced photothermolysis after the first three to five treatments. Nevertheless, complete blanching is rarely achieved and the lesions stabilize at a red-pink color. In a feasibility study (Part I), we showed that local hypobaric pressure on PWS human skin prior to laser irradiation induced significant lesion blanching. The objective of the present study (Part II) is to investigate the effects of hypobaric pressures on the efficiency of cryogen spray cooling (CSC), a technique that assists laser therapy of PWS and other dermatoses. Experiments were carried out within a suction cup and vacuum chamber to study the effect of hypobaric pressure on the: (1) interaction of cryogen sprays with human skin; (2) spray atomization; and (3) thermal response of a model skin phantom. A high-speed camera was used to acquire digital images of spray impingement on in vivo human skin and spray cones generated at different hypobaric pressures. Subsequently, liquid cryogen was sprayed onto a skin phantom at atmospheric and 17, 34, 51, and 68 kPa (5, 10, 15, and 20 in Hg) hypobaric pressures. A fast-response temperature sensor measured sub-surface phantom temperature as a function of time. Measurements were used to solve an inverse heat conduction problem to calculate surface temperatures, heat flux, and overall heat extraction at the skin phantom surface. Under hypobaric pressures, cryogen spurts did not produce skin indentation and only minimal frost formation. Sprays also showed shorter jet lengths and better atomization. Lower minimum surface temperatures and higher overall heat extraction from skin phantoms were reached. The combined effects of hypobaric pressure result in more efficient cryogen evaporation that enhances heat extraction and, therefore, improves the epidermal protection provided by CSC. (c) 2005 Wiley-Liss, Inc.

  9. The CLAS drift chamber system

    CERN Document Server

    Mestayer, M D; Asavapibhop, B; Barbosa, F J; Bonneau, P; Christo, S B; Dodge, G E; Dooling, T; Duncan, W S; Dytman, S A; Feuerbach, R; Gilfoyle, G P; Gyurjyan, V; Hicks, K H; Hicks, R S; Hyde-Wright, C E; Jacobs, G; Klein, A; Klein, F J; Kossov, M; Kuhn, S E; Magahiz, R A; Major, R W; Martin, C; McGuckin, T; McNabb, J; Miskimen, R A; Müller, J A; Niczyporuk, B B; O'Meara, J E; Qin, L M; Raue, B A; Robb, J; Roudot, F; Schumacher, R A; Tedeschi, D J; Thompson, R A; Tilles, D; Tuzel, W; Vansyoc, K; Vineyard, M F; Weinstein, L B; Wilkin, G R; Yegneswaran, A; Yun, J

    2000-01-01

    Experimental Hall B at Jefferson Laboratory houses the CEBAF Large Acceptance Spectrometer, the magnetic field of which is produced by a superconducting toroid. The six coils of this toroid divide the detector azimuthally into six sectors, each of which contains three large multi-layer drift chambers for tracking charged particles produced from a fixed target on the toroidal axis. Within the 18 drift chambers are a total of 35,148 individually instrumented hexagonal drift cells. The novel geometry of these chambers provides for good tracking resolution and efficiency, along with large acceptance. The design and construction challenges posed by these large-scale detectors are described, and detailed results are presented from in-beam measurements.

  10. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  11. Holography in small bubble chambers

    International Nuclear Information System (INIS)

    Lecoq, P.

    1984-01-01

    This chapter reports on an experiment to determine the total charm cross section at different incident momenta using the small, heavy liquid bubble chamber HOBC. Holography in liquid hydrogen is also tested using the holographic lexan bubble chamber HOLEBC with the aim of preparing a future holographic experiment in hydrogen. The high intensity tests show that more than 100 incident tracks per hologram do not cause a dramatic effect on the picture quality. Hydrogen is more favorable than freon as the bubble growth is much slower in hydrogen. An advantage of holography is to have the maximum resolution in the full volume of the bubble chamber, which allows a gain in sensitivity by a factor of 10 compared to classical optics as 100 tracks per hologram look reasonable. Holograms are not more difficult to analyze than classical optics high-resolution pictures. The results show that holography is a very powerful technique which can be used in very high resolution particle physics experiments

  12. The decay of a lambda particle in the 32 cm hydrogen bubble chamber

    CERN Multimedia

    1960-01-01

    This image from 1960 is of real particle tracks formed in CERN's first liquid hydrogen bubble chamber to be used in experiments. It was a tiny detector by today's standards at only 32 cm in diameter. Negatively charged pions with an energy of 16 GeV enter from the left. One of them interacts with a proton in the liquid hydrogen and creates sprays of new particles, including a neutral particle (a lambda) that decays to produce the "V" of two charged particle tracks at the centre. Lower-energy charged particles produced in the interactions spiral in the magnetic field of the chamber. The invention of bubble chambers in 1952 revolutionized the field of particle physics, allowing real particle tracks to be seen and photographed, after releasing the pressure that had kept a liquid above its normal boiling point.

  13. Sprays and Cartan projective connections

    Science.gov (United States)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  14. Ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    2010-01-01

    resolution and high sensitivity are necessary. For exact dosimetry which is done using ionization chambers (ICs), the recombination taking place in the IC has to be known. Up to now, recombination is corrected phenomenologically and more practical approaches are currently used. Nevertheless, Jaff´e's theory...... of columnar recombination was designed to model the detector efficiency of an ionization chamber. Here, we have shown that despite the approximations and simplification made, the theory is correct for the LETs typically found in clinical radiotherapy employing particles from protons to carbon ions...

  15. Laboratory Course on Drift Chambers

    International Nuclear Information System (INIS)

    Garcia-Ferreira, Ix-B.; Garcia-Herrera, J.; Villasenor, L.

    2006-01-01

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas

  16. Experimental analysis on the influence of nozzle geometry over the dispersion of liquid n-dodecane sprays

    Directory of Open Access Journals (Sweden)

    Raul ePayri

    2015-10-01

    Full Text Available Understanding and controlling mixing and combustion processes is fundamental in order to face the challenges set by the ever more demanding pollutant regulations and fuel consumption standards of direct injection diesel engines. The fundamentals of these processes haven been long studied by the diesel spray community from both experimental and numerical perspectives. However, certain topics such as the influence of nozzle geometry over the spray atomization, mixing and combustion process are still not completely well understood and predicted by numerical models. The present study seeks to contribute to the current understanding of this subject, by performing state-of-the-art optical diagnostics to liquid sprays injected through two singe-hole nozzles of different conicity. The experiments were carried out in a nitrogen-filled constant-pressure-flow facility. Back pressures were set to produce the desired engine-like density conditions in the chamber, at room temperature. The experimental setup consists in a diffused back illumination setup with a fast pulsed LED light source and a high-speed camera. The diagnostics focused on detecting the liquid spray contour and evaluating the influence of nozzle geometry over the time-resolved and quasi-steady response of the spray dispersion, at similar injection conditions. Results show a clear influence of nozzle geometry on spray contour fluctuations, where the cylindrical nozzle seems to produce larger dispersion in both time-resolved fluctuations and quasi-steady values, when compared to the conical nozzle. This evidences that the turbulence and radial velocity profiles originated at the cylindrical nozzle geometry are able to affect not only the microscopic scales inside the nozzle, but also macroscopic scales such as the steady spray. Observations from this study indicate that the effects of the flow characteristics within the nozzle are carried on to the first millimeters of the spray, in which the

  17. Spray calcination of nuclear wastes

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m 3 /min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures

  18. The 2016 Thermal Spray Roadmap

    Czech Academy of Sciences Publication Activity Database

    Vardelle, A.; Moreau, Ch.; Akedo, J.; Ashrafizadeh, H.; Berndt, C. C.; Berghaus-Oberste, J.; Boulos, M.; Brogan, J.; Bourtsalas, A.C.; Dolatabadi, A.; Dorfman, M.; Eden, T.J.; Fauchais, P.; Fisher, G.; Gaertner, F.; Gindrat, M.; Henne, R.; Hyland, M.; Irissou, E.; Jordan, E.H.; Khor, K.A.; Killinger, A.; Lau, Y.C.; Li, C.-J.; Li, L.; Longtin, J.; Markocsan, N.; Masset, P.J.; Matějíček, Jiří; Mauer, G.; McDonald, A.; Mostaghimi, J.; Sampath, S.; Schiller, G.; Shinoda, K.; Smith, M.F.; Syed, A.A.; Themelis, N.J.; Toma, F.-L.; Trelles, J.P.; Vassen, R.; Vuoristo, P.

    2016-01-01

    Roč. 25, č. 8 (2016), s. 1376-1440 ISSN 1059-9630 Institutional support: RVO:61389021 Keywords : anti-wear and anti-corrosion coating s * biomedical * electronic s * energy generation * functional coating s * gas turbines * thermal spray processes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://dx.doi.org/10.1007/s11666-016-0473-x

  19. Spray granulation for drug formulation.

    Science.gov (United States)

    Loh, Zhi Hui; Er, Dawn Z L; Chan, Lai Wah; Liew, Celine V; Heng, Paul W S

    2011-12-01

    Granulation is a key unit process in the production of pharmaceutical solid dosage forms and involves the agglomeration of fine particles with the aid of a binding agent. Fluidized bed granulation, a classic example of spray granulation, is a technique of particle agglomeration brought about by the spray addition of the binding liquid onto a stationary bed of powder particles that is transformed to a fluid-like state by the passage of air through it. The basic working principles, equipment set-up, advantages and challenges of fluidized bed granulation are introduced in this review. This is followed by an overview of the formulation and process-related variables affecting granulation performance. Technological advances, particularly in the application of process analytical tools, in the field of fluidized bed granulation research are also discussed. Fluidized bed granulation is a popular technique for pharmaceutical production, as it is a highly economical and efficient one-pot process. The research and development of process analytical technologies (PAT) has allowed greater process understanding and control to be achieved, even for the lesser known fluidized bed techniques, such as bottom spray and fluidized hot melt granulation. In view of its consistent mixing, as well as continuous and concurrent wetting and drying occurring throughout processing, fluidized bed granulation shows great potential for continuous production although more research is required to fully implement, validate and integrate the PAT tools in a production line.

  20. A unique cabling designed to produce Rutherford-type superconducting cable for the SSC project

    International Nuclear Information System (INIS)

    Grisel, J.; Royet, J.M.; Scanlan, R.M.; Armer, R.

    1988-08-01

    Up to 25,000 Km of keystoned flat cable must be produced for the SSC project. Starting from a specification developed by Lawrence Berkeley Laboratory (LBL), a special cabling machine has been designed by Dour Metal. It has been designed to be able to run at a speed corresponding to a maximum production rate of 10 m/min. This cabling machine is the key part of the production line which consists of a precision Turkshead equipped with a variable power drive, a caterpillar, a dimensional control bench, a data acquisition system, and a take-up unit. The main features of the cabling unit to be described are a design with nearly equal path length between spool and assembling point for all the wires, and the possibility to run the machine with several over- or under-twisting ratios between cable and wires. These requirements led Dour Metal to the choice of an unconventional mechanical concept for a cabling machine. 4 refs., 2 figs

  1. Electrical characteristics of the SSC Low-Energy Booster Magnetic system

    International Nuclear Information System (INIS)

    Young, A.; Shafer, B.E.

    1993-01-01

    The purpose of this paper is to review the electrical design of the magnet system for the Superconducting Super Collider (SSC) Low-Energy Booster (LEB). The primary operating mode of the LEB is as a 10-Hz rapid-cycling proton synchrotron. In this mode, capacitor banks are used to make the entire magnet circuit resonant at 10 Hz. This resonant system thus eliminates the requirement of having to provide (and recover) a large amount of reactive power. The primary focus of this paper is to analyze the electrical properties of the magnet system. In addition to the 10-Hz mode, the magnet system is capable of operating as a 1-Hz ramped proton synchrotron, with flat open-quotes front porchesclose quotes and open-quotes flattopsclose quotes for injection and extraction. This mode is initiated through bypassing the choke-capacitor system and exciting the magnet system with a SCR power supply using predetermined waveforms. Both these operating modes (10 Hz and 1 Hz) are analyzed using SPICE (Version 3E)

  2. What the quality philosophy brings to a research and development environment like the SSC

    International Nuclear Information System (INIS)

    Davis, S.; Wentz, J.L.

    1994-01-01

    In achieving major schedule and performance milestones with a project as technologically advanced as the Superconducting Super Collider, many activities must be coordinated simultaneously without the luxury of a conventional design review process. Because the design may change several times prior to the delivery of a one-of-a-kind or prototype component or subsystem, close verification and monitoring of design, manufacturing and test processes are needed on a real-time basis. This verification and monitoring is performed on two levels by Quality Assurance at the SSC Laboratory; Division and General Management. The Division level is involved in day-to-day activities at the Laboratory and the Suppliers; the General Management level performs the independent oversight function for all the Laboratory quality processes. In the divisions, continuous monitoring of design, procurement, manufacturing, installation, and testing activities is performed. At the General Management level, quality program development and implementation is evaluated within each division. Critical suppliers involved in system design, manufacturing and testing are evaluated against contract and program requirements to assure systems safely perform their intended functions

  3. Reducing the energy requirements of quench protection heaters for SSC dipoles -- Test results

    International Nuclear Information System (INIS)

    Haddock, C.; Kuzminski, J.; Orris, D.; Mazur, P.

    1993-04-01

    Design considerations and first test results of quench protection heaters for Superconducting Collider (SSC) collider dipole magnets have been presented in earlier papers. The heaters have been shown to fully protect the magnet against excessive peak temperature which would represent damage to the superconducting coil. Installation and operation of the heaters does not place the magnet at any increased risk of failure, since the energy densities applied are relatively low (∼1J/cm 2 ) and the construction technique was made as simple as possible. The energy required by the heaters in order to protect the magnet is considerably larger than that amount estimated during the planning of the collider ring protection scheme. Therefore, three tong magnets following the Accelerator Systems Sizing Test (ASST) construction series at Fermi National Accelerator Laboratory were made available for quench protection heater ''R ampersand D'' studies. All of the ASST series magnets deliberately kept the high energy requirement heaters for the purpose of commonality for the string test. This paper describes the results of the ''R ampersand D'' heater tests and the amount of energy reduction achieved. It is shown that it has been possible to reduce the heater energy requirement to a value below therefore potentially save collider cost

  4. 3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet

    International Nuclear Information System (INIS)

    Lari, R.J.

    1984-01-01

    A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%

  5. A low cost support post for SSC quadrupole magnets and other cryogenic applications

    International Nuclear Information System (INIS)

    Hiller, M.W.; Kunz, R.J.; Lehmann, G.A.; Nilles, M.J.

    1994-01-01

    An injection molded support post has been designed and tested for use in the cryostat of the 5.4 meter long SSC Collider Quadrupole Magnet (CQM). This glass reinforced thermoplastic support is less costly than the complex alternative post designs that consist of filament wound tubes with thermal shrink fit metallic end pieces. The near net shape injection molding process delivers customized components at production rates suitable for present and proposed large scale cryogenic projects such as large accelerators, SMES, and Maglev. In addition, standard shapes (plates, tubes, threaded rods, and fasteners) comprised of this composite are available as catalog items. This paper presents the design considerations, material testing, and validation of predicted structural performance through component testing. Test results reported herein include compressive strength validations as well as previously unreported creep, thermal conductivity, and thermal contraction data. A delineated reliability method is discussed for verifying compliance with apportioned reliability targets using a synthesis of the FEA and test data. Also the design approach and data presented here can be extended toward the design of low cost mass produced supports for other cryogenic applications

  6. Test results from Fermilab 1.5 m model SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Koska, W.; Bossert, R.; Carson, J.; Coulter, K.J.; Delchamps, S.; Gourlay, S.; Jaffery, T.S.; Kinney, W.; Lamm, M.J.; Ozelis, J.P.; Strait, J.; Wake, M.

    1991-09-01

    We will present results from tests of 1.5 m model SSC collider dipole magnets. These R ampersand D magnets are identical to the 15 m full length dipoles currently being assembled at Fermilab in all important aspects except length. Because of their small size they can be built faster and tested more extensively than the long magnets. The model magnets are used to optimize design parameters for, and to indicate the performance which can be expected from, the 15 m magnets. The are instrumented with voltage taps over the first two current blocks for quench localization and with several arrays of strain gauge transducers for the study of mechanical behavior. The stress at the poles of the inner and outer coils is monitored during construction and, along with end force and shell strain, during excitation. Magnetic measurements are made several times during each magnet's lifetime, including at operating temperature and field. We will report on studies of the quench performance, mechanical behavior and magnetic field of these magnets

  7. Mechanical behavior of Fermilab/General Dynamics built 15M SSC collider dipoles

    International Nuclear Information System (INIS)

    Wake, M.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.; Mazur, P.; Orris, D.; Strait, J.; Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Thompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H.

    1992-04-01

    A series of full-scale demonstration SSC collider dipole magnets were built for the ASST. These magnets, DCA311 through DCA319, have 50 mm aperture and 15 m magnetic length with 6.6 Tesla uniform field. For the support structure of the W6733B cross section, the Fermilab design uses a vertical split in the yoke. The end sections of the magnet have solid spacers and are supported by collet clamps. The splices between inner and outer coils are made in preforms which lie outside of the high field region. The magnets were produced in pipeline fashion with no intentional major changes between magnets. As a part of the technology transfer program, the last 7 magnets were built by General Dynamics personnel using the magnet construction facilities of Fermilab, while the first two magnets were built entirely by Fermilab personnel. At present, the magnets up to DCA316 have been tested at Fermilab. The general characteristics of the magnets have been quite satisfactory. Both of the Fermilab built magnets have reached the conductor limited field strength with no significant training. Two of the General Dynamics built magnets each required a single training quench. However, all of the magnets tested up to date meet the ASST specifications. This report describes the mechanical properties of the ASST magnets at Fermilab based on the currently available test results

  8. Mechanical behavior of Fermilab/General Dynamics built 15M SSC collider dipoles

    International Nuclear Information System (INIS)

    Wake, M.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Orris, D.; Strait, J.; Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H.

    1992-01-01

    A series of full-scale demonstration SSC collider dipole magnets were built for the ASST (Accelerator System String Test). These magnets, DCA311 through DCA319, have 50 mm aperture and 15 m magnetic length with 6.6 Tesla uniform field. For the support structure of the W6733B cross section, the Fermilab design uses a vertical split in the yoke. The end sections of the magnet have solid spacers and are supported by collet clamps. The splices between inner and outer coils are made in preforms which lie outside of the high field region. The magnets were produced in pipeline fashion with no intentional major changes between magnets. As a part of the technology transfer program, the last 7 magnets were built by General Dynamics personnel using the magnet construction facilities of Fermilab, while the first two magnets were built entirely by Fermilab personnel. At present, the magnets up to DCA316 have been tested at Fermilab. The general characteristics of the magnets have been quite satisfactory. Both of the Fermilab built magnets have reached the conductor limited field strength with no significant training. Two of the General Dynamics built magnets (DCA313 and DCA314) each required a single training quench. However, all of the magnets tested up to date meet the ASST specifications. This report describes the mechanical properties of the ASST magnets at Fermilab based on the currently available test results

  9. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  10. Effectiveness of containment sprays in containment management

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Perez, S.E.; Lehner, J.R.

    1993-05-01

    A limited study has been performed assessing the effectiveness of containment sprays-to mitigate particular challenges which may occur during a severe accident. Certain aspects of three specific topics related to using sprays under severe accident conditions were investigated. The first was the effectiveness of sprays connected to an alternate water supple and pumping source because the actual containment spray pumps are inoperable. This situation could occur during a station blackout. The second topic concerned the adverse as well as beneficial effects of using containment sprays during severe accident scenario where the containment atmosphere contains substantial quantities of hydrogen along with steam. The third topic was the feasibility of using containment sprays to moderate the consequences of DCH

  11. DELPHI's Ring Imaging Cherenkov Chamber

    CERN Multimedia

    1989-01-01

    The hundreds of mirrors around this Ring Imaging Cherenkov Chamber reflect cones of light created by fast moving particles to a detector. The velocity of a particle can be measured by the size of the ring produced on the detector. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  12. Bubble chamber: colour enhanced tracks

    CERN Document Server

    1998-01-01

    This artistically-enhanced image of real particle tracks was produced in the Big European Bubble Chamber (BEBC). Liquid hydrogen is used to create bubbles along the paths of the particles as a piston expands the medium. A magnetic field is produced in the detector causing the particles to travel in spirals, allowing charge and momentum to be measured.

  13. Testing an hydrogen streamer chamber

    CERN Multimedia

    1975-01-01

    A 2x10 cm gap streamer chamber, 35x55 cm2 in surface, was built and tested at CERN. Good tracks of cosmic rays were obtained up to atmospheric pressure, see F. Rohrbach et al, CERN-LAL (Orsay) Collaboration, Nucl. Instr. Methods 141 (1977) 229. Michel Cathenoz stand on the center.

  14. Chamber Music for Every Instrumentalist.

    Science.gov (United States)

    Latten, James E.

    2001-01-01

    Discusses why students who play musical instruments should participate in a chamber music ensemble. Provides rationale for using small ensembles in the high school band curriculum. Focuses on the topic of scheduling, illustrating how to insert small ensembles into the lesson schedule, and how to set up a new schedule. (CMK)

  15. A dual deformable reverberation chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    There is disclosed an arrangement for measuring the effectiveness of a shielding material against electromagnetic fields. The arrangement comprises a first and a second reverberation chamber sharing a common wall. The common wall is partly made of the shielding material. A first antenna is arranged

  16. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  17. Hydrostatic Hyperbaric Chamber Ventilation System

    Science.gov (United States)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  18. A critical investigation into the spray-drying of hydroxyapatite powder for thermal spray applications

    OpenAIRE

    Murtaza, Qasim

    2006-01-01

    This work examines the investigation of the spray drying process of Hydroxyapatite powder (HA) used as a thermal spray deposit in the application of orthopaedic femoral implants. In this research, the Niro- Minor™ mixed spray dryer was used for both modelling and experimental studies. The process parameters investigated included HA slurry viscosity, temperature, and air flowrate. Computational Fluid Dynamic (CFD) modelling and validation of the spray drying of HA powder was performed. An anal...

  19. Considerations on the design of front-end electronics for silicon calorimetry for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Bauer, M.L.; Britton, C.L. Jr.; Kennedy, E.J.; Todd, R.A.; Berridge, S.C.; Bugg, W.M.

    1990-01-01

    Some considerations are described for the design of a silicon-based sampling calorimetry detector for the Superconducting Super Collider (SSC). The use of silicon as the detection medium allows fast, accurate, and fine-grained energy measurements -- but for optimal performance, the front-end electronics must be matched to the detector characteristics and have the speed required by the high SSC interaction rates. The relation between the signal-to-noise ratio of the calorimeter electronics and the charge collection time, the preamplifier power dissipation, detector capacitance and leakage, charge gain, and signal shaping and sampling was studied. The electrostatic transformer connection was analyzed and found to be unusable for a tightly arranged calorimeter because of stray capacitance effects. The method of deconvolutional sampling was developed as a means for pileup correction following synchronous sampling and analog storage. 3 refs., 6 figs

  20. Report on the analysis of the large propagation velocities observed in the full-length SSC [Superconducting Super Collider] dipoles

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.; Lubell, M.

    1990-09-01

    Very large propagation velocities have been observed in the Superconducting Super Collider (SSC) 17-m dipoles: from 75 m/s to 225 m/s, depending on the current. These velocities are much larger than those predicted by the classical conduction theory of normal zone propagation. A plausible explanation for such rapid propagation is hydrodynamic mechanism called thermal hydraulic quenchback (THQ) that has been proposed by Luongo et al. This report supplies an approximate analytic theory of THQ, which is used to analyze the data taken on the SSC 17-m dipoles. It is concluded that THQ in the helium in the interstices of the cable can explain the large propagation velocities observed. Additional experiments are proposed to test the hydrodynamic explanation. 17 refs., 5 figs

  1. Status of 4-cm-aperture, 17-m-long SSC dipole magnet R ampersand D program at BNL

    International Nuclear Information System (INIS)

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Spigo, G.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H.; Ogitsu, T.; Anarella, M.; Cottingham, J.; Ganetis, G; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Meade, A.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.

    1991-06-01

    Over the last year-and-a-half, several 4-cm-aperture, 17-m-long dipole magnet prototypes were built by Brookhaven National Laboratory (BNL) under contract with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R ampersand D program, carried out in collaboration with Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main ring dipole magnets. They also prepare the way of the 5-cm-aperture dipole magnet program to be started soon. In this paper, we analyze the mechanical behavior of the BNL prototypes during cool-down and excitation, and we attempt to relate this behavior to the magnet features. The data reveal that the mechanical behavior is sensitive to the vertical collar-yoke interference, and that the magnets exhibited somewhat erratic changes in coil end-loading during cool-down. 9 refs., 6 figs

  2. Status of 4-cm-aperture, 17-m-long SSC dipole magnet R D program at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Spigo, G.; Tompkins, J.; Turner, J.; Wolf, Z.; Yu, Y.; Zheng, H. (Superconducting Super Collider Lab., Dallas, TX (United States)); Ogitsu, T. (Superconducting Super Collider Lab., Dallas, TX (United States) National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)); Anarella,

    1991-06-01

    Over the last year-and-a-half, several 4-cm-aperture, 17-m-long dipole magnet prototypes were built by Brookhaven National Laboratory (BNL) under contract with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R D program, carried out in collaboration with Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main ring dipole magnets. They also prepare the way of the 5-cm-aperture dipole magnet program to be started soon. In this paper, we analyze the mechanical behavior of the BNL prototypes during cool-down and excitation, and we attempt to relate this behavior to the magnet features. The data reveal that the mechanical behavior is sensitive to the vertical collar-yoke interference, and that the magnets exhibited somewhat erratic changes in coil end-loading during cool-down. 9 refs., 6 figs.

  3. Comments on the impedances of the SSC shielded bellows at low frequencies due to the truncation of the wake fields

    International Nuclear Information System (INIS)

    Ng, K.Y.

    1986-09-01

    The behavior of the longitudinal impedance of the SSC shielded bellow at low frequencies depends very much on the length of the wake field used in the Fourier transformation. We show analytically and numerically that, regardless of the difference, single-bunch effects are independent of the actual shape of the impedance when the length of the wake used is bigger than the bunch length

  4. Results from a partial lifetime test of a 40 mm-aperture 17 mm SSC model dipole

    Energy Technology Data Exchange (ETDEWEB)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H. [Superconducting Super Collider Lab., Dallas, TX (United States); Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E. [Brookhaven National Lab., Upton, NY (United States); Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J. [Fermi National Accelerator Lab., Batavia, IL (United States); Royett, J.; Scanlan, R.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)

    1992-03-01

    A 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet`s performance through numerous cold tests and thermal cycles. This paper discusses the magnet`s mechanical and quench performance and magnet field measurements during the tests.

  5. Abraham Pais Prize for History of Physics Lecture: Big, Bigger, Too Big? From Los Alamos to Fermilab and the SSC

    Science.gov (United States)

    Hoddeson, Lillian

    2012-03-01

    The modern era of big science emerged during World War II. Oppenheimer's Los Alamos laboratory offered the quintessential model of a government-funded, mission-oriented facility directed by a strong charismatic leader. The postwar beneficiaries of this model included the increasingly ambitious large laboratories that participated in particle physics--in particular, Brookhaven, SLAC, and Fermilab. They carried the big science they practiced into a new realm where experiments eventually became as large and costly as entire laboratories had been. Meanwhile the available funding grew more limited causing the physics research to be concentrated into fewer and bigger experiments that appeared never to end. The next phase in American high-energy physics was the Superconducting Super Collider, the most costly pure physics project ever attempted. The SSC's termination was a tragedy for American science, but for historians it offers an opportunity to understand what made the success of earlier large high-energy physics laboratories possible, and what made the continuation of the SSC impossible. The most obvious reason for the SSC's failure was its enormous and escalating budget, which Congress would no longer support. Other factors need to be recognized however: no leader could be found with directing skills as strong as those of Wilson, Panofsky, Lederman, or Richter; the scale of the project subjected it to uncomfortable public and Congressional scrutiny; and the DOE's enforcement of management procedures of the military-industrial complex that clashed with those typical of the scientific community led to the alienation and withdrawal of many of the most creative scientists, and to the perception and the reality of poor management. These factors, exacerbated by negative pressure from scientists in other fields and a post-Cold War climate in which physicists had little of their earlier cultural prestige, discouraged efforts to gain international support. They made the SSC

  6. Results from a partial lifetime test of a 40 mm-aperture 17 mm SSC model dipole

    International Nuclear Information System (INIS)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royett, J.; Scanlan, R.; Taylor, C.

    1992-03-01

    A 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet's performance through numerous cold tests and thermal cycles. This paper discusses the magnet's mechanical and quench performance and magnet field measurements during the tests

  7. Results from a partial lifetime test of a 40-mm-aperture, 17-m-long SSC model dipole

    International Nuclear Information System (INIS)

    Radusewicz, P.; Devred, A.; Bush, T.; Coombes, R.; DiMarco, J.; Goodzeit, C.; Kuzminski, J.; Ogitsu, T.; Potter, J.; Puglisi, M.; Sanger, P.; Schermer, R.; Tompkins, J.; Yu, Y.; Zhao, Y.; Zheng, H.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Ghosh, A.; Greene, A.; Gupta, R.; Jain, A.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Roher, E.P.; Sampson, W.; Shutt, R.; Thomas, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royett, J.; Scanlan, R.; Taylor, C.

    1992-01-01

    -LA 40-mm-aperture, 17-m-long Superconducting Super Collider (SSC) model dipole was assembled at Brookhaven National Laboratory (BNL) and tested initially at Fermi National Accelerator Lab (FNAL) and later at BNL. At BNL an extended cycle test was devised to examine the magnet's performance through numerous cold tests and thermal cycles. This paper discusses the magnet's mechanical and quench performance and magnet field measurements during the tests

  8. Thermal spray of ceramics driven by converging shock waves; Entojo shusoku shogekiha wo riyoshita seramikkusu ryushi no yosha

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Kazuhito; Matsuo, Hideo; Hiroe, Tetsuyuki [Kumamoto University, Kumamoto (Japan). Department of Mechanical Engineering and Materials Science; Tomikawa, Hisao [Wakayama National College of Technology, Wakayama (Japan); Fukuoka, Hiromasa [Kumamoto University, Kumamoto (Japan). Graduate School of Science and Technology

    1999-08-31

    A tough wear-resistant surface of metal is produced by thermal spraying ceramic particles on the metal surface. The harder surface is formed by impulsive spraying in which energetic gases explode. The mass of applied ceramics depends on the driving gas energy and is restricted to small amount. In this study, high temperature and high pressure gases generated by converging shock waves are utilized as driver gases of thermal spray to break the restriction. The converging shock wave is generated by a simultaneous explosion of a cylindrical explosive shell and has been applied to a hypervelocity accelerator. As the shock is focusing to the center, the energy density just behind the shock front is increasing. After the reflection of the shock a high energy condition is generated around the focusing center. The generated gas flow has high enthalpy and transfers large amount of kinetic energy into ceramic particles. The thermal spray system composed of a cylindrical shock generator, an accelerating tube, a nozzle and a vacuum chamber was constructed, and ceramics were sprayed onto iron plate. The performance of spray was examined under several conditions and the coated surfaces were observed. The ceramic coatings had sufficient strength in the case that the ceramic particles were sets in the cylindrical shock generator, but the ceramic coatings were not formed in the case in accelerating tube. It is found that the ceramics were required to be molten by heat exchange with high temperature gas. (author)

  9. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  10. Clinical significance of changes of plasma endothelial vasoactive factors contents after treatment in patients with systemic sclerosis (SSc)

    International Nuclear Information System (INIS)

    Wang Chunxi; Han Li'na; Yao Di; Wang Taihan

    2005-01-01

    Objective: To investigate the relationship between endothelial vasoactive factors and development of systemic sclerosis (SSc). Methods: Blood circulating endothelial cell count (CEC, with density gradient precipitation method); plasma endothelin (ET), thromboxane B 2 (TXB 2 ), 6-keto-prostaglandin F 1α concentrations (all above three with RIA); nitric oxide (NO) contents (with Griss method) and plasma intercellular adhesion molecule-1 (ICAM-1), p-selectin (P-S) contents (with ELISA) were measured in 52 patients with systemic sclerosis (SSc) both before and after treatment with prostaglandin E1 and 30 controls. Results: Plasma ET, TXB 2 , ICAM-1, P-S contents and CEC were significantly higher and plasma NO, 6-K-PGF 1α contents were significantly lower in all the patients with SSc before treatment than those in the controls, After treatment, the patients with satisfactory responses (n=33) had the abnormal plasma values of these parameters greatly corrected (vs before treatment P<0.05, P<0.01); while poorly responding patients had the plasma values little changed. Conclusion: Endothelial vasoactive factors are closely involved in the development of systemic sclerosis and may be used as predictors of treatment efficiency. (authors)

  11. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.

    1979-01-01

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  12. Formation of CuAlO{sub 2} Film by Ultrasonic Spray Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Iping, S; Lockman, Zainovia; Hutagalung, S D [School of Materials and Mineral Resources, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Kamsul, A [Gadjah Mada University, Faculty of Mathematics and Natural Resources, Department of Physics, Sekip Utara Bulaksumur 55281 Yogyakarta (Indonesia); Matsuda, Atsunori, E-mail: zainovia@eng.usm.my [Toyohashi University of Technology, Faculty of Engineering, Department of Materials Science, 1-1 Hibarigaoka, Tempakucho, Toyohashi-shi, Aichi 441-8580 (Japan)

    2011-10-29

    Smooth, crack free and homogenous CuAlO{sub 2} film was produced by chemical solution deposition process via spray pyrolysis technique on a cleaned Si substrate. The precursor solution used was comprised of a mixture of 45.87 mmol Cu(NO{sub 3}){sub 2}.3H{sub 2}O and 90 mmol Al(NO{sub 3}){sub 3}.9H{sub 2}O at ratio of Cu:Al = 1.2:1. The precursor solution was placed in a mist chamber and was atomized by a nebulizer to produce precursor mist. The precursor mist was then carried out by Ar gas and was sprayed onto a heated Si. Two main parameters were studied: the distance between the nozzle of the precursor mist chamber and the Si and the temperature of the Si substrate. It appears that from the XRD data, CuAlO{sub 2} can be detected for samples prepared by spraying the precursor mist at temperature of > 550 deg. C with distance between the nozzle and the substrate of 3cm. Reaction of the Cu and Al ions in the mist near the substrate may have promoted the crystallisation of CuAlO{sub 2}.

  13. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.

    Science.gov (United States)

    Gikanga, Benson; Turok, Robert; Hui, Ada; Bowen, Mayumi; Stauch, Oliver B; Maa, Yuh-Fun

    2015-01-01

    Spray-dried monoclonal antibody (mAb) powders may offer applications more versatile than the freeze-dried cake, including preparing high-concentration formulations for subcutaneous administration. Published studies on this topic, however, are generally scarce. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple mAbs in consideration of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. Under similar conditions, both dryers produced powders of similar properties-for example, water content, particle size and morphology, and mAb stability profile-despite a 4-fold faster output by the pilot-scale unit. All formulations containing arginine salt or a combination of arginine salt and trehalose were able to be spray-dried with high powder collection efficiency (>95%), but yield was adversely affected in formulations with high trehalose content due to powder sticking to the drying chamber. Spray-drying production output was dictated by the size of the dryer operated at an optimal liquid feed rate. Spray-dried powders could be reconstituted to high-viscosity liquids, >300 cP, substantially beyond what an ultrafiltration process can achieve. The molar ratio of trehalose to mAb needed to be reduced to 50:1 in consideration of isotonicity of the formulation with mAb concentration at 250 mg/mL. Even with this low level of sugar protection, long-term stability of spray-dried formulations remained superior to their liquid counterparts based on size variant and potency data. This study offers a commercially viable spray-drying process for biological bulk storage and an option for high-concentration mAb manufacturing. This study evaluates a pilot-scale spray dryer against a laboratory-scale dryer to spray-dry multiple monoclonal antibodies (mAbs) from the perspective of scale-up, impact on mAb stability, and feasibility of a high-concentration preparation. The data demonstrated that there is no

  14. [Nondestructive measurement of SSC in western pear using genetic algorithms and FT-NIR spectroscopy].

    Science.gov (United States)

    Wang, Jia-Hua; Pan, Lu; Sun, Qian; Li, Peng-Fei; Han, Dong-Hai

    2009-03-01

    An improved genetic algorithm was used to implement an automated wavelength selection procedure for use in building multivariate calibration models based on partial least squares regression (PLS). The region selecting by genetic algorithms (R-SGA) was applied in building calibration model of soluble solid content (SSC) of Western pear, and the numbers of latent variables used to build calibration model were further reduced. The Fourier transform near infrared reflectance (FT-NIR) spectra were processed by GA after MSC or SNV, and four PLS calibration models were built by using the optimal combinations of these sub-regions. Meanwhile, the full region selecting PLS (Fr-PLS) models were developed. The R-SGA models variables were 434, 496, 310 and 496, for Early Red Comice, Wujiuxiang, Cascade and Kang Buddha, respectively. Despite the complexity of the spectral data, the R-SGA procedure was found to perform well (RMSEP = 0.428, 0.567 for Early Red Comice and Kang Buddha, respectively), leading to calibration models that significantly outperform those based on full-spectrum analyses (RM-SEP = 0.518, 0.633). The prediction precision of GA-PLS models was similar to that of Fr-PLS for Wujiuxiang and Cascade, with RMSEP of 0.696/0.694 and 0.425/0.421 respectively. This work proved that the R-SGA could find optimal values for several disparate variables associated with the calibration model and that the PLS procedure could be integrated into the objective function driving the optimization.

  15. SSC 50 MM collider dipole cryostat single tube support post conceptual design and analysis

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1992-01-01

    Superconducting Super Collider (SSC) dipole magnet cold masses are connected to the cryostat vacuum vessel at five places equally spaced along their length. Five supports limit sag of the cold assembly due to its own weight to a level consistent with the final magnet alignment specifications. The design essentially consists of two composite tubes nested within each other as a means of maximizing the thermal path length. In addition it provides an ideal way to utilize materials best suited for the temperature range over which they must operate. Filament wound S-glass is used between 300K and 80K. Filament wound graphite fiber is used between 80K and 20K and between 20K and 4.5K. S-glass is a better thermal performer above approximately 40K. Graphite composites are ideally suited for operation below 40K. The designs for the 50 mm reentrant supports are well documented in the literature. The current design of the reentrant support has two major drawbacks. First, it requires very tight dimensional control on all components; composite tubes and metal attachment parts. Second, it is expensive, with cost being driven by both the tolerance constraints and by a complex assembly procedure. It seems clear that production magnets will require a support structure which is considerably less expensive than that which is currently used. It seems clear that a design alternate for reentrant support posts will be required for production dipoles primarily due to their cost. It seems less clear that injection molded composite materials are the ideal choice. This report describes the conceptual design for a support post whose function is identical to that of the current reentrant design, which requires very few modifications to surrounding cryostat components, is thermally equivalent to the current 50 mm support post, and is nearly equivalent structurally

  16. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  17. Development of multiwire proportional chambers

    CERN Document Server

    Charpak, G

    1969-01-01

    It has happened quite often in the history of science that theoreticians, confronted with some major difficulty, have successfully gone back thirty years to look at ideas that had then been thrown overboard. But it is rare that experimentalists go back thirty years to look again at equipment which had become out-dated. This is what Charpak and his colleagues did to emerge with the 'multiwire proportional chamber' which has several new features making it a very useful addition to the armoury of particle detectors. In the 1930s, ion-chambers, Geiger- Muller counters and proportional counters, were vital pieces of equipment in nuclear physics research. Other types of detectors have since largely replaced them but now the proportional counter, in new array, is making a comeback.

  18. Single wire drift chamber design

    Energy Technology Data Exchange (ETDEWEB)

    Krider, J.

    1987-03-30

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 ..mu..m rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles.

  19. Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines

    International Nuclear Information System (INIS)

    Wei, Shengli; Wang, Feihu; Leng, Xianyin; Liu, Xin; Ji, Kunpeng

    2013-01-01

    Highlights: • A new swirl chamber combustion system of DI diesel engines is proposed. • The appropriate vortex motion can reduce the wall concentration of mixture. • It has best emissions at swirl ratio of 0.8. • Before spray, the turbulent kinetic energy is primarily controlled by the squish. • After spray, the combustion swirl and reverse squish have a great impact on TKE. - Abstract: In order to improve the spray spatial distribution and promote the mixture quality, enhancing airflow movement in a combustion chamber, a new swirl chamber combustion system in direct injection (DI) diesel engines is proposed. The mixture formation and combustion progress in the cylinder are simulated and investigated at several different swirl ratios by using the AVL-FIRE code. The results show that in view of the fuel/air equivalence ratio distribution, the uniformity of mixture with swirl ratio of 0.2 is better. Before spray injection, the turbulent kinetic energy distribution is primarily controlled by the squish. After spray, the combustion swirl and reverse squish swirl have an effect on temperature distribution and turbulent kinetic energy (TKE) in the cylinder. The NO mass fraction is the lowest at swirl ratio of 0.8 and the highest at swirl ratio of 2.7, while Soot mass fraction is the lowest at swirl ratio of 0.2 and the highest at swirl ratio of 3.2. The appropriate swirl is benefit to improve combustion. To sum up, the emissions at swirl ratio of 0.8 has a better performance in the new combustion system

  20. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London......-mentioned factors, initial loss of aerosol by impact on the chamber wall is most important for the efficiency of a spacer. With a VT of 195 mL, the AeroChamber and Babyhaler were emptied in two breaths, the NebuChamber in four breaths, and the Nebuhaler in six breaths. Insufficiencies of the expiratory valves were...